WO2016107262A1 - 小小区频带资源的分配方法及装置 - Google Patents

小小区频带资源的分配方法及装置 Download PDF

Info

Publication number
WO2016107262A1
WO2016107262A1 PCT/CN2015/093125 CN2015093125W WO2016107262A1 WO 2016107262 A1 WO2016107262 A1 WO 2016107262A1 CN 2015093125 W CN2015093125 W CN 2015093125W WO 2016107262 A1 WO2016107262 A1 WO 2016107262A1
Authority
WO
WIPO (PCT)
Prior art keywords
cluster
group
weight
small cell
specified
Prior art date
Application number
PCT/CN2015/093125
Other languages
English (en)
French (fr)
Inventor
程翔
狐梦实
孙阳
常永宇
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2016107262A1 publication Critical patent/WO2016107262A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria

Definitions

  • the present invention relates to the field of communications, and in particular to a method and apparatus for allocating small cell frequency band resources.
  • the Ultra Dense Network (UDN) has attracted wide attention due to its great practicality and application prospects.
  • UDN Ultra Dense Network
  • the physical distance between the transceivers can be shortened, thereby improving the quality of service for users.
  • the UDN scenario has become one of the key research objects because of its flexible configuration and strong blind coverage capability.
  • ultra-dense networks also face many challenges, one of which is interference.
  • interference When small cells are densely and flexibly deployed in a certain area, the interference problem cannot be ignored due to the greatly shortened distance between cells. Interference can be eliminated by frequency division of small cells with large interference. However, due to the limited bandwidth of the frequency band, all the different frequencies of all the small cells are not realistic.
  • the main object of the present invention is to provide a method and a device for allocating small cell band resources, so as to at least solve the spectrum scheme based on a cell cluster in the related art, simply completely orthogonally dividing small cells in the same cluster to cause small cell bands.
  • a method for allocating a small cell band resource includes: acquiring an interference signal strength value between small cells; and dividing a small cell corresponding to an interference signal strength value greater than a predetermined threshold into one Clusters; in the same cluster, the resource resources of the small cells are allocated according to the resource weight ratio values required by the small cells.
  • the interference signal strength value includes: a reference signal received power RSRP value.
  • dividing the small cell corresponding to the interference signal strength value greater than the predetermined threshold into a cluster comprises: acquiring a plurality of RSRP values greater than a predetermined threshold, and sorting the plurality of RSRP values from large to small Determining, according to a sorting order of the plurality of RSRP values, a connection relationship between the small cells corresponding to the specified RSRP value, wherein the number of small cells having a connection relationship is not greater than a predetermined number;
  • the small cell is divided into a group; a group or a plurality of groups having a connection relationship is divided into one cluster.
  • allocating the frequency band resource of the small cell according to the resource weight ratio value of the small cell requirement includes: acquiring, in the same designated cluster, a designated group in the specified cluster, where the designated group is the designated cluster The group with the largest resource weight required in the middle; comparing the weight of the small cell in the specified cluster with the weight of the designated group, and obtaining the weight ratio value of the small cell; and assigning the frequency band resource to the small cell according to the weight ratio .
  • the method further includes: adjusting, according to the weight of the specified group, a resource weight of a requirement of a group other than the specified group in the specified cluster to be equal to a weight of the specified group.
  • adjusting, according to the weight of the specified group, the weight of the required resource of the group other than the designated group in the specified cluster to be equal to the weight of the designated group including: The weight of the required resources of the group is periodically added with the weight of the predetermined increment until the demand resource weight is equal to the weight of the specified group.
  • a device for allocating a small cell band resource includes: an acquiring module configured to acquire an interference signal strength value between small cells; and a dividing module configured to be greater than a predetermined threshold The small cell corresponding to the interference signal strength value is divided into a cluster; the allocation module is configured to allocate the frequency band resource of the small cell according to the resource weight ratio value required by the small cell in the same cluster.
  • the interference signal strength value includes: a reference signal received power RSRP value.
  • the dividing module includes: a first acquiring unit, configured to acquire a plurality of RSRP values greater than a predetermined threshold, and perform the sorting of the plurality of RSRP values from large to small; determining the unit according to the multiple RSRP values a sorting order, configured to determine a connection relationship between the small cells corresponding to the specified RSRP value, wherein the number of small cells having a connection relationship is not greater than a predetermined number; the first dividing unit is set to have a relationship between the two The small cell of the connection relationship is divided into a group; the second dividing unit is configured to divide one group or a plurality of groups having a connection relationship into one cluster.
  • the allocating module includes: a second acquiring unit, configured to acquire a specified group in the specified cluster in the same specified cluster, where the specified group has the largest resource weight required in the specified cluster a comparison unit, configured to compare a weight of a small cell in the specified cluster with a weight of the specified group, to obtain a weight ratio value of the small cell; and an allocation unit configured to set the value according to the weight ratio to be small The cell allocates band resources.
  • a second acquiring unit configured to acquire a specified group in the specified cluster in the same specified cluster, where the specified group has the largest resource weight required in the specified cluster
  • a comparison unit configured to compare a weight of a small cell in the specified cluster with a weight of the specified group, to obtain a weight ratio value of the small cell
  • an allocation unit configured to set the value according to the weight ratio to be small The cell allocates band resources.
  • the apparatus further includes: an adjustment module, configured to adjust, according to the weight of the designated group, a resource weight of a requirement of a group other than the specified group in the specified cluster to be associated with the designated group The weights are equal.
  • the small cell corresponding to the interference signal strength value greater than the predetermined threshold is divided into a cluster according to the interference signal strength value between the small cells, and the resource weight distribution according to the small cell requirement is allocated in the same cluster.
  • the mode of the frequency band resources of the small cell in the foregoing manner of the embodiment, the frequency resource division is performed according to the respective required weights of the small cells in the cluster, so that small cells with strong interference in the same cluster can work in different frequency bands, and
  • the effective multiplexing of the frequency band resources can be implemented between the base stations with weak interference in the same cluster, and the spectrum scheme based on the cell cluster in the related art simply solves the problem of completely orthogonal frequency division of the small cells in the same cluster to cause small cell frequency band resources. Low utilization rate.
  • FIG. 1 is a flowchart of a method for allocating small cell band resources according to an embodiment of the present invention
  • FIG. 2 is a structural block diagram of a device for allocating small cell band resources according to an embodiment of the present invention
  • FIG. 3 is a block diagram 1 of an optional structure of a device for allocating a small cell band resource according to an embodiment of the present invention
  • FIG. 4 is a block diagram 2 of an optional structure of a small cell band resource allocation apparatus according to an embodiment of the present invention.
  • FIG. 5 is a block diagram 3 of an optional structure of a small cell band resource allocation apparatus according to an embodiment of the present invention.
  • FIG. 6 is a general flowchart of a method for allocating a small cell band according to an alternative embodiment of the present invention.
  • FIG. 7 is a flow chart of a method of clustering in accordance with an alternate embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a small cell simplification according to an embodiment of the present invention.
  • FIG. 9 is a flowchart of a method for allocating a small cell frequency occupancy ratio in a cluster according to an embodiment of the present invention.
  • FIG. 10 is a flow chart of a method for intra-cluster frequency expansion in accordance with an alternative embodiment of the present invention.
  • 11a-11c are schematic diagrams showing specific frequency allocation modes within a cluster according to an embodiment of the present invention.
  • FIG. 1 is a flowchart of a method for allocating a small cell band resource according to an embodiment of the present invention. As shown in FIG. 1 , the steps of the method include:
  • Step S102 Acquire an interference signal strength value between small cells.
  • Step S104 Divide a small cell corresponding to an interference signal strength value greater than a predetermined threshold into a cluster
  • Step S106 In the same cluster, allocate the frequency band resource of the small cell according to the resource weight ratio value required by the small cell.
  • the small cells corresponding to the interference signal strength values greater than the predetermined threshold are divided into one cluster according to the interference signal strength values between the small cells, and the resource weights according to the small cell requirements are allocated in the same cluster.
  • the mode of the frequency band resources of the small cell in the foregoing manner of the embodiment, the frequency resource division is performed according to the respective required weights of the small cells in the cluster, so that small cells with strong interference in the same cluster can work in different frequency bands, and
  • the effective multiplexing of the frequency band resources can be implemented between the base stations with weak interference in the same cluster, and the spectrum scheme based on the cell cluster in the related art simply solves the problem of completely orthogonal frequency division of the small cells in the same cluster to cause small cell frequency band resources. Low utilization rate.
  • the interference signal strength value involved in the embodiment a plurality of reference values may be used.
  • the interference signal strength value may be a reference signal received power (Reference Signal Receiving Power for short) )value.
  • the manner of dividing the small cell corresponding to the interference signal strength value greater than the predetermined threshold into a cluster in the foregoing step S104 may be implemented by the following steps:
  • Step S11 Acquire multiple RSRP values that are greater than a predetermined threshold, and sort the multiple RSRP values from large to small.
  • Step S12 Determine a connection relationship between small cells corresponding to the RSRP value according to a sorting order of the multiple RSRP values, where the number of small cells having a connection relationship is not greater than a predetermined number;
  • Step S13 dividing the small cells having the connection relationship between the two groups into one group
  • Step S14 Divide a cluster or a plurality of clusters having a connection relationship into one cluster.
  • the small cells corresponding to the multiple RSRP values are divided into one cluster, if it is determined that the number of small cells having a connection relationship is not greater than a predetermined number according to a sort order of the multiple RSRP values, the small cells corresponding to the multiple RSRP values are divided into one cluster, if When the RSRP value is specified, the number of small cells having a connection relationship has reached a predetermined number, and the predetermined number of small cells in the previous order are divided into one cluster; the RSRP remaining in the sorting order is based on the above-mentioned clustering manner.
  • the small cell corresponding to the value (that is, the RSRP value after the specified RSRP value after the previous division) is divided into clusters, and the number of small cells of each cluster divided after the same is not more than the predetermined number until sorting
  • the small cells corresponding to all RSRP values in the sequence are divided into clusters.
  • the scenario may be converted into a G(V, E) form in the graph theory in the UDN scenario, where the endpoint V represents a small cell, and the number of Vs Known by the number of small cells, the concept of the group in the graph theory satisfies the set of vertices with edge connections between the two, in the application scenario, the connection between the two endpoints corresponding to the specified RSRP value (ie, In the G(V, E), one side e) corresponds to the above-described connection relationship.
  • the edge E represents the two end points of the E in the cluster. There are non-negligible interferences between small cells, and different frequencies are needed.
  • Step S21 Obtain a specified group in the specified cluster in the same specified cluster, where the specified group is a group with the largest resource weight required in the specified cluster;
  • Step S22 Comparing the weight of the small cell in the specified cluster with the weight of the designated group, and obtaining a weight ratio value of the small cell;
  • Step S23 allocate a frequency band resource according to the weight ratio value to the small cell.
  • the weight of the required resource of each small cell is calculated, in this application scenario.
  • the weight of each small cell's demand for bandwidth can be expressed by the number of users in each small cell, and the representative of the large number of users has a high ratio of bandwidth to resource demand.
  • the frequency band occupancy ratio of the small cell may be expanded, and the manner of expanding the frequency band occupancy ratio may be various.
  • the method is based on equal expansion.
  • the resource weight of the requirement of the group other than the specified group in the specified cluster may be adjusted to be equal to the weight of the specified group according to the weight of the specified group.
  • the method may be implemented in the following manner: adding the required resource weight of the group other than the designated group to the predetermined increment until the required resource weight is equal to the maximum required resource. the weight of. It should be noted that this mode is only an alternative of the embodiment, and is not sufficient to limit the present invention. Other ways of adjusting the weight are also within the protection scope of the present invention.
  • a device for allocating a small cell band resource is further provided, and the device is used to implement the foregoing
  • the term “module” "unit” may implement a combination of software and/or hardware of a predetermined function.
  • the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • the device includes: an acquiring module 22, configured to acquire an interference signal strength value between small cells; and a dividing module 24 and An acquisition module 22 is coupled and configured to divide a small cell corresponding to an interference signal strength value greater than a predetermined threshold into a cluster; the allocation module 26 is coupled to the partitioning module 24, and is configured to be in the same cluster according to the needs of the small cell.
  • the resource weight ratio value allocates the frequency band resource of the small cell.
  • the interference signal strength value comprises: a reference signal received power RSRP value.
  • FIG. 3 is a block diagram of an optional structure of a small cell band resource allocation apparatus according to an embodiment of the present invention.
  • the partitioning module 24 includes: a first acquiring unit 32, configured to acquire multiple RSRPs larger than a predetermined threshold. a value, and sorting the plurality of RSRP values from large to small; the determining unit 34 is coupled to the first obtaining unit 32, and is configured to determine a small size corresponding to the specified RSRP value according to a sorting order of the plurality of RSRP values.
  • the first dividing unit 36 is coupled to the determining unit 34, and is configured to divide the small cells having the connection relationship between the two groups into one
  • the second dividing unit 38 is coupled to the first dividing unit 36, and is configured to divide one group or a plurality of groups having a connecting relationship into one cluster.
  • the allocation module 26 includes: a second obtaining unit 42 configured to acquire the Specifying a specified group in the cluster, wherein the specified group is the group with the largest resource weight required in the specified cluster; the comparing unit 44 is coupled to the second obtaining unit 42 and is configured to compare the weights of the small cells in the specified cluster. And the weight of the designated group is obtained, and the weight ratio value of the small cell is obtained; the allocating unit 46 is coupled to the comparing unit 44, and is configured to allocate a frequency band resource according to the weight ratio value.
  • FIG. 5 is a block diagram 3 of an optional structure of a small cell band resource allocation apparatus according to an embodiment of the present invention. As shown in FIG. 5, the apparatus further includes: an adjustment module 52 coupled to the distribution module 26, and configured to be configured according to the specified group. The weight of the resource weight of the specified cluster other than the specified group is adjusted to be equal to the weight of the specified group.
  • the adjustment module 52 is further configured to add the required resource weight of the group other than the designated group to the predetermined increment until the required resource weight is equal to the weight of the required resource.
  • Frequency multiplexing even if cells with large mutual interference use different frequency bands to reduce interference, and cells with less interference with each other allow the same frequency band to be used to improve the utilization of frequency band resources. This idea is in the macro base station cellular network It is used more.
  • the present invention provides a dynamic small cell clustering and frequency band allocation scheme for the interference situation of dense small cell deployment in the UDN application scenario.
  • the scheme utilizes a centralized controller to first cluster small cells according to inter-cell interference conditions, and introduces the concept of group in the graph theory, and dynamically divides the frequency band resources according to the respective required weights of the small cells in the cluster, so that the same cluster is
  • the small cells with strong interference work in different frequency bands, and the small cells with weak interference in the same cluster can effectively reuse the frequency band resources.
  • the degree of interference between dense cells can be effectively reduced, and the utilization of the frequency band resources can be improved.
  • the small cell is densely and flexibly deployed, and the scenario is converted into a G(V, E) form in the graph theory, wherein the endpoint V represents a small cell, and the number of Vs is known by the number of small cells, and the edge is E is generated by a clustering algorithm which will be explained next.
  • each connected graph in G(V, E) is a cluster, and edge E indicates that there is a non-negligible interference between the small cells represented by the two endpoints of E in the cluster, and an inter-frequency is required.
  • the endpoint itself uses the resources of the entire band and does not participate in the allocation of the band.
  • the steps of the method of the frequency band allocation scheme of the alternative embodiment include:
  • Step S202 The centralized controller performs clustering according to RSRP between small cells:
  • the step S402 can be implemented as follows:
  • Step S41 number the small cells, and each small cell is initially a cluster
  • Step S42 Collecting large RSRP values between the two small cells in the same frequency, sorting the values from large to small into a list state, and recording corresponding two small cells, wherein the RSRP is smaller than the threshold L.
  • the value is not counted in the list.
  • L reflects whether the interference between the two small cells can be ignored. If it is higher than L, it indicates that there is more serious interference, and it needs to participate in clustering, otherwise it can be ignored.
  • the selected method is to take the larger RSRP values between the two small cells.
  • the L value is set here so as not to vary with the two small cell types, and different thresholds may be set according to different types between the two small cells.
  • Step S43 If the list set is not an empty set, proceed to step S44, otherwise proceed to S45.
  • Step S44 setting a threshold T of the small cell number in the cluster. If the clusters of the two small cells corresponding to the maximum RSRP value in the list are merged and exceed the threshold of the number of small cells in the cluster, the two clusters are not adjusted, and The row is removed from the list. If the number of clusters is not exceeded, the two endpoints corresponding to the value are connected (ie, one side is formed in G(V, E)), and the two clusters are combined. The line is removed from the list, and then returns to step S43;
  • Step S45 clustering is completed, and is divided into i clusters, and each cluster is represented by C i .
  • Step S204 division of the frequency occupancy ratio:
  • the step S204 can be implemented as follows:
  • Step S51 After obtaining G(V, E), the demand weight of each vertex is counted.
  • the demand of each user for the bandwidth is consistent, and the weight of the small cell corresponding to each vertex is required. It can be represented by the number of users in each small cell, and the representative of the large number of users has a high degree of demand for bandwidth.
  • other alternative weight representation methods can be used in this alternative embodiment;
  • Step S52 On the basis of establishing the weight of the demand, look for the group in each cluster (connected graph).
  • the concept of a group in graph theory is to satisfy the set of vertices with edges connected between the two. Count the weights of each group in each cluster, find the group with the largest weight sum in each cluster C i , and record the sum as W i ;
  • Step S53 If each small cell is numbered as SC j , where j ranges from 1 to the total number of small cells, and the corresponding demand weight value is represented as W j , then each small cell bandwidth in C i
  • the proportion X j can be calculated by the following formula:
  • the small cell bandwidth demand weight is expressed according to the number of small cell users, when the maximum weight of the group in a cluster is 10, that is, there are 10 users in the group. There are three small cells in the group, and the number of users is 1, 3, and 6, respectively. The proportion of bandwidth allocated by these three small cells is 1/10, 3/10, and 6/10 of the total bandwidth. The proportion of the allocated bandwidth of other small cells in the cluster is calculated according to W j /10.
  • Step S206 expansion of the frequency band occupancy ratio:
  • step S206 On the basis of completing the proportional distribution in step S206, the following operations are performed for each cluster:
  • Step S61 Initializing the V i 'set into clusters having the largest weight sum in the cluster, and the set of points in the cluster C i is V i ;
  • Step S62 The point of V i ⁇ V i ' in the cluster is as follows:
  • m is a fixed integer value indicating the amount of increase in weight per cell
  • Step S65 When there is no certain group weight and greater than or equal to W i in the cluster, the operation of step S62 is continued;
  • Step S66 The expansion process of the band occupancy ratio ends.
  • Step S208 specific division of the frequency band
  • Step S71 Establish a group list of the cluster, and the group ID number is represented by t;
  • Step S72 setting the total bandwidth of the frequency band B, the corresponding number of RBs N, and expressing B i,t (x) (which is a positive integer and x ⁇ [1,N]) as the xth of the group t in the cluster i
  • B i,t (x) which is a positive integer and x ⁇ [1,N]
  • Step S74 randomly selecting a group in the cluster list in the cluster
  • Step S76 Select a group that is adjacent to the selected group in the cluster and has not been allocated, and perform the S75 operation again, and the allocated small cells will not be allocated any more. When it is detected that all the clusters in the cluster have completed the allocation, the division of the specific frequency band of the cluster ends.
  • step S75 is a normal division manner, and when an odd circle having the number of end points greater than or equal to 5 occurs, there may be a shortage of frequency bands for the frequency division of the last point of the odd circle.
  • the dividing purpose can be achieved by dividing the frequency band into small cells around the point. At the same time, the allocation may continue if the frequency band resource caused by the rounding is not full.
  • the optional embodiment can effectively reduce interference and improve the service quality of the edge users.
  • the clustering and resource allocation modes of the present alternative embodiment are relatively simple, and are easier to apply to actual operations than other high complexity resource allocation management methods.
  • the optional embodiment can dynamically perform frequency band redistribution at regular intervals, which is dynamic.
  • FIG. 6 is a general flowchart of a method for allocating a small cell band according to an alternative embodiment of the present invention. As shown in FIG. 6, the steps of the method include:
  • Step S602 clustering
  • the centralized controller performs clustering according to the RSRP between the small cells, and the algorithm flow of the specific clustering is illustrated in FIG. 7;
  • Step S604 Initially allocate the frequency band occupation ratio of each cell
  • the maximum weight of the clusters in the cluster is searched for and the frequency division ratio of the small cells is divided.
  • the demand for data of each user is the same, and the weight of the small cells can be based on the number of users. Representation (there are other weight representation methods), and the specific algorithm flow is illustrated in Figure 9;
  • Step S606 expansion of the frequency band occupancy ratio
  • the frequency band occupancy ratio is expanded to improve the frequency band utilization, and the specific algorithm flow is illustrated in FIG. 10;
  • Step S608 specific allocation of frequency bands
  • the specific frequency band division is performed according to the ratio of the frequency band expansion in step S606, and the specific frequency band division algorithm flow is illustrated in FIG.
  • FIG. 7 is a flowchart of a method for clustering according to an alternative embodiment of the present invention. As shown in FIG. 7, the steps of the clustering method include:
  • Step S702 The small cell number is set, and each small cell is initially a cluster; the RSRP large value between the two small cells is collected, the value is sorted from the largest to the smallest, and the corresponding two small cells are recorded. The RSRP value below the threshold L is not counted in the list Q;
  • the L value reflects whether the interference between the two small cells can be ignored, and if L is exceeded, it needs to participate in clustering, and if it is lower than L, it can be ignored;
  • Step S704 determining whether the Q set is an empty set; if the list set Q is not an empty set, proceeding to step S708, otherwise performing step S706;
  • Step S706 the clustering is completed
  • Step S708 determining whether the clusters of the two small cells corresponding to the maximum RSRP in the list are merged to exceed the threshold T of the small cells in the cluster, if the step S710 is exceeded, otherwise step S712 is performed;
  • Step S710 the two clusters are not adjusted, and the row is removed from the list, and step S704 is re-executed;
  • Step S712 connecting the two endpoints corresponding to the value (ie, forming one side e in G(V, E)), simultaneously clustering the two rows and removing the row from the list, and then returning to step S704.
  • FIG. 8 is a schematic diagram of the small cell simplification according to the embodiment of the present invention. As shown in FIG. 8, the figure shows how to be small.
  • the real map of the cell is transformed into the representation of G(V, E) in the graph theory.
  • the circular area in Figure 8 represents the interference range that can not be ignored by small cells. Surrounding, the overlap of two small cells indicates that there is interference that cannot be ignored, and the inter-frequency processing needs to be performed.
  • the edges are connected, and the non-overlapping small cells can reuse the same frequency to achieve the purpose of improving the frequency band utilization. .
  • Fig. 8 there are four small cells on the upper side, and it is known that there are three clusters in total according to the side connection; there are six small cells in the lower side, and it is known that there are four clusters in the case of side connection.
  • FIG. 9 is a flowchart of a method for allocating a small cell frequency occupancy ratio in a cluster according to an embodiment of the present invention. As shown in FIG. 9, the steps of the method include:
  • Step S902 Statistics the demand weight W j of each point in the cluster on the basis of G(V, E);
  • the demand weight of each vertex is counted.
  • the demand of each user for the bandwidth is consistent, and the weight of the small cell corresponding to each vertex can be weighted. Representing the number of users in each small cell, the representative of the large number of users has a high demand for bandwidth, and of course, there are other methods for representing the weight of the demand;
  • Step S904 searching for clusters within the cluster and counting the weights of the respective clusters;
  • Step S906 taking the maximum weight of the cluster in the cluster Ci, and writing it as W i ;
  • Step S908 the frequency band occupation ratio of the small cell in the cluster C i is W j /W i ;
  • FIG. 10 is a flowchart of a method for frequency expansion in a cluster according to an alternative embodiment of the present invention. As shown in FIG. 10, the steps of the method include:
  • Step S1002 Initializing the V i 'set is a group having the largest weight sum in the cluster, and the point set in the cluster C i is V i ;
  • Step S1006 determining whether there is a certain group weight and greater than W i in the cluster, and when the determination result is yes, executing S1010;
  • Step S1008 determining whether there is a certain group weight in the cluster and equal to W i , and if the determination result is yes, executing S1012, otherwise executing S1014;
  • Step S1010 Perform the following operations on the ownership value and the group greater than Wi: all the points in the step S1004 in the group are randomly selected and selected, and the points are sequentially selected according to the list and the corresponding weight value W j is retrieved. The value is W j -1 until the weight of the group is equal to W i again. Then proceed to S1008 operation;
  • Step S1012 adding these groups to the V i 'set
  • Step S1016 The expansion of the small cell band ratio is completed.
  • FIG. 11a-11c are schematic diagrams showing a specific frequency allocation manner in a cluster according to an embodiment of the present invention.
  • FIG. 11a shows a cluster and its points weights, and
  • FIG. 11a shows that the maximum weight sum is 10.
  • Figure 11b shows the frequency band ratio after frequency expansion.
  • Step S1102 Establish a group list of the cluster, and there are three groups in the cluster, which are clearly expressed, and are respectively represented as group AB, group BC, group CD;
  • Step S1104 Let the total width of the frequency band be B, and the number of corresponding RBs N, and B i,t (x) (which is a positive integer and x ⁇ [1,N]) is represented as the xth in the group t in the cluster i
  • Step S1108 randomly selecting a group in the cluster list in the cluster
  • Step S1112 Select a group that is adjacent to the selected group in the cluster and has not been allocated, and re-execute S75. Operation, the small cells that have been allocated will no longer be allocated. When it is detected that all the clusters in the cluster have completed the allocation, the division of the specific frequency band of the cluster ends.
  • the order of selection of the group in step S1108 is group AB, group BC, group CD, and the selection order of small cells is A, B, C, D.
  • group AB group AB
  • group BC group CD
  • the selection order of small cells is A, B, C, D.
  • all N are not drawn.
  • RB and a square is used to indicate the bandwidth of the N/10 RBs.
  • the centralized controller is used to first cluster small cells according to the inter-cell interference condition, and introduce the concept of group in the graph theory, and dynamically divide the frequency band resources according to the respective required weights of the small cells in the cluster. Therefore, the base stations with strong interference in the same cluster work in different frequency bands, and the base stations with weak interference in the same cluster can effectively multiplex the frequency band resources. In this way, the degree of interference between dense cells can be effectively reduced, and the utilization of frequency band resources can be improved.
  • small cells corresponding to interference signal strength values greater than a predetermined threshold are divided into one cluster according to interference signal strength values between small cells, and small cells are allocated according to resource weights required by small cells in the same cluster.
  • the manner of the frequency band resources in the foregoing manner of the embodiment, the frequency resource division is performed according to the respective required weights of the small cells in the cluster, so that the small cells with strong interference in the same cluster can work in different frequency bands, and the same cluster
  • the effective multiplexing of the frequency band resources can be realized between the base stations with weak internal interference, and the spectrum scheme based on the cell cluster in the related art simply solves the problem of completely orthogonal frequency division of the small cells in the same cluster, resulting in utilization of small cell frequency band resources. Low problem.

Landscapes

  • Engineering & Computer Science (AREA)
  • Quality & Reliability (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明提供了一种小小区频带资源的分配方法及装置,其中该方法包括:获取小小区间的干扰信号强度值(S102);将与大于预定阈值的干扰信号强度值对应的小小区划分为一簇(S104);在同一簇中,依据小小区需求的资源权重比例值分配小小区的频带资源(S106)。通过本发明,解决了相关技术中基于小区簇的频谱方案简单地将同一簇内的小小区完全正交频分而导致小小区频带资源利用率低的问题。

Description

小小区频带资源的分配方法及装置 技术领域
本发明涉及通信领域,具体而言,涉及一种小小区频带资源的分配方法及装置。
背景技术
在信息爆炸性增长的今天,无线通信技术飞速发展,现在已经迎来了5G时代。为了满足更高的数据传输业务要求,有许多已有技术正在完善,同时还有许多新技术被提出。其中,超密集网络(Ultra Dense Network,简称为UDN)以其巨大的实用性和应用前景引起了广泛关注。在超密集网络中,通过部署更多更密的小区,可以缩短收发端间的物理距离,从而提升用户的服务质量。与传统的宏基站部署方式相比,UDN场景以其配置更为灵活、盲区覆盖能力强等优点成为了关键研究对象之一。
然而,超密集网络也面临着诸多挑战,其中之一就是干扰问题。当小小区在一定区域内同频密集灵活部署时,由于小区间距离的大大缩短,干扰问题不可忽视。通过对干扰较大的小小区进行频分的方式,可以消除干扰。然而,由于频带资源的有限性,所有小小区全部异频并不符合实际。
在UDN场景下,小小区呈现分布的随机性和种类的多样性,小小区之间的干扰也呈现严重不均衡性。现有的基于小区簇的频谱方案简单的将同一簇内的小小区完全正交频分,使得每个小小区可利用的频带资源减少,可接纳的用户减少,频带利用效率大大降低。
针对相关技术中基于小区簇的频谱方案简单地将同一簇内的小小区完全正交频分而导致小小区频带资源利用率低的问题,目前尚未提出有效的解决方案。
发明内容
本发明的主要目的在于提供一种小小区频带资源的分配方法及装置,以至少解决相关技术中基于小区簇的频谱方案简单地将同一簇内的小小区完全正交频分而导致小小区频带资源利用率低的问题。
根据本发明实施例的一个方面,提供了一种小小区频带资源的分配方法,包括:获取小小区间的干扰信号强度值;将与大于预定阈值的干扰信号强度值对应的小小区划分为一簇;在同一簇中,依据小小区需求的资源权重比例值分配所述小小区的频带资源。
可选地,所述干扰信号强度值包括:参考信号接收功率RSRP值。
可选地,将与大于预定阈值的干扰信号强度值对应的小小区划分为一簇包括:获取大于预定阈值的多个RSRP值,并对所述多个RSRP值进行从大到小地的排序;依据多个RSRP值的排序顺序,确定与所述指定RSRP值对应的小小区之间的连接关系,其中具有连接关系的小小区的数量不大于预定数量;将两两之间有连接关系的小小区划分为一个团;将一个团或具有连接关系的多个团划分一个簇。
可选地,依据小小区需求的资源权重比例值分配所述小小区的频带资源包括:在同一指定簇中,获取所述指定簇中的指定团,其中,所述指定团为所述指定簇中需求的资源权重最大的团;比较所述指定簇中小小区的权重与所述指定团的权重,得到所述小小区的权重比例值;依据所述权重比例值为所述小小区分配频带资源。
可选地,所述方法还包括:依据所述指定团的权重将所述指定簇中除所述指定团之外的团的需求的资源权重调整到与所述指定团的权重相等。
可选地,依据所述指定团的权重将指定簇中除所述指定团之外的团的所需求资源的权重调整到与所述指定团的权重相等包括:将除所述指定团之外的团的所需求资源的权重周期性加上预定增量的权重,直至该需求资源权重相等于所述指定团的权重。
根据本发明实施例的另一个方面,提供了一种小小区频带资源的分配装置,包括:获取模块,设置为获取小小区间的干扰信号强度值;划分模块,设置为将与大于预定阈值的干扰信号强度值对应的小小区划分为一簇;分配模块,设置为在同一簇中,依据小小区需求的资源权重比例值分配所述小小区的频带资源。
可选地,所述干扰信号强度值包括:参考信号接收功率RSRP值。
可选地,所述划分模块包括:第一获取单元,设置为获取大于预定阈值的多个RSRP值,并对该多个RSRP值进行从大到小地排序;确定单元,依据多个RSRP值的排序顺序,设置为确定与所述指定RSRP值对应的小小区之间的连接关系,其中具有连接关系的小小区的数量不大于预定数量;第一划分单元,设置为将两两之间有连接关系的小小区划分为一个团;第二划分单元,设置为将一个团或具有连接关系的多个团划分一个簇。
可选地,所述分配模块包括:第二获取单元,设置为在同一指定簇中,获取所述指定簇中的指定团,其中,所述指定团为所述指定簇中需求的资源权重最大的团;比较单元,设置为比较所述指定簇中小小区的权重与所述指定团的权重,得到所述小小区的权重比例值;分配单元,设置为依据所述权重比例值为所述小小区分配频带资源。
可选地,所述装置还包括:调整模块,设置为依据所述指定团的权重将所述指定簇中除所述指定团之外的团的需求的资源权重调整到与所述指定团的权重相等。
通过本发明实施例,采用依据小小区间的干扰信号强度值,将与大于预定阈值的干扰信号强度值对应的小小区划分为一簇,并在同一簇中,依据小小区需求的资源权重分配小小区的频带资源的方式;通过本实施例上述方式,在簇内根据小小区各自需求权重进行频带资源的划分,可以使得同一簇内干扰较强的小小区之间在不同频带上工作,而同一簇内干扰较弱的基站之间可以实现频带资源的有效复用,解决了相关技术中基于小区簇的频谱方案简单地将同一簇内的小小区完全正交频分而导致小小区频带资源利用率低的问题。
附图说明
此处所说明的附图用来提供对本发明的进一步理解,构成本申请的一部分,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1是根据本发明实施例的小小区频带资源的分配方法流程图;
图2是根据本发明实施例的小小区频带资源的分配装置结构框图;
图3是根据本发明实施例的小小区频带资源的分配装置可选结构框图一;
图4是根据本发明实施例的小小区频带资源的分配装置可选结构框图二;
图5是根据本发明实施例的小小区频带资源的分配装置可选结构框图三;
图6是根据本发明可选实施例的小小区频带分配方法的总体流程图;
图7是根据本发明可选实施例的分簇的方法流程图;
图8是根据本发明实施例的小小区化简后的示意图;
图9是根据本发明实施例的簇内小小区频率占用比例分配方法流程图;
图10是根据本发明可选实施例的簇内频率扩充的方法流程图;
图11a~11c是根据本发明本发明实施的簇内具体频率分配方式示意图。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本发明。
本实施例提供了一种小小区频带资源的分配方法,图1是根据本发明实施例的小小区频带资源的分配方法流程图,如图1所示,该方法的步骤包括:
步骤S102:获取小小区间的干扰信号强度值;
步骤S104:将与大于预定阈值的干扰信号强度值对应的小小区划分为一簇;
步骤S106:在同一簇中,依据小小区需求的资源权重比例值分配小小区的频带资源。
在本实施例中,采用依据小小区间的干扰信号强度值,将与大于预定阈值的干扰信号强度值对应的小小区划分为一簇,并在同一簇中,依据小小区需求的资源权重分配小小区的频带资源的方式;通过本实施例上述方式,在簇内根据小小区各自需求权重进行频带资源的划分,可以使得同一簇内干扰较强的小小区之间在不同频带上工作,而同一簇内干扰较弱的基站之间可以实现频带资源的有效复用,解决了相关技术中基于小区簇的频谱方案简单地将同一簇内的小小区完全正交频分而导致小小区频带资源利用率低的问题。
对于本实施例中涉及到的干扰信号强度值可以采用多种参考值,而在本实施例的一个可选实施方式中该干扰信号强度值可以为参考信号接收功率(Reference Signal Receiving Power简称为RSRP)值。
而在本实施例的另个一个可选实施方式中,对于上述步骤S104中的将与大于预定阈值的干扰信号强度值对应的小小区划分为一簇的方式可以通过如下步骤实现:
步骤S11:获取大于预定阈值的多个RSRP值,并对该多个RSRP值进行从大到小地排序;
步骤S12:依据多个RSRP值的排序顺序,确定与RSRP值对应的小小区之间的连接关系,其中具有连接关系的小小区的数量不大于预定数量;
步骤S13:将上述两两之间有连接关系的小小区划分为一个团;
步骤S14:将一个团或具有连接关系的多个团划分一个簇。
需要说明的是,如果依据多个RSRP值的排序顺序确定具有连接关系的小小区的数量本来就不大于预定数量时,则该多个RSRP值对应的小小区划分为一个簇,如果在某一指定RSRP值时,具有连接关系的小小区的数量就已经达到预定数量,则将排序中前面预定数量个数的小小区划分为一个簇;基于上述划分簇的方式对排序顺序中剩下的RSRP值(也就是前面划分之后的指定RSRP值之后的RSRP值)对应的小小区进行簇的划分,同样的之后划分的每个簇的小小区数量不超过预定数量,直到排序 顺序中所有的RSRP值对应的小小区进行簇的划分完毕。
对于上述步骤S11至S14,在本实施例的一个应用场景中可以是:在UDN场景中,将该场景转化为图论中G(V,E)形式,其中端点V代表小小区,且V数目由小小区个数已知,图论中团的概念即满足两两之间有边连接的顶点的集合,在该应用场景中即将该指定RSRP值相对应的两个端点间连线(即在G(V,E)中形成一边e)相当于上述的连接关系,E生成后,G(V,E)中的各个连通图各为一簇,边E表示簇内E的两个端点所代表的小小区间存在不可忽视的干扰,需要异频。
而对于本实施例步骤S106中涉及到的依据小小区需求的资源权重分配小小区的频带资源方式也是有多种,在本实施例的一个可选实施方式中可以通过如下方式来试下:
步骤S21:在同一指定簇中,获取所述指定簇中的指定团,其中,所述指定团为所述指定簇中需求的资源权重最大的团;
步骤S22:比较所述指定簇中小小区的权重与所述指定团的权重,得到所述小小区的权重比例值;
步骤S23:依据所述权重比例值为所述小小区分配频带资源。
对于上述给小小区分配频带资源的方式,在本实施例的一个应用场景中可以是:在获得G(V,E)后,统计每个小小区的所需求资源的权重,在本应用场景中,假定每个用户对带宽大小的需求一致,则每个小小区对带宽的需求权重可以用每个小小区内的用户数来表示,用户数大的代表对带宽的需求资源权重比例高,当然,也有其他的需求权重表示方法,这里仅仅是用来进行举例说明;假设该团中有10个用户,设该团内有三个小小区,用户数分别为1、3、6,则这三个小小区应分配的带宽权重分别为总带宽的1/10、3/10、6/10。
在本实施例中还可以对小小区的频带占用比例进行扩充,而对频带占用比例扩充的方式也是有多种,在本实施例的中的一个可选方式中基于等额扩充的思想,该方式可以通过如下方式来实现:依据所述指定团的权重将所述指定簇中除所述指定团之外的团的需求的资源权重调整到与所述指定团的权重相等。
而对于上述调整权重的方式,在本实施例中可以采用如下方式来实现:将除指定团之外的团的所需求资源权重加上预定增量,直至该需求资源权重相等于所需求资源最大的权重。需要说明的是,该方式仅仅是本实施例的可选方案,并不够成对本发明的限定,其他能够调整权重的方式也在本发明的保护范围之内。
在本实施例中还提供了一种小小区频带资源的分配装置,该装置用于实现上述实 施例及可选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”“单元”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图2是根据本发明实施例的小小区频带资源的分配装置结构框图,如图2所示,该装置包括:获取模块22,设置为获取小小区间的干扰信号强度值;划分模块24与第一获取模块22耦合连接,设置为将与大于预定阈值的干扰信号强度值对应的小小区划分为一簇;分配模块26与划分模块24耦合连接,设置为在同一簇中,依据小小区需求的资源权重比例值分配小小区的频带资源。
可选地,干扰信号强度值包括:参考信号接收功率RSRP值。
图3是根据本发明实施例的小小区频带资源的分配装置可选结构框图一,如图3所示,该划分模块24包括:第一获取单元32,设置为获取大于预定阈值的多个RSRP值,并对该多个RSRP值进行从大到小地排序;确定单元34与第一获取单元32耦合连接,设置为依据多个RSRP值的排序顺序,确定与所述指定RSRP值对应的小小区之间的连接关系,其中具有连接关系的小小区的数量不大于预定数量;第一划分单元36与确定单元34耦合连接,设置为将上述两两之间有连接关系的小小区划分为一个团;第二划分单元38与第一划分单元36耦合连接,设置为将一个团或具有连接关系的多个团划分一个簇。
图4是根据本发明实施例的小小区频带资源的分配装置可选结构框图二,如图4所示,分配模块26包括:第二获取单元42,设置为在同一指定簇中,获取所述指定簇中的指定团,其中,所述指定团为所述指定簇中需求的资源权重最大的团;比较单元44与第二获取单元42耦合连接,设置为比较所述指定簇中小小区的权重与所述指定团的权重,得到所述小小区的权重比例值;分配单元46与比较单元44耦合连接,设置为依据权重比例值为小小区分配频带资源。
图5是根据本发明实施例的小小区频带资源的分配装置可选结构框图三,如图5所示,该装置还包括:调整模块52与分配模块26耦合连接,设置为依据所述指定团的权重将所述指定簇中除所述指定团之外的团的需求的资源权重调整到与所述指定团的权重相等。
该调整模块52还设置为,将除指定团之外的团的所需求资源权重加上预定增量,直至该需求资源权重相等于所需求资源最大的权重。
下面结合本发明的可选实施例对本发明进行举例说明。
频率复用,即使相互间干扰较大的小区使用不同频带以减少干扰,而相互间干扰较小的小区允许使用相同的频带以提高频带资源利用率。这一思想在宏基站蜂窝网络 中被较多利用。
本可选实施例针对UDN应用场景中密集小小区部署的干扰情况,提供一种动态的小小区分簇与频带分配方案。该方案利用集中控制器,先根据小小区间干扰状况对小小区进行分簇,并引入图论中团的概念,在簇内根据小小区各自需求权重进行频带资源的动态划分,使得同一簇内干扰较强的小小区之间在不同频带上工作,而同一簇内干扰较弱的小小区之间可以实现频带资源的有效复用。通过本可选实施例这种方式,可以有效地减少密集小区间的干扰程度,同时提高频带资源利用率。
下面对本可选实施例的方案进行详细的说明:
在UDN的应用场景中,小小区密集、灵活部署,将该场景转化为图论中G(V,E)形式,其中端点V代表小小区,且V数目由小小区个数已知,而边E由接下来将说明的分簇算法产生。E生成后,G(V,E)中的各个连通图各为一簇,边E表示簇内E的两个端点所代表的小小区间存在不可忽视的干扰,需要异频。对于无边相连的端点,该端点自己使用整个频段的资源,不参与频带的分配。
因此,本可选实施例的的频带分配方案的方法的步骤包括:
步骤S202:集中控制器根据小小区间的RSRP进行分簇:
其中,该步骤S402可以通过如下方式来实现:
步骤S41:将小小区编号,每个小小区初始为一簇;
步骤S42:收集同频情况下两两小小区相互间的RSRP较大值,将该值从大到小排序为列表状态,并记录对应的两个小小区,其中,小于门限值L的RSRP值不予统计入列表,L反映是否可以忽略两小小区间的干扰,高于L则表示存在较严重干扰,需要参与分簇,否则可以忽略;
需要说明的是:对于步骤42中代表两个小小区间干扰大小的RSRP值的选定,不论两个小小区是否同类型,选取的方式均是取两个小小区相互间RSRP值的较大者。L值这里设置为不随两小小区类型的不同而变化,也可根据两小小区间的不同类型来设定不同门限。
步骤S43:如果列表集合不为空集,进行步骤S44,否则进行S45。
步骤S44:设定簇内的小小区个数门限T,如果列表中RSRP最大值相对应的两个小小区所在的簇合并后超过簇内的小小区个数门限,两簇不做调整,并将该行从列表中剔除,如果未超过簇的个数门限,将该值相对应的两个端点间连线(即在G(V,E)中形成一边e),同时两簇合且将该行从列表中剔除,之后重新回到步骤S43;
步骤S45:分簇完成,共分为i个簇,每个簇用Ci表示。
步骤S204:频带占用比例的划分:
其中,该步骤S204可以通过如下方式来实现:
步骤S51:在获得G(V,E)后,统计每个顶点的需求权重,这里为了叙述方便,假定每个用户对带宽大小的需求一致,则每个顶点对应的小小区对带宽的需求权重可以用每个小小区内的用户数来表示,用户数大的代表对带宽的需求程度高,当然,在本可选实施例还可以采用其他的需求权重表示方法;
步骤S52:在确立了需求权重的基础上,寻找各个簇(连通图)内的团。图论中团的概念即满足两两之间有边连接的顶点的集合。统计每个簇中的每个团的权重和,找出每个簇Ci中拥有最大权重和的团,记录该和为Wi
步骤S53:若将每个小小区编号为SCj,其中,j的范围是从1到小小区的总个数,将相应的需求权重值表示为Wj,则Ci中每个小小区带宽所占比例Xj可由下式计算得出:
Figure PCTCN2015093125-appb-000001
式(1)
需要说明的是:如上述有连线的两端点间不能同频。可知由于每个团中小小区间存在两两之间的干扰,所以每个团中小小区不能同频,通过式(1)的频带比例的划分可以使得每个团中的频带比重之和不超过1,也就实现了每个团中小小区异频的目的。为了达到频率复用的效果,不同团之间允许存在相同频带资源被利用的情况。对于具体的频带划分,将在步骤S208中进行。
在本可选实施例中。若按照小小区用户数来表示小小区带宽需求权重,当一个簇中团的最大权重和为10,即该团中有10个用户。设该团内有三个小小区,用户数分别为1、3、6,则这三个小小区应分配的带宽比重分别为总带宽的1/10、3/10、6/10。该簇中其他小小区可分配带宽比重按照Wj/10来计算。
步骤S206:频带占用比例的扩充:
需要说明的是,通过以上步骤后,虽然根据每个小小区频带占用比例进行具体频带划分可以达到减少干扰的效果,但是由于其较低的频带资源利用率,需要对小小区的频带占用比例进行扩充,其算法目的是使得每个团内频带利用率提升。在本可选实施例有多种比例分配想法可以达成此目的,下面将通过其中一种方式来进行举例说 明,该方式基于等额扩充而实现:
在步骤S206完成比例分配的基础上,对每簇均进行以下操作:
步骤S61:初始化Vi'集合为簇内拥有最大权重和的团,簇Ci内的点集合为Vi
步骤S62:簇内Vi\Vi'的点进行如下操作:
Wjnew=Wj+m,j∈Vi\Vi'式(2)
Wj=Wjnew,j∈Vi\Vi'式(3)
其中m为一固定整数值,表示每次每个小区权重的增加量;
步骤S63:当簇内存在某团权重和大于WiWi时,将该团加入Vi'集合,并对该团中上一次步骤S62中进行过式2、式3操作的所有点随机不重复选取完毕并列表,按照列表依次选取点并使得相应权重值Wj重新取值为Wj-1,直到该团权重和重新等于Wi为止。之后,若Vi'=Vi进行步骤S64,否则继续执行S63操作;
步骤S64:当簇内存在某团权重和等于Wi时,将该团加入Vi'集合。之后,若Vi'=Vi,进行步骤S65,否则继续执行S62操作;
步骤S65:当簇内不存在某团权重和大于或等于Wi时,继续执行步骤S62操作;
步骤S66:频带占用比例的扩充过程结束。
步骤S208:频带的具体划分;
其中,对于每个簇进行如下操作实现频带的具体划分:
步骤S71:建立该簇的团列表,团ID编号用t表示;
步骤S72:设频带总宽度为B,相对应的RB数N个,将Bi,t(x)(为正整数且x∈[1,N])表示为簇i内团t中第x个频带的占用情况,当Bi,t(x)为1时,表示该频带被占用,否则为0;
步骤S73:初始化所有Bi,t(x)=0;
步骤S74:在簇内团列表中随机选一个团
步骤S75:对该团内的所有小小区进行频带的分配:按x从小到大检测,若该簇内该小小区出现的所有团中Bi,t(x)=0(i已经给定,t为该小小区出现的团),则将该频 带x分配给该小小区,并将相应的Bi,t(x)赋值为1。当已经分配
Figure PCTCN2015093125-appb-000002
次或无符合条件频带的时候,该小小区分配完毕;
步骤S76:选择一个与该簇中已选择过的团相邻且未分配过的团,重新进行S75操作,已经分配过的小小区将不再进行分配。当检测到该簇内所有团完成分配的时候,该簇具体频带的划分结束。
当该簇内所有团完成分配的时候,该簇具体频带的划分结束。
需要说明的是上述步骤S75中的具体划分方法为通常的划分方式,而当出现端点数大于等于5的奇圈的时候,对于奇圈最后一个点的频带划分有可能出现频带不足的情况,这时可以采取向该点周围有连线小小区分割频带的方式来达到划分目的。同时,对于因向下取整导致的频带资源未占满的情况,也可以继续进行分配。
本可选实施例相对于相关技术具有如下技术效果:
(1)有效降低干扰,提升边缘用户服务质量;
本可选实施例相比于密集网络中小小区同频服务方式,能够有效地降低干扰,提升边缘用户的服务质量。
(2)相比于其他的一些簇内频段不可复用的方案,本可选实施例中簇内相互间干扰严重的小小区在不同频段工作,而簇内干扰较小的小小区可以进行频率复用,从而提高了频带利用率。
(3)本可选实施例的分簇、资源分配方式等都较为简单,相比于其他高复杂度的资源分配管理方式,更易于运用于实际操作中。
(4)由于复杂度不高,本可选实施例可以每隔一定时间动态地进行频带的重新分配,具有动态性。
下面结合附图和本可选实施例的具体实施例对本可选实施例进行举例说明;
实施例一
图6是根据本发明可选实施例的小小区频带分配方法的总体流程图,如图6所示,该方法的步骤包括:
步骤S602:分簇;
其中,集中控制器根据小小区间的RSRP进行分簇,具体分簇的算法流程见图7说明;
步骤S604:初次分配各小区频带占用比例;
其中,寻找簇内团的最大权重和来进行小小区的频带比例划分,在本实施例中,我们假设每个用户对数据的需求大小相同,则小小区的需求权重可按用户数的大小来表示(还有其他权重表示方法),具体算法流程见图9说明;
步骤S606:频带占用比例的扩充;
其中,对频带占用比例进行扩充,用以提高频带利用率,具体算法流程见图10说明;
步骤S608:频带的具体分配;
其中,按照步骤S606中频带扩充后的比例进行具体的频带划分,具体频带划分算法流程见图11说明。
实施例二
图7是根据本发明可选实施例分簇的方法流程图,如图7所示,该分簇方法的步骤包括:
步骤S702:将小小区编号,每个小小区初始为一簇;收集两两小小区间的RSRP较大值,将该值从大到小排序为列表状态,并记录对应的两个小小区,低于门限值L的RSRP值不予统计入列表Q;
其中,L值反映是否可以忽略两小小区间的干扰,超过L则需要参与分簇,低于L则可以忽略;
步骤S704:判断Q集合是否为空集;如果列表集合Q不为空集,则执行步骤S708,否则执行步骤S706;
步骤S706:分簇完毕;
步骤S708:判断列表中RSRP最大值相对应的两个小小区所在的簇合并后是否超过簇内的小小区个数门限T,如果超过执行步骤S710,否则执行步骤S712;
步骤S710:两簇不做调整,并将该行从列表中剔除,并重新执行步骤S704;
步骤S712:将该值相对应的两个端点间连线(即在G(V,E)中形成一边e),同时两簇合并且将该行从列表中剔除,之后重新回到步骤S704。
实施一和实施例二中涉及到的小小区可以通过图8的示意图来表示,图8是根据本发明实施例的小小区化简后的示意图,如图8所示,该图表明如何将小小区现实图转化为图论中G(V,E)的表示方式。图8中圆形区域表示小小区不可忽视的干扰范 围,两个小小区重叠表示存在了不可忽视的干扰,需要进行异频处理,在图8中表现为有边相连,不重叠的小小区则可以重复利用相同频率,达到提升频带利用率的目的。
在图8中,上侧共有4个小小区,按照边连接的情况可知共存在3个团;下侧共有6个小小区,按照边连接的情况可知共存在4个团。
实施例三
图9是根据本发明实施例的簇内小小区频率占用比例分配方法流程图,如图9所示,该方法的步骤包括:
步骤S902:在G(V,E)基础上统计簇内每个点的需求权重Wj
其中,在获得G(V,E)后,统计每个顶点的需求权重,这里为了叙述方便,假定每个用户对带宽大小的需求一致,则每个顶点对应的小小区对带宽的需求权重可以用每个小小区内的用户数来表示,用户数大的代表对带宽的需求程度高,当然,也有其他的需求权重表示方法;
步骤S904:寻找簇内团并统计各个团的权重和;
其中,在确立了需求权重的基础上,寻找各个簇(连通图)内的团。图论中团的概念即满足两两之间有边连接的顶点的集合。统计每个簇中的每个团的权重和
步骤S906:取簇Ci内团的最大权重和记为Wi
其中,找出每个簇Ci中拥有最大权重和的团,记录该和为Wi
步骤S908:簇Ci内小小区的频带占用比例为Wj/Wi
其中,若将每个小小区编号为SCj,将相应的需求权重值表示为Wj,则Ci中每个小小区带宽所占比例Xj可根据
Figure PCTCN2015093125-appb-000003
计算得出。
实施例四
图10是根据本发明可选实施例的簇内频率扩充的方法流程图,如图10所示,该方法的步骤包括:
步骤S1002:初始化Vi'集合为簇内拥有最大权重和的团,簇Ci内的点集合为Vi
步骤S1004:簇内Vi\Vi'的点进行重新赋值权重,Wj=Wj+1,j∈Vi\Vi';
步骤S1006:判断簇内是否存在某团权重和大于Wi,判断结果为是时执行S1010;
步骤S1008:判断簇内是否存在某团权重和等于Wi,判断结果为是时执行S1012,否则执行S1014;
步骤S1010:对所有权值和大于Wi的团进行如下操作:对该团中步骤S1004中进行过操作的所有点随机不重复选取完毕并列表,按照列表依次选取点并使得相应权重值Wj重新取值为Wj-1,直到该团权重和重新等于Wi为止。接着进行S1008操作;
步骤S1012:将这些团加入Vi'集合;
步骤S1014:判断Vi'=Vi;如果Vi'集合等于Vi集合,执行步骤S1016,否则执行S1004;
步骤S1016:小小区频带比例的扩充完毕。
图11a~11c是根据本发明本发明实施的簇内具体频率分配方式示意图,图11a表示某一簇与其各点权重,由图11a可知最大权重和为10。图11b表示频率扩充后的频带比例,结合该图11a~11c分析,具体分配步骤如下:
步骤S1102:建立该簇的团列表,该簇内共有三个团,为表述清晰,分别表示为团AB、团BC、团CD;
步骤S1104:设频带总宽度为B,相对应的RB数N个,将Bi,t(x)(为正整数且x∈[1,N])表示为簇i内团t中第x个频带的占用情况,当Bi,t(x)为1时,表示该频带被占用,否则为0;
步骤S1106:初始化所有Bi,t(x)=0;
步骤S1108:在簇内团列表中随机选一个团
步骤S1110:对该团内的所有小小区进行频带的分配:按x从小到大检测,若该簇内该小小区出现的所有团中Bi,t(x)=0(i已经给定,t为该小小区出现的团),则将该频带x分配给该小小区,并将相应的Bi,t(x)赋值为1。当已经分配
Figure PCTCN2015093125-appb-000004
次或无符合条件频带的时候,该小小区分配完毕;
步骤S1112:选择一个与该簇中已选择过的团相邻且未分配过的团,重新进行S75 操作,已经分配过的小小区将不再进行分配。当检测到该簇内所有团完成分配的时候,该簇具体频带的划分结束。
说明:图11c中,在步骤S1108中团的选择顺序为团AB、团BC、团CD,小小区的选择分配顺序为A、B、C、D,为显示方便,并未画出所有N个RB,而用一个正方形来表示N/10个RB所占频带宽度。
通过本可选实施例,利用集中控制器,先根据小小区间干扰状况对小小区进行分簇,并引入图论中团的概念,在簇内根据小小区各自需求权重进行频带资源的动态划分,使得同一簇内干扰较强的基站之间在不同频带上工作,而同一簇内干扰较弱的基站之间可以实现频带资源的有效复用。通过这种方式,可以有效地减少密集小区间的干扰程度,同时提高频带资源利用率。
上仅为本发明的可选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
工业实用性
通过本发明,采用依据小小区间的干扰信号强度值,将与大于预定阈值的干扰信号强度值对应的小小区划分为一簇,并在同一簇中,依据小小区需求的资源权重分配小小区的频带资源的方式;通过本实施例上述方式,在簇内根据小小区各自需求权重进行频带资源的划分,可以使得同一簇内干扰较强的小小区之间在不同频带上工作,而同一簇内干扰较弱的基站之间可以实现频带资源的有效复用,解决了相关技术中基于小区簇的频谱方案简单地将同一簇内的小小区完全正交频分而导致小小区频带资源利用率低的问题。

Claims (11)

  1. 一种小小区频带资源的分配方法,包括:
    获取小小区间的干扰信号强度值;
    将与大于预定阈值的干扰信号强度值对应的小小区划分为一簇;
    在同一簇中,依据小小区需求的资源权重比例值分配所述小小区的频带资源。
  2. 根据权利要求1所述的方法,其中,所述干扰信号强度值包括:参考信号接收功率RSRP值。
  3. 根据权利要求2所述的方法,其中,将与大于预定阈值的干扰信号强度值对应的小小区划分为一簇包括:
    获取大于预定阈值的多个RSRP值,并对所述多个RSRP值进行从大到小地的排序;
    依据多个RSRP值的排序顺序,确定与所述指定RSRP值对应的小小区之间的连接关系,其中具有连接关系的小小区的数量不大于预定数量;
    将两两之间有连接关系的小小区划分为一个团;
    将一个团或具有连接关系的多个团划分一个簇。
  4. 根据权利要求3所述的方法,其中,依据小小区需求的资源权重比例值分配所述小小区的频带资源包括:
    在同一指定簇中,获取所述指定簇中的指定团,其中,所述指定团为所述指定簇中需求的资源权重最大的团;
    比较所述指定簇中小小区的权重与所述指定团的权重,得到所述小小区的权重比例值;
    依据所述权重比例值为所述小小区分配频带资源。
  5. 根据权利要求4所述的方法,其中,所述方法还包括:
    依据所述指定团的权重将所述指定簇中除所述指定团之外的团的需求的资源权重调整到与所述指定团的权重相等。
  6. 根据权利要求5所述的方法,其中,依据所述指定团的权重将指定簇中除所述指定团之外的团的所需求资源的权重调整到与所述指定团的权重相等包括:
    将除所述指定团之外的团的所需求资源的权重周期性加上预定增量的权重,直至该需求资源权重相等于所述指定团的权重。
  7. 一种小小区频带资源的分配装置,包括:
    获取模块,设置为获取小小区间的干扰信号强度值;
    划分模块,设置为将与大于预定阈值的干扰信号强度值对应的小小区划分为一簇;
    分配模块,设置为在同一簇中,依据小小区需求的资源权重比例值分配所述小小区的频带资源。
  8. 根据权利要求7所述的装置,其中,所述干扰信号强度值包括:参考信号接收功率RSRP值。
  9. 根据权利要求8所述的装置,其中,所述划分模块包括:
    第一获取单元,设置为获取大于预定阈值的多个RSRP值,并对该多个RSRP值进行从大到小地排序;
    确定单元,设置为依据多个RSRP值的排序顺序,确定与所述指定RSRP值对应的小小区之间的连接关系,其中具有连接关系的小小区的数量不大于预定数量;
    第一划分单元,设置为将两两之间有连接关系的小小区划分为一个团;
    第二划分单元,设置为将一个团或具有连接关系的多个团划分一个簇。
  10. 根据权利要求9所述的装置,其中,所述分配模块包括:
    第二获取单元,设置为在同一指定簇中,获取所述指定簇中的指定团,其中,所述指定团为所述指定簇中需求的资源权重最大的团;
    比较单元,设置为比较所述指定簇中小小区的权重与所述指定团的权重,得到所述小小区的权重比例值;
    分配单元,设置为依据所述权重比例值为所述小小区分配频带资源。
  11. 根据权利要求10所述的装置,其中,所述装置还包括:
    调整模块,设置为依据所述指定团的权重将所述指定簇中除所述指定团之外的团的需求的资源权重调整到与所述指定团的权重相等。
PCT/CN2015/093125 2014-12-29 2015-10-28 小小区频带资源的分配方法及装置 WO2016107262A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410848063.2 2014-12-29
CN201410848063.2A CN105813212B (zh) 2014-12-29 2014-12-29 小小区频带资源的分配方法及装置

Publications (1)

Publication Number Publication Date
WO2016107262A1 true WO2016107262A1 (zh) 2016-07-07

Family

ID=56284159

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/093125 WO2016107262A1 (zh) 2014-12-29 2015-10-28 小小区频带资源的分配方法及装置

Country Status (2)

Country Link
CN (1) CN105813212B (zh)
WO (1) WO2016107262A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107889116B (zh) * 2016-09-30 2022-05-10 英国电讯有限公司 多级小区或小区簇的配置方法、装置以及通信系统
CN107889117B (zh) 2016-09-30 2022-05-10 英国电讯有限公司 小小区簇的资源分配装置、资源分配方法以及通信系统
CN107889127B (zh) 2016-09-30 2022-08-16 英国电讯有限公司 小区簇的资源管理方法、装置及通信系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101291515A (zh) * 2008-06-06 2008-10-22 北京邮电大学 一种在无线通信系统中进行干扰抑制的方法
WO2010121825A1 (en) * 2009-04-23 2010-10-28 Nec Europe Ltd. A method for operating a network and a network
CN102098786A (zh) * 2011-02-25 2011-06-15 中国科学技术大学 一种混合接入方式下毫微微小区的资源分配方法
CN102202406A (zh) * 2011-05-31 2011-09-28 北京邮电大学 干扰抑制方法
CN102469603A (zh) * 2010-11-09 2012-05-23 财团法人资讯工业策进会 用于无线网络的协调装置及其资源区块配置方法
TW201328400A (zh) * 2011-12-20 2013-07-01 Acer Inc 行動通訊裝置、無線通訊系統、毫微蜂巢式基地台以及資源分配之方法
US8804649B1 (en) * 2011-07-14 2014-08-12 Airhop Communications, Inc. Self-optimization in heterogeneous networks

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101291515A (zh) * 2008-06-06 2008-10-22 北京邮电大学 一种在无线通信系统中进行干扰抑制的方法
WO2010121825A1 (en) * 2009-04-23 2010-10-28 Nec Europe Ltd. A method for operating a network and a network
CN102469603A (zh) * 2010-11-09 2012-05-23 财团法人资讯工业策进会 用于无线网络的协调装置及其资源区块配置方法
CN102098786A (zh) * 2011-02-25 2011-06-15 中国科学技术大学 一种混合接入方式下毫微微小区的资源分配方法
CN102202406A (zh) * 2011-05-31 2011-09-28 北京邮电大学 干扰抑制方法
US8804649B1 (en) * 2011-07-14 2014-08-12 Airhop Communications, Inc. Self-optimization in heterogeneous networks
TW201328400A (zh) * 2011-12-20 2013-07-01 Acer Inc 行動通訊裝置、無線通訊系統、毫微蜂巢式基地台以及資源分配之方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LEE, H.C. ET AL.: "Mitigation of Inter-Femtocell Interference with Adaptive Fractional Frequency Reuse", IEEE ICC 2010 PROCEEDINGS, May 2010 (2010-05-01), pages 1 - 5, XP055309927 *

Also Published As

Publication number Publication date
CN105813212B (zh) 2019-05-17
CN105813212A (zh) 2016-07-27

Similar Documents

Publication Publication Date Title
KR101726521B1 (ko) 비면허 대역을 보조대역으로 사용하는 단말 간 직접 통신 시스템 및 그 방법
CN108271163B (zh) 一种频谱资源的共享方法和装置
JP5670856B2 (ja) 無線通信システム、及びチャネル割当方法
JP2010119087A (ja) 無線ネットワークにおいて利用されるネットワーク干渉評価方法、動的チャネル割り当て方法および装置
JP2002510914A (ja) 周波数割当によってcdmaの容量を増大させるための装置及び方法
US10470057B2 (en) Cell clustering method, spectrum overlapping multiplexing method based on method, and device thereof
WO2015196930A1 (zh) 一种小区工作频段的调整方法及装置
JP6522749B2 (ja) リソーススケジューリング方法及び装置
WO2016107262A1 (zh) 小小区频带资源的分配方法及装置
CN105554771B (zh) 基于密集分布的毫微微用户资源分配方法
CN106059734B (zh) 基于边缘用户干扰度量值的Massive MIMO系统导频分配方法
WO2013063947A1 (zh) 一种小区动态频率规划方法和装置
CN110621025B (zh) 一种设备选型方法和装置
Dahrouj et al. Coordinated scheduling for wireless backhaul networks with soft frequency reuse
CN104065600A (zh) 一种抑制控制信道干扰的方法及装置
Wu et al. A novel coordinated spectrum assignment scheme for densely deployed enterprise LTE femtocells
CN107947890B (zh) 一种小区间干扰协调方法及网络设备
WO2014082593A1 (en) System and method for pilot sequence design in a communications system
CN104170309B (zh) 一种资源管理方法及装置
CN112839337B (zh) 一种基于分治递归策略的超密微基站间干扰协调方法
EP3474585A1 (en) Method and system for self-adaptive frequency adjustment for use in indoor coverage network
CN103634818B (zh) 多用户设备的测量方法和装置及分配资源的方法和装置
CN110380808B (zh) 以用户设备为中心的微小区半分簇干扰协调方法
Tayade Spectral efficiency improving techniques in mobile femtocell network: Survey paper
CN110753374A (zh) 一种面向任务卸载的协作网络中继节点选择方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15874947

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15874947

Country of ref document: EP

Kind code of ref document: A1