WO2016108578A1 - 증발장치에 의한 고효율 저온 발전시스템 - Google Patents

증발장치에 의한 고효율 저온 발전시스템 Download PDF

Info

Publication number
WO2016108578A1
WO2016108578A1 PCT/KR2015/014409 KR2015014409W WO2016108578A1 WO 2016108578 A1 WO2016108578 A1 WO 2016108578A1 KR 2015014409 W KR2015014409 W KR 2015014409W WO 2016108578 A1 WO2016108578 A1 WO 2016108578A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
heat medium
evaporation
expansion
evaporator
Prior art date
Application number
PCT/KR2015/014409
Other languages
English (en)
French (fr)
Inventor
이만숙
Original Assignee
이만숙
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150068353A external-priority patent/KR20160081758A/ko
Application filed by 이만숙 filed Critical 이만숙
Publication of WO2016108578A1 publication Critical patent/WO2016108578A1/ko

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/16Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines being only of turbine type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K21/00Steam engine plants not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours

Definitions

  • the present invention relates to a high-efficiency low-temperature power generation system by an evaporator, and more particularly, to improve the power generation efficiency of an organic Rankine cycle generated by driving a turbine with an organic working fluid (refrigerant) as a heat medium. It relates to a high-efficiency low-temperature power generation system by an evaporator composed of cycles adapted to circulate in the steps of evaporation, expansion (power generation) and condensation.
  • Organic Rankine Cycle (ORC) power generation is a waste heat recovery system that generates power using waste heat generated in various processes of industrial plant facilities, such as steel mills, and solar heat that generates electricity by condensing solar heat. It is used as a technology for the use of renewable energy generated by using low temperature heat such as power generation, gradient power generation system and binary geothermal power generation system. With very low efficiency, it is not widely used than other renewable energy technologies.
  • power generation efficiency may be expected by increasing the temperature and pressure at the same time.
  • the conditions of evaporation among the properties of the material are easy to evaporate when the pressure is lowered and the temperature is increased when the other conditions are the same.
  • the condensation is easy when the pressure is raised and the temperature is decreased.
  • the power generated by the organic Rankine cycle is developed by evaporating the heat medium under the condition that the external heat source is supplied in the hermetic evaporator and the temperature and the pressure are increased at the same time.
  • the rise in temperature interferes with the favorable conditions for evaporation, requiring a higher temperature rise relative to the elevated pressure.
  • the content of the minimum heating temperature required for evaporation is described in the high efficiency power generation cycle of Korean Application No. 10-2014-0095894 filed by the applicant of the present invention, and the content described in Application No. 10-2014-0095894 Referring to the related art, the organic Rankine cycle can be confirmed that sufficient generation efficiency is not achieved by using renewable energy.
  • An object of the present invention is to provide a high-efficiency low-temperature power generation system by an evaporator composed of an organic Rankine cycle modified to lower the power generation temperature range of the heat medium to improve power generation efficiency.
  • the object is, according to the present invention, a modified application organic Rankine cycle that generates power by driving a turbine with a refrigerant as a heat medium, and is circulated in the stages of compression, heat expansion, evaporation, expansion (power generation), and condensation.
  • Power generation module comprising a; A condensation module for absorbing and condensing heat of the heat medium; An operation pump for compressing and transporting the heat medium; An evaporation module for evaporating the heat medium; And a superheater for overheating the heat medium, wherein the evaporation module comprises: an expansion nozzle for expanding a volume of the heat medium; And an evaporator for supplying heat to the expanded heat medium and evaporating it, wherein the heat medium is compressed to be higher than the evaporation pressure of the evaporator in the working pump and flows into the expansion nozzle. Achieved by the power generation system.
  • the evaporation module includes a preheater formed between the operation pump and the expansion nozzle to supply sensible heat of the evaporation enthalpy of the heat medium and supplying heat to the heat medium, wherein the heat medium includes the preheater and the expansion nozzle. After being heated and expanded, the latent heat of absorption may be absorbed by the evaporator.
  • a heat storage tank for accumulating external heat sources of solar heat, waste heat, geothermal heat, or air heat, wherein a heat source fluid of the heat storage tank circulates the heat storage tank, the superheater, the evaporator, and the preheater to form a circulation line. It may be made, it is also possible to form a circulation line with the evaporator, the superheater and the preheater to improve the power generation efficiency according to the temperature of the supply heat source.
  • the evaporator may include a housing in which the heat medium expanded from the expansion nozzle is introduced into an internal space, and the circulation line passes through the internal space to exchange heat with the heat medium.
  • the condensation module the air-cooled condenser for cooling the heat medium by heat exchange with air;
  • a service tank installed between the air-cooled condenser and the water-cooled condenser and filled with nitrogen gas to prevent a pressure drop of the heat medium due to a specific volume reduction.
  • the condensation module may further include a water-cooled condensation tank for cooling the heat medium by heat-exchanging with cooling water to increase the viscosity of the liquefied heat medium to improve the transfer efficiency of the operation pump.
  • the object is, according to the present invention, a modified application organic Rankine cycle that generates power by driving a turbine with a refrigerant as a heat medium, and is circulated in the stages of compression, heat expansion, evaporation, expansion (power generation), and condensation.
  • Power generation module comprising a; A condenser for absorbing and condensing heat of the heat medium; An operation pump for compressing and transporting the heat medium; An evaporation module for evaporating the heat medium; A superheater for overheating the heat medium; A heat storage tank for accumulating an external heat source; And a circulation line in which the heat source fluid of the heat storage tank circulates the heat storage tank, the superheater, and the evaporation module to exchange heat, and the evaporation module is circulated after the heat source fluid of the circulation line flows into the internal space.
  • Outflow housing A preheating tube provided in the housing and configured to move the heat medium introduced from the working pump to receive sensible heat in the evaporation enthalpy of the heat medium from the heat source fluid; A contraction tube connected to the preheating tube in the housing and lowering the pressure of the heat medium to absorb latent heat in the evaporation enthalpy of the heat medium from the heat source fluid; And an expandable expansion tube connected to the contraction tube in the housing, wherein the heat medium expands while exchanging heat with the heat source fluid.
  • the object is, according to the present invention, a modified application organic Rankine cycle that generates power by driving a turbine with a refrigerant as a heat medium, and is circulated in the stages of compression, heat expansion, evaporation, expansion (power generation), and condensation.
  • Power generation module comprising a; A condenser for absorbing and condensing heat of the heat medium; An operation pump for compressing and transporting the heat medium; An evaporation module for evaporating the heat medium; A superheater for overheating the heat medium; A heat storage tank for accumulating an external heat source; And a circulation line in which the heat source fluid of the heat storage tank circulates the heat storage tank, the superheater, and the evaporation module to exchange heat, and the evaporation module is circulated after the heat source fluid of the circulation line flows into the internal space.
  • Outflow housing A preheating tube provided in the housing and configured to move the heat medium introduced from the working pump to receive sensible heat in the evaporation enthalpy of the heat medium from the heat source fluid; And a multi-stage expandable expansion tube connected to the preheating tube in the housing, exchanging heat with the heat source fluid, and expanding the volume of the heat medium.
  • the heating medium is heated and expanded after passing through the preheater and the expansion nozzle, the heating medium is evaporated at a low temperature in the evaporator, thereby reducing the power generation temperature range of the heating medium to improve the power generation efficiency. It is possible to provide a high efficiency low temperature power generation system.
  • 1 is a pressure-enthalpy diagram of a conventional low temperature power generation system.
  • Figure 2 is a pressure-enthalpy diagram of a high efficiency low temperature power generation system by an evaporator according to an embodiment of the present invention.
  • FIG. 3 is a block diagram of a high efficiency low temperature power generation system by the evaporator of FIG.
  • Figure 4 is a block diagram showing an evaporation module of a high efficiency low temperature power generation system by the evaporator of FIG.
  • FIG. 5 is a view showing an evaporator of a high efficiency low temperature power generation system by the evaporator of FIG.
  • FIG. 6 is a block diagram showing a condensation module of a high efficiency low temperature power generation system by the evaporator of FIG.
  • FIG. 7 is a view showing an integrated evaporation module of a high efficiency low temperature power generation system by an evaporation apparatus according to another embodiment of the present invention.
  • the high-efficiency low temperature power generation system by the evaporator of the present invention consists of an applied organic Rankine cycle modified to lower power generation range of the heat medium to improve power generation efficiency.
  • FIG. 1 is a pressure-enthalpy diagram of a conventional low temperature power generation system
  • FIG. 2 is a pressure-enthalpy diagram of a high efficiency low temperature power generation system by an evaporation apparatus according to an embodiment of the present invention
  • FIG. 3 is a high efficiency low temperature by the evaporation apparatus of FIG. 4 is a block diagram showing an evaporation module of a high efficiency low temperature power generation system by the evaporator of FIG. 3
  • FIG. 5 is a view showing an evaporator of a high efficiency low temperature power generation system by the evaporator of FIG. 3 is a block diagram showing a condensation module of the high efficiency low temperature power generation system by the evaporator of FIG.
  • FIG. 7 is a view showing the integrated evaporation module of the high efficiency low temperature power generation system by the evaporation apparatus according to another embodiment of the present invention.
  • the high-efficiency low temperature power generation system 1 by the evaporator is a modified application organic Rankine cycle that generates power by driving a turbine 11 using a refrigerant as a heat medium.
  • Compressed, heated expansion, evaporation, expansion (power generation), condensation is made in the steps of the power generation module 10, the condensation module 20, the operation pump 30, the evaporation module 40 and the superheater 50 It is configured to include.
  • the heat medium selects a refrigerant for R-134a refrigeration, and a predetermined set pressure of the preheater 43 is It was based on the preheating temperature of 70 degreeC or more in 20 kg / cm ⁇ 2>.
  • the arbitrary set pressure of the evaporator 42 is set to the heat supplied by the external heat source more than 90 °C at 17kg / cm2, the set pressure of the superheater 50 is 80 °C or more at 17kg / cm2, such as the evaporator 42
  • An external heat source is arbitrarily set, and the condensing pressure of the water-cooled condenser 22 is set to be maintained at a temperature of the heat medium below 28 ° C. at 8 kg / cm 2, and will be described in detail as a method for performing the following. do.
  • 'B' section is adiabatic compression process by the compression pump, 'B' section is expanded
  • the pressure is lowered from the evaporator 42 by the nozzle 41 and is an endothermic expansion process for facilitating evaporation.
  • the 'd' section is a heat source of the heat storage tank 60. The constant pressure heating process of endothermic evaporation in the evaporator 42 by the fluid is shown.
  • the ' ⁇ ' section is a superheated steam section, which absorbs external heat by the heat source fluid of the heat storage tank 60 and is overheated by a constant pressure heating process in which the volume is expanded, and the thermal medium is compressed to provide adiabatic expansion process by the turbine 11 ( ⁇ ) increase the amount of kinetic energy to improve the power generation efficiency.
  • ' ⁇ ' section is a process that is condensed by static pressure heat dissipation by the condensation module 20 and circulated by the compression pump to form an application organic Rankine cycle.
  • the low temperature evaporation system of the high efficiency low temperature power generation system 1 by the evaporation apparatus using the applied organic Rankine cycle of the present invention includes a preheater 43, an expansion nozzle 41, and an evaporator 42. Consists of the evaporation module 40 and the superheater 50, the external heat source stored in the heat storage tank 60 to the superheater 50, the evaporator 42 and the preheater 43, the external heat source According to the temperature of the power generation efficiency may be improved in order to circulate the external heat source in the order of evaporator, superheater, preheater not shown.
  • the heat storage tank 60 is configured to heat the external heat source of solar heat, waste heat, geothermal or air heat
  • the heat source fluid of the heat storage tank 60 is the heat storage tank 60
  • the superheater 50 An example in which a circulation line 61 is formed to exchange heat by circulating the evaporator 42 and the preheater 43 is illustrated, and reference numeral P1, which is not described, indicates a circulation pump of the circulation line 61.
  • the heat medium is set at a constant pressure of 20 kg / cm 2 by the operation pump 30 and circulated to the preheater 43, and is supplied with an external heat source through the circulation line 61 of the heat storage tank 60 in the preheater 43. Is preheated to 70 ° C to receive sensible heat in the enthalpy required for evaporation.
  • the heat medium R-134a preheated by the sensible heat from the preheater 43 is sprayed by the expansion nozzle 41 in the evaporator 42 at a pressure of 20 kg / cm 2, and the pressure difference from the set pressure of 17 kg / cm 2, which is the set pressure inside the evaporator 42. As it expands, it absorbs latent heat of evaporation and evaporates at low temperature.
  • the evaporator 42 comprises an expandable expansion tube WP and a housing HS, and is provided to the latent heat of evaporation of the heat medium from an external heat source of 90 ° C. or higher in the evaporator 42. It consists of a structure having an expandable expansion tube (WP) that can be sufficiently supplied with the corresponding enthalpy.
  • WP expandable expansion tube
  • the heat medium expanded from the expansion nozzle 41 moves toward the superheater 50 through the expansion expansion pipe WP, and the heat source fluid of the circulation line 61 flows into the inner space of the housing HS to expand the expansion expansion pipe WP. ) And heat exchanges.
  • the saturation temperature is 61 ° C.
  • the sensible heat is 69 kcal / kg
  • the latent heat is 33 kcal / kg.
  • the working fluid is preheated to around 60 °C.
  • the evaporator 42 is supplied with heat corresponding to latent heat with heat of 90 ° C. or higher, and the heat medium is continuously endothermic evaporated while maintaining 61 ° C., and the superheater 50 receives heat of 80 ° C. or more, and the heat medium is saturated.
  • the mechanical kinetic energy in the turbine 11 can be doubled to improve the power generation efficiency.
  • the pressure of the heat medium is high in the preheater 43 and low in the evaporator 42, and the superheater 50 is set to the same pressure as the evaporator 42, so that the low temperature evaporation using the pressure difference of the working fluid is performed, thereby improving the power generation efficiency. You can do it.
  • the pressure is increased so that the external heat source through the circulation line 61 is maintained so that the pressure is not condensed and the temperature is maintained above the saturation temperature. Supply.
  • High-efficiency low-temperature power generation system (1) by the evaporator of the present invention the characteristics of the material of the evaporation conditions, the pressure is lowered and the temperature is used to easily evaporate when the temperature is raised, the preheater 43 by using the pressure difference of the heat medium
  • the pressure is lowered to 17 kg / cm 2 from the evaporator 42 through the expansion nozzle 41 at a pressure of 20 kg / cm 2
  • the boiling point is lowered, thereby lowering the minimum heating temperature required for evaporation.
  • the latent heat by the saturated steam table is 34 kcal / kg
  • the specific heat is 0.4 kcal / kg °C under any of the above conditions
  • the minimum heating temperature required for the evaporation proposed in the present invention uses the properties of the material, and the temperature is raised and the pressure is lowered, so that the vapor is absorbed by absorbing the surrounding heat by evaporating at a low temperature as in the absorption refrigeration principle, the saturated vapor temperature is 61 ° C.
  • 20 to 30 ° C. plus 90 ° C. or more is the minimum heating temperature required for evaporation, which is the heat transfer efficiency.
  • the temperature and the difference between the external heat source supply temperature should be increased, but in the applied organic Rankine cycle of the present invention, since the pressure difference of the heat medium is evaporated, the heat medium absorbs and evaporates heat if the temperature is higher than the saturation temperature. The temperature difference is less formed.
  • the evaporation module 40 of the present invention is supplied with the necessary heat at the temperature of an external heat source plus a temperature difference of about 20 to 30 ° C. required for saturation temperature and heat transfer, the heat medium continuously takes heat from the heat source fluid and generates heat by endothermic evaporation. You can always be efficient.
  • the power generation module 10 includes a turbine 11, a generator 12, and a control device (not shown), and generates heat by converting thermal energy into mechanical energy.
  • the turbine 11 and the generator 12 of the organic Rankine cycle are well known in the art and detailed description thereof will be omitted.
  • the evaporator 42 has the heat medium expanded from the expansion nozzle 41 flowing into the interior space of the housing HS, and the circulation line 61 is the interior space of the housing HS. It can be made to pass through the heat exchange structure with the heat medium.
  • the expansion nozzle 41 is formed in a structure that expands into the evaporator 42, so that the evaporator 42 serves as an expansion expansion tube (WP), and the external heat source is exchanged with a tubular heat exchanger.
  • WP expansion expansion tube
  • the evaporator 42 may be configured to evaporate using a pressure difference of the working fluid by relatively lowering the pressure by speeding up the flow rate of the heat medium using the shrinking tube NP. .
  • An expansion nozzle 41 is provided at the rear end of the evaporator 42 to expand the volume of the working fluid.
  • the condensation module 20 includes an air-cooled condenser 21, a service tank 23, a water-cooled condenser 22, and a water-cooled condensation tank 24.
  • the air-cooled condenser 21 is a device that primarily cools the hot heat medium to the temperature of the atmosphere as an auxiliary condenser, and the water-cooled condenser is supplied with a cooling water by a separate cooling device (not shown).
  • the heat medium is cooled and condensed below ° C.
  • Unexplained reference numeral WL is a coolant line through which coolant flows, and P2 is a circulation pump installed in the coolant line.
  • the service tank 23 is an auxiliary tank which functions to prevent a phenomenon in which the pressure decreases momentarily by decreasing the specific volume during the process of the heat medium changing from gas to liquid.
  • the specific volume is reduced by more than 32 times from 0.0261m3 / kg to 0.0008m3 / kg. It can maintain the condensation pressure.
  • the service tank 23 has a structure such as a hermetic expansion tank that is commercially supplied and expanded to a pressure pump to reduce the pressure variation of the heat medium to facilitate condensation.
  • the water-cooled condensation tank 24 serves to increase the viscosity of the heat medium to be liquefied further to increase the viscosity of the heat medium to be condensed and to always carry the transfer capacity of the compression pump.
  • the high-efficiency low-temperature power generation system 1 by the evaporator according to another embodiment of the present invention, the preheater 43 and the evaporator 42 is integrally Can be done.
  • the evaporation module 40 includes a housing HS, a preheating tube PP, a shrinking tube NP, and an expandable expansion tube WP.
  • the housing HS forms an internal space in which the heat source fluid of the circulation line 61 flows in and flows out after circulation.
  • the preheating tube PP, the shrinking tube NP and the expandable expansion tube WP are formed inside the housing HS.
  • the heat medium flowing from the working pump 30 flows through the preheating pipe PP and receives sensible heat in the evaporation enthalpy of the heat medium from the heat source fluid, and then flows into the shrinking pipe NP.
  • the heat medium passes through the constriction tube (NP) and the pressure decreases as the flow rate increases and absorbs latent heat in the evaporation enthalpy of the heat medium from the heat source fluid.
  • the heat medium passing through the constriction tube (NP) is heat-exchanged with the heat source fluid in the expansion expansion tube (WP) is expanded and discharged to the superheater (50) side.
  • the evaporation module 40 may include a housing HS, a preheating tube PP, and expandable expansion tubes WP1 and WP2.
  • the housing HS forms an internal space in which the heat source fluid of the circulation line 61 flows in and flows out after circulation.
  • the preheating tube PP and the expandable expansion tubes WP1 and WP2 are formed inside the housing HS.
  • the heat medium flowing from the working pump 30 flows through the preheating pipe PP and receives sensible heat in the evaporation enthalpy of the heat medium from the heat source fluid, and then flows into the expansion expansion pipes WP1 and WP2.
  • the heat medium passes through the expansion expansion pipes (WP1, WP2) and heat exchanges with the heat source fluid while absorbing the latent heat of evaporation to evaporate at low temperature and discharge it to the superheater 50 side.
  • the heat medium is heated and expanded after passing through the preheater 43 and the expansion nozzle 41, and is evaporated at a low temperature in the evaporator 42, the heat medium is deformed to improve the power generation efficiency by lowering the usable temperature range. It is possible to provide a high-efficiency low temperature power generation system 1 by an evaporator composed of an applied organic Rankine cycle.
  • Low temperature power generation system 10 Power generation module
  • expansion nozzle 21 air-cooled condenser
  • the present invention can be used in a high efficiency low temperature power generation system by an evaporator.

Abstract

증발장치에 의한 고효율 저온 발전시스템이 개시된다. 본 발명의 증발장치에 의한 고효율 저온 발전시스템은, 유기작동유체(냉매)를 열매체로 하여 터빈을 구동시켜 발전하는 유기 랭킨 사이클의 발전효율을 향상시키기 위하여 압축, 가열팽창, 증발, 팽창(발전), 응축의 단계로 순환되는 변형된 응용유기 랭킨 사이클로서, 터빈과 발전기를 포함하는 발전모듈; 열매체의 열을 흡수하여 응축시키는 응축모듈; 열매체를 압축하여 이송시키는 작동펌프; 열매체를 증발시키는 증발모듈; 및 열매체를 과열시키는 과열기를 포함하고, 증발모듈은, 열매체의 체적을 팽창시키는 팽창노즐; 및 팽창된 열매체에 열을 공급하여 증발시키는 증발기를 포함하며, 열매체는, 작동펌프에서 증발기의 증발 압력보다 높게 압축되어 팽창노즐로 유입되어 작동유체의 압력차를 이용 저온 증발시켜 발전효율을 향상시키는 것을 특징으로 한다.

Description

증발장치에 의한 고효율 저온 발전시스템
본 발명은 증발장치에 의한 고효율 저온 발전시스템에 관한 것으로, 보다 상세하게는, 유기 작동 유체(냉매)를 열매체로 하여 터빈을 구동시켜 발전하는 유기 랭킨 사이클의 발전 효율을 향상시키기 위하여 압축, 가열팽창, 증발, 팽창(발전), 응축의 단계로 순환되도록 응용 변형시킨 사이클로 이루어지는 증발장치에 의한 고효율 저온 발전시스템에 관한 것이다.
유기랭킨 사이클(ORC) 에 의한 발전은 제철소를 비롯한 산업용 플랜트 설비의 여러 공정에서 발생하는 폐열을 이용하여 발전하는 폐열 발전시스템(waste heat recovery system)과 태양열을 집광하여 발전하는 태양열 발전시스템(solar heat power generation) 및 해양 온도차 발전시스템(gradient power generation system), 지열 등을 이용하여 발전하는 바이너리 발전시스템(binary geothermal power generation system) 등 저온의 열을 이용하여 발전하는 신재생 에너지의 이용 기술로서 사용되고 있으나 매우 낮은 효율로 다른 신재생 에너지의 이용 기술보다 널리 보급 되지 못하고 있는 실정이다.
특히 저온열을 이용하여 발전하기 위하여 냉동용 냉매가스 등 비등점이 매우 낮은 유기 열매체를 사용하는 발전 기술은 100℃ 내외의 폐열을 활용할 수 있는 신재생 에너지의 이용 기술이어야 하지만 간접가열 열교환 방식의 폐쇄회로상에서 지극히 효율이 낮은 기술적인 한계를 가지고 있는 것이 현실이다.
유기 랭킨 사이클에 의한 발전은 대한민국 공개특허공보 제2014-0015422호, 제2012-0039986호 및 등록특허공보 제1290289호에 게시되어 있으며, 대한민국 공개특허공보 제2014-0015422호, 제2012-0039986호 및 등록특허공보 제1290289호의 유기 랭킨 사이클은 도 1에서와 같은 사이클 선도를 가진다.
도 1에 도시된 바와 같이, 유기 랭킨 사이클을 이용하여 발전하려면 온도와 압력을 동시에 올려 증발해야 발전 효율을 기대할 수 있다. 그러나 물질의 특성 중에 증발의 조건은 다른 조건이 동일한 경우 압력은 내리고 온도는 올려야 증발이 용이하고, 이와는 반대로 응축의 조건은 압력은 올리고 온도를 내려야 응축이 용이하게 일어나게 된다.
그러나 유기 랭킨 사이클에 의한 발전은 밀폐형 증발기 내에서 외부 열원을 공급받아 온도와 압력을 동시에 상승시킨 조건하에서 열매체를 증발시켜 발전함에 따라, 유기 열매체가 증발하는 과정에서 상승한 압력에 의해 응축에 유리한 조건이 온도가 상승하여 증발에 유리한 조건을 방해함으로써 상승한 압력 대비 상대적으로 더 높은 온도 상승이 요구된다.
따라서 상변화 과정에서 증발 잠열을 흡수할 수 있는 증발에 필요한 최소 가열 온도를 전제로 한 필요 열량의 공급이 있어야지만 열매체의 연속적인 증발로 발전이 가능하게 된다.
본 발명의 출원인에 의해 출원된 대한민국 출원번호 제10-2014-0095894호의 고효율 발전사이클에 증발에 필요한 최소 가열온도에 관한 내용이 기술되어 있으며, 출원번호 제10-2014-0095894호에 기술된 내용을 참조하면 종래 유기 랭킨 사이클은 신재생 에너지 이용 기술로써 충분한 발전 효율이 나오지 않는 것을 확인할 수 있다.
또한, 저온 비등 증발하는 냉동용 냉매 가스와 같은 열매체를 갖는 유기 랭킨 사이클에 의한 발전에서는 열매체가 응축되는 과정에서 기체 가스와 액체 가스의 비체적 편차가 심하여 응축 압력이 떨어져 상대적으로 응축 압력을 더 상승시켜야 하므로 배압에 의하여 발전 효율이 낮아지게 된다.
상술한 바와 같이, 신재생 에너지의 이용기술로서 유기 랭킨 사이클에 의한 경제적인 발전 효율을 충분히 기대할 수 없기 때문에 새로운 방법으로 발전 효율을 향상시킬 수 있는 발전 사이클에 의한 열에너지 변환용 발전기술의 개발이 요구된다.
* 선행기술문헌
- 특허문헌
대한민국 공개특허공보 제2014-0015422호 (공개일: 2014.02.06)
대한민국 공개특허공보 제2012-0039986호 (공개일: 2012.04.26)
대한민국 등록특허공보 제1290289호 (등록일: 2013.07.22)
본 발명의 목적은, 열매체의 발전 가능한 사용 온도 범위를 낮추어 발전 효율이 향상되도록 변형된 유기 랭킨 사이클로 이루어지는 증발장치에 의한 고효율 저온 발전시스템을 제공하는 것이다.
상기 목적은, 본 발명에 따라, 냉매를 열매체로 하여 터빈을 구동시켜 발전하는 변형된 응용유기 랭킨 사이클로서 압축, 가열팽창, 증발, 팽창(발전), 응축의 단계로 순환되며, 상기 터빈과 발전기를 포함하는 발전모듈; 상기 열매체의 열을 흡수하여 응축시키는 응축모듈; 상기 열매체를 압축하여 이송시키는 작동펌프; 상기 열매체를 증발시키는 증발모듈; 및 상기 열매체를 과열시키는 과열기를 포함하고, 상기 증발모듈은, 상기 열매체의 체적을 팽창시키는 팽창노즐; 및 팽창된 상기 열매체에 열을 공급하여 증발시키는 증발기를 포함하며, 상기 열매체는, 상기 작동펌프에서 상기 증발기의 증발 압력보다 높게 압축되어 상기 팽창노즐로 유입되는 것을 특징으로 하는 증발장치에 의한 고효율 저온 발전시스템에 의하여 달성된다.
상기 증발모듈은, 상기 열매체의 증발 엔탈피 중 현열을 공급하도록 상기 작동펌프와 상기 팽창노즐의 사이에 형성되어 상기 열매체에 열을 공급하는 예열기를 포함하며, 상기 열매체는, 상기 예열기와 상기 팽창노즐을 지나며 가열 및 팽창된 후 상기 증발기에서 증발잠열을 흡수 저온 증발되도록 이루어질 수 있다.
태양열, 폐열, 지열 또는 공기열의 외부열원을 축열하는 축열탱크를 포함하고, 상기 축열탱크의 열원유체가 상기 축열탱크, 상기 과열기, 상기 증발기 및 상기 예열기를 순환하여 열을 교환하는 순환라인이 형성되도록 이루어질 수 있으며, 공급 열원의 온도에 따라 발전 효율을 향상시킬 수 있도록 상기 증발기, 상기 과열기 및 상기 예열기로 순환라인을 형성시킬 수도 있다.
상기 증발기는, 상기 팽창노즐에서 팽창된 상기 열매체가 이동하는 확장형 팽창관; 및 상기 확장형 팽창관이 내부에 구비되고, 상기 순환라인의 열원유체가 내부공간으로 유입되어 상기 확장형 팽창관과 열교환 후 유출되는 하우징을 포함하여 이루어질 수 있다.
상기 증발기는, 상기 팽창노즐에서 팽창된 상기 열매체가 내부공간으로 유입되고, 상기 순환라인이 내부공간을 지나며 상기 열매체와 열교환하는 하우징으로 이루어질 수 있다.
상기 응축모듈은, 공기와 열교환하여 열매체를 냉각하는 공랭식 응축기; 냉각장치에 의해 냉각수와 열교환하여 상기 열매체를 냉각하는 수랭식 응축기; 및 상기 공랭식 응축기와 상기 수랭식 응축기 사이에 설치되고, 비체적 감소에 의한 상기 열매체의 압력 강하가 방지되도록 질소가스를 충진한 서비스 탱크를 포함하여 이루어질 수 있다.
상기 응축모듈은, 액화된 상기 열매체의 점도를 높여 상기 작동펌프의 이송효율이 향상되도록 냉각수와 열교환하여 상기 열매체를 냉각하는 수랭식 응축탱크를 더 포함하여 이루어질 수 있다.
상기 목적은, 본 발명에 따라, 냉매를 열매체로 하여 터빈을 구동시켜 발전하는 변형된 응용유기 랭킨 사이클로서 압축, 가열팽창, 증발, 팽창(발전), 응축의 단계로 순환되며, 상기 터빈과 발전기를 포함하는 발전모듈; 상기 열매체의 열을 흡수하여 응축시키는 응축기; 상기 열매체를 압축하여 이송시키는 작동펌프; 상기 열매체를 증발시키는 증발모듈; 상기 열매체를 과열시키는 과열기; 외부열원을 축열하는 축열탱크; 및 상기 축열탱크의 열원유체가 상기 축열탱크, 상기 과열기 및 상기 증발모듈을 순환하여 열을 교환하는 순환라인을 포함하고, 상기 증발모듈은, 상기 순환라인의 열원유체가 내부공간으로 유입되어 순환 후 유출되는 하우징; 상기 하우징 내부에 구비되고, 상기 열원유체로부터 상기 열매체의 증발 엔탈피 중 현열을 공급받도록 상기 작동펌프에서 유입된 상기 열매체가 이동하는 예열관; 상기 하우징 내부에서 상기 예열관과 연결되고, 상기 열매체의 압력을 낮추어 상기 열원유체로부터 상기 열매체의 증발 엔탈피 중 잠열을 흡수하는 수축관; 및 상기 하우징 내부에서 상기 수축관과 연결되고, 상기 열매체가 상기 열원유체와 열교환하며 팽창되는 확장형 팽창관을 포함하는 것을 특징으로 하는 증발장치에 의한 고효율 저온 발전시스템에 의하여 달성된다.
상기 목적은, 본 발명에 따라, 냉매를 열매체로 하여 터빈을 구동시켜 발전하는 변형된 응용유기 랭킨 사이클로서 압축, 가열팽창, 증발, 팽창(발전), 응축의 단계로 순환되며, 상기 터빈과 발전기를 포함하는 발전모듈; 상기 열매체의 열을 흡수하여 응축시키는 응축기; 상기 열매체를 압축하여 이송시키는 작동펌프; 상기 열매체를 증발시키는 증발모듈; 상기 열매체를 과열시키는 과열기; 외부열원을 축열하는 축열탱크; 및 상기 축열탱크의 열원유체가 상기 축열탱크, 상기 과열기 및 상기 증발모듈을 순환하여 열을 교환하는 순환라인을 포함하고, 상기 증발모듈은, 상기 순환라인의 열원유체가 내부공간으로 유입되어 순환 후 유출되는 하우징; 상기 하우징 내부에 구비되고, 상기 열원유체로부터 상기 열매체의 증발 엔탈피 중 현열을 공급받도록 상기 작동펌프에서 유입된 상기 열매체가 이동하는 예열관; 및 상기 하우징 내부에서 상기 예열관과 연결되고, 상기 열원유체와 열교환하며 상기 열매체의 체적을 팽창시키는 다단의 확장형 팽창관을 포함하는 것을 특징으로 하는 증발장치에 의한 고효율 저온 발전시스템에 의하여 달성된다.
본 발명에 의하면, 열매체가 예열기와 팽창노즐을 지나며 가열 및 팽창된 후 증발기에서 저온 증발되도록 이루어짐으로써, 열매체의 발전 가능한 사용 온도 범위를 낮추어 발전 효율이 향상되도록 변형된 응용유기 랭킨 사이클로 이루어지는 증발장치에 의한 고효율 저온 발전시스템을 제공할 수 있게 된다.
도 1은 종래 저온 발전시스템의 압력-엔탈피 선도.
도 2는 본 발명의 일 실시예에 따른 증발장치에 의한 고효율 저온 발전시스템의 압력-엔탈피 선도.
도 3은 도 2의 증발장치에 의한 고효율 저온 발전시스템의 구성도.
도 4는 도 3의 증발장치에 의한 고효율 저온 발전시스템의 증발모듈을 나타내는 구성도.
도 5는 도 3의 증발장치에 의한 고효율 저온 발전시스템의 증발기를 나타내는 도면.
도 6은 도 3의 증발장치에 의한 고효율 저온 발전시스템의 응축모듈을 나타내는 구성도.
도 7은 본 발명의 다른 실시예에 따른 증발장치에 의한 고효율 저온 발전시스템의 일체형 증발모듈을 나타내는 도면.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예들을 상세하게 설명하면 다음과 같다. 다만, 본 발명을 설명함에 있어서, 이미 공지된 기능 혹은 구성에 대한 설명은, 본 발명의 요지를 명료하게 하기 위하여 생략하기로 한다.
본 발명의 증발장치에 의한 고효율 저온 발전시스템은, 열매체의 발전 가능한 사용 온도 범위를 낮추어 발전 효율이 향상되도록 변형된 응용유기 랭킨 사이클로 이루어진다.
도 1은 종래 저온 발전시스템의 압력-엔탈피 선도, 도 2는 본 발명의 일 실시예에 따른 증발장치에 의한 고효율 저온 발전시스템의 압력-엔탈피 선도, 도 3은 도 2의 증발장치에 의한 고효율 저온 발전시스템의 구성도, 도 4는 도 3의 증발장치에 의한 고효율 저온 발전시스템의 증발모듈을 나타내는 구성도, 도 5는 도 3의 증발장치에 의한 고효율 저온 발전시스템의 증발기를 나타내는 도면, 도 6은 도 3의 증발장치에 의한 고효율 저온 발전시스템의 응축모듈을 나타내는 구성도, 도 7은 본 발명의 다른 실시예에 따른 증발장치에 의한 고효율 저온 발전시스템의 일체형 증발모듈을 나타내는 도면.
도 3에 도시된 바와 같이, 본 발명의 일 실시예에 따른 증발장치에 의한 고효율 저온 발전시스템(1)은, 냉매를 열매체로 하여 터빈(11)을 구동시켜 발전하는 변형된 응용유기 랭킨 사이클로서 압축, 가열팽창, 증발, 팽창(발전), 응축의 단계로 순환되도록 이루어지며, 발전모듈(10), 응축모듈(20), 작동펌프(30), 증발모듈(40) 및 과열기(50)를 포함하여 구성된다.
아래에서는, 본 발명의 일 실시예에 따른 증발장치에 의한 고효율 저온 발전시스템(1)의 용이한 이해를 돕기 위해 열매체는 R-134a 냉동용 냉매를 선정하였으며, 예열기(43)의 임의 설정 압력은 20kg/㎠에 70℃ 이상의 예열 온도를 기준으로 하였다.
그리고 증발기(42)의 임의 설정 압력은 17kg/㎠에 90℃ 이상의 외부 열원에 의한 열이 공급되는 것으로 설정하고, 과열기(50)의 설정 압력은 증발기(42)와 같은 17kg/㎠에 80℃ 이상의 외부 열원이 공급되는 것으로 임의 설정하며, 수랭식 응축기(22)의 응축 압력은 8kg/㎠에 28℃ 이하로 열매체의 온도가 유지되는 것으로 설정하였으며, 아래에서는 이를 실행하기 위한 방법으로서 구체적으로 설명하기로 한다.
도 2에 도시된 바와 같이, 본 발명의 증발장치에 의한 고효율 저온 발전시스템(1)의 압력-엔탈피 선도를 살펴보면, 'ㄱ' 구간은 압축 펌프에 의한 단열압축 과정이고, 'ㄴ' 구간은 팽창노즐(41)에 의하여 증발기(42)에서 압력이 내려가 증발을 용이하게 하는 흡열팽창 과정으로 축열탱크(60)의 열원유체에 의해 가열되는 구간이며, 'ㄷ' 구간은 축열탱크(60)의 열원유체에 의하여 증발기(42)에서 흡열증발하는 정압가열 과정을 도시하고 있다.
또한, 'ㄹ' 구간은 과열증기 구간으로 축열탱크(60)의 열원유체에 의해 외부열을 흡수하여 과열되어 체적이 팽창하는 정압가열 과정으로 열매체가 압축되어 터빈(11)에 의한 단열팽창 과정(ㅁ)에서 운동 에너지량이 증가하여 발전 효율을 향상시킨다.
일 예로서, 2㎥의 체적을 가진 과열기(50) 내에서 17kg/㎠의 일정 압력하에서 61℃의 포화 온도로 증발한 열매체를 80℃의 열매체로 과열하였을 경우, 체적팽창은 V/T가 일정하므로 V1/T1= V2/T2에서 2㎥/(273+61)K=V2/(273+80)K이므로 V2=2.11㎥으로 체적 팽창하게 된다.
'ㅂ' 구간은 응축모듈(20)에 의하여 정압방열하여 응축되는 과정이며 압축펌프에 의하여 순환되면서 응용 유기 랭킨 사이클을 형성한다.
도 4에 도시된 바와 같이, 본 발명의 응용 유기 랭킨 사이클에 의한 증발장치에 의한 고효율 저온 발전시스템(1)의 저온 증발 시스템은 예열기(43), 팽창노즐(41), 증발기(42)를 포함하는 증발모듈(40)과 과열기(50)를 포함하여 구성되며, 축열탱크(60)에 저장된 외부열원을 과열기(50), 증발기(42) 및 예열기(43)로 순환시키는 구조로 이루어지며 외부열원의 온도에 따라 발전 효율을 향상시킬 수 있는 방법으로 미도시된 증발기, 과열기, 예열기의 순서로 외부열원을 순환시키는 구조를 형성시킬 수도 있다.
도 4에 도시된 바와 같이, 축열탱크(60)는 태양열, 폐열, 지열 또는 공기열의 외부열원을 축열하는 구성으로서, 축열탱크(60)의 열원유체가 축열탱크(60), 과열기(50), 증발기(42) 및 예열기(43)를 순환하여 열을 교환하도록 순환라인(61)이 형성되는 일 예를 나타내고 있으며, 미설명된 부호 P1은 순환라인(61)의 순환펌프를 나타낸다.
열매체는 작동펌프(30)에 의하여 20kg/㎠의 일정 압력으로 설정되어 예열기(43)로 순환되며, 예열기(43)에서 축열탱크(60)의 순환라인(61)을 통해 외부 열원을 공급받아 열매체가 70℃로 예열되어 증발에 필요한 엔탈피 중 현열을 공급받게 된다.
예열기(43)에서 현열을 공급받아 예열된 열매체 R-134a는 증발기(42)에서 팽창노즐(41)에 의하여 20kg/㎠의 압력으로 분사되어 증발기(42) 내부 설정압력인 17kg/㎠와의 압력 차이에 의하여 팽창되면서 증발잠열을 흡수 저온 증발하게 된다.
도 5(a)에 도시된 바와 같이, 증발기(42)는 확장형 팽창관(WP) 및 하우징(HS)을 포함하여 이루어지며, 증발기(42) 내에서 90℃ 이상의 외부 열원으로부터 열매체의 증발 잠열에 해당하는 엔탈피를 충분히 공급받을 수 있는 확장형 팽창관(WP)을 갖는 구조로 이루어진다.
팽창노즐(41)에서 팽창된 열매체는 확장형 팽창관(WP)을 통해 과열기(50) 측으로 이동하며, 순환라인(61)의 열원유체는 하우징(HS)의 내부공간으로 유입되어 확장형 팽창관(WP)과 열교환 후 유출된다.
보다 자세하게는, 냉매 1kg을 17 kg/㎠의 압력으로 증발시키면 포화온도는 61℃이고 현열은 69kcal/kg이며, 잠열은 33kcal/kg이므로 예열기(43)에서 70℃ 이상의 열로 현열에 필요한 열량을 공급받아 작동유체가 60℃ 정도로 예열된다.
증발기(42)에서는 90℃ 이상의 열로 잠열에 해당하는 열량을 공급받아 열매체가 포화온도인 61℃를 유지하며 연속적으로 흡열증발하게 되고, 과열기(50) 에서는 80℃ 이상의 열을 공급받아 열매체가 포화온도인 61℃ 이상으로 과열 압축됨으로써 터빈(11)에서의 기계적인 운동에너지를 배가시켜 발전 효율을 향상시킬 수 있게 된다.
따라서 열매체의 압력은 예열기(43)에서 높고 증발기(42)에서 낮으며, 과열기(50)는 증발기(42)와 동등한 압력으로 설정되어 작동유체의 압력차를 이용한 저온증발이 이루어짐으로써 발전효율을 향상시킬 수 있게 된다.
반면에, 열매체의 온도는 예열기(43)가 낮고 증발기(42) 과열기(50) 순으로 높아지기 때문에 압력이 상승하여 응축되지 않고 포화온도 이상의 온도를 유지할 수 있도록 순환라인(61)을 통한 외부 열원을 공급한다.
본 발명의 증발장치에 의한 고효율 저온 발전시스템(1)은, 물질의 특성 중 증발의 조건인 압력은 내리고 온도는 올려야 증발이 용이한 특성을 이용한 것으로서, 열매체의 압력차를 이용하여 예열기(43)의 20kg/㎠의 압력에서 팽창노즐(41)을 통해 증발기(42)에서 17kg/㎠으로 압력을 내리면 비등점이 하강하게 되고, 이에 따라 증발에 필요한 최소 가열 온도를 낮출 수 있게 된다.
종래 유기 랭킨 사이클에서 냉매 1kg을 증발시키기 위한 증발에 필요한 최소가열온도를 살펴보면, 상기한 임의 조건에서 포화증기표에 의한 잠열은 34kcal/kg, 비열은 0.4kcal/kg℃으로서, 열전달발전효율을 30% 이하로 계산하면 Q= G*C*T에서 T=Q/(G*C)*0.3이므로, T=34/(1*0.4*0.3)=283℃가 됨을 알 수 있다.
이와 같은 계산 수치는 현열은 무시하고 단지 간접 가열 열교환 방식에서 증발 잠열에 의한 순수한 상변화 열량만을 산정하였으며, 유기 랭킨 방식의 열전달율은 랭킨 사이클의 일반적인 발전효율인 40%보다 온도차가 적은 점등을 고려하여 산정하였으나, 실제 증발에 필요한 최소가열온도는 더 높아야 함은 종래기술들에 의해 입증된다.
반면에 본 발명에서 제안하는 증발에 필요한 최소 가열 온도는 물질의 특성을 이용하는 것으로 온도는 올리고 압력은 내림으로서 흡수식 냉동 원리와 같이 저온 증발하여 주위의 열을 흡수하며 증발하기 때문에, 포화 증기 온도 61℃에 열전달에 필요한 온도차로 20 내지 30℃를 더한 90℃ 이상이 증발에 필요한 최소 가열 온도가 되는 것이고, 이는 곧 열전달 효율이 되는 것이다.
이는 냉동 사이클에서 COP(coefficient of performance)가 높게 나오는 것과 동일한 원리로서 열매체의 압력차를 이용하여 저온 증발시키고 이상기체 상태 방정식에서 샤를의 법칙(Charle's law)에 의하여 압력이 일정할 때 온도 상승에 비례하여 기체는 체적이 팽창하므로, 터빈(11)에 의한 운동 에너지량을 증가시켜 발전 효율을 향상시킬 수 있는 것이다.
즉 종래기술인 유기 랭킨 사이클에서는 밀폐형 증발기 내에서 온도가 올라 증발하려는 성질과 압력이 올라 응축되려는 성질이 상반되게 작용하여 증발 잠열과 열전달율을 더한 높은 온도가 있어야만 열매체가 포화온도까지 올라 증발이 가능하므로 포화온도와 외부 열원 공급 온도차가 증가해야 하지만, 본 발명의 응용 유기 랭킨 사이클에서는 열매체의 압력차를 증가시킨 상태에서 증발시키므로 포화온도 이상의 온도만 있으면 열매체가 열을 흡수 증발하게 되어 포화 온도와 외부열원의 온도차가 적게 형성되는 것이다.
따라서 본 발명의 증발모듈(40)은 포화온도와 열전달에 필요한 20~30℃ 정도의 온도차를 더한 외부열원의 온도로 필요 열량을 공급받는다면 열매체는 연속적으로 열원유체의 열을 빼앗아 흡열 증발하여 발전 효율을 항상 시킬 수 있는 것이다.
도 3 및 도 4에 도시된 바와 같이, 발전모듈(10)은 터빈(11)과 발전기(12) 및 제어장치(미도시)가 포함되어 이루어지며, 열에너지를 기계적인 에너지로 변환시켜 발전한다. 유기 랭킨 사이클의 터빈(11)과 발전기(12)는 공지된 기술로서 이에 대한 자세한 설명은 생략하기로 한다.
도 5(b)에 도시된 바와 같이, 증발기(42)는 팽창노즐(41)에서 팽창된 열매체가 하우징(HS)의 내부공간으로 유입되고, 순환라인(61)이 하우징(HS)의 내부공간을 지나며 열매체와 열교환하는 구조로 이루어질 수 있다.
즉, 팽창노즐(41)에 의하여 증발기(42) 내부로 팽창하는 구조로 형성되어 증발기(42) 내부가 확장형 팽창관(WP) 역할을 하며 외부열원이 튜브형의 열교환기로 교환되는 구조이다.
도 5(c)에 도시된 바와 같이, 증발기(42)는 수축관(NP)을 사용하여 열매체의 유속을 빠르게 함으로써 압력을 상대적으로 낮추어 작동유체의 압력차를 이용하여 증발시키는 구조로 이루어질 수도 있다. 증발기(42)의 후단에는 작동유체의 체적을 팽창시키기 위한 팽창노즐(41)이 설치된다.
도 6에 도시된 바와 같이, 응축모듈(20)은, 공랭식 응축기(21), 서비스 탱크(23), 수랭식 응축기(22) 및 수랭식 응축탱크(24)를 포함하여 구성된다.
공랭식 응축기(21)는 보조 응축기의 역할로 대기의 온도로 뜨거운 열매체를 1차 냉각하는 장치이며, 수냉식 응축기는 별도의 냉각장치(미도시)에 의하여 냉각수를 공급받아 8kg/㎠의 응축압력에서 28℃ 이하로 열매체가 냉각되어 응축된다. 미설명된 부호 WL은 냉각수가 흐르는 냉각수라인이고, P2는 냉각수라인에 설치된 순환펌프이다.
서비스 탱크(23)는 열매체가 기체에서 액체로 상변화하는 과정에서 비체적이 감소하여 압력이 순간적으로 내려가는 현상을 방지하는 기능을 하는 보조탱크이다.
예를 들어 터빈(11)을 지난 열매체가 8kg/㎠의 압력하에서 온도가 내려가 응축되면 비체적이 0.0261m3/kg에서 0.0008m3/kg으로 32배 이상 체적이 줄어들게 되므로 이를 보완할 수 있는 장치가 있어야 일정한 응축 압력을 유지할 수 있는 것이다.
이를 실현하기 위하여 열매체가 흐르는 유체관을 점차적으로 줄여서 내용적을 작게 하는 응축관을 배치하고 질소가스가 충전된 서비스 탱크(23)를 설치하는 것이 효과적이다. 서비스 탱크(23)는 압력펌프 등에 상용화 보급되고 있는 밀폐형 팽창탱크와 같은 구조로 열매체의 압력 편차를 줄여 응축을 용이하게 한다.
수랭식 응축탱크(24)는 액화되는 열매체를 더욱 냉각시켜 응축되는 열매체의 점도를 높여 압축 펌프의 이송 능력을 항상 시키는 역할을 한다.
도 7(a) 및 도 7(b)에 도시된 바와 같이, 본 발명의 다른 실시예에 따른 증발장치에 의한 고효율 저온 발전시스템(1)은, 예열기(43)와 증발기(42)가 일체형으로 이루어질 수 있다.
도 7(a)에 도시된 바와 같이, 증발모듈(40)은 하우징(HS), 예열관(PP), 수축관(NP) 및 확장형 팽창관(WP)을 포함하여 구성된다.
하우징(HS)은 순환라인(61)의 열원유체가 유입되어 순환 후 유출되는 내부공간을 형성한다. 예열관(PP), 수축관(NP) 및 확장형 팽창관(WP)은 하우징(HS) 내부에 형성된다.
작동펌프(30)에서 유입된 열매체는 예열관(PP)을 흐르며 열원유체로부터 열매체의 증발 엔탈피 중 현열을 공급받고 나서 수축관(NP)으로 유입된다. 열매체는 수축관(NP)을 통과하며 유속 증가에 따라 압력이 낮아지며 열원유체로부터 열매체의 증발 엔탈피 중 잠열을 흡수하게 된다. 수축관(NP)을 통과한 열매체는 확장형 팽창관(WP)에서 열원유체와 열교환하며 팽창된 후 과열기(50) 측으로 배출된다.
7(b)에 도시된 바와 같이, 증발모듈(40)은 하우징(HS), 예열관(PP) 및 확장형 팽창관(WP1,WP2)을 포함하여 구성될 수도 있다.
하우징(HS)은 순환라인(61)의 열원유체가 유입되어 순환 후 유출되는 내부공간을 형성한다. 예열관(PP) 및 확장형 팽창관(WP1,WP2)은 하우징(HS) 내부에 형성된다.
작동펌프(30)에서 유입된 열매체는 예열관(PP)을 흐르며 열원유체로부터 열매체의 증발 엔탈피 중 현열을 공급받고 나서 확장형 팽창관(WP1,WP2)으로 차례로 유입된다. 열매체는 확장형 팽창관(WP1,WP2)을 통과하며 열원유체와 열교환되면서 증발잠열을 흡수 저온 증발하여 과열기(50) 측으로 배출된다.
본 발명에 의하면, 열매체가 예열기(43)와 팽창노즐(41)을 지나며 가열 및 팽창된 후 증발기(42)에서 저온 증발되도록 이루어짐으로써, 열매체의 발전 가능한 사용 온도 범위를 낮추어 발전 효율이 향상되도록 변형된 응용유기 랭킨 사이클로 이루어지는 증발장치에 의한 고효율 저온 발전시스템(1)을 제공할 수 있게 된다.
앞에서, 본 발명의 특정한 실시예가 설명되고 도시되었지만 본 발명은 기재된 실시예에 한정되는 것이 아니고, 본 발명의 사상 및 범위를 벗어나지 않고 다양하게 수정 및 변형할 수 있음은 이 기술의 분야에서 통상의 지식을 가진 자에게 자명한 일이다. 따라서, 그러한 수정예 또는 변형예들은 본 발명의 기술적 사상이나 관점으로부터 개별적으로 이해되어서는 안되며, 변형된 실시예들은 본 발명의 특허청구범위에 속한다 하여야 할 것이다.
* 부호의 설명
1 : 저온 발전시스템 10 : 발전모듈
20 : 응축모듈 30 : 작동펌프
40 : 증발모듈 50 : 과열기
60 : 축열탱크 11 : 터빈
41 : 팽창노즐 21 : 공랭식 응축기
42 : 증발기 22 : 수랭식 응축기
43 : 예열기 23 : 서비스 탱크
HS : 하우징 24 : 수랭식 응축탱크
PP : 예열관 61 : 순환라인
NP : 수축관
WP : 확장형 팽창관
본 발명은 증발장치에 의한 고효율 저온 발전시스템에 이용될 수 있다.

Claims (9)

  1. 냉매를 열매체로 하여 터빈을 구동시켜 발전하는 변형된 응용유기 랭킨 사이클로서 압축, 가열팽창, 증발, 팽창(발전), 응축의 단계로 순환되며,
    상기 터빈과 발전기를 포함하는 발전모듈; 상기 열매체의 열을 흡수하여 응축시키는 응축모듈; 상기 열매체를 압축하여 이송시키는 작동펌프; 상기 열매체를 증발시키는 증발모듈; 및 상기 열매체를 과열시키는 과열기를 포함하고,
    상기 증발모듈은,
    상기 열매체의 체적을 팽창시키는 팽창노즐; 및
    팽창된 상기 열매체에 열을 공급하여 증발시키는 증발기를 포함하며,
    상기 열매체는, 상기 작동펌프에서 상기 증발기의 증발 압력보다 높게 압축되어 상기 팽창노즐로 유입되는 것을 특징으로 하는 증발장치에 의한 고효율 저온 발전시스템.
  2. 제1항에 있어서,
    상기 증발모듈은, 상기 열매체의 증발 엔탈피 중 현열을 공급받도록 상기 작동펌프와 상기 팽창노즐의 사이에 형성되어 상기 열매체에 열을 공급하는 예열기를 포함하며,
    상기 열매체는, 상기 예열기와 상기 팽창노즐을 지나며 가열 및 팽창된 후 상기 증발기에서 증발잠열을 흡수 저온 증발되는 것을 특징으로 하는 증발장치에 의한 고효율 저온 발전시스템.
  3. 제2항에 있어서,
    태양열, 폐열, 지열 또는 공기열의 외부열원을 축열하는 축열탱크를 포함하고,
    상기 축열탱크의 열원유체가 상기 축열탱크, 상기 과열기, 상기 증발기 및 상기 예열기를 순환하여 열을 교환하는 순환라인이 형성되는 것을 특징으로 하는 증발장치에 의한 고효율 저온 발전시스템.
  4. 제3항에 있어서,
    상기 증발기는,
    상기 팽창노즐에서 팽창된 상기 열매체가 이동하는 확장형 팽창관; 및
    상기 확장형 팽창관이 내부에 구비되고, 상기 순환라인의 열원유체가 내부공간으로 유입되어 상기 확장형 팽창관과 열교환 후 유출되는 하우징을 포함하는 것을 특징으로 하는 증발장치에 의한 고효율 저온 발전시스템.
  5. 제3항에 있어서,
    상기 증발기는,
    상기 팽창노즐에서 팽창된 상기 열매체가 내부공간으로 유입되고, 상기 순환라인이 내부공간을 지나며 상기 열매체와 열교환하는 하우징으로 이루어지는 것을 특징으로 하는 증발장치에 의한 고효율 저온 발전시스템.
  6. 제1항에 있어서,
    상기 응축모듈은,
    공기와 열교환하여 열매체를 냉각하는 공랭식 응축기;
    냉각장치에 의해 냉각수와 열교환하여 상기 열매체를 냉각하는 수랭식 응축기; 및
    상기 공랭식 응축기와 상기 수랭식 응축기 사이에 설치되고, 비체적 감소에 의한 상기 열매체의 압력 강하가 방지되도록 질소가스를 공급하는 서비스 탱크를 포함하는 것을 특징으로 하는 증발장치에 의한 고효율 저온 발전시스템.
  7. 제6항에 있어서,
    상기 응축모듈은,
    액화된 상기 열매체의 점도가 상승하도록, 냉각수와 열교환하여 상기 열매체를 냉각하는 수랭식 응축탱크를 더 포함하는 것을 특징으로 하는 증발장치에 의한 고효율 저온 발전시스템.
  8. 냉매를 열매체로 하여 터빈을 구동시켜 발전하는 변형된 응용유기 랭킨 사이클로서 압축, 가열팽창, 증발, 팽창(발전), 응축의 단계로 순환되며,
    상기 터빈과 발전기를 포함하는 발전모듈; 상기 열매체의 열을 흡수하여 응축시키는 응축기; 상기 열매체를 압축하여 이송시키는 작동펌프; 상기 열매체를 증발시키는 증발모듈; 상기 열매체를 과열시키는 과열기; 외부열원을 축열하는 축열탱크; 및 상기 축열탱크의 열원유체가 상기 축열탱크, 상기 과열기 및 상기 증발모듈을 순환하여 열을 교환하는 순환라인을 포함하고,
    상기 증발모듈은,
    상기 순환라인의 열원유체가 내부공간으로 유입되어 순환 후 유출되는 하우징; 상기 하우징 내부에 구비되고, 상기 열원유체로부터 상기 열매체의 증발 엔탈피 중 현열을 공급받도록 상기 작동펌프에서 유입된 상기 열매체가 이동하는 예열관; 상기 하우징 내부에서 상기 예열관과 연결되고, 상기 열매체의 압력을 낮추어 상기 열원유체로부터 상기 열매체의 증발 엔탈피 중 잠열을 흡수하는 수축관; 및 상기 하우징 내부에서 상기 수축관과 연결되고, 상기 열매체가 상기 열원유체와 열교환하며 팽창되는 확장형 팽창관을 포함하는 것을 특징으로 하는 증발장치에 의한 고효율 저온 발전시스템.
  9. 냉매를 열매체로 하여 터빈을 구동시켜 발전하는 변형된 응용유기 랭킨 사이클로서 압축, 가열팽창, 증발, 팽창(발전), 응축의 단계로 순환되며,
    상기 터빈과 발전기를 포함하는 발전모듈; 상기 열매체의 열을 흡수하여 응축시키는 응축기; 상기 열매체를 압축하여 이송시키는 작동펌프; 상기 열매체를 증발시키는 증발모듈; 상기 열매체를 과열시키는 과열기; 외부열원을 축열하는 축열탱크; 및 상기 축열탱크의 열원유체가 상기 축열탱크, 상기 과열기 및 상기 증발모듈을 순환하여 열을 교환하는 순환라인을 포함하고,
    상기 증발모듈은,
    상기 순환라인의 열원유체가 내부공간으로 유입되어 순환 후 유출되는 하우징; 상기 하우징 내부에 구비되고, 상기 열원유체로부터 상기 열매체의 증발 엔탈피 중 현열을 공급받도록 상기 작동펌프에서 유입된 상기 열매체가 이동하는 예열관; 및 상기 하우징 내부에서 상기 예열관과 연결되고, 상기 열원유체와 열교환하며 상기 열매체의 체적을 팽창시키는 다단의 확장형 팽창관을 포함하는 것을 특징으로 하는 증발장치에 의한 고효율 저온 발전시스템.
PCT/KR2015/014409 2014-12-30 2015-12-29 증발장치에 의한 고효율 저온 발전시스템 WO2016108578A1 (ko)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
KR20140193619 2014-12-30
KR10-2014-0193619 2014-12-30
KR10-2015-0031868 2015-03-06
KR20150031868 2015-03-06
KR1020150068353A KR20160081758A (ko) 2014-12-30 2015-05-15 증발장치에 의한 고효율 저온 발전시스템
KR10-2015-0068353 2015-05-15

Publications (1)

Publication Number Publication Date
WO2016108578A1 true WO2016108578A1 (ko) 2016-07-07

Family

ID=56284635

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/014409 WO2016108578A1 (ko) 2014-12-30 2015-12-29 증발장치에 의한 고효율 저온 발전시스템

Country Status (1)

Country Link
WO (1) WO2016108578A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110206699A (zh) * 2019-07-05 2019-09-06 王恩礼 一种以低品位复合热源为能量的热循环发电系统
CN113466691A (zh) * 2021-06-18 2021-10-01 哈尔滨工程大学 一种两阶段压缩膨胀发电机发电效率的预测方法
CN113931710A (zh) * 2021-10-20 2022-01-14 郑小涛 一种冷电联产系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003021306A (ja) * 2001-07-04 2003-01-24 Toshiba Corp 発電プラント
KR20100020173A (ko) * 2008-08-12 2010-02-22 이진철 열교환기가 구비된 냉동사이클
KR20110079449A (ko) * 2009-12-31 2011-07-07 한국에너지기술연구원 Orc시스템 과열도 제어방법
JP2013217558A (ja) * 2012-04-06 2013-10-24 Taiyo Energy Kenkyusho 加熱器利用装置
JP2014194210A (ja) * 2013-02-26 2014-10-09 Kobe Steel Ltd バイナリー発電装置の運転方法及びバイナリー発電装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003021306A (ja) * 2001-07-04 2003-01-24 Toshiba Corp 発電プラント
KR20100020173A (ko) * 2008-08-12 2010-02-22 이진철 열교환기가 구비된 냉동사이클
KR20110079449A (ko) * 2009-12-31 2011-07-07 한국에너지기술연구원 Orc시스템 과열도 제어방법
JP2013217558A (ja) * 2012-04-06 2013-10-24 Taiyo Energy Kenkyusho 加熱器利用装置
JP2014194210A (ja) * 2013-02-26 2014-10-09 Kobe Steel Ltd バイナリー発電装置の運転方法及びバイナリー発電装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110206699A (zh) * 2019-07-05 2019-09-06 王恩礼 一种以低品位复合热源为能量的热循环发电系统
CN113466691A (zh) * 2021-06-18 2021-10-01 哈尔滨工程大学 一种两阶段压缩膨胀发电机发电效率的预测方法
CN113466691B (zh) * 2021-06-18 2022-02-22 哈尔滨工程大学 一种两阶段压缩膨胀发电机发电效率的预测方法
CN113931710A (zh) * 2021-10-20 2022-01-14 郑小涛 一种冷电联产系统

Similar Documents

Publication Publication Date Title
JP2013507559A (ja) 内部熱交換器を有する熱電気エネルギー貯蔵システム及び熱電気エネルギーを蓄えるための方法
KR20120047795A (ko) 흡수 냉각기가 통합된 랭킨 사이클
RU2012119769A (ru) Комбинированная тепловая система с замкнутым контуром для рекуперации отработанного тепла и способ ее эксплуатации
WO2016108578A1 (ko) 증발장치에 의한 고효율 저온 발전시스템
JP6526639B2 (ja) ヒートポンプ装置を動作させる方法、及びヒートポンプ装置
EP2942492A1 (en) Electrical energy storage and discharge system
WO2014208938A1 (ko) 열 회수 장치
BRPI0712746A2 (pt) método e dispositivo para conversão de energia térmica em trabalho mecánico
CN109826686B (zh) 余热回收系统
JP2009530844A (ja) 発電サイクルを用いた変圧器の冷却装置
CN204098972U (zh) 采用回热循环技术的低温水发电系统
CN109681943A (zh) 供热系统
KR101603253B1 (ko) 복수기 방열 회수 시스템
KR20150105162A (ko) Orc 발전시스템
CN206399259U (zh) 一种热能利用系统
KR20160081758A (ko) 증발장치에 의한 고효율 저온 발전시스템
BR0213142A (pt) Método e aparelho de geração eficiente de energia mecânica, potência ou torque, e motor a vapor
US20170248040A1 (en) A system for high efficiency energy conversion cycle by recycling latent heat of vaporization
KR20160096310A (ko) 증발 장치를 포함하는 고효율 저온 발전 시스템
RU2560606C1 (ru) Способ утилизации теплоты тепловой электрической станции
RU2560503C1 (ru) Способ работы тепловой электрической станции
CN104373166A (zh) 一种具有散热回收功能的双工质循环发电系统
CN204267121U (zh) 采用预热技术的低温水发电设备
RU146726U1 (ru) Холодильник-излучатель
RU2560502C1 (ru) Способ работы тепловой электрической станции

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15875672

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 13/10/2017)

122 Ep: pct application non-entry in european phase

Ref document number: 15875672

Country of ref document: EP

Kind code of ref document: A1