WO2015109843A1 - 异构网络频谱资源分配方法和装置 - Google Patents

异构网络频谱资源分配方法和装置 Download PDF

Info

Publication number
WO2015109843A1
WO2015109843A1 PCT/CN2014/085131 CN2014085131W WO2015109843A1 WO 2015109843 A1 WO2015109843 A1 WO 2015109843A1 CN 2014085131 W CN2014085131 W CN 2014085131W WO 2015109843 A1 WO2015109843 A1 WO 2015109843A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
interference
channel
network
base stations
Prior art date
Application number
PCT/CN2014/085131
Other languages
English (en)
French (fr)
Inventor
王绍鹏
秦洪峰
李斌
赵刚
闫金凤
熊高才
叶方
牛翀宇
李一兵
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Publication of WO2015109843A1 publication Critical patent/WO2015109843A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • H04W16/10Dynamic resource partitioning

Definitions

  • the present invention relates to the field of mobile communications, and in particular, to a method and apparatus for allocating heterogeneous network spectrum resources. Background technique
  • a large number of low-power nodes such as pico base stations and femto base stations are introduced in the traditional cellular network to form A multi-layer heterogeneous network environment consisting of a plurality of base stations, such as a macro base station, a micro base station, a pico base station, and a relay node.
  • low-power base stations and macro base stations in heterogeneous networks will use time, space and frequency reuse techniques. Since the coverage areas of the macro base station and the low power base station overlap each other, the low power node base stations may overlap each other.
  • Complex heterogeneous networks and cross-layer interferences may exist in the heterogeneous network, and the interference may seriously affect the stable operation of the entire network. It needs to be circumvented through the reasonable allocation of resources between each network element in the heterogeneous network.
  • the complexity of the resource optimization algorithm is so high that it is difficult to obtain an optimal solution. Therefore, a simple and effective heterogeneous network resource allocation algorithm is implemented to implement the network element. Interference coordination and improvement of network throughput have become an urgent problem to be solved. Summary of the invention
  • the existing heterogeneous network spectrum allocation algorithms mostly only divide the frequency bands into the same bandwidth for allocation, and do not consider the actual frequency band difference usage of different types of base stations in the actual heterogeneous network; when judging the interference between different base stations, the simple ⁇ Using the ⁇ 0-1 ⁇ judgment model, the mutual interference strength between different base stations cannot be clearly and accurately expressed. Moreover, the influence of the base station when using a certain channel resource on the remaining base stations is not considered in the spectrum allocation, and the network channel cannot be optimally realized. Management scheduling of resources.
  • Embodiments of the present invention provide a method and device for allocating heterogeneous network spectrum resources, which solves the present problem There are problems with resource allocation methods that are not suitable for actual needs.
  • a method for allocating a spectrum resource of a heterogeneous network comprising:
  • the network resource scheduler calculates an interference bandwidth factor of the base station using the idle subchannel according to the interference strength between the base stations;
  • the network resource scheduler compares an interference bandwidth factor when each base station uses the same idle subchannel, and allocates an idle subchannel to each base station according to the comparison result.
  • the method before the step of calculating, by the network resource scheduler, the interference bandwidth factor of the idle subchannel by the base station according to the interference strength between the base stations, the method further includes:
  • the network resource scheduler calculates the total number of idle subchannels according to the base station location information, the transmit power, the channel requirement, and the base station type reported by the base station;
  • the network resource scheduler calculates the interference strength between different types of base stations according to the actual communication scenario, and maps the actual network scenario to a network interference coordination map.
  • the total number of idle subchannels of the same type of base station is separately calculated and numbered, and the free subchannel is used as an available channel, and the storage in the form of an available channel list includes:
  • the network resource scheduler calculates the interference strength between the different types of base stations according to the actual communication scenario, and maps the actual network scenario to the network interference coordination diagram, including:
  • the interference strength matrix is calculated according to the following expression:
  • CC cc. cc —— [SINR ⁇ -RACS, SINR mm ⁇ RACS ⁇ i]A) ⁇ SIN ⁇
  • represents the minimum signal-to-noise ratio of the base station and the user in normal communication, and indicates the maximum signal-to-noise ratio of the base station I when the user uses the corresponding modulation and coding scheme;
  • the actual network topology map is mapped into a network interference coordination map that can specifically reflect the downlink interference in the network, and the channel allocation of each base station is equivalent to the coloring problem of the graph vertex, where the vertex represents the base station.
  • the color represents the frequency or channel
  • the connection between the vertices represents the interference between the two base stations
  • N is the total number of base stations participating in the system communication service in the network. .
  • the network resource scheduler calculates, according to the interference strength between the base stations, an interference bandwidth factor of the base station using the idle subchannel, including:
  • the available channel indication matrix L is generated according to the following expression:
  • the channel interference indication matrix I is generated according to the following expression:
  • the interference bandwidth factor is calculated according to the following expression:
  • the network resource scheduler compares an interference bandwidth factor when each of the base stations uses the same idle subchannel, and allocates an idle subchannel to each base station according to the comparison result, including:
  • N is usable
  • the number of base stations of the available channel, m is the number of the available channel, and i is the number of the base station;
  • the available channels are allocated to the base station with the smallest interference bandwidth factor.
  • the method further includes: when there are multiple base stations with the smallest interference bandwidth factor, comparing the Whether the network spectrum requirements of the base stations with the smallest interference bandwidth factor are the same;
  • one of the plurality of base stations having the smallest interference bandwidth factor is randomly selected to allocate the available channels.
  • the method further includes:
  • the available channels are allocated to the base station in which the network spectrum requirement is the smallest.
  • the network resource scheduler allocates an idle subchannel for each base station according to the comparison result, and further includes:
  • the network resource scheduler allocates an idle subchannel to each base station according to the comparison result, and further includes: After the available channel is allocated to a base station, let ⁇ )- 1 update the channel demand matrix.
  • the network resource scheduler allocates an idle subchannel for each base station according to the comparison result, and further includes:
  • the method further includes:
  • the method further includes:
  • an available channel is selected from the list of available channels to allocate the available channels.
  • the embodiment of the invention further provides a heterogeneous network spectrum resource allocation device, including:
  • the interference bandwidth factor calculation module is configured to calculate, according to the interference strength between the base stations, an interference bandwidth factor of the base station using the idle subchannel;
  • an allocation module configured to compare an interference bandwidth factor when each of the base stations uses the same idle subchannel, and allocate an idle subchannel to each base station according to the comparison result.
  • the device further includes:
  • the idle subchannel total calculation module is configured to calculate the total number of idle subchannels according to the location information reported by the base station, the base station type information, and the channel requirement information;
  • Classification available channel calculation module set to calculate the total number of idle subchannels of the same type of base station Numbering and numbering, the free subchannel as an available channel, stored in the form of a list of available channels;
  • the interference strength calculation module is configured to calculate the interference strength between different types of base stations according to the actual communication scenario, and map the actual network scenario to a network interference coordination map.
  • An embodiment of the present invention provides a method and an apparatus for allocating a spectrum resource of a heterogeneous network.
  • the network resource scheduler calculates an interference bandwidth factor of the idle subchannel used by the base station according to the interference strength between the base stations, where the network resource scheduler compares each The base station uses the interference bandwidth factor when the same idle subchannel is used, and allocates an idle subchannel to each base station according to the comparison result.
  • the interference factor is considered, and the channel allocation with reasonable low interference is realized, which solves the problem that the existing resource allocation mode does not meet the actual demand.
  • FIG. 1 is a schematic diagram of an application scenario according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a multi-granularity partitioning of a spectrum resource in a k-type access network according to Embodiment 1 of the present invention
  • FIG. 4 is a schematic diagram of a principle of interference mapping based on graph theory in Embodiment 1 of the present invention
  • FIG. 5 is a flowchart of an algorithm for generating an interference-free channel allocation matrix according to Embodiment 1 of the present invention
  • FIG. 6 is a schematic diagram of a multi-granularity partitioning model for spectrum resources in three types of access networks according to Embodiment 2 of the present invention
  • FIG. 7 is a schematic diagram of the amount of network resources used by the system and the amount of communication resources obtained by the user under different spectrum width conditions to be allocated according to the second embodiment of the present invention.
  • FIG. 8 is a schematic diagram of ratios of users who do not meet communication requirements under different spectrum widths to be allocated according to Embodiment 2 of the present invention.
  • FIG. 9 is a schematic diagram of usage efficiency of frequency band resources under different spectrum width conditions to be allocated according to Embodiment 2 of the present invention
  • FIG. 10 is a schematic diagram of a principle of multi-granularity cross-division of a spectrum resource according to Embodiment 3 of the present invention
  • FIG. 11 is a flowchart of a method for allocating a spectrum resource of a heterogeneous network according to Embodiment 4 of the present invention
  • FIG. 12 is a schematic structural diagram of a heterogeneous network spectrum resource allocation apparatus according to Embodiment 5 of the present invention.
  • the existing heterogeneous network spectrum allocation algorithms mostly only divide the frequency bands into the same bandwidth for allocation, and do not consider the actual frequency band difference usage of different types of base stations in the actual heterogeneous network; when judging the interference between different base stations, the simple ⁇ Using the ⁇ 0-1 ⁇ judgment model, the mutual interference strength between different base stations cannot be clearly and accurately expressed. Moreover, the influence of the base station when using a certain channel resource on the remaining base stations is not considered in the spectrum allocation, and the network channel cannot be optimally realized. Management scheduling of resources.
  • an embodiment of the present invention provides a method and device for allocating a heterogeneous network spectrum resource.
  • Embodiment 1 This example uses the network benefit maximization as the objective function for spectrum allocation.
  • the embodiment provides a method for allocating a heterogeneous network spectrum resource.
  • the application scenario is as shown in FIG. 1.
  • Different types of macro base stations and low power node base stations having different service radii are alternately arranged in the same area, and the shared core network is shared.
  • the heterogeneous network multi-granularity spectrum resource is scheduled based on user demand feedback.
  • the specific process is as shown in FIG. 2, including: Step 201: The base station reports the base station location information, the transmit power, the channel requirement, and the base station type to the network resource scheduling through the control channel. Device.
  • Step 202 The network resource scheduler calculates the total number of available channels, calculates available channels of the same type of base station, and numbers them.
  • the frequency bandwidth of the network that is, the communication provided by the access network
  • FIG. 3 is a schematic diagram showing a corresponding channel set when there are f types of base stations.
  • Step 203 The network resource scheduler calculates an interference relationship between different types of base stations according to the actual communication scenario, and maps the actual network scenario to a network interference coordination map.
  • the average channel quality of the base station z coverage area under the influence of base station interference is ⁇ J ⁇ :
  • the user receives the transmitted signal power of the base station and the coordinates at the coordinates.
  • W represents the distance between the user and the base station, and ignores the background noise:
  • the transmission power of the base station and the base station j respectively; the dish represents the base station, the closest distance of the user in the cell in the cell to the base station, and R ' represents the coverage radius of the base station 1.
  • the matrix represents a normalized value of the base station's interference strength to the base station, where ⁇ 7 ⁇ ⁇ represents the minimum signal to interference and noise ratio that allows the user in the base station 1 to communicate normally, and indicates that the user in the base station 1 uses the corresponding modulation and coding scheme.
  • the actual network topology map is mapped into a network interference coordination map that can specifically reflect the downlink interference in the network, as shown in FIG. 4 .
  • the channel assignment of each base station is equivalent to the coloring problem of the graph vertex, where the vertex represents the base station, the color represents the frequency or channel, the connection between the vertices represents the interference between the two base stations, and the interference strength is represented by ⁇ .
  • Step 204 The network resource scheduler calculates an interference bandwidth factor of the base station using a certain idle subchannel according to the idle condition of the subchannel and the interference strength between the base stations.
  • an available channel indication matrix 1 ⁇ and a channel interference indication matrix I are generated.
  • Step 205 The network resource scheduler compares the interference bandwidth factor of each channel by using the same channel according to the channel requirement reported by each base station, and generates an interference-free channel allocation matrix in one allocation period.
  • This example uses a graph theory list to dye a theoretical model to assign a channel to each vertex in the graph.
  • the specific algorithm flow is shown in Figure 5.
  • Each base station reports channel requirements
  • the spectrum resource benefit can be flexibly defined according to actual needs. For example, if the heterogeneous network requires the total system throughput to be improved, the spectrum resource benefit can be specified as It uses the actual throughput of the spectrum resources.
  • the network function is maximized as the objective function for spectrum allocation.
  • the relationship between the final base station I and the channel m is indicated.
  • the distribution matrix must satisfy the conditions of the interference constraint matrix, that is, the following conditions are met:
  • Step 205.2 Select the base station with the smallest interference bandwidth factor ⁇ to determine whether the number of base stations with the smallest interference bandwidth factor is 1. If so, the channel is assigned to the base station; if not, the network spectrum requirements of the base stations are compared for the same.
  • the interference strength matrix CC and the channel interference indication matrix I all the channels w of other base stations in the available channel indication matrix L that interfere with the base station z or other channels overlapping with the channel w are deleted, and the available channel matrix L is updated.
  • Embodiment 2 Embodiment considers three types of base stations
  • the heterogeneous network model is determined as a three-layer heterogeneous network composed of three types of low-power base stations: Famto, Pico, and Relay, which are layered and distributed in an area of 1000 m ⁇ 1000 m, and the total bandwidth of the system to be allocated provided by the shared core network is shared.
  • SPf toto/ 20MHz.
  • the network multipath transmission model conforms to the Rayleigh distribution.
  • An embodiment of the present invention provides a method for allocating a spectrum resource of a heterogeneous network.
  • the process for completing resource allocation by using the method is as shown in FIG. 2, and includes:
  • Step 201 The base station reports the base station location information, the transmit power, the channel requirement, and the base station type to the network resource scheduler through the control channel.
  • the bandwidth of the three access network communication services is 1.4 MHz, 3 MHz, and 5 MHz, respectively.
  • the network coverage radii are 100m, 50m and 30m respectively.
  • Step 202 The network resource scheduler calculates the total number of idle subchannels, calculates available channels of the same type of base station, and numbers them.
  • the idle subchannel is used as an available channel.
  • N TN k
  • Figure 6 shows a schematic diagram of the corresponding channel set when there are three types of access networks.
  • Step 203 The network resource scheduler calculates the interference strength between different types of base stations according to the actual communication scenario, according to the base station transmit power, the base station location, the base station coverage range, the user location, the minimum signal to interference and noise ratio of the user communication, and the maximum signal to interference and noise ratio. , obtaining a interference strength matrix CC of ⁇ xN dimensions, and The actual network scenario is mapped to the network interference coordination map according to the CC, as shown in FIG.
  • the vertices in the figure represent base stations, and the connections between vertices represent interference between base stations.
  • the weight of the connection is the interference strength value.
  • Step 204 The network resource scheduler generates an available channel indication matrix according to the actual scenario of the network.
  • IB Hcc l ⁇ I B
  • Step 205 The network resource scheduler according to the channel requirement reported by each base station
  • the present invention divides the spectrum resources in the actual communication network into channels for management, with the channel as the minimum allocation unit, and the elements in the spectrum requirement set R satisfy G ⁇ ⁇ M uses the graph theory list dyeing theory model in Example 1, and allocates channels for each vertex in the graph with the network benefit maximization as the objective function.
  • FIG. 7 is a comparison of the total amount of available bandwidth used by the embodiment of the present invention with the traditional greedy algorithm and the total amount of actual communication bandwidth obtained by the access network when different bandwidths are to be allocated.
  • FIG. 8 is a simulation analysis of the proportion of users in the embodiment of the present invention and the conventional greedy algorithm that do not meet the communication requirements when different bandwidths are to be allocated. As can be seen from Fig. 8, the embodiment of the present invention can satisfy the communication needs of more users.
  • FIG. 9 is a simulation comparison of the frequency usage efficiency of the embodiment of the present invention and the traditional greedy algorithm when different bandwidths are to be allocated. As can be seen from Fig. 9, the embodiment of the present invention can obtain a higher frequency usage rate.
  • Embodiment 3 This embodiment considers that the channel is not called.
  • a heterogeneous network spectrum resource allocation method for heterogeneous network multi-granularity spectrum resources based on user demand feedback is provided, and the difference from the second embodiment is: when generating a channel number, all channel calculation numbers are from The left end of the band begins to be divided. If the available bandwidth is not an integer multiple of the service bandwidth, the right-most band of the available bandwidth cannot be called (as shown in the shaded area in Figure 6), resulting in inefficient use and waste of the band. In this example, the two ends of the band to be allocated are used. The cross number is used to divide the channel as shown in FIG. The shaded area in the figure shows the bandwidth remaining in the channelization of a peer-to-peer network. After the bandwidth to be allocated has been divided by the channel number, it can be concluded that the frequency division does not appear completely unused in Figure 6. Resources.
  • Embodiment 4 The embodiment of the present invention provides a method for allocating a spectrum resource of a heterogeneous network.
  • the process for performing resource allocation by using the method is as shown in FIG. 11, and the method includes: Step 1101: The network resource scheduler according to the base station reported by the base station Location information, transmit power, channel demand, base station type, calculate the total number of idle subchannels.
  • Step 1102 Calculate and number the total number of idle subchannels of the same type of base station, and use the free subchannel as an available channel, and store the available channel list.
  • This step specifically includes:
  • A is the base station type number
  • is the communication service bandwidth of the type A base station
  • is the number of base stations participating in the system communication service in the network; for each base station type Creating a corresponding available channel list, and storing the available channels corresponding to the base station type in the available channel list.
  • Step 1103 The network resource scheduler calculates the interference strength between different types of base stations according to the actual communication scenario, and maps the actual network scenario to a network interference coordination map.
  • This step specifically includes:
  • Step 1104 The network resource scheduler calculates an interference bandwidth factor of the idle subchannel used by the base station according to the interference strength between the base stations.
  • This step specifically includes:
  • the available channel indication matrix L is generated according to the following expression:
  • IB ce ce l.
  • I B Step 1105 The network resource scheduler compares an interference bandwidth factor when each base station uses the same idle subchannel, and allocates an idle subchannel to each base station according to the comparison result.
  • This step specifically includes: Taking an available channel from the list of available channels, traversing the base station that can use the available channel, and comparing the interference bandwidth factor ⁇ ' generated when each base station uses the channel: 1 , 2 ..., ⁇ ), N is The number of base stations using the available channel, m is the number of the available channel, and i is the number of the base station;
  • the available channel is allocated to the base station with the smallest interference bandwidth factor
  • the network spectrum requirements of the base stations with the smallest interference bandwidth factors are compared.
  • the available channels are allocated to the base stations in which the network spectrum requirements are the smallest.
  • the channel interference indication matrix I deleting channels of other base stations in the available channel indication matrix L that interfere with the base station allocated to the available channel, or other channels overlapping the available channels, Update the available channel matrix L.
  • an available channel is selected from the list of available channels, The channel can be allocated.
  • the embodiment of the present invention further provides a heterogeneous network spectrum resource allocation device, and the structure thereof is as shown in FIG. 12, including:
  • the interference bandwidth factor calculation module 1201 is configured to calculate, according to the interference strength between the base stations, an interference bandwidth factor of the base station using the idle subchannel;
  • the allocating module 1202 is configured to compare the interference bandwidth factor when each of the base stations uses the same idle subchannel, and allocate an idle subchannel to each base station according to the comparison result.
  • the device further includes:
  • the idle subchannel total calculation module 1203 is configured to calculate the total number of idle subchannels according to the location information reported by the base station, the base station type information, and the channel requirement information;
  • the classifying available channel calculation module 1204 is configured to separately calculate and number the free sub-channels of the same type of base station, and store the free sub-channels as available channels in the form of available channel lists;
  • the interference strength calculation module 1205 is configured to calculate the interference strength between different types of base stations according to the actual communication scenario, and map the actual network scenario to the network interference coordination map.
  • the above heterogeneous network spectrum resource allocation device can be integrated into the network resource scheduler, and the network resource scheduler performs the corresponding functions.
  • the network resource scheduler performs the corresponding functions.
  • An embodiment of the present invention provides a method and an apparatus for allocating a spectrum resource of a heterogeneous network.
  • the network resource scheduler calculates an interference bandwidth factor of the idle subchannel used by the base station according to the interference strength between the base stations, where the network resource scheduler compares each The base station uses the interference bandwidth factor when the same idle subchannel is used, and allocates an idle subchannel to each base station according to the comparison result.
  • the interference factor is considered, and the channel allocation with reasonable low interference is realized, which solves the problem that the existing resource allocation mode does not meet the actual demand.
  • all or part of the steps of the foregoing embodiments may also be implemented by using an integrated circuit. These steps may be separately fabricated into individual integrated circuit modules, or multiple modules or steps may be fabricated into a single integrated circuit module. achieve.
  • the invention is not limited to any particular combination of hardware and software.
  • Each of the devices/function modules/functional units in the above embodiments may be implemented by a general-purpose computing device, which may be centralized on a single computing device or distributed over a network of multiple computing devices.
  • Each of the devices/function modules/functional units in the above embodiments can be stored in a computer readable storage medium when implemented in the form of a software function module and sold or used as a stand-alone product.
  • the above mentioned computer readable storage medium may be a read only memory, a magnetic disk or an optical disk or the like.
  • the embodiments of the present invention provide a method and device for allocating heterogeneous network spectrum resources, which relate to the field of mobile communications, and solve the problem that existing resource allocation methods do not meet actual needs.
  • the method includes: the network resource scheduler calculates an interference bandwidth factor of the base station using the idle subchannel according to the interference strength between the base stations; and the network resource scheduler compares the interference bandwidth factor when each base station uses the same idle subchannel, according to the comparison As a result, each base station is allocated an idle subchannel, which is suitable for heterogeneous networks, and achieves reasonable and low interference channel allocation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供了一种异构网络频谱资源分配方法和装置,涉及移动通信领域,解决现有资源分配方式不适应实际需求的问题。该方法包括:网络资源调度器根据基站间的干扰强度,计算基站使用空闲子信道的干扰带宽因子;所述网络资源调度器比较所述每个基站使用同一空闲子信道时的干扰带宽因子,根据比较结果为每个基站分配空闲子信道。本发明实施例提供的技术方案适用于异构网络,实现了合理低干扰的信道分配。

Description

异构网络频谱资源分配方法和装置
技术领域
本发明涉及移动通信领域, 尤其涉及一种异构网络频谱资源分配方法和 装置。 背景技术
在宽带无线通信系统中, 在频谱资源受限的条件下, 为了满足不断增长 的数据业务和用户容量的需求, 在传统蜂窝网中引入了大量的微微基站和毫 微微基站等低功率节点, 形成了由宏基站、 微基站、 微微基站和中继节点等 多种基站组成的多层异构网络环境。
为了提高整个系统的频谱利用效率, 异构网中低功率基站和宏基站将使 用时间、 空间和频率复用技术。 由于宏基站和低功率基站的覆盖区域相互重 叠, 低功率节点基站之间也可能相互重叠, 异构网中将存在复杂的同层和跨 层干扰, 该干扰会严重影响整个网络的稳定运行, 需要通过异构网络中每个 网元之间资源的合理分配来规避。 然而, 由于异构网结构复杂, 网元数量较 多, 资源优化算法的复杂度非常高, 以至于艮难获得最优解, 因此寻找一种 简单有效的异构网资源分配算法, 实现网元之间干扰协调, 提高网络吞吐量, 成为目前需要迫切解决的问题。 发明内容
现有的异构网频谱分配算法大多仅仅将频段粗略的划分为相同带宽进行 分配, 未考虑实际异构网络中不同类型基站的实际频带差异使用情况; 在判 断不同基站之间干扰时, 简单的釆用 {0-1 }判断模型, 不能清楚准确的表述不 同基站间的相互干扰强度; 而且在频谱分配时未考虑基站使用某信道资源时 对其余基站的影响, 不能够最佳的实现网络信道资源的管理调度。
本发明实施例提供了一种异构网络频谱资源分配方法和装置, 解决了现 有资源分配方式不适应实际需求的问题。
一种异构网络频谱资源分配方法, 包括:
网络资源调度器根据基站间的干扰强度, 计算基站使用空闲子信道的干 扰带宽因子;
所述网络资源调度器比较所述每个基站使用同一空闲子信道时的干扰带 宽因子, 根据比较结果为每个基站分配空闲子信道。
可选地, 所述网络资源调度器根据基站间的干扰强度, 计算基站使用空 闲子信道的干扰带宽因子的步骤之前, 还包括:
所述网络资源调度器根据基站上报的基站位置信息、 发射功率、 信道需 求、 基站类型, 计算空闲子信道总数;
分别计算同一类型基站的空闲子信道总数并进行编号, 将所述空闲子信 道作为可用信道, 以可用信道列表的形式存储;
所述网络资源调度器根据实际通信场景, 计算不同类型基站之间的干扰 强度, 将实际的网络场景映射为网络干扰协调图。
可选地, 分别计算同一类型基站的空闲子信道总数并进行编号, 将所述 空闲子信道作为可用信道, 以可用信道列表的形式存储包括:
根据以下表达式计算不同类型基站的通信业务带宽和可用信道数 M
Figure imgf000004_0001
其中, L'」表示向下取整, β^。ία/为共享总带宽, 为基站类型编号, 为 第 种类型基站的通信业务带宽; 为每个基站类型创建一对应的可用信道列表, 在所述可用信道列表中存 储所述该基站类型对应的可用信道。
可选地, 所述网络资源调度器根据实际通信场景, 计算不同类型基站之 间的干扰强度, 将实际的网络场景映射为网络干扰协调图包括:
计算受基站 干扰影响下的基站 ζ覆盖区域的平均信道质量7 ^^^Α) 根据以下表达式计算干扰强度矩阵:
RACS{ijA)>SINRmax
1
CC= cc. cc —— [SINR^ -RACS, SINRmm<RACS{i]A)<SIN^
SINR——SINR—
RACS{i]Ai)<SINRmm
其中^^皿分表示可使基站 , 中用户正常通信的最小信干噪比阔值, 表示基站 I中用户釆用相应调制编码方案时最大的信干噪比;
根据基站间干扰关系, 将实际的网络拓朴图映射成能够具体反映网络中 下行链路干扰的网络干扰协调图, 每个基站的信道分配等效为图顶点的着色 问题, 其中顶点代表基站, 颜色代表频率或信道, 顶点之间的连线代表两个 基站之间存在干扰, 且干扰强度用 来表示; =1,2,...,N; N为网络中参 与系统通信服务的基站总数。
可选地, 所述网络资源调度器根据基站间的干扰强度, 计算基站使用空 闲子信道的干扰带宽因子包括:
根据以下表达式生成可用信道指示矩阵 L:
Figure imgf000005_0001
表示基站,是否可以使用信道 w, 在基站,可以用信道 w时 ^:1, 在基 站 i不可以用信道 m时 =°;
根据以下表达式生成信道干扰指示矩阵 I:
I― { | e {o,i}}MyM 其中, ,.^.表示信道 n与信道 m之间的重叠关系, 若 1=1则表示信道 n 与信道 m相互重叠,此时信道 n和信道 m不能同时被分配给具有强干扰关系 的两个基站, 若 , = 0则表示信道 n与信道 m不相互重叠, 此时信道 n和信 道能够同时被分配给具有强干扰关系的两个基站;
根据以下表达式计算干扰带宽因子:
IB =ΥΥ cel. I B
; 其中, m, n=l,2, ...,M;M为可用信道总数, 为 信道 m的带宽。 可选地, 所述网络资源调度器比较所述每个基站使用同一空闲子信道时 的干扰带宽因子, 根据比较结果为每个基站分配空闲子信道, 包括:
从所述可用信道列表中任取一可用信道,遍历可使用该可用信道的基站, 比较每个基站使用该信道时产生的干扰带宽因子 ^^ ( = 1'2- ^) , N为可使用 该可用信道的基站数量, m为该可用信道的编号, i为基站的编号;
选择产生的干扰带宽因子 最小的基站 ,判断干扰带宽因子最小的基站 个数是否为 1 ;
在干扰带宽因子最小的基站个数为 1时, 将所述可用信道分配给该干扰 带宽因子最小的基站。
可选地,选择产生的干扰带宽因子 ^最小的基站, 判断干扰带宽因子最 小的基站个数是否为 1的步骤之后, 还包括: 在存在多个干扰带宽因子最小的基站时, 则比较所述多个干扰带宽因子 最小的基站的网络频谱需求是否相同;
在所述多个干扰带宽因子最小的基站的网络频谱需求相同时, 从所述多 个干扰带宽因子最小的基站中随机选择一个分配所述可用信道。
可选地, 在存在多个干扰带宽因子最小的基站时, 则比较所述多个干扰 带宽因子最小的基站的网络频谱需求是否相同的步骤之后, 还包括:
在所述多个干扰带宽因子最小的基站的网络频谱需求不同时, 将所述可 用信道分配给其中网络频谱需求最小的基站。
可选地, 所述网络资源调度器根据比较结果为每个基站分配空闲子信道 还包括:
根据干扰强度矩阵 CC、信道干扰指示矩阵 I ,删除可用信道指示矩阵 L中 所有与分配到所述可用信道的基站干扰的其他基站的信道或与所述可用信道 重叠的其它信道, 更新可用信道矩阵 L。 可选地, 所述网络资源调度器根据比较结果为每个基站分配空闲子信道 还包括: 在所述可用信道分配给一基站后, 令 ^)— 1 , 更新信道需求矩阵
R = ,/ = 1,2'''N}中该基站的信道需求, 1为基站编号; 判断 是否等于零;
在 等于零时判定所述基站的信道需求已满足, 无需对其再分配信道, 删除干扰图中的 ,顶点及所有与 ,顶点相连的线段, 更新干扰带宽因子矩阵 IB。
可选地, 所述网络资源调度器根据比较结果为每个基站分配空闲子信道 还包括:
判断 R是否为全零矩阵;
在 R为全零矩阵时, 分配流程结束, 输出无干扰分配矩阵 S。
可选地, 所述判断 R是否为全零矩阵的步骤之后, 还包括:
在 R不是全零矩阵时, 判断 L是否为全零矩阵;
在 L是全零矩阵时, 分配流程结束, 输出无干扰分配矩阵 S。
可选地, 在 R不是全零矩阵时, 判断 L是否为全零矩阵的步骤之后, 还 包括:
在 L不是全零矩阵时, 从所述可用信道列表中再选择一可用信道, 对该 可用信道进行分配。
本发明实施例还提供一种异构网络频谱资源分配装置, 包括:
干扰带宽因子计算模块, 设置为根据基站间的干扰强度, 计算基站使用 空闲子信道的干扰带宽因子;
分配模块, 设置为比较所述每个基站使用同一空闲子信道时的干扰带宽 因子, 根据比较结果为每个基站分配空闲子信道。
可选地, 该装置还包括:
空闲子信道总数计算模块, 设置为根据基站上报的位置信息、 基站类型 信息和信道需求信息, 计算空闲子信道总数;
分类可用信道计算模块, 设置为分别计算同一类型基站的空闲子信道总 数并进行编号, 将所述空闲子信道作为可用信道, 以可用信道列表的形式存 储;
干扰强度计算模块, 设置为根据实际通信场景, 计算不同类型基站之间 的干扰强度, 将实际的网络场景映射为网络干扰协调图。
本发明实施例提供了一种异构网络频谱资源分配方法和装置, 网络资源 调度器根据基站间的干扰强度, 计算基站使用空闲子信道的干扰带宽因子, 所述网络资源调度器比较所述每个基站使用同一空闲子信道时的干扰带宽因 子, 根据比较结果为每个基站分配空闲子信道。 在为基站分配信道时考虑了 干扰因素, 实现了合理低干扰的信道分配, 解决了现有资源分配方式不适应 实际需求的问题。
附图概述
图 1为本发明实施例的应用场景示意图;
图 2为本发明实施例一的算法流程图;
图 3为本发明实施例一中 k种类型接入网下的频谱资源多粒度划分模型; 图 4为本发明实施例一中基于图论的干扰映射原理示意图;
图 5为本发明实施例一中生成无干扰信道分配矩阵的算法流程图; 图 6为本发明实施例二中三种类型接入网下的频谱资源多粒度划分模型 示意图;
图 7为本发明实施例二中不同的待分配频谱宽度条件下系统使用的网络 资源量和用户获得的通信资源量示意图;
图 8 为本发明实施例二中不同的待分配频谱宽度条件下未满足通信需求 的用户比率示意图;
图 9 为本发明实施例二中不同的待分配频谱宽度条件下频段资源使用效 率示意图; 图 10为本发明实例三中频谱资源多粒度交叉划分的原理示意图; 图 11 为本发明实施例四提供的一种异构网络频谱资源分配方法的流程 图;
图 12 为本发明实施例五提供的一种异构网络频谱资源分配装置的结构 示意图。
本发明的较佳实施方式
现有的异构网频谱分配算法大多仅仅将频段粗略的划分为相同带宽进行 分配, 未考虑实际异构网络中不同类型基站的实际频带差异使用情况; 在判 断不同基站之间干扰时, 简单的釆用 {0-1 }判断模型, 不能清楚准确的表述不 同基站间的相互干扰强度; 而且在频谱分配时未考虑基站使用某信道资源时 对其余基站的影响, 不能够最佳的实现网络信道资源的管理调度。
为了解决上述问题, 本发明实施例提供了一种异构网络频谱资源分配方 法和装置。 下文中将结合附图对本发明的实施例进行详细说明。 需要说明的 是, 在不冲突的情况下, 本申请中的实施例及实施例中的特征可以相互任意 组合。
实施例一: 该实例以网络效益最大化为目标函数进行频谱分配
本实施例提供一种异构网络频谱资源分配方法, 应用场景如图 1所示, 具有不同服务半径的 f种不同类型的宏基站和低功率节点基站交互重叠布置 在同一区域内, 共享核心网提供总带宽为 BPftoto /的频谱资源。 基于用户需求 反馈的异构网络多粒度频谱资源进行调度, 具体流程如图 2所示, 包括: : 步骤 201 , 基站通过控制信道上报基站位置信息、 发射功率、 信道需求、 基站类型至网络资源调度器。
步骤 202 , 网络资源调度器计算可用信道总数, 计算同一类型基站的可 用信道并进行编号。
第 ^^ = 1,2·· )种类型的基站个数为 Nk , 则系统中有频谱需求的基站总 ^ 对每个基站分别用 z进行编号 (/ = 12·· ) 调度器计算第 种类型基站的可用信道数 ΎΒΔ( L'」表示向下取 整) 其中 为第 种类型接入网的频语粒子带宽, 即该接入网提供的通信
K
M = YMk
业务带宽。 信道总数为 , 每一个信道用一个整数 1≤/¾≤1 )进行编 号。 第 种类型基站使用的信道集合用 表示, 其中
Figure imgf000010_0001
,
Figure imgf000010_0002
j 。 图 3给出了存在 f种类型基站时 对应的信道集合示意图。 步骤 203, 网络资源调度器根据实际通信场景, 计算不同类型基站之间 的干扰关系, 将实际的网络场景映射为网络干扰协调图。
假设基站 I的的坐标为(QQ) , 基站 j的的坐标为( W , 基站 I的用户坐标 为(x, , 表示基站,覆盖范围的面积, ^。为网络背景噪声功率, 则受基 站 干扰影响下的基站 z覆盖区域的平均信道质量 ^^J^为:
M)
JJ SINR (x,y)dxdy
= H )
"
Figure imgf000010_0003
其中, 、 分别为用户在坐标 处接收到基站,和 的发 射信号功率。
若路径损耗模型釆用城市空间传播公式128 + 37·6χ1°§ι , W表示用 户与基站的距离, 且忽略背景噪声得: R
Figure imgf000011_0001
式中 、 分别为基站 ,和基站 j的发射功率; 皿表示基站 ,所在小区 中用户距离基站的最近距离, R'表示基站 I的覆盖范围半径。
CC
Figure imgf000011_0002
该矩阵表示基站 对基站 ι干扰强度的归一化值,其中 ύ 7ΥΛ^分表示可使 基站 I中用户正常通信的最小信干噪比阔值, 表示基站 I中用户釆用 相应调制编码方案时最大的信干噪。 若 ' = 1则基站,与 有强干扰关系, 两 接入网不能使用同一频段或者具有干扰关系的频段。
根据基站间干扰关系, 将实际的网络拓朴图映射成能够具体反映网络中 下行链路干扰的网络干扰协调图, 如图 4所示。 每个基站的信道分配等效为 图顶点的着色问题, 其中顶点代表基站, 颜色代表频率或信道, 顶点之间的 连线代表两个基站之间存在干扰, 且干扰强度用 ^来表示。
步骤 204, 网络资源调度器根据子信道空闲情况以及基站间的干扰强度, 计算基站使用某一空闲子信道的干扰带宽因子。
根据实际网络场景, 生成可用信道指示矩阵1^、 信道干扰指示矩阵 I。
( 1 )可用信道指示矩阵 L = {He {Q'1}}w>^ , 表示基站 ,是否可以使用信 道 w。 如果基站 可以用信道 w, 那么 ^=1, 如果基站 不可以用信道 ,
(2)信道干扰指示矩阵 I = { J™ e {()'1}}M>^为信道干扰矩阵, 表示信道《 与信道 w的重叠关系。 如果™=1则说明信道《与 w相互重叠, 则其不能同 时被分配给具有干扰关系的两个基站。
Figure imgf000012_0001
其中 为信道 的带宽。 步骤 205, 网络资源调度器根据每个基站上报的信道需求, 比较每个基 站使用同一信道的干扰带宽因子, 在一个分配周期内生成无干扰信道分配矩 阵。
本实例使用图论列表染色理论模型, 为图中每个个顶点分配信道。 具体 算法流程如图 5所示。
每个基站上报信道需求
Figure imgf000012_0002
为频谱资源效益集合, 其中 ^"表示基站 吏用信道 的信道效益。 此外, 频 谱资源效益可根据实际需求灵活定义, 例如若异构网络要求实现系统总吞吐 量提高, 则可规定频谱资源效益为其使用频谱资源的实际吞吐量。
本实例以网络效益最大化为目标函数进行频谱分配, 其目标函数为: 賺 Σ∑Α ' 其中 ^表示最终基站''与信道 的使用关系。 如果 =1则意味着信道 m 被分配给基站 I使用。
为无干扰分配矩阵, 表示最终基站 I与信道 m的使 用关系。 分配矩阵必须满足干扰约束矩阵的条件, 即满足如下条件:
\/i,j = l,...,N;m,n = l,...,M 在该目标函数下 , 频语分配具体过程如下:
(步骤 205.1 )
从可用信道列表中任取一个信道 w , 遍历可使用该信道的基站, 比较每 个基站使用该信道时产生的干扰带宽因子 (ζ' = 1, 2···,Λ 。
(步骤 205.2 ) 选择产生的干扰带宽因子 ^最小的基站,判断产生干扰带宽因子最小的 基站个数是否为 1。 若是, 就将信道 分配给该基站 ζ; 若不是, 则比较这些 基站的网络频谱需求是否相同。
(步骤 205.3 )
比较基站的网络频谱需求, 若相同, 则随机分配给其中一个基站; 若不 相同, 则将该信道分配给网络频谱需求最小的基站 z。
(步骤 205.4 )
根据干扰强度矩阵 CC、信道干扰指示矩阵 I ,删除可用信道指示矩阵 L中 所有与基站 z干扰的其他基站的信道 w或与信道 w重叠的其它信道, 更新可 用信道矩阵 L。
(步骤 205.5 )
信道 分配给该基站 z后, 令 (0- 更新信道需求矩阵 R = ^ = 1'H} 中基站,的信道需求。
判断 是否等于零, 若是, 说明基站,的信道需求已满足, 无需对其再分 配信道, 删除干扰图中的,顶点及所有与 ,顶点相连的线段, 即干扰强度矩阵 CC的,行,列清零, 更新干扰带宽因子矩阵 IB。
(步骤 205.6 )
判断 R是否为全零矩阵。 若是, 分配流程结束, 输出无干扰分配矩阵 s ; 若不是, 运行(步骤 205.7 ) 。 (步骤 205.7 )
判断 L是否为全零矩阵。 若是, 分配流程结束, 输出无干扰分配矩阵 S ; 若不是, 继续运行(步骤 105.1 ) 。 实施例二: 实施例考虑 3种类型基站
本实施例将异构网络模型确定为由 Famto、 Pico和 Relay三种类型低功率 基站组成的三层异构网络, 层叠分布在 1000m X 1000m的区域中, 共用核心 网提供的待分配系统总带宽 SPftoto/=20MHz。 网络多径传输模型符合瑞利分 布。
本发明实施例提供了一种异构网络频谱资源分配方法, 使用该方法完成 资源分配的流程如图 2所示, 包括:
步骤 201, 基站通过控制信道上报基站位置信息、 发射功率、 信道需求、 基站类型至网络资源调度器。
三种接入网通信业务带宽 为分别为 1.4 MHz、 3 MHz, 5MHz。 网络覆 盖半径 分别为 100m、 50m和 30m。
步骤 202, 网络资源调度器计算空闲子信道总数, 计算同一类型基站的 可用信道并进行编号;
本步骤中, 以空闲子信道作为可用信道。 第 k (k=l, 2, 3)种类型的接 入网中参与系统通信服务的基站个数为 Nk,由于 Famto基站的随机部署特点,
N = TNk
^值随机生成。 据此计算系统中有频谱需求的基站总数为 , 然后对 每个具有频谱需求的基站用数字,进行编号 (z=l, ...... , N) 。 计算第 A
Figure imgf000014_0001
例中 M=l4 ; M2=6 ; M3=4。 信道总数为 。 每一个信道用一个整 数 (l≤ ≤24)进行编号, 3 种类型基站使用的信道集合为 ' A' , 其中 ={1,2,…; 14}; ^2={15,16,...,20}; ^={21,22,23,24^ 图 6给出了存在 3种类型接 入网时对应的信道集合示意图。
步骤 203, 网络资源调度器根据实际通信场景, 根据基站发射功率、 基 站位置、 基站覆盖范围、 用户位置、 用户通信的最小信干噪比和最大信干噪 比计算不同类型基站之间的干扰强度, 得到 ^xN维的干扰强度矩阵 CC, 并 根据 CC将实际的网络场景映射为网络干扰协调图, 如图 4所示。 图中顶点代 表基站, 顶点间的连线代表基站间的干扰, 连线的权重为干扰强度值。
步骤 204 , 网络资源调度器根据网络实际场景生成可用信道指示矩阵
[LLM、 信道干扰矩阵 WM ; 结合步骤 103得到的干扰强度矩阵 [EELxw , 计 算得到干扰带宽因子矩阵 [ ,矩阵中的第 z行第 m列元素表示基站 z使用
N M
IB = Hcc l · I B
信道 w后系统的带宽损失, 为 環 ™ , 其中 为信道 w的带宽。 步骤 205 , 网络资源调度器根据每个基站上报的信道需求
Κ={η,ι = \, 2,..., Ν] ^ 本发明将实际通信网络中频谱资源划分为信道进行管理, 以信道为最小分配单元, 频谱需求集合 R 中元素 满足 G≤ ≤M 使用实例 一中图论列表染色理论模型, 以网络效益最大化为目标函数为图中每个个顶 点分配信道。
图 7为不同待分配带宽时, 本发明实施例与传统贪婪算法在系统使用的 可用带宽总量和接入网获得的实际通信带宽总量的比较。 由图 7可知, 本发 图 8为不同待分配带宽时, 本发明实施例与传统贪婪算法中未满足通信 需求的用户比例的仿真分析。 从图 8可知, 本发明实施例可满足更多的用户 的通信需求。
图 9为不同待分配带宽时, 本发明实施例与传统贪婪算法中频语使用效 率的仿真比较。 由图 9可知, 本发明实施例可获得更高的频语使用率。
实施例三: 本实施例考虑信道存在未被调用的情况
本实施例中提供一种基于用户需求反馈的异构网络多粒度频谱资源的异 构网络频谱资源分配方法, 其与实施例二的区别在于: 在生成信道编号时, 所有信道计算编号都是从频段左端开始划分, 如果可用带宽不是业务带宽的 整数倍, 会出现可用带宽最右端频段不能被调用的情况(如图 6中阴影区所 示) , 导致使用效率过低, 造成频段浪费。 本实例中釆用待分配频段两端交 叉编号进行划分信道, 如附图 10中所示。 图中阴影区所示为在一次同层网络 信道化分中, 待分配带宽划分过信道编号后剩余的带宽, 可以得出此种划分 方式不会出现图 6中所示完全不被利用的频段资源。
实施例四: 本发明实施例提供了一种异构网络频谱资源分配方法, 使用该方法完成 资源分配的流程如图 11所示, 包括: 步骤 1101、 所述网络资源调度器根据基站上报的基站位置信息、 发射功 率、 信道需求、 基站类型, 计算空闲子信道总数。
步骤 1102、 分别计算同一类型基站的空闲子信道总数并进行编号, 将所 述空闲子信道作为可用信道, 以可用信道列表的形式存储;
本步骤具体包括:
根据以下表达式计算不同类型基站的通信业务带宽和可用信道数1 :
Figure imgf000016_0001
其中, 」表示向下取整, 为共享总带宽, A为基站类型编号, ^为 第 A种类型基站的通信业务带宽, ^为网络中参与系统通信服务的基站个数; 为每个基站类型创建一对应的可用信道列表, 在所述可用信道列表中存 储所述该基站类型对应的可用信道。
步骤 1103、 所述网络资源调度器根据实际通信场景, 计算不同类型基站 之间的干扰强度, 将实际的网络场景映射为网络干扰协调图;
本步骤具体包括:
计算受基站 J干扰影响下的基站 I覆盖区域的平均信道质量 7 CS( Ai); 根据以下表达式计算干扰强度矩阵:
RACS{i j ) > SINRmax
CC RACS, SINRmm<RACS{i j A) < SINRmax
RACS(i j Ai) < SINRmm
Figure imgf000016_0002
其中 ^^皿分表示可使基站 , 中用户正常通信的最小信干噪比阔值, WWmax表示基站 ,中用户釆用相应调制编码方案时最大的信干噪; 根据基站间干扰关系, 将实际的网络拓朴图映射成能够具体反映网络中 下行链路干扰的网络干扰协调图, 每个基站的信道分配等效为图顶点的着色 问题, 如图 4所示, 其中顶点代表基站, 颜色代表频率或信道, 顶点之间的 连线代表两个基站之间存在干扰, 且干扰强度用 cc来表示。 步骤 1104、 网络资源调度器根据基站间的干扰强度, 计算基站使用空闲 子信道的干扰带宽因子;
本步骤具体包括:
根据以下表达式生成可用信道指示矩阵 L:
Figure imgf000017_0001
表示基站 i是否可以使用信道 w , 在基站 可以用信道 w时 lim = 1 , 在基 站 i不可以用信道 m时 /;∞ = 0; 根据以下表达式生成信道干扰指示矩阵 I:
I― { | e {o,i}}MyM ,
表示信道 η与信道 m之间的重叠关系,若 I =1则表示信道 n与信道 m相 互重叠,此时信道 n和信道 m不能同时被分配给具有强干扰关系的两个基站, 若 ^ = 0则表示信道 n与信道 m不相互重叠,此时信道 n和信道能够同时被 分配给具有强干扰关系的两个基站; 根据以下表达式计算干扰带宽因子:
IB = ΥΥ ce l. I B 步骤 1105、 所述网络资源调度器比较所述每个基站使用同一空闲子信道 时的干扰带宽因子, 根据比较结果为每个基站分配空闲子信道。
本步骤具体包括: 从所述可用信道列表中任取一可用信道,遍历可使用该可用信道的基站, 比较每个基站使用该信道时产生的干扰带宽因子 ^^':12…,^) , N为可使用 该可用信道的基站数量, m为该可用信道的编号, i为基站的编号;
选择产生的干扰带宽因子 最小的基站 ,判断干扰带宽因子最小的基站 个数是否为 1 ;
在干扰带宽因子最小的基站个数为 1时, 将所述可用信道分配给该干扰 带宽因子最小的基站;
在存在多个干扰带宽因子最小的基站时, 则比较所述多个干扰带宽因子 最小的基站的网络频谱需求是否相同。
可选地, 在所述多个干扰带宽因子最小的基站的网络频谱需求相同时, 从所述多个干扰带宽因子最小的基站中随机选择一个分配所述可用信道; 在所述多个干扰带宽因子最小的基站的网络频谱需求不同时, 将所述可 用信道分配给其中网络频谱需求最小的基站。
可选地, 根据干扰强度矩阵 cc、 信道干扰指示矩阵 I , 删除可用信道指 示矩阵 L中所有与分配到所述可用信道的基站干扰的其他基站的信道或与所 述可用信道重叠的其它信道, 更新可用信道矩阵 L。
可选地, 在所述可用信道分配给一基站后, 令 更新信道需求矩阵 R = ,/ = 1,2'''N}中该基站的信道需求, 1为基站编号; 判断 是否等于零;
在 等于零时判定所述基站的信道需求已满足, 无需对其再分配信道, 删除干扰图中的 ,顶点及所有与 ,顶点相连的线段, 更新干扰带宽因子矩阵 IB。
可选地, 还需要判断 R是否为全零矩阵;
在 R为全零矩阵时, 分配流程结束, 输出无干扰分配矩阵 S。
在 R不是全零矩阵时, 判断 L是否为全零矩阵;
在 L是全零矩阵时, 分配流程结束, 输出无干扰分配矩阵;
在 L不是全零矩阵时, 从所述可用信道列表中再选择一可用信道, 对该 可用信道进行分配。
本发明实施例还提供了一种异构网络频谱资源分配装置, 其结构如图 12 所示, 包括:
干扰带宽因子计算模块 1201 , 设置为根据基站间的干扰强度, 计算基站 使用空闲子信道的干扰带宽因子;
分配模块 1202, 设置为比较所述每个基站使用同一空闲子信道时的干扰 带宽因子, 根据比较结果为每个基站分配空闲子信道。
可选地, 该装置还包括:
空闲子信道总数计算模块 1203 , 设置为根据基站上报的位置信息、 基站 类型信息和信道需求信息, 计算空闲子信道总数;
分类可用信道计算模块 1204, 设置为分别计算同一类型基站的空闲子信 道总数并进行编号, 将所述空闲子信道作为可用信道, 以可用信道列表的形 式存储;
干扰强度计算模块 1205 , 设置为根据实际通信场景, 计算不同类型基站 之间的干扰强度, 将实际的网络场景映射为网络干扰协调图。
上述异构网络频谱资源分配装置可集成于网络资源调度器中, 由网络资 源调度器完成相应功能。 具体工作流程可参照本发明实施例及其他实施例提 供的异构网络频谱资源分配方法。
本发明实施例提供了一种异构网络频谱资源分配方法和装置, 网络资源 调度器根据基站间的干扰强度, 计算基站使用空闲子信道的干扰带宽因子, 所述网络资源调度器比较所述每个基站使用同一空闲子信道时的干扰带宽因 子, 根据比较结果为每个基站分配空闲子信道。 在为基站分配信道时考虑了 干扰因素, 实现了合理低干扰的信道分配, 解决了现有资源分配方式不适应 实际需求的问题。 在网络间干扰为零或干扰趋近为零的情况下, 最大化网络 实际吞吐量, 满足更多的接入网用户通信需求, 并提高频语使用效率。 本领域普通技术人员可以理解上述实施例的全部或部分步骤可以使用计 算机程序流程来实现,所述计算机程序可以存储于一计算机可读存储介质中, 所述计算机程序在相应的硬件平台上(如系统、 设备、 装置、 器件等)执行, 在执行时, 包括方法实施例的步骤之一或其组合。
可选地, 上述实施例的全部或部分步骤也可以使用集成电路来实现, 这 些步骤可以被分别制作成一个个集成电路模块, 或者将它们中的多个模块或 步骤制作成单个集成电路模块来实现。 这样, 本发明不限制于任何特定的硬 件和软件结合。
上述实施例中的每个装置 /功能模块 /功能单元可以釆用通用的计算装置 来实现, 它们可以集中在单个的计算装置上, 也可以分布在多个计算装置所 组成的网络上。
上述实施例中的每个装置 /功能模块 /功能单元以软件功能模块的形式实 现并作为独立的产品销售或使用时, 可以存储在一个计算机可读取存储介质 中。 上述提到的计算机可读取存储介质可以是只读存储器, 磁盘或光盘等。
任何熟悉本技术领域的技术人员在本发明揭露的技术范围内, 可轻易想 到变化或替换, 都应涵盖在本发明的保护范围之内。 因此, 本发明的保护范 围应以权利要求所述的保护范围为准。
工业实用性
本发明实施例提供了一种异构网络频谱资源分配方法和装置, 涉及移动 通信领域, 解决现有资源分配方式不适应实际需求的问题。 该方法包括网络 资源调度器根据基站间的干扰强度, 计算基站使用空闲子信道的干扰带宽因 子; 所述网络资源调度器比较所述每个基站使用同一空闲子信道时的干扰带 宽因子, 根据比较结果为每个基站分配空闲子信道, 适用于异构网络, 实现 合理低干扰的信道分配。

Claims

权 利 要 求 书
1、 一种异构网络频谱资源分配方法, 包括:
网络资源调度器根据基站间的干扰强度, 计算基站使用空闲子信道的干 扰带宽因子;
所述网络资源调度器比较每个基站使用同一空闲子信道时的干扰带宽因 子, 根据比较结果为每个基站分配空闲子信道。
2、根据权利要求 1所述的异构网络频谱资源分配方法, 在所述网络资源 调度器根据基站间的干扰强度, 计算基站使用空闲子信道的干扰带宽因子的 步骤之前, 还包括:
所述网络资源调度器根据基站上报的基站位置信息、 发射功率、 信道需 求、 基站类型, 计算空闲子信道总数;
分别计算同一类型基站的空闲子信道总数并进行编号, 将所述空闲子信 道作为可用信道, 以可用信道列表的形式存储;
所述网络资源调度器根据实际通信场景, 计算不同类型基站之间的干扰 强度, 将实际的网络场景映射为网络干扰协调图。
3、 根据权利要求 2所述的异构网络频谱资源分配方法, 其中, 所述分别 计算同一类型基站的空闲子信道总数并进行编号, 将所述空闲子信道作为可 用信道, 以可用信道列表的形式存储包括:
根据以下表达式计算不同类型基站的通信业务带宽和可用信道数1 :
Figure imgf000021_0001
其中, 」表示向下取整, 为共享总带宽, 为基站类型编号, ^为 第 A种类型基站的通信业务带宽;
为每个基站类型创建一对应的可用信道列表, 在所述可用信道列表中存 储所述该基站类型对应的可用信道。
4、 根据权利要求 2所述的异构网络频谱资源分配方法, 其中, 所述网络 资源调度器根据实际通信场景, 计算不同类型基站之间的干扰强度, 将实际 的网络场景映射为网络干扰协调图包括:
计算受基站 J干扰影响下的基站 I覆盖区域的平均信道质量 7 CS( Ai); 根据以下表达式计算干扰强度矩阵:
RACS{ijA)>SINRmax
1
CC= cc. cc —— [SINR^ -RACS, SINRmm<RACS{i]A)<SIN^
SINR——SINR—
RACS{i]Ai)<SINRmm
其中^^皿分表示可使基站 , 中用户正常通信的最小信干噪比阔值, WWmax表示基站 ,中用户釆用相应调制编码方案时最大的信干噪比; 根据基站间干扰关系, 将实际的网络拓朴图映射成能够具体反映网络中 下行链路干扰的网络干扰协调图, 每个基站的信道分配等效为图顶点的着色 问题, 其中顶点代表基站, 颜色代表频率或信道, 顶点之间的连线代表两个 基站之间存在干扰, 且干扰强度用 cc来表示; z 7=1,..., N, N为网络中参与 系统通信服务的基站总数。
5、 根据权利要求 2所述的异构网络频谱资源分配方法, 其中, 所述网络 资源调度器根据基站间的干扰强度, 计算基站使用空闲子信道的干扰带宽因 子包括:
根据以下表达式生成可用信道指示矩阵 L:
Figure imgf000022_0001
表示基站 i是否可以使用信道 w , 在基站 可以用信道 w时 lim = 1 , 在基 站 i不可以用信道 m时 /;∞ =0; 根据以下表达式生成信道干扰指示矩阵 I:
ΜχΜ 其中, 4 表示信道 η与信道 m之间的重叠关系, 若 I誦 =1则表示信道 n 与信道 m相互重叠,此时信道 n和信道 m不能同时被分配给具有强干扰关系 的两个基站, 若 f = 0则表示信道 n与信道 m不相互重叠, 此时信道 n和信 道能够同时被分配给具有强干扰关系的两个基站;
根据以下表达式计算干扰带宽因子: IB = ΥΥ ce l. I B ; 其中, .表示基站,与基站 之间的干扰强度; ,尸1,2,... , 111, 11=1, 2, M; N为网络中参与系统通信服务的基站总数, M为可用信道总数; Bm为信 道 /77的带宽。
6、 根据权利要求 5所述的异构网络频谱资源分配方法, 其中, 所述网络 资源调度器比较所述每个基站使用同一空闲子信道时的干扰带宽因子, 根据 比较结果为每个基站分配空闲子信道, 包括:
从所述可用信道列表中任取一可用信道,遍历可使用该可用信道的基站, 比较每个基站使用该信道时产生的干扰带宽因子 ^^':12…,^) , N为可使用 该可用信道的基站数量, m为该可用信道的编号, i为基站的编号;
选择产生的干扰带宽因子 ^最小的基站,判断干扰带宽因子最小的基站 个数是否为 1 ;
当干扰带宽因子最小的基站个数为 1时, 将所述可用信道分配给该干扰 带宽因子最小的基站。
7、根据权利要求 6所述的异构网络频谱资源分配方法, 在选择产生的干 扰带宽因子 ' 最小的基站,判断干扰带宽因子最小的基站个数是否为 1的步 骤之后, 还包括: 在存在多个干扰带宽因子最小的基站时, 则比较所述多个干扰带宽因子 最小的基站的网络频谱需求是否相同;
当所述多个干扰带宽因子最小的基站的网络频谱需求相同时, 从所述多 个干扰带宽因子最小的基站中随机选择一个分配所述可用信道。
8、根据权利要求 7所述的异构网络频谱资源分配方法, 在存在多个干扰 带宽因子最小的基站时, 则比较所述多个干扰带宽因子最小的基站的网络频 谱需求是否相同的步骤之后, 还包括:
当所述多个干扰带宽因子最小的基站的网络频谱需求不同时, 将所述可 用信道分配给其中网络频谱需求最小的基站。
9、根据权利要求 6所述的异构网络频谱资源分配方法, 所述网络资源调 度器根据比较结果为每个基站分配空闲子信道还包括:
根据干扰强度矩阵 CC、信道干扰指示矩阵 I ,删除可用信道指示矩阵 L中 所有对分配到所述可用信道的基站存在干扰的其他基站的信道或与所述可用 信道重叠的其它信道, 更新可用信道矩阵 L。
10、 根据权利要求 6所述的异构网络频谱资源分配方法, 所述网络资源 调度器根据比较结果为每个基站分配空闲子信道还包括:
在所述可用信道分配给一基站后, 令 ^)—1 , 更新信道需求矩阵 R = ,/ = 1,2'''N}中该基站的信道需求, 1为基站编号; 判断 是否等于零;
当 等于零时, 判定所述基站的信道需求已满足, 无需对其再分配信道, 删除干扰图中的 ,顶点及所有与 ,顶点相连的线段, 更新干扰带宽因子矩阵 IB。
11、根据权利要求 10所述的异构网络频谱资源分配方法, 所述网络资源 调度器根据比较结果为每个基站分配空闲子信道还包括:
判断 R是否为全零矩阵;
当 R为全零矩阵时, 分配流程结束, 输出无干扰分配矩阵 S。
12、根据权利要求 11所述的异构网络频谱资源分配方法, 所述判断 R是 否为全零矩阵的步骤之后, 还包括:
当 R不是全零矩阵时, 判断 L是否为全零矩阵; 当 L是全零矩阵时, 分配流程结束, 输出无干扰分配矩阵 S。
13、根据权利要求 12所述的异构网络频谱资源分配方法, 在所述当 R不 是全零矩阵时, 判断 L是否为全零矩阵的步骤之后, 还包括:
当 L不是全零矩阵时, 从所述可用信道列表中再选择一可用信道, 对该 可用信道进行分配。
14、 一种异构网络频谱资源分配装置, 包括:
干扰带宽因子计算模块, 设置为根据基站间的干扰强度, 计算基站使用 空闲子信道的干扰带宽因子;
分配模块, 设置为比较所述每个基站使用同一空闲子信道时的干扰带宽 因子, 根据比较结果为每个基站分配空闲子信道。
15、根据权利要求 14所述的异构网络频谱资源分配装置,该装置还包括: 空闲子信道总数计算模块, 设置为根据基站上报的位置信息、 基站类型 信息和信道需求信息, 计算空闲子信道总数;
分类可用信道计算模块, 设置为分别计算同一类型基站的空闲子信道总 数并进行编号, 将所述空闲子信道作为可用信道, 以可用信道列表的形式存 储;
干扰强度计算模块, 设置为根据实际通信场景, 计算不同类型基站之间 的干扰强度, 将实际的网络场景映射为网络干扰协调图。
16、 一种计算机程序, 包括程序指令, 当该程序指令被网络资源调度器 执行时, 使得该网络资源调度器可以执行权利要求 1-13任一项所述的方法。
17、 一种载有权利要求 16所述计算机程序的载体。
PCT/CN2014/085131 2014-01-23 2014-08-25 异构网络频谱资源分配方法和装置 WO2015109843A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410033779.7 2014-01-23
CN201410033779.7A CN104811942A (zh) 2014-01-23 2014-01-23 异构网络频谱资源分配方法和装置

Publications (1)

Publication Number Publication Date
WO2015109843A1 true WO2015109843A1 (zh) 2015-07-30

Family

ID=53680771

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/085131 WO2015109843A1 (zh) 2014-01-23 2014-08-25 异构网络频谱资源分配方法和装置

Country Status (2)

Country Link
CN (1) CN104811942A (zh)
WO (1) WO2015109843A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3634065A1 (en) * 2018-10-03 2020-04-08 The Boeing Company Systems and methods for reuse of spectrum resources

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107333301B (zh) * 2017-08-16 2019-12-10 哈尔滨工业大学 多属异构网络中的一种基于认知的联合资源再分配方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102378182A (zh) * 2010-08-12 2012-03-14 常州碳石通信技术有限公司 无线异构网络中高效的动态频谱分配方法
CN102664855A (zh) * 2012-04-27 2012-09-12 南京邮电大学 一种基于ofdm的两层网络中信道分配方法
CN102932796A (zh) * 2012-11-27 2013-02-13 西安电子科技大学 一种异构无线网络中基于覆盖频率的动态频谱分配方法
CN103024747A (zh) * 2012-12-04 2013-04-03 北京邮电大学 基于干扰抑制和用户差异性带宽需求的频谱分配方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8532686B2 (en) * 2010-12-24 2013-09-10 Spectrum Bridge, Inc. System and method for managing spectrum resources

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102378182A (zh) * 2010-08-12 2012-03-14 常州碳石通信技术有限公司 无线异构网络中高效的动态频谱分配方法
CN102664855A (zh) * 2012-04-27 2012-09-12 南京邮电大学 一种基于ofdm的两层网络中信道分配方法
CN102932796A (zh) * 2012-11-27 2013-02-13 西安电子科技大学 一种异构无线网络中基于覆盖频率的动态频谱分配方法
CN103024747A (zh) * 2012-12-04 2013-04-03 北京邮电大学 基于干扰抑制和用户差异性带宽需求的频谱分配方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CAO, LILI ET AL.: "Optimus: SINR-driven Spectrum Distribution via Constraint Transformation", 2010 IEEE SYMPOSIUM ON NEW FRONTIERS IN DYNAMIC SPECTRUM, 9 April 2010 (2010-04-09), XP031664833 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3634065A1 (en) * 2018-10-03 2020-04-08 The Boeing Company Systems and methods for reuse of spectrum resources
US11064463B2 (en) 2018-10-03 2021-07-13 The Boeing Company Systems and methods for reuse of spectrum resources

Also Published As

Publication number Publication date
CN104811942A (zh) 2015-07-29

Similar Documents

Publication Publication Date Title
Du et al. Computation offloading and resource allocation in vehicular networks based on dual-side cost minimization
US7929460B2 (en) Communication network topology determination
Ding et al. Cross-layer routing and dynamic spectrum allocation in cognitive radio ad hoc networks
Deb et al. Dynamic spectrum access in DTV whitespaces: design rules, architecture and algorithms
JP6442763B2 (ja) 共同電力制御及びチャネル割り当てを用いた空白帯域におけるスペクトル共有
Li et al. On efficient resource allocation for cognitive and cooperative communications
CN101568124A (zh) 一种无线mesh网络中的信道分配方法
Amer et al. Association optimization in Wi-Fi networks: Use of an access-based fairness
Jiang et al. Efficient spectrum utilization on TV band for cognitive radio based high speed vehicle network
Rathi et al. Game theoretic and non-game theoretic resource allocation approaches for D2D communication
LeAnh et al. Orchestrating resource management in LTE-unlicensed systems with backhaul link constraints
GB2465756A (en) Spectrum allocation in cognitive radio networks
Li et al. Blockchain-assisted dynamic spectrum sharing in the CBRS band
CN107333301B (zh) 多属异构网络中的一种基于认知的联合资源再分配方法
Tabakovic et al. Cognitive radio frequency assignment with interference weighting and categorization
Singh et al. Dynamic frequency resource allocation in heterogeneous cellular networks
WO2015109843A1 (zh) 异构网络频谱资源分配方法和装置
Mitran et al. Resource allocation for downlink spectrum sharing in cognitive radio networks
Karaca et al. Auction-based throughput maximization in cognitive radio networks under interference constraint
Kai et al. An effective channel allocation algorithm to maximize system utility in heterogeneous DCB WLANs
Chung ETLU: Enabling efficient simultaneous use of licensed and unlicensed bands for D2D-assisted mobile users
Anand et al. MAximum SPECTrum packing: a distributed opportunistic channel acquisition mechanism in dynamic spectrum access networks
Passiatore et al. A centralized inter-network resource sharing (CIRS) scheme in IEEE 802.22 cognitive networks
Pareek et al. Fault tolerant spectrum assignment in cognitive radio networks
Wu et al. Joint bandwidth and power allocations for cognitive radio networks with imperfect spectrum sensing

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14879283

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14879283

Country of ref document: EP

Kind code of ref document: A1