WO2016107593A1 - 数字化自动控制抽油方法和移动平衡数字化抽油机 - Google Patents

数字化自动控制抽油方法和移动平衡数字化抽油机 Download PDF

Info

Publication number
WO2016107593A1
WO2016107593A1 PCT/CN2015/100034 CN2015100034W WO2016107593A1 WO 2016107593 A1 WO2016107593 A1 WO 2016107593A1 CN 2015100034 W CN2015100034 W CN 2015100034W WO 2016107593 A1 WO2016107593 A1 WO 2016107593A1
Authority
WO
WIPO (PCT)
Prior art keywords
balance
value
stroke
power
current
Prior art date
Application number
PCT/CN2015/100034
Other languages
English (en)
French (fr)
Inventor
高长乐
于胜存
李宁会
王康军
马述俭
吉效科
朱加强
章敬
林泉
董宏宇
Original Assignee
新疆维吾尔自治区第三机床厂
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新疆维吾尔自治区第三机床厂 filed Critical 新疆维吾尔自治区第三机床厂
Publication of WO2016107593A1 publication Critical patent/WO2016107593A1/zh
Priority to US15/638,338 priority Critical patent/US10527034B2/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B47/00Pumps or pumping installations specially adapted for raising fluids from great depths, e.g. well pumps
    • F04B47/02Pumps or pumping installations specially adapted for raising fluids from great depths, e.g. well pumps the driving mechanisms being situated at ground level
    • F04B47/022Pumps or pumping installations specially adapted for raising fluids from great depths, e.g. well pumps the driving mechanisms being situated at ground level driving of the walking beam
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/12Methods or apparatus for controlling the flow of the obtained fluid to or in wells
    • E21B43/121Lifting well fluids
    • E21B43/126Adaptations of down-hole pump systems powered by drives outside the borehole, e.g. by a rotary or oscillating drive
    • E21B43/127Adaptations of walking-beam pump systems
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B44/00Automatic control systems specially adapted for drilling operations, i.e. self-operating systems which function to carry out or modify a drilling operation without intervention of a human operator, e.g. computer-controlled drilling systems; Systems specially adapted for monitoring a plurality of drilling variables or conditions
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B44/00Automatic control systems specially adapted for drilling operations, i.e. self-operating systems which function to carry out or modify a drilling operation without intervention of a human operator, e.g. computer-controlled drilling systems; Systems specially adapted for monitoring a plurality of drilling variables or conditions
    • E21B44/02Automatic control of the tool feed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B47/00Pumps or pumping installations specially adapted for raising fluids from great depths, e.g. well pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • F04B49/065Control using electricity and making use of computers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B2203/00Motor parameters
    • F04B2203/02Motor parameters of rotating electric motors
    • F04B2203/0201Current

Definitions

  • the invention relates to the technical field of a beam pumping unit, and relates to a digital automatic control pumping method and a mobile balanced digital pumping unit.
  • the existing beam pumping units mainly include: conventional beam pumping unit, front type beam pumping unit, offset type beam pumping unit and profiled beam pumping unit.
  • the beam pumping unit generally includes a boring head, a beam, a bracket, a connecting rod, a base, a crank, a balancing device, a speed reducer, a brake, a motor and a suspension rope, and a bracket, a speed reducer and a brake are fixedly mounted on the base.
  • the beam is hinged on the bracket, the crank is fixedly mounted on the output shaft of the reducer, one end of the connecting rod is hinged on the crank, and the other end of the connecting rod is hinged on the beam, thus forming a four-bar linkage
  • the mechanism is installed at the front end of the beam, the suspension rope is mounted on the hoe, the balance device is mounted on the crank, or/and the balance device is mounted on the beam, and the balance torque is changed by manually adding or subtracting the weight of the weight.
  • the existing beam pumping unit has two significant shortcomings: First, can not automatically adjust the balance, and balance Need to be based on changes in well load and Adjustments, if the balance rate is very low, will cause the pumping unit to work worse and increase power consumption; second, it can not be automatically adjusted, causing the pumping capacity of the pumping unit to be often higher or lower than the oil production of the oil well. If the pumping unit is too fast, the pumping capacity will be higher than that of the oil well, causing air pumping and liquid hammering, damage to the pumping unit, sucker rod, and oil pump, reducing service life and wasting energy. If the pumping unit is too slow, the pumping capacity will be lower than that of the oil well and the oil well production will be reduced.
  • the invention provides a digital automatic control pumping method and a mobile balance digital pumping unit, which overcomes the above-mentioned deficiencies of the prior art, and can effectively solve the problem that the existing beam pumping unit cannot automatically adjust the balance and cannot automatically adjust the flushing. Secondly, the balance rate is low, and the oil production is not matched with the oil production of the oil well, which causes the pumping unit to be prone to failure, and the oil well is difficult to achieve the maximum production capacity and high production cost.
  • a digital automatic control pumping method including a mobile balanced digital pumping unit including a main motor, a beam, a balance boom, The crank and the suspension rope are fixedly mounted with a balance boom at the left end of the beam, and a mobile weight box and a driving device for moving the weight box to the left and right are respectively arranged on the balance boom, on the mobile balance digital pumping unit
  • a stroke process measuring device is installed, and a load sensor is fixedly mounted on the suspension rope; and a central processor and a three-phase electric parameter collecting device are installed, and the three-phase electric parameter collecting device is installed on the power input end; the method is as follows The steps are carried out:
  • the N current balance values H1 obtained by setting the number of strokes N times are compared, the current balance lower limit setting value is A11, and the current balance adjustment target lower limit setting value is A12, current balance degree.
  • the upper limit setting value is B11, and the current balance adjustment target upper limit setting value is B12;
  • the central processor calculates the collected current value and voltage value, obtains the average power value P in the downstroke and the average power value P in the upstroke, and compares the sizes.
  • the balance value H2 is compared, the power balance lower limit set value is A21, and the power balance degree adjustment target lower limit set value is A22;
  • N H2 values are less than A21 and P is less than P when the power is underbalanced state, at this time the moving weight box is moved to the left by the driving device, so that the power balance degree H2 reaches A22 ⁇ H2;
  • the above-mentioned inverter is installed between the main motor and the power input end, and a load sensor is fixedly mounted on the suspension rope for collecting the suspension load value F, and a stroke process measuring device is installed on the mobile balance digital pumping unit for collecting the suspension point.
  • Displacement value S during each stroke, the central processor analyzes and calculates the ground dynamometer according to the collected suspended point load value F and the suspended point displacement value S, and the ordinate is the polished rod during the pumping process.
  • the coordinate of the suspended point load value F, the abscissa is the coordinate of the suspension point displacement value S of the polished rod during the pumping process
  • the pump fullness lower limit setting value is A31, and the pump fullness adjustment is performed.
  • the target lower limit set value is A32, and the pump fullness upper limit set value is B31;
  • the above A11 value is from 0.8 to 0.85, the A12 value is from 0.9 to 0.95, the B11 value is from 1.10 to 1.15, the B12 value is from 1.0 to 1.05; or/and, the A21 value is from 0.5 to 0.6, and the A22 value is from 0.80 to 0.90; or/and
  • the A31 value is from 0.5 to 0.6, the A32 value is from 0.75 to 0.85, and the B31 value is from 0.85 to 0.95.
  • the set number of strokes N is set a number of times; or / and, the stroke process measuring device is an angular displacement sensor mounted on the beam or a proximity switch fixedly mounted on the crank or mounted on the suspension rope.
  • the suspension point displacement detecting sensor; or / and, the three-phase electric parameter collecting device is an electric parameter dynamic balance tester or a current transformer.
  • a mobile balanced digital pumping unit including a main motor, a reducer, a crank, a connecting rod, a beam, a balance boom, a bracket, a hoe, a base, Brake device, suspension rope and stroke process measuring device; fixed main motor, reducer, brake device and bracket are fixed on the base, and the beam that can swing up and down is hinged to the top of the bracket through the middle beam support, and is decelerated
  • the crankshaft of the power output shaft is mounted with a crank, and the lower end of the connecting rod is hinged with the crank.
  • the upper end of the connecting rod is hinged to the left part of the beam, the right end of the beam is fixedly mounted with a hammer, and the hanging head is mounted on the hammer.
  • a balance boom is fixedly mounted on the left end of the beam, and a mobile weight box and a driving device capable of moving the mobile weight box to the left and right are respectively mounted on the balance boom.
  • the driving device comprises a reducer with a balance motor, a lead screw and a nut.
  • the reducer with a balance motor is fixedly mounted on the balance boom, and a screw bearing seat is fixedly mounted at one end of the balance boom, and the balance boom is fixed.
  • the other end is fixedly mounted with a lead screw auxiliary bearing seat.
  • the two ends of the lead screw are respectively installed in the screw bearing seat and the screw auxiliary bearing seat, and one end of the screw passes through the power output end of the coupling and the reducer with the balance motor.
  • the threaded mother is mounted on the lead screw
  • the mobile weight box is saddle-shaped
  • the middle part has a through slot
  • the lead screw passes through the through slot of the mobile weight box, and is fixedly mounted on the mobile weight box.
  • the wire mother is installed in the cross-shaped groove and can float up and down, and the outer cover of the fixed block is fixedly mounted with a cover plate capable of blocking the silk mother.
  • a slide rail is arranged on the boom, and a roller is arranged on the inner side of the mobile weight box, and the roller is located on the slide rail; or/and a safety limit device is installed on the balance boom and the mobile weight box, the safety limit position Device includes Induction plate, downstroke sensing switch and upstroke sensing switch; or / and, the stroke process measuring device is an angular displacement sensor mounted on the beam or a proximity switch fixedly mounted on the crank or mounted on the suspension cable Suspension displacement detecting sensor; mobile weighing box includes moving box and movable weight; fixing partition in moving box and dividing moving box into fixed weight chamber and movable weight chamber, filling in fixed weight chamber There is a fixed weight, a movable weight is installed in the movable weight chamber, and a safety bar that can block the movable weight is fixedly mounted on the moving box.
  • the above-mentioned suspension device includes a suspension body, a load sensor and a suspension rope; and a load sensor is mounted on the suspension body.
  • the digital control cabinet is fixedly mounted on the base, and a central processing unit, a communication module, a power module, a display module, a power module, a three-phase electric parameter collecting device, a control panel, a start-stop control relay, and a fixed control unit are fixedly mounted in the digital control cabinet.
  • Inverter main motor variable frequency AC contactor, main motor power frequency AC contactor, motor integrated protector, balance control relay, balance motor AC contactor and current transmitter; load sensor signal output through load sensor cable And the lower connecting cable is electrically connected to the first signal input end of the central processing unit, and the signal output end of the stroke process measuring device is electrically connected to the second signal input end of the central processing unit through the movable cable and the lower connecting cable,
  • a current transmitter is installed on the power input line of the reducer with the balance motor, and the signal output end of the current transmitter and the third signal input end of the central processing unit are electrically connected by wires, the downstroke sensing switch and the upstroke
  • the signal output of the inductive switch passes through the upper connecting cable, the active cable and the lower connecting cable
  • the fourth signal input end of the central processing unit is electrically connected together, and the signal output ends of the downstroke sensing switch and the upstroke sensing switch are electrically connected to the signal input end of the balance control relay through the upper connecting cable, the movable cable and the lower connecting cable
  • the first signal output end of the central processing unit and the signal input end of the balance control relay are electrically connected together by a wire, and the signal output end of the balance control relay and the signal input end of the balance motor AC contactor are electrically connected through the wire.
  • the output of the balanced motor AC contactor and the input of the balancing motor are electrically connected together by wires, balancing the output of the AC contactor of the motor.
  • the signal input end of the current transmitter is electrically connected through the wire, and the second signal output end of the central processing unit and the signal input end of the start/stop control relay are electrically connected through the wire, and the signal output end of the control relay is started and stopped.
  • the signal input ends of the main motor power frequency AC contactor are electrically connected together through wires, and the output end of the main motor power frequency AC contactor and the input end of the main motor are electrically connected through the wires, and the signal output end of the start and stop control relay is The signal input ends of the main motor variable frequency AC contactor are electrically connected together by wires, and the output end of the main motor variable frequency AC contactor and the input end of the main motor are electrically connected by wires.
  • the above-mentioned four-head or hexagonal head is fixed at the left end of the power output shaft of the reducer with a balance motor, and the rocker support seat is fixedly mounted on the balance boom; or/and a pulley quick change device is mounted on the base, and the pulley is fast
  • the lower end of the changing device is hinged on the base, and the main motor is fixedly mounted on the upper end surface of the pulley quick change device, the support rod is hinged on the bracket, and the hinge joint corresponding to the support rod is arranged on the beam; or/and, at the base
  • the left part is fixedly equipped with a buffer device; or/and, the three-phase electric parameter collecting device is an electric parameter dynamic balance tester or a current transformer.
  • the invention has the advantages of reasonable and compact structure and convenient use, and is matched by the main motor, the reducer, the connecting rod, the beam, the bracket, the hoe, the suspension rope, the load sensor, the angular displacement sensor, the safety limit device and the digital control cabinet. It not only makes the mobile weight box move left and right on the balance boom, automatically balances the suspension load under various working conditions, and automatically adjusts the pumping stroke according to the change of the pump fullness, which is safe and reliable, and convenient. The operation has fully utilized the oil well production, improved the balance rate, and achieved energy saving.
  • FIG. 1 is a schematic front view showing the structure of a second embodiment of the present invention.
  • Embodiment 2 is a front perspective enlarged structural view of a balance boom in Embodiment 2 of the present invention.
  • FIG 3 is a schematic enlarged view of the A-direction of the mobile weight box according to Embodiment 2 of the present invention.
  • FIG. 4 is a schematic view showing an A-direction enlarged structure of a mobile weight box without a cover plate according to Embodiment 2 of the present invention.
  • Figure 5 is a schematic diagram of circuit control according to Embodiment 2 of the present invention.
  • Figure 6 is a diagram showing the power of the present invention in a state where the punching is too fast.
  • Figure 7 is a diagram showing the power of the present invention in an appropriate state.
  • Figure 8 is a diagram showing the power of the present invention in a state where the punching is too slow.
  • Figure 10 is an electrical parameter curve of a current balance state and a power balance state of the present invention.
  • Figure 11 is an electrical parameter curve of a current overbalanced state and a power overbalanced state of the present invention.
  • the codes in the drawings are: 1 for the suspension, 2 for the hoe, 3 for the beam, 4 for the beam support, 5 for the bracket, 6 for the connecting rod, 7 for the balance boom, 8 for the reducer , 9 is the crank, 10 is the hand crank, 11 is the buffer device, 12 is the base, 13 is the brake device, 14 is the digital control cabinet, 15 is the main motor, 16 is the angular displacement sensor, 17 is the load sensor, 18 is the load Sensor cable, 19 is the active cable, 20 is the upper connecting cable, 21 is the lower connecting cable, 22 is the square head, 23 is the reducer with balance motor, 24 is the coupling, 25 is the screw bearing seat, 26 is Screw, 27 is the slide rail, 28 is the mobile weight box, 29 is the thread mother, 30 is the fixed block, 31 is the cover plate, 32 is the fastening bolt, 33 is the screw auxiliary bearing seat, 34 is the upper stroke induction switch 35 is the induction plate, 36 is the active weight, 37 is the safety bar, 38 is the lower stroke sensor switch, 39 is the
  • the digital automatic control pumping method comprises a mobile balanced digital pumping unit comprising a main motor 15, a beam 3, a balance boom 7.
  • the crank 9 and the suspension rope 1 are fixedly mounted with a balance boom 7 at the left end of the beam 3, and a mobile weight box 28 and a drive for moving the weight weight box 28 to the left and right are respectively mounted on the balance boom 7.
  • the device is provided with a stroke process measuring device on the mobile balance digital pumping unit, and a load sensor 17 is fixedly mounted on the suspension rope 1; further comprising a central processing unit and a three-phase electric parameter collecting device, the three-phase electric parameter collecting device is installed On the power input; the method proceeds as follows:
  • the N current balance values H1 obtained by the number of strokes set N times are compared, the current balance lower limit setting value is A11, and the current balance adjustment target lower limit setting value is A12, current balance.
  • the upper limit setting value is B11, and the current balance adjustment target upper limit setting value is B12;
  • the current and voltage during the stroke are collected by the three-phase electric parameter collecting device. After the acquisition, three state diagrams can be obtained, respectively, which are the current underbalanced state and the power underbalanced state, as shown in FIG.
  • the electric parameter curves of the current balance state and the power balance state are as shown in Fig. 10 and the electric parameter curves of the current overbalance state and the power overbalance state are as shown in Fig. 11.
  • the central processor calculates the collected current value and voltage value to obtain an average power value P in the downstroke and an average in the upper stroke.
  • the larger value is the denominator, that is, P is larger
  • the smaller value is the numerator, that is, P is small
  • the N power balance values H2 obtained by the number of strokes N times are compared, the power balance lower limit set value is A21, and the power balance degree adjustment target lower limit set value is A22;
  • the current and voltage during the stroke are collected by the three-phase electric parameter collecting device. After the acquisition, three state diagrams can be obtained, respectively, which are the current underbalanced state and the power underbalanced state, as shown in FIG.
  • the electric parameter curves of the current balance state and the power balance state are as shown in FIG. 10
  • the electric current curves of the current overbalance state and the power overbalance state are as shown in FIG.
  • a frequency converter is installed between the main motor 15 and the power supply input end, and the load sensor 17 is fixedly mounted on the suspension rope 1 for collecting the suspension load value F, and digitizing the movement balance.
  • a stroke process measuring device is installed on the pumping unit for collecting the suspension point displacement value S; during each stroke, the central processor analyzes and calculates the ground point according to the collected suspension point load value F and the suspension point displacement value S.
  • the power chart the ordinate is the coordinate of the suspension point load value F of the polished rod during the pumping process, the abscissa is the coordinate of the suspension point displacement value S of the polished rod during the pumping process, and the central processor collects the up-stroke pump according to the ground dynamometer diagram.
  • the fullness lower limit setting value is A31
  • the pump fullness adjustment target lower limit setting value is A32
  • the pump fullness upper limit setting value is B31;
  • the suspension point displacement during the stroke is collected by the stroke process measuring device, and the suspension point load during the stroke is collected by the load sensor, and the collected data is processed by the central processor to obtain three state diagrams, respectively
  • the dynamometer in the state of being too fast is as shown in FIG. 6, and the dynamometer in the appropriate state is as shown in FIG. 7, and the dynamometer in the state of being too slow is shown in FIG. .
  • the A11 value is 0.8 to 0.85, the A12 value is 0.9 to 0.95, the B11 value is 1.10 to 1.15, the B12 value is 1.0 to 1.05; or / and, the A21 value is 0.5 to 0.6, and the A22 value is 0.80 to 0.90; / and, the A31 value is 0.5 to 0.6, the A32 value is 0.75 to 0.85, and the B31 value is 0.85 to 0.95.
  • I max is the maximum current value of the upper stroke main motor 15
  • P is the average power value in the upstroke
  • P is the average power value in the downstroke
  • the calculation and analysis of the pump fullness H3 requires the stroke value S1 of the upper stroke pump and the effective stroke value S2 of the downstroke pump.
  • the exact values of S1 and S2 should be obtained from the pump diagram.
  • the pump is installed at the lower end of the tubing. Production practice It is often several hundred or even several kilometers deep from the ground. It is difficult to directly obtain the dynamometer of the pump. Therefore, the ground power map is usually used to obtain approximate S1 and S2 values.
  • the ground dynamometer is a sniffer cycle (including a complete upstroke and downstroke) of the overhang displacement S and The closed curve formed by the corresponding suspended point load F, the abscissa is the suspended point displacement S, and the ordinate is the suspended point load F.
  • the stroke process measurer and the load sensor respectively convert the directly measured suspended point displacement S and the suspended point load F to the digital power through the conversion module in the central processor, and the central processor simultaneously collects the suspension point displacement at equal time intervals.
  • S and the corresponding digital power of the suspended point load F form a series of point data
  • the software logic recognizes all the point data of S and F of a complete pumping cycle, and obtains the ground power map through the processing of the graphics software, such as As shown in Figures 6, 7, and 8, the approximate value of the pump stroke S1 during the upstroke and the approximate value of the pump effective stroke S2 during the downstroke can be calculated by the dynamometer data point scan search.
  • the set number of strokes N is set a number of times as needed; or/and, the stroke process measurer is an angular displacement sensor 16 mounted on the beam 3 or a proximity switch fixedly mounted on the crank 9 or mounted on The suspension point displacement detecting sensor on the suspension rope 1; or/and, the three-phase electric parameter collecting device is an electric parameter dynamic balance tester or a current transformer.
  • the mobile balance digital pumping unit includes a main motor 15, a speed reducer 8, a crank 9, a connecting rod 6, a beam 3, a balance boom 7, and a bracket. 5.
  • Shantou 2 base 12, brake device 13, suspension rope 1 and stroke process measuring device; main motor 15, reducer 8, brake device 13 and bracket 5 are fixedly mounted on the base 12, and can swing up and down
  • the beam 3 is hinged at the top end of the bracket 5 through the central beam support 4, and a crank 9 is mounted on the power output shaft of the speed reducer 8.
  • the lower end of the link 6 is hinged with the crank 9, and the upper end of the link 6 is hinged at In the left part of the beam 3, the right end of the beam 3 is fixedly mounted with a hoe 2, and the sling 2 is mounted on the hoe 2, and a balance jib 7 is fixedly mounted on the left end of the beam 3, on the balance jib 7.
  • a mobile weight box 28 and a driving device that can move the mobile weight box 28 to the left and right are respectively mounted.
  • the driving device comprises a speed reducer 23 with a balancing motor, a lead screw 26 and a nut 29, and a speed reducer 23 with a balancing motor is fixedly mounted on the balancing boom 7, in balance
  • a screw bearing housing 25 is fixedly mounted on one end of the boom 7
  • a screw auxiliary bearing seat 33 is fixedly mounted on the other end of the balancing boom 7 .
  • the two ends of the screw 26 are respectively mounted on the screw bearing housing 25 and the screw assisting In the bearing housing 33, one end of the lead screw 26 is fixedly mounted to the power output end of the speed reducer 23 with the balance motor through the coupling 24, and the thread nut 29 is mounted on the lead screw 26, and the mobile weight box 28 is saddle.
  • the lead screw 26 passes through the through slot of the mobile weight box 28, and four fixed blocks 30 are fixedly mounted on the mobile weight box 28, and a cross pass is formed between the four fixed blocks 30.
  • the slot and the nut 29 are mounted in the cross-shaped groove and can be floated up and down, left and right, and a cover 31 capable of blocking the nut is fixedly attached to the outer end of the fixed block 30, and a slide rail 27 is disposed on the balance boom 7 to move
  • the inside of the type weight box 28 is mounted with a roller 41, and the roller 41 is located on the slide rail 27; or / and, in balance
  • the safety limit device is mounted on the arm 7 and the mobile weight box 28, and the safety limit device includes an induction plate 35, a down stroke sensing switch 38 and an upstroke sensing switch 34; or/and, the stroke process measuring device is installed in the swim
  • the angular displacement sensor 16 on the beam 3 is either a proximity switch fixedly mounted on the crank 9 or a suspension point displacement detecting sensor mounted on the suspension rope
  • a moving box buffer block 39 is fixedly attached to the left end of the balance boom 7, and a stopper 40 is fixedly attached to the left end of the balance boom 7.
  • the reducer 23 with the balance motor rotates forward or reverse
  • the coupling 24 drives the screw 26 to rotate
  • the nut 29 drives the mobile weight box 28 to move left and right on the balance boom 7, thereby balancing the twitching process.
  • the inside of the mobile weight box 28 is provided with four rollers 41 for better support and guiding.
  • the sensing board 35 sends a stop signal to the lower stroke sensing switch and
  • the stroke sensing switch controls the speed reducer 23 with the balance motor to stop the operation by the central processing unit, the balance control relay, and the balance motor AC contactor, so that the mobile weight box 28 stops moving;
  • the upper stroke sensing switch 34 and the lower stroke sensing switch 38 Cooperating with the induction plate 35 for the limit protection of the left and right strokes of the mobile weight box 28;
  • the crank 9 is provided with three crank pin holes for adjusting the stroke.
  • a cover 31 capable of blocking the nut 29 can be fixedly attached by a fastening bolt 32.
  • the fixed weight 42 may be a conventionally known material such as a composite concrete, and functions to reduce the manufacturing cost while satisfying the weight.
  • the safety bar 37 functions to protect the movable weight 36 from falling during the operation; the coarse balance is adjusted by adjusting the number of the movable weights 36 in the movable weight chamber of the moving box, By adjusting the position of the mobile weight box 28 to precisely adjust the balance, by adjusting the combination of the number of movable weights 36 and changing the position of the mobile weight box 28, the mobile balanced digital pumping unit is easy to balance and maintain balance.
  • the suspension 1 includes a suspension body, a load sensor 17, and a suspension rope; and a load sensor 17 is mounted on the suspension body.
  • a digital control cabinet 14 is fixedly mounted on the base 12, and a central processing unit, a communication module, a power module, a display module, a power module, and a three-phase electrical parameter collection are fixedly mounted in the digital control cabinet 14.
  • the signal output of the sensor 17 is electrically coupled to the first signal input of the central processor via the load sensor cable 18 and the lower connection cable 21, and the signal output of the stroke process measurer is passed through the active cable 19 and the lower connection cable 21
  • the second signal input end of the central processing unit is electrically connected together, and a current transmitter, a signal output end of the current transmitter and a third signal of the central processing unit are mounted on the power input line of the speed reducer 23 with the balance motor
  • the input ends are electrically connected together by wires, and the signal output ends of the downstroke sensing switch and the upstroke sensing switch pass through the upper connecting cable 20
  • the movable cable 19 and the lower connecting cable 21 are electrically connected to the fourth signal input end of the central processing unit, and the signal output ends of the lower stroke sensing switch and the upper stroke sensing switch are passed through the upper connecting cable 20, the
  • the 21 is electrically connected with the signal input end of the balance control relay, and the first signal output end of the central processing unit and the signal input end of the balance control relay are electrically connected together through a wire, and the signal output end of the balance control relay is balanced and balanced.
  • the signal input terminals of the motor AC contactor are electrically connected together through a wire, and the output end of the balance motor AC contactor and the input end of the balance motor are electrically connected by wires, balancing the output of the motor AC contactor and the current transmitter.
  • the signal input ends are electrically connected together by wires, and the second signal output end of the central processing unit and the signal input end of the start/stop control relay are electrically connected through the wires, and the signal output end of the start-stop control relay and the main motor power frequency AC contact
  • the signal input terminals of the device are electrically connected together by wires, and the main motor is frequency-frequency AC contact.
  • the output end of the device and the input end of the main motor 15 are electrically connected together through a wire.
  • the signal output end of the start-stop control relay and the signal input end of the main motor variable frequency AC contactor are electrically connected together through a wire, and the main motor variable frequency AC contactor
  • the output and the input of the main motor 15 are electrically connected together by wires.
  • a square head 22 or a hexagonal head is fixed to the left end of the power output shaft of the speed reducer 23 with a balance motor, and a rocker support seat 43 is fixedly mounted on the balance boom 7; or/and, the base 12 is mounted with
  • the pulley quick change device the lower end of the pulley quick change device is hinged on the base 12, and the main electric power is fixedly mounted on the upper end surface of the pulley quick change device
  • the machine 15 has a support rod hinged on the bracket 5, and a hinge joint corresponding to the support rod on the beam 3; or/and a buffer device 11 is fixedly mounted on the left portion of the base 12; or/and, three-phase electrical parameters
  • the acquisition device is an electrical parameter dynamic balance tester or a current transformer.
  • the hand crank 10 or the wrench can be manually rotated to rotate the square head 22 or the hexagonal head to make the reducer with the balance motor.
  • 23 is rotated in the forward or reverse direction, and the movable weight box 28 is moved to the left and right on the balance boom 7 by the lead screw 26.
  • the left end of the balance boom 7 hits the shock absorber 11 to release the impact energy, thereby effectively protecting the components such as the speed reducer 8 and the main motor 15.
  • the load cell 17, the angular displacement sensor 16 and the speed reducer 23 with the balancing motor are connected to the digital control cabinet 14 via a load-sensing cable 18, a movable cable 19, an upper connecting cable 20 and a lower connecting cable 21 via a joint that can be quickly connected.
  • the movable cable 19, the upper connecting cable 20 and the lower connecting cable 21 between the beam 3 and the bracket 5 are connected together by a joint that can be quickly connected, and the joint connecting the movable cable 19 and the lower connecting cable 21 is upward, Reduce bending damage to the joint, extend the life of the active cable, and facilitate replacement.
  • the present invention adopts a mobile automatic balance adjustment structure, by adjusting the number of the active weights 36 in the moving box to coarsely adjust the balance, and precisely adjusting the balance by changing the position of the mobile weight box 28, the combination of the two makes the pumping unit It is easier to achieve the balance adjustment required for different suspension loads under various working conditions, which can greatly improve the balance ratio, protect the pumping unit and reduce the production cost in production practice.
  • the mobile weighting box 28 can be moved by the hand crank 10, even if the speed reducer 23 with the balance motor is damaged, the power supply circuit of the speed reducer 23 with the balance motor is damaged, the communication is interrupted, and the balance can be manually adjusted by hand to make the oil pumping The machine continues to be used, there is no safety hazard, and it will not cause the stoppage to affect the output.
  • the buffer device 11 is fixedly mounted on the left portion of the base 12. After the suspension point is lost, the left end of the balance boom 7 hits the shock absorber 11 to release the impact energy, thereby effectively protecting the reducer and the main motor 15 and the like, thereby solving the balance of the beam. The safety protection problem of the pumping unit after the suspension point is lost.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Testing Of Balance (AREA)
  • Jib Cranes (AREA)
  • Rehabilitation Tools (AREA)
  • Control Of Positive-Displacement Pumps (AREA)
  • Control And Safety Of Cranes (AREA)

Abstract

公开了一种数字化自动控制抽油方法和移动平衡数字化抽油机,移动平衡数字化抽油机包括主电机(15)、减速器(8)、曲柄(9)、连杆(6)、游梁(3)、平衡吊臂(7)、支架(5)、驴头(2)、底座(12)、刹车装置(13)、悬绳器(1)、载荷传感器(17)、冲程过程测量器、安全限位装置和数字化控制柜(14),不仅使移动式配重箱(28)在平衡吊臂(7)上左右移动,自动平衡各种工况下的悬点载荷,而且根据泵充满度的变化自动调节抽油机冲次,具有安全可靠的特点,方便了操作,提高了油井产量及平衡率,实现了节能降耗。

Description

数字化自动控制抽油方法和移动平衡数字化抽油机 技术领域
本发明涉及游梁式抽油机技术领域,是一种数字化自动控制抽油方法和移动平衡数字化抽油机。
背景技术
现有游梁式抽油机主要有:常规型游梁式抽油机、前置型游梁式抽油机、偏置型游梁式抽油机和异形游梁式抽油机等,目前游梁式抽油机一般包括驴头、游梁、支架、连杆、底座、曲柄、平衡装置、减速器、刹车、电机和悬绳器,在底座上固定安装有支架、减速器、刹车、电机和控制柜等,游梁铰接在支架上,曲柄固定安装在减速器输出轴上,连杆的一端铰接在曲柄上,连杆的另一端铰接在游梁上,这样就形成了四连杆机构,驴头安装在游梁的前端,悬绳器安装在驴头上;平衡装置安装在曲柄上,或/和,平衡装置安装在游梁上,通过人工加减配重物质量改变平衡力矩来调节平衡;或/和,通过人工移动配重物位置改变平衡力矩来调节平衡;但现有游梁式抽油机都存在两个方面的显著不足:一是,不能自动调平衡,且平衡需要根据油井载荷的变化及时进行调整,如果平衡率很低,会造成抽油机工作状态恶化和电耗增加;二是,不能自动调冲次,造成抽油机的抽油能力经常高于或低于油井的产油量,如果抽油机的冲次过快会造成抽油能力高于油井的产油量,造成空抽和液击,损伤抽油机、抽油杆、抽油泵,降低使用寿命,并浪费电能,如果抽油机的冲次过慢会造成抽油能力低于油井的产油量,降低油井产量。
发明内容
本发明提供了一种数字化自动控制抽油方法和移动平衡数字化抽油机,克服了上述现有技术之不足,其能有效解决现有游梁式抽油机不能自动调平衡和不能自动调冲次,导致平衡率低、冲次与油井产油量不匹配,造成抽油机易出现故障、油井难以实现最大产能和生产成本高的问题。
本发明的技术方案之一是通过以下措施来实现的:一种数字化自动控制抽油方法,包括移动平衡数字化抽油机,该移动平衡数字化抽油机包括主电机、游梁、平衡吊臂、曲柄和悬绳器,在游梁的左端固定安装有平衡吊臂,在平衡吊臂上分别安装有移动式配重箱和能使移动式配重箱左右移动的驱动装置,在移动平衡数字化抽油机上安装有冲程过程测量器,在悬绳器上固定安装有载荷传感器;还包括中央处理器和三相电参数采集装置,该三相电参数采集装置安装在供电输入端上;该方法按下述步骤进行:
第一步,分别将冲程过程测量器、三相电参数采集装置采集到的数据传输给中央处理器,中央处理器在每次的冲程过程中,对采集到的电流值进行处理,找出下冲程中的最大电流值I下max和上冲程中的最大电流值I上max,中央处理器计算每次冲程过程的电流平衡度值H1即H1=I下max/I上max;
第二步,按设定冲程次数N次所得到的N个电流平衡度值H1进行比较处理,电流平衡度下限设定值为A11,电流平衡度调节目标下限设定值为A12,电流平衡度上限设定值为B11,电流平衡度调节目标上限设定值为B12;
在N次冲程中,只要有1次H1值符合A11≤H1≤B11为电流平衡状态,不对移动式配重 箱进行调节;
当N次冲程后,N个H1值均小于A11时为电流欠平衡状态,此时通过驱动装置使移动式配重箱向左移动,使电流平衡度H1达到A12≤H1≤B12;
当N次冲程后,N个H1值均大于B11时为电流过平衡状态,此时通过驱动装置使移动式配重箱向右移动,使电流平衡度H1达到A12≤H1≤B12。
下面是对上述发明技术方案之一的进一步优化或/和改进:
上述在每次的冲程过程中,中央处理器对采集到的电流值和电压值进行计算,得到下冲程中的平均功率值P下和上冲程中的平均功率值P上,并进行大小比较,以较大值为分母即P大,以较小值为分子即P小,然后计算功率平衡度值H2即H2=P小/P大;按设定的冲程次数N次所得到的N个功率平衡度值H2进行比较处理,功率平衡度下限设定值为A21,功率平衡度调节目标下限设定值为A22;
在N次冲程中,只要有1次H2值符合A21≤H2为功率平衡状态,不对移动式配重箱进行调节;
当N次冲程后,N个H2值均小于A21且P下小于P上时为功率欠平衡状态,此时通过驱动装置使移动式配重箱向左移动,使功率平衡度H2达到A22≤H2;
当N次冲程后,N个H2值均小于A21且P下大于P上时为功率过平衡状态,此时通过驱动装置使移动式配重箱向右移动,使功率平衡度H2达到A22≤H2。
上述在主电机与供电输入端之间安装有变频器,悬绳器上固定安装有载荷传感器用于采集悬点载荷值F,在移动平衡数字化抽油机上安装有冲程过程测量器用于采集悬点位移值S;在每次的冲程过程中,中央处理器根据采集到的悬点载荷值F和悬点位移值S进行分析和计算得到地面示功图,其纵坐标为光杆在抽油过程中悬点载荷值F的坐标,横坐标为光杆在抽油过程中悬点位移值S的坐标,中央处理器根据地面示功图采集上冲程泵的冲程值S1和下冲程泵的有效冲程值S2,然后计算泵充满度H3即H3=S2/S1,按设定的冲程次数N次所得到的N个泵充满度值H3进行比较处理,泵充满度下限设定值为A31,泵充满度调节目标下限设定值为A32,泵充满度上限设定值为B31;
在N次冲程中,只要有1次H3值符合A31≤H3≤B31为冲次恰当状态,不进行冲次调节;
当N次冲程后,N个H3值均小于A31时,为冲次过快状态,此时通过变频器降低主电机转速而减小冲次,使泵充满度H3达到A32≤H3≤B31;
当N次冲程后,N个H3值均大于B31时,为冲次过慢状态,此时通过变频器升高主电机转速而增大冲次,使泵充满度H3达到A32≤H3≤B31。
上述A11值为0.8至0.85,A12值为0.9至0.95,B11值为1.10至1.15,B12值为1.0至1.05;或/和,A21值为0.5至0.6,A22值为0.80至0.90;或/和,A31值为0.5至0.6,A32值为0.75至0.85,B31值为0.85至0.95。
上述设定的冲程次数N为设定的次数;或/和,冲程过程测量器为安装在游梁上的角位移传感器或为固定安装在曲柄上的接近开关或为安装在悬绳器上的悬点位移检测传感器;或/和,三相电参数采集装置为电参数动态平衡测试仪或电流互感器。
本发明的技术方案之二是通过以下措施来实现的:一种移动平衡数字化抽油机,包括主电机、减速器、曲柄、连杆、游梁、平衡吊臂、支架、驴头、底座、刹车装置、悬绳器和冲程过程测量器;在底座上固定安装有主电机、减速器、刹车装置和支架,能上下摆动的游梁通过中部的游梁支座铰接在支架的顶端,在减速器的动力输出轴上安装有曲柄,连杆的下端与曲柄铰接在一起,连杆的上端铰接在游梁的左部,游梁的右端固定安装有驴头,驴头上安装有悬绳器,在游梁的左端固定安装有平衡吊臂,在平衡吊臂上分别安装有移动式配重箱和能使移动式配重箱左右移动的驱动装置。
下面是对上述发明技术方案之二的进一步优化或/和改进:
上述驱动装置包括带平衡电机的减速器、丝杠和丝母,带平衡电机的减速器固定安装在平衡吊臂上,在平衡吊臂的一端固定安装有丝杠轴承座,在平衡吊臂的另一端固定安装有丝杠辅助轴承座,丝杠的两端分别安装在丝杠轴承座和丝杠辅助轴承座内,丝杠的一端通过联轴器与带平衡电机的减速器的动力输出端固定安装在一起,在丝杠上安装有丝母,移动式配重箱呈马鞍状,其中部有通槽,丝杠从移动式配重箱的通槽内穿过,在移动式配重箱上固定安装有四个固定块,在四个固定块间形成十字通槽,丝母安装在十字通槽内并能够上下左右浮动,在固定块的外端固定安装有能挡住丝母的盖板,在平衡吊臂上设置有滑轨,在移动式配重箱的内侧安装有滚轮,滚轮位于滑轨上;或/和,在平衡吊臂和移动式配重箱上安装有安全限位装置,该安全限位装置包括感应板、下行程感应开关和上行程感应开关;或/和,冲程过程测量器为安装在游梁上的角位移传感器或为固定安装在曲柄上的接近开关或为安装在悬绳器上的悬点位移检测传感器;移动式配重箱包括移动箱和活动配重块;在移动箱内固定有隔板并将移动箱分为固定配重腔和活动配重腔,在固定配重腔内填充有固定配重物,在活动配重腔中安装有活动配重块,在移动箱上固定安装有能挡住活动配重块的保险挡杆。
上述悬绳器包括悬绳器体、载荷传感器和悬绳;在悬绳器体上安装有载荷传感器。
上述在底座上固定安装有数字化控制柜,在数字化控制柜内固定安装有中央处理器、通信模块、电源模块、显示模块、电量模块、三相电参数采集装置、控制面板、启停控制继电器、变频器、主电机变频交流接触器、主电机工频交流接触器、电机综合保护器、调平衡控制继电器、平衡电机交流接触器和电流变送器;载荷传感器的信号输出端通过载荷传感器线缆和下连接电缆与中央处理器的第一信号输入端电连接在一起,冲程过程测量器的信号输出端通过活动电缆和下连接电缆与中央处理器的第二信号输入端电连接在一起,在带平衡电机的减速器的电源输入线上安装有电流变送器,电流变送器的信号输出端和中央处理器的第三信号输入端通过导线电连接在一起,下行程感应开关和上行程感应开关的信号输出端通过上连接电缆、活动电缆和下连接电缆与中央处理器的第四信号输入端电连接在一起,下行程感应开关和上行程感应开关的信号输出端通过上连接电缆、活动电缆和下连接电缆与调平衡控制继电器的信号输入端电连接在一起,中央处理器的第一信号输出端和调平衡控制继电器的信号输入端通过导线电连接在一起,调平衡控制继电器的信号输出端和平衡电机交流接触器的信号输入端通过导线电连接在一起,平衡电机交流接触器的输出端和平衡电机的输入端通过导线电连接在一起,平衡电机交流接触器的输出端 和电流变送器的信号输入端通过导线电连接在一起,中央处理器的第二信号输出端和启停控制继电器的信号输入端通过导线电连接在一起,启停控制继电器的信号输出端和主电机工频交流接触器的信号输入端通过导线电连接在一起,主电机工频交流接触器的输出端和主电机的输入端通过导线电连接在一起,启停控制继电器的信号输出端和主电机变频交流接触器的信号输入端通过导线电连接在一起,主电机变频交流接触器的输出端和主电机的输入端通过导线电连接在一起。
上述在带平衡电机的减速器动力输出轴的左端固定有四方头或六方头,在平衡吊臂上固定安装有摇把支撑座;或/和,在底座上安装有皮带轮快换装置,皮带轮快换装置的下端铰接在底座上,皮带轮快换装置的上端面上固定安装有主电机,支架上铰接有支撑杆,在游梁上有对应连接支撑杆的铰座;或/和,在底座的左部固定安装有缓冲装置;或/和,三相电参数采集装置为电参数动态平衡测试仪或电流互感器。
本发明结构合理而紧凑,使用方便,通过主电机、减速器、连杆、游梁、支架、驴头、悬绳器、载荷传感器、角位移传感器、安全限位装置和数字化控制柜的配合使用,不仅使移动式配重箱在平衡吊臂上左右移动,自动平衡各种工况下的悬点载荷,而且根据泵充满度的变化自动调节抽油机冲次,具有安全可靠的特点,方便了操作,充分发挥了油井产量,提高了平衡率,实现了节能降耗。
附图说明
附图1为本发明实施例2的主视结构示意图。
附图2为本发明实施例2中平衡吊臂的主视放大结构示意图。
附图3为本发明实施例2中移动式配重箱的A向放大结构示意图。
附图4为本发明实施例2中移动式配重箱没有安装盖板的A向放大结构示意图。
附图5为本发明实施例2的电路控制示意图。
附图6为本发明冲次过快状态下的示功图。
附图7为本发明冲次恰当状态下的示功图。
附图8为本发明冲次过慢状态下的示功图。
附图9为本发明电流欠平衡状态和功率欠平衡状态的电参曲线。
附图10为本发明电流平衡状态和功率平衡状态的电参曲线。
附图11为本发明电流过平衡状态和功率过平衡状态的电参曲线。
附图中的编码分别为:1为悬绳器,2为驴头,3为游梁,4为游梁支座,5为支架,6为连杆,7为平衡吊臂,8为减速器,9为曲柄,10为手摇把,11为缓冲装置,12为底座,13为刹车装置,14为数字化控制柜,15为主电机,16为角位移传感器,17为载荷传感器,18为载荷传感器线缆,19为活动电缆,20为上连接电缆,21为下连接电缆,22为四方头,23为带平衡电机的减速器,24为联轴器,25为丝杠轴承座,26为丝杠,27为滑轨,28为移动式配重箱,29为丝母,30为固定块,31为盖板,32为紧固螺栓,33为丝杠辅助轴承座,34为上行程感应开关,35为感应板,36为活动配重块,37为保险挡杆,38为下行程感应开关,39为移动箱缓冲块,40为挡块,41为滚轮,42为固定配重物,43为摇把支撑座。
具体实施方式
本发明不受下述实施例的限制,可根据本发明的技术方案与实际情况来确定具体的实施方式。
在本发明中,为了便于描述,各部件的相对位置关系的描述均是根据说明书附图1的布图方式来进行描述的,如:前、后、上、下、左、右等的位置关系是依据说明书附图1的布图方向来确定的。
下面结合实施例及附图对本发明作进一步描述:
实施例1,如附图9、10、11所示,该数字化自动控制抽油方法,包括移动平衡数字化抽油机,该移动平衡数字化抽油机包括主电机15、游梁3、平衡吊臂7、曲柄9和悬绳器1,在游梁3的左端固定安装有平衡吊臂7,在平衡吊臂7上分别安装有移动式配重箱28和能使移动式配重箱28左右移动的驱动装置,在移动平衡数字化抽油机上安装有冲程过程测量器,在悬绳器1上固定安装有载荷传感器17;还包括中央处理器和三相电参数采集装置,该三相电参数采集装置安装在供电输入端上;该方法按下述步骤进行:
第一步,分别将冲程过程测量器、三相电参数采集装置采集到的数据传输给中央处理器,中央处理器在每次的冲程过程中,对采集到的电流值进行处理,找出下冲程中的最大电流值I下max和上冲程中的最大电流值I上max,中央处理器计算每次冲程过程的电流平衡度值H1即H1=I下max/I上max;
第二步,按设定的冲程次数N次所得到的N个电流平衡度值H1进行比较处理,电流平衡度下限设定值为A11,电流平衡度调节目标下限设定值为A12,电流平衡度上限设定值为B11,电流平衡度调节目标上限设定值为B12;
在N次冲程中,只要有1次H1值符合A11≤H1≤B11为电流平衡状态,不对移动式配重箱28进行调节;
当N次冲程后,N个H1值均小于A11时为电流欠平衡状态,此时通过驱动装置使移动式配重箱28向左移动,使电流平衡度H1达到A12≤H1≤B12;
当N次冲程后,N个H1值均大于B11时为电流过平衡状态,此时通过驱动装置使移动式配重箱28向右移动,使电流平衡度H1达到A12≤H1≤B12。
通过三相电参数采集装置对冲程过程中的电流和电压进行采集,采集后分别可得到三种状态图,分别为电流欠平衡状态和功率欠平衡状态的电参曲线如附图9所示、电流平衡状态和功率平衡状态的电参曲线如附图10所示和电流过平衡状态和功率过平衡状态的电参曲线如附图11所示。
可根据实际需要,对上述实施例1作进一步优化或/和改进:
如附图9、10、11所示,在每次的冲程过程中,中央处理器对采集到的电流值和电压值进行计算,得到下冲程中的平均功率值P下和上冲程中的平均功率值P上,并进行大小比较,以较大值为分母即P大,以较小值为分子即P小,然后计算功率平衡度值H2即H2=P小/P大;按设定的冲程次数N次所得到的N个功率平衡度值H2进行比较处理,功率平衡度下限设定值为A21,功率平衡度调节目标下限设定值为A22;
在N次冲程中,只要有1次H2值符合A21≤H2为功率平衡状态,不对移动式配重箱28进 行调节;
当N次冲程后,N个H2值均小于A21且P下小于P上时为功率欠平衡状态,此时通过驱动装置使移动式配重箱28向左移动,使功率平衡度H2达到A22≤H2;
当N次冲程后,N个H2值均小于A21且P下大于P上时为功率过平衡状态,此时通过驱动装置使移动式配重箱28向右移动,使功率平衡度H2达到A22≤H2。
通过三相电参数采集装置对冲程过程中的电流和电压进行采集,采集后分别可得到三种状态图,分别为电流欠平衡状态和功率欠平衡状态的电参曲线如附图9所示、电流平衡状态和功率平衡状态的电参曲线如附图10所示、电流过平衡状态和功率过平衡状态的电参曲线如附图11所示。
如附图6、7、8所示,在主电机15与供电输入端之间安装有变频器,悬绳器1上固定安装有载荷传感器17用于采集悬点载荷值F,在移动平衡数字化抽油机上安装有冲程过程测量器用于采集悬点位移值S;在每次的冲程过程中,中央处理器根据采集到的悬点载荷值F和悬点位移值S进行分析和计算得到地面示功图,其纵坐标为光杆在抽油过程中悬点载荷值F的坐标,横坐标为光杆在抽油过程中悬点位移值S的坐标,中央处理器根据地面示功图采集上冲程泵的冲程值S1和下冲程泵的有效冲程值S2,然后计算泵充满度H3即H3=S2/S1,按设定的冲程次数N次所得到的N个泵充满度值H3进行比较处理,泵充满度下限设定值为A31,泵充满度调节目标下限设定值为A32,泵充满度上限设定值为B31;
在N次冲程中,只要有1次H3值符合A31≤H3≤B31为冲次恰当状态,不进行冲次调节;
当N次冲程后,N个H3值均小于A31时,为冲次过快状态,此时通过变频器降低主电机15转速而减小冲次,使泵充满度H3达到A32≤H3≤B31;
当N次冲程后,N个H3值均大于B31时,为冲次过慢状态,此时通过变频器升高主电机15转速而增大冲次,使泵充满度H3达到A32≤H3≤B31。
通过冲程过程测量器对冲程过程中的悬点位移进行采集,通过载荷传感器对冲程过程中的悬点载荷进行采集,经过中央处理器对上述采集到的数据进行处理,得到三种状态图,分别为冲次过快状态下的示功图如附图6所示、冲次恰当状态下的示功图如附图7所示、冲次过慢状态下的示功图如附图8所示。
根据需要,A11值为0.8至0.85,A12值为0.9至0.95,B11值为1.10至1.15,B12值为1.0至1.05;或/和,A21值为0.5至0.6,A22值为0.80至0.90;或/和,A31值为0.5至0.6,A32值为0.75至0.85,B31值为0.85至0.95。
I上max为上冲程主电机15最大电流值,I下max为下冲程主电机15最大电流值,P上为上冲程中的平均功率值,P下为下冲程中的平均功率值,电参数动态平衡测试仪将数据传输给中央处理器得到电流平衡度H1、功率平衡度H2。
泵充满度H3的计算和分析需要用到上冲程泵的冲程值S1和下冲程泵的有效冲程值S2,S1和S2的准确数值应从泵示功图上获取,泵安装在油管下端,生产实践中往往距地面深度几百甚至数千米,很难直接得到泵的示功图,因此通常使用地面功图取得近似的S1值和S2值。地面示功图是一个抽汲周期(包括一个完整的上冲程和下冲程)内悬点位移S和 对应的悬点载荷F构成的封闭曲线,横坐标为悬点位移S,纵坐标为悬点载荷F。冲程过程测量器和载荷传感器分别将直接测得的悬点位移S、悬点载荷F的模拟电量经过中央处理器中的转换模块转换为数字电量,中央处理器按等时间间隔同时采集悬点位移S和对应的悬点载荷F的数字电量形成一系列的点数据,同时软件逻辑识别出一个完整抽汲周期的S和F的所有点数据,经过图形软件处理从而获取到地面示功图,如附图6、7、8所示,通过示功图数据点扫描查找可计算出上冲程过程中泵冲程S1的近似值和下冲程过程中泵有效冲程S2的近似值。
根据需要,设定的冲程次数N为设定的次数;或/和,冲程过程测量器为安装在游梁3上的角位移传感器16或为固定安装在曲柄9上的接近开关或为安装在悬绳器1上的悬点位移检测传感器;或/和,三相电参数采集装置为电参数动态平衡测试仪或电流互感器。
实施例2,如附图1、2、3、4所示,该移动平衡数字化抽油机包括主电机15、减速器8、曲柄9、连杆6、游梁3、平衡吊臂7、支架5、驴头2、底座12、刹车装置13、悬绳器1和冲程过程测量器;在底座12上固定安装有主电机15、减速器8、刹车装置13和支架5,能上下摆动的游梁3通过中部的游梁支座4铰接在支架5的顶端,在减速器8的动力输出轴上安装有曲柄9,连杆6的下端与曲柄9铰接在一起,连杆6的上端铰接在游梁3的左部,游梁3的右端固定安装有驴头2,驴头2上安装有悬绳器1,在游梁3的左端固定安装有平衡吊臂7,在平衡吊臂7上分别安装有移动式配重箱28和能使移动式配重箱28左右移动的驱动装置。
可根据实际需要,对上述实施例2作进一步优化或/和改进:
如附图1、2、3、4所示,驱动装置包括带平衡电机的减速器23、丝杠26和丝母29,带平衡电机的减速器23固定安装在平衡吊臂7上,在平衡吊臂7的一端固定安装有丝杠轴承座25,在平衡吊臂7的另一端固定安装有丝杠辅助轴承座33,丝杠26的两端分别安装在丝杠轴承座25和丝杠辅助轴承座33内,丝杠26的一端通过联轴器24与带平衡电机的减速器23的动力输出端固定安装在一起,在丝杠26上安装有丝母29,移动式配重箱28呈马鞍状,其中部有通槽,丝杠26从移动式配重箱28的通槽内穿过,在移动式配重箱28上固定安装有四个固定块30,在四个固定块30间形成十字通槽,丝母29安装在十字通槽内并能够上下左右浮动,在固定块30的外端固定安装有能挡住丝母的盖板31,在平衡吊臂7上设置有滑轨27,在移动式配重箱28的内侧安装有滚轮41,滚轮41位于滑轨27上;或/和,在平衡吊臂7和移动式配重箱28上安装有安全限位装置,该安全限位装置包括感应板35、下行程感应开关38和上行程感应开关34;或/和,冲程过程测量器为安装在游梁3上的角位移传感器16或为固定安装在曲柄9上的接近开关或为安装在悬绳器1上的悬点位移检测传感器;或/和,移动式配重箱28包括移动箱和活动配重块36;在移动箱内固定有隔板并将移动箱分为固定配重腔和活动配重腔,在固定配重腔内填充有固定配重物42,在活动配重腔中安装有活动配重块36,在移动箱上固定安装有能挡住活动配重块36的保险挡杆37。在平衡吊臂7的左端固定安装有移动箱缓冲块39,在平衡吊臂7的左端固定安装有挡块40。这样,通过带平衡电机的减速器23正转或反转,联轴器24带动丝杠26旋转,丝母29带动移动式配重箱28在平衡吊臂7上左右移动,从而平衡抽汲过程中悬点载荷的变化。在 移动式配重箱28的内侧安装有四个滚轮41,更好的起到支撑和导向作用。当移动式配重箱28移动到平衡吊臂7的两端,配重箱上的感应板35接近上行程感应开关34或下行程感应开关38时,感应板35发出停止信号给下行程感应开关和上行程感应开关,通过中央处理器、调平衡控制继电器、平衡电机交流接触器控制带平衡电机的减速器23停止运转,使移动式配重箱28停止移动;上行程感应开关34和下行程感应开关38与感应板35相互配合,用于移动式配重箱28左右行程的限位保护;曲柄9上设置有三个曲柄销孔,用于调整冲程用。在固定块30的外端可通过紧固螺栓32固定安装有能挡住丝母29的盖板31。固定配重物42可采用复合材料混凝物等现有公知的材料,在满足配重的基础上起到降低制造成本的作用。保险挡杆37起到保护活动配重块36的作用,防止在运行过程中活动配重块36掉落;通过调整移动箱的活动配重腔内的活动配重块36的数量粗调平衡,通过改变移动式配重箱28的位置来精确调节平衡,通过调整活动配重块36的数量和改变移动式配重箱28的位置二者结合,使移动平衡数字化抽油机既容易达到平衡又能保持平衡。
如附图1所示,悬绳器1包括悬绳器体、载荷传感器17和悬绳;在悬绳器体上安装有载荷传感器17。
如附图1、5所示,底座12上固定安装有数字化控制柜14,在数字化控制柜14内固定安装有中央处理器、通信模块、电源模块、显示模块、电量模块、三相电参数采集装置、控制面板、启停控制继电器、变频器、主电机变频交流接触器、主电机工频交流接触器、电机综合保护器、调平衡控制继电器、平衡电机交流接触器和电流变送器;载荷传感器17的信号输出端通过载荷传感器线缆18和下连接电缆21与中央处理器的第一信号输入端电连接在一起,冲程过程测量器的信号输出端通过活动电缆19和下连接电缆21与中央处理器的第二信号输入端电连接在一起,在带平衡电机的减速器23的电源输入线上安装有电流变送器,电流变送器的信号输出端和中央处理器的第三信号输入端通过导线电连接在一起,下行程感应开关和上行程感应开关的信号输出端通过上连接电缆20、活动电缆19和下连接电缆21与中央处理器的第四信号输入端电连接在一起,下行程感应开关和上行程感应开关的信号输出端通过上连接电缆20、活动电缆19和下连接电缆21与调平衡控制继电器的信号输入端电连接在一起,中央处理器的第一信号输出端和调平衡控制继电器的信号输入端通过导线电连接在一起,调平衡控制继电器的信号输出端和平衡电机交流接触器的信号输入端通过导线电连接在一起,平衡电机交流接触器的输出端和平衡电机的输入端通过导线电连接在一起,平衡电机交流接触器的输出端和电流变送器的信号输入端通过导线电连接在一起,中央处理器的第二信号输出端和启停控制继电器的信号输入端通过导线电连接在一起,启停控制继电器的信号输出端和主电机工频交流接触器的信号输入端通过导线电连接在一起,主电机工频交流接触器的输出端和主电机15的输入端通过导线电连接在一起,启停控制继电器的信号输出端和主电机变频交流接触器的信号输入端通过导线电连接在一起,主电机变频交流接触器的输出端和主电机15的输入端通过导线电连接在一起。
根据需要,在带平衡电机的减速器23动力输出轴的左端固定有四方头22或六方头,在平衡吊臂7上固定安装有摇把支撑座43;或/和,在底座12上安装有皮带轮快换装置,皮带轮快换装置的下端铰接在底座12上,皮带轮快换装置的上端面上固定安装有主电 机15,支架5上铰接有支撑杆,在游梁3上有对应连接支撑杆的铰座;或/和,在底座12的左部固定安装有缓冲装置11;或/和,三相电参数采集装置为电参数动态平衡测试仪或电流互感器。这样,在停电或带平衡电机的减速器23损坏或供电电缆损坏或手摇调平衡或维修作业时,可用手摇把10或扳手人工转动四方头22或六方头,使带平衡电机的减速器23正向或反向旋转,通过丝杠26使移动式配重箱28在平衡吊臂7上左右移动。缓冲装置11便于本发明发生悬点失载后,平衡吊臂7的左端撞击缓冲装置11释放冲击能量,有效保护减速器8和主电机15等部件。载荷传感器17、角位移传感器16和带平衡电机的减速器23通过载荷传感器线缆18、活动电缆19、上连接电缆20和下连接电缆21与数字化控制柜14通过可以快速连接的接头连接在一起,特别是游梁3和支架5之间的活动电缆19、上连接电缆20和下连接电缆21通过可以快速连接的接头连接在一起,并且活动电缆19与下连接电缆21连接的接头朝上,减小对接头的弯折损伤,延长活动电缆使用寿命,且便于更换。
本发明的有益效果:
1)本发明采用了移动式自动调平衡结构,通过调整移动箱中活动配重块36的数量粗调平衡,通过改变移动式配重箱28的位置精确调节平衡,二者结合,使抽油机更容易实现各种工况下不同悬点载荷所需的平衡调整,在生产实践中可大大提高平衡率,保护抽油机并降低生产成本。
2)可通过手摇把10移动移动式配重箱28,即使带平衡电机的减速器23损坏、带平衡电机的减速器23供电电路损坏、通讯中断,仍能人工手摇调平衡,使抽油机继续使用,无安全隐患,也不会造成停井影响产量。
3)自动测试电参量,包括相电压、相电流、频率、正向有功电能、负向有功电能等,根据电流和电功率数据计算抽油机当前平衡状态,并自动进行平衡调节,将电流平衡度和功率平衡度相结合既保护了抽油机又实现了节能。
4)自动测试示功图,依据泵的充满度自动调节冲次,可提高泵的充满度和效率。
5)在底座12的左部固定安装有缓冲装置11,悬点失载后平衡吊臂7的左端撞击缓冲装置11释放冲击能量,有效保护减速器和主电机15等部件,解决了游梁平衡抽油机悬点失载后安全保护难题。
6)具有变频、工频两种运行方式,变频故障时可自动切换到工频运行。
7)就地显示或通过通信模块远传测试数据,将测试数据导入油田生产管理系统,方便油田对抽油机进行网络管理。
以上技术特征构成了本发明的最佳实施例,其具有较强的适应性和最佳实施效果,可根据实际需要增减非必要的技术特征,来满足不同情况的需求。

Claims (10)

  1. 一种数字化自动控制抽油方法,其特征在于包括移动平衡数字化抽油机,该移动平衡数字化抽油机包括主电机、游梁、平衡吊臂、曲柄和悬绳器,在游梁的左端固定安装有平衡吊臂,在平衡吊臂上分别安装有移动式配重箱和能使移动式配重箱左右移动的驱动装置,在移动平衡数字化抽油机上安装有冲程过程测量器,在悬绳器上固定安装有载荷传感器;还包括中央处理器和三相电参数采集装置,该三相电参数采集装置安装在供电输入端上;该方法按下述步骤进行:
    第一步,分别将冲程过程测量器、三相电参数采集装置采集到的数据传输给中央处理器,中央处理器在每次的冲程过程中,对采集到的电流值进行处理,找出下冲程中的最大电流值I下max和上冲程中的最大电流值I上max,中央处理器计算每次冲程过程的电流平衡度值H1即H1=I下max/I上max;
    第二步,按设定冲程次数N次所得到的N个电流平衡度值H1进行比较处理,电流平衡度下限设定值为A11,电流平衡度调节目标下限设定值为A12,电流平衡度上限设定值为B11,电流平衡度调节目标上限设定值为B12;
    在N次冲程中,只要有1次H1值符合A11≤H1≤B11为电流平衡状态,不对移动式配重箱进行调节;
    当N次冲程后,N个H1值均小于A11时为电流欠平衡状态,此时通过驱动装置使移动式配重箱向左移动,使电流平衡度H1达到A12≤H1≤B12;
    当N次冲程后,N个H1值均大于B11时为电流过平衡状态,此时通过驱动装置使移动式配重箱向右移动,使电流平衡度H1达到A12≤H1≤B12。
  2. 根据权利要求1所述的数字化自动控制抽油方法,其特征在于在每次的冲程过程中,中央处理器对采集到的电流值和电压值进行计算,得到下冲程中的平均功率值P下和上冲程中的平均功率值P上,并进行大小比较,以较大值为分母即P大,以较小值为分子即P小,然后计算功率平衡度值H2即H2=P小/P大;按设定的冲程次数N次所得到的N个功率平衡度值H2进行比较处理,功率平衡度下限设定值为A21,功率平衡度调节目标下限设定值为A22;
    在N次冲程中,只要有1次H2值符合A21≤H2为功率平衡状态,不对移动式配重箱进行调节;
    当N次冲程后,N个H2值均小于A21且P下小于P上时为功率欠平衡状态,此时通过驱动装置使移动式配重箱向左移动,使功率平衡度H2达到A22≤H2;
    当N次冲程后,N个H2值均小于A21且P下大于P上时为功率过平衡状态,此时通过驱动装置使移动式配重箱向右移动,使功率平衡度H2达到A22≤H2。
  3. 根据权利要求1或2所述的数字化自动控制抽油方法,其特征在于主电机与供电输入端之间安装有变频器,悬绳器上固定安装有载荷传感器用于采集悬点载荷值F,在移动平衡数字化抽油机上安装有冲程过程测量器用于采集悬点位移值S;在每次的冲程过程中,中央处理器根据采集到的悬点载荷值F和悬点位移值S进行分析和计算得到地面示功图,其纵坐标 为光杆在抽油过程中悬点载荷值F的坐标,横坐标为光杆在抽油过程中悬点位移值S的坐标,中央处理器根据地面示功图采集上冲程泵的冲程值S1和下冲程泵的有效冲程值S2,然后计算泵充满度H3即H3=S2/S1,按设定的冲程次数N次所得到的N个泵充满度值H3进行比较处理,泵充满度下限设定值为A31,泵充满度调节目标下限设定值为A32,泵充满度上限设定值为B31;
    在N次冲程中,只要有1次H3值符合A31≤H3≤B31为冲次恰当状态,不进行冲次调节;
    当N次冲程后,N个H3值均小于A31时,为冲次过快状态,此时通过变频器降低主电机转速而减小冲次,使泵充满度H3达到A32≤H3≤B31;
    当N次冲程后,N个H3值均大于B31时,为冲次过慢状态,此时通过变频器升高主电机转速而增大冲次,使泵充满度H3达到A32≤H3≤B31。
  4. 根据权利要求1或2或3所述的数字化自动控制抽油方法,其特征在于A11值为0.8至0.85,A12值为0.9至0.95,B11值为1.10至1.15,B12值为1.0至1.05;或/和,A21值为0.5至0.6,A22值为0.80至0.90;或/和,A31值为0.5至0.6,A32值为0.75至0.85,B31值为0.85至0.95。
  5. 根据权利要求1或2或3或4所述的数字化自动控制抽油方法,其特征在于设定的冲程次数N为设定的次数;或/和,冲程过程测量器为安装在游梁上的角位移传感器或为固定安装在曲柄上的接近开关或为安装在悬绳器上的悬点位移检测传感器;或/和,三相电参数采集装置为电参数动态平衡测试仪或电流互感器。
  6. 一种实施如权利要求1或2或3或4或5所述的数字化自动控制抽油方法的移动平衡数字化抽油机,其特征在于包括主电机、减速器、曲柄、连杆、游梁、平衡吊臂、支架、驴头、底座、刹车装置、悬绳器和冲程过程测量器;在底座上固定安装有主电机、减速器、刹车装置和支架,能上下摆动的游梁通过中部的游梁支座铰接在支架的顶端,在减速器的动力输出轴上安装有曲柄,连杆的下端与曲柄铰接在一起,连杆的上端铰接在游梁的左部,游梁的右端固定安装有驴头,驴头上安装有悬绳器,在游梁的左端固定安装有平衡吊臂,在平衡吊臂上分别安装有移动式配重箱和能使移动式配重箱左右移动的驱动装置。
  7. 根据权利要求6所述的移动平衡数字化抽油机,其特征在于驱动装置包括带平衡电机的减速器、丝杠和丝母,带平衡电机的减速器固定安装在平衡吊臂上,在平衡吊臂的一端固定安装有丝杠轴承座,在平衡吊臂的另一端固定安装有丝杠辅助轴承座,丝杠的两端分别安装在丝杠轴承座和丝杠辅助轴承座内,丝杠的一端通过联轴器与带平衡电机的减速器的动力输出端固定安装在一起,在丝杠上安装有丝母,移动式配重箱呈马鞍状,其中部有通槽,丝杠从移动式配重箱的通槽内穿过,在移动式配重箱上固定安装有四个固定块,在四个固定块间形成十字通槽,丝母安装在十字通槽内并能够上下左右浮动,在固定块的外端固定安装有能挡住丝母的盖板,在平衡吊臂上设置有滑轨,在移动式配重箱的内侧安装有滚轮,滚轮位于滑轨上;或/和,在平衡吊臂和移动式配重箱上安装有安全限位装置,该安 全限位装置包括感应板、下行程感应开关和上行程感应开关;或/和,冲程过程测量器为安装在游梁上的角位移传感器或为固定安装在曲柄上的接近开关或为安装在悬绳器上的悬点位移检测传感器;移动式配重箱包括移动箱和活动配重块;在移动箱内固定有隔板并将移动箱分为固定配重腔和活动配重腔,在固定配重腔内填充有固定配重物,在活动配重腔中安装有活动配重块,在移动箱上固定安装有能挡住活动配重块的保险挡杆。
  8. 根据权利要求6或7所述的移动平衡数字化抽油机,其特征在于悬绳器包括悬绳器体、载荷传感器和悬绳;在悬绳器体上安装有载荷传感器。
  9. 根据权利要求6或7或8所述的移动平衡数字化抽油机,其特征在于底座上固定安装有数字化控制柜,在数字化控制柜内固定安装有中央处理器、通信模块、电源模块、显示模块、电量模块、三相电参数采集装置、控制面板、启停控制继电器、变频器、主电机变频交流接触器、主电机工频交流接触器、电机综合保护器、调平衡控制继电器、平衡电机交流接触器和电流变送器;载荷传感器的信号输出端通过载荷传感器线缆和下连接电缆与中央处理器的第一信号输入端电连接在一起,冲程过程测量器的信号输出端通过活动电缆和下连接电缆与中央处理器的第二信号输入端电连接在一起,在带平衡电机的减速器的电源输入线上安装有电流变送器,电流变送器的信号输出端和中央处理器的第三信号输入端通过导线电连接在一起,下行程感应开关和上行程感应开关的信号输出端通过上连接电缆、活动电缆和下连接电缆与中央处理器的第四信号输入端电连接在一起,下行程感应开关和上行程感应开关的信号输出端通过上连接电缆、活动电缆和下连接电缆与调平衡控制继电器的信号输入端电连接在一起,中央处理器的第一信号输出端和调平衡控制继电器的信号输入端通过导线电连接在一起,调平衡控制继电器的信号输出端和平衡电机交流接触器的信号输入端通过导线电连接在一起,平衡电机交流接触器的输出端和平衡电机的输入端通过导线电连接在一起,平衡电机交流接触器的输出端和电流变送器的信号输入端通过导线电连接在一起,中央处理器的第二信号输出端和启停控制继电器的信号输入端通过导线电连接在一起,启停控制继电器的信号输出端和主电机工频交流接触器的信号输入端通过导线电连接在一起,主电机工频交流接触器的输出端和主电机的输入端通过导线电连接在一起,启停控制继电器的信号输出端和主电机变频交流接触器的信号输入端通过导线电连接在一起,主电机变频交流接触器的输出端和主电机的输入端通过导线电连接在一起。
  10. 根据权利要求6或7或8或9所述的移动平衡数字化抽油机,其特征在于带平衡电机的减速器动力输出轴的左端固定有四方头或六方头,在平衡吊臂上固定安装有摇把支撑座;或/和,在底座上安装有皮带轮快换装置,皮带轮快换装置的下端铰接在底座上,皮带轮快换装置的上端面上固定安装有主电机,支架上铰接有支撑杆,在游梁上有对应连接支撑杆的铰座;或/和,在底座的左部固定安装有缓冲装置;或/和,三相电参数采集装置为电参数动态平衡测试仪或电流互感器。
PCT/CN2015/100034 2014-12-31 2015-12-31 数字化自动控制抽油方法和移动平衡数字化抽油机 WO2016107593A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/638,338 US10527034B2 (en) 2014-12-31 2017-06-29 Digitized automatic control method for oil-pumping and digitized balance-shifting pumpjack

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410852566.7A CN104563970B (zh) 2014-12-31 2014-12-31 数字化自动控制抽油方法和移动平衡数字化抽油机
CN201410852566.7 2014-12-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/638,338 Continuation US10527034B2 (en) 2014-12-31 2017-06-29 Digitized automatic control method for oil-pumping and digitized balance-shifting pumpjack

Publications (1)

Publication Number Publication Date
WO2016107593A1 true WO2016107593A1 (zh) 2016-07-07

Family

ID=53080955

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/100034 WO2016107593A1 (zh) 2014-12-31 2015-12-31 数字化自动控制抽油方法和移动平衡数字化抽油机

Country Status (3)

Country Link
US (1) US10527034B2 (zh)
CN (1) CN104563970B (zh)
WO (1) WO2016107593A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111188602A (zh) * 2020-03-24 2020-05-22 山东创新石油技术有限公司 一种抽油机失载保护装置
CN115839798A (zh) * 2023-02-20 2023-03-24 江苏力野精工科技有限公司 一种避震器生产用抗震性动平衡检测装置

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104775792B (zh) * 2014-12-31 2018-05-08 新疆维吾尔自治区第三机床厂 智能控制抽油方法和智能抽油机
CN104612631B (zh) * 2014-12-31 2018-07-27 新疆维吾尔自治区第三机床厂 功率平衡数字化自动控制抽油方法和采油机器人
CN104563970B (zh) 2014-12-31 2018-04-03 新疆维吾尔自治区第三机床厂 数字化自动控制抽油方法和移动平衡数字化抽油机
CN107143310B (zh) * 2016-03-01 2023-10-20 中国石油化工股份有限公司 稠油井专用抽油机调速装置
CN106094615B (zh) * 2016-06-14 2018-12-28 北京中油瑞飞信息技术有限责任公司 对井场数据进行处理的方法和井口控制器
CN105971562A (zh) * 2016-06-20 2016-09-28 安庆宜源石油机械配件制造有限责任公司 一种游梁式抽油机
CN107780886B (zh) * 2016-08-29 2024-04-30 中国石油天然气股份有限公司 抽油机平衡装置
CN106223904B (zh) * 2016-09-14 2019-04-26 赵国祥 无游梁抽油机智能电控系统
CN107060695B (zh) * 2016-12-16 2023-04-25 中国石油天然气股份有限公司 一种游梁式抽油机节能控制系统及方法
CN107869330A (zh) * 2017-11-15 2018-04-03 晋中丰亿机械有限公司 一种用于抽油机的自动调节平衡及锁定装置
CN108590591A (zh) * 2018-04-25 2018-09-28 中国石油天然气股份有限公司长庆油田分公司技术监测中心 一种抽油机机械加载系统
US10760386B2 (en) * 2018-04-27 2020-09-01 Weatherford Technology Holdings, Llc Slant well pumping unit
CN109236248B (zh) * 2018-07-20 2021-10-29 中国石油天然气集团公司 游梁式抽油机的自动平衡方法和游梁式自动调平抽油机
CN110952955B (zh) * 2018-09-26 2023-06-20 中国石油化工股份有限公司 抽油机运行自动控制装置及节能方法
CN111058801A (zh) * 2018-10-16 2020-04-24 中国石油化工股份有限公司 一种抽油机尾游梁自动平衡装置及方法
CN109899057B (zh) * 2019-01-31 2023-06-30 中国石油化工股份有限公司 稠油井示功图算产的方法
CN112081579A (zh) * 2019-06-13 2020-12-15 中国石油天然气股份有限公司 机采井报警装置
CN110543116A (zh) * 2019-08-23 2019-12-06 华耀时代(天津)科技有限公司 一种尾游梁地面控制装置
CN110700797B (zh) * 2019-09-27 2021-12-03 刘翠霞 一种游梁式抽油机的自适应配重结构
CN110671094A (zh) * 2019-10-15 2020-01-10 延安延昌装备制造(集团)有限责任公司 一种抽油机控制系统、控制方法及抽油机
CN110725670B (zh) * 2019-12-03 2024-06-18 山西省平遥减速器有限责任公司 一种游梁式抽油机的电机用缓冲式浮动安装装置
CN110863802A (zh) * 2019-12-26 2020-03-06 祁晨龙 一种游梁式抽油机支臂结构及其使用方法
CN111577221B (zh) * 2020-04-17 2022-07-15 新疆维吾尔自治区第三机床厂 安全型数字化抽油机
CN111594139B (zh) * 2020-05-22 2023-05-09 大连虹桥科技有限公司 油井测试与等泵充满按冲次同步数控抽油法
CN112946470B (zh) * 2021-02-04 2022-06-17 东北大学 有杆泵抽油井蒸汽吞吐转周期时机的软测量方法及系统
CN113890265A (zh) * 2021-02-25 2022-01-04 西安方元明科技股份有限公司 一种基于伺服电动缸的力臂可调的电动抽油机
CN113965137A (zh) * 2021-10-27 2022-01-21 沈阳汽车刮水器厂 一种游梁式抽油机多段变频控制方法及系统
CN115749741A (zh) * 2022-11-21 2023-03-07 常州艾控智能仪表有限公司 一种抽油机参数获取方法及系统、示功图获取方法及系统
CN116517510A (zh) * 2023-06-25 2023-08-01 胜利油田新海兴达实业集团有限责任公司 抽油机游梁自动寻优智能平衡装置及其工作方法
CN116658127A (zh) * 2023-07-28 2023-08-29 大庆市华禹石油机械制造有限公司 一种电压缸驱动的抽油机
CN117060684B (zh) * 2023-10-11 2024-01-05 山西美锦氢能开发有限公司 一种高压变频器故障自动切工频装置及其工作方法
CN117432728B (zh) * 2023-12-21 2024-02-20 山东博康石油工程技术有限公司 一种防坠落电机换向式抽油机

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5441108A (en) * 1994-09-15 1995-08-15 R.J.S., Inc. Fluid spill catching, containing, collection and recovery system for wellheads
CN201277016Y (zh) * 2008-10-31 2009-07-22 高阳特 摆铃式自动调平节能型抽油机
CN101725332A (zh) * 2008-10-31 2010-06-09 高阳特 摆铃式自动调平节能型抽油机
CN101818632A (zh) * 2010-04-15 2010-09-01 西安仪科自动化有限责任公司 一种数字化自动采油控制系统
CN203531863U (zh) * 2013-11-12 2014-04-09 河南双发石油装备制造股份有限公司 数字化游梁抽油机
CN104060968A (zh) * 2014-07-17 2014-09-24 李世銮 一种数字化抽油机
CN203939489U (zh) * 2014-07-17 2014-11-12 李世銮 一种数字化抽油机
CN104563970A (zh) * 2014-12-31 2015-04-29 新疆维吾尔自治区第三机床厂 数字化自动控制抽油方法和移动平衡数字化抽油机
CN104612631A (zh) * 2014-12-31 2015-05-13 新疆维吾尔自治区第三机床厂 功率平衡数字化自动控制抽油方法和采油机器人
CN204402439U (zh) * 2014-12-31 2015-06-17 新疆维吾尔自治区第三机床厂 采油机器人
CN204402438U (zh) * 2014-12-31 2015-06-17 新疆维吾尔自治区第三机床厂 智能抽油机
CN204402440U (zh) * 2014-12-31 2015-06-17 新疆维吾尔自治区第三机床厂 移动平衡数字化抽油机
CN104775792A (zh) * 2014-12-31 2015-07-15 新疆维吾尔自治区第三机床厂 智能控制抽油方法和智能抽油机

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2113281A (en) * 1937-05-01 1938-04-05 J F Darby Straight lift pumping unit
US3016797A (en) * 1959-01-20 1962-01-16 Fendall Co Eye protective spectacle type goggle
US3222940A (en) * 1961-11-13 1965-12-14 Chastain Joe Counterbalance means
US4145161A (en) * 1977-08-10 1979-03-20 Standard Oil Company (Indiana) Speed control
US4194393A (en) * 1978-04-13 1980-03-25 Stallion Corporation Well driving and monitoring system
US4660426A (en) * 1985-05-20 1987-04-28 Infinity Pumping Systems Pumping unit for actuating a down hole pump with static and dynamic counterweights
US5251696A (en) * 1992-04-06 1993-10-12 Boone James R Method and apparatus for variable speed control of oil well pumping units
US5281100A (en) * 1992-04-13 1994-01-25 A.M.C. Technology, Inc. Well pump control system
US6450050B1 (en) * 2000-03-30 2002-09-17 No. 3 Machine Tool Plant Of The Xinjiang Uygur Autonomous Region Walking beam balanced span and moment regulating economized oil pump and a stroke regulating device of the same
JP5062099B2 (ja) * 2008-08-22 2012-10-31 アイシン・エィ・ダブリュ株式会社 自動変速機
GB2474579B (en) * 2009-10-15 2015-03-25 Weatherford Lamb Calculation of downhole pump fillage and control of pump based on said fillage
DE102010023630B4 (de) * 2010-06-14 2017-11-02 Sew-Eurodrive Gmbh & Co Kg Fördervorrichtung mit Pleuelstange und Verfahren zum Regeln einer Fördervorrichtung mit Pleuelstange und mindestens einem Ausgleichsgewicht
CN102094597A (zh) * 2010-12-05 2011-06-15 邱兵 抽油机的液体配重游码自动调整平衡装置
CN102434128A (zh) * 2011-12-31 2012-05-02 新疆维吾尔自治区第三机床厂 游梁式电动手动调平衡抽油机
JP6015055B2 (ja) * 2012-03-27 2016-10-26 株式会社富士通ゼネラル ロータリ圧縮機
CN203531856U (zh) * 2013-09-16 2014-04-09 西安仪科自动化有限责任公司 数字化自动采油设备
CN203535446U (zh) * 2013-09-30 2014-04-09 盘锦福瑞电子科技有限公司 一种抽油机智能控制成套装置
CN103670341A (zh) * 2013-11-15 2014-03-26 河南信宇石油机械制造股份有限公司 基于wifi网络云服务的数字化节能抽油机

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5441108A (en) * 1994-09-15 1995-08-15 R.J.S., Inc. Fluid spill catching, containing, collection and recovery system for wellheads
CN201277016Y (zh) * 2008-10-31 2009-07-22 高阳特 摆铃式自动调平节能型抽油机
CN101725332A (zh) * 2008-10-31 2010-06-09 高阳特 摆铃式自动调平节能型抽油机
CN101818632A (zh) * 2010-04-15 2010-09-01 西安仪科自动化有限责任公司 一种数字化自动采油控制系统
CN203531863U (zh) * 2013-11-12 2014-04-09 河南双发石油装备制造股份有限公司 数字化游梁抽油机
CN104060968A (zh) * 2014-07-17 2014-09-24 李世銮 一种数字化抽油机
CN203939489U (zh) * 2014-07-17 2014-11-12 李世銮 一种数字化抽油机
CN104563970A (zh) * 2014-12-31 2015-04-29 新疆维吾尔自治区第三机床厂 数字化自动控制抽油方法和移动平衡数字化抽油机
CN104612631A (zh) * 2014-12-31 2015-05-13 新疆维吾尔自治区第三机床厂 功率平衡数字化自动控制抽油方法和采油机器人
CN204402439U (zh) * 2014-12-31 2015-06-17 新疆维吾尔自治区第三机床厂 采油机器人
CN204402438U (zh) * 2014-12-31 2015-06-17 新疆维吾尔自治区第三机床厂 智能抽油机
CN204402440U (zh) * 2014-12-31 2015-06-17 新疆维吾尔自治区第三机床厂 移动平衡数字化抽油机
CN104775792A (zh) * 2014-12-31 2015-07-15 新疆维吾尔自治区第三机床厂 智能控制抽油方法和智能抽油机

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111188602A (zh) * 2020-03-24 2020-05-22 山东创新石油技术有限公司 一种抽油机失载保护装置
CN115839798A (zh) * 2023-02-20 2023-03-24 江苏力野精工科技有限公司 一种避震器生产用抗震性动平衡检测装置

Also Published As

Publication number Publication date
US10527034B2 (en) 2020-01-07
US20170298923A1 (en) 2017-10-19
CN104563970B (zh) 2018-04-03
CN104563970A (zh) 2015-04-29

Similar Documents

Publication Publication Date Title
WO2016107593A1 (zh) 数字化自动控制抽油方法和移动平衡数字化抽油机
WO2016107591A1 (zh) 功率平衡数字化自动控制抽油方法和采油机器人
WO2016107592A1 (zh) 智能控制抽油方法和智能抽油机
CN106894797B (zh) 一种抽油机曲柄摆动控制装置及方法
CN204402438U (zh) 智能抽油机
CN204402440U (zh) 移动平衡数字化抽油机
WO2014059749A1 (zh) 可自动调整平衡的抽油机
US9011108B2 (en) Intelligent online closed-loop balance adjusting system for pumping unit
CN101818632A (zh) 一种数字化自动采油控制系统
CN108166950A (zh) 一种游梁式抽油机以及用于该抽油机的节能控制方法
CN207337130U (zh) 一种抽油机控制柜
CN204402439U (zh) 采油机器人
CN103670341A (zh) 基于wifi网络云服务的数字化节能抽油机
CN100519985C (zh) 摆式平衡智能控制抽油机
CN110895396A (zh) 游梁式抽油机的迭代逼近随动调平控制方法及装置
CN208916655U (zh) 一种可调配重升降装置
CN208396695U (zh) 一种抽油机节能伺服控制装置
CN103195396A (zh) 全自动游梁轨道滑动平衡装置
CN201934077U (zh) 海上油田专用抽油机
CN111287699A (zh) 一种测力型多功能塔式抽油机
CN105672952A (zh) 一种智能式无游梁液压抽油工艺及液压抽油机
CN205012977U (zh) 一种常规游梁式抽油机自平衡节能控制装置
CN204283356U (zh) 平衡装置及游梁式抽油机和塔式抽油机
CN208532037U (zh) 可自动识别重量的平衡重系统
CN201106438Y (zh) 摆式平衡智能控制抽油机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15875269

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15875269

Country of ref document: EP

Kind code of ref document: A1