WO2016106680A1 - 信号发送和检测装置、系统及方法 - Google Patents

信号发送和检测装置、系统及方法 Download PDF

Info

Publication number
WO2016106680A1
WO2016106680A1 PCT/CN2014/095890 CN2014095890W WO2016106680A1 WO 2016106680 A1 WO2016106680 A1 WO 2016106680A1 CN 2014095890 W CN2014095890 W CN 2014095890W WO 2016106680 A1 WO2016106680 A1 WO 2016106680A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
time unit
broadcast channel
measurement reference
windows
Prior art date
Application number
PCT/CN2014/095890
Other languages
English (en)
French (fr)
Inventor
刘建琴
刘江华
吴强
周永行
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201480033936.2A priority Critical patent/CN105934900B/zh
Priority to CN201810745620.6A priority patent/CN109005019B/zh
Priority to PCT/CN2014/095890 priority patent/WO2016106680A1/zh
Priority to EP20191906.5A priority patent/EP3809614B1/en
Priority to CN201910878766.2A priority patent/CN110740026B/zh
Priority to EP14909489.8A priority patent/EP3229390B1/en
Priority to CN201810718661.6A priority patent/CN108667587B/zh
Publication of WO2016106680A1 publication Critical patent/WO2016106680A1/zh
Priority to US15/639,373 priority patent/US10892934B2/en
Priority to US16/055,334 priority patent/US10447522B2/en
Priority to US16/055,353 priority patent/US10554467B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2668Details of algorithms
    • H04L27/2673Details of algorithms characterised by synchronisation parameters
    • H04L27/2676Blind, i.e. without using known symbols
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J1/00Frequency-division multiplex systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0069Cell search, i.e. determining cell identity [cell-ID]
    • H04J11/0073Acquisition of primary synchronisation channel, e.g. detection of cell-ID within cell-ID group
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0069Cell search, i.e. determining cell identity [cell-ID]
    • H04J11/0076Acquisition of secondary synchronisation channel, e.g. detection of cell-ID group
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver

Definitions

  • the present invention relates to communication technologies, and in particular, to a signal transmission and detection apparatus, system and method.
  • DL-MRS Downlink Measurement Reference Signal
  • PBCH Physical Broadcast Channel
  • PSS Primary synchronization Signal
  • SSS Secondary synchronization Signal
  • BF Beam Forming
  • the transmission of the common reference signal is to ensure wide coverage of all users in the cell, so in order to ensure wide coverage of all users in the cell, the transmission of the common channel or reference signal is based on multiple resources of time-division round-robin transmission, and each A broadcast channel (e.g., PBCH) or a synchronization signal (e.g., PSS and/or SSS) of a resource is transmitted separately in a plurality of time units at a fixed cycle/interval.
  • PBCH PBCH
  • a synchronization signal e.g., PSS and/or SSS
  • the encoded broadcast channel transport block is mapped to a radio frame, where each radio frame has a duration of 10 ms, and each radio frame Each contains 10 subframes, usually with 4 radio frames as one cycle.
  • LTE Long Term Evolution
  • the transmission period of each resource is related to the number of resources, and the user equipment needs to perform blind detection on the broadcast channel or the synchronization signal in each frame when receiving the above signal, but due to the number of resources corresponding to each cell
  • the frame number of the broadcast channel or the synchronization signal is not fixed in each frame, and the synchronization signal is taken as an example.
  • FIG. 1 is a schematic diagram of signal transmission in the prior art. Referring to FIG. 1, the number of resources is 6.
  • the blind detection of the synchronization signal of the resource a needs to be performed in the 0th, 6th, 2nd, and 4th subframes of each frame, and it is necessary to span 3 frames to complete the periodic detection of the resource a.
  • the synchronization signal of the resource a is blindly detected, and needs to be performed in subframes 0, 7, 4, 1, 8, 5, 2, 9, 6, and 3 of each frame, and needs to be spanned. 7 frames to complete a round of resources Cycle detection of a.
  • Embodiments of the present invention provide a signal transmission and detection apparatus, system, and method for reducing the complexity of design of a broadcast channel or a synchronization signal and the complexity of blind detection by a user.
  • a first aspect of the present invention provides a signal transmitting apparatus comprising:
  • a determining module configured to determine a time unit for transmitting a synchronization signal in each time window
  • the determined time unit comprises at least one time unit: a jth time unit of each of the time windows, each of the time windows a time unit and a j+m time unit of each of the time windows, the S being a number of time units included in each of the time windows, the m being greater than or equal to 1 and less than or equal to S An integer, the j being a positive integer greater than or equal to 1 and less than or equal to the S;
  • a transmission module configured to transmit the synchronization signal on the determined time unit of each of the time windows.
  • the sequence corresponding to the synchronization signal is composed of a first sub-sequence and a second sub-sequence, where the first sub-sequence expression is as follows:
  • the N is the length of the sequence corresponding to the synchronization signal
  • the d(2n) is the first subsequence
  • Said And said a three sequence formed by three cyclic shifts of a first M sequence, the c 0 (n) being a first scrambling code sequence formed by a cyclic shift of the second M sequence
  • the first subsequence for characterizing the synchronization signal transmitted on a jth time unit of each of the time windows Used to characterize the number in each of the time windows
  • the second subsequence expression is as follows:
  • the d(2n+1) is the second subsequence
  • the c 1 (n) is a second scrambling code sequence formed by cyclic shift of the second M sequence
  • Said And said Three third scrambling code sequences formed by three cyclic shifts of the third M sequence Means for characterizing the second subsequence when the synchronization signal is transmitted on the jth time unit of each of the time windows, Used to characterize the number in each of the time windows
  • the second subsequence when the synchronization signal is transmitted on time units Means for characterizing the second subsequence when the synchronization signal is transmitted on the j+thth time unit of each of the time windows.
  • the transmission module is further configured to perform the determined time in each of the time windows Before transmitting the synchronization signal on the unit, the m is sent to the user equipment UE through a broadcast channel.
  • the determining module is configured to determine, according to the preset synchronization signal information, each of the foregoing a time unit for transmitting the synchronization signal in a time window; wherein the preset synchronization signal information includes: a time unit for transmitting the synchronization signal in each of the time windows; or
  • the transmission module is further configured to acquire updated synchronization signal information, and determine, according to the updated synchronization signal information, a time unit for transmitting the synchronization signal in each of the time windows; wherein the updated synchronization signal
  • the information includes a time unit for transmitting the synchronization signal within each of the time windows.
  • the determining module is further configured to determine a broadcast channel in a continuous T time window.
  • Time unit the T being an integer greater than zero;
  • the time unit used to transmit the broadcast channel in the T time windows is: the jth time unit of each time window in the T time windows;
  • the transmission module is further configured to transmit the broadcast channel to a time unit for transmitting a broadcast channel in the determined T time windows.
  • the broadcast channel is located on r time units of each of the time windows, and the r time units are in each The position of the time window is fixed.
  • the r is equal to the value of the m.
  • the transmission module is further configured to: The channel is transmitted to the user equipment UE through the broadcast channel before the channel is used to transmit the time unit of the broadcast channel in the determined T time windows.
  • the determining module is specifically configured to determine, according to the preset broadcast channel information, a time unit used to transmit a broadcast channel in the consecutive T time windows;
  • the preset broadcast channel information includes: the number of time windows T and a time unit for transmitting a broadcast channel in each of the time windows; or
  • the transmission module is further configured to acquire updated broadcast channel information, and determine, according to the updated broadcast channel information, a time unit used to transmit a broadcast channel in the consecutive T time windows; wherein the updated broadcast channel information
  • the method includes: the number of time windows T and a time unit for transmitting a broadcast channel in each of the time windows.
  • the determining module is further configured to determine, in each of the time windows, to transmit each a time unit for measuring the reference signal downstream;
  • the time unit for transmitting the each set of downlink measurement reference signals in each of the determined time windows includes at least one time unit: a jth time unit of each of the time windows, each of the time Window Time units, the j+qth time unit of each of the time windows, the q being a positive integer greater than or equal to 1 and less than or equal to S;
  • the transmission module is further configured to transmit, by using, each of the downlink measurement reference signals in a time unit for transmitting the downlink measurement reference signal in the determined time window.
  • the transmission module is specifically configured to transmit the each set in the determined time window by using a formula
  • the time unit of the downlink measurement reference signal is cyclically shifted such that each set of downlink measurement reference signals is fixed at the jth time unit of each of the time windows, and/or the j+q of each of the time windows Time units, and/or each of the time windows Transfer on time units:
  • the cyclic shift is a cyclic shift of t time units for a time unit corresponding to the kth transmission of the downlink measurement reference signal, wherein the q represents a downlink measurement reference signal for each transmission.
  • the transmission module is further used in the The set of downlink measurement reference signals are sent to the user equipment UE through the broadcast channel before the time unit for transmitting the downlink measurement reference signal is transmitted in the determined time window.
  • the method further includes:
  • a configuration module configured to configure, by using the high layer signaling, a time unit corresponding to each set of downlink measurement reference signals to be measured by the UE for each of the UEs.
  • the determining module is configured to determine, according to the preset downlink measurement reference signal information, each downlink time reference signal is transmitted in each of the time windows. a time unit; wherein the preset downlink measurement reference signal information includes: a time unit for transmitting each set of downlink measurement reference signals in each of the time windows; or
  • the transmission module is further configured to obtain updated downlink measurement reference signal information, and determine, according to the updated downlink measurement reference signal information, each set of downlink measurement parameters in the time window.
  • a second aspect of the present invention provides a signal transmitting apparatus comprising:
  • a determining module configured to determine a time unit for transmitting each set of downlink measurement reference signals in each time window
  • the time unit for transmitting the each set of downlink measurement reference signals in each of the determined time windows includes at least one time unit: a jth time unit of each of the time windows, each of the time Window Time units, the j+qth time unit of each of the time windows, the S being the number of time units included in each of the time windows, the q being greater than or equal to 1 and less than or equal to S An integer, the j being a positive integer greater than or equal to 1 and less than or equal to the S;
  • a transmission module configured to transmit, according to each of the downlink measurement reference signals, a time unit for transmitting the downlink measurement reference signal in the determined time window.
  • the transmitting module is specifically configured to perform cyclic shift by using a time unit for transmitting the set of downlink measurement reference signals in the determined time window. Bits such that each set of downlink measurement reference signals is fixed at the jth time unit of each of the time windows, and/or the j+qth time unit of each of the time windows, and/or each The time window Transfer on time units:
  • the cyclic shift is a cyclic shift of t time units for a time unit corresponding to the kth transmission of the downlink measurement reference signal, wherein the q represents a downlink measurement reference signal for each transmission.
  • the transmitting module is further configured to separately perform each of the downlink measurement reference signals The value of the q is transmitted to the user equipment UE through the broadcast channel before the time unit for transmitting the downlink measurement reference signal is transmitted in the determined time window.
  • the method further includes:
  • a configuration module configured to configure, by using the high layer signaling, a time unit corresponding to each set of downlink measurement reference signals to be measured by the UE for each of the UEs.
  • the determining module is specifically configured to determine, according to the preset downlink measurement reference signal information, a time unit for transmitting each set of downlink measurement reference signals in the time window; wherein the preset downlink measurement reference signal information includes: time for transmitting each set of downlink measurement reference signals in each of the time windows Unit; or,
  • the transmission module is further configured to obtain updated downlink measurement reference signal information, and determine, according to the updated downlink measurement reference signal information, a time unit used to transmit each downlink measurement reference signal in each time window;
  • the updated downlink measurement reference signal information includes: a time unit for transmitting each set of downlink measurement reference signals in each of the time windows.
  • a third aspect of the present invention provides a signal transmitting apparatus comprising:
  • a determining module configured to determine a time unit for transmitting a broadcast channel in consecutive T time windows, the T being an integer greater than zero, the T being an integer greater than zero;
  • the time unit used to transmit the broadcast channel in the T time windows is: the jth time unit of each time window in the T time windows; the j is greater than or equal to 1, and is less than Or a positive integer equal to S, the S being the number of time units included in each time window;
  • a transmission module configured to transmit the broadcast channel in a time unit for transmitting the broadcast channel in the determined T time windows.
  • the broadcast channel is located on r time units of each of the time windows, and the r time units are fixed at a position of each of the time windows
  • the r is a positive integer greater than or equal to 1 and less than or equal to S.
  • the transmitting module is further configured to: in the determining the T time window in the broadcast channel Before the time unit for transmitting the broadcast channel is transmitted, the r is transmitted to the user equipment UE through the broadcast channel.
  • the determining module is specifically configured to determine the consecutive T according to preset broadcast channel information. a time unit for transmitting a broadcast channel in the time window; wherein the preset broadcast channel information includes: the number of time windows T and a time unit for transmitting a broadcast channel in each of the time windows; or
  • the transmission module is further configured to acquire updated broadcast channel information, and determine, according to the updated broadcast channel information, a time unit used to transmit a broadcast channel in the consecutive T time windows; wherein the updated broadcast channel information
  • the method includes: the number of time windows T and a time unit for transmitting a broadcast channel in each of the time windows.
  • a fourth aspect of the present invention provides a signal transmitting apparatus comprising:
  • a determining module configured to determine P antenna ports, where the P antenna ports are antenna ports for transmitting synchronization signals
  • a transmission module configured to map a broadcast channel to the P antenna ports for transmission.
  • the transmitting module is specifically configured to: map the broadcast channel to an ith time unit of each time window, and map the P to the P Antenna ports for transmission;
  • a transmission period of the synchronization signal on the i-th time unit of each of the time windows is less than or equal to a transmission period of the broadcast channel on the i-th time unit of each of the time windows
  • the i is greater than or equal to 1 and less than or equal to M
  • the M is the total number of time units in each time window.
  • the transmission module is specifically configured to: use the synchronization signal in the ith of each time window At least two symbols in a time unit and mapped to the P antenna ports for transmission;
  • the symbol is a time unit smaller than the time unit.
  • the determining module is specifically configured to determine the P according to preset antenna port information.
  • the transmission module is further configured to obtain updated antenna port information, and determine the P antenna ports according to the updated antenna port information, where the updated antenna port information includes the P antenna ports and the synchronization signal Correspondence.
  • a fifth aspect of the present invention provides a signal detecting apparatus comprising:
  • a determining module for determining a time unit for detecting a synchronization signal in each time window
  • the determined time unit comprises at least one time unit: a jth time unit of each of the time windows, each of the time windows Time units, the j+th time units of each of the time windows, the S being a number of time units included in each of the time windows, the m being a positive integer greater than or equal to 1 and less than or equal to S , the j is a positive integer greater than or equal to 1 and less than or equal to the S;
  • a detecting module configured to detect the synchronization signal on the determined time unit of each of the time windows.
  • the sequence corresponding to the synchronization signal is composed of a first sub-sequence and a second sub-sequence, wherein the first sub-sequence expression is as follows:
  • the N is the length of the sequence corresponding to the synchronization signal
  • the d(2n) is the first subsequence
  • Said And said a three sequence formed by three cyclic shifts of a first M sequence, the c 0 (n) being a first scrambling code sequence formed by a cyclic shift of the second M sequence
  • the first subsequence for characterizing the synchronization signal transmitted on a jth time unit of each of the time windows Used to characterize the number in each of the time windows
  • the second subsequence expression is as follows:
  • the d(2n+1) is the second subsequence
  • the c 1 (n) is a second scrambling code sequence formed by cyclic shift of the second M sequence
  • Said And said Three third scrambling code sequences formed by three cyclic shifts of the third M sequence Means for characterizing the second subsequence when the synchronization signal is transmitted on the jth time unit of each of the time windows, Used to characterize the number in each of the time windows
  • the second subsequence when the synchronization signal is transmitted on time units Means for characterizing the second subsequence when the synchronization signal is transmitted on the j+thth time unit of each of the time windows.
  • the method further includes:
  • the transmission module is further configured to acquire the value of the m broadcasted by the transmitting end before the determining the time unit of detecting the synchronization signal in each time window.
  • the determining module is specifically configured to:
  • the preset synchronization signal information includes: a time unit for detecting a synchronization signal in each of the time windows; or
  • Obtaining updated synchronization signal information determining, according to the updated synchronization signal information, a time unit for determining a synchronization signal in each time window; wherein the updated synchronization signal information includes: detecting a synchronization signal in each of the time windows Time unit.
  • the determining module is further configured to determine a time for detecting a broadcast channel in consecutive T time windows. a unit, the T being an integer greater than zero;
  • the time unit for detecting the broadcast channel in the T time windows is: the jth time unit of each of the time windows;
  • the detecting module is further configured to detect the broadcast channel on a time unit that detects a broadcast channel in the determined T time windows.
  • the broadcast channel is located on r time units of each of the time windows, and the r time units are in each The position of the time window is fixed, and r is a positive integer greater than or equal to 1 and less than or equal to S number.
  • the r is equal to the value of the m.
  • the determining module is further configured to be used in the determining Obtaining the value of the r broadcast by the transmitting end before detecting the broadcast channel on a time unit of the broadcast channel to be detected in the T time windows.
  • the determining module is specifically configured to:
  • the preset broadcast channel information includes: the number of time windows T and each of the time windows Detecting the time unit of the broadcast channel; or,
  • Obtaining updated broadcast channel information determining, according to the updated broadcast channel information, a time unit for detecting a broadcast channel in the consecutive T time windows; wherein the updated broadcast channel information includes: the number of time windows T and A time unit of the broadcast channel is detected within each of the time windows.
  • the determining module is further configured to determine each set of downlinks in each of the time windows Measuring the time unit of the reference signal;
  • the time unit for measuring each set of downlink measurement reference signals in each of the determined time windows includes at least one time unit: a jth time unit of each of the time windows, and a number of each of the time windows Time units, the j+qth time unit of each of the time windows, the q being a positive integer greater than or equal to 1 and less than or equal to S;
  • the detecting module is further configured to perform channel quality measurement of each set of downlink measurement reference signals on a time unit of measuring each set of downlink measurement reference signals in the determined time window.
  • the determining module is further configured to measure, in the determined time window, a time unit of each downlink measurement reference signal Previously, the value of the q broadcast by the sender is obtained.
  • the detecting module is specifically configured to be used in each of the downlinks of the high layer signaling configuration of the sending end A channel quality measurement of the downlink measurement reference signal is performed on a time unit corresponding to the measurement reference signal.
  • the determining module is specifically configured to:
  • the preset downlink measurement reference signal information includes: measuring each of the time windows The time unit of each set of downlink measurement reference signals; or
  • the updated downlink measurement reference signal information includes : measuring a time unit of each set of downlink measurement reference signals in each of said time windows.
  • a sixth aspect of the invention provides a signal detecting apparatus comprising:
  • a determining module configured to determine a time unit for measuring each set of downlink measurement reference signals in each of the time windows
  • the time unit for measuring each set of downlink measurement reference signals in each of the determined time windows includes at least one time unit: a jth time unit of each of the time windows, and a number of each of the time windows Time unit, the j+qth time unit of each of the time windows, the q being a positive integer greater than or equal to 1 and less than or equal to S; the S being a time unit included in each of the time windows a number that is a positive integer greater than or equal to 1 and less than or equal to S, the j being a positive integer greater than or equal to 1 and less than or equal to the S;
  • the detecting module is configured to perform channel quality measurement of each set of downlink measurement reference signals on a time unit of measuring each set of downlink measurement reference signals in the determined time window.
  • the determining module is further configured to acquire, before the time unit of each set of downlink measurement reference signals, the broadcast of the sender before the determined time window The value of the q.
  • the detecting module is specifically configured to: each set of downlink measurement reference signals configured by the high layer signaling of the sending end Channel quality measurement of the downlink measurement reference signal is performed on a corresponding time unit.
  • the determining module is specifically configured to:
  • the preset downlink measurement reference signal information includes: measuring each of the time windows The time unit of each set of downlink measurement reference signals; or
  • the updated downlink measurement reference signal information includes : measuring a time unit of each set of downlink measurement reference signals in each of said time windows.
  • a seventh aspect of the present invention provides a signal detecting apparatus comprising:
  • a determining module configured to determine a time unit for detecting a broadcast channel in consecutive T time windows, wherein the T is an integer greater than zero;
  • the time unit for detecting the broadcast channel in the T time windows is: the jth time unit of each of the time windows; the j is a positive integer greater than or equal to 1, and less than or equal to S, S is the number of time units contained in each time window;
  • a detecting module configured to detect the broadcast channel on a time unit that detects a broadcast channel in the determined T time windows.
  • the broadcast channel is located on r time units of each of the time windows, and the r time units are fixed at a position of each of the time windows , r is a positive integer greater than or equal to 1 and less than or equal to S.
  • the determining module is configured to detect, on a time unit of detecting a broadcast channel, in the determined T time windows Before the broadcast channel is described, the value of the r broadcast by the sender is obtained.
  • the determining module is specifically configured to:
  • the preset broadcast channel information includes: the number of time windows T and each of the time windows Detecting the time unit of the broadcast channel; or,
  • Obtaining updated broadcast channel information determining, according to the updated broadcast channel information, a time unit for detecting a broadcast channel in the consecutive T time windows; wherein the updated broadcast channel information includes: the number of time windows T and A time unit of the broadcast channel is detected within each of the time windows.
  • An eighth aspect of the present invention provides a signal detecting apparatus comprising:
  • a determining module configured to determine P antenna ports, where the P antenna ports are antenna ports for transmitting a synchronization signal at the transmitting end;
  • a detecting module configured to detect a broadcast channel on the P antenna ports.
  • the detecting module is specifically configured to:
  • a transmission period of the synchronization signal on the i-th time unit of each of the time windows is less than or equal to a transmission period of the broadcast channel on the i-th time unit of each of the time windows
  • the i is greater than or equal to 1 and less than or equal to M
  • M is the total number of time units in each time window.
  • the detecting module is specifically configured to be at least in the ith time unit of each of the time windows Detecting the synchronization signal corresponding to the P antenna ports on two symbols;
  • the symbol is a time unit smaller than the time unit.
  • the determining module is specifically configured to:
  • Obtaining updated antenna port information determining the P antenna ports according to the updated antenna port information, where the updated antenna port information includes a correspondence between the P antenna ports and the synchronization signal.
  • a ninth aspect of the present invention provides a signal transmitting apparatus comprising:
  • a processor for determining a time unit for transmitting a synchronization signal in each time window
  • the determined time unit comprises at least one time unit: a jth time unit of each of the time windows, each of the time windows a time unit and a j+m time unit of each of the time windows, the S being a number of time units included in each of the time windows, the m being greater than or equal to 1 and less than or equal to S An integer, the j being a positive integer greater than or equal to 1 and less than or equal to the S;
  • a transceiver for transmitting the synchronization signal on the determined time unit of each of the time windows.
  • the sequence corresponding to the synchronization signal is composed of a first sub-sequence and a second sub-sequence, wherein the first sub-sequence expression is as follows:
  • the N is the length of the sequence corresponding to the synchronization signal
  • the d(2n) is the first subsequence
  • Said And said a three sequence formed by three cyclic shifts of a first M sequence, the c 0 (n) being a first scrambling code sequence formed by a cyclic shift of the second M sequence
  • the first subsequence for characterizing the synchronization signal transmitted on a jth time unit of each of the time windows Used to characterize the number in each of the time windows
  • the second subsequence expression is as follows:
  • the d(2n+1) is the second subsequence
  • the c 1 (n) is a second scrambling code sequence formed by cyclic shift of the second M sequence
  • Said And said Three third scrambling code sequences formed by three cyclic shifts of the third M sequence Means for characterizing the second subsequence when the synchronization signal is transmitted on the jth time unit of each of the time windows, Used to characterize the number in each of the time windows
  • the second subsequence when the synchronization signal is transmitted on time units Means for characterizing the second subsequence when the synchronization signal is transmitted on the j+thth time unit of each of the time windows.
  • the transceiver is further configured to perform the determined time in each of the time windows Single Before transmitting the synchronization signal on the element, the m is sent to the user equipment UE through the broadcast channel.
  • the processor is configured to determine, according to preset synchronization signal information, each of the foregoing a time unit for transmitting the synchronization signal in a time window; wherein the preset synchronization signal information includes: a time unit for transmitting the synchronization signal in each of the time windows; or
  • the transceiver is further configured to acquire updated synchronization signal information, and determine, according to the updated synchronization signal information, a time unit for transmitting the synchronization signal in each of the time windows; wherein the updated synchronization signal
  • the information includes a time unit for transmitting the synchronization signal within each of the time windows.
  • the processor is further configured to determine to transmit a broadcast channel in consecutive T time windows. Time unit, the T being an integer greater than zero;
  • the time unit used to transmit the broadcast channel in the T time windows is: the jth time unit of each time window in the T time windows;
  • the transceiver is further configured to transmit the broadcast channel in a time unit for transmitting a broadcast channel in the determined T time windows.
  • the broadcast channel is located on r time units of each of the time windows, where the r time units are in each The position of the time window is fixed.
  • the r is equal to the value of the m.
  • the transceiver is further configured to: The channel is transmitted to the user equipment UE through the broadcast channel before the channel is used to transmit the time unit of the broadcast channel in the determined T time windows.
  • the processor is configured to determine, according to preset broadcast channel information, a time unit used to transmit a broadcast channel in the consecutive T time windows;
  • the preset broadcast channel information includes: the number of time windows T and a time unit for transmitting a broadcast channel in each of the time windows; or
  • the transceiver is further configured to acquire updated broadcast channel information, and determine, according to the updated broadcast channel information, a time unit used to transmit a broadcast channel in the consecutive T time windows; wherein the updated broadcast channel information
  • the method includes: the number of time windows T and a time unit for transmitting a broadcast channel in each of the time windows.
  • the processor is further configured to determine, in each of the time windows, to transmit each a time unit for measuring the reference signal downstream;
  • the time unit for transmitting the each set of downlink measurement reference signals in each of the determined time windows includes at least one time unit: a jth time unit of each of the time windows, each of the time Window Time units, the j+qth time unit of each of the time windows, the q being a positive integer greater than or equal to 1 and less than or equal to S;
  • the transceiver is further configured to transmit, according to each of the downlink measurement reference signals, a time unit for transmitting the downlink measurement reference signal in the determined time window.
  • the transceiver is specifically configured to transmit the each set in the determined time window by using a formula
  • the time unit of the downlink measurement reference signal is cyclically shifted such that each set of downlink measurement reference signals is fixed at the jth time unit of each of the time windows, and/or the j+q of each of the time windows Time units, and/or each of the time windows Transfer on time units:
  • the cyclic shift is a cyclic shift of t time units for a time unit corresponding to the kth transmission of the downlink measurement reference signal, wherein the q represents a downlink measurement reference signal for each transmission.
  • the transceiver is further configured to: in the determining, use, each of the downlink measurement reference signals to transmit the downlink measurement in the determined time window Before the time unit of the reference signal is transmitted, the value of the q is transmitted to the user equipment UE through the broadcast channel.
  • the processor is further configured to configure, by using the high layer signaling, the UE to be measured by using the high layer signaling
  • Each set of downlink measurement reference signals corresponds to a time unit.
  • the processor is configured to determine, according to preset downlink measurement reference signal information, each downlink time reference signal is transmitted in each time window. a time unit; wherein the preset downlink measurement reference signal information includes: a time unit for transmitting each set of downlink measurement reference signals in each of the time windows; or
  • the transceiver is further configured to obtain updated downlink measurement reference signal information, and determine, according to the updated downlink measurement reference signal information, a time unit used to transmit each downlink measurement reference signal in each of the time windows;
  • the updated downlink measurement reference signal information includes: a time unit for transmitting each set of downlink measurement reference signals in each of the time windows.
  • a tenth aspect of the present invention provides a signal transmitting apparatus, including:
  • a processor configured to determine a time unit for transmitting each set of downlink measurement reference signals in each time window
  • the time unit for transmitting the each set of downlink measurement reference signals in each of the determined time windows includes at least one time unit: a jth time unit of each of the time windows, each of the time Window Time units, the j+qth time unit of each of the time windows, the S being the number of time units included in each of the time windows, the q being greater than or equal to 1 and less than or equal to S An integer, the j being a positive integer greater than or equal to 1 and less than or equal to the S;
  • a transceiver configured to transmit each of the downlink measurement reference signals in a time unit for transmitting the downlink measurement reference signal in the determined time window.
  • the transceiver is configured to perform cyclic shift by using a time unit for transmitting the set of downlink measurement reference signals in the determined time window. Bits such that each set of downlink measurement reference signals is fixed at the jth time unit of each of the time windows, and/or the j+qth time unit of each of the time windows, and/or each The time window Transfer on time units:
  • the cyclic shift is a cyclic shift of t time units for a time unit corresponding to the kth transmission of the downlink measurement reference signal, wherein the q represents a downlink measurement reference signal for each transmission.
  • the transceiver is further configured to separately perform each of the downlink measurement reference signals in the The value of the q is transmitted to the user equipment UE through the broadcast channel before the time unit for transmitting the downlink measurement reference signal in the determined time window is transmitted.
  • the processor is further configured to configure, by using the high layer signaling, the UE to be measured for each UE The time unit corresponding to each set of downlink measurement reference signals.
  • the processor is configured to determine, according to preset downlink measurement reference signal information, each a time unit for transmitting each set of downlink measurement reference signals in the time window; wherein the preset downlink measurement reference signal information includes: time for transmitting each set of downlink measurement reference signals in each of the time windows Unit; or,
  • the transceiver is further configured to obtain updated downlink measurement reference signal information, and determine, according to the updated downlink measurement reference signal information, a time unit used to transmit each downlink measurement reference signal in each of the time windows;
  • the updated downlink measurement reference signal information includes: a time unit for transmitting each set of downlink measurement reference signals in each of the time windows.
  • An eleventh aspect of the present invention provides a signal transmitting apparatus, including:
  • a processor configured to determine a time unit for transmitting a broadcast channel in consecutive T time windows, the T being an integer greater than zero, the T being an integer greater than zero;
  • the time unit used to transmit the broadcast channel in the T time windows is: the jth time unit of each time window in the T time windows; the j is greater than or equal to 1, and is less than Or a positive integer equal to S, the S being the number of time units included in each time window;
  • a transceiver configured to transmit the broadcast channel in a time unit for transmitting a broadcast channel in the determined T time windows.
  • the broadcast channel is located on r time units of each of the time windows, and the r time units are located at each of the time windows Fixed; the r is a positive integer greater than or equal to 1 and less than or equal to S.
  • the transceiver is further configured to: when the said broadcast channel is in the determined T time Before the time unit for transmitting the broadcast channel in the window performs transmission, the r is transmitted to the user equipment UE through the broadcast channel.
  • the processor is configured to determine the continuous according to preset broadcast channel information. a time unit for transmitting a broadcast channel in the T time windows; wherein the preset broadcast channel information includes: the number of time windows T and a time unit for transmitting a broadcast channel in each of the time windows; or,
  • the transceiver is further configured to acquire updated broadcast channel information, and determine, according to the updated broadcast channel information, a time unit used to transmit a broadcast channel in the consecutive T time windows; wherein the updated broadcast channel information
  • the method includes: the number of time windows T and a time unit for transmitting a broadcast channel in each of the time windows.
  • a twelfth aspect of the present invention provides a signal transmitting apparatus, including:
  • a processor configured to determine P antenna ports, where the P antenna ports are antenna ports for transmitting synchronization signals
  • a transceiver configured to map a broadcast channel to the P antenna ports for transmission.
  • the transceiver is specifically configured to: map the broadcast channel to an ith time unit of each time window, and map the P antenna ports for transmission;
  • a transmission period of the synchronization signal on the i-th time unit of each of the time windows is less than or equal to a transmission period of the broadcast channel on the i-th time unit of each of the time windows
  • the i is greater than or equal to 1 and less than or equal to M
  • the M is the total number of time units in each time window.
  • the transceiver is specifically configured to: use the synchronization signal in the ith of each of the time windows At least two symbols in time units and mapped to the P antenna ports for transmission;
  • the symbol is a time unit smaller than the time unit.
  • the processor is specifically configured to determine, according to preset antenna port information, P antenna ports, wherein the preset antenna port information includes a correspondence between the P antenna ports and the synchronization signal;
  • the transceiver is further configured to acquire updated antenna port information, determine the P antenna ports according to the updated antenna port information, where the updated antenna port information includes the P antenna ports and the synchronization signal Correspondence.
  • a thirteenth aspect of the present invention provides a signal detecting apparatus comprising:
  • a processor for determining a time unit for detecting a synchronization signal within each time window
  • the determined time unit comprises at least one time unit: a jth time unit of each of the time windows, each of the time windows Time units, the j+th time units of each of the time windows, the S being a number of time units included in each of the time windows, the m being a positive integer greater than or equal to 1 and less than or equal to S , the j is a positive integer greater than or equal to 1 and less than or equal to the S;
  • a transceiver for detecting the synchronization signal on the determined time unit of each of the time windows.
  • the sequence corresponding to the synchronization signal is composed of a first sub-sequence and a second sub-sequence, wherein the first sub-sequence expression is as follows:
  • the N is the length of the sequence corresponding to the synchronization signal
  • the d(2n) is the first subsequence
  • Said And said a three sequence formed by three cyclic shifts of a first M sequence, the c 0 (n) being a first scrambling code sequence formed by a cyclic shift of the second M sequence
  • the first subsequence for characterizing the synchronization signal transmitted on a jth time unit of each of the time windows Used to characterize the number in each of the time windows
  • the second subsequence expression is as follows:
  • the d(2n+1) is the second subsequence
  • the c 1 (n) is a second scrambling code sequence formed by cyclic shift of the second M sequence
  • Said And said Three third scrambling code sequences formed by three cyclic shifts of the third M sequence Means for characterizing the second subsequence when the synchronization signal is transmitted on the jth time unit of each of the time windows, Used to characterize the number in each of the time windows
  • the second subsequence when the synchronization signal is transmitted on time units Means for characterizing the second subsequence when the synchronization signal is transmitted on the j+thth time unit of each of the time windows.
  • the transceiver is further configured to detect synchronization in the determining each time window Before the time unit of the signal, the value of the m broadcasted by the sender is obtained.
  • the processor is specifically configured to:
  • Obtaining updated synchronization signal information determining, according to the updated synchronization signal information, a time unit for determining a synchronization signal in each time window; wherein the updated synchronization signal information includes: detecting a synchronization signal in each of the time windows Time unit.
  • the processor is further configured to: determine a broadcast channel in consecutive T time windows. Time unit, the T being an integer greater than zero;
  • the time unit for detecting the broadcast channel in the T time windows is: the jth time unit of each of the time windows;
  • the transceiver is further configured to detect the broadcast channel on a time unit that detects a broadcast channel in the determined T time windows.
  • the broadcast channel is located on r time units of each time window, where the r time units are The position of each of the time windows is fixed, and r is a positive integer greater than or equal to 1 and less than or equal to S.
  • the r is equal to the value of the m.
  • the processor is further configured to Obtaining the value of the r broadcast by the transmitting end before detecting the broadcast channel on a time unit of the to-be-detected broadcast channel in the determined T time windows.
  • the processor is specifically configured to:
  • the preset broadcast channel information includes: the number of time windows T and each of the time windows Detecting the time unit of the broadcast channel; or,
  • Obtaining updated broadcast channel information determining, according to the updated broadcast channel information, a time unit for detecting a broadcast channel in the consecutive T time windows; wherein the updated broadcast channel information includes: the number of time windows T and A time unit of the broadcast channel is detected within each of the time windows.
  • the processor is further configured to determine each measurement in the time window a time unit for measuring the reference signal downstream;
  • the time unit for measuring each set of downlink measurement reference signals in each of the determined time windows includes at least one time unit: a jth time unit of each of the time windows, and a number of each of the time windows Time units, the j+qth time unit of each of the time windows, the q being a positive integer greater than or equal to 1 and less than or equal to S;
  • the transceiver is further configured to perform channel quality measurement of each set of downlink measurement reference signals on a time unit of measuring each set of downlink measurement reference signals within the determined time window.
  • the processor is further configured to measure a time of each downlink measurement reference signal in the determined time window Before the unit, the value of the q broadcasted by the sender is obtained.
  • the transceiver is specifically configured to perform, according to the high-level signaling configuration of the sending end, each set of downlink measurement Performing channel quality measurement of the downlink measurement reference signal on a time unit corresponding to the reference signal
  • the processor is specifically configured to:
  • the preset downlink measurement reference signal information includes: measuring each of the time windows The time unit of each set of downlink measurement reference signals; or
  • the updated downlink measurement reference signal information includes : measuring a time unit of each set of downlink measurement reference signals in each of said time windows.
  • a fourteenth aspect of the present invention provides a signal detecting apparatus comprising:
  • a processor configured to determine a time unit for measuring each set of downlink measurement reference signals in each of the time windows
  • the time unit for measuring each set of downlink measurement reference signals in each of the determined time windows includes at least one time unit: a jth time unit of each of the time windows, and a number of each of the time windows Time unit, the j+qth time unit of each of the time windows, the q being a positive integer greater than or equal to 1 and less than or equal to S; the S being a time unit included in each of the time windows a number that is a positive integer greater than or equal to 1 and less than or equal to S, the j being a positive integer greater than or equal to 1 and less than or equal to the S;
  • the transceiver is configured to perform channel quality measurement of each set of downlink measurement reference signals on a time unit of measuring each set of downlink measurement reference signals in the determined time window
  • the processor is further configured to acquire the sending end before measuring a time unit of each downlink measurement reference signal in the determined time window. The value of the q being broadcast.
  • the transceiver is specifically configured to: each set of downlink measurement reference configured in a high layer signaling manner of the sending end A channel quality measurement of the downlink measurement reference signal is performed on a time unit corresponding to the signal.
  • the processor is specifically configured to:
  • the preset downlink measurement reference signal information includes: measuring each of the time windows The time unit of each set of downlink measurement reference signals; or
  • the updated downlink measurement reference signal information includes : measuring a time unit of each set of downlink measurement reference signals in each of said time windows.
  • a fifteenth aspect of the present invention provides a signal detecting apparatus comprising:
  • a processor configured to determine a time unit for detecting a broadcast channel in consecutive T time windows, wherein the T is an integer greater than zero;
  • the time unit for detecting the broadcast channel in the T time windows is: the jth time unit of each of the time windows; the j is a positive integer greater than or equal to 1, and less than or equal to S, S is the number of time units contained in each time window;
  • a transceiver configured to detect the broadcast channel on a time unit that detects a broadcast channel in the determined T time windows.
  • the broadcast channel is located on r time units of each of the time windows, and the r time units are located at each of the time windows Fixed, the r being a positive integer greater than or equal to 1 and less than or equal to S.
  • the processor is configured to detect a time unit of a broadcast channel in the determined T time windows Before the broadcast channel, the value of the r broadcast by the sender is obtained.
  • the processor is specifically configured to:
  • the preset broadcast channel information includes: the number of time windows T and each of the time windows Detecting the time unit of the broadcast channel; or,
  • Obtaining updated broadcast channel information determining, according to the updated broadcast channel information, a time unit for detecting a broadcast channel in the consecutive T time windows; wherein the updated broadcast channel information includes: the number of time windows T and A time unit of the broadcast channel is detected within each of the time windows.
  • a sixteenth aspect of the present invention provides a signal detecting apparatus comprising:
  • a processor configured to determine P antenna ports, where the P antenna ports are antenna ports that transmit synchronization signals at the transmitting end;
  • a transceiver for detecting a broadcast channel on the P antenna ports.
  • the processor is specifically configured to:
  • a transmission period of the synchronization signal on the i-th time unit of each of the time windows is less than or equal to a transmission period of the broadcast channel on the i-th time unit of each of the time windows
  • the i is greater than or equal to 1 and less than or equal to M
  • the M is the total number of time units in each time window.
  • the transceiver is specifically configured to be in the ith time unit of each of the time windows to Detecting the synchronization signal corresponding to the P antenna ports on less than two symbols;
  • the symbol is a time unit smaller than the time unit.
  • the processor is specifically configured to:
  • Obtaining updated antenna port information determining the P antenna ports according to the updated antenna port information, where the updated antenna port information includes a correspondence between the P antenna ports and the synchronization signal.
  • a seventeenth aspect of the present invention provides a signal transmitting and detecting system, comprising at least one signal transmitting apparatus according to any one of the first aspect or the first aspect, and at least a fifth aspect Or the signal detecting apparatus according to any feasible implementation manner of the fifth aspect; or
  • At least one signal transmitting apparatus according to any one of the second aspect or the second aspect of the second aspect, and the signal detection of any one of the sixth aspect or the sixth aspect Device; or,
  • At least one signal transmitting apparatus according to any one of the third aspect or the third aspect, and the at least one signal detecting apparatus according to any one of the seventh aspect or the seventh aspect; or,
  • At least one signal transmitting apparatus according to any one of the fourth aspect or the fourth aspect, and the at least one signal detecting apparatus according to any one of the eighth aspect or the eighth aspect .
  • An eighteenth aspect of the present invention provides a signal transmitting method, including:
  • the determined time unit comprises at least one time unit: a jth time unit of each of the time windows, each of the time windows a time unit and a j+m time unit of each of the time windows, the S being a number of time units included in each of the time windows, the m being greater than or equal to 1 and less than or equal to S An integer, the j being a positive integer greater than or equal to 1 and less than or equal to the S;
  • the synchronization signal is transmitted on the determined time unit of each of the time windows.
  • the sequence corresponding to the synchronization signal is composed of a first sub-sequence and a second sub-sequence, wherein the first sub-sequence expression is as follows:
  • the N is the length of the sequence corresponding to the synchronization signal
  • the d(2n) is the first subsequence
  • Said And said a three sequence formed by three cyclic shifts of a first M sequence, the c 0 (n) being a first scrambling code sequence formed by a cyclic shift of the second M sequence
  • the first subsequence for characterizing the synchronization signal transmitted on a jth time unit of each of the time windows Used to characterize the number in each of the time windows
  • the second subsequence expression is as follows:
  • the d(2n+1) is the second subsequence
  • the c 1 (n) is a second scrambling code sequence formed by cyclic shift of the second M sequence
  • Said And said Three third scrambling code sequences formed by three cyclic shifts of the third M sequence Means for characterizing the second subsequence when the synchronization signal is transmitted on the jth time unit of each of the time windows, Used to characterize the number in each of the time windows
  • the second subsequence when the synchronization signal is transmitted on time units Means for characterizing the second subsequence when the synchronization signal is transmitted on the j+thth time unit of each of the time windows.
  • the transmitting on the determined time unit of each of the time windows Before the synchronization signal also includes:
  • the determining, by using the time unit for transmitting the synchronization signal in each time window includes :
  • Obtaining updated synchronization signal information determining, according to the updated synchronization signal information, a time unit for transmitting the synchronization signal in each of the time windows; wherein the updated synchronization signal information includes: A time unit used to transmit the synchronization signal.
  • the method further includes:
  • T Determining a time unit for transmitting a broadcast channel in consecutive T time windows, the T being an integer greater than zero;
  • the time unit used to transmit the broadcast channel in the T time windows is: the jth time unit of each time window in the T time windows;
  • the broadcast channel is transmitted in a time unit for transmitting a broadcast channel in the determined T time windows, respectively.
  • the broadcast channel is located on r time units of each time window, where the r time units are The position of each of the time windows is fixed.
  • the r is equal to the value of the m.
  • the method Before the time unit for transmitting the broadcast channel in the determined T time windows is transmitted, the method further includes:
  • the determining, by using the time unit for transmitting the broadcast channel in consecutive T time windows includes:
  • the preset broadcast channel information includes: the number of time windows T and each of the times a time unit in the window for transmitting a broadcast channel; or,
  • Obtaining updated broadcast channel information determining, according to the updated broadcast channel information, a time unit used to transmit a broadcast channel in the consecutive T time windows; wherein the updated broadcast channel information includes: the number of time windows And a time unit for transmitting a broadcast channel within each of said time windows.
  • the method further includes:
  • the time unit for transmitting the each set of downlink measurement reference signals in each of the determined time windows includes at least one time unit: a jth time unit of each of the time windows, each of the time Window Time units, the j+qth time unit of each of the time windows, the q being a positive integer greater than or equal to 1 and less than or equal to S;
  • each set of downlink measurement reference signals are respectively transmitted in a time unit for transmitting the downlink measurement reference signal in the determined time window.
  • the downlink measurement reference signal is used to transmit the downlink measurement in the determined time window
  • the time unit of the reference signal is transmitted, including:
  • the time unit for transmitting the set of downlink measurement reference signals in the determined time window is cyclically shifted by the following formula, so that each set of downlink measurement reference signals is fixed at the jth of each of the time windows Time units, and/or j+q time units of each of said time windows, and/or each of said time windows Transfer on time units:
  • the cyclic shift is a cyclic shift of t time units for a time unit corresponding to the kth transmission of the q sets of the downlink measurement reference signal, where the q represents the next time of each transmission.
  • the row measures the number of sets of reference signals, the k represents the number of transmissions, and the t represents the number of time units in which each set of downlink measurement reference signals are shifted in each of the cyclic shifts, the q, the Let k and the t be positive integers greater than zero.
  • the method Before the reference signal is used to transmit the time unit of the downlink measurement reference signal for transmission in the determined time window, the method further includes:
  • the value of the q is sent to the user equipment UE over a broadcast channel.
  • the method further includes:
  • the time unit corresponding to each set of downlink measurement reference signals to be measured by the UE is configured for each of the UEs by using the high layer signaling.
  • the determining, by using each time window, a time unit for transmitting each set of downlink measurement reference signals includes:
  • the preset downlink measurement reference signal information includes: each of the time windows a time unit for transmitting each set of downlink measurement reference signals; or
  • Acquiring updated downlink measurement reference signal information determining, according to the updated downlink measurement reference signal information, a time unit for transmitting each set of downlink measurement reference signals in each time window; wherein the updated downlink measurement reference signal
  • the information includes: a time unit for transmitting each set of downlink measurement reference signals in each of the time windows.
  • a nineteenth aspect of the present invention provides a signal transmitting method, including:
  • the time unit for transmitting the each set of downlink measurement reference signals in each of the determined time windows includes at least one time unit: a jth time unit of each of the time windows, each of the time Window Time units, the j+qth time unit of each of the time windows, the S being the number of time units included in each of the time windows, the q being greater than or equal to 1 and less than or equal to S An integer, the j being a positive integer greater than or equal to 1 and less than or equal to the S;
  • each set of downlink measurement reference signals are respectively transmitted in a time unit for transmitting the downlink measurement reference signal in the determined time window.
  • the downlink measurement reference signal is transmitted in a time unit for transmitting the downlink measurement reference signal in the determined time window, respectively.
  • the cyclic shift is a cyclic shift of t time units for a time unit corresponding to the kth transmission of the downlink measurement reference signal, wherein the q represents a downlink measurement reference signal for each transmission.
  • the each downlink measurement reference signal is respectively determined at the determined time Before the time unit for transmitting the downlink measurement reference signal in the window is transmitted, the method further includes:
  • the value of the q is transmitted to the user equipment UE over the broadcast channel.
  • the method further includes:
  • the determining, in each time window is used to transmit each set of downlink measurement reference signals Time unit, including:
  • the preset downlink measurement reference signal information includes: each of the time windows a time unit for transmitting each set of downlink measurement reference signals; or
  • Acquiring updated downlink measurement reference signal information determining, according to the updated downlink measurement reference signal information, a time unit for transmitting each set of downlink measurement reference signals in each time window; wherein the updated downlink measurement reference signal
  • the information includes: a time unit for transmitting each set of downlink measurement reference signals in each of the time windows.
  • a twentieth aspect of the present invention provides a signal transmitting method, including:
  • T Determining a time unit for transmitting a broadcast channel in consecutive T time windows, the T being an integer greater than zero;
  • the time unit used to transmit the broadcast channel in the T time windows is: the jth time unit of each time window in the T time windows; the j is greater than or equal to 1, and is less than Or a positive integer equal to S, the S being the number of time units included in each time window;
  • the broadcast channel is transmitted in a time unit for transmitting a broadcast channel in the determined T time windows, respectively.
  • the broadcast channel is located on r time units of each of the time windows, and the r time units are located at each of the time windows Fixed; the r is a positive integer greater than or equal to 1 and less than or equal to S.
  • the broadcasting channel is used to transmit a broadcast channel in the determined T time windows respectively Before the time unit is transmitted, it also includes:
  • the determining, in a continuous T time window, a time unit for transmitting a broadcast channel including:
  • the broadcast channel Determining, in the continuous T time windows, the broadcast channel according to the preset broadcast channel information a time unit; wherein the preset broadcast channel information includes: the number of time windows T and a time unit for transmitting a broadcast channel in each of the time windows; or
  • Obtaining updated broadcast channel information determining, according to the updated broadcast channel information, a time unit used to transmit a broadcast channel in the consecutive T time windows; wherein the updated broadcast channel information includes: the number of time windows And a time unit for transmitting a broadcast channel in each of said time windows.
  • a twenty-first aspect of the present invention provides a signal transmitting method, including:
  • a broadcast channel is mapped onto the P antenna ports for transmission.
  • the mapping, by the broadcast channel, to the P antenna ports includes:
  • the method further includes: respectively, synchronizing the synchronization signal on an ith time unit of each of the time windows, and mapping to the P antenna ports for transmission;
  • a transmission period of the synchronization signal on the i-th time unit of each of the time windows is less than or equal to a transmission period of the broadcast channel on the i-th time unit of each of the time windows
  • the i is greater than or equal to 1 and less than or equal to M
  • the M is the total number of time units in each time window.
  • the synchronizing signal is respectively located on an ith time unit of each of the time windows, and Mapping to the P antenna ports for transmission, including:
  • the symbol is a time unit smaller than the time unit.
  • the determining the P antenna ports includes:
  • Obtaining updated antenna port information determining the P antenna ports according to the updated antenna port information, where the updated antenna port information includes a correspondence between the P antenna ports and the synchronization signal.
  • a twenty-second aspect of the present invention provides a signal detecting method, including:
  • the determined time unit comprises at least one time unit: a jth time unit of each of the time windows, each of the time windows Time units, the j+th time units of each of the time windows, the S being a number of time units included in each of the time windows, the m being a positive integer greater than or equal to 1 and less than or equal to S , the j is a positive integer greater than or equal to 1 and less than or equal to the S;
  • the synchronization signal is detected on the determined time unit of each of the time windows.
  • the sequence corresponding to the synchronization signal is composed of a first sub-sequence and a second sub-sequence, wherein the first sub-sequence expression is as follows:
  • the N is the length of the sequence corresponding to the synchronization signal
  • the d(2n) is the first subsequence
  • Said And said a three sequence formed by three cyclic shifts of a first M sequence, the c 0 (n) being a first scrambling code sequence formed by a cyclic shift of the second M sequence
  • the first subsequence for characterizing the synchronization signal transmitted on a jth time unit of each of the time windows Used to characterize the number in each of the time windows
  • the second subsequence expression is as follows:
  • the d(2n+1) is the second subsequence
  • the c 1 (n) is a second scrambling code sequence formed by cyclic shift of the second M sequence
  • Said And said Three third scrambling code sequences formed by three cyclic shifts of the third M sequence Means for characterizing the second subsequence when the synchronization signal is transmitted on the jth time unit of each of the time windows, Used to characterize the number in each of the time windows
  • the second subsequence when the synchronization signal is transmitted on time units Means for characterizing the second subsequence when the synchronization signal is transmitted on the j+thth time unit of each of the time windows.
  • the determining a time unit for detecting a synchronization signal in each time window includes: :
  • the preset synchronization signal information includes: a time unit for detecting a synchronization signal in each of the time windows; or
  • Obtaining updated synchronization signal information determining, according to the updated synchronization signal information, a time unit for determining a synchronization signal in each time window; wherein the updated synchronization signal information includes: detecting a synchronization signal in each of the time windows Time unit.
  • the method further includes:
  • T Determining a time unit for detecting a broadcast channel in consecutive T time windows, the T being an integer greater than zero;
  • the time unit for detecting the broadcast channel in the T time windows is: the jth time unit of each of the time windows;
  • the broadcast channel is detected on a time unit that detects a broadcast channel in the determined T time windows.
  • the broadcast channel is located on r time units of each of the time windows, the r time lists The element is fixed at the position of each of the time windows, and r is a positive integer greater than or equal to 1 and less than or equal to S.
  • the r is equal to the value of the m.
  • the method further includes:
  • the determining, by using the time unit of detecting the broadcast channel in consecutive T time windows includes:
  • the preset broadcast channel information includes: the number of time windows T and each of the time windows Detecting the time unit of the broadcast channel; or,
  • Obtaining updated broadcast channel information determining, according to the updated broadcast channel information, a time unit for detecting a broadcast channel in the consecutive T time windows; wherein the updated broadcast channel information includes: the number of time windows T and A time unit of the broadcast channel is detected within each of the time windows.
  • the method further includes:
  • the time unit for measuring each set of downlink measurement reference signals in each of the determined time windows includes at least one time unit: a jth time unit of each of the time windows, and a number of each of the time windows Time units, the j+qth time unit of each of the time windows, the q being a positive integer greater than or equal to 1 and less than or equal to S;
  • Channel quality measurements of each set of downlink measurement reference signals are performed on a time unit that measures each set of downlink measurement reference signals within the determined time window.
  • the method before the time unit of each set of downlink measurement reference signals is measured in the determined time window, the method further includes:
  • the method further includes:
  • the determining, by using each time window, a time unit for measuring each set of downlink measurement reference signals includes:
  • the preset downlink measurement reference signal information includes: measuring each of the time windows The time unit of each set of downlink measurement reference signals; or
  • the updated downlink measurement reference signal information includes : measuring a time unit of each set of downlink measurement reference signals in each of said time windows.
  • a twenty-third aspect of the present invention provides a signal detecting method, comprising:
  • the time unit for measuring each set of downlink measurement reference signals in each of the determined time windows includes at least one time unit: a jth time unit of each of the time windows, and a number of each of the time windows Time unit, the j+qth time unit of each of the time windows, the q being a positive integer greater than or equal to 1 and less than or equal to S; the S being a time unit included in each of the time windows a number that is a positive integer greater than or equal to 1 and less than or equal to S, the j being a positive integer greater than or equal to 1 and less than or equal to the S;
  • Channel quality measurements of each set of downlink measurement reference signals are performed on a time unit that measures each set of downlink measurement reference signals within the determined time window.
  • the method before measuring a time unit of each downlink measurement reference signal in the determined time window, the method further includes:
  • the determining each set of downlink measurement reference in each of the time windows The time unit of the signal, including:
  • the preset downlink measurement reference signal information includes: measuring each of the time windows The time unit of each set of downlink measurement reference signals; or
  • the updated downlink measurement reference signal information includes : measuring a time unit of each set of downlink measurement reference signals in each of said time windows.
  • a twenty-fourth aspect of the present invention provides a signal detecting method, comprising:
  • T Determining a time unit for detecting a broadcast channel in consecutive T time windows, the T being an integer greater than zero;
  • the time unit for detecting the broadcast channel in the T time windows is: the jth time unit of each of the time windows; the j is a positive integer greater than or equal to 1, and less than or equal to S, S is the number of time units contained in each time window;
  • the broadcast channel is detected on a time unit that detects a broadcast channel in the determined T time windows.
  • the broadcast channel is located on r time units of each of the time windows, and the r time units are in each of the time windows The position is fixed, and r is a positive integer greater than or equal to 1 and less than or equal to S.
  • the detecting the broadcast channel on a time unit that detects a broadcast channel in the determined T time windows Previously it also included:
  • the determining the broadcast channel in consecutive T time windows Time unit including:
  • the preset broadcast channel information includes: the number of time windows T and each of the time windows Detecting the time unit of the broadcast channel; or,
  • Obtaining updated broadcast channel information determining, according to the updated broadcast channel information, a time unit for detecting a broadcast channel in the consecutive T time windows; wherein the updated broadcast channel information includes: the number of time windows T and A time unit of the broadcast channel is detected within each of the time windows.
  • a twenty-fifth aspect of the present invention provides a signal detecting method, comprising:
  • a broadcast channel is detected on the P antenna ports.
  • the detecting a broadcast channel on the P antenna ports includes:
  • the method further includes: detecting, on an ith time unit of each of the time windows, the synchronization signal corresponding to the P antenna ports
  • a transmission period of the synchronization signal on the i-th time unit of each of the time windows is less than or equal to a transmission period of the broadcast channel on the i-th time unit of each of the time windows
  • the i is greater than or equal to 1 and less than or equal to M
  • M is the total number of time units in each time window.
  • the detecting, corresponding to the P antenna ports, on the i-th time unit of each time window The broadcast channel, including:
  • the symbol is a time unit smaller than the time unit.
  • the determining the P antenna ports includes:
  • the information includes a correspondence between the P antenna ports and the synchronization signal;
  • Obtaining updated antenna port information determining the P antenna ports according to the updated antenna port information, where the updated antenna port information includes a correspondence between the P antenna ports and the synchronization signal.
  • the time unit for fixing the synchronization signal to a fixed position in each time window is realized, so that when the receiving end detects the synchronization signal, only the device at the receiving end needs to detect on a fixed time unit in each time window, which is reduced.
  • the complexity of the synchronization signal design and the complexity of the detection of the receiving device.
  • FIG. 2 is a schematic structural diagram of a signal sending apparatus according to an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of another signal sending apparatus according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of a signal detecting apparatus according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of another signal detecting apparatus according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of another signal sending apparatus according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram of a signal sending method according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of another signal sending method according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of another signal sending method according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of a multiple resource transmission sequence according to an embodiment of the present invention.
  • FIG. 11 is a schematic diagram of another signal sending method according to an embodiment of the present invention.
  • FIG. 12 is a schematic diagram of a transmission time according to an embodiment of the present invention.
  • FIG. 13 and FIG. 14 are schematic diagrams showing a time domain structure of a synchronization signal according to an embodiment of the present invention.
  • FIG. 15 and FIG. 16 are schematic diagrams showing another time domain structure of a synchronization signal according to an embodiment of the present invention.
  • FIG. 17 is a schematic diagram of a signal detection method according to an embodiment of the present invention.
  • FIG. 18 is a schematic diagram of another signal detection method according to an embodiment of the present invention.
  • FIG. 19 is a schematic diagram of another signal detection method according to an embodiment of the present invention.
  • FIG. 20 is a schematic diagram of a broadcast channel transmission according to an embodiment of the present invention.
  • FIG. 21 is a schematic diagram of a sequence of transmission time according to an embodiment of the present invention.
  • FIG. 22 is a schematic diagram of another broadcast channel transmission according to an embodiment of the present invention.
  • FIG. 23 is a schematic diagram of another broadcast channel transmission according to an embodiment of the present invention.
  • FIG. 24 is a schematic diagram of another signal detection method according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of a signal sending apparatus according to an embodiment of the present invention.
  • the apparatus may be a base station, an evolved base station, and a Remote Ratio Unit (RRU) device.
  • RRU Remote Ratio Unit
  • the device is The method includes: determining module 100 and transmitting module 101.
  • a determining module 100 configured to determine a time unit for transmitting a synchronization signal in each time window
  • the determined time unit comprises at least one time unit: a jth time unit of each of the time windows, each of the time windows a time unit and a j+m time unit of each of the time windows, the S being a number of time units included in each of the time windows, the m being greater than or equal to 1 and less than or equal to S An integer, the j being a positive integer greater than or equal to 1 and less than or equal to the S;
  • the transmission module 101 is configured to transmit the synchronization signal on the determined time unit of each of the time windows.
  • the signal sending apparatus determines, by the determining module, a time unit for transmitting a synchronization signal in each time window; wherein the determined time unit includes at least one time unit: each of the time windows j time units, each of the time windows a time unit and a j+m time unit of each of the time windows, the S being a number of time units included in each of the time windows, the m being greater than or equal to 1 and less than or equal to S An integer, as it may be, the number of time units used to transmit a broadcast channel within each of said time windows, said j being a positive integer greater than or equal to 1 and less than or equal to said S; a transmission module at each of said time windows The synchronization signal is transmitted on the determined time unit.
  • the time unit for fixing the synchronization signal to a fixed position in each time window is realized, so that when the receiving end detects the synchronization signal, only the device at the receiving end needs to detect on a fixed time unit in each time window, which is reduced.
  • the complexity of the synchronization signal design and the complexity of the detection of the receiving device.
  • a time window there may be three time units for placing the synchronization signal, in order to effectively distinguish the synchronization signals on the three time units, so that the receiving end can accurately identify
  • the embodiment of the invention provides an implementation scheme for distinguishing the synchronization signal, which is specifically as follows:
  • the sequence corresponding to the synchronization signal is composed of a first sub-sequence and a second sub-sequence, wherein the first sub-sequence expression is as follows:
  • the N is the length of the sequence corresponding to the synchronization signal
  • the d(2n) is the first subsequence
  • Said And said a three sequence formed by three cyclic shifts of a first M sequence, the c 0 (n) being a first scrambling code sequence formed by a cyclic shift of the second M sequence
  • the first subsequence for characterizing the synchronization signal transmitted on a jth time unit of each of the time windows Used to characterize the number in each of the time windows
  • the second subsequence expression is as follows:
  • the d(2n+1) is the second subsequence
  • the c 1 (n) is a second scrambling code sequence formed by cyclic shift of the second M sequence
  • Said And said Three third scrambling code sequences formed by three cyclic shifts of the third M sequence Means for characterizing the second subsequence when the synchronization signal is transmitted on the jth time unit of each of the time windows, Used to characterize the number in each of the time windows
  • the second subsequence when the synchronization signal is transmitted on time units Means for characterizing the second subsequence when the synchronization signal is transmitted on the j+thth time unit of each of the time windows.
  • the transmitting module 101 is further configured to send the m to the user equipment UE by using a broadcast channel before transmitting the synchronization signal on the determined time unit of each of the time windows.
  • the determining module 100 is configured to determine, according to the preset synchronization signal information, a time unit used to transmit the synchronization signal in each of the time windows; wherein the preset synchronization signal information includes: a time unit for transmitting the synchronization signal in each of the time windows; or
  • the transmission module 101 is further configured to acquire updated synchronization signal information, and determine, according to the updated synchronization signal information, a time unit for transmitting the synchronization signal in each of the time windows; wherein the synchronization is updated.
  • the signal information includes a time unit for transmitting the synchronization signal within each of the time windows.
  • the device can also perform transmission of a broadcast channel while performing synchronization signal transmission, specifically:
  • the determining module 100 is further configured to determine a time unit used to transmit a broadcast channel in consecutive T time windows, where T is an integer greater than zero, and the T is an integer greater than zero;
  • the time unit used to transmit the broadcast channel in the T time windows is: the jth time unit of each time window in the T time windows; the j is greater than or equal to 1, and is less than Or a positive integer equal to S, the S being the number of time units included in each time window;
  • the transmission module 101 is further configured to separately use the broadcast channel in the determined T time The time unit in the window for transmitting the broadcast channel is transmitted.
  • the signal sending apparatus determines, by the determining module, a time unit for transmitting a broadcast channel in consecutive T time windows, where T is an integer greater than zero, and the T is an integer greater than zero; wherein
  • the time unit used to transmit the broadcast channel in the T time windows is: the jth time unit of each time window in the T time windows; the j is greater than or equal to 1, and less than or equal to S A positive integer, the S is a number of time units included in each time window; the transmission module transmits the broadcast channel in a time unit for transmitting the broadcast channel in the determined T time windows, respectively.
  • the time unit for fixing the broadcast channel to a fixed position in each time window is realized, so that when the receiving end detects the broadcast channel, only the device at the receiving end needs to detect on a fixed time unit in each time window, which is reduced.
  • the function of transmitting the broadcast channel may be performed by the apparatus shown in FIG. 2 at the same time as the corresponding function of transmitting the synchronization signal, or may be performed separately, which is not limited herein.
  • said broadcast channel is located on r time units of each of said time windows, said r time units being fixed at a position of each said time window; said r being greater than or equal to 1 and less than or equal to A positive integer of S.
  • the r may be equal to or different from m described above.
  • the transmitting module 101 is further configured to: before the transmitting, the broadcast channel is transmitted in a time unit for transmitting a broadcast channel in the determined T time windows, respectively, by using the broadcast The channel is sent to the user equipment UE.
  • the apparatus shown in FIG. 2 also needs to determine relevant parameters for performing broadcast channel transmission before performing broadcast channel transmission, for example:
  • the determining module 100 is configured to determine, according to the preset broadcast channel information, a time unit used to transmit a broadcast channel in the consecutive T time windows, where the preset broadcast channel information includes: the time window a number T and a time unit for transmitting a broadcast channel in each of the time windows; or
  • the transmission module 101 is further configured to acquire updated broadcast channel information, and determine, according to the updated broadcast channel information, a time unit used to transmit a broadcast channel in the consecutive T time windows; wherein the updated broadcast channel
  • the information includes: the number of time windows T and a time unit for transmitting a broadcast channel in each of the time windows.
  • the apparatus shown in FIG. 2 performs synchronization signal and/or broadcast channel transmission
  • the apparatus may further perform downlink measurement reference signal transmission, specifically:
  • the determining module 100 is further configured to determine a time unit for transmitting each set of downlink measurement reference signals in each time window;
  • the time unit for transmitting the each set of downlink measurement reference signals in each of the determined time windows includes at least one time unit: a jth time unit of each of the time windows, each of the time Window Time units, the j+qth time unit of each of the time windows, the S being the number of time units included in each of the time windows, the q being greater than or equal to 1 and less than or equal to S An integer, the j being a positive integer greater than or equal to 1 and less than or equal to the S;
  • the transmission module 101 is further configured to transmit, by using, each of the downlink measurement reference signals in a time unit for transmitting the downlink measurement reference signal in the determined time window.
  • the signal sending apparatus determines, by the determining module, a time unit for transmitting each set of downlink measurement reference signals in each time window; wherein each of the determined time windows is used to transmit each set of downlinks
  • the time unit for measuring the reference signal includes at least one time unit: a jth time unit of each of the time windows, each of the time windows Time units, the j+qth time unit of each of the time windows, the S being the number of time units included in each of the time windows, the q being greater than or equal to 1 and less than or equal to S
  • An integer such as the number of time units for transmitting a broadcast channel in a time window of each of the broadcast channels, may be notified to the receiving end by the transmitting end through a broadcast channel; the j is greater than or equal to 1 and less than or equal to the S a positive integer; the transmission module transmits the set of downlink measurement reference signals for each time period in the determined time window for transmitting the downlink measurement reference signal.
  • a plurality of sets of downlink measurement reference signals are fixed on a time unit in a fixed position in each time window, so that the receiving end can separately perform the measurement according to the predefined manner of the design when performing measurement based on multiple sets of reference signals.
  • the channel quality measurement of the reference signal greatly reduces the measurement complexity based on multiple sets of downlink measurement reference signals.
  • the function of transmitting the downlink measurement reference signal may be performed by the apparatus shown in FIG. 2 at the same time as the function of transmitting the broadcast channel and the corresponding function of transmitting the synchronization signal, or may be performed separately, which is not limited herein.
  • the time unit performs cyclic shift to ensure that the time unit for transmitting each set of downlink measurement reference signals is fixed in each time window.
  • a feasible implementation manner is:
  • the transmission module 101 is configured to cyclically shift a time unit used to transmit each set of downlink measurement reference signals in the determined time window, so that each set of downlink measurement reference signals is fixed in each a jth time unit of the time window, and/or a j+q time unit of each of the time windows, and/or a number of each of the time windows Transfer on time units:
  • the cyclic shift is a cyclic shift of t time units for a time unit corresponding to the kth transmission of the downlink measurement reference signal, wherein the q represents a downlink measurement reference signal for each transmission.
  • the transmitting module 101 is further configured to: before each set of downlink measurement reference signals are used to transmit the time unit of the downlink measurement reference signal in the determined time window, The value of q is transmitted to the user equipment UE over the broadcast channel.
  • FIG. 3 is a schematic structural diagram of another signal sending apparatus according to an embodiment of the present invention.
  • the apparatus further includes: a configuration module 102.
  • the configuration module 102 is configured to configure, by using the high layer signaling, a time unit corresponding to each set of downlink measurement reference signals to be measured by the UE for each of the UEs.
  • the determining module 100 is configured to determine, according to the preset downlink measurement reference signal information, a time unit used to transmit each downlink measurement reference signal in each time window; wherein the preset downlink The measurement reference signal information includes: a time unit for transmitting each set of downlink measurement reference signals in each of the time windows; or
  • the transmission module 101 is further configured to acquire updated downlink measurement reference signal information, and determine, according to the updated downlink measurement reference signal information, a time unit used to transmit each downlink measurement reference signal in each of the time windows;
  • the updated downlink measurement reference signal information includes: a time unit for transmitting each set of downlink measurement reference signals in each of the time windows.
  • the apparatus shown in FIG. 2 may also have the following functions:
  • a determining module 100 configured to determine P antenna ports, where the P antenna ports are antenna ports that transmit synchronization signals;
  • the transmission module 101 is configured to map a broadcast channel to the P antenna ports for transmission.
  • the signal transmitting apparatus determines P antenna ports by using a determining module, where the P antenna ports are antenna ports for transmitting synchronization signals; and the transmitting module maps a broadcast channel to the P antenna ports for transmission.
  • the transmission of the broadcast channel based on the synchronization signal resource is implemented, so that the device at the receiving end performs demodulation of the broadcast channel according to the synchronization signal resource, thereby reducing the complexity of the device at the receiving end when detecting the synchronization signal resource and the broadcast channel corresponding to multiple sets of resources respectively.
  • the device at the receiving end is also prevented from demodulating the synchronization signal and the broadcast channel based on different resources.
  • the overhead and design of the broadcast channel demodulation pilot is reduced since there is no need to redefine the new broadcast channel dedicated demodulation pilot.
  • the transmission module 101 is specifically configured to: map the broadcast channel to an ith time unit of each time window, and map the P channel to the P antenna ports for transmission;
  • a transmission period of the synchronization signal on the i-th time unit of each of the time windows is less than or equal to a transmission period of the broadcast channel on the i-th time unit of each of the time windows
  • the i is greater than or equal to 1 and less than or equal to M
  • the M is the total number of time units in each time window.
  • the transmission module 101 is specifically configured to map the synchronization signal to at least two symbols in the ith time unit of each time window and map to the P antenna ports. transmission;
  • the symbol is a time unit smaller than the time unit.
  • the determining module 100 is configured to determine the P antenna ports according to preset antenna port information, where the preset antenna port information includes a correspondence between the P antenna ports and the synchronization signal. ;or,
  • the transmission module 101 is further configured to acquire updated antenna port information, determine the P antenna ports according to the updated antenna port information, and the updated antenna port information includes the P antenna ports and the synchronization. Correspondence of signals.
  • the device shown in FIG. 2 or FIG. 3 above is used as a device at the transmitting end, and correspondingly, as a receiving end
  • the device also needs to be improved accordingly.
  • the device at the receiving end will be described below through a specific embodiment.
  • FIG. 4 is a schematic structural diagram of a signal detecting apparatus according to an embodiment of the present invention.
  • the device as a receiving end device may be a UE, a remote radio unit (RRU), or any other receiving device. 4, the device includes: a determining module 200 and a detecting module 201.
  • a determining module 200 configured to determine a time unit for detecting a synchronization signal in each time window
  • the determined time unit comprises at least one time unit: a jth time unit of each of the time windows, each of the time windows Time units, the j+th time units of each of the time windows, the S being a number of time units included in each of the time windows, the m being a positive integer greater than or equal to 1 and less than or equal to S , the j is a positive integer greater than or equal to 1 and less than or equal to the S;
  • the detecting module 201 is configured to detect the synchronization signal on the determined time unit of each of the time windows.
  • the signal detecting apparatus determines, by the determining module, a time unit for detecting a synchronization signal in each time window; wherein the determined time unit includes at least one time unit: the jth of each of the time windows Time unit, the number of each of the time windows Time units, the j+th time units of each of the time windows, the S being a number of time units included in each of the time windows, the m being a positive integer greater than or equal to 1 and less than or equal to S And j is a positive integer greater than or equal to 1 and less than or equal to the S; the detecting module detects the synchronization signal on the determined time unit of each of the time windows.
  • the time unit for fixing the synchronization signal to a fixed position in each time window is realized, so that the device at the receiving end only needs to detect on the fixed time unit in each time window when detecting the synchronization signal, thereby reducing the synchronization signal design.
  • the complexity and complexity of the detection of the receiving device is realized, so that the device at the receiving end only needs to detect on the fixed time unit in each time window when detecting the synchronization signal, thereby reducing the synchronization signal design.
  • a time window there may be three time units for placing the synchronization signal, and the synchronization signals on the three time units need to be distinguished.
  • the specific division scheme may refer to FIG. 2 .
  • Corresponding embodiments are not described herein again.
  • FIG. 5 is a schematic structural diagram of another signal detecting apparatus according to an embodiment of the present invention.
  • the apparatus further includes: a transmitting module 202.
  • the transmission module 202 is further configured to: detect a time list of the synchronization signal in each time window Before the element, the value of the m broadcasted by the sender is obtained.
  • the determining module 200 is specifically configured to:
  • the preset synchronization signal information includes: a time unit for detecting a synchronization signal in each of the time windows; or
  • Obtaining updated synchronization signal information determining, according to the updated synchronization signal information, a time unit for determining a synchronization signal in each time window; wherein the updated synchronization signal information includes: detecting a synchronization signal in each of the time windows Time unit.
  • the device shown in FIG. 4 or FIG. 5 detects the synchronization signal
  • the device can also detect the broadcast channel, specifically:
  • the determining module 200 is further configured to determine a time unit for detecting a broadcast channel in consecutive T time windows, where the T is an integer greater than zero;
  • the time unit for detecting the broadcast channel in the T time windows is: the jth time unit of each of the time windows; the j is a positive integer greater than or equal to 1, and less than or equal to S, S is the number of time units contained in each time window;
  • the detecting module 201 is further configured to detect the broadcast channel on a time unit that detects a broadcast channel in the determined T time windows.
  • the signal detecting apparatus determines, by the determining module, a time unit for detecting a broadcast channel in consecutive T time windows, wherein the T is an integer greater than zero; wherein the time unit of the broadcast channel is detected in the T time windows a: the jth time unit of each of the time windows; the j is a positive integer greater than or equal to 1, and less than or equal to S, the S is a number of time units included in each time window; The broadcast channel is detected on a time unit of detecting the broadcast channel in the determined T time windows.
  • the time unit for fixing the broadcast channel to a fixed position in each time window is realized, so that the device at the receiving end only needs to detect on a fixed time unit in each time window when detecting the broadcast channel, thereby reducing the design of the broadcast channel.
  • the complexity and complexity of the detection of the receiving device is realized, so that the device at the receiving end only needs to detect on a fixed time unit in each time window when detecting the broadcast channel, thereby reducing the design of the broadcast channel.
  • detecting the synchronization signal and the function of detecting the broadcast channel may be performed in synchronization with the devices shown in FIG. 4 or FIG. 5, and may be performed independently of each other, which is not limited herein.
  • said broadcast channel is located on r time units of each of said time windows, said r time units being fixed at a position of each said time window, said r being greater than or equal to 1 and less than Or a positive integer equal to S.
  • the determining module 200 is further configured to acquire a value of the r broadcast by the sending end before detecting the broadcast channel on a time unit that detects a broadcast channel in the determined T time windows.
  • the determining module 200 is specifically configured to:
  • the preset broadcast channel information includes: the number of time windows T and each of the time windows Detecting the time unit of the broadcast channel; or,
  • Obtaining updated broadcast channel information determining, according to the updated broadcast channel information, a time unit for detecting a broadcast channel in the consecutive T time windows; wherein the updated broadcast channel information includes: the number of time windows T and A time unit of the broadcast channel is detected within each of the time windows.
  • the device shown in FIG. 4 or FIG. 5 detects the synchronization signal and/or the broadcast channel, the device may also perform measurement of the downlink measurement reference signal, specifically:
  • the determining module 200 is further configured to determine a time unit for measuring each set of downlink measurement reference signals in each of the time windows;
  • the time unit for measuring each set of downlink measurement reference signals in each of the determined time windows includes at least one time unit: a jth time unit of each of the time windows, and a number of each of the time windows Time unit, the j+qth time unit of each of the time windows, the q being a positive integer greater than or equal to 1 and less than or equal to S; the S being a time unit included in each of the time windows a number that is a positive integer greater than or equal to 1 and less than or equal to S, the j being a positive integer greater than or equal to 1 and less than or equal to the S;
  • the detecting module 201 is further configured to perform channel quality measurement of each set of downlink measurement reference signals on a time unit of measuring each set of downlink measurement reference signals in the determined time window.
  • the signal detecting apparatus determines, by the determining module, a time unit for measuring each set of downlink measurement reference signals in each of the time windows; wherein each set of the downlink measurement reference signals is measured in each of the determined time windows.
  • the time unit includes at least one time unit: a jth time unit of each of the time windows, each of the time windows Time unit, the j+qth time unit of each of the time windows, the q being a positive integer greater than or equal to 1 and less than or equal to S; the S being a time unit included in each of the time windows a number that is a positive integer greater than or equal to 1 and less than or equal to S, the j being a positive integer greater than or equal to 1 and less than or equal to the S; the detection module measuring each of the determined time windows The channel quality measurement of each set of downlink measurement reference signals is performed on a time unit of the downlink measurement reference signal.
  • the plurality of sets of downlink measurement reference signals are fixed on a time unit in a fixed position in each time window, so that the receiving end can separately perform according to the predefined manner of the design when receiving and measuring each set of the measurement reference signals.
  • the channel quality measurement of each set of reference signals greatly reduces the measurement complexity based on multiple sets of downlink measurement reference signals.
  • the apparatus shown in FIG. 4 or FIG. 5 when the apparatus shown in FIG. 4 or FIG. 5 performs the function of detecting the synchronization signal and/or the function of the broadcast channel, the apparatus may also perform a function of measuring the downlink measurement reference signal, or the foregoing three functions may be performed. Independent implementation, not limited here.
  • the determining module 200 is further configured to obtain the value of the q broadcast by the sending end before measuring a time unit of each set of downlink measurement reference signals in the determined time window.
  • the detecting module 201 is configured to perform channel quality measurement of the downlink measurement reference signal on a time unit corresponding to each set of downlink measurement reference signals configured by the high layer signaling of the sending end.
  • the determining module 200 is specifically configured to:
  • the preset downlink measurement reference signal information includes: measuring each of the time windows The time unit of each set of downlink measurement reference signals; or
  • the updated downlink measurement reference signal information includes : measuring a time unit of each set of downlink measurement reference signals in each of said time windows.
  • the device is used as a device at the receiving end.
  • the embodiment of the present invention provides a broadcast channel solution based on the synchronization signal resource. Tune the plan, specific:
  • a determining module 200 configured to determine P antenna ports, where the P antenna ports are antenna ports that transmit synchronization signals at the transmitting end;
  • the detecting module 201 is configured to detect a broadcast channel on the P antenna ports.
  • the signal detecting apparatus determines, by the determining module, P antenna ports, where the P antenna ports are antenna ports for transmitting a synchronization signal at the transmitting end; and the detecting module is in the P
  • the broadcast channel is detected on the antenna port.
  • the transmission of the broadcast channel according to the synchronization signal resource is implemented, the complexity of the synchronization signal resource and the broadcast channel corresponding to the multiple sets of resources are reduced, and the devices at the receiving end are also prevented from demodulating the synchronization signal and the broadcast channel based on different resources.
  • the overhead and design of the broadcast channel demodulation pilot is reduced since there is no need to redefine the new broadcast channel dedicated demodulation pilot.
  • the detecting module 201 is specifically configured to:
  • a transmission period of the synchronization signal on the i-th time unit of each of the time windows is less than or equal to a transmission period of the broadcast channel on the i-th time unit of each of the time windows
  • the i is greater than or equal to 1 and less than or equal to M
  • the M is the total number of time units in each time window.
  • the detecting module 201 is configured to detect the synchronization signal corresponding to the P antenna ports on at least two symbols in the ith time unit of each time window;
  • the symbol is a time unit smaller than the time unit.
  • the determining module 200 is specifically configured to:
  • Obtaining updated antenna port information determining the P antenna ports according to the updated antenna port information, where the updated antenna port information includes a correspondence between the P antenna ports and the synchronization signal.
  • FIG. 6 is a schematic structural diagram of another apparatus for transmitting a signal according to an embodiment of the present invention.
  • the apparatus may be a base station, an evolved base station, or a remote ratio unit (RRU).
  • RRU remote ratio unit
  • the device includes a processor 300 and a transceiver 301.
  • the processor 300 may have the corresponding function of the determining module 100 shown in FIG. 2 above.
  • the transceiver 301 may have the corresponding function of the transmitting module 101 shown in FIG. 2 above. Therefore, the device can implement the corresponding FIG. Technical effects of the embodiments;
  • the processor 300 may further have the configuration module shown in FIG. 3.
  • the corresponding function of 102 therefore, the device can achieve the technical effect of the corresponding embodiment of FIG. 3;
  • the processor 300 may have the corresponding function of the determining module 200 shown in FIG. 4 above.
  • the transceiver 301 may have the corresponding function of the detecting module 201 shown in FIG. 4 above. Therefore, the device can implement the corresponding FIG. Technical effects of the embodiments;
  • the transceiver 301 can also have the corresponding functions of the transmission module 202 shown in FIG. 5, and therefore, the device can implement the technical effects of the corresponding embodiment of FIG. 5.
  • the embodiment of the present invention further provides a signal transmitting and detecting system, which includes a signal transmitting device as a transmitting device and a signal detecting device as a receiving device.
  • the present embodiment is for a transmitting device and a receiving device.
  • the number is not limited.
  • the signal transmitting device can adopt the structure shown in FIG. 2, 3 or 6 above to achieve the corresponding functions and technical effects.
  • the signal detecting device can adopt the structure shown in FIG. 4, 5 or 6 above to achieve the corresponding functions and technical effects.
  • FIG. 7 is a schematic diagram of a method for transmitting a signal according to an embodiment of the present invention.
  • the method may be implemented by using the apparatus shown in FIG. 2 or FIG. 3 or FIG. 6 above, and the apparatus is capable of performing the steps shown in this embodiment.
  • the device may be a base station, an evolved base station, an RRU, and the like. Referring to FIG. 7, the method includes the following steps:
  • Step 100 Determine a time unit for transmitting a synchronization signal in each time window
  • the determined time unit comprises at least one time unit: a jth time unit of each of the time windows, each of the time windows a time unit and a j+m time unit of each of the time windows, the S being a number of time units included in each of the time windows, the m being greater than or equal to 1 and less than or equal to S An integer, the j being a positive integer greater than or equal to 1 and less than or equal to the S;
  • Step 101 Transmit the synchronization signal on the determined time unit of each of the time windows.
  • the signal transmitting method provided by this embodiment is configured to determine a time unit for transmitting a synchronization signal in each time window; wherein the determined time unit includes at least one time unit: the jth of each of the time windows Time unit, the number of each of the time windows a time unit and a j+m time unit of each of the time windows, the S being a number of time units included in each of the time windows, the m being greater than or equal to 1 and less than or equal to S An integer, as it may be, the number of time units used to transmit a broadcast channel within each of said time windows, said j being a positive integer greater than or equal to 1 and less than or equal to said S; at each of said time windows The synchronization signal is transmitted on the determined time unit.
  • the time unit for fixing the synchronization signal to a fixed position in each time window is realized, so that when the receiving end detects the synchronization signal, only the device at the receiving end needs to detect on a fixed time unit in each time window, which is reduced.
  • the complexity of the synchronization signal design and the complexity of the detection of the receiving device.
  • a time window there may be three time units for placing the synchronization signal, in order to effectively distinguish the synchronization signals on the three time units, so that the receiving end can accurately identify
  • the embodiment of the invention provides an implementation scheme for distinguishing the synchronization signal, which is specifically as follows:
  • the sequence corresponding to the synchronization signal is composed of a first sub-sequence and a second sub-sequence, wherein the first sub-sequence expression is as follows:
  • the N is the length of the sequence corresponding to the synchronization signal
  • the d(2n) is the first subsequence
  • Said And said a three sequence formed by three cyclic shifts of a first M sequence, the c 0 (n) being a first scrambling code sequence formed by a cyclic shift of the second M sequence
  • the first subsequence for characterizing the synchronization signal transmitted on a jth time unit of each of the time windows Used to characterize the number in each of the time windows
  • the second subsequence expression is as follows:
  • the d(2n+1) is the second subsequence
  • the c 1 (n) is a second scrambling code sequence formed by cyclic shift of the second M sequence
  • Said And said Three third scrambling code sequences formed by three cyclic shifts of the third M sequence Means for characterizing the second subsequence when the synchronization signal is transmitted on the jth time unit of each of the time windows, Used to characterize the number in each of the time windows
  • the second subsequence when the synchronization signal is transmitted on time units Means for characterizing the second subsequence when the synchronization signal is transmitted on the j+thth time unit of each of the time windows.
  • the device at the transmitting end may send the m to the user equipment UE by using a broadcast channel.
  • the device at the transmitting end may send the value of the m to the UE before transmitting the synchronization signal.
  • the value of m may be preset in the UE, and in this case, the value of the m does not need to be sent to the UE.
  • step 100 shown in FIG. 7 it may have the following feasible implementation manners:
  • Step 100a determining, according to the preset synchronization signal information, a time unit for transmitting the synchronization signal in each of the time windows; wherein the preset synchronization signal information includes: each of the time windows a time unit for transmitting the synchronization signal;
  • Step 100a presets, in a preset manner, a time unit for transmitting the synchronization signal in each of the time windows is preset in a storage medium of the device at the transmitting end, and when the synchronization signal transmission is needed, the storage medium is retrieved.
  • the preset synchronization signal information is transmitted and the synchronization signal is transmitted.
  • the preset synchronization signal information may further include the foregoing parameters such as S and m.
  • Step 100b Acquire updated synchronization signal information, and determine, according to the updated synchronization signal information, a time unit used to transmit the synchronization signal in each time window; wherein the updated synchronization signal information includes : a time unit for transmitting the synchronization signal within the time window.
  • the updated synchronization signal information may be generated according to the system requirements; or the device at the transmitting end receives the updated synchronization signal information sent by the system control device, and further, the device at the transmitting end It can be obtained from the control device actively, or it can wait for the control device configuration, which is not limited here.
  • the updated synchronization signal information may further include the foregoing parameters such as S and m.
  • FIG. 8 is provided by the embodiment of the present invention. Another schematic diagram of a signal transmission method, referring to FIG. 8, includes the following steps:
  • Step 200 Determine a time unit for transmitting a broadcast channel in consecutive T time windows, where the T Is an integer greater than zero;
  • the time unit used to transmit the broadcast channel in the T time windows is: the jth time unit of each time window in the T time windows; the j is greater than or equal to 1, and is less than Or a positive integer equal to S, the S being the number of time units included in each time window;
  • Step 201 The broadcast channel is respectively transmitted in a time unit for transmitting a broadcast channel in the determined T time windows.
  • the signal sending method provided in this embodiment is configured to determine a time unit for transmitting a broadcast channel in consecutive T time windows, where T is an integer greater than zero; wherein the T time windows are used to transmit the broadcast
  • the time unit of the channel is: the jth time unit of each time window in the T time windows; the j is a positive integer greater than or equal to 1, and less than or equal to S, and the S is each time window a number of time units included; transmitting the broadcast channel in a time unit for transmitting a broadcast channel in the determined T time windows, respectively.
  • the time unit for fixing the broadcast channel to a fixed position in each time window is realized, so that when the receiving end detects the broadcast channel, only the device at the receiving end needs to detect on a fixed time unit in each time window, which is reduced.
  • steps 200 and 201 may be performed simultaneously with the steps 100 and 101 shown in FIG. 7 , or may be performed separately, and are not limited herein.
  • all of the broadcast channels in the cell are located in r time units of each of the time windows in a time division manner, and the r time units are fixed at positions of each of the time windows; Or a positive integer equal to 1 and less than or equal to S.
  • the r may be equal to or different from m described above.
  • step 201 shown in FIG. 8 the method further includes:
  • Step 202 Send the r to the user equipment UE by using a broadcast channel. So that the UE detects the broadcast channel on the r time units. Optionally, the value of the r is sent to all user equipment UEs in the cell through a first transmission broadcast channel in each of the time windows.
  • the device at the transmitting end also needs to determine relevant parameters for performing the broadcast channel transmission. Specifically, in step 200, the following methods may be implemented:
  • Step 200a Determine, according to preset broadcast channel information, a time unit used to transmit a broadcast channel in the consecutive T time windows; where the preset broadcast channel information includes: a time window number T and a time unit for transmitting a broadcast channel in each of the time windows;
  • the step 200b is to obtain the updated broadcast channel information, and determine, according to the updated broadcast channel information, a time unit for transmitting the broadcast channel in the consecutive T time windows; wherein the updated broadcast channel information includes: The number of time windows T and a time unit for transmitting a broadcast channel in each of the time windows.
  • step 200a and step 200b reference may be made to the related description of step 100a and step 100b above, that is, the device at the transmitting end may determine the number of time windows T and each by using preset or acquisition. a time unit for transmitting a broadcast channel in the time window.
  • the preset broadcast channel information or the updated broadcast channel information may further include a time window number T, and each of the time windows is used to transmit a broadcast.
  • FIG. 9 is another signaling provided by the embodiment of the present invention. Schematic diagram of the method, referring to FIG. 9, the method includes the following steps:
  • Step 300 Determine a time unit for transmitting each set of downlink measurement reference signals in each time window
  • the time unit for transmitting the each set of downlink measurement reference signals in each of the determined time windows includes at least one time unit: a jth time unit of each of the time windows, each of the time Window Time units, the j+qth time unit of each of the time windows, the S being the number of time units included in each of the time windows, the q being greater than or equal to 1 and less than or equal to S An integer, the j being a positive integer greater than or equal to 1 and less than or equal to the S;
  • Step 301 The set of downlink measurement reference signals are respectively used to transmit the time unit of the downlink measurement reference signal in the determined time window for transmission.
  • the signal sending method provided in this embodiment is configured to determine a time unit for transmitting each set of downlink measurement reference signals in each time window; wherein each of the determined time windows is used to transmit each set of downlink measurement reference
  • the time unit of the signal includes at least one time unit: a jth time unit of each of the time windows, each of the time windows Time units, the j+qth time unit of each of the time windows, the S being the number of time units included in each of the time windows, the q being greater than or equal to 1 and less than or equal to S An integer, where j is a positive integer greater than or equal to 1 and less than or equal to the S; and each set of downlink measurement reference signals is used to transmit a time unit of the downlink measurement reference signal in the determined time window transmission.
  • a plurality of sets of downlink measurement reference signals are fixed on a time unit in a fixed position in each time window, so that the receiving end can separately perform the measurement according to the predefined manner of the design when performing measurement based on multiple sets of reference signals.
  • the channel quality measurement of the reference signal greatly reduces the measurement complexity based on multiple sets of downlink measurement reference signals.
  • steps 300 and 301 may be performed simultaneously with step 100 and step 101 shown in FIG. 7; or, step 100, step 101, and step 200, step 201 shown in FIG. It may be executed at the same time; or it may be executed simultaneously with step 200 and step 201 shown in FIG. 8; or, it may be executed separately, and is not limited herein.
  • the time unit of the downlink measurement reference signal placed in the time division is cyclically shifted to ensure that the time unit for transmitting each downlink measurement reference signal is fixed in each time window, specifically, A feasible implementation is:
  • the cyclic shift is a cyclic shift of t time units for a time unit corresponding to the kth transmission of the downlink measurement reference signal, wherein the q represents a downlink measurement reference signal for each transmission.
  • the method further includes:
  • Step 302 Send the value of the q to the user equipment UE by using a broadcast channel.
  • the time unit corresponding to each set of downlink measurement reference signals to be measured by the UE is configured for each UE by using the high layer signaling.
  • the transmitting end configures, by the high-layer signaling, a set of measurement time units corresponding to each set of downlink measurement reference signals, and the UE performs channel quality measurement of each set of measurement reference signals on the time units in the set.
  • the downlink measurement reference signal transmission is performed.
  • the device at the transmitting end also needs to determine the relevant parameters for performing the downlink measurement reference signal.
  • the following may be implemented in several possible ways:
  • Step 300a Determine, according to the preset downlink measurement reference signal information, a time unit for transmitting each set of downlink measurement reference signals in each of the time windows; wherein the preset downlink measurement reference signal information includes: a time unit for transmitting each set of downlink measurement reference signals in each of the time windows; or
  • Step 300b Obtain updated downlink measurement reference signal information, and determine, according to the updated downlink measurement reference signal information, a time unit used to transmit each downlink measurement reference signal in each time window; wherein The updated downlink measurement reference signal information includes: a time unit for transmitting each set of downlink measurement reference signals in each of the time windows.
  • the device at the transmitting end may use preset or acquisition to determine the transmission for each of the time windows.
  • the time unit of each set of downlink measurement reference signals, and the preset downlink measurement reference signal information or the updated downlink measurement reference signal information may further include, in each of the time windows, used to transmit the downlink measurement reference signal.
  • Time unit related parameters such as j, q, S.
  • the following describes how to fix the synchronization signal, the broadcast channel, and the downlink measurement reference signal in a specific time unit of each time window by using a specific embodiment, where the synchronization signal is exemplified by PSS and/or SSS.
  • the device at the transmitting end may use a physical broadcast channel (Physical Broadcast Channel, PBCH for short), a downlink measurement reference signal (Downlink Measurement Reference Signal, DL-MRS for short), and a primary synchronization signal (Primary Synchronization Signal for short).
  • PBCH Physical Broadcast Channel
  • DL-MRS Downlink Measurement Reference Signal
  • DL-MRS Primary synchronization signal
  • Primary Synchronization Signal Primary Synchronization Signal for short
  • the PSS) and/or the Secondary Synchronization Signal (SSS) may perform the transmission of the multi-subscription resources, where the DL-MRS may be a Cell Specific Reference Signal (CRS) or a channel in the current LTE system.
  • CRS Cell Specific Reference Signal
  • CSI-RS Channel State Information Reference Signal
  • PBCH, DL-RS, PSS, and/or SSS use each resource for time-division transmission, and the m resources need to be transmitted to different time units of the time window for transmission, that is, One resource corresponds to the first time unit of a time window, the second resource corresponds to the second time unit of the time window, and so on.
  • Each round of transmission corresponds to a time window, and all resources are transmitted at least once in one round of transmission.
  • FIG. 10 is a schematic diagram of a multi-resource transmission sequence according to an embodiment of the present invention. Referring to FIG. 10, 6 is introduced into the above.
  • the first round of transmission order is: a, b, c, d, e, f.
  • the second round of transmission order is the corresponding transmission time unit of each resource relative to the first round of cyclic shift 4 Time unit (to the right), the order of transmission after shifting is: c, d, e, f, a, b.
  • the order of transmission of the third round is also the same as the transmission time unit corresponding to each resource.
  • Bit 4 time units (to the right) the transmitted order after shifting is also: c, d, e, f, a, b.
  • the fourth round of transmission order is the corresponding transmission time unit of each resource relative to the first
  • the wheel is cyclically shifted by 2 time units (to the right), and the shifted transmission order is: e, f, a, b, c, d.
  • the fifth round of transmission order is the corresponding transmission time unit of each resource relative to The first round is cyclically shifted by 2 time units (to the right), and the shifted firing order is also: e, f, a, b, c, d.
  • the sixth round of the firing order is shifted relative to the first round.
  • Bit 0 time units, the order of transmission after shifting is: a, b, c, d, e, f.
  • one radio frame in FIG. 10 corresponds to one time window, and one radio frame includes 10 subframes, as shown in FIG. 10, the label is The subframes of 0-9 belong to one radio frame, the subframes labeled 10-19 belong to one radio frame, the subframes labeled 20-29 belong to one radio frame, and the subframes labeled 30-39 belong to one radio frame.
  • the subframes 0-5 in the first radio frame respectively correspond to six resources of a, b, c, d, e, and f, and 10-15 in the second radio frame.
  • the sub-frames respectively correspond to six resources of a, b, c, d, e, and f
  • the sub-frames of 20-25 in the third radio frame respectively correspond to six resources of a, b, c, d, e, and f respectively.
  • m resources can be fixed on m subframes of each radio frame by the above-mentioned shift, so that when each round of transmission, multiple resources are transmitted at a fixed position.
  • the positions where m resources are fixed in each radio frame may be the first m subframes of the radio frame, or the last m subframes of the radio frame, or any consecutive m subframes in the radio frame.
  • each resource may be used to transmit PBCH, DL-RS, PSS, and/or SSS, and for example, PSS and/or SSS may be used to transmit time units of the Jth resource of the PSS and/or SSS.
  • Position is: jth time unit, and/or Time units, and/or j+m time units.
  • the time unit for transmitting the PSS and/or SSS in the first radio frame is: the 0th time.
  • the time unit for transmitting PSS and/or SSS in the second radio frame is: 0th time unit (subframe numbered 10) and 6th time unit ( The subframe numbered 16); the time unit for transmitting the PSS and/or SSS in the third radio frame is: the 0th time unit (subframe numbered 20) and the 6th time unit (labeled as 26 sub-frames) and so on.
  • the location of the time unit in which the jth resource for transmitting the PBCH may occur is: the jth time unit of each PBCH transmission time window.
  • the jth resource of the PBCH is fixed to be transmitted in the jth subframe of each of the PBCH transmission radio frames, that is, the PBCH of the first resource is transmitted in each of the PBCH radio frames.
  • the first subframe is transmitted, and the corresponding user group performs blind detection in the corresponding subframe.
  • the PBCH of the second resource is transmitted in the second subframe of each of the PBCH transmission radio frames, and the corresponding user group performs blind detection in the corresponding subframe.
  • the location of the time unit in which the jth resource for transmitting the DL-RS may appear is: the jth time unit, and/or the j+qth time unit, and / or Time units.
  • the jth resource of the DL-RS when only one radio subframe is included in one time window, the jth resource of the DL-RS is in the subframe set ⁇ j, j+q/10+j/j+10-q, The downlink channel quality measurement of the jth resource is performed on j+2q/20+j/j+2(10-q), .
  • j+q/10+j/j+10-q represents one of the j+q or 10+j or j+10-q subframes, and the user performs detection in the above 3 subframes.
  • the resource j is detected, the corresponding channel quality measurement (including the sliding average of the measured values, etc.) is performed on this subframe.
  • the channel quality measurement may be a channel Channel Quality Indicator (CQI), Reference Signal Received Power (RSRP), Reference Signal Received Quality (RSRQ), etc.
  • CQI Channel Quality Indicator
  • RSRP Reference Signal Received Power
  • RSRQ Reference Signal Received Quality
  • the i-th resource of the DL-RS is in the subframe set:
  • the downlink channel quality measurement of the jth resource is performed. among them Represents the j+q number or the Number or number One of the sub-frames, the user performs detection in the above three sub-frames.
  • the corresponding channel quality measurement (including the sliding average of the measured values, etc.) is performed on the sub-frame, and the q is greater than or equal to 1 is a positive integer less than or equal to S, as it may be a number/set of different downlink measurement reference signals transmitted in each time window, wherein the S is the number of time units included in each of the time windows, and the j is A positive integer greater than or equal to 1 and less than or equal to the S.
  • FIG. 11 is the present invention.
  • Step 400 Determine P antenna ports, where the P antenna ports are antenna ports that transmit synchronization signals.
  • Step 401 Map a broadcast channel to the P antenna ports for transmission.
  • the signal transmitting method provided by the embodiment of the present invention determines the P antenna ports, where the P antenna ports are antenna ports for transmitting synchronization signals; and then maps the broadcast channel to the P antenna ports for transmission.
  • the transmission of the broadcast channel based on the synchronization signal resource is implemented, so that the device at the receiving end performs demodulation of the broadcast channel according to the synchronization signal resource, thereby reducing the complexity of the device at the receiving end when detecting the synchronization signal resource and the broadcast channel corresponding to multiple sets of resources respectively.
  • the device at the receiving end is also prevented from demodulating the synchronization signal and the broadcast channel based on different resources.
  • the overhead and design of the broadcast channel demodulation pilot is reduced since there is no need to redefine the new broadcast channel dedicated demodulation pilot.
  • step 401 is:
  • Step 401a The broadcast channel is respectively located on an ith time unit of each time window, and is mapped to the P antenna ports for transmission;
  • the device at the transmitting end simultaneously transmits the synchronization signal on the ith time unit of each time window and maps to the P antenna ports for transmission;
  • a transmission period of the synchronization signal on the i-th time unit of each of the time windows is less than or equal to the broadcast channel on the i-th time unit of each of the time windows
  • the transmission period is that the i is greater than or equal to 1 and less than or equal to M, and the M is the total number of time units in each time window.
  • step 400 Several possible implementations of step 400 are:
  • Step 400a Determine the P antenna ports according to preset antenna port information, where the preset antenna port information includes a correspondence between the P antenna ports and the synchronization signal.
  • Step 400b Obtain updated antenna port information, and determine the P antenna ports according to the updated antenna port information, where the updated antenna port information includes a correspondence between the P antenna ports and the synchronization signal. relationship.
  • the corresponding embodiment of FIG. 11 is to demodulate the broadcast channel of each resource based on the synchronization signal.
  • the following broadcast channel uses PBCH, and the synchronization signal uses PSS/SSS as an example.
  • the total number of resources is m.
  • the base station performs transmission of multiple resources, the PBCH of the jth resource is demodulated based on the PSS/SSS signal of the jth resource, that is, the PBCH of each resource is bound to the PSS/SSS.
  • the transmission period of the PSS/SSS is less than or equal to the transmission period of the PBCH.
  • the transmission interval of two adjacent PSS/SSS of each resource is less than or equal to the time interval of two adjacent transmissions of the corresponding PBCH.
  • the PSS/SSS of the jth resource is in the jth or j+10-m or j+m subframe of each frame, and the transmission interval of the adjacent PSS/SSS is m. /(10-m)/10.
  • the PBCH of the jth resource is fixed in the jth subframe of each frame, and the transmission interval of the adjacent two PBCHs is 10.
  • FIG. 12 is a schematic diagram of a transmission time according to an embodiment of the present invention. 12:
  • the time at which the PBCH/PSS/SSS is marked is the time at which both the PBCH and the PSS/SSS are transmitted.
  • the time at which the PSS/SSS is marked is the time when only the PSS/SSS is transmitted and the PBCH is not transmitted.
  • the PBCH at the 0th time of the receiving end is demodulated based on the PSS/SSS at the 0th time in FIG. 12, and the PBCH at the 10th time is demodulated based on the PSS/SSS at the 10th time, and so on.
  • the device at the transmitting end transmits the synchronization signal, and a preferred implementation manner is as follows:
  • the symbol is a time unit smaller than the time unit.
  • FIG. 13 and FIG. 14 are schematic diagrams showing a time domain structure of a synchronization signal according to an embodiment of the present invention.
  • the density of the extended PSS/SSS under the FDD is only located in the first subframe of the current subframe in the current 3GPP standard.
  • the last two OFDM symbols of the slot are up to the last two OFDM symbols of the first slot and the second slot of the subframe in which it is located.
  • the SSS is located on the penultimate OFDM symbol of each slot, and the PSS is located on the last OFDM symbol of each slot.
  • the design of FIG. 14 is also adopted, that is, the PSS/SSS is located in the first time slot of the frame and the first two OFDM symbols of the second time slot, specifically, the first time that the SSS is located in each time slot.
  • the PSS is located on the second OFDM symbol of each slot.
  • the relative position of the PSS/SSS in the two time slots in both designs is symmetrical.
  • there are other ways to increase the PSS/SSS time domain density there are other ways to increase the PSS/SSS time domain density.
  • FIG. 15 and FIG. 16 are schematic diagrams showing another time domain structure of a synchronization signal according to an embodiment of the present invention.
  • the time domain density of PSS and SSS is increased in subframe 0/5 and special subframe respectively under TDD.
  • the SSS is located in the last OFDM symbol of the subframe 0 or 5 of each frame, and the PSS is located on the Downlink Pilot Time Slot (DWPTS) of the adjacent special subframe.
  • DWPTS Downlink Pilot Time Slot
  • the design of the PSS/SSS under the extended TDD is as shown in the above 10, the SSS is located on the third OFDM symbol and the last OFDM symbol of the subframe 0 or 5, and the PSS is located in the first one of the adjacent special subframes. On the OFDM symbol and the third OFDM symbol.
  • the SSS is located on the third OFDM symbol and the last OFDM symbol of the subframe 0 or 5, and the PSS is located in the adjacent special subframe.
  • the third OFDM symbol and the seventh OFDM symbol (when the DwPTS in the special subframe contains 9 or more OFDM symbols).
  • the PSS may also be placed on the third OFDM symbol and the sixth or eight OFDM symbols of the adjacent special subframe.
  • FIG. 17 is a schematic diagram of a signal detecting method according to an embodiment of the present invention.
  • the device may be a device at the receiving end, and the device may be a UE, a remote radio unit (RRU), or any other receiving device.
  • RRU remote radio unit
  • Step 500 Determine a time unit for detecting a synchronization signal in each time window
  • the determined time unit comprises at least one time unit: a jth time unit of each of the time windows, each of the time windows Time units, the j+th time units of each of the time windows, the S being a number of time units included in each of the time windows, the m being a positive integer greater than or equal to 1 and less than or equal to S , the j is a positive integer greater than or equal to 1 and less than or equal to the S;
  • Step 501 Detect the synchronization signal on the determined time unit of each of the time windows.
  • the signal detecting method provided by this embodiment determines a time unit for detecting a synchronization signal in each time window; wherein the determined time unit includes at least one time unit: a jth time unit of each of the time windows , the first of each of the time windows Time units, the j+th time units of each of the time windows, the S being a number of time units included in each of the time windows, the m being a positive integer greater than or equal to 1 and less than or equal to S And j is a positive integer greater than or equal to 1 and less than or equal to the S; the synchronization signal is detected on the determined time unit of each of the time windows.
  • the time unit for fixing the synchronization signal to a fixed position in each time window is realized, so that the device at the receiving end only needs to detect on the fixed time unit in each time window when detecting the synchronization signal, thereby reducing the synchronization signal design.
  • the complexity and complexity of the detection of the receiving device is realized, so that the device at the receiving end only needs to detect on the fixed time unit in each time window when detecting the synchronization signal, thereby reducing the synchronization signal design.
  • the method further includes:
  • Step 502 Obtain a value of the m broadcasted by the sending end.
  • the device at the receiving end needs to know the value of the m, and a feasible implementation manner is that the device at the receiving end obtains the broadcast of the transmitting end through blind detection.
  • the value of the m is; or, another feasible implementation manner is: presetting the value of the m in the device at the receiving end, and calling the value of the m when the device at the receiving end needs to perform corresponding detection.
  • Manner 1 determining, according to the preset synchronization signal information, a time unit for detecting a synchronization signal in each time window; wherein the preset synchronization signal information includes: a time unit for detecting a synchronization signal in each of the time windows;
  • Step 500a presets, in a preset manner, a time unit of the to-be-detected synchronization signal in each of the time windows in a storage medium of the device at the receiving end, and when the synchronization signal needs to be detected, the storage medium is retrieved.
  • the preset synchronization signal information may further include the foregoing parameters such as S and m.
  • Step 500b Acquire updated synchronization signal information, and determine, according to the updated synchronization signal information, a time unit for determining a synchronization signal in each time window; wherein the updated synchronization signal information includes: each The time unit in which the synchronization signal is detected within the time window.
  • the updated synchronization signal information may be generated according to the system requirements; or the device at the receiving end receives the updated synchronization signal information sent by the control device in the system, and further, receives The device at the end can be obtained from the control device actively, or can wait for the configuration of the control device, which is not limited herein.
  • the updated synchronization signal information may further include the foregoing parameters such as S and m.
  • FIG. 18 is a schematic diagram of another signal detecting method according to an embodiment of the present invention. Referring to FIG. 18, the method includes The following steps:
  • Step 600 Determine a time unit for detecting a broadcast channel in consecutive T time windows, where T is an integer greater than zero;
  • the time unit for detecting the broadcast channel in the T time windows is: the jth time unit of each of the time windows; the j is a positive integer greater than or equal to 1, and less than or equal to S, S is the number of time units contained in each time window;
  • Step 601 Detect the broadcast channel on a time unit that detects a broadcast channel in the determined T time windows.
  • the signal detection method provided in this embodiment determines the time unit of detecting the broadcast channel in consecutive T time windows, wherein the T is an integer greater than zero; wherein the time unit of detecting the broadcast channel in the T time windows is: a jth time unit of each of the time windows; the j is a positive integer greater than or equal to 1, and less than or equal to S, the S being a number of time units included in each time window;
  • the broadcast channel is detected on a time unit that detects a broadcast channel in T time windows.
  • the time unit for fixing the broadcast channel to a fixed position in each time window is realized, so that the device at the receiving end only needs to detect on a fixed time unit in each time window when detecting the broadcast channel, thereby reducing the design of the broadcast channel.
  • the complexity and complexity of the detection of the receiving device is realized, so that the device at the receiving end only needs to detect on a fixed time unit in each time window when detecting the broadcast channel, thereby reducing the design of the broadcast channel.
  • steps 600 and 601 may be performed simultaneously with the steps 500 and 501 shown in FIG. 17 , or may be performed separately, and are not limited herein.
  • all the broadcast channels in the cell are located on r time units of each of the time windows, and the r time units are fixed at positions of each of the time windows, and the r is greater than or equal to 1 And a positive integer less than or equal to S.
  • the method further includes:
  • Step 602 Acquire a value of the r broadcast by the sending end.
  • step 502 the manner of obtaining the value of r is similar to that of step 502 above, and details are not described herein again.
  • the device at the receiving end also needs to determine the relevant parameters for detecting the broadcast channel.
  • the following possible implementation manners are as follows:
  • Step 600a determining a time unit for detecting a broadcast channel in the consecutive T time windows according to the preset broadcast channel information, where the preset broadcast channel information includes: the number of time windows T and each a time unit for detecting a broadcast channel within the time window; or
  • Step 600b Obtain updated broadcast channel information, and determine, according to the updated broadcast channel information, a time unit for detecting a broadcast channel in the consecutive T time windows; where the updated broadcast channel information includes: The number of time windows T and the time unit in which the broadcast channel is detected within each of the time windows.
  • the device at the receiving end may determine the number of time windows T and each by using preset or acquisition. a time unit of the broadcast channel to be detected in the time window.
  • the preset broadcast channel information or the updated broadcast channel information may further include a time window T and a broadcast to be detected in each of the time windows.
  • FIG. 19 is another signal detecting method according to an embodiment of the present invention. Schematic, referring to FIG. 19, the method includes the following steps:
  • Step 700 Determine a time unit for measuring each set of downlink measurement reference signals in each of the time windows;
  • the time unit for measuring each set of downlink measurement reference signals in each of the determined time windows includes at least one time unit: a jth time unit of each of the time windows, and a number of each of the time windows Time unit, the j+qth time unit of each of the time windows, the q being a positive integer greater than or equal to 1 and less than or equal to S; the S being a time unit included in each of the time windows a number that is a positive integer greater than or equal to 1 and less than or equal to S, the j being a positive integer greater than or equal to 1 and less than or equal to the S;
  • Step 701 Perform channel quality measurement of each set of downlink measurement reference signals on a time unit that measures each set of downlink measurement reference signals in the determined time window.
  • the signal detecting method provided in this embodiment determines a time unit for measuring each set of downlink measurement reference signals in each of the time windows; wherein each time period of each set of downlink measurement reference signals is measured within the determined time window Including at least one time unit: a jth time unit of each of the time windows, each of the time windows Time unit, the j+qth time unit of each of the time windows, the q being a positive integer greater than or equal to 1 and less than or equal to S; the S being a time unit included in each of the time windows a q, which is a positive integer greater than or equal to 1 and less than or equal to S, the j being a positive integer greater than or equal to 1 and less than or equal to the S; measuring each set of downlink measurement references within the determined time window
  • the channel quality measurement of each set of downlink measurement reference signals is performed on a time unit of the signal.
  • the plurality of sets of downlink measurement reference signals are fixed on a time unit in a fixed position in each time window, so that the receiving end can separately perform according to the predefined manner of the design when receiving and measuring each set of the measurement reference signals.
  • the channel quality measurement of each set of reference signals greatly reduces the measurement complexity based on multiple sets of downlink measurement reference signals.
  • steps 700 and 701 may be performed simultaneously with the steps 500 and 501 shown in FIG. 17; or, the steps 500 and 501 shown in FIG. 17 and the steps 600 and 601 shown in FIG. 18 may be performed. It may be executed at the same time; or it may be executed simultaneously with step 600 and step 601 shown in FIG. 18; or, it may be executed separately, and is not limited herein.
  • the method further includes:
  • Step 702 Acquire the q broadcasted by the sending end.
  • the channel quality measurement of the downlink measurement reference signal is performed on a time unit corresponding to each set of downlink measurement reference signals configured by the high layer signaling of the transmitting end.
  • step 700 may be as follows. Possible implementation:
  • Step 700a Determine, according to the preset downlink measurement reference signal information, a time unit for measuring each set of downlink measurement reference signals in each of the time windows; wherein the preset downlink measurement reference signal information includes: each Measuring, in the time window, a time unit of each set of downlink measurement reference signals; or
  • Step 700b Acquire updated downlink measurement reference signal information, and determine, according to the updated downlink measurement reference signal information, a time unit for measuring each set of downlink measurement reference signals in each of the time windows; wherein the updated The downlink measurement reference signal information includes: a time unit for measuring each set of downlink measurement reference signals in each of the time windows.
  • each set of time units of the downlink measurement reference signal in addition, the preset broadcast channel information or the updated broadcast channel information may further include a time unit associated with each of the time windows for measuring each set of downlink measurement reference signals.
  • Parameters such as j, q, S.
  • the time window may correspond to one or more radio frames, and according to the radio frame system in the prior art, each radio frame further includes 10 subframes, and the subframe can be regarded as
  • each radio frame further includes 10 subframes, and the subframe can be regarded as
  • the following description will be made by way of a specific example, and the above embodiment will be described in the form of a radio frame and a subframe.
  • the device at the transmitting end can perform PBCH, DL-RS, PSS and/or SSS in the manner described above.
  • the transmission of multi-divided resources will not be repeated here.
  • the total number of resources is greater than the number of subframes of the radio frame, or the total number of resources is less than or equal to the number of subframes of the radio frame, as shown in FIG. 17 to FIG. 19 below.
  • the signal detection methods provided by the embodiments of the present invention are described for the two scenarios.
  • Scenario 1 The number of resources is less than or equal to the number of subframes in each frame.
  • the broadcast channel takes the PBCH as an example, and the jth resource of the PBCH is fixed and transmitted in the jth subframe of each PBCH transmission frame, that is, the PBCH of the first resource is transmitted in the first subframe of each PBCH transmission frame, corresponding to The user group is blindly checked in the corresponding subframe.
  • the PBCH of the second resource is transmitted in the second subframe of each PBCH transmission frame, and the corresponding user group performs blind detection in the corresponding subframe. So on and so forth.
  • FIG. 20 is a schematic diagram of a broadcast channel transmission according to an embodiment of the present invention.
  • the first resource of the PBCH is given by taking a 40 ms transmission period and the number of resources is less than or equal to the number of subframes of each radio frame.
  • BCH coded broadcast channel
  • FIG. 21 is a schematic diagram of a sequence of transmission time according to an embodiment of the present invention.
  • the jth of the PSS/SSS The resource is fixed in one or more of the jth or j+10-m or j+m subframe of each PSS/SSS transmission frame, and the m is within each PSS/SSS transmission frame The number of different PSS/SSS resources.
  • the multiple transmissions of each of the above resources in a single transmission period may be non-uniform, and FIG. 21 provides a possible sequence of transmission time sequences.
  • the subframe number of each frame of the resource a within the period of 30 ms is ⁇ 0, 0, 6, 0, 6 ⁇ ;
  • the subframe number of each frame of the resource b within the period of 30 ms is ⁇ 1,1,7,1,7 ⁇ ;
  • the subframe number of each frame of the resource c within the period of 30 ms is ⁇ 2, 6, 2, 2, 8 ⁇ ;
  • the frame number is ⁇ 3,7,3,3,9 ⁇ ;
  • the subframe number of each frame of resource e in the period of 30ms is ⁇ 4,8,4,8,4 ⁇ ;
  • the resource f is in each period of 30ms.
  • the subframe number of the frame is ⁇ 5, 9, 5, 9, 5 ⁇ .
  • the resource a is transmitted for the first time in the 0th subframe of the first frame, the second transmission is performed in the 0th subframe of the second frame, and the second frame is transmitted in the second frame.
  • the sixth subframe is transmitted for the third time.
  • the SSS transmission of the m resources is performed by using three interleaving connections of a sequence of length 31.
  • the three secondary synchronization subframes (j, j+m, j+10-m) in 10ms are distinguished by different sequences. The specific implementation of how to distinguish between sequences is provided in the above, and will not be described here.
  • the subframe set in which the ith resource of the DL-RS is located may be referred to the embodiment corresponding to the foregoing sending end, and details are not described herein again.
  • the number of resources may be cell specific, ie different cells have different numbers of resources.
  • Scenario 2 The number of resources is greater than the number of sub-frames in each frame.
  • the synchronization signal is taken as an example of PSS/SSS.
  • the jth resource of PSS/SSS is fixed at the jth or j+ (floor() in [0,(floor(M/10)+1)*10-1] subframes).
  • M/10)+1)*10-m or j+m subframes the m being the number of resources of different PSS/SSS within each PSS/SSS transmission frame.
  • the multiple transmissions of the above-mentioned resources in a single transmission period may be non-uniform.
  • FIG. 23 is a schematic diagram of another broadcast channel transmission according to an embodiment of the present invention. Similarly, the resource number 15 in the above is taken as an example. Referring to FIG. 23, The resource k is transmitted for the first time in the 10th subframe, the second transmission is performed in the 15th subframe, and the third transmission is performed in the 30th subframe. Thus multiple shots within one shot period are non-uniform.
  • the SSS transmission of the m resources is performed by using three interleaving connections of a sequence of length 31, and the three secondary synchronization subframes (j, j+m, j+10-m) in 10 ms are distinguished by different sequences. .
  • the specific implementation of how to distinguish between sequences is provided in the above, and will not be described here.
  • the subframe set of the jth resource of the DL-RS may refer to the corresponding sender end. The embodiment is not described here.
  • FIG. 24 is a schematic diagram of another signal detection method according to an embodiment of the present invention. Referring to FIG. 24, the method includes the following steps:
  • Step 800 Determine P antenna ports, where the P antenna ports are antenna ports that transmit synchronization signals at the transmitting end;
  • Step 801 Detect a broadcast channel on the P antenna ports.
  • the P antenna ports are determined as antenna ports for transmitting synchronization signals by the transmitting end, and the broadcast channels are detected on the P antenna ports.
  • the transmission of the broadcast channel according to the synchronization signal resource is implemented, the complexity of the synchronization signal resource and the broadcast channel corresponding to the multiple sets of resources are reduced, and the devices at the receiving end are also prevented from demodulating the synchronization signal and the broadcast channel based on different resources.
  • the overhead and design of the broadcast channel demodulation pilot is reduced since there is no need to redefine the new broadcast channel dedicated demodulation pilot.
  • step 801 is:
  • Step 801a Detect, on an ith time unit of each time window, the broadcast channel corresponding to the P antenna ports;
  • the device at the receiving end simultaneously detects the synchronization signal corresponding to the P antenna ports on the ith time unit of each time window.
  • a transmission period of the synchronization signal on the i-th time unit of each of the time windows is less than or equal to the broadcast channel on the i-th time unit of each of the time windows
  • the transmission period is that the i is greater than or equal to 1 and less than or equal to M, and the M is the total number of time units in each time window.
  • step 800 Several possible implementations of step 800:
  • step 800a the P antenna ports are determined according to the preset antenna port information, where the preset antenna port information includes a correspondence relationship between the P antenna ports and the synchronization signal; or
  • Step 800b Obtain updated antenna port information, and determine the P antenna ports according to the updated antenna port information, where the updated antenna port information includes a correspondence between the P antenna ports and the synchronization signal. relationship.
  • the device at the receiving end detects the synchronization signal
  • the symbol is a time unit smaller than the time unit.
  • the aforementioned program can be stored in a computer readable storage medium.
  • the program when executed, performs the steps including the foregoing method embodiments; and the foregoing storage medium includes various media that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.

Abstract

本发明提供一种信号发送和检测装置、系统及方法,通过该装置确定每个时间窗内用来传输同步信号的时间单元;并在每个时间窗的确定的时间单元上传输同步信号。实现了将同步信号固定在每个时间窗内固定位置的时间单元上,从而仅需要接收端的设备在每个时间窗内固定的时间单元上进行检测,降低了同步信号设计和检测的复杂度。

Description

信号发送和检测装置、系统及方法 技术领域
本发明涉及通信技术,尤其涉及一种信号发送和检测装置、系统及方法。
背景技术
高频场景下,为克服较大的传输损耗,一些公共信道或参考信号,如下行测量参考信息(Downlink Measurement Reference Signal,简称:DL-MRS),物理广播信道(Physical Broadcast Channel,简称:PBCH),主同步信号(Primary Synchronization Signal,简称:PSS),辅同步信号(Second Synchronization Signal,简称:SSS)等的传输需通过波束赋形(Beam Forming,简称:BF)技术,即天线阵列赋形形成一个波束来产生大的天线增益。网络或小区内的用户设备采用时分方式传输信号,即小区或网络内的上述不同的波束在不同的时刻循环作用,当定义一个波束对应一份资源(如射频资源等)时,由于公共信道和公用的参考信号的传输是要保证小区内所有用户的广覆盖,因此为了保证小区内所有用户的广覆盖,所述公共信道或参考信号的传输为基于多份资源的时分轮循发射,而每份资源的广播信道(例如,PBCH)或同步信号(例如PSS和/或SSS)以固定的周期/间隔在多个时间单元分别发送。如以现有的长期演进(Long Term Evolution,简称:LTE)系统为例,编码后的广播信道传输块被映射到无线帧上,其中,每个无线帧的时长为10ms,并且每个无线帧均包含10个子帧,通常以4个无线帧为一个周期。
现有技术中,每份资源的发射周期与资源数有关,并且用户设备在接收上述信号时,需对每个帧内的广播信道或同步信号进行盲检,但是由于每小区对应的资源数并不固定,导致用户设备在每帧中盲检广播信道或同步信号的子帧号也不固定,以同步信号为例,图1为现有技术信号发送示意图,参照图1可知,资源数为6时,资源a的同步信号盲检需在每个帧的第0,6,2,4号子帧进行,且需横跨3个帧才能完成一轮资源a的周期检测。而当资源数为7时,资源a的同步信号盲检,需在每个帧的0,7,4,1,8,5,2,9,6,3号子帧进行,且需横跨7个帧才能完成一轮资源 a的周期检测。从而大大增加了广播信道或同步信号等设计的复杂度和用户盲检的复杂度。
发明内容
本发明实施例提供一种信号发送和检测装置、系统及方法,用于降低广播信道或同步信号等设计的复杂度和用户盲检的复杂度。
本发明的第一个方面是提供一种信号发送装置,包括:
确定模块,用于确定每个时间窗内用来传输同步信号的时间单元;
其中,所述确定的时间单元包括如下至少一个时间单元:每个所述时间窗的第j个时间单元,每个所述时间窗的第
Figure PCTCN2014095890-appb-000001
个时间单元和每个所述时间窗的第j+m个时间单元,所述S为每个所述时间窗包含的时间单元数,所述m为大于或等于1并且小于或等于S的正整数,所述j为大于或等于1且小于或等于所述S的正整数;
传输模块,用于在每个所述时间窗的所述确定的时间单元上传输所述同步信号。
结合第一个方面,在第一种可能的实现方式中,所述同步信号对应的序列由第一子序列和第二子序列交织组成,其中,所述第一子序列表达式如下:
Figure PCTCN2014095890-appb-000002
其中,0<=n<=N/2,所述N为所述同步信号对应的序列的长度,所述d(2n)为所述第一子序列,所述
Figure PCTCN2014095890-appb-000003
所述
Figure PCTCN2014095890-appb-000004
和所述
Figure PCTCN2014095890-appb-000005
为由第一M序列的三个循环移位形成的三个序列,所述c0(n)为由第二M序列的循环移位形成的第一扰码序列,所述
Figure PCTCN2014095890-appb-000006
用于表征在每个所述时间窗的第j个时间单元上传输的所述同步信号时的所述第一子序列,所述
Figure PCTCN2014095890-appb-000007
用于表征在每个所述时间窗的第
Figure PCTCN2014095890-appb-000008
个时间单元上传输所述同步信号时的所述第一子序列,所述
Figure PCTCN2014095890-appb-000009
用于表征在每个所述时间窗的第j+m个时间单元上传输所述同步信号时的所述第一子序列;
所述第二子序列表达式如下:
Figure PCTCN2014095890-appb-000010
其中,所述d(2n+1)为所述第二子序列,所述c1(n)为由所述第二M序列的循环移位形成的第二扰码序列,所述
Figure PCTCN2014095890-appb-000011
所述
Figure PCTCN2014095890-appb-000012
和所述
Figure PCTCN2014095890-appb-000013
为由第三M序列的三个循环移位形成的三个第三扰码序列,所述
Figure PCTCN2014095890-appb-000014
用于表征在每个所述时间窗的第j个时间单元上传输所述同步信号时的所述第二子序列,所述
Figure PCTCN2014095890-appb-000015
用于表征在每个所述时间窗的第
Figure PCTCN2014095890-appb-000016
个时间单元上传输所述同步信号时的所述第二子序列,所述
Figure PCTCN2014095890-appb-000017
用于表征在每个所述时间窗的第j+m个时间单元上传输所述同步信号时的所述第二子序列。
结合第一个方面或第一个方面的第一种可能的实现方式,在第二种可能的实现方式中,所述传输模块,还用于在每个所述时间窗的所述确定的时间单元上传输所述同步信号之前,将所述m通过广播信道发送给用户设备UE。
结合第一个方面或第一个方面的上述任意一种可能的实现方式,在第三种可能的实现方式中,所述确定模块,具体用于根据预置的同步信号信息确定每个所述时间窗内用来传输所述同步信号的时间单元;其中,所述预置的同步信号信息包括:每个所述时间窗内用来传输所述同步信号的时间单元;或者,
所述传输模块,还用于获取更新的同步信号信息,根据所述更新的同步信号信息确定每个所述时间窗内用来传输所述同步信号的时间单元;其中,所述更新的同步信号信息包括:每个所述时间窗内用来传输所述同步信号的时间单元。
结合第一个方面或第一个方面的上述任意一种可能的实现方式,在第四种可能的实现方式中,所述确定模块,还用于确定连续T个时间窗中用来传输广播信道的时间单元,所述T为大于零的整数;
其中,所述T个时间窗中用来传输所述广播信道的时间单元为:所述T个时间窗中每个时间窗的第j个时间单元;
所述传输模块,还用于将所述广播信道分别在所述确定的T个时间窗中用来传输广播信道的时间单元进行传输。
结合第一个方面的第四种可能的实现方式,在第五种可能的实现方式中,所述广播信道位于每个所述时间窗的r个时间单元上,所述r个时间单元在每个所述时间窗的位置固定。
结合第一个方面的第五种可能的实现方式,在第六种可能的实现方式中,所述r与所述m的值相等。
结合第一个方面的第五种可能的实现方式或第一个方面的第六种可能的实现方式,在第七种可能的实现方式中,所述传输模块,还用于在将所述广播信道分别在所述确定的T个时间窗中用来传输广播信道的时间单元进行传输之前,将所述r通过广播信道发送给用户设备UE。
结合第一个方面的第四种可能的实现方式或第一个方面的第五种可能的实现方式或第一个方面的第六种可能的实现方式或第一个方面的第七种可能的实现方式,在第八种可能的实现方式中,所述确定模块,具体用于根据预置的广播信道信息确定所述连续T个时间窗中用来传输广播信道的时间单元;其中,所述预置的广播信道信息包括:所述时间窗个数T和每个所述时间窗内用来传输广播信道的时间单元;或者,
所述传输模块,还用于获取更新的广播信道信息,根据所述更新的广播信道信息确定所述连续T个时间窗中用来传输广播信道的时间单元;其中,所述更新的广播信道信息包括:所述时间窗个数T和每个所述时间窗内用来传输广播信道的时间单元。
结合第一个方面或第一个方面的上述任意一种可能的实现方式,在第九种可能的实现方式中,所述确定模块,还用于确定每个所述时间窗内用来传输每套下行测量参考信号的时间单元;
其中,每个所述确定的时间窗内用来传输所述每套下行测量参考信号的时间单元包括如下至少一个时间单元:每个所述时间窗的第j个时间单元,每个所述时间窗的第
Figure PCTCN2014095890-appb-000018
个时间单元,每个所述时间窗的第j+q个时间单元,所述q为大于或等于1并且小于或等于S的正整数;
所述传输模块,还用于将所述每套下行测量参考信号分别在所述确定的时间窗内用来传输所述下行测量参考信号的时间单元进行传输。
结合第一个方面的第九种可能的实现方式,在第十种可能的实现方式中,所述传输模块,具体用于通过如下公式对所述确定的时间窗内用来传输所述 每套下行测量参考信号的时间单元进行循环移位,使得所述每套下行测量参考信号固定在每个所述时间窗的第j个时间单元,和/或每个所述时间窗的第j+q个时间单元,和/或每个所述时间窗的第
Figure PCTCN2014095890-appb-000019
个时间单元上进行传输:
Figure PCTCN2014095890-appb-000020
其中,所述循环移位是对q套所述下行测量参考信号的第k次发射对应的时间单元进行t个时间单元的循环移位,其中,所述q表示每次发射的下行测量参考信号的套数,所述k表示发射的次数,所述t表示每次所述循环移位中所述每套下行测量参考信号被移位的时间单元的个数,所述q、所述k和所述t均为大于零的正整数。
结合第一个方面的第九种可能的实现方式或第一个方面的第十种可能的实现方式,在第十一种可能的实现方式中,所述传输模块,还用于在所述将所述每套下行测量参考信号分别在所述确定的时间窗内用来传输所述下行测量参考信号的时间单元进行传输之前,将所述q的值通过广播信道发送给用户设备UE。
结合第一个方面的第十一种可能的实现方式,在第十二种可能的实现方式中,还包括:
配置模块,用于通过高层信令为每个所述UE配置所述UE待测量的所述每套下行测量参考信号对应的时间单元。
结合第一个方面的第九种可能的实现方式或第一个方面的第十种可能的实现方式或第一个方面的第十一种可能的实现方式或第一个方面的第十二种可能的实现方式,在第十三种可能的实现方式中,所述确定模块,具体用于根据预置的下行测量参考信号信息确定每个所述时间窗内用来传输每套下行测量参考信号的时间单元;其中,所述预置的下行测量参考信号信息包括:每个所述时间窗内用来传输每套下行测量参考信号的时间单元;或者,
所述传输模块,还用于获取更新的下行测量参考信号信息,根据所述更新的下行测量参考信号信息确定每个所述时间窗内用来传输每套下行测量参 考信号的时间单元;其中,所述更新的下行测量参考信号信息包括:每个所述时间窗内用来传输每套下行测量参考信号的时间单元。
本发明的第二个方面是提供一种信号发送装置,包括:
确定模块,用于确定每个时间窗内用来传输每套下行测量参考信号的时间单元;
其中,每个所述确定的时间窗内用来传输所述每套下行测量参考信号的时间单元包括如下至少一个时间单元:每个所述时间窗的第j个时间单元,每个所述时间窗的第
Figure PCTCN2014095890-appb-000021
个时间单元,每个所述时间窗的第j+q个时间单元,所述S为每个所述时间窗包含的时间单元数,所述q为大于或等于1并且小于或等于S的正整数,所述j为大于等于1且小于等于所述S的正整数;
传输模块,用于将所述每套下行测量参考信号分别在所述确定的时间窗内用来传输所述下行测量参考信号的时间单元进行传输。
结合第二个方面,在第一种可行的实现方式中,所述传输模块,具体用于通过对所述确定的时间窗内用来传输所述每套下行测量参考信号的时间单元进行循环移位,使得所述每套下行测量参考信号固定在每个所述时间窗的第j个时间单元,和/或每个所述时间窗的第j+q个时间单元,和/或每个所述时间窗的第
Figure PCTCN2014095890-appb-000022
个时间单元上进行传输:
Figure PCTCN2014095890-appb-000023
其中,所述循环移位是对q套所述下行测量参考信号的第k次发射对应的时间单元进行t个时间单元的循环移位,其中,所述q表示每次发射的下行测量参考信号的套数,所述k表示发射的次数,所述t表示每次所述循环移位中所述每套下行测量参考信号被移位的时间单元的个数,所述q、所述k和所述t均为大于零的正整数。
结合第二个方面或第二个方面的第一种可行的实现方式,在第二种可行的实现方式中,所述传输模块,还用于在将所述每套下行测量参考信号分别 在所述确定的时间窗内用来传输所述下行测量参考信号的时间单元进行传输之前,将所述q的值通过广播信道发送用户设备UE。
结合第二个方面的第二种可行的实现方式,在第三种可行的实现方式中,还包括:
配置模块,用于通过高层信令为每个所述UE配置所述UE待测量的所述每套下行测量参考信号对应的时间单元。
结合第二个方面或第二个方面的上述任意一种可行的实现方式,在第四种可行的实现方式中,所述确定模块,具体用于根据预置的下行测量参考信号信息确定每个所述时间窗内用来传输每套下行测量参考信号的时间单元;其中,所述预置的下行测量参考信号信息包括:每个所述时间窗内用来传输每套下行测量参考信号的时间单元;或者,
所述传输模块,还用于获取更新的下行测量参考信号信息,根据所述更新的下行测量参考信号信息确定每个所述时间窗内用来传输每套下行测量参考信号的时间单元;其中,所述更新的下行测量参考信号信息包括:每个所述时间窗内用来传输每套下行测量参考信号的时间单元。
本发明的第三个方面是提供一种信号发送装置,包括:
确定模块,用于确定连续T个时间窗中用来传输广播信道的时间单元,所述T为大于零的整数,所述T为大于零的整数;
其中,所述T个时间窗中用来传输所述广播信道的时间单元为:所述T个时间窗中每个时间窗的第j个时间单元;所述j为大于或等于1,且小于或等于S的正整数,所述S为每个时间窗包含的时间单元数;
传输模块,用于将所述广播信道分别在所述确定的T个时间窗中用来传输广播信道的时间单元进行传输。
结合第三个方面,在第一种可行的实现方式中,所述广播信道位于每个所述时间窗的r个时间单元上,所述r个时间单元在每个所述时间窗的位置固定;所述r为大于或等于1并且小于或等于S的正整数。
结合第三个方面的第一种可行的实现方式,在第二种可行的实现方式中,所述传输模块,还用于在所述将所述广播信道分别在所述确定的T个时间窗中用来传输广播信道的时间单元进行传输之前,将所述r通过广播信道发送给用户设备UE。
结合第三个方面或第三个方面的第一种可行的实现方式,在第三种可行的实现方式中,所述确定模块,具体用于根据预置的广播信道信息确定所述连续T个时间窗中用来传输广播信道的时间单元;其中,所述预置的广播信道信息包括:所述时间窗个数T和每个所述时间窗中用来传输广播信道的时间单元;或者,
所述传输模块,还用于获取更新的广播信道信息,根据所述更新的广播信道信息确定所述连续T个时间窗中用来传输广播信道的时间单元;其中,所述更新的广播信道信息包括:所述时间窗个数T和每个所述时间窗中用来传输广播信道的时间单元。
本发明的第四个方面是提供一种信号发送装置,包括:
确定模块,用于确定P个天线端口,所述P个天线端口为传输同步信号的天线端口;
传输模块,用于将广播信道映射到所述P个天线端口上进行传输。
结合第四个方面,在第一种可行的实现方式中,所述传输模块,具体用于:将所述广播信道分别在每个时间窗的第i个时间单元上,并映射到所述P个天线端口进行传输;
将所述同步信号分别在每个所述时间窗的第i个时间单元上,并映射到所述P个天线端口进行传输;
每个所述时间窗的第i个所述时间单元上的所述同步信号的传输周期小于或等于每个所述时间窗的第i个所述时间单元上的所述广播信道的传输周期其中,所述i大于等于1小于等于M,所述M为每个时间窗内的时间单元总数。
结合第四个方面的第一种可行的实现方式,在第二种可行的实现方式中,所述传输模块,具体用于将所述同步信号在每个所述时间窗的所述第i个时间单元内的至少两个符号上,并映射到所述P个天线端口进行传输;
其中,所述符号为小于所述时间单元的时间单位。
结合第四个方面或第四个方面的上述任意一种可行的实现方式,在第三种可行的实现方式中,所述确定模块,具体用于根据预置的天线端口信息确定所述P个天线端口,所述预置的天线端口信息包含所述P个天线端口与所 述同步信号的对应关系;或者,
所述传输模块,还用于获取更新的天线端口信息,根据所述更新的天线端口信息确定所述P个天线端口,所述更新的天线端口信息包含所述P个天线端口与所述同步信号的对应关系。
本发明的第五个方面是提供一种信号检测装置,包括:
确定模块,用于确定每个时间窗内检测同步信号的时间单元;
其中,所述确定的时间单元包括如下至少一个时间单元:每个所述时间窗的第j个时间单元,每个所述时间窗的第
Figure PCTCN2014095890-appb-000024
个时间单元,每个所述时间窗的第j+m个时间单元,所述S为每个所述时间窗包含的时间单元数、所述m为大于或等于1并且小于等于S的正整数,所述j为大于或等于1且小于或等于所述S的正整数;
检测模块,用于在每个所述时间窗的所述确定的时间单元上检测所述同步信号。
结合第五个方面,在第一种可行的实现方式中,所述同步信号对应的序列由第一子序列和第二子序列交织组成,其中,所述第一子序列表达式如下:
Figure PCTCN2014095890-appb-000025
其中,0<=n<=N/2,所述N为所述同步信号对应的序列的长度,所述d(2n)为所述第一子序列,所述
Figure PCTCN2014095890-appb-000026
所述
Figure PCTCN2014095890-appb-000027
和所述
Figure PCTCN2014095890-appb-000028
为由第一M序列的三个循环移位形成的三个序列,所述c0(n)为由第二M序列的循环移位形成的第一扰码序列,所述
Figure PCTCN2014095890-appb-000029
用于表征在每个所述时间窗的第j个时间单元上传输的所述同步信号时的所述第一子序列,所述
Figure PCTCN2014095890-appb-000030
用于表征在每个所述时间窗的第
Figure PCTCN2014095890-appb-000031
个时间单元上传输所述同步信号时的所述第一子序列,所述
Figure PCTCN2014095890-appb-000032
用于表征在每个所述时间窗的第j+m个时间单元上传输所述同步信号时的所述第一子序列;
所述第二子序列表达式如下:
Figure PCTCN2014095890-appb-000033
其中,所述d(2n+1)为所述第二子序列,所述c1(n)为由所述第二M序列的循环移位形成的第二扰码序列,所述
Figure PCTCN2014095890-appb-000034
所述
Figure PCTCN2014095890-appb-000035
和所述
Figure PCTCN2014095890-appb-000036
为由第三M序列的三个循环移位形成的三个第三扰码序列,所述
Figure PCTCN2014095890-appb-000037
用于表征在每个所述时间窗的第j个时间单元上传输所述同步信号时的所述第二子序列,所述
Figure PCTCN2014095890-appb-000038
用于表征在每个所述时间窗的第
Figure PCTCN2014095890-appb-000039
个时间单元上传输所述同步信号时的所述第二子序列,所述
Figure PCTCN2014095890-appb-000040
用于表征在每个所述时间窗的第j+m个时间单元上传输所述同步信号时的所述第二子序列。
结合第五个方面或第五个方面的第一种可行的实现方式,在第二种可行的实现方式中,还包括:
传输模块,还用于在所述确定每个时间窗内检测同步信号的时间单元之前,获取发送端广播的所述m的值。
结合第五个方面或第五个方面的上述任意一种可行的实现方式,在第三种可行的实现方式中,所述确定模块,具体用于:
根据预置的同步信号信息确定确定每个时间窗内检测同步信号的时间单元;其中,所述预置的同步信号信息包括:每个所述时间窗内检测同步信号的时间单元;或者,
获取更新的同步信号信息,根据所述更新的同步信号信息确定确定每个时间窗内检测同步信号的时间单元;其中,所述更新的同步信号信息包括:每个所述时间窗内检测同步信号的时间单元。
结合第五个方面或第五个方面的上述任意一种可行的实现方式,在第四种可行的实现方式中,所述确定模块,还用于确定连续T个时间窗中检测广播信道的时间单元,所述T为大于零的整数;
其中,所述T个时间窗中检测广播信道的时间单元为:每个所述时间窗的第j个时间单元;
所述检测模块,还用于在所述确定的T个时间窗中检测广播信道的时间单元上检测所述广播信道。
结合第五个方面的第四种可行的实现方式,在第五种可行的实现方式中,所述广播信道位于每个所述时间窗的r个时间单元上,所述r个时间单元在每个所述时间窗的位置固定,所述r为大于或等于1并且小于或等于S的正整 数。
结合第五个方面的第五种可行的实现方式,在第六种可行的实现方式中,所述r与所述m的值相等。
结合第五个方面的第五种可行的实现方式或第五个方面的第六种可行的实现方式,在第七种可行的实现方式中,所述确定模块,还用于在所述确定的T个时间窗中待检测广播信道的时间单元上检测所述广播信道之前,获取所述发送端广播的所述r的值。
结合第五个方面的第四种可能的实现方式或第五个方面的第五种可能的实现方式或第五个方面的第六种可能的实现方式或第五个方面的第七种可能的实现方式,在第八种可能的实现方式中,所述确定模块,具体用于:
根据预置的广播信道信息确定所述连续T个时间窗中检测广播信道的时间单元;其中,所述预置的广播信道信息包括:所述时间窗个数T和每个所述时间窗内检测广播信道的时间单元;或者,
获取更新的广播信道信息,根据所述更新的广播信道信息确定所述连续T个时间窗中检测广播信道的时间单元;其中,所述更新的广播信道信息包括:所述时间窗个数T和每个所述时间窗内检测广播信道的时间单元。
结合第五个方面或第五个方面的上述任意一种可能的实现方式,在第九种可能的实现方式中,所述确定模块,还用于确定每个所述时间窗内测量每套下行测量参考信号的时间单元;
其中,每个所述确定的时间窗内测量每套下行测量参考信号的时间单元包括如下至少一个时间单元:每个所述时间窗的第j个时间单元,每个所述时间窗的第
Figure PCTCN2014095890-appb-000041
个时间单元,每个所述时间窗的第j+q个时间单元,所述q为大于或等于1并且小于或等于S的正整数;
所述检测模块,还用于在所述确定的时间窗内测量每套下行测量参考信号的时间单元上进行所述每套下行测量参考信号的信道质量测量。
结合第五个方面的第九种可能的实现方式,在第十种可能的实现方式中,所述确定模块,还用于在所述确定的时间窗内测量每套下行测量参考信号的时间单元之前,获取所述发送端广播的所述q的值。
结合第五个方面的第十种可能的实现方式,在第十一种可能的实现方式中,所述检测模块,具体用于在所述发送端的高层信令配置的所述每套下行 测量参考信号对应的时间单元上进行所述下行测量参考信号的信道质量测量。
结合第五个方面的第九种可能的实现方式或第五个方面的第十种可能的实现方式或第五个方面的第十一种可能的实现方式或第五个方面的第十二种可能的实现方式,在第十三种可能的实现方式中,所述确定模块,具体用于:
根据预置的下行测量参考信号信息确定每个所述时间窗内测量每套下行测量参考信号的时间单元;其中,所述预置的下行测量参考信号信息包括:每个所述时间窗内测量所述每套下行测量参考信号的时间单元;或者,
获取更新的下行测量参考信号信息,根据所述更新的下行测量参考信号信息确定每个所述时间窗内测量每套下行测量参考信号的时间单元;其中,所述更新的下行测量参考信号信息包括:每个所述时间窗内测量所述每套下行测量参考信号的时间单元。
本发明的第六个方面是提供一种信号检测装置,包括:
确定模块,用于确定每个所述时间窗内测量每套下行测量参考信号的时间单元;
其中,每个所述确定的时间窗内测量每套下行测量参考信号的时间单元包括如下至少一个时间单元:每个所述时间窗的第j个时间单元,每个所述时间窗的第
Figure PCTCN2014095890-appb-000042
个时间单元,每个所述时间窗的第j+q个时间单元,所述q为大于或等于1并且小于或等于S的正整数;所述S为每个所述时间窗包含的时间单元数,所述q为大于或等于1并且小于或等于S的正整数,所述j为大于等于1且小于等于所述S的正整数;
所述检测模块,用于在所述确定的时间窗内测量每套下行测量参考信号的时间单元上进行所述每套下行测量参考信号的信道质量测量。
结合第六个方面,在第一种可行的实现方式中,所述确定模块,还用于在所述确定的时间窗内测量每套下行测量参考信号的时间单元之前,获取所述发送端广播的所述q的值。
结合第六个方面的第一种可行的实现方式,在第二种可行的实现方式中,所述检测模块,具体用于在所述发送端的高层信令配置的所述每套下行测量参考信号对应的时间单元上进行所述下行测量参考信号的信道质量测量。
结合第六个方面或第六个方面的上述任意一种可行的实现方式,在第三 种可行的实现方式中,所述确定模块,具体用于:
根据预置的下行测量参考信号信息确定每个所述时间窗内测量每套下行测量参考信号的时间单元;其中,所述预置的下行测量参考信号信息包括:每个所述时间窗内测量所述每套下行测量参考信号的时间单元;或者,
获取更新的下行测量参考信号信息,根据所述更新的下行测量参考信号信息确定每个所述时间窗内测量每套下行测量参考信号的时间单元;其中,所述更新的下行测量参考信号信息包括:每个所述时间窗内测量所述每套下行测量参考信号的时间单元。
本发明的第七个方面是提供一种信号检测装置,包括:
确定模块,用于确定连续T个时间窗中检测广播信道的时间单元,所述T为大于零的整数;
其中,所述T个时间窗中检测广播信道的时间单元为:每个所述时间窗的第j个时间单元;所述j为大于或等于1,且小于或等于S的正整数,所述S为每个时间窗包含的时间单元数;
检测模块,用于在所述确定的T个时间窗中检测广播信道的时间单元上检测所述广播信道。
结合第七个方面,在第一种可行的实现方式中,所述广播信道位于每个所述时间窗的r个时间单元上,所述r个时间单元在每个所述时间窗的位置固定,所述r为大于或等于1并且小于或等于S的正整数。
结合第七个方面的第一种可行的实现方式,在第二种可行的实现方式中,所述确定模块,用于在所述确定的T个时间窗中检测广播信道的时间单元上检测所述广播信道之前,获取所述发送端广播的所述r的值。
结合第七个方面或第七个方面的上述任意一种可行的实现方式,在第三种可行的实现方式中,所述确定模块,具体用于:
根据预置的广播信道信息确定所述连续T个时间窗中检测广播信道的时间单元;其中,所述预置的广播信道信息包括:所述时间窗个数T和每个所述时间窗内检测广播信道的时间单元;或者,
获取更新的广播信道信息,根据所述更新的广播信道信息确定所述连续T个时间窗中检测广播信道的时间单元;其中,所述更新的广播信道信息包括:所述时间窗个数T和每个所述时间窗内检测广播信道的时间单元。
本发明的第八个方面是提供一种信号检测装置,包括:
确定模块,用于确定P个天线端口,所述P个天线端口为发送端传输同步信号的天线端口;
检测模块,用于在所述P个天线端口上检测广播信道。
结合第八个方面,在第一种可行的实现方式中,所述检测模块,具体用于:
在每个时间窗的第i个时间单元上检测所述P个天线端口对应的所述广播信道;
在每个所述时间窗的第i个时间单元上检测所述P个天线端口对应的所述同步信号
每个所述时间窗的第i个所述时间单元上的所述同步信号的传输周期小于或等于每个所述时间窗的第i个所述时间单元上的所述广播信道的传输周期其中,所述i大于等于1小于等于M,M为每个时间窗内的时间单元总数。
结合第八个方面的第一种可行的实现方式,在第二种可行的实现方式中,所述检测模块,具体用于在每个所述时间窗的所述第i个时间单元内的至少两个符号上检测所述P个天线端口对应的所述同步信号;
其中,所述符号为小于所述时间单元的时间单位。
结合第八个方面或第八个方面的上述任意一种可行的实现方式,在第三种可行的实现方式中,所述确定模块,具体用于:
根据预置的天线端口信息确定所述P个天线端口,所述预置的天线端口信息包含所述P个天线端口与所述同步信号的对应关系;或者,
获取更新的天线端口信息,根据所述更新的天线端口信息确定所述P个天线端口,所述更新的天线端口信息包含所述P个天线端口与所述同步信号的对应关系。
本发明的第九个方面是提供一种信号发送装置,包括:
处理器,用于确定每个时间窗内用来传输同步信号的时间单元;
其中,所述确定的时间单元包括如下至少一个时间单元:每个所述时间窗的第j个时间单元,每个所述时间窗的第
Figure PCTCN2014095890-appb-000043
个时间单元和每个所述时间窗的第j+m个时间单元,所述S为每个所述时间窗包含的时间单元数,所述m为大于或等于1并且小于或等于S的正整数,所述j为大于或 等于1且小于或等于所述S的正整数;
收发器,用于在每个所述时间窗的所述确定的时间单元上传输所述同步信号。
结合第九个方面,在第一种可能的实现方式中,所述同步信号对应的序列由第一子序列和第二子序列交织组成,其中,所述第一子序列表达式如下:
Figure PCTCN2014095890-appb-000044
其中,0<=n<=N/2,所述N为所述同步信号对应的序列的长度,所述d(2n)为所述第一子序列,所述
Figure PCTCN2014095890-appb-000045
所述
Figure PCTCN2014095890-appb-000046
和所述
Figure PCTCN2014095890-appb-000047
为由第一M序列的三个循环移位形成的三个序列,所述c0(n)为由第二M序列的循环移位形成的第一扰码序列,所述
Figure PCTCN2014095890-appb-000048
用于表征在每个所述时间窗的第j个时间单元上传输的所述同步信号时的所述第一子序列,所述
Figure PCTCN2014095890-appb-000049
用于表征在每个所述时间窗的第
Figure PCTCN2014095890-appb-000050
个时间单元上传输所述同步信号时的所述第一子序列,所述
Figure PCTCN2014095890-appb-000051
用于表征在每个所述时间窗的第j+m个时间单元上传输所述同步信号时的所述第一子序列;
所述第二子序列表达式如下:
Figure PCTCN2014095890-appb-000052
其中,所述d(2n+1)为所述第二子序列,所述c1(n)为由所述第二M序列的循环移位形成的第二扰码序列,所述
Figure PCTCN2014095890-appb-000053
所述
Figure PCTCN2014095890-appb-000054
和所述
Figure PCTCN2014095890-appb-000055
为由第三M序列的三个循环移位形成的三个第三扰码序列,所述
Figure PCTCN2014095890-appb-000056
用于表征在每个所述时间窗的第j个时间单元上传输所述同步信号时的所述第二子序列,所述
Figure PCTCN2014095890-appb-000057
用于表征在每个所述时间窗的第
Figure PCTCN2014095890-appb-000058
个时间单元上传输所述同步信号时的所述第二子序列,所述
Figure PCTCN2014095890-appb-000059
用于表征在每个所述时间窗的第j+m个时间单元上传输所述同步信号时的所述第二子序列。
结合第九个方面或第九个方面的第一种可能的实现方式,在第二种可能的实现方式中,所述收发器,还用于在每个所述时间窗的所述确定的时间单 元上传输所述同步信号之前,将所述m通过广播信道发送给用户设备UE。
结合第九个方面或第九个方面的上述任意一种可能的实现方式,在第三种可能的实现方式中,所述处理器,具体用于根据预置的同步信号信息确定每个所述时间窗内用来传输所述同步信号的时间单元;其中,所述预置的同步信号信息包括:每个所述时间窗内用来传输所述同步信号的时间单元;或者,
所述收发器,还用于获取更新的同步信号信息,根据所述更新的同步信号信息确定每个所述时间窗内用来传输所述同步信号的时间单元;其中,所述更新的同步信号信息包括:每个所述时间窗内用来传输所述同步信号的时间单元。
结合第九个方面或第九个方面的上述任意一种可能的实现方式,在第四种可能的实现方式中,所述处理器,还用于确定连续T个时间窗中用来传输广播信道的时间单元,所述T为大于零的整数;
其中,所述T个时间窗中用来传输所述广播信道的时间单元为:所述T个时间窗中每个时间窗的第j个时间单元;
所述收发器,还用于将所述广播信道分别在所述确定的T个时间窗中用来传输广播信道的时间单元进行传输。
结合第九个方面的第四种可能的实现方式,在第五种可能的实现方式中,所述广播信道位于每个所述时间窗的r个时间单元上,所述r个时间单元在每个所述时间窗的位置固定。
结合第九个方面的第五种可能的实现方式,在第六种可能的实现方式中,所述r与所述m的值相等。
结合第九个方面的第五种可能的实现方式或第九个方面的第六种可能的实现方式,在第七种可能的实现方式中,所述收发器,还用于在将所述广播信道分别在所述确定的T个时间窗中用来传输广播信道的时间单元进行传输之前,将所述r通过广播信道发送给用户设备UE。
结合第九个方面的第四种可能的实现方式或第九个方面的第五种可能的实现方式或第九个方面的第六种可能的实现方式或第九个方面的第七种可能的实现方式,在第八种可能的实现方式中,所述处理器,具体用于根据预置的广播信道信息确定所述连续T个时间窗中用来传输广播信道的时间单元; 其中,所述预置的广播信道信息包括:所述时间窗个数T和每个所述时间窗内用来传输广播信道的时间单元;或者,
所述收发器,还用于获取更新的广播信道信息,根据所述更新的广播信道信息确定所述连续T个时间窗中用来传输广播信道的时间单元;其中,所述更新的广播信道信息包括:所述时间窗个数T和每个所述时间窗内用来传输广播信道的时间单元。
结合第九个方面或第九个方面的上述任意一种可能的实现方式,在第九种可能的实现方式中,所述处理器,还用于确定每个所述时间窗内用来传输每套下行测量参考信号的时间单元;
其中,每个所述确定的时间窗内用来传输所述每套下行测量参考信号的时间单元包括如下至少一个时间单元:每个所述时间窗的第j个时间单元,每个所述时间窗的第
Figure PCTCN2014095890-appb-000060
个时间单元,每个所述时间窗的第j+q个时间单元,所述q为大于或等于1并且小于或等于S的正整数;
所述收发器,还用于将所述每套下行测量参考信号分别在所述确定的时间窗内用来传输所述下行测量参考信号的时间单元进行传输
结合第九个方面的第九种可能的实现方式,在第十种可能的实现方式中,所述收发器,具体用于通过如下公式对所述确定的时间窗内用来传输所述每套下行测量参考信号的时间单元进行循环移位,使得所述每套下行测量参考信号固定在每个所述时间窗的第j个时间单元,和/或每个所述时间窗的第j+q个时间单元,和/或每个所述时间窗的第
Figure PCTCN2014095890-appb-000061
个时间单元上进行传输:
Figure PCTCN2014095890-appb-000062
其中,所述循环移位是对q套所述下行测量参考信号的第k次发射对应的时间单元进行t个时间单元的循环移位,其中,所述q表示每次发射的下行测量参考信号的套数,所述k表示发射的次数,所述t表示每次所述循环移位中所述每套下行测量参考信号被移位的时间单元的个数,所述q、所述k和所述t均为大于零的正整数。
结合第九个方面的第九种可能的实现方式或第九个方面的第十种可能的 实现方式,在第十一种可能的实现方式中,所述收发器,还用于在所述将所述每套下行测量参考信号分别在所述确定的时间窗内用来传输所述下行测量参考信号的时间单元进行传输之前,将所述q的值通过广播信道发送给用户设备UE。
结合第九个方面的第十一种可能的实现方式,在第十二种可能的实现方式中,所述处理器,还用于通过高层信令为每个所述UE配置所述UE待测量的所述每套下行测量参考信号对应的时间单元。
结合第九个方面的第九种可能的实现方式或第九个方面的第十种可能的实现方式或第九个方面的第十一种可能的实现方式或第九个方面的第十二种可能的实现方式,在第十三种可能的实现方式中,所述处理器,具体用于根据预置的下行测量参考信号信息确定每个所述时间窗内用来传输每套下行测量参考信号的时间单元;其中,所述预置的下行测量参考信号信息包括:每个所述时间窗内用来传输每套下行测量参考信号的时间单元;或者,
所述收发器,还用于获取更新的下行测量参考信号信息,根据所述更新的下行测量参考信号信息确定每个所述时间窗内用来传输每套下行测量参考信号的时间单元;其中,所述更新的下行测量参考信号信息包括:每个所述时间窗内用来传输每套下行测量参考信号的时间单元。
本发明的第十个方面是提供一种信号发送装置,包括:
处理器,用于确定每个时间窗内用来传输每套下行测量参考信号的时间单元;
其中,每个所述确定的时间窗内用来传输所述每套下行测量参考信号的时间单元包括如下至少一个时间单元:每个所述时间窗的第j个时间单元,每个所述时间窗的第
Figure PCTCN2014095890-appb-000063
个时间单元,每个所述时间窗的第j+q个时间单元,所述S为每个所述时间窗包含的时间单元数,所述q为大于或等于1并且小于或等于S的正整数,所述j为大于等于1且小于等于所述S的正整数;
收发器,用于将所述每套下行测量参考信号分别在所述确定的时间窗内用来传输所述下行测量参考信号的时间单元进行传输。
结合第十个方面,在第一种可行的实现方式中,所述收发器,具体用于 通过对所述确定的时间窗内用来传输所述每套下行测量参考信号的时间单元进行循环移位,使得所述每套下行测量参考信号固定在每个所述时间窗的第j个时间单元,和/或每个所述时间窗的第j+q个时间单元,和/或每个所述时间窗的第
Figure PCTCN2014095890-appb-000064
个时间单元上进行传输:
Figure PCTCN2014095890-appb-000065
其中,所述循环移位是对q套所述下行测量参考信号的第k次发射对应的时间单元进行t个时间单元的循环移位,其中,所述q表示每次发射的下行测量参考信号的套数,所述k表示发射的次数,所述t表示每次所述循环移位中所述每套下行测量参考信号被移位的时间单元的个数,所述q、所述k和所述t均为大于零的正整数。
结合第十个方面或第十个方面的第一种可行的实现方式,在第二种可行的实现方式中,所述收发器,还用于在将所述每套下行测量参考信号分别在所述确定的时间窗内用来传输所述下行测量参考信号的时间单元进行传输之前,将所述q的值通过广播信道发送用户设备UE。
结合第十个方面的第二种可行的实现方式,在第三种可行的实现方式中,所述处理器,还用于通过高层信令为每个所述UE配置所述UE待测量的所述每套下行测量参考信号对应的时间单元。
结合第十个方面或第十个方面的上述任意一种可行的实现方式,在第四种可行的实现方式中,所述处理器,具体用于根据预置的下行测量参考信号信息确定每个所述时间窗内用来传输每套下行测量参考信号的时间单元;其中,所述预置的下行测量参考信号信息包括:每个所述时间窗内用来传输每套下行测量参考信号的时间单元;或者,
所述收发器,还用于获取更新的下行测量参考信号信息,根据所述更新的下行测量参考信号信息确定每个所述时间窗内用来传输每套下行测量参考信号的时间单元;其中,所述更新的下行测量参考信号信息包括:每个所述时间窗内用来传输每套下行测量参考信号的时间单元。
本发明的第十一个方面是提供一种信号发送装置,包括:
处理器,用于确定连续T个时间窗中用来传输广播信道的时间单元,所述T为大于零的整数,所述T为大于零的整数;
其中,所述T个时间窗中用来传输所述广播信道的时间单元为:所述T个时间窗中每个时间窗的第j个时间单元;所述j为大于或等于1,且小于或等于S的正整数,所述S为每个时间窗包含的时间单元数;
收发器,用于将所述广播信道分别在所述确定的T个时间窗中用来传输广播信道的时间单元进行传输。
结合第十一个方面,在第一种可行的实现方式中,所述广播信道位于每个所述时间窗的r个时间单元上,所述r个时间单元在每个所述时间窗的位置固定;所述r为大于或等于1并且小于或等于S的正整数。
结合第十一个方面的第一种可行的实现方式,在第二种可行的实现方式中,所述收发器,还用于在所述将所述广播信道分别在所述确定的T个时间窗中用来传输广播信道的时间单元进行传输之前,将所述r通过广播信道发送给用户设备UE。
结合第十一个方面或第十一个方面的第一种可行的实现方式,在第三种可行的实现方式中,所述处理器,具体用于根据预置的广播信道信息确定所述连续T个时间窗中用来传输广播信道的时间单元;其中,所述预置的广播信道信息包括:所述时间窗个数T和每个所述时间窗中用来传输广播信道的时间单元;或者,
所述收发器,还用于获取更新的广播信道信息,根据所述更新的广播信道信息确定所述连续T个时间窗中用来传输广播信道的时间单元;其中,所述更新的广播信道信息包括:所述时间窗个数T和每个所述时间窗中用来传输广播信道的时间单元。
本发明的第十二个方面是提供一种信号发送装置,包括:
处理器,用于确定P个天线端口,所述P个天线端口为传输同步信号的天线端口;
收发器,用于将广播信道映射到所述P个天线端口上进行传输。
结合第十二个方面,在第一种可行的实现方式中,所述收发器,具体用于:将所述广播信道分别在每个时间窗的第i个时间单元上,并映射到所述P个天线端口进行传输;
将所述同步信号分别在每个所述时间窗的第i个时间单元上,并映射到所述P个天线端口进行传输;
每个所述时间窗的第i个所述时间单元上的所述同步信号的传输周期小于或等于每个所述时间窗的第i个所述时间单元上的所述广播信道的传输周期其中,所述i大于等于1小于等于M,所述M为每个时间窗内的时间单元总数。
结合第十二个方面的第一种可行的实现方式,在第二种可行的实现方式中,所述收发器,具体用于将所述同步信号在每个所述时间窗的所述第i个时间单元内的至少两个符号上,并映射到所述P个天线端口进行传输;
其中,所述符号为小于所述时间单元的时间单位。
结合第十二个方面或第十二个方面的上述任意一种可行的实现方式,在第三种可行的实现方式中,所述处理器,具体用于根据预置的天线端口信息确定所述P个天线端口,所述预置的天线端口信息包含所述P个天线端口与所述同步信号的对应关系;或者,
所述收发器,还用于获取更新的天线端口信息,根据所述更新的天线端口信息确定所述P个天线端口,所述更新的天线端口信息包含所述P个天线端口与所述同步信号的对应关系。
本发明的第十三个方面是提供一种信号检测装置,包括:
处理器,用于确定每个时间窗内检测同步信号的时间单元;
其中,所述确定的时间单元包括如下至少一个时间单元:每个所述时间窗的第j个时间单元,每个所述时间窗的第
Figure PCTCN2014095890-appb-000066
个时间单元,每个所述时间窗的第j+m个时间单元,所述S为每个所述时间窗包含的时间单元数、所述m为大于或等于1并且小于等于S的正整数,所述j为大于或等于1且小于或等于所述S的正整数;
收发器,用于在每个所述时间窗的所述确定的时间单元上检测所述同步信号。
结合第十三个方面,在第一种可行的实现方式中,所述同步信号对应的序列由第一子序列和第二子序列交织组成,其中,所述第一子序列表达式如下:
Figure PCTCN2014095890-appb-000067
其中,0<=n<=N/2,所述N为所述同步信号对应的序列的长度,所述d(2n)为所述第一子序列,所述
Figure PCTCN2014095890-appb-000068
所述
Figure PCTCN2014095890-appb-000069
和所述
Figure PCTCN2014095890-appb-000070
为由第一M序列的三个循环移位形成的三个序列,所述c0(n)为由第二M序列的循环移位形成的第一扰码序列,所述
Figure PCTCN2014095890-appb-000071
用于表征在每个所述时间窗的第j个时间单元上传输的所述同步信号时的所述第一子序列,所述
Figure PCTCN2014095890-appb-000072
用于表征在每个所述时间窗的第
Figure PCTCN2014095890-appb-000073
个时间单元上传输所述同步信号时的所述第一子序列,所述
Figure PCTCN2014095890-appb-000074
用于表征在每个所述时间窗的第j+m个时间单元上传输所述同步信号时的所述第一子序列;
所述第二子序列表达式如下:
Figure PCTCN2014095890-appb-000075
其中,所述d(2n+1)为所述第二子序列,所述c1(n)为由所述第二M序列的循环移位形成的第二扰码序列,所述
Figure PCTCN2014095890-appb-000076
所述
Figure PCTCN2014095890-appb-000077
和所述
Figure PCTCN2014095890-appb-000078
为由第三M序列的三个循环移位形成的三个第三扰码序列,所述
Figure PCTCN2014095890-appb-000079
用于表征在每个所述时间窗的第j个时间单元上传输所述同步信号时的所述第二子序列,所述
Figure PCTCN2014095890-appb-000080
用于表征在每个所述时间窗的第
Figure PCTCN2014095890-appb-000081
个时间单元上传输所述同步信号时的所述第二子序列,所述
Figure PCTCN2014095890-appb-000082
用于表征在每个所述时间窗的第j+m个时间单元上传输所述同步信号时的所述第二子序列。
结合第十三个方面或第十三个方面的第一种可行的实现方式,在第二种可行的实现方式中,所述收发器,还用于在所述确定每个时间窗内检测同步信号的时间单元之前,获取发送端广播的所述m的值。
结合第十三个方面或第十三个方面的上述任意一种可行的实现方式,在第三种可行的实现方式中,所述处理器,具体用于:
根据预置的同步信号信息确定确定每个时间窗内检测同步信号的时间单元;其中,所述预置的同步信号信息包括:每个所述时间窗内检测同步信号 的时间单元;或者,
获取更新的同步信号信息,根据所述更新的同步信号信息确定确定每个时间窗内检测同步信号的时间单元;其中,所述更新的同步信号信息包括:每个所述时间窗内检测同步信号的时间单元。
结合第十三个方面或第十三个方面的上述任意一种可行的实现方式,在第四种可行的实现方式中,所述处理器,还用于确定连续T个时间窗中检测广播信道的时间单元,所述T为大于零的整数;
其中,所述T个时间窗中检测广播信道的时间单元为:每个所述时间窗的第j个时间单元;
所述收发器,还用于在所述确定的T个时间窗中检测广播信道的时间单元上检测所述广播信道。
结合第十三个方面的第四种可行的实现方式,在第五种可行的实现方式中,所述广播信道位于每个所述时间窗的r个时间单元上,所述r个时间单元在每个所述时间窗的位置固定,所述r为大于或等于1并且小于或等于S的正整数。
结合第十三个方面的第五种可行的实现方式,在第六种可行的实现方式中,所述r与所述m的值相等。
结合第十三个方面的第五种可行的实现方式或第十三个方面的第六种可行的实现方式,在第七种可行的实现方式中,所述处理器,还用于在所述确定的T个时间窗中待检测广播信道的时间单元上检测所述广播信道之前,获取所述发送端广播的所述r的值。
结合第十三个方面的第四种可能的实现方式或第十三个方面的第五种可能的实现方式或第十三个方面的第六种可能的实现方式或第十三个方面的第七种可能的实现方式,在第八种可能的实现方式中,所述处理器,具体用于:
根据预置的广播信道信息确定所述连续T个时间窗中检测广播信道的时间单元;其中,所述预置的广播信道信息包括:所述时间窗个数T和每个所述时间窗内检测广播信道的时间单元;或者,
获取更新的广播信道信息,根据所述更新的广播信道信息确定所述连续T个时间窗中检测广播信道的时间单元;其中,所述更新的广播信道信息包括:所述时间窗个数T和每个所述时间窗内检测广播信道的时间单元。
结合第十三个方面或第十三个方面的上述任意一种可能的实现方式,在第九种可能的实现方式中,所述处理器,还用于确定每个所述时间窗内测量每套下行测量参考信号的时间单元;
其中,每个所述确定的时间窗内测量每套下行测量参考信号的时间单元包括如下至少一个时间单元:每个所述时间窗的第j个时间单元,每个所述时间窗的第
Figure PCTCN2014095890-appb-000083
个时间单元,每个所述时间窗的第j+q个时间单元,所述q为大于或等于1并且小于或等于S的正整数;
所述收发器,还用于在所述确定的时间窗内测量每套下行测量参考信号的时间单元上进行所述每套下行测量参考信号的信道质量测量。
结合第十三个方面的第九种可能的实现方式,在第十种可能的实现方式中,所述处理器,还用于在所述确定的时间窗内测量每套下行测量参考信号的时间单元之前,获取所述发送端广播的所述q的值。
结合第十三个方面的第十种可能的实现方式,在第十一种可能的实现方式中,所述收发器,具体用于在所述发送端的高层信令配置的所述每套下行测量参考信号对应的时间单元上进行所述下行测量参考信号的信道质量测量
结合第十三个方面的第九种可能的实现方式或第十三个方面的第十种可能的实现方式或第十三个方面的第十一种可能的实现方式或第十三个方面的第十二种可能的实现方式,在第十三种可能的实现方式中,所述处理器,具体用于:
根据预置的下行测量参考信号信息确定每个所述时间窗内测量每套下行测量参考信号的时间单元;其中,所述预置的下行测量参考信号信息包括:每个所述时间窗内测量所述每套下行测量参考信号的时间单元;或者,
获取更新的下行测量参考信号信息,根据所述更新的下行测量参考信号信息确定每个所述时间窗内测量每套下行测量参考信号的时间单元;其中,所述更新的下行测量参考信号信息包括:每个所述时间窗内测量所述每套下行测量参考信号的时间单元。
本发明的第十四个方面是提供一种信号检测装置,包括:
处理器,用于确定每个所述时间窗内测量每套下行测量参考信号的时间单元;
其中,每个所述确定的时间窗内测量每套下行测量参考信号的时间单元 包括如下至少一个时间单元:每个所述时间窗的第j个时间单元,每个所述时间窗的第
Figure PCTCN2014095890-appb-000084
个时间单元,每个所述时间窗的第j+q个时间单元,所述q为大于或等于1并且小于或等于S的正整数;所述S为每个所述时间窗包含的时间单元数,所述q为大于或等于1并且小于或等于S的正整数,所述j为大于等于1且小于等于所述S的正整数;
所述收发器,用于在所述确定的时间窗内测量每套下行测量参考信号的时间单元上进行所述每套下行测量参考信号的信道质量测量
结合第十四个方面,在第一种可行的实现方式中,所述处理器,还用于在所述确定的时间窗内测量每套下行测量参考信号的时间单元之前,获取所述发送端广播的所述q的值。
结合第十四个方面的第一种可行的实现方式,在第二种可行的实现方式中,所述收发器,具体用于在所述发送端的高层信令配置的所述每套下行测量参考信号对应的时间单元上进行所述下行测量参考信号的信道质量测量。
结合第十四个方面或第六个方面的上述任意一种可行的实现方式,在第三种可行的实现方式中,所述处理器,具体用于:
根据预置的下行测量参考信号信息确定每个所述时间窗内测量每套下行测量参考信号的时间单元;其中,所述预置的下行测量参考信号信息包括:每个所述时间窗内测量所述每套下行测量参考信号的时间单元;或者,
获取更新的下行测量参考信号信息,根据所述更新的下行测量参考信号信息确定每个所述时间窗内测量每套下行测量参考信号的时间单元;其中,所述更新的下行测量参考信号信息包括:每个所述时间窗内测量所述每套下行测量参考信号的时间单元。
本发明的第十五个方面是提供一种信号检测装置,包括:
处理器,用于确定连续T个时间窗中检测广播信道的时间单元,所述T为大于零的整数;
其中,所述T个时间窗中检测广播信道的时间单元为:每个所述时间窗的第j个时间单元;所述j为大于或等于1,且小于或等于S的正整数,所述S为每个时间窗包含的时间单元数;
收发器,用于在所述确定的T个时间窗中检测广播信道的时间单元上检测所述广播信道。
结合第十五个方面,在第一种可行的实现方式中,所述广播信道位于每个所述时间窗的r个时间单元上,所述r个时间单元在每个所述时间窗的位置固定,所述r为大于或等于1并且小于或等于S的正整数。
结合第十五个方面的第一种可行的实现方式,在第二种可行的实现方式中,所述处理器,用于在所述确定的T个时间窗中检测广播信道的时间单元上检测所述广播信道之前,获取所述发送端广播的所述r的值。
结合第十五个方面或第十五个方面的上述任意一种可行的实现方式,在第三种可行的实现方式中,所述处理器,具体用于:
根据预置的广播信道信息确定所述连续T个时间窗中检测广播信道的时间单元;其中,所述预置的广播信道信息包括:所述时间窗个数T和每个所述时间窗内检测广播信道的时间单元;或者,
获取更新的广播信道信息,根据所述更新的广播信道信息确定所述连续T个时间窗中检测广播信道的时间单元;其中,所述更新的广播信道信息包括:所述时间窗个数T和每个所述时间窗内检测广播信道的时间单元。
本发明的第十六个方面是提供一种信号检测装置,包括:
处理器,用于确定P个天线端口,所述P个天线端口为发送端传输同步信号的天线端口;
收发器,用于在所述P个天线端口上检测广播信道。
结合第十六个方面,在第一种可行的实现方式中,所述处理器,具体用于:
在每个时间窗的第i个时间单元上检测所述P个天线端口对应的所述广播信道;
在每个所述时间窗的第i个时间单元上检测所述P个天线端口对应的所述同步信号
每个所述时间窗的第i个所述时间单元上的所述同步信号的传输周期小于或等于每个所述时间窗的第i个所述时间单元上的所述广播信道的传输周期其中,所述i大于等于1小于等于M,所述M为每个时间窗内的时间单元总数。
结合第十六个方面的第一种可行的实现方式,在第二种可行的实现方式中,所述收发器,具体用于在每个所述时间窗的所述第i个时间单元内的至 少两个符号上检测所述P个天线端口对应的所述同步信号;
其中,所述符号为小于所述时间单元的时间单位。
结合第十六个方面或第十六个方面的上述任意一种可行的实现方式,在第三种可行的实现方式中,所述处理器,具体用于:
根据预置的天线端口信息确定所述P个天线端口,所述预置的天线端口信息包含所述P个天线端口与所述同步信号的对应关系;或者,
获取更新的天线端口信息,根据所述更新的天线端口信息确定所述P个天线端口,所述更新的天线端口信息包含所述P个天线端口与所述同步信号的对应关系。
本发明的第十七个方面是提供一种信号发送和检测系统,包括至少一个第一个方面或第一个方面任意一种可行的实现方式所述的信号发送装置和至少一个第五个方面或第五个方面任意一种可行的实现方式所述的信号检测装置;或者,
至少一个权利要求第二个方面或第二个方面任意一种可行的实现方式所述的信号发送装置和至少一个第六个方面或第六个方面任意一种可行的实现方式所述的信号检测装置;或者,
至少一个第三个方面或第三个方面任意一种可行的实现方式所述的信号发送装置和至少一个第七个方面或第七个方面任意一种可行的实现方式所述的信号检测装置;或者,
至少一个第四个方面或第四个个方面任意一种可行的实现方式所述的信号发送装置和至少一个第八个方面或第八个方面任意一种可行的实现方式所述的信号检测装置。
本发明的第十八个方面是提供一种信号发送方法,包括:
确定每个时间窗内用来传输同步信号的时间单元;
其中,所述确定的时间单元包括如下至少一个时间单元:每个所述时间窗的第j个时间单元,每个所述时间窗的第
Figure PCTCN2014095890-appb-000085
个时间单元和每个所述时间窗的第j+m个时间单元,所述S为每个所述时间窗包含的时间单元数,所述m为大于或等于1并且小于或等于S的正整数,所述j为大于或等于1且小于或等于所述S的正整数;
在每个所述时间窗的所述确定的时间单元上传输所述同步信号。
结合第十八个方面,在第一种可能的实现方式中,所述同步信号对应的序列由第一子序列和第二子序列交织组成,其中,所述第一子序列表达式如下:
Figure PCTCN2014095890-appb-000086
其中,0<=n<=N/2,所述N为所述同步信号对应的序列的长度,所述d(2n)为所述第一子序列,所述
Figure PCTCN2014095890-appb-000087
所述
Figure PCTCN2014095890-appb-000088
和所述
Figure PCTCN2014095890-appb-000089
为由第一M序列的三个循环移位形成的三个序列,所述c0(n)为由第二M序列的循环移位形成的第一扰码序列,所述
Figure PCTCN2014095890-appb-000090
用于表征在每个所述时间窗的第j个时间单元上传输的所述同步信号时的所述第一子序列,所述
Figure PCTCN2014095890-appb-000091
用于表征在每个所述时间窗的第
Figure PCTCN2014095890-appb-000092
个时间单元上传输所述同步信号时的所述第一子序列,所述
Figure PCTCN2014095890-appb-000093
用于表征在每个所述时间窗的第j+m个时间单元上传输所述同步信号时的所述第一子序列;
所述第二子序列表达式如下:
Figure PCTCN2014095890-appb-000094
其中,所述d(2n+1)为所述第二子序列,所述c1(n)为由所述第二M序列的循环移位形成的第二扰码序列,所述
Figure PCTCN2014095890-appb-000095
所述
Figure PCTCN2014095890-appb-000096
和所述
Figure PCTCN2014095890-appb-000097
为由第三M序列的三个循环移位形成的三个第三扰码序列,所述
Figure PCTCN2014095890-appb-000098
用于表征在每个所述时间窗的第j个时间单元上传输所述同步信号时的所述第二子序列,所述
Figure PCTCN2014095890-appb-000099
用于表征在每个所述时间窗的第
Figure PCTCN2014095890-appb-000100
个时间单元上传输所述同步信号时的所述第二子序列,所述
Figure PCTCN2014095890-appb-000101
用于表征在每个所述时间窗的第j+m个时间单元上传输所述同步信号时的所述第二子序列。
结合第十八个方面或第十八个方面的第一种可能的实现方式,在第二种可能的实现方式中,所述在每个所述时间窗的所述确定的时间单元上传输所述同步信号之前,还包括:
将所述m通过广播信道发送给用户设备UE。
结合第十八个方面或第十八个方面的上述任意一种可能的实现方式,在第三种可能的实现方式中,所述确定每个时间窗内用来传输同步信号的时间单元,包括:
根据预置的同步信号信息确定每个所述时间窗内用来传输所述同步信号的时间单元;其中,所述预置的同步信号信息包括:每个所述时间窗内用来传输所述同步信号的时间单元;或者,
获取更新的同步信号信息,根据所述更新的同步信号信息确定每个所述时间窗内用来传输所述同步信号的时间单元;其中,所述更新的同步信号信息包括:所述时间窗内用来传输所述同步信号的时间单元。
结合第十八个方面或第十八个方面的上述任意一种可能的实现方式,在第四种可能的实现方式中,还包括:
确定连续T个时间窗中用来传输广播信道的时间单元,所述T为大于零的整数;
其中,所述T个时间窗中用来传输所述广播信道的时间单元为:所述T个时间窗中每个时间窗的第j个时间单元;
将所述广播信道分别在所述确定的T个时间窗中用来传输广播信道的时间单元进行传输。
结合第十八个方面的第四种可能的实现方式,在第五种可能的实现方式中,所述广播信道位于每个所述时间窗的r个时间单元上,所述r个时间单元在每个所述时间窗的位置固定。
结合第十八个方面的第五种可能的实现方式,在第六种可能的实现方式中,所述r与所述m的值相等。
结合第十八个方面的第五种可能的实现方式或第十八个方面的第六种可能的实现方式,在第七种可能的实现方式中,在所述将所述广播信道分别在所述确定的T个时间窗中用来传输广播信道的时间单元进行传输之前,还包括:
将所述r通过广播信道发送给用户设备UE。
结合第十八个方面的第四种可能的实现方式或第十八个方面的第五种可能的实现方式或第十八个方面的第六种可能的实现方式或第十八个方面的第 七种可能的实现方式,在第八种可能的实现方式中,所述确定连续T个时间窗中用来传输广播信道的时间单元,包括:
根据预置的广播信道信息确定所述连续T个时间窗中用来传输广播信道的时间单元;其中,所述预置的广播信道信息包括:所述时间窗个数T和每个所述时间窗内用来传输广播信道的时间单元;或者,
获取更新的广播信道信息,根据所述更新的广播信道信息确定所述连续T个时间窗中用来传输广播信道的时间单元;其中,所述更新的广播信道信息包括:所述时间窗个数T和每个所述时间窗内用来传输广播信道的时间单元。
结合第十八个方面或第十八个方面的上述任意一种可能的实现方式,在第九种可能的实现方式中,还包括:
确定每个所述时间窗内用来传输每套下行测量参考信号的时间单元;
其中,每个所述确定的时间窗内用来传输所述每套下行测量参考信号的时间单元包括如下至少一个时间单元:每个所述时间窗的第j个时间单元,每个所述时间窗的第
Figure PCTCN2014095890-appb-000102
个时间单元,每个所述时间窗的第j+q个时间单元,所述q为大于或等于1并且小于或等于S的正整数;
将所述每套下行测量参考信号分别在所述确定的时间窗内用来传输所述下行测量参考信号的时间单元进行传输。
结合第十八个方面的第九种可能的实现方式,在第十种可能的实现方式中,所述将所述下行测量参考信号分别在所述确定的时间窗内用来传输所述下行测量参考信号的时间单元进行传输,包括:
通过如下公式对所述确定的时间窗内用来传输所述每套下行测量参考信号的时间单元进行循环移位,使得所述每套下行测量参考信号固定在每个所述时间窗的第j个时间单元,和/或每个所述时间窗的第j+q个时间单元,和/或每个所述时间窗的第
Figure PCTCN2014095890-appb-000103
个时间单元上进行传输:
Figure PCTCN2014095890-appb-000104
其中,所述循环移位是对q套所述下行测量参考信号的第k次发射对应的时间单元进行t个时间单元的循环移位,其中,所述q表示每次发射的下 行测量参考信号的套数,所述k表示发射的次数,所述t表示每次所述循环移位中所述每套下行测量参考信号被移位的时间单元的个数,所述q、所述k和所述t均为大于零的正整数。
结合第十八个方面的第九种可能的实现方式或第十八个方面的第十种可能的实现方式,在第十一种可能的实现方式中,在所述将所述每套下行测量参考信号分别在所述确定的时间窗内用来传输所述下行测量参考信号的时间单元进行传输之前,还包括:
将所述q的值通过广播信道发送给用户设备UE。
结合第十八个方面的第十一种可能的实现方式,在第十二种可能的实现方式中,还包括:
通过高层信令为每个所述UE配置所述UE待测量的所述每套下行测量参考信号对应的时间单元。
结合第十八个方面的第九种可能的实现方式或第十八个方面的第十种可能的实现方式或第十八个方面的第十一种可能的实现方式或第十八个方面的第十二种可能的实现方式,在第十三种可能的实现方式中,所述确定每个所述时间窗内用来传输每套下行测量参考信号的时间单元,包括:
根据预置的下行测量参考信号信息确定每个所述时间窗内用来传输每套下行测量参考信号的时间单元;其中,所述预置的下行测量参考信号信息包括:每个所述时间窗内用来传输每套下行测量参考信号的时间单元;或者,
获取更新的下行测量参考信号信息,根据所述更新的下行测量参考信号信息确定每个所述时间窗内用来传输每套下行测量参考信号的时间单元;其中,所述更新的下行测量参考信号信息包括:每个所述时间窗内用来传输每套下行测量参考信号的时间单元。
本发明的第十九个方面是提供一种信号发送方法,包括:
确定每个时间窗内用来传输每套下行测量参考信号的时间单元;
其中,每个所述确定的时间窗内用来传输所述每套下行测量参考信号的时间单元包括如下至少一个时间单元:每个所述时间窗的第j个时间单元,每个所述时间窗的第
Figure PCTCN2014095890-appb-000105
个时间单元,每个所述时间窗的第j+q 个时间单元,所述S为每个所述时间窗包含的时间单元数,所述q为大于或等于1并且小于或等于S的正整数,所述j为大于等于1且小于等于所述S的正整数;
将所述每套下行测量参考信号分别在所述确定的时间窗内用来传输所述下行测量参考信号的时间单元进行传输。
结合第十九个方面,在第一种可行的实现方式中,所述将所述下行测量参考信号分别在所述确定的时间窗内用来传输所述下行测量参考信号的时间单元进行传输,包括:
通过对所述确定的时间窗内用来传输所述每套下行测量参考信号的时间单元进行循环移位,使得所述每套下行测量参考信号固定在每个所述时间窗的第j个时间单元,和/或每个所述时间窗的第j+q个时间单元,和/或每个所述时间窗的第
Figure PCTCN2014095890-appb-000106
个时间单元上进行传输:
Figure PCTCN2014095890-appb-000107
其中,所述循环移位是对q套所述下行测量参考信号的第k次发射对应的时间单元进行t个时间单元的循环移位,其中,所述q表示每次发射的下行测量参考信号的套数,所述k表示发射的次数,所述t表示每次所述循环移位中所述每套下行测量参考信号被移位的时间单元的个数,所述q、所述k和所述t均为大于零的正整数。
结合第十九个方面或第十九个方面的第一种可行的实现方式,在第二种可行的实现方式中,在所述将所述每套下行测量参考信号分别在所述确定的时间窗内用来传输所述下行测量参考信号的时间单元进行传输之前,还包括:
将所述q的值通过广播信道发送用户设备UE。
结合第十九个方面的第二种可行的实现方式,在第三种可行的实现方式中,还包括:
通过高层信令为每个所述UE配置所述UE待测量的所述每套下行测量参 考信号对应的时间单元。
结合第十九个方面或第十九个方面的上述任意一种可行的实现方式,在第四种可行的实现方式中,所述确定每个时间窗内用来传输每套下行测量参考信号的时间单元,包括:
根据预置的下行测量参考信号信息确定每个所述时间窗内用来传输每套下行测量参考信号的时间单元;其中,所述预置的下行测量参考信号信息包括:每个所述时间窗内用来传输每套下行测量参考信号的时间单元;或者,
获取更新的下行测量参考信号信息,根据所述更新的下行测量参考信号信息确定每个所述时间窗内用来传输每套下行测量参考信号的时间单元;其中,所述更新的下行测量参考信号信息包括:每个所述时间窗内用来传输每套下行测量参考信号的时间单元。
本发明的第二十个方面是提供一种信号发送方法,包括:
确定连续T个时间窗中用来传输广播信道的时间单元,所述T为大于零的整数;
其中,所述T个时间窗中用来传输所述广播信道的时间单元为:所述T个时间窗中每个时间窗的第j个时间单元;所述j为大于或等于1,且小于或等于S的正整数,所述S为每个时间窗包含的时间单元数;
将所述广播信道分别在所述确定的T个时间窗中用来传输广播信道的时间单元进行传输。
结合第二十个方面,在第一种可行的实现方式中,所述广播信道位于每个所述时间窗的r个时间单元上,所述r个时间单元在每个所述时间窗的位置固定;所述r为大于或等于1并且小于或等于S的正整数。
结合第二十个方面的第一种可行的实现方式,在第二种可行的实现方式中,在所述将所述广播信道分别在所述确定的T个时间窗中用来传输广播信道的时间单元进行传输之前,还包括:
将所述r通过广播信道发送给用户设备UE。
结合第二十个方面或第二十个方面的第一种可行的实现方式,在第三种可行的实现方式中,所述确定连续T个时间窗中用来传输广播信道的时间单元,包括:
根据预置的广播信道信息确定所述连续T个时间窗中用来传输广播信道 的时间单元;其中,所述预置的广播信道信息包括:所述时间窗个数T和每个所述时间窗中用来传输广播信道的时间单元;或者,
获取更新的广播信道信息,根据所述更新的广播信道信息确定所述连续T个时间窗中用来传输广播信道的时间单元;其中,所述更新的广播信道信息包括:所述时间窗个数T和每个所述时间窗中用来传输广播信道的时间单元。
本发明的第二十一个方面是提供一种信号发送方法,包括:
确定P个天线端口,所述P个天线端口为传输同步信号的天线端口;
将广播信道映射到所述P个天线端口上进行传输。
结合第二十一个方面,在第一种可行的实现方式中,所述将广播信道映射到P个天线端口上进行传输,包括:
将所述广播信道分别在每个时间窗的第i个时间单元上,并映射到所述P个天线端口进行传输;
还包括:将所述同步信号分别在每个所述时间窗的第i个时间单元上,并映射到所述P个天线端口进行传输;
每个所述时间窗的第i个所述时间单元上的所述同步信号的传输周期小于或等于每个所述时间窗的第i个所述时间单元上的所述广播信道的传输周期其中,所述i大于等于1小于等于M,所述M为每个时间窗内的时间单元总数。
结合第二十一个方面的第一种可行的实现方式,在第二种可行的实现方式中,所述将所述同步信号分别在每个所述时间窗的第i个时间单元上,并映射到所述P个天线端口进行传输,包括:
将所述同步信号在每个所述时间窗的所述第i个时间单元内的至少两个符号上,并映射到所述P个天线端口进行传输;
其中,所述符号为小于所述时间单元的时间单位。
结合第二十一个方面或第二十一个方面的上述任意一种可行的实现方式,在第三种可行的实现方式中,所述确定P个天线端口,包括:
根据预置的天线端口信息确定所述P个天线端口,所述预置的天线端口信息包含所述P个天线端口与所述同步信号的对应关系;或者,
获取更新的天线端口信息,根据所述更新的天线端口信息确定所述P个天线端口,所述更新的天线端口信息包含所述P个天线端口与所述同步信号的对应关系。
本发明的第二十二个方面是提供一种信号检测方法,包括:
确定每个时间窗内检测同步信号的时间单元;
其中,所述确定的时间单元包括如下至少一个时间单元:每个所述时间窗的第j个时间单元,每个所述时间窗的第
Figure PCTCN2014095890-appb-000108
个时间单元,每个所述时间窗的第j+m个时间单元,所述S为每个所述时间窗包含的时间单元数、所述m为大于或等于1并且小于等于S的正整数,所述j为大于或等于1且小于或等于所述S的正整数;
在每个所述时间窗的所述确定的时间单元上检测所述同步信号。
结合第二十二个方面,在第一种可行的实现方式中,所述同步信号对应的序列由第一子序列和第二子序列交织组成,其中,所述第一子序列表达式如下:
Figure PCTCN2014095890-appb-000109
其中,0<=n<=N/2,所述N为所述同步信号对应的序列的长度,所述d(2n)为所述第一子序列,所述
Figure PCTCN2014095890-appb-000110
所述
Figure PCTCN2014095890-appb-000111
和所述
Figure PCTCN2014095890-appb-000112
为由第一M序列的三个循环移位形成的三个序列,所述c0(n)为由第二M序列的循环移位形成的第一扰码序列,所述
Figure PCTCN2014095890-appb-000113
用于表征在每个所述时间窗的第j个时间单元上传输的所述同步信号时的所述第一子序列,所述
Figure PCTCN2014095890-appb-000114
用于表征在每个所述时间窗的第
Figure PCTCN2014095890-appb-000115
个时间单元上传输所述同步信号时的所述第一子序列,所述
Figure PCTCN2014095890-appb-000116
用于表征在每个所述时间窗的第j+m个时间单元上传输所述同步信号时的所述第一子序列;
所述第二子序列表达式如下:
Figure PCTCN2014095890-appb-000117
其中,所述d(2n+1)为所述第二子序列,所述c1(n)为由所述第二M序列 的循环移位形成的第二扰码序列,所述
Figure PCTCN2014095890-appb-000118
所述
Figure PCTCN2014095890-appb-000119
和所述
Figure PCTCN2014095890-appb-000120
为由第三M序列的三个循环移位形成的三个第三扰码序列,所述
Figure PCTCN2014095890-appb-000121
用于表征在每个所述时间窗的第j个时间单元上传输所述同步信号时的所述第二子序列,所述
Figure PCTCN2014095890-appb-000122
用于表征在每个所述时间窗的第
Figure PCTCN2014095890-appb-000123
个时间单元上传输所述同步信号时的所述第二子序列,所述
Figure PCTCN2014095890-appb-000124
用于表征在每个所述时间窗的第j+m个时间单元上传输所述同步信号时的所述第二子序列。
结合第二十二个方面或第二十二个方面的第一种可行的实现方式,在第二种可行的实现方式中,在所述确定每个时间窗内检测同步信号的时间单元之前,还包括:
获取发送端广播的所述m的值。
结合第二十二个方面或第二十二个方面的上述任意一种可行的实现方式,在第三种可行的实现方式中,所述确定每个时间窗内检测同步信号的时间单元,包括:
根据预置的同步信号信息确定确定每个时间窗内检测同步信号的时间单元;其中,所述预置的同步信号信息包括:每个所述时间窗内检测同步信号的时间单元;或者,
获取更新的同步信号信息,根据所述更新的同步信号信息确定确定每个时间窗内检测同步信号的时间单元;其中,所述更新的同步信号信息包括:每个所述时间窗内检测同步信号的时间单元。
结合第二十二个方面或第二十二个方面的上述任意一种可行的实现方式,在第四种可行的实现方式中,还包括:
确定连续T个时间窗中检测广播信道的时间单元,所述T为大于零的整数;
其中,所述T个时间窗中检测广播信道的时间单元为:每个所述时间窗的第j个时间单元;
在所述确定的T个时间窗中检测广播信道的时间单元上检测所述广播信道。
结合第二十二个方面的第四种可行的实现方式,在第五种可行的实现方式中,所述广播信道位于每个所述时间窗的r个时间单元上,所述r个时间单 元在每个所述时间窗的位置固定,所述r为大于或等于1并且小于或等于S的正整数。
结合第二十二个方面的第五种可行的实现方式,在第六种可行的实现方式中,所述r与所述m的值相等。
结合第二十二个方面的第五种可行的实现方式或第二十二个方面的第六种可行的实现方式,在第七种可行的实现方式中,所述在所述确定的T个时间窗中待检测广播信道的时间单元上检测所述广播信道之前,还包括:
获取所述发送端广播的所述r的值。
结合第二十二个方面的第四种可能的实现方式或第二十二个方面的第五种可能的实现方式或第二十二个方面的第六种可能的实现方式或第二十二个方面的第七种可能的实现方式,在第八种可能的实现方式中,所述确定连续T个时间窗中检测广播信道的时间单元,包括:
根据预置的广播信道信息确定所述连续T个时间窗中检测广播信道的时间单元;其中,所述预置的广播信道信息包括:所述时间窗个数T和每个所述时间窗内检测广播信道的时间单元;或者,
获取更新的广播信道信息,根据所述更新的广播信道信息确定所述连续T个时间窗中检测广播信道的时间单元;其中,所述更新的广播信道信息包括:所述时间窗个数T和每个所述时间窗内检测广播信道的时间单元。
结合第二十二个方面或第二十二个方面的上述任意一种可能的实现方式,在第九种可能的实现方式中,还包括:
确定每个所述时间窗内测量每套下行测量参考信号的时间单元;
其中,每个所述确定的时间窗内测量每套下行测量参考信号的时间单元包括如下至少一个时间单元:每个所述时间窗的第j个时间单元,每个所述时间窗的第
Figure PCTCN2014095890-appb-000125
个时间单元,每个所述时间窗的第j+q个时间单元,所述q为大于或等于1并且小于或等于S的正整数;
在所述确定的时间窗内测量每套下行测量参考信号的时间单元上进行所述每套下行测量参考信号的信道质量测量。
结合第二十二个方面的第九种可能的实现方式,在第十种可能的实现方式中,在所述确定的时间窗内测量每套下行测量参考信号的时间单元之前,还包括:
获取所述发送端广播的所述q的值。
结合第二十二个方面的第十种可能的实现方式,在第十一种可能的实现方式中,还包括:
在所述发送端的高层信令配置的所述每套下行测量参考信号对应的时间单元上进行所述下行测量参考信号的信道质量测量。
结合第二十二个方面的第九种可能的实现方式或第二十二个方面的第十种可能的实现方式或第二十二个方面的第十一种可能的实现方式或第二十二个方面的第十二种可能的实现方式,在第十三种可能的实现方式中,所述确定每个所述时间窗内测量每套下行测量参考信号的时间单元,包括:
根据预置的下行测量参考信号信息确定每个所述时间窗内测量每套下行测量参考信号的时间单元;其中,所述预置的下行测量参考信号信息包括:每个所述时间窗内测量所述每套下行测量参考信号的时间单元;或者,
获取更新的下行测量参考信号信息,根据所述更新的下行测量参考信号信息确定每个所述时间窗内测量每套下行测量参考信号的时间单元;其中,所述更新的下行测量参考信号信息包括:每个所述时间窗内测量所述每套下行测量参考信号的时间单元。
本发明的第二十三个方面是提供一种信号检测方法,包括:
确定每个所述时间窗内测量每套下行测量参考信号的时间单元;
其中,每个所述确定的时间窗内测量每套下行测量参考信号的时间单元包括如下至少一个时间单元:每个所述时间窗的第j个时间单元,每个所述时间窗的第
Figure PCTCN2014095890-appb-000126
个时间单元,每个所述时间窗的第j+q个时间单元,所述q为大于或等于1并且小于或等于S的正整数;所述S为每个所述时间窗包含的时间单元数,所述q为大于或等于1并且小于或等于S的正整数,所述j为大于等于1且小于等于所述S的正整数;
在所述确定的时间窗内测量每套下行测量参考信号的时间单元上进行所述每套下行测量参考信号的信道质量测量。
结合第二十三个方面,在第一种可行的实现方式中,在所述确定的时间窗内测量每套下行测量参考信号的时间单元之前,还包括:
获取所述发送端广播的所述q的值。
结合第二十三个方面的第一种可行的实现方式,在第二种可行的实现方 式中,还包括:
在所述发送端的高层信令配置的所述每套下行测量参考信号对应的时间单元上进行所述下行测量参考信号的信道质量测量。
结合第二十三个方面或第二十三个方面的上述任意一种可行的实现方式,在第三种可行的实现方式中,所述确定每个所述时间窗内测量每套下行测量参考信号的时间单元,包括:
根据预置的下行测量参考信号信息确定每个所述时间窗内测量每套下行测量参考信号的时间单元;其中,所述预置的下行测量参考信号信息包括:每个所述时间窗内测量所述每套下行测量参考信号的时间单元;或者,
获取更新的下行测量参考信号信息,根据所述更新的下行测量参考信号信息确定每个所述时间窗内测量每套下行测量参考信号的时间单元;其中,所述更新的下行测量参考信号信息包括:每个所述时间窗内测量所述每套下行测量参考信号的时间单元。
本发明的第二十四个方面是提供一种信号检测方法,包括:
确定连续T个时间窗中检测广播信道的时间单元,所述T为大于零的整数;
其中,所述T个时间窗中检测广播信道的时间单元为:每个所述时间窗的第j个时间单元;所述j为大于或等于1,且小于或等于S的正整数,所述S为每个时间窗包含的时间单元数;
在所述确定的T个时间窗中检测广播信道的时间单元上检测所述广播信道。
结合第二十四个方面,在第一种可行的实现方式中,所述广播信道位于每个所述时间窗的r个时间单元上,所述r个时间单元在每个所述时间窗的位置固定,所述r为大于或等于1并且小于或等于S的正整数。
结合第二十四个方面的第一种可行的实现方式,在第二种可行的实现方式中,所述在所述确定的T个时间窗中检测广播信道的时间单元上检测所述广播信道之前,还包括:
获取所述发送端广播的所述r的值。
结合第二十四个方面或第二十四个方面的上述任意一种可行的实现方式,在第三种可行的实现方式中,所述确定连续T个时间窗中检测广播信道 的时间单元,包括:
根据预置的广播信道信息确定所述连续T个时间窗中检测广播信道的时间单元;其中,所述预置的广播信道信息包括:所述时间窗个数T和每个所述时间窗内检测广播信道的时间单元;或者,
获取更新的广播信道信息,根据所述更新的广播信道信息确定所述连续T个时间窗中检测广播信道的时间单元;其中,所述更新的广播信道信息包括:所述时间窗个数T和每个所述时间窗内检测广播信道的时间单元。
本发明的第二十五个方面是提供一种信号检测方法,包括:
确定P个天线端口,所述P个天线端口为发送端传输同步信号的天线端口;
在所述P个天线端口上检测广播信道。
结合第二十五个方面,在第一种可行的实现方式中,所述在所述P个天线端口上检测广播信道,包括:
在每个时间窗的第i个时间单元上检测所述P个天线端口对应的所述广播信道;
还包括:在每个所述时间窗的第i个时间单元上检测所述P个天线端口对应的所述同步信号
每个所述时间窗的第i个所述时间单元上的所述同步信号的传输周期小于或等于每个所述时间窗的第i个所述时间单元上的所述广播信道的传输周期其中,所述i大于等于1小于等于M,M为每个时间窗内的时间单元总数。
结合第二十五个方面的第一种可行的实现方式,在第二种可行的实现方式中,所述在每个时间窗的第i个时间单元上检测所述P个天线端口对应的所述广播信道,包括:
在每个所述时间窗的所述第i个时间单元内的至少两个符号上检测所述P个天线端口对应的所述同步信号;
其中,所述符号为小于所述时间单元的时间单位。
结合第二十五个方面或第二十五个方面的上述任意一种可行的实现方式,在第三种可行的实现方式中,所述确定P个天线端口,包括:
根据预置的天线端口信息确定所述P个天线端口,所述预置的天线端口 信息包含所述P个天线端口与所述同步信号的对应关系;或者,
获取更新的天线端口信息,根据所述更新的天线端口信息确定所述P个天线端口,所述更新的天线端口信息包含所述P个天线端口与所述同步信号的对应关系。
本实施例提供的信号发送和检测装置、系统及方法,通过该装置确定每个时间窗内用来传输同步信号的时间单元;其中,所述确定的时间单元包括如下至少一个时间单元:每个所述时间窗的第j个时间单元,每个所述时间窗的第
Figure PCTCN2014095890-appb-000127
个时间单元和每个所述时间窗的第j+m个时间单元,所述S为每个所述时间窗包含的时间单元数,所述m为大于或等于1并且小于或等于S的正整数,如其可以为每个所述时间窗内用来传输广播信道的时间单元数,所述j为大于或等于1且小于或等于所述S的正整数;该装置在每个所述时间窗的所述确定的时间单元上传输所述同步信号。实现了将同步信号固定在每个时间窗内固定位置的时间单元上,从而使得接收端在检测同步信号时,仅需要接收端的设备在每个时间窗内固定的时间单元上进行检测,降低了同步信号设计的复杂度和接收端设备检测的复杂度。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为现有技术信号发送示意图;
图2为本发明实施例提供的一种信号发送装置的结构示意图;
图3为本发明实施例提供的另一种信号发送装置的结构示意图;
图4为本发明实施例提供的一种信号检测装置的结构示意图;
图5为本发明实施例提供的另一种信号检测装置的结构示意图;
图6为本发明实施例提供的另一种信号发送装置的结构示意图;
图7为本发明实施例提供的一种信号发送方法示意图;
图8为本发明实施例提供的另一种信号发送方法示意图;
图9为本发明实施例提供的另一种信号发送方法示意图;
图10为本发明实施例提供的一种多资源的发射顺序示意图;
图11为本发明实施例提供的另一种信号发送方法示意图;
图12为本发明实施例提供的发射时刻示意图;
图13及图14为本发明实施例提供的一种同步信号时域结构示意图;
图15及图16为本发明实施例提供的另一种同步信号时域结构示意图;
图17为本发明实施例提供的一种信号检测方法示意图;
图18为本发明实施例提供的另一种信号检测方法示意图;
图19为本发明实施例提供的另一种信号检测方法示意图;
图20为本发明实施例提供的一种广播信道发射示意图;
图21为本发明实施例提供的一种发射时刻序列示意图;
图22为本发明实施例提供的另一种广播信道发射示意图;
图23为本发明实施例提供的另一种广播信道发射示意图;
图24为本发明实施例提供的另一种信号检测方法示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
图2为本发明实施例提供的一种信号发送装置的结构示意图,该装置可以为基站、演进型基站、射频拉远单元(Remote Ratio Unit,简称:RRU)等设备,参照图2,该装置包括:确定模块100、传输模块101。
确定模块100,用于确定每个时间窗内用来传输同步信号的时间单元;
其中,所述确定的时间单元包括如下至少一个时间单元:每个所述时间窗的第j个时间单元,每个所述时间窗的第
Figure PCTCN2014095890-appb-000128
个时间单元和每个所述时间窗的第j+m个时间单元,所述S为每个所述时间窗包含的时间单元数,所述m为大于或等于1并且小于或等于S的正整数,所述j为大于或等于1且小于或等于所述S的正整数;
传输模块101,用于在每个所述时间窗的所述确定的时间单元上传输所述同步信号。
本实施例提供的信号发送装置,通过确定模块确定每个时间窗内用来传输同步信号的时间单元;其中,所述确定的时间单元包括如下至少一个时间单元:每个所述时间窗的第j个时间单元,每个所述时间窗的第
Figure PCTCN2014095890-appb-000129
个时间单元和每个所述时间窗的第j+m个时间单元,所述S为每个所述时间窗包含的时间单元数,所述m为大于或等于1并且小于或等于S的正整数,如其可以为每个所述时间窗内用来传输广播信道的时间单元数,所述j为大于或等于1且小于或等于所述S的正整数;传输模块在每个所述时间窗的所述确定的时间单元上传输所述同步信号。实现了将同步信号固定在每个时间窗内固定位置的时间单元上,从而使得接收端在检测同步信号时,仅需要接收端的设备在每个时间窗内固定的时间单元上进行检测,降低了同步信号设计的复杂度和接收端设备检测的复杂度。
优选的,参照上文可知,在一个时间窗内,同时可能有三个时间单元用于放置同步信号,为了能够有效地对这三个时间单元上的同步信号进行区分,以便接收端准确识别,本发明实施例提供一种区分同步信号的实现方案,具体如下:
所述同步信号对应的序列由第一子序列和第二子序列交织组成,其中,所述第一子序列表达式如下:
Figure PCTCN2014095890-appb-000130
其中,0<=n<=N/2,所述N为所述同步信号对应的序列的长度,所述d(2n)为所述第一子序列,所述
Figure PCTCN2014095890-appb-000131
所述
Figure PCTCN2014095890-appb-000132
和所述
Figure PCTCN2014095890-appb-000133
为由第一M序列的三个循环移位形成的三个序列,所述c0(n)为由第二M序列的循环移位形成的第一扰码序列,所述
Figure PCTCN2014095890-appb-000134
用于表征在每个所述时间窗的第j个时间单元上传输的所述同步信号时的所述第一子序列,所述
Figure PCTCN2014095890-appb-000135
用于表征在每个所述时间窗的第
Figure PCTCN2014095890-appb-000136
个时间单元上传输所述同步信号时的所述第一子序列,所述
Figure PCTCN2014095890-appb-000137
用于表征在每个所述时间窗的第j+m个时间单元上传输所述同步信号时的所述第一子序列;
所述第二子序列表达式如下:
Figure PCTCN2014095890-appb-000138
其中,所述d(2n+1)为所述第二子序列,所述c1(n)为由所述第二M序列的循环移位形成的第二扰码序列,所述
Figure PCTCN2014095890-appb-000139
所述
Figure PCTCN2014095890-appb-000140
和所述
Figure PCTCN2014095890-appb-000141
为由第三M序列的三个循环移位形成的三个第三扰码序列,所述
Figure PCTCN2014095890-appb-000142
用于表征在每个所述时间窗的第j个时间单元上传输所述同步信号时的所述第二子序列,所述
Figure PCTCN2014095890-appb-000143
用于表征在每个所述时间窗的第
Figure PCTCN2014095890-appb-000144
个时间单元上传输所述同步信号时的所述第二子序列,所述
Figure PCTCN2014095890-appb-000145
用于表征在每个所述时间窗的第j+m个时间单元上传输所述同步信号时的所述第二子序列。
可选的,所述传输模块101,还用于在每个所述时间窗的所述确定的时间单元上传输所述同步信号之前,将所述m通过广播信道发送给用户设备UE。
优选的,所述确定模块100,具体用于根据预置的同步信号信息确定每个所述时间窗内用来传输所述同步信号的时间单元;其中,所述预置的同步信号信息包括:每个所述时间窗内用来传输所述同步信号的时间单元;或者,
所述传输模块101,还用于获取更新的同步信号信息,根据所述更新的同步信号信息确定每个所述时间窗内用来传输所述同步信号的时间单元;其中,所述更新的同步信号信息包括:每个所述时间窗内用来传输所述同步信号的时间单元。
进一步地,在继续参照图2,该装置在进行同步信号传输的同时,还可以进行广播信道的传输,具体的:
所述确定模块100,还用于确定连续T个时间窗中用来传输广播信道的时间单元,所述T为大于零的整数,所述T为大于零的整数;
其中,所述T个时间窗中用来传输所述广播信道的时间单元为:所述T个时间窗中每个时间窗的第j个时间单元;所述j为大于或等于1,且小于或等于S的正整数,所述S为每个时间窗包含的时间单元数;
所述传输模块101,还用于将所述广播信道分别在所述确定的T个时间 窗中用来传输广播信道的时间单元进行传输。
本实施例提供的信号发送装置,通过确定模块确定连续T个时间窗中用来传输广播信道的时间单元,所述T为大于零的整数,所述T为大于零的整数;其中,所述T个时间窗中用来传输所述广播信道的时间单元为:所述T个时间窗中每个时间窗的第j个时间单元;所述j为大于或等于1,且小于或等于S的正整数,所述S为每个时间窗包含的时间单元数;传输模块将所述广播信道分别在所述确定的T个时间窗中用来传输广播信道的时间单元进行传输。实现了将广播信道固定在每个时间窗内固定位置的时间单元上,从而使得接收端在检测广播信道时,仅需要接收端的设备在每个时间窗内固定的时间单元上进行检测,降低了广播信道设计的复杂度和接收端设备检测的复杂度。
需要说明的是,上述传输广播信道的功能可以与传输所述同步信号的相应功能同时被图2所示装置执行,也可以单独被执行,此处不予限定。
优选的,所述广播信道位于每个所述时间窗的r个时间单元上,所述r个时间单元在每个所述时间窗的位置固定;所述r为大于或等于1并且小于或等于S的正整数。
可选的,所述r与上文所述m可以相等,也可以不同。
可选的,所述传输模块101,还用于在所述将所述广播信道分别在所述确定的T个时间窗中用来传输广播信道的时间单元进行传输之前,将所述r通过广播信道发送给用户设备UE。
优选的,与同步信号类似,在进行广播信道传输之前,图2所示装置也需要确定进行广播信道传输的相关参数,例如:
所述确定模块100,具体用于根据预置的广播信道信息确定所述连续T个时间窗中用来传输广播信道的时间单元;其中,所述预置的广播信道信息包括:所述时间窗个数T和每个所述时间窗中用来传输广播信道的时间单元;或者,
所述传输模块101,还用于获取更新的广播信道信息,根据所述更新的广播信道信息确定所述连续T个时间窗中用来传输广播信道的时间单元;其中,所述更新的广播信道信息包括:所述时间窗个数T和每个所述时间窗中用来传输广播信道的时间单元。
进一步地,在图2所示装置进行同步信号和/或广播信道传输的同时,该装置还可以进行下行测量参考信号的传输,具体的:
所述确定模块100,还用于确定每个时间窗内用来传输每套下行测量参考信号的时间单元;
其中,每个所述确定的时间窗内用来传输所述每套下行测量参考信号的时间单元包括如下至少一个时间单元:每个所述时间窗的第j个时间单元,每个所述时间窗的第
Figure PCTCN2014095890-appb-000146
个时间单元,每个所述时间窗的第j+q个时间单元,所述S为每个所述时间窗包含的时间单元数,所述q为大于或等于1并且小于或等于S的正整数,所述j为大于等于1且小于等于所述S的正整数;
所述传输模块101,还用于将所述每套下行测量参考信号分别在所述确定的时间窗内用来传输所述下行测量参考信号的时间单元进行传输。
本实施例提供的信号发送装置,通过确定模块确定每个时间窗内用来传输每套下行测量参考信号的时间单元;其中,每个所述确定的时间窗内用来传输所述每套下行测量参考信号的时间单元包括如下至少一个时间单元:每个所述时间窗的第j个时间单元,每个所述时间窗的第
Figure PCTCN2014095890-appb-000147
个时间单元,每个所述时间窗的第j+q个时间单元,所述S为每个所述时间窗包含的时间单元数,所述q为大于或等于1并且小于或等于S的正整数,如其可以为每个所述广播信道传输时间窗内用来传输广播信道的时间单元数,可以由发射端通过广播信道通知给接收端;所述j为大于等于1且小于等于所述S的正整数;传输模块将所述每套下行测量参考信号分别在所述确定的时间窗内用来传输所述下行测量参考信号的时间单元进行传输。实现了将多套下行测量参考信号固定在每个时间窗内固定位置的时间单元上,从而使得接收端在做基于多套参考信号的测量时,能够按照所述设计的预定义方式分别进行各套参考信号的信道质量测量,从而大大降低了基于多套下行测量参考信号的测量复杂度。
需要说明的是,上述传输下行测量参考信号的功能可以与传输广播信道的功能、传输所述同步信号的相应功能同时被图2所示装置执行,也可以单独被执行,此处不予限定。
对于下行测量参考信号,可以通过对时分放置多套下行测量参考信号的 时间单元进行循环位移,来保证每个时间窗内,用于传输每套下行测量参考信号的时间单元位置固定,具体的,一种可行的实现方式为:
所述传输模块101,具体用于通过对所述确定的时间窗内用来传输所述每套下行测量参考信号的时间单元进行循环移位,使得所述每套下行测量参考信号固定在每个所述时间窗的第j个时间单元,和/或每个所述时间窗的第j+q个时间单元,和/或每个所述时间窗的第
Figure PCTCN2014095890-appb-000148
个时间单元上进行传输:
Figure PCTCN2014095890-appb-000149
其中,所述循环移位是对q套所述下行测量参考信号的第k次发射对应的时间单元进行t个时间单元的循环移位,其中,所述q表示每次发射的下行测量参考信号的套数,所述k表示发射的次数,所述t表示每次所述循环移位中所述每套下行测量参考信号被移位的时间单元的个数,所述q、所述k和所述t均为大于零的正整数。
可选的,所述传输模块101,还用于在将所述每套下行测量参考信号分别在所述确定的时间窗内用来传输所述下行测量参考信号的时间单元进行传输之前,将所述q的值通过广播信道发送用户设备UE。
优选的,在图2的基础上,图3为本发明实施例提供的另一种信号发送装置的结构示意图,参照图3,该装置还包括:配置模块102。
配置模块102,用于通过高层信令为每个所述UE配置所述UE待测量的所述每套下行测量参考信号对应的时间单元。
优选的,所述确定模块100,具体用于根据预置的下行测量参考信号信息确定每个所述时间窗内用来传输每套下行测量参考信号的时间单元;其中,所述预置的下行测量参考信号信息包括:每个所述时间窗内用来传输每套下行测量参考信号的时间单元;或者,
所述传输模块101,还用于获取更新的下行测量参考信号信息,根据所述更新的下行测量参考信号信息确定每个所述时间窗内用来传输每套下行测量参考信号的时间单元;其中,所述更新的下行测量参考信号信息包括:每个所述时间窗内用来传输每套下行测量参考信号的时间单元。
继续参照图2,为了降低接收端的设备在检测时的复杂度,并且减少导频开销和设计,图2所示的装置还可以具有如下功能:
确定模块100,用于确定P个天线端口,所述P个天线端口为传输同步信号的天线端口;
传输模块101,用于将广播信道映射到所述P个天线端口上进行传输。
本发明实施例提供的信号发送装置,通过确定模块确定P个天线端口,所述P个天线端口为传输同步信号的天线端口;传输模块将广播信道映射到所述P个天线端口上进行传输。实现了基于同步信号资源进行广播信道的传输,使得接收端的设备根据同步信号资源进行广播信道的解调,从而降低接收端的设备在检测分别对应多套资源的同步信号资源和广播信道时的复杂度,也避免了接收端的设备分别基于不同的资源解调同步信号、广播信道。此外,由于无需重新定义新的广播信道专用解调导频,因此减少了广播信道解调导频的开销和设计。
进一步地,所述传输模块101,具体用于:将所述广播信道分别在每个时间窗的第i个时间单元上,并映射到所述P个天线端口进行传输;
将所述同步信号分别在每个所述时间窗的第i个时间单元上,并映射到所述P个天线端口进行传输;
每个所述时间窗的第i个所述时间单元上的所述同步信号的传输周期小于或等于每个所述时间窗的第i个所述时间单元上的所述广播信道的传输周期其中,所述i大于等于1小于等于M,所述M为每个时间窗内的时间单元总数。
进一步地,所述传输模块101,具体用于将所述同步信号在每个所述时间窗的所述第i个时间单元内的至少两个符号上,并映射到所述P个天线端口进行传输;
其中,所述符号为小于所述时间单元的时间单位。
优选的,所述确定模块100,具体用于根据预置的天线端口信息确定所述P个天线端口,所述预置的天线端口信息包含所述P个天线端口与所述同步信号的对应关系;或者,
所述传输模块101,还用于获取更新的天线端口信息,根据所述更新的天线端口信息确定所述P个天线端口,所述更新的天线端口信息包含所述P个天线端口与所述同步信号的对应关系。
上文图2或图3所示的装置作为发送端的设备,相应的,作为接收端 的设备也需要进行相应的改进,下面通过具体实施例对接收端的设备进行说明。
图4为本发明实施例提供的一种信号检测装置的结构示意图,该装置作为接收端的设备,可以为UE,射频拉远单元(Remote radio Unit,简称:RRU),或其他任意接收设备,参照图4,该装置包括:确定模块200、检测模块201。
确定模块200,用于确定每个时间窗内检测同步信号的时间单元;
其中,所述确定的时间单元包括如下至少一个时间单元:每个所述时间窗的第j个时间单元,每个所述时间窗的第
Figure PCTCN2014095890-appb-000150
个时间单元,每个所述时间窗的第j+m个时间单元,所述S为每个所述时间窗包含的时间单元数、所述m为大于或等于1并且小于等于S的正整数,所述j为大于或等于1且小于或等于所述S的正整数;
检测模块201,用于在每个所述时间窗的所述确定的时间单元上检测所述同步信号。
本实施例提供的信号检测装置,通过确定模块确定每个时间窗内检测同步信号的时间单元;其中,所述确定的时间单元包括如下至少一个时间单元:每个所述时间窗的第j个时间单元,每个所述时间窗的第
Figure PCTCN2014095890-appb-000151
个时间单元,每个所述时间窗的第j+m个时间单元,所述S为每个所述时间窗包含的时间单元数、所述m为大于或等于1并且小于等于S的正整数,所述j为大于或等于1且小于或等于所述S的正整数;检测模块在每个所述时间窗的所述确定的时间单元上检测所述同步信号。实现了将同步信号固定在每个时间窗内固定位置的时间单元上,从而接收端的设备在检测同步信号时,仅需要在每个时间窗内固定的时间单元上进行检测,降低了同步信号设计的复杂度和接收端设备检测的复杂度。
参照图2对应的实施例可知,在一个时间窗内,同时可能有三个时间单元用于放置同步信号,需要对这三个时间单元上的同步信号进行区分,其具体的区分方案可以参照图2对应的实施例,此处不再赘述。
在图4的基础上,图5为本发明实施例提供的另一种信号检测装置的结构示意图,参照图5,该装置还包括:传输模块202。
传输模块202,还用于在所述确定每个时间窗内检测同步信号的时间单 元之前,获取发送端广播的所述m的值。
优选的,所述确定模块200,具体用于:
根据预置的同步信号信息确定确定每个时间窗内检测同步信号的时间单元;其中,所述预置的同步信号信息包括:每个所述时间窗内检测同步信号的时间单元;或者,
获取更新的同步信号信息,根据所述更新的同步信号信息确定确定每个时间窗内检测同步信号的时间单元;其中,所述更新的同步信号信息包括:每个所述时间窗内检测同步信号的时间单元。
进一步地,在图4或图5所示的装置检测同步信号的同时,该装置还可以检测广播信道,具体的:
所述确定模块200,还用于确定连续T个时间窗中检测广播信道的时间单元,所述T为大于零的整数;
其中,所述T个时间窗中检测广播信道的时间单元为:每个所述时间窗的第j个时间单元;所述j为大于或等于1,且小于或等于S的正整数,所述S为每个时间窗包含的时间单元数;
所述检测模块201,还用于在所述确定的T个时间窗中检测广播信道的时间单元上检测所述广播信道。
本实施例提供的信号检测装置,通过确定模块确定连续T个时间窗中检测广播信道的时间单元,所述T为大于零的整数;其中,所述T个时间窗中检测广播信道的时间单元为:每个所述时间窗的第j个时间单元;所述j为大于或等于1,且小于或等于S的正整数,所述S为每个时间窗包含的时间单元数;检测模块在所述确定的T个时间窗中检测广播信道的时间单元上检测所述广播信道。实现了将广播信道固定在每个时间窗内固定位置的时间单元上,从而接收端的设备在检测广播信道时,仅需要在每个时间窗内固定的时间单元上进行检测,降低了广播信道设计的复杂度和接收端设备检测的复杂度。
需要说明的是,上述检测同步信号的功能与检测广播信道的功能,图4或图5所示的装置可以同步执行,也可以相互独立执行,此处不予限定。
优选的,所述广播信道位于每个所述时间窗的r个时间单元上,所述r个时间单元在每个所述时间窗的位置固定,所述r为大于或等于1并且小于 或等于S的正整数。
进一步地,所述确定模块200,还用于在所述确定的T个时间窗中检测广播信道的时间单元上检测所述广播信道之前,获取所述发送端广播的所述r的值。
优选的,所述确定模块200,具体用于:
根据预置的广播信道信息确定所述连续T个时间窗中检测广播信道的时间单元;其中,所述预置的广播信道信息包括:所述时间窗个数T和每个所述时间窗内检测广播信道的时间单元;或者,
获取更新的广播信道信息,根据所述更新的广播信道信息确定所述连续T个时间窗中检测广播信道的时间单元;其中,所述更新的广播信道信息包括:所述时间窗个数T和每个所述时间窗内检测广播信道的时间单元。
进一步地,在图4或图5所示的装置检测同步信号和/或广播信道的同时,该装置还可以进行下行测量参考信号的测量,具体的:
所述确定模块200,还用于确定每个所述时间窗内测量每套下行测量参考信号的时间单元;
其中,每个所述确定的时间窗内测量每套下行测量参考信号的时间单元包括如下至少一个时间单元:每个所述时间窗的第j个时间单元,每个所述时间窗的第
Figure PCTCN2014095890-appb-000152
个时间单元,每个所述时间窗的第j+q个时间单元,所述q为大于或等于1并且小于或等于S的正整数;所述S为每个所述时间窗包含的时间单元数,所述q为大于或等于1并且小于或等于S的正整数,所述j为大于等于1且小于等于所述S的正整数;
所述检测模块201,还用于在所述确定的时间窗内测量每套下行测量参考信号的时间单元上进行所述每套下行测量参考信号的信道质量测量。
本实施例提供的信号检测装置,通过确定模块确定每个所述时间窗内测量每套下行测量参考信号的时间单元;其中,每个所述确定的时间窗内测量每套下行测量参考信号的时间单元包括如下至少一个时间单元:每个所述时间窗的第j个时间单元,每个所述时间窗的第
Figure PCTCN2014095890-appb-000153
个时间单元,每个所述时间窗的第j+q个时间单元,所述q为大于或等于1并且小于或等于S的正整数;所述S为每个所述时间窗包含的时间单元数,所述q为大于或等于1并且小于或等于S的正整数,所述j为大于等于1且小于等于所述S 的正整数;所述检测模块在所述确定的时间窗内测量每套下行测量参考信号的时间单元上进行所述每套下行测量参考信号的信道质量测量。实现了将多套下行测量参考信号固定在每个时间窗内固定位置的时间单元上,从而接收端在接收并测量每套所述测量参考信号时,能够按照所述设计的预定义方式分别进行各套参考信号的信道质量测量,从而大大降低了基于多套下行测量参考信号的测量复杂度。
需要说明的是,图4或图5所示的装置在执行检测同步信号的功能和/或广播信道的功能时,该装置还可以执行测量下行测量参考信号的功能,或者,上述三种功能可以独立执行,此处不予限定。
可选的,所述确定模块200,还用于在所述确定的时间窗内测量每套下行测量参考信号的时间单元之前,获取所述发送端广播的所述q的值。
优选的,所述检测模块201,具体用于在所述发送端的高层信令配置的所述每套下行测量参考信号对应的时间单元上进行所述下行测量参考信号的信道质量测量。
优选的,所述确定模块200,具体用于:
根据预置的下行测量参考信号信息确定每个所述时间窗内测量每套下行测量参考信号的时间单元;其中,所述预置的下行测量参考信号信息包括:每个所述时间窗内测量所述每套下行测量参考信号的时间单元;或者,
获取更新的下行测量参考信号信息,根据所述更新的下行测量参考信号信息确定每个所述时间窗内测量每套下行测量参考信号的时间单元;其中,所述更新的下行测量参考信号信息包括:每个所述时间窗内测量所述每套下行测量参考信号的时间单元。
继续参照图4或图5,该装置作为接收端的设备,为了降低接收端的设备在检测时的复杂度,并且减少导频开销和设计,本发明实施例提供一种基于同步信号资源进行广播信道解调的方案,具体的:
确定模块200,用于确定P个天线端口,所述P个天线端口为发送端传输同步信号的天线端口;
检测模块201,用于在所述P个天线端口上检测广播信道。
本发明实施例提供的信号检测装置,通过确定模块确定P个天线端口,所述P个天线端口为发送端传输同步信号的天线端口;检测模块在所述P个 天线端口上检测广播信道。实现了根据同步信号资源进行广播信道的传输,降低了分别对应多套资源的同步信号资源和广播信道时的复杂度,也避免了接收端的设备分别基于不同的资源解调同步信号、广播信道。此外,由于无需重新定义新的广播信道专用解调导频,因此减少了广播信道解调导频的开销和设计。
进一步地,所述检测模块201,具体用于:
在每个时间窗的第i个时间单元上检测所述P个天线端口对应的所述广播信道;
在每个所述时间窗的第i个时间单元上检测所述P个天线端口对应的所述同步信号
每个所述时间窗的第i个所述时间单元上的所述同步信号的传输周期小于或等于每个所述时间窗的第i个所述时间单元上的所述广播信道的传输周期其中,所述i大于等于1小于等于M,所述M为每个时间窗内的时间单元总数。
可选的,所述检测模块201,具体用于在每个所述时间窗的所述第i个时间单元内的至少两个符号上检测所述P个天线端口对应的所述同步信号;
其中,所述符号为小于所述时间单元的时间单位。
可选的,所述确定模块200,具体用于:
根据预置的天线端口信息确定所述P个天线端口,所述预置的天线端口信息包含所述P个天线端口与所述同步信号的对应关系;或者,
获取更新的天线端口信息,根据所述更新的天线端口信息确定所述P个天线端口,所述更新的天线端口信息包含所述P个天线端口与所述同步信号的对应关系。
图6为本发明实施例提供的另一种信号发送装置的结构示意图,该装置可以为基站、演进型基站、射频拉远单元(Remote Ratio Unit,简称:RRU)等设备,参照图6,该装置包括:处理器300、收发器301。
处理器300可以具有上文图2所示中确定模块100的相应功能,相应的,收发器301可以具有上文图2所示中传输模块101的相应功能,因此,该装置能够实现图2对应实施例的技术效果;
进一步的,在图2基础上,处理器300还可以具有图3所示的配置模块 102的相应功能,因此,该装置能够实现图3对应实施例的技术效果;
处理器300可以具有上文图4所示中确定模块200的相应功能,相应的,收发器301可以具有上文图4所示中检测模块201的相应功能,因此,该装置能够实现图4对应实施例的技术效果;
进一步的,在图4基础上,收发器301还可以具有图5所示的传输模块202的相应功能,因此,该装置能够实现图5对应实施例的技术效果。
进一步的,本发明实施例还提供一种信号发送和检测系统,该系统中包含作为发送端设备的信号发送装置和作为接收端设备的信号检测装置,本实施例对于发送端设备和接收端设备的个数不予限定。并且,信号发送装置可以采用上文图2、3或6所示的结构,实现相应功能和技术效果。信号检测装置可以采用上文图4、5或6所示的结构,实现相应功能和技术效果。
图7为本发明实施例提供的一种信号发送方法示意图,该方法执行主体可以采用上文图2或图3或图6所示装置的结构,并且该装置能够执行本实施例所示各个步骤。该装置可以为基站、演进型基站、RRU等设备,参照图7,该方法包括如下步骤:
步骤100、确定每个时间窗内用来传输同步信号的时间单元;
其中,所述确定的时间单元包括如下至少一个时间单元:每个所述时间窗的第j个时间单元,每个所述时间窗的第
Figure PCTCN2014095890-appb-000154
个时间单元和每个所述时间窗的第j+m个时间单元,所述S为每个所述时间窗包含的时间单元数,所述m为大于或等于1并且小于或等于S的正整数,所述j为大于或等于1且小于或等于所述S的正整数;
步骤101、在每个所述时间窗的所述确定的时间单元上传输所述同步信号。
本实施例提供的信号发送方法,通过确定每个时间窗内用来传输同步信号的时间单元;其中,所述确定的时间单元包括如下至少一个时间单元:每个所述时间窗的第j个时间单元,每个所述时间窗的第
Figure PCTCN2014095890-appb-000155
个时间单元和每个所述时间窗的第j+m个时间单元,所述S为每个所述时间窗包含的时间单元数,所述m为大于或等于1并且小于或等于S的正整数,如其可以为每个所述时间窗内用来传输广播信道的时间单元数,所述j为大于或等于1且小于或等于所述S的正整数;在每个所述时间窗的所述确定的时间 单元上传输所述同步信号。实现了将同步信号固定在每个时间窗内固定位置的时间单元上,从而使得接收端在检测同步信号时,仅需要接收端的设备在每个时间窗内固定的时间单元上进行检测,降低了同步信号设计的复杂度和接收端设备检测的复杂度。
优选的,参照上文可知,在一个时间窗内,同时可能有三个时间单元用于放置同步信号,为了能够有效地对这三个时间单元上的同步信号进行区分,以便接收端准确识别,本发明实施例提供一种区分同步信号的实现方案,具体如下:
所述同步信号对应的序列由第一子序列和第二子序列交织组成,其中,所述第一子序列表达式如下:
Figure PCTCN2014095890-appb-000156
其中,0<=n<=N/2,所述N为所述同步信号对应的序列的长度,所述d(2n)为所述第一子序列,所述
Figure PCTCN2014095890-appb-000157
所述
Figure PCTCN2014095890-appb-000158
和所述
Figure PCTCN2014095890-appb-000159
为由第一M序列的三个循环移位形成的三个序列,所述c0(n)为由第二M序列的循环移位形成的第一扰码序列,所述
Figure PCTCN2014095890-appb-000160
用于表征在每个所述时间窗的第j个时间单元上传输的所述同步信号时的所述第一子序列,所述
Figure PCTCN2014095890-appb-000161
用于表征在每个所述时间窗的第
Figure PCTCN2014095890-appb-000162
个时间单元上传输所述同步信号时的所述第一子序列,所述
Figure PCTCN2014095890-appb-000163
用于表征在每个所述时间窗的第j+m个时间单元上传输所述同步信号时的所述第一子序列;
所述第二子序列表达式如下:
Figure PCTCN2014095890-appb-000164
其中,所述d(2n+1)为所述第二子序列,所述c1(n)为由所述第二M序列的循环移位形成的第二扰码序列,所述
Figure PCTCN2014095890-appb-000165
所述
Figure PCTCN2014095890-appb-000166
和所述
Figure PCTCN2014095890-appb-000167
为由第三M序列的三个循环移位形成的三个第三扰码序列,所述
Figure PCTCN2014095890-appb-000168
用于表征在每个所述时间窗的第j个时间单元上传输所述同步信号时的所述第二子序列,所述
Figure PCTCN2014095890-appb-000169
用于表征在每个所述时间 窗的第
Figure PCTCN2014095890-appb-000170
个时间单元上传输所述同步信号时的所述第二子序列,所述
Figure PCTCN2014095890-appb-000171
用于表征在每个所述时间窗的第j+m个时间单元上传输所述同步信号时的所述第二子序列。
可选的,在执行步骤101之前,发送端的设备可以将所述m通过广播信道发送给用户设备UE。
具体的,为了能够使得接收端的UE检测到上述同步信号,发送端的设备可以在传输同步信号之前将所述m的值发送给UE。另外,也可将m的值预置在UE内,此时则不需要将所述m的值发送给UE。
优选的,对于图7所示步骤100,其可以有如下几种可行的实现方式:
方式一:步骤100a、根据预置的同步信号信息确定每个所述时间窗内用来传输所述同步信号的时间单元;其中,所述预置的同步信号信息包括:每个所述时间窗内用来传输所述同步信号的时间单元;
步骤100a采用预置的方式,将每个所述时间窗内用来传输所述同步信号的时间单元预置在发送端的设备的存储介质中,当需要进行同步信号传输时,即调取存储介质中的预置的同步信号信息,并进行同步信号的传输。可选的,预置的同步信号信息还可以包括上述S、m等参数。
方式二:步骤100b、获取更新的同步信号信息,根据所述更新的同步信号信息确定每个所述时间窗内用来传输所述同步信号的时间单元;其中,所述更新的同步信号信息包括:所述时间窗内用来传输所述同步信号的时间单元。
步骤100b中,当发送端的设备具备相应运算功能时,则可以自行根据系统需求生成更新的同步信号信息;或者,发送端的设备接收系统控制设备发送的更新的同步信号信息,进一步的,发送端的设备可以主动从控制设备处获取,也可以等待控制设备配置,此处不予限定。可选的,更新的同步信号信息还可以包括上述S、m等参数。
进一步地,在图2或图3或图6所示的装置作为接收端的设备是,其进行同步信号传输的同时,还可以进行广播信道的传输,具体的,图8为本发明实施例提供的另一种信号发送方法示意图,参照图8,该方法包括如下步骤:
步骤200、确定连续T个时间窗中用来传输广播信道的时间单元,所述T 为大于零的整数;
其中,所述T个时间窗中用来传输所述广播信道的时间单元为:所述T个时间窗中每个时间窗的第j个时间单元;所述j为大于或等于1,且小于或等于S的正整数,所述S为每个时间窗包含的时间单元数;
步骤201、将所述广播信道分别在所述确定的T个时间窗中用来传输广播信道的时间单元进行传输。
本实施例提供的信号发送方法,通过确定连续T个时间窗中用来传输广播信道的时间单元,所述T为大于零的整数;其中,所述T个时间窗中用来传输所述广播信道的时间单元为:所述T个时间窗中每个时间窗的第j个时间单元;所述j为大于或等于1,且小于或等于S的正整数,所述S为每个时间窗包含的时间单元数;将所述广播信道分别在所述确定的T个时间窗中用来传输广播信道的时间单元进行传输。实现了将广播信道固定在每个时间窗内固定位置的时间单元上,从而使得接收端在检测广播信道时,仅需要接收端的设备在每个时间窗内固定的时间单元上进行检测,降低了广播信道设计的复杂度和接收端设备检测的复杂度。
需要说明的是,上述步骤200、步骤201可以与图7所示步骤100、步骤101同时被执行,也可以单独被执行,此处不予限定。
优选的,小区内的全部所述广播信道以时分方式位于每个所述时间窗的r个时间单元上,所述r个时间单元在每个所述时间窗的位置固定;所述r为大于或等于1并且小于或等于S的正整数。
其中,所述r与上文所述m可以相等,也可以不同。
可选的,在图8所示步骤201之前,还包括:
步骤202、将所述r通过广播信道发送给用户设备UE。以使所述UE在所述r个时间单元上检测所述广播信道。可选地,所述r的值通过每个所述时间窗内的第一个传输的广播信道发送给小区内所有用户设备UE。
优选的,与同步信号类似,在进行广播信道传输之前,发送端的设备也需要确定进行广播信道传输的相关参数,具体的,步骤200,其可以有如下几种可行的实现方式:
方式一:步骤200a、根据预置的广播信道信息确定所述连续T个时间窗中用来传输广播信道的时间单元;其中,所述预置的广播信道信息包括:所 述时间窗个数T和每个所述时间窗中用来传输广播信道的时间单元;
方式二,步骤200b、获取更新的广播信道信息,根据所述更新的广播信道信息确定所述连续T个时间窗中用来传输广播信道的时间单元;其中,所述更新的广播信道信息包括:所述时间窗个数T和每个所述时间窗中用来传输广播信道的时间单元。
需要说明的是,对于步骤200a、步骤200b,可以参照上文步骤100a、步骤100b的相关叙述,即发送端的设备可以采用预置或获取两种方式来确定所述时间窗个数T和每个所述时间窗内用来传输广播信道的时间单元,另外,预置的广播信道信息或更新的广播信道信息中还可以包含与时间窗个数T、每个所述时间窗内用来传输广播信道的时间单元相关的参数,例如j。
进一步地,在发送端的设备进行同步信号和/或广播信道传输的同时,该发送端的设备还可以进行下行测量参考信号的传输,具体的,图9为本发明实施例提供的另一种信号发送方法示意图,参照图9,该方法包括如下步骤:
步骤300、确定每个时间窗内用来传输每套下行测量参考信号的时间单元;
其中,每个所述确定的时间窗内用来传输所述每套下行测量参考信号的时间单元包括如下至少一个时间单元:每个所述时间窗的第j个时间单元,每个所述时间窗的第
Figure PCTCN2014095890-appb-000172
个时间单元,每个所述时间窗的第j+q个时间单元,所述S为每个所述时间窗包含的时间单元数,所述q为大于或等于1并且小于或等于S的正整数,所述j为大于等于1且小于等于所述S的正整数;
步骤301、将所述每套下行测量参考信号分别在所述确定的时间窗内用来传输所述下行测量参考信号的时间单元进行传输。
本实施例提供的信号发送方法,通过确定每个时间窗内用来传输每套下行测量参考信号的时间单元;其中,每个所述确定的时间窗内用来传输所述每套下行测量参考信号的时间单元包括如下至少一个时间单元:每个所述时间窗的第j个时间单元,每个所述时间窗的第
Figure PCTCN2014095890-appb-000173
个时间单元,每个所述时间窗的第j+q个时间单元,所述S为每个所述时间窗包含的时间单元数,所述q为大于或等于1并且小于或等于S的正整数,所述j为大于等于1且小于等于所述S的正整数;将所述每套下行测量参考信号分别在所述 确定的时间窗内用来传输所述下行测量参考信号的时间单元进行传输。实现了将多套下行测量参考信号固定在每个时间窗内固定位置的时间单元上,从而使得接收端在做基于多套参考信号的测量时,能够按照所述设计的预定义方式分别进行各套参考信号的信道质量测量,从而大大降低了基于多套下行测量参考信号的测量复杂度。
需要说明的是,上述步骤300、步骤301可以与图7所示步骤100、步骤101同时被执行;或者,也可以与图7所示步骤100、步骤101及图8所示步骤200、步骤201同时被执行;或者,也可以与图8所示步骤200、步骤201同时被执行;或者,单独被执行,此处不予限定。
对于下行测量参考信号,可以通过对时分放置多套下行测量参考信号的时间单元进行循环位移,来保证每个时间窗内,用于传输每套下行测量参考信号的时间单元位置固定,具体的,一种可行的实现方式为:
通过对所述确定的时间窗内用来传输所述每套下行测量参考信号的时间单元进行循环移位,使得所述每套下行测量参考信号固定在每个所述时间窗的第j个时间单元,和/或每个所述时间窗的第j+q个时间单元,和/或每个所述时间窗的第
Figure PCTCN2014095890-appb-000174
个时间单元上进行传输:
Figure PCTCN2014095890-appb-000175
其中,所述循环移位是对q套所述下行测量参考信号的第k次发射对应的时间单元进行t个时间单元的循环移位,其中,所述q表示每次发射的下行测量参考信号的套数,所述k表示发射的次数,所述t表示每次所述循环移位中所述每套下行测量参考信号被移位的时间单元的个数,所述q、所述k和所述t均为大于零的正整数。
可选的,在步骤301之前,还包括:
步骤302、将所述q的值通过广播信道发送用户设备UE。
优选的,通过高层信令为每个所述UE配置所述UE待测量的所述每套下行测量参考信号对应的时间单元。如发送端通过高层信令为所述UE配置一个每套下行测量参考信号所对应的测量时间单元集合,所述UE在所述集合内的时间单元上进行每套测量参考信号的信道质量测量。
优选的,与同步信号或广播信道类似,在进行下行测量参考信号传输之 前,发送端的设备也需要确定进行下行测量参考信号的相关参数,具体的,步骤300,其可以有如下几种可行的实现方式:
方式一:步骤300a、根据预置的下行测量参考信号信息确定每个所述时间窗内用来传输每套下行测量参考信号的时间单元;其中,所述预置的下行测量参考信号信息包括:每个所述时间窗内用来传输每套下行测量参考信号的时间单元;或者,
方式二:步骤300b、获取更新的下行测量参考信号信息,根据所述更新的下行测量参考信号信息确定每个所述时间窗内用来传输每套下行测量参考信号的时间单元;其中,所述更新的下行测量参考信号信息包括:每个所述时间窗内用来传输每套下行测量参考信号的时间单元。
需要说明的是,对于步骤300a、步骤300b,可以参照上文步骤100a、步骤100b的相关叙述,即发送端的设备可以采用预置或获取两种方式来确定每个所述时间窗内用来传输所述每套下行测量参考信号的时间单元,另外,预置的下行测量参考信号信息或更新的下行测量参考信号信息中还可以包含与每个所述时间窗内用来传输下行测量参考信号的时间单元相关的参数,例如j、q、S。
下面通过具体实施例,对上文中如何将同步信号、广播信道、下行测量参考信号固定在每个时间窗的特定时间单元上进行说明,其中,同步信号以PSS和/或SSS进行举例。
例如,发送端的设备可以采用如下方式将物理广播信道(Physical Broadcast Channel,简称:PBCH)、下行测量参考信号(Downlink Measurement Reference Signal,简称:DL-MRS)、主同步信号(Primary Synchronization Signal,简称:PSS)和/或辅助同步信号(Secondary Synchronization Signal,简称:SSS)进行多分资源的发射,其中DL-MRS可以是当前LTE系统中的小区特定参考信号(Cell specific Reference Signal,简称:CRS)或信道状态信息参考信号(Channel State Information Reference Signal,简称:CSI-RS),具体的:
假定总资源的数目为m,PBCH、DL-RS、PSS和/或SSS使用每个资源进行时分传输,在传输时需要将这m个资源对应到时间窗的不同时间单元上进行传输,即第一个资源对应到一个时间窗的第一个时间单元,第二个资源 对应到该时间窗的第二个时间单元,以此类推。每一轮发射对应一个时间窗,在一轮发射中要将全部的资源都发射至少一次。为了保证每轮发射时放置PBCH、DL-RS、PSS和/或SSS的时间单元位置固定,则一种可行的方式为:每轮发射对时间单元进行位移。具体的,每一轮的m份资源的发射顺序规律归纳起来为:第一轮发射的顺序为0,1,…,m-1,而第二轮发射的顺序为相对于第一轮循环移位
Figure PCTCN2014095890-appb-000176
个时间单元。而第三轮发射的顺序相对于第一轮循环移位
Figure PCTCN2014095890-appb-000177
个时间单元。依此类推,可得第k(k>=1)轮发射的顺序相对于第一轮循环移位
Figure PCTCN2014095890-appb-000178
个时间单元。以m=6为例,资源具体为:a,b,c,d,e,f,图10为本发明实施例提供的一种多资源的发射顺序示意图,参照图10,将6带入上述公式可得:第一轮的发射顺序为:a,b,c,d,e,f.而第二轮的发射顺序为每个资源对应的发射时间单元相对于第一轮循环移位4个时间单元(向右),移位后的发射顺序为:c,d,e,f,a,b.第三轮的发射顺序同样为每个资源对应的发射时间单元相对于第一轮循环移位4个时间单元(向右),移位后的发射顺序同样为:c,d,e,f,a,b.第四轮的发射顺序为每个资源对应的发射时间单元相对于第一轮循环移位2个时间单元(向右),移位后的发射顺序为:e,f,a,b,c,d.第五轮的发射顺序为每个资源对应的发射时间单元相对于第一轮循环移位2个时间单元(向右),移位后的发射顺序同样为:e,f,a,b,c,d.而第六轮的发射顺序相对于第一轮循环移位0个时间单元,移位后的发射顺序为:a,b,c,d,e,f。进行上述位移之后,参照图10可知,从每个时间窗的角度来说,例如,图10中一个无线帧对应一个时间窗,而一个无线帧包含10个子帧,则参照图10可知,标号为0-9的子帧属于一个无线帧,标号为10-19的子帧属于一个无线帧,标号为20-29的子帧属于一个无线帧,标号为30-39的子帧属于一个无线帧。相应的,经过上述位移可以看出,在第一个无线帧中0-5的子帧上分别对应a,b,c,d,e,f六个资源,第二个无线帧中10-15的子帧上分别对应a,b,c,d,e,f六个资源,第三个无线帧中20-25的子帧上分别对应a,b,c,d,e,f六个资源,依次类推,可知通过上述移位可将m个资源固定在每个无线帧的m个子帧上,从而实现每轮发射时,多个资源在固定的位置上进行发射。当然,m个资源固定在每个无线帧的位置可以为该无线帧的前m个子帧,或者,为该无线帧的后m个子帧,或者为 该无线帧中的任意连续m个子帧上。本实施例对于该m个子帧在其无线帧的具体位置不做限定。进一步的,每个资源可以用来传输PBCH、DL-RS、PSS和/或SSS,以PSS和/或SSS为例,用于传输PSS和/或SSS的第j份资源可能出现的时间单元的位置为:第j个时间单元,和/或第
Figure PCTCN2014095890-appb-000179
个时间单元,和/或第j+m个时间单元。例如,继续参照上图10,以PSS和/或SSS传输时对应的第一份资源a为例,在第一个无线帧中用于传输PSS和/或SSS的时间单元为:第0个时间单元(标号为0的子帧);在第二个无线帧中用于传输PSS和/或SSS的时间单元为:第0个时间单元(标号为10的子帧)以及第6个时间单元(标号为16的子帧);在第三个无线帧中用于传输PSS和/或SSS的时间单元为:第0个时间单元(标号为20的子帧)以及第6个时间单元(标号为26的子帧)等等。
以PBCH为例,参见上文可知,用于传输PBCH的第j份资源可能出现的时间单元的位置为:每个所述PBCH传输时间窗的第j个时间单元。
需要说明的是,基于PBCH特性,PBCH的第j份资源固定在每个所述PBCH传输无线帧的第j个子帧进行发送,即第1份资源的PBCH在每个所述PBCH传输无线帧的第一个子帧发送,对应的用户群在相应的子帧进行盲检。第2份资源的PBCH在每个所述PBCH传输无线帧的第二个子帧发送,对应的用户群在相应的子帧进行盲检。
以DL-RS为例,参见上文可知,用于传输DL-RS的第j份资源可能出现的时间单元的位置为:第j个时间单元,和/或第j+q个时间单元,和/或第
Figure PCTCN2014095890-appb-000180
个时间单元。
进一步的,对于DL-RS,当一个时间窗中仅包含一个无线子帧时,DL-RS的第j份资源在子帧集{j,j+q/10+j/j+10-q,j+2q/20+j/j+2(10-q),…}上进行第j份资源的下行信道质量测量。其中j+q/10+j/j+10-q代表了第j+q号或第10+j号或第j+10-q号子帧中的一个,用户在上述3个子帧进行检测当检测到资源j时则在此子帧上进行相应的信道质量测量(包括测量值的滑动平均等操作)。如上图10中的资源a在子帧集{0,10,16,20,26,…};资源b在子帧集{1,11,17,21,27,…};资源c在子帧集{2,6,12,22,28,…};资源d在子帧集{3,7,13,23,29,…};资源e在子帧集{4,8,14,18,24,…};资源f在子帧集{5,9,15,19,25,…}进行对应的信道质量测量。所述信道质量测量值可以为信道 质量信息(Channel Quality Indicator,简称:CQI),参考信号接受功率(Reference Signal Received Power,简称:RSRP),参考信号接收质量(Reference Signal Received Quality,简称:RSRQ)等。
当一个时间窗中包含多个无线子帧时,DL-RS的第i份资源在子帧集:
Figure PCTCN2014095890-appb-000181
Figure PCTCN2014095890-appb-000182
上进行第j份资源的下行信道质量测量。其中
Figure PCTCN2014095890-appb-000183
代表了第j+q号或第
Figure PCTCN2014095890-appb-000184
号或第
Figure PCTCN2014095890-appb-000185
号子帧中的一个,用户在上述3个子帧进行检测当检测到资源j时则在此子帧上进行相应的信道质量测量(包括测量值的滑动平均等操作),所述q为大于等于1小于等于S的正整数,如其可以为每个时间窗内传输的不同下行测量参考信号的个/套数,其中,所述S为每个所述时间窗包含的时间单元数,所述j为大于等于1且小于等于所述S的正整数。
进一步地,为了降低接收端的设备在检测时的复杂度,并且减少导频开销和设计,本发明实施例提供一种基于同步信号资源进行广播信道解调的方案,具体的,图11为本发明实施例提供的另一种信号发送方法示意图,参照图11,该方法包括如下步骤:
步骤400、确定P个天线端口,所述P个天线端口为传输同步信号的天线端口;
步骤401、将广播信道映射到所述P个天线端口上进行传输。
本发明实施例提供的信号发送方法,通过确定P个天线端口,所述P个天线端口为传输同步信号的天线端口;再将广播信道映射到所述P个天线端口上进行传输。实现了基于同步信号资源进行广播信道的传输,使得接收端的设备根据同步信号资源进行广播信道的解调,从而降低接收端的设备在检测分别对应多套资源的同步信号资源和广播信道时的复杂度,也避免了接收端的设备分别基于不同的资源解调同步信号、广播信道。此外,由于无需重新定义新的广播信道专用解调导频,因此减少了广播信道解调导频的开销和设计。
进一步的,步骤401的一种可行的实现方式为:
步骤401a、将所述广播信道分别在每个时间窗的第i个时间单元上,并映射到所述P个天线端口进行传输;
需要说明的是,发送端的设备同时将所述同步信号分别在每个所述时间窗的第i个时间单元上,并映射到所述P个天线端口进行传输;
具体的,每个所述时间窗的第i个所述时间单元上的所述同步信号的传输周期小于或等于每个所述时间窗的第i个所述时间单元上的所述广播信道的传输周期其中,所述i大于等于1小于等于M,所述M为每个时间窗内的时间单元总数。
步骤400的几种可行的实现方式为:
方式一:步骤400a、根据预置的天线端口信息确定所述P个天线端口,所述预置的天线端口信息包含所述P个天线端口与所述同步信号的对应关系。
方式二:步骤400b、获取更新的天线端口信息,根据所述更新的天线端口信息确定所述P个天线端口,所述更新的天线端口信息包含所述P个天线端口与所述同步信号的对应关系。
上文图11对应的实施例,其目的在于将每份资源的广播信道基于同步信号进行解调,下面广播信道以PBCH,同步信号以PSS/SSS为例,对于这种绑定方式进行说明:资源总数为m,当基站进行多份资源的发射时第j份资源的PBCH基于第j份资源的PSS/SSS信号进行解调,即每份资源的PBCH与PSS/SSS进行绑定。PSS/SSS的发射周期小于等于PBCH的发射周期。或每份资源的相邻两次PSS/SSS的发射间隔小于等于对应的PBCH的相邻两次发射的时间间隔。如实施例一中第j份资源的PSS/SSS在每个帧的第j号或第j+10-m号或第j+m号子帧,相邻两次PSS/SSS的发射间隔为m/(10-m)/10。而第j份资源的PBCH固定在每个帧的第j个子帧,相邻两次PBCH的发射间隔为10。可选地,可设置PSS/SSS的发射周期为P,而PBCH的发射周期为Q,P<=Q。
发送端的设备可以按照上述发射时刻方式和对应的发射周期进行m份资源的PBCH/PSS/SSS发射,以资源数m=6为例,图12为本发明实施例提供的发射时刻示意图,参照图12:
所述标注PBCH/PSS/SSS的时刻为既发射PBCH也发射PSS/SSS的时刻。 而标注PSS/SSS的时刻为只发射PSS/SSS而不发射PBCH的时刻。
接收端的第0个时刻的PBCH基于图12中第0个时刻的PSS/SSS进行解调,而第10个时刻的PBCH基于第10个时刻的PSS/SSS进行解调,依此类推。
优选的,对于本发明实施例中,发送端的设备传输所述同步信号的方案,一种优选的实现方式为:
将所述同步信号在每个所述时间窗的所述第i个时间单元内的至少两个符号上,并映射到所述P个天线端口进行传输;
其中,所述符号为小于所述时间单元的时间单位。
进一步地,下面通过具体的实施例,对如何将同步信号设置于第i个时间单元内的至少两个符号上进行举例说明,具体的,上述符号为正交频分复用(Orthogonal Frequency Division Multiplexing,简称:OFDM)符号。图13及图14为本发明实施例提供的一种同步信号时域结构示意图,上述图13的设计中FDD下扩展PSS/SSS的密度从当前3GPP标准中只位于所在子帧的第一个时隙的最后两个OFDM符号上到位于所在子帧的第一个时隙和第二个时隙的最后两个OFDM符号上。具体为SSS位于每个时隙的倒数第二个OFDM符号上,而PSS位于每个时隙的倒数第一个OFDM符号上。可选地,也可以是图14的设计,即PSS/SSS位于所在帧的第一个时隙和第二个时隙的前两个OFDM符号上,具体为SSS位于每个时隙的第一个OFDM符号上,而PSS位于每个时隙的第二个OFDM符号上。两种设计方案中PSS/SSS在两个时隙内的相对位置是对称的。此外,不排除有其他增加PSS/SSS时域密度的方法。
图15及图16为本发明实施例提供的另一种同步信号时域结构示意图,参照图15及图16,TDD下在子帧0/5和特殊子帧分别增加PSS和SSS的时域密度。类型2的TDD下,SSS位于每个帧的子帧0或5的最后一个OFDM符号,而PSS位于相邻特殊子帧的下行导频时隙(Downlink Pilot Time Slot,简称:DWPTS)上的第三个OFDM符号上。扩展后的TDD下PSS/SSS的设计如上述10图中,所述SSS位于子帧0或5的第三个OFDM符号和最后一个OFDM符号上,而PSS位于相邻特殊子帧的第一个OFDM符号和第三个OFDM符号上。可选地,也可以是如上述图16中,所述SSS位于子帧0或5的第三个OFDM符号和最后一个OFDM符号上,而PSS位于相邻特殊子帧 的第三个OFDM符号和第七个OFDM符号上(当特殊子帧中的DwPTS含有大于等于9个OFDM符号时)。此外,也可以将PSS放置在相邻特殊子帧的第三个OFDM符号和第六或八个OFDM符号上。
对应上述图7至图16发送端的实施例,下面通过具体实施例对本发明实施例接收端的信号检测方法进行说明,图17为本发明实施例提供的一种信号检测方法示意图,该方法执行主体可以采用图4或图5或图6所示装置的结构,该装置可以为为接收端的设备,该设备可以为UE,射频拉远单元(Remote radio Unit,简称:RRU),或其他任意接收设备,参照图17,该方法包括如下步骤:
步骤500、确定每个时间窗内检测同步信号的时间单元;
其中,所述确定的时间单元包括如下至少一个时间单元:每个所述时间窗的第j个时间单元,每个所述时间窗的第
Figure PCTCN2014095890-appb-000186
个时间单元,每个所述时间窗的第j+m个时间单元,所述S为每个所述时间窗包含的时间单元数、所述m为大于或等于1并且小于等于S的正整数,所述j为大于或等于1且小于或等于所述S的正整数;
步骤501、在每个所述时间窗的所述确定的时间单元上检测所述同步信号。
本实施例提供的信号检测方法,通过确定每个时间窗内检测同步信号的时间单元;其中,所述确定的时间单元包括如下至少一个时间单元:每个所述时间窗的第j个时间单元,每个所述时间窗的第
Figure PCTCN2014095890-appb-000187
个时间单元,每个所述时间窗的第j+m个时间单元,所述S为每个所述时间窗包含的时间单元数、所述m为大于或等于1并且小于等于S的正整数,所述j为大于或等于1且小于或等于所述S的正整数;在每个所述时间窗的所述确定的时间单元上检测所述同步信号。实现了将同步信号固定在每个时间窗内固定位置的时间单元上,从而接收端的设备在检测同步信号时,仅需要在每个时间窗内固定的时间单元上进行检测,降低了同步信号设计的复杂度和接收端设备检测的复杂度。
参照图7对应的实施例可知,在一个时间窗内,同时可能有三个时间单元用于放置同步信号,需要对这三个时间单元上的同步信号进行区分,其具体的区分方案可以参照图7对应的实施例,此处不再赘述。
可选的,在步骤500之前,还包括:
步骤502、获取发送端广播的所述m的值。
具体的,为了能够准确地在上述三个位置的时间单元上对同步信号进行检测,接收端的设备需要获知所述m的值,一种可行的实现方式即接收端的设备通过盲检测获得发送端广播的所述m的值;或者,另一种可行的实现方式为,将所述m的值预置在接收端的设备内,当接收端的设备需要进行相应检测时,则调用所述m的值。
优选的,对于图17所示步骤500,其可以如下几种可行的实现方式:
方式一:根据预置的同步信号信息确定确定每个时间窗内检测同步信号的时间单元;其中,所述预置的同步信号信息包括:每个所述时间窗内检测同步信号的时间单元;
步骤500a采用预置的方式,将每个所述时间窗内的所述待检测同步信号的时间单元预置在接收端的设备的存储介质中,当需要检测同步信号时,即调取存储介质中的预置的同步信号信息,并检测所述同步信号。可选的,预置的同步信号信息还可以包括上述S、m等参数。
方式二:步骤500b、获取更新的同步信号信息,根据所述更新的同步信号信息确定确定每个时间窗内检测同步信号的时间单元;其中,所述更新的同步信号信息包括:每个所述时间窗内检测同步信号的时间单元。
步骤500b中,当接收端的设备具备相应运算功能时,则可以自行根据系统需求生成更新的同步信号信息;或者,接收端的设备接收系统中的控制设备发送的更新的同步信号信息,进一步的,接收端的设备可以主动从控制设备处获取,也可以等待控制设备配置,此处不予限定。可选的,更新的同步信号信息还可以包括上述S、m等参数。
进一步地,在接收端的设备检测同步信号的同时,该接收端的设备还可以检测广播信道,具体的,图18为本发明实施例提供的另一种信号检测方法示意图,参照图18,该方法包括如下步骤:
步骤600、确定连续T个时间窗中检测广播信道的时间单元,所述T为大于零的整数;
其中,所述T个时间窗中检测广播信道的时间单元为:每个所述时间窗的第j个时间单元;所述j为大于或等于1,且小于或等于S的正整数,所述 S为每个时间窗包含的时间单元数;
步骤601、在所述确定的T个时间窗中检测广播信道的时间单元上检测所述广播信道。
本实施例提供的信号检测方法,通过确定连续T个时间窗中检测广播信道的时间单元,所述T为大于零的整数;其中,所述T个时间窗中检测广播信道的时间单元为:每个所述时间窗的第j个时间单元;所述j为大于或等于1,且小于或等于S的正整数,所述S为每个时间窗包含的时间单元数;在所述确定的T个时间窗中检测广播信道的时间单元上检测所述广播信道。实现了将广播信道固定在每个时间窗内固定位置的时间单元上,从而接收端的设备在检测广播信道时,仅需要在每个时间窗内固定的时间单元上进行检测,降低了广播信道设计的复杂度和接收端设备检测的复杂度。
需要说明的是,上述步骤600、步骤601可以与图17所示步骤500、步骤501同时被执行,也可以单独被执行,此处不予限定。
优选的,小区内的所有所述广播信道位于每个所述时间窗的r个时间单元上,所述r个时间单元在每个所述时间窗的位置固定,所述r为大于或等于1并且小于或等于S的正整数。
需要说明的是,所述r与上文所述m的值可以相等,也可以不同。
在步骤601之前,还包括:
步骤602、获取所述发送端广播的所述r的值。
具体的,获取r的值的方式和上文步骤502类似,此处不再赘述。
优选的,与同步信号类似,在检测广播信道之前,接收端的设备也需要确定检测广播信道的相关参数,具体的,步骤600,其可以如下几种可行的实现方式:
方式一:步骤600a、根据预置的广播信道信息确定所述连续T个时间窗中检测广播信道的时间单元;其中,所述预置的广播信道信息包括:所述时间窗个数T和每个所述时间窗内检测广播信道的时间单元;或者,
方式二:步骤600b、获取更新的广播信道信息,根据所述更新的广播信道信息确定所述连续T个时间窗中检测广播信道的时间单元;其中,所述更新的广播信道信息包括:所述时间窗个数T和每个所述时间窗内检测广播信道的时间单元。
需要说明的是,对于步骤600a、步骤600b,可以参照上文步骤500a、步骤500b的相关叙述,即接收端的设备可以采用预置或获取两种方式来确定所述时间窗个数T和每个所述时间窗内的待检测广播信道的时间单元,另外,预置的广播信道信息或更新的广播信道信息中还可以包含与时间窗个数T、每个所述时间窗内的待检测广播信道的时间单元相关的参数,例如j。
进一步地,在接收端的设备检测同步信号和/或广播信道的同时,该接收端的设备还可以进行下行测量参考信号的测量,具体的,图19为本发明实施例提供的另一种信号检测方法示意图,参照图19,该方法包括如下步骤:
步骤700、确定每个所述时间窗内测量每套下行测量参考信号的时间单元;
其中,每个所述确定的时间窗内测量每套下行测量参考信号的时间单元包括如下至少一个时间单元:每个所述时间窗的第j个时间单元,每个所述时间窗的第
Figure PCTCN2014095890-appb-000188
个时间单元,每个所述时间窗的第j+q个时间单元,所述q为大于或等于1并且小于或等于S的正整数;所述S为每个所述时间窗包含的时间单元数,所述q为大于或等于1并且小于或等于S的正整数,所述j为大于等于1且小于等于所述S的正整数;
步骤701、在所述确定的时间窗内测量每套下行测量参考信号的时间单元上进行所述每套下行测量参考信号的信道质量测量。
本实施例提供的信号检测方法,通过确定每个所述时间窗内测量每套下行测量参考信号的时间单元;其中,每个所述确定的时间窗内测量每套下行测量参考信号的时间单元包括如下至少一个时间单元:每个所述时间窗的第j个时间单元,每个所述时间窗的第
Figure PCTCN2014095890-appb-000189
个时间单元,每个所述时间窗的第j+q个时间单元,所述q为大于或等于1并且小于或等于S的正整数;所述S为每个所述时间窗包含的时间单元数,所述q为大于或等于1并且小于或等于S的正整数,所述j为大于等于1且小于等于所述S的正整数;在所述确定的时间窗内测量每套下行测量参考信号的时间单元上进行所述每套下行测量参考信号的信道质量测量。实现了将多套下行测量参考信号固定在每个时间窗内固定位置的时间单元上,从而接收端在接收并测量每套所述测量参考信号时,能够按照所述设计的预定义方式分别进行各套参考信号的信道质量测量,从而大大降低了基于多套下行测量参考信号的测量复杂 度。
需要说明的是,上述步骤700、步骤701可以与图17所示步骤500、步骤501同时被执行;或者,也可以与图17所示步骤500、步骤501及图18所示步骤600、步骤601同时被执行;或者,也可以与图18所示步骤600、步骤601同时被执行;或者,单独被执行,此处不予限定。
可选的,在步骤701之前,还包括:
步骤702、获取所述发送端广播的所述q。
优选的,在所述发送端的高层信令配置的所述每套下行测量参考信号对应的时间单元上进行所述下行测量参考信号的信道质量测量。
优选的,与同步信号或广播信道类似,在检测或测量下行测量参考信号传输之前,接收端的设备也需要确定检测或测量下行测量参考信号的相关参数,具体的,步骤700,其可以如下几种可行的实现方式:
方式一:步骤700a、根据预置的下行测量参考信号信息确定每个所述时间窗内测量每套下行测量参考信号的时间单元;其中,所述预置的下行测量参考信号信息包括:每个所述时间窗内测量所述每套下行测量参考信号的时间单元;或者,
方式二:步骤700b、获取更新的下行测量参考信号信息,根据所述更新的下行测量参考信号信息确定每个所述时间窗内测量每套下行测量参考信号的时间单元;其中,所述更新的下行测量参考信号信息包括:每个所述时间窗内测量所述每套下行测量参考信号的时间单元。
需要说明的是,对于步骤700a、步骤700b,可以参照上文步骤500a、步骤500b的相关叙述,即接收端的设备可以采用预置或获取两种方式来确定每个所述时间窗内用来测量每套下行测量参考信号的时间单元,另外,预置的广播信道信息或更新的广播信道信息中还可以包含与每个所述时间窗内用来测量每套下行测量参考信号的时间单元相关的参数,例如j、q、S。
对于上述图17至图19对应的实施例,时间窗可以对应一个或多个无线帧,而根据现有技术中的无线帧制式,每个无线帧又包含10个子帧,而子帧即可以视为一种类型的时间单元,下面通过具体的示例进行说明,以无线帧与子帧的形式,对上述实施例进行说明。
发送端的设备可以上文所述方式将PBCH、DL-RS、PSS和/或SSS进行 多分资源的发射,此处不再赘述。
进一步的,对于多资源发送的方式,可能会出现资源总数大于无线帧的子帧个数,或者,资源总数小于或等于无线帧的子帧个数这两种场景,下面在图17至图19对应实施例的基础上,针对这两种场景,对本发明实施例提供的信号检测方法进行说明。
场景一:资源数目小于等于每帧内的子帧数。
广播信道以PBCH为例,PBCH的第j份资源固定在每个PBCH传输帧的第j个子帧进行发送,即第1份资源的PBCH在每个PBCH传输帧的第一个子帧发送,对应的用户群在相应的子帧进行盲检。第2份资源的PBCH在每个PBCH传输帧的第二个子帧发送,对应的用户群在相应的子帧进行盲检。依此类推。
图20为本发明实施例提供的一种广播信道发射示意图,参照图20,以40ms发射周期,并且资源数目小于等于每个无线帧的子帧数目为例,给出PBCH的第一份资源的发射示意图,其中编码后的广播信道(broadcast channel,简称:BCH)块固定在每个PBCH传输帧的第1个子帧上。
进一步的,同步信号以PSS/SSS,资源数6为例,图21为本发明实施例提供的一种发射时刻序列示意图,参照图21以及上文中有关同步信号的描述,PSS/SSS的第j份资源固定在每个PSS/SSS传输帧的第j号或第j+10-m号或第j+m号子帧中的一个或多个,所述m为每个PSS/SSS传输帧内的不同PSS/SSS的资源个数。上述每份资源在一轮发射周期内的多次发射可以是非均匀的,则图21提供了一种可能的发射时刻序列形式。
从上图21可看到资源a在周期30ms内的每个帧的子帧号为{0,0,6,0,6};资源b在周期30ms内的每个帧的子帧号为{1,1,7,1,7};资源c在周期30ms内的每个帧的子帧号为{2,6,2,2,8};资源d在周期30ms内的每个帧的子帧号为{3,7,3,3,9};资源e在周期30ms内的每个帧的子帧号为{4,8,4,8,4};资源f在周期30ms内每个帧的子帧号为{5,9,5,9,5}。从图21中可看到资源a在第一个帧的第0号子帧进行第一次发射,在第二个帧的第0个子帧进行第二次发射,而在第二个帧的第6号子帧进行第三次发射。因此所述一个发射周期内的多次发射是非均匀的。
具体地,m份资源的SSS发送采用3个长度为31的序列的交织连接,在 10ms中的三个辅同步子帧(j,j+m,j+10-m)采用不同的序列进行区分。上文中已对如何采用序列进行区分提供了具体的实现方式,此处不再赘述。
类似的,DL-RS的第i份资源的所在子帧集可以参照上文发送端对应的实施例,此处不再赘述。
资源数目可以是小区特定的,即不同小区有不同的资源数目。通过广播通知给相应的用户群。如所述资源数目由PBCH通知下去,用户通过盲检相应资源的PBCH获得此值。或用户通过连续盲检N(>=2)次的相应PSS/SSS资源来获取所述资源数目。如上例中任意用户通过连续盲检三次即可获得所述资源数为6。
场景二:资源数目大于每帧内的子帧数。
假定资源总数目为M(>10),以PBCH为例,则PBCH的第j资源固定在[0,(floor(M/10)+1)*10-1]个子帧中的第j个子帧进行发送,其中所述第j个子帧为0-(floor(M/10)+1)*10-1中的某个绝对子帧。如当M取15时,第1份资源位于[0,19]号子帧中的第一个子帧,而第12份资源位于[0,19]号子帧中的第12个子帧。对应的用户群在相应的子帧进行盲检。图22为本发明实施例提供的另一种广播信道发射示意图,参照上图22以M=15和PBCH的四次发射为例给出PBCH的第十二份资源的发射示意图,其中编码后的BCH块固定在[0,19]号子帧中第12个子帧上。
同步信号以PSS/SSS为例,PSS/SSS的第j份资源固定在[0,(floor(M/10)+1)*10-1]个子帧中的第j号或第j+(floor(M/10)+1)*10-m号或第j+m号子帧中的一个或多个,所述m为每个PSS/SSS传输帧内的不同PSS/SSS的资源个数。上述每份资源在一轮发射周期内的多次发射可以是非均匀的,图23为本发明实施例提供的另一种广播信道发射示意图,同样以上文的资源数15为例,参照图23,资源k在第10号子帧进行第一次发射,在第15号子帧进行第二次发射,而在第30号子帧进行第三次发射。因此所述一个发射周期内的多次发射是非均匀的。
具体地,m份资源的SSS发送采用3个长度为31的序列的交织连接,在10ms中的三个辅同步子帧(j,j+m,j+10-m)采用不同的序列进行区分。上文中已对如何采用序列进行区分提供了具体的实现方式,此处不再赘述。
类似的,DL-RS的第j份资源的所在子帧集可以参照上文发送端对应的 实施例,此处不再赘述。
对应上文图11对应的实施例,作为接收端的设备,为了降低接收端的设备在检测时的复杂度,并且减少导频开销和设计,本发明实施例提供一种基于同步信号资源进行广播信道解调的方案,具体的,图24为本发明实施例提供的另一种信号检测方法示意图,参照图24,该方法包括如下步骤:
步骤800、确定P个天线端口,所述P个天线端口为发送端传输同步信号的天线端口;
步骤801、在所述P个天线端口上检测广播信道。
本发明实施例提供的信号检测方法,通过确定P个天线端口,所述P个天线端口为发送端传输同步信号的天线端口;在所述P个天线端口上检测广播信道。实现了根据同步信号资源进行广播信道的传输,降低了分别对应多套资源的同步信号资源和广播信道时的复杂度,也避免了接收端的设备分别基于不同的资源解调同步信号、广播信道。此外,由于无需重新定义新的广播信道专用解调导频,因此减少了广播信道解调导频的开销和设计。
进一步的,步骤801的一种可行的实现方式为:
步骤801a、在每个时间窗的第i个时间单元上检测所述P个天线端口对应的所述广播信道;
需要说明的是,接收端的设备同时在每个所述时间窗的第i个时间单元上检测所述P个天线端口对应的所述同步信号
具体的,每个所述时间窗的第i个所述时间单元上的所述同步信号的传输周期小于或等于每个所述时间窗的第i个所述时间单元上的所述广播信道的传输周期其中,所述i大于等于1小于等于M,所述M为每个时间窗内的时间单元总数。
步骤800的几种可行的实现方式:
方式一:步骤800a、根据预置的天线端口信息确定所述P个天线端口,所述预置的天线端口信息包含所述P个天线端口与所述同步信号的对应关系;或者,
方式二:步骤800b、获取更新的天线端口信息,根据所述更新的天线端口信息确定所述P个天线端口,所述更新的天线端口信息包含所述P个天线端口与所述同步信号的对应关系。
优选的,对于本发明实施例中,接收端的设备检测所述同步信号的方案, 一种优选的实现方式为:
在每个所述时间窗的所述第i个时间单元内的至少两个符号上检测所述P个天线端口对应的所述同步信号;
其中,所述符号为小于所述时间单元的时间单位。
本领域普通技术人员可以理解:实现上述各方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成。前述的程序可以存储于一计算机可读取存储介质中。该程序在执行时,执行包括上述各方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换。因此,本发明的保护范围应以权利要求的保护范围为准。

Claims (157)

  1. 一种信号发送装置,其特征在于,包括:
    确定模块,用于确定每个时间窗内用来传输同步信号的时间单元;
    其中,所述确定的时间单元包括如下至少一个时间单元:每个所述时间窗的第j个时间单元,每个所述时间窗的第
    Figure PCTCN2014095890-appb-100001
    个时间单元和每个所述时间窗的第j+m个时间单元,所述S为每个所述时间窗包含的时间单元数,所述m为大于或等于1并且小于或等于S的正整数,所述j为大于或等于1且小于或等于所述S的正整数;
    传输模块,用于在每个所述时间窗的所述确定的时间单元上传输所述同步信号。
  2. 根据权利要求1所述的装置,其特征在于,所述同步信号对应的序列由第一子序列和第二子序列交织组成,其中,所述第一子序列表达式如下:
    Figure PCTCN2014095890-appb-100002
    其中,0<=n<=N/2,所述N为所述同步信号对应的序列的长度,所述d(2n)为所述第一子序列,所述
    Figure PCTCN2014095890-appb-100003
    所述
    Figure PCTCN2014095890-appb-100004
    和所述
    Figure PCTCN2014095890-appb-100005
    为由第一M序列的三个循环移位形成的三个序列,所述c0(n)为由第二M序列的循环移位形成的第一扰码序列,所述
    Figure PCTCN2014095890-appb-100006
    用于表征在每个所述时间窗的第j个时间单元上传输的所述同步信号时的所述第一子序列,所述
    Figure PCTCN2014095890-appb-100007
    用于表征在每个所述时间窗的第
    Figure PCTCN2014095890-appb-100008
    个时间单元上传输所述同步信号时的所述第一子序列,所述
    Figure PCTCN2014095890-appb-100009
    用于表征在每个所述时间窗的第j+m个时间单元上传输所述同步信号时的所述第一子序列;
    所述第二子序列表达式如下:
    Figure PCTCN2014095890-appb-100010
    其中,所述d(2n+1)为所述第二子序列,所述c1(n)为由所述第二M序列的循环移位形成的第二扰码序列,所述
    Figure PCTCN2014095890-appb-100011
    所述
    Figure PCTCN2014095890-appb-100012
    和所述
    Figure PCTCN2014095890-appb-100013
    为由第三M序列的三个循环移位形成的三个第三扰码序列,所述
    Figure PCTCN2014095890-appb-100014
    用于表征在每个所述时间窗的第j个时间单元上传输所述同步信号时的所述第二子序列,所述
    Figure PCTCN2014095890-appb-100015
    用于表征在每个所述时间窗的第
    Figure PCTCN2014095890-appb-100016
    个时间单元上传输所述同步信号时的所述第二子序列,所述
    Figure PCTCN2014095890-appb-100017
    用于表征在每个所述时间窗的第j+m个时间单元上传输所述同步信号时的所述第二子序列。
  3. 根据权利要求1或2所述的装置,其特征在于,所述传输模块,还用于在每个所述时间窗的所述确定的时间单元上传输所述同步信号之前,将所述m通过广播信道发送给用户设备UE。
  4. 根据权利要求1-3任意一项所述的装置,其特征在于,所述确定模块,具体用于根据预置的同步信号信息确定每个所述时间窗内用来传输所述同步信号的时间单元;其中,所述预置的同步信号信息包括:每个所述时间窗内用来传输所述同步信号的时间单元;或者,
    所述传输模块,还用于获取更新的同步信号信息,根据所述更新的同步信号信息确定每个所述时间窗内用来传输所述同步信号的时间单元;其中,所述更新的同步信号信息包括:每个所述时间窗内用来传输所述同步信号的时间单元。
  5. 根据权利要求1-4任意一项所述的装置,其特征在于,所述确定模块,还用于确定连续T个时间窗中用来传输广播信道的时间单元,所述T为大于零的整数;
    其中,所述T个时间窗中用来传输所述广播信道的时间单元为:所述T个时间窗中每个时间窗的第j个时间单元;
    所述传输模块,还用于将所述广播信道分别在所述确定的T个时间窗中用来传输广播信道的时间单元进行传输。
  6. 根据权利要求5所述的装置,其特征在于,所述广播信道位于每个所述时间窗的r个时间单元上,所述r个时间单元在每个所述时间窗的位置固定。
  7. 根据权利要求6所述的装置,其特征在于,所述r与所述m的值相等。
  8. 根据权利要求6或7所述的装置,其特征在于,所述传输模块,还用于在将所述广播信道分别在所述确定的T个时间窗中用来传输广播信道的时间单元进行传输之前,将所述r通过广播信道发送给用户设备UE。
  9. 根据权利要求5-8任意一项所述的装置,其特征在于,所述确定模块, 具体用于根据预置的广播信道信息确定所述连续T个时间窗中用来传输广播信道的时间单元;其中,所述预置的广播信道信息包括:所述时间窗个数T和每个所述时间窗内用来传输广播信道的时间单元;或者,
    所述传输模块,还用于获取更新的广播信道信息,根据所述更新的广播信道信息确定所述连续T个时间窗中用来传输广播信道的时间单元;其中,所述更新的广播信道信息包括:所述时间窗个数T和每个所述时间窗内用来传输广播信道的时间单元。
  10. 根据权利要求1-9任意一项所述的装置,其特征在于,所述确定模块,还用于确定每个所述时间窗内用来传输每套下行测量参考信号的时间单元;
    其中,每个所述确定的时间窗内用来传输所述每套下行测量参考信号的时间单元包括如下至少一个时间单元:每个所述时间窗的第j个时间单元,每个所述时间窗的第
    Figure PCTCN2014095890-appb-100018
    个时间单元,每个所述时间窗的第j+q个时间单元,所述q为大于或等于1并且小于或等于S的正整数;
    所述传输模块,还用于将所述每套下行测量参考信号分别在所述确定的时间窗内用来传输所述下行测量参考信号的时间单元进行传输。
  11. 根据权利要求10所述的装置,其特征在于,所述传输模块,具体用于通过如下公式对所述确定的时间窗内用来传输所述每套下行测量参考信号的时间单元进行循环移位,使得所述每套下行测量参考信号固定在每个所述时间窗的第j个时间单元,和/或每个所述时间窗的第j+q个时间单元,和/或每个所述时间窗的第
    Figure PCTCN2014095890-appb-100019
    个时间单元上进行传输:
    Figure PCTCN2014095890-appb-100020
    其中,所述循环移位是对q套所述下行测量参考信号的第k次发射对应的时间单元进行t个时间单元的循环移位,其中,所述q表示每次发射的下行测量参考信号的套数,所述k表示发射的次数,所述t表示每次所述循环移位中所述每套下行测量参考信号被移位的时间单元的个数,所述q、所述k和所述t均为大于零的正整数。
  12. 根据权利要求10或11所述的装置,其特征在于,所述传输模块,还用于在所述将所述每套下行测量参考信号分别在所述确定的时间窗内用来传输所述下行测量参考信号的时间单元进行传输之前,将所述q的值通过广播信道发送给用户设备UE。
  13. 根据权利要求12所述的装置,其特征在于,还包括:
    配置模块,用于通过高层信令为每个所述UE配置所述UE待测量的所述每套下行测量参考信号对应的时间单元。
  14. 根据权利要求10-13任意一项所述的装置,其特征在于,所述确定模块,具体用于根据预置的下行测量参考信号信息确定每个所述时间窗内用来传输每套下行测量参考信号的时间单元;其中,所述预置的下行测量参考信号信息包括:每个所述时间窗内用来传输每套下行测量参考信号的时间单元;或者,
    所述传输模块,还用于获取更新的下行测量参考信号信息,根据所述更新的下行测量参考信号信息确定每个所述时间窗内用来传输每套下行测量参考信号的时间单元;其中,所述更新的下行测量参考信号信息包括:每个所述时间窗内用来传输每套下行测量参考信号的时间单元。
  15. 一种信号发送装置,其特征在于,包括:
    确定模块,用于确定每个时间窗内用来传输每套下行测量参考信号的时间单元;
    其中,每个所述确定的时间窗内用来传输所述每套下行测量参考信号的时间单元包括如下至少一个时间单元:每个所述时间窗的第j个时间单元,每个所述时间窗的第
    Figure PCTCN2014095890-appb-100021
    个时间单元,每个所述时间窗的第j+q个时间单元,所述S为每个所述时间窗包含的时间单元数,所述q为大于或等于1并且小于或等于S的正整数,所述j为大于等于1且小于等于所述S的正整数;
    传输模块,用于将所述每套下行测量参考信号分别在所述确定的时间窗内用来传输所述下行测量参考信号的时间单元进行传输。
  16. 根据权利要求15所述的装置,其特征在于,所述传输模块,具体用 于通过对所述确定的时间窗内用来传输所述每套下行测量参考信号的时间单元进行循环移位,使得所述每套下行测量参考信号固定在每个所述时间窗的第j个时间单元,和/或每个所述时间窗的第j+q个时间单元,和/或每个所述时间窗的第
    Figure PCTCN2014095890-appb-100022
    个时间单元上进行传输:
    Figure PCTCN2014095890-appb-100023
    其中,所述循环移位是对q套所述下行测量参考信号的第k次发射对应的时间单元进行t个时间单元的循环移位,其中,所述q表示每次发射的下行测量参考信号的套数,所述k表示发射的次数,所述t表示每次所述循环移位中所述每套下行测量参考信号被移位的时间单元的个数,所述q、所述k和所述t均为大于零的正整数。
  17. 根据权利要求15或16所述的装置,其特征在于,所述传输模块,还用于在将所述每套下行测量参考信号分别在所述确定的时间窗内用来传输所述下行测量参考信号的时间单元进行传输之前,将所述q的值通过广播信道发送用户设备UE。
  18. 根据权利要求17所述的装置,其特征在于,还包括:
    配置模块,用于通过高层信令为每个所述UE配置所述UE待测量的所述每套下行测量参考信号对应的时间单元。
  19. 根据权利要求15-18任意一项所述的装置,其特征在于,所述确定模块,具体用于根据预置的下行测量参考信号信息确定每个所述时间窗内用来传输每套下行测量参考信号的时间单元;其中,所述预置的下行测量参考信号信息包括:每个所述时间窗内用来传输每套下行测量参考信号的时间单元;或者,
    所述传输模块,还用于获取更新的下行测量参考信号信息,根据所述更新的下行测量参考信号信息确定每个所述时间窗内用来传输每套下行测量参考信号的时间单元;其中,所述更新的下行测量参考信号信息包括:每个所述时间窗内用来传输每套下行测量参考信号的时间单元。
  20. 一种信号发送装置,其特征在于,包括:
    确定模块,用于确定连续T个时间窗中用来传输广播信道的时间单元,所述T为大于零的整数,所述T为大于零的整数;
    其中,所述T个时间窗中用来传输所述广播信道的时间单元为:所述T个时间窗中每个时间窗的第j个时间单元;所述j为大于或等于1,且小于或等于S的正整数,所述S为每个时间窗包含的时间单元数;
    传输模块,用于将所述广播信道分别在所述确定的T个时间窗中用来传输广播信道的时间单元进行传输。
  21. 根据权利要求20所述的装置,其特征在于,所述广播信道位于每个所述时间窗的r个时间单元上,所述r个时间单元在每个所述时间窗的位置固定;所述r为大于或等于1并且小于或等于S的正整数。
  22. 根据权利要求21所述的装置,其特征在于,所述传输模块,还用于在所述将所述广播信道分别在所述确定的T个时间窗中用来传输广播信道的时间单元进行传输之前,将所述r通过广播信道发送给用户设备UE。
  23. 根据权利要求20-22任意一项所述的装置,其特征在于,所述确定模块,具体用于根据预置的广播信道信息确定所述连续T个时间窗中用来传输广播信道的时间单元;其中,所述预置的广播信道信息包括:所述时间窗个数T和每个所述时间窗中用来传输广播信道的时间单元;或者,
    所述传输模块,还用于获取更新的广播信道信息,根据所述更新的广播信道信息确定所述连续T个时间窗中用来传输广播信道的时间单元;其中,所述更新的广播信道信息包括:所述时间窗个数T和每个所述时间窗中用来传输广播信道的时间单元。
  24. 一种信号发送装置,其特征在于,包括:
    确定模块,用于确定P个天线端口,所述P个天线端口为传输同步信号的天线端口;
    传输模块,用于将广播信道映射到所述P个天线端口上进行传输。
  25. 根据权利要求24所述的装置,其特征在于,所述传输模块,具体用于:将所述广播信道分别在每个时间窗的第i个时间单元上,并映射到所述P个天线端口进行传输;
    将所述同步信号分别在每个所述时间窗的第i个时间单元上,并映射到所述P个天线端口进行传输;
    每个所述时间窗的第i个所述时间单元上的所述同步信号的传输周期小于或等于每个所述时间窗的第i个所述时间单元上的所述广播信道的传输周期其中,所述i大于等于1小于等于M,所述M为每个时间窗内的时间单元总数。
  26. 根据权利要求25所述的装置,其特征在于,所述传输模块,具体用于将所述同步信号在每个所述时间窗的所述第i个时间单元内的至少两个符号上,并映射到所述P个天线端口进行传输;
    其中,所述符号为小于所述时间单元的时间单位。
  27. 根据权利要求24-26任意一项所述的装置,其特征在于,所述确定模块,具体用于根据预置的天线端口信息确定所述P个天线端口,所述预置的天线端口信息包含所述P个天线端口与所述同步信号的对应关系;或者,
    所述传输模块,还用于获取更新的天线端口信息,根据所述更新的天线端口信息确定所述P个天线端口,所述更新的天线端口信息包含所述P个天线端口与所述同步信号的对应关系。
  28. 一种信号检测装置,其特征在于,包括:
    确定模块,用于确定每个时间窗内检测同步信号的时间单元;
    其中,所述确定的时间单元包括如下至少一个时间单元:每个所述时间窗的第j个时间单元,每个所述时间窗的第
    Figure PCTCN2014095890-appb-100024
    个时间单元,每个所述时间窗的第j+m个时间单元,所述S为每个所述时间窗包含的时间单元数、所述m为大于或等于1并且小于等于S的正整数,所述j为大于或等于1且小于或等于所述S的正整数;
    检测模块,用于在每个所述时间窗的所述确定的时间单元上检测所述同步信号。
  29. 根据权利要求28所述的装置,其特征在于,所述同步信号对应的序列由第一子序列和第二子序列交织组成,其中,所述第一子序列表达式如下:
    Figure PCTCN2014095890-appb-100025
    其中,0<=n<=N/2,所述N为所述同步信号对应的序列的长度,所述d(2n) 为所述第一子序列,所述
    Figure PCTCN2014095890-appb-100026
    所述
    Figure PCTCN2014095890-appb-100027
    和所述
    Figure PCTCN2014095890-appb-100028
    为由第一M序列的三个循环移位形成的三个序列,所述c0(n)为由第二M序列的循环移位形成的第一扰码序列,所述
    Figure PCTCN2014095890-appb-100029
    用于表征在每个所述时间窗的第j个时间单元上传输的所述同步信号时的所述第一子序列,所述
    Figure PCTCN2014095890-appb-100030
    用于表征在每个所述时间窗的第
    Figure PCTCN2014095890-appb-100031
    个时间单元上传输所述同步信号时的所述第一子序列,所述
    Figure PCTCN2014095890-appb-100032
    用于表征在每个所述时间窗的第j+m个时间单元上传输所述同步信号时的所述第一子序列;
    所述第二子序列表达式如下:
    Figure PCTCN2014095890-appb-100033
    其中,所述d(2n+1)为所述第二子序列,所述c1(n)为由所述第二M序列的循环移位形成的第二扰码序列,所述
    Figure PCTCN2014095890-appb-100034
    所述
    Figure PCTCN2014095890-appb-100035
    和所述
    Figure PCTCN2014095890-appb-100036
    为由第三M序列的三个循环移位形成的三个第三扰码序列,所述
    Figure PCTCN2014095890-appb-100037
    用于表征在每个所述时间窗的第j个时间单元上传输所述同步信号时的所述第二子序列,所述
    Figure PCTCN2014095890-appb-100038
    用于表征在每个所述时间窗的第
    Figure PCTCN2014095890-appb-100039
    个时间单元上传输所述同步信号时的所述第二子序列,所述
    Figure PCTCN2014095890-appb-100040
    用于表征在每个所述时间窗的第j+m个时间单元上传输所述同步信号时的所述第二子序列。
  30. 根据权利要求28或29所述的装置,其特征在于,还包括:
    传输模块,还用于在所述确定每个时间窗内检测同步信号的时间单元之前,获取发送端广播的所述m的值。
  31. 根据权利要求28-30任意一项所述的装置,其特征在于,所述确定模块,具体用于:
    根据预置的同步信号信息确定确定每个时间窗内检测同步信号的时间单元;其中,所述预置的同步信号信息包括:每个所述时间窗内检测同步信号的时间单元;或者,
    获取更新的同步信号信息,根据所述更新的同步信号信息确定确定每个时间窗内检测同步信号的时间单元;其中,所述更新的同步信号信息包括:每个所述时间窗内检测同步信号的时间单元。
  32. 根据权利要求28-31任意一项所述的装置,其特征在于,所述确定模块,还用于确定连续T个时间窗中检测广播信道的时间单元,所述T为大于零的整数;
    其中,所述T个时间窗中检测广播信道的时间单元为:每个所述时间窗的第j个时间单元;
    所述检测模块,还用于在所述确定的T个时间窗中检测广播信道的时间单元上检测所述广播信道。
  33. 根据权利要求32所述的装置,其特征在于,所述广播信道位于每个所述时间窗的r个时间单元上,所述r个时间单元在每个所述时间窗的位置固定,所述r为大于或等于1并且小于或等于S的正整数。
  34. 根据权利要求33所述的装置,其特征在于,所述r与所述m的值相等。
  35. 根据权利要求33或34所述的装置,其特征在于,所述确定模块,还用于在所述确定的T个时间窗中待检测广播信道的时间单元上检测所述广播信道之前,获取所述发送端广播的所述r的值。
  36. 根据权利要求32-35任意一项所述的装置,其特征在于,所述确定模块,具体用于:
    根据预置的广播信道信息确定所述连续T个时间窗中检测广播信道的时间单元;其中,所述预置的广播信道信息包括:所述时间窗个数T和每个所述时间窗内检测广播信道的时间单元;或者,
    获取更新的广播信道信息,根据所述更新的广播信道信息确定所述连续T个时间窗中检测广播信道的时间单元;其中,所述更新的广播信道信息包括:所述时间窗个数T和每个所述时间窗内检测广播信道的时间单元。
  37. 根据权利要求28-36任意一项所述的装置,其特征在于,所述确定模块,还用于确定每个所述时间窗内测量每套下行测量参考信号的时间单元;
    其中,每个所述确定的时间窗内测量每套下行测量参考信号的时间单元包括如下至少一个时间单元:每个所述时间窗的第j个时间单元,每个所述时间窗的第
    Figure PCTCN2014095890-appb-100041
    个时间单元,每个所述时间窗的第j+q个时间单元,所述q为大于或等于1并且小于或等于S的正整数;
    所述检测模块,还用于在所述确定的时间窗内测量每套下行测量参考信 号的时间单元上进行所述每套下行测量参考信号的信道质量测量。
  38. 根据权利要求37所述的装置,其特征在于,所述确定模块,还用于在所述确定的时间窗内测量每套下行测量参考信号的时间单元之前,获取所述发送端广播的所述q的值。
  39. 根据权利要求38所述的装置,其特征在于,所述检测模块,具体用于在所述发送端的高层信令配置的所述每套下行测量参考信号对应的时间单元上进行所述下行测量参考信号的信道质量测量。
  40. 根据权利要求37-39任意一项所述的装置,其特征在于,所述确定模块,具体用于:
    根据预置的下行测量参考信号信息确定每个所述时间窗内测量每套下行测量参考信号的时间单元;其中,所述预置的下行测量参考信号信息包括:每个所述时间窗内测量所述每套下行测量参考信号的时间单元;或者,
    获取更新的下行测量参考信号信息,根据所述更新的下行测量参考信号信息确定每个所述时间窗内测量每套下行测量参考信号的时间单元;其中,所述更新的下行测量参考信号信息包括:每个所述时间窗内测量所述每套下行测量参考信号的时间单元。
  41. 一种信号检测装置,其特征在于,包括:
    确定模块,用于确定每个所述时间窗内测量每套下行测量参考信号的时间单元;
    其中,每个所述确定的时间窗内测量每套下行测量参考信号的时间单元包括如下至少一个时间单元:每个所述时间窗的第j个时间单元,每个所述时间窗的第
    Figure PCTCN2014095890-appb-100042
    个时间单元,每个所述时间窗的第j+q个时间单元,所述q为大于或等于1并且小于或等于S的正整数;所述S为每个所述时间窗包含的时间单元数,所述q为大于或等于1并且小于或等于S的正整数,所述j为大于等于1且小于等于所述S的正整数;
    所述检测模块,用于在所述确定的时间窗内测量每套下行测量参考信号的时间单元上进行所述每套下行测量参考信号的信道质量测量。
  42. 根据权利要求41所述的装置,其特征在于,所述确定模块,还用于在所述确定的时间窗内测量每套下行测量参考信号的时间单元之前,获取所述发送端广播的所述q的值。
  43. 根据权利要求42所述的装置,其特征在于,所述检测模块,具体用于在所述发送端的高层信令配置的所述每套下行测量参考信号对应的时间单元上进行所述下行测量参考信号的信道质量测量。
  44. 根据权利要求41-43任意一项所述的装置,其特征在于,所述确定模块,具体用于:
    根据预置的下行测量参考信号信息确定每个所述时间窗内测量每套下行测量参考信号的时间单元;其中,所述预置的下行测量参考信号信息包括:每个所述时间窗内测量所述每套下行测量参考信号的时间单元;或者,
    获取更新的下行测量参考信号信息,根据所述更新的下行测量参考信号信息确定每个所述时间窗内测量每套下行测量参考信号的时间单元;其中,所述更新的下行测量参考信号信息包括:每个所述时间窗内测量所述每套下行测量参考信号的时间单元。
  45. 一种信号检测装置,其特征在于,包括:
    确定模块,用于确定连续T个时间窗中检测广播信道的时间单元,所述T为大于零的整数;
    其中,所述T个时间窗中检测广播信道的时间单元为:每个所述时间窗的第j个时间单元;所述j为大于或等于1,且小于或等于S的正整数,所述S为每个时间窗包含的时间单元数;
    检测模块,用于在所述确定的T个时间窗中检测广播信道的时间单元上检测所述广播信道。
  46. 根据权利要求45所述的装置,其特征在于,所述广播信道位于每个所述时间窗的r个时间单元上,所述r个时间单元在每个所述时间窗的位置固定,所述r为大于或等于1并且小于或等于S的正整数。
  47. 根据权利要求46所述的装置,其特征在于,所述确定模块,用于在所述确定的T个时间窗中检测广播信道的时间单元上检测所述广播信道之前,获取所述发送端广播的所述r的值。
  48. 根据权利要求45-47任意一项所述的装置,其特征在于,所述确定模块,具体用于:
    根据预置的广播信道信息确定所述连续T个时间窗中检测广播信道的时间单元;其中,所述预置的广播信道信息包括:所述时间窗个数T和每个所 述时间窗内检测广播信道的时间单元;或者,
    获取更新的广播信道信息,根据所述更新的广播信道信息确定所述连续T个时间窗中检测广播信道的时间单元;其中,所述更新的广播信道信息包括:所述时间窗个数T和每个所述时间窗内检测广播信道的时间单元。
  49. 一种信号检测装置,其特征在于,包括:
    确定模块,用于确定P个天线端口,所述P个天线端口为发送端传输同步信号的天线端口;
    检测模块,用于在所述P个天线端口上检测广播信道。
  50. 根据权利要求49所述的装置,其特征在于,所述检测模块,具体用于:
    在每个时间窗的第i个时间单元上检测所述P个天线端口对应的所述广播信道;
    在每个所述时间窗的第i个时间单元上检测所述P个天线端口对应的所述同步信号
    每个所述时间窗的第i个所述时间单元上的所述同步信号的传输周期小于或等于每个所述时间窗的第i个所述时间单元上的所述广播信道的传输周期其中,所述i大于等于1小于等于M,M为每个时间窗内的时间单元总数。
  51. 根据权利要求49所述的装置,其特征在于,所述检测模块,具体用于在每个所述时间窗的所述第i个时间单元内的至少两个符号上检测所述P个天线端口对应的所述同步信号;
    其中,所述符号为小于所述时间单元的时间单位。
  52. 根据权利要求49-51任意一项所述的装置,其特征在于,所述确定模块,具体用于:
    根据预置的天线端口信息确定所述P个天线端口,所述预置的天线端口信息包含所述P个天线端口与所述同步信号的对应关系;或者,
    获取更新的天线端口信息,根据所述更新的天线端口信息确定所述P个天线端口,所述更新的天线端口信息包含所述P个天线端口与所述同步信号的对应关系。
  53. 一种信号发送装置,其特征在于,包括:
    处理器,用于确定每个时间窗内用来传输同步信号的时间单元;
    其中,所述确定的时间单元包括如下至少一个时间单元:每个所述时间窗的第j个时间单元,每个所述时间窗的第
    Figure PCTCN2014095890-appb-100043
    个时间单元和每个所述时间窗的第j+m个时间单元,所述S为每个所述时间窗包含的时间单元数,所述m为大于或等于1并且小于或等于S的正整数,所述j为大于或等于1且小于或等于所述S的正整数;
    收发器,用于在每个所述时间窗的所述确定的时间单元上传输所述同步信号。
  54. 根据权利要求53所述的装置,其特征在于,所述同步信号对应的序列由第一子序列和第二子序列交织组成,其中,所述第一子序列表达式如下:
    Figure PCTCN2014095890-appb-100044
    其中,0<=n<=N/2,所述N为所述同步信号对应的序列的长度,所述d(2n)为所述第一子序列,所述
    Figure PCTCN2014095890-appb-100045
    所述
    Figure PCTCN2014095890-appb-100046
    和所述
    Figure PCTCN2014095890-appb-100047
    为由第一M序列的三个循环移位形成的三个序列,所述c0(n)为由第二M序列的循环移位形成的第一扰码序列,所述
    Figure PCTCN2014095890-appb-100048
    用于表征在每个所述时间窗的第j个时间单元上传输的所述同步信号时的所述第一子序列,所述
    Figure PCTCN2014095890-appb-100049
    用于表征在每个所述时间窗的第
    Figure PCTCN2014095890-appb-100050
    个时间单元上传输所述同步信号时的所述第一子序列,所述
    Figure PCTCN2014095890-appb-100051
    用于表征在每个所述时间窗的第j+m个时间单元上传输所述同步信号时的所述第一子序列;
    所述第二子序列表达式如下:
    其中,所述d(2n+1)为所述第二子序列,所述c1(n)为由所述第二M序列的循环移位形成的第二扰码序列,所述
    Figure PCTCN2014095890-appb-100053
    所述
    Figure PCTCN2014095890-appb-100054
    和所述
    Figure PCTCN2014095890-appb-100055
    为由第三M序列的三个循环移位形成的三个第三扰码序列,所述
    Figure PCTCN2014095890-appb-100056
    用于表征在每个所述时间窗的第j个时间单元上传输所述同步信号时的所述第二子序列,所述
    Figure PCTCN2014095890-appb-100057
    用于表征在每个所述时间窗的第
    Figure PCTCN2014095890-appb-100058
    个时间单元上传输所述同步信号时的所述第二子序 列,所述
    Figure PCTCN2014095890-appb-100059
    用于表征在每个所述时间窗的第j+m个时间单元上传输所述同步信号时的所述第二子序列。
  55. 根据权利要求53或54所述的装置,其特征在于,所述收发器,还用于在每个所述时间窗的所述确定的时间单元上传输所述同步信号之前,将所述m通过广播信道发送给用户设备UE。
  56. 根据权利要求53-55任意一项所述的装置,其特征在于,所述处理器,具体用于根据预置的同步信号信息确定每个所述时间窗内用来传输所述同步信号的时间单元;其中,所述预置的同步信号信息包括:每个所述时间窗内用来传输所述同步信号的时间单元;或者,
    所述收发器,还用于获取更新的同步信号信息,根据所述更新的同步信号信息确定每个所述时间窗内用来传输所述同步信号的时间单元;其中,所述更新的同步信号信息包括:每个所述时间窗内用来传输所述同步信号的时间单元。
  57. 根据权利要求53-56任意一项所述的装置,其特征在于,所述处理器,还用于确定连续T个时间窗中用来传输广播信道的时间单元,所述T为大于零的整数;
    其中,所述T个时间窗中用来传输所述广播信道的时间单元为:所述T个时间窗中每个时间窗的第j个时间单元;
    所述收发器,还用于将所述广播信道分别在所述确定的T个时间窗中用来传输广播信道的时间单元进行传输。
  58. 根据权利要求57所述的装置,其特征在于,所述广播信道位于每个所述时间窗的r个时间单元上,所述r个时间单元在每个所述时间窗的位置固定。
  59. 根据权利要求58所述的装置,其特征在于,所述r与所述m的值相等。
  60. 根据权利要求58或59所述的装置,其特征在于,所述收发器,还用于在将所述广播信道分别在所述确定的T个时间窗中用来传输广播信道的时间单元进行传输之前,将所述r通过广播信道发送给用户设备UE。
  61. 根据权利要求57-60任意一项所述的装置,其特征在于,所述处理器,具体用于根据预置的广播信道信息确定所述连续T个时间窗中用来传输 广播信道的时间单元;其中,所述预置的广播信道信息包括:所述时间窗个数T和每个所述时间窗内用来传输广播信道的时间单元;或者,
    所述收发器,还用于获取更新的广播信道信息,根据所述更新的广播信道信息确定所述连续T个时间窗中用来传输广播信道的时间单元;其中,所述更新的广播信道信息包括:所述时间窗个数T和每个所述时间窗内用来传输广播信道的时间单元。
  62. 根据权利要求53-61任意一项所述的装置,其特征在于,所述处理器,还用于确定每个所述时间窗内用来传输每套下行测量参考信号的时间单元;
    其中,每个所述确定的时间窗内用来传输所述每套下行测量参考信号的时间单元包括如下至少一个时间单元:每个所述时间窗的第j个时间单元,每个所述时间窗的第
    Figure PCTCN2014095890-appb-100060
    个时间单元,每个所述时间窗的第j+q个时间单元,所述q为大于或等于1并且小于或等于S的正整数;
    所述收发器,还用于将所述每套下行测量参考信号分别在所述确定的时间窗内用来传输所述下行测量参考信号的时间单元进行传输
  63. 根据权利要求62所述的装置,其特征在于,所述收发器,具体用于通过如下公式对所述确定的时间窗内用来传输所述每套下行测量参考信号的时间单元进行循环移位,使得所述每套下行测量参考信号固定在每个所述时间窗的第j个时间单元,和/或每个所述时间窗的第j+q个时间单元,和/或每个所述时间窗的第
    Figure PCTCN2014095890-appb-100061
    个时间单元上进行传输:
    Figure PCTCN2014095890-appb-100062
    其中,所述循环移位是对q套所述下行测量参考信号的第k次发射对应的时间单元进行t个时间单元的循环移位,其中,所述q表示每次发射的下行测量参考信号的套数,所述k表示发射的次数,所述t表示每次所述循环移位中所述每套下行测量参考信号被移位的时间单元的个数,所述q、所述k和所述t均为大于零的正整数。
  64. 根据权利要求62或63所述的装置,其特征在于,所述收发器,还用于在所述将所述每套下行测量参考信号分别在所述确定的时间窗内用来传 输所述下行测量参考信号的时间单元进行传输之前,将所述q的值通过广播信道发送给用户设备UE。
  65. 根据权利要求64所述的装置,其特征在于,所述处理器,还用于通过高层信令为每个所述UE配置所述UE待测量的所述每套下行测量参考信号对应的时间单元。
  66. 根据权利要求62-65任意一项所述的装置,其特征在于,所述处理器,具体用于根据预置的下行测量参考信号信息确定每个所述时间窗内用来传输每套下行测量参考信号的时间单元;其中,所述预置的下行测量参考信号信息包括:每个所述时间窗内用来传输每套下行测量参考信号的时间单元;或者,
    所述收发器,还用于获取更新的下行测量参考信号信息,根据所述更新的下行测量参考信号信息确定每个所述时间窗内用来传输每套下行测量参考信号的时间单元;其中,所述更新的下行测量参考信号信息包括:每个所述时间窗内用来传输每套下行测量参考信号的时间单元。
  67. 一种信号发送装置,其特征在于,包括:
    处理器,用于确定每个时间窗内用来传输每套下行测量参考信号的时间单元;
    其中,每个所述确定的时间窗内用来传输所述每套下行测量参考信号的时间单元包括如下至少一个时间单元:每个所述时间窗的第j个时间单元,每个所述时间窗的第
    Figure PCTCN2014095890-appb-100063
    个时间单元,每个所述时间窗的第j+q个时间单元,所述S为每个所述时间窗包含的时间单元数,所述q为大于或等于1并且小于或等于S的正整数,所述j为大于等于1且小于等于所述S的正整数;
    收发器,用于将所述每套下行测量参考信号分别在所述确定的时间窗内用来传输所述下行测量参考信号的时间单元进行传输。
  68. 根据权利要求67所述的装置,其特征在于,所述收发器,具体用于通过对所述确定的时间窗内用来传输所述每套下行测量参考信号的时间单元进行循环移位,使得所述每套下行测量参考信号固定在每个所述时间窗的第j个时间单元,和/或每个所述时间窗的第j+q个时间单元,和/或每个所述时 间窗的第
    Figure PCTCN2014095890-appb-100064
    个时间单元上进行传输:
    Figure PCTCN2014095890-appb-100065
    其中,所述循环移位是对q套所述下行测量参考信号的第k次发射对应的时间单元进行t个时间单元的循环移位,其中,所述q表示每次发射的下行测量参考信号的套数,所述k表示发射的次数,所述t表示每次所述循环移位中所述每套下行测量参考信号被移位的时间单元的个数,所述q、所述k和所述t均为大于零的正整数。
  69. 根据权利要求67或68所述的装置,其特征在于,所述收发器,还用于在将所述每套下行测量参考信号分别在所述确定的时间窗内用来传输所述下行测量参考信号的时间单元进行传输之前,,将所述q的值通过广播信道发送用户设备UE。
  70. 根据权利要求69所述的装置,其特征在于,所述处理器,还用于通过高层信令为每个所述UE配置所述UE待测量的所述每套下行测量参考信号对应的时间单元。
  71. 根据权利要求67-70任意一项所述的装置,其特征在于,所述处理器,具体用于根据预置的下行测量参考信号信息确定每个所述时间窗内用来传输每套下行测量参考信号的时间单元;其中,所述预置的下行测量参考信号信息包括:每个所述时间窗内用来传输每套下行测量参考信号的时间单元;或者,
    所述收发器,还用于获取更新的下行测量参考信号信息,根据所述更新的下行测量参考信号信息确定每个所述时间窗内用来传输每套下行测量参考信号的时间单元;其中,所述更新的下行测量参考信号信息包括:每个所述时间窗内用来传输每套下行测量参考信号的时间单元。
  72. 一种信号发送装置,其特征在于,包括:
    处理器,用于确定连续T个时间窗中用来传输广播信道的时间单元,所述T为大于零的整数,所述T为大于零的整数;
    其中,所述T个时间窗中用来传输所述广播信道的时间单元为:所述T个时间窗中每个时间窗的第j个时间单元;所述j为大于或等于1,且小于或 等于S的正整数,所述S为每个时间窗包含的时间单元数;
    收发器,用于将所述广播信道分别在所述确定的T个时间窗中用来传输广播信道的时间单元进行传输。
  73. 根据权利要求72所述的装置,其特征在于,所述广播信道位于每个所述时间窗的r个时间单元上,所述r个时间单元在每个所述时间窗的位置固定;所述r为大于或等于1并且小于或等于S的正整数。
  74. 根据权利要求73所述的装置,其特征在于,所述收发器,还用于在所述将所述广播信道分别在所述确定的T个时间窗中用来传输广播信道的时间单元进行传输之前,将所述r通过广播信道发送给用户设备UE。
  75. 根据权利要求72-74任意一项所述的装置,其特征在于,所述处理器,具体用于根据预置的广播信道信息确定所述连续T个时间窗中用来传输广播信道的时间单元;其中,所述预置的广播信道信息包括:所述时间窗个数T和每个所述时间窗中用来传输广播信道的时间单元;或者,
    所述收发器,还用于获取更新的广播信道信息,根据所述更新的广播信道信息确定所述连续T个时间窗中用来传输广播信道的时间单元;其中,所述更新的广播信道信息包括:所述时间窗个数T和每个所述时间窗中用来传输广播信道的时间单元。
  76. 一种信号发送装置,其特征在于,包括:
    处理器,用于确定P个天线端口,所述P个天线端口为传输同步信号的天线端口;
    收发器,用于将广播信道映射到所述P个天线端口上进行传输。
  77. 根据权利要求76所述的装置,其特征在于,所述收发器,具体用于:将所述广播信道分别在每个时间窗的第i个时间单元上,并映射到所述P个天线端口进行传输;
    将所述同步信号分别在每个所述时间窗的第i个时间单元上,并映射到所述P个天线端口进行传输;
    每个所述时间窗的第i个所述时间单元上的所述同步信号的传输周期小于或等于每个所述时间窗的第i个所述时间单元上的所述广播信道的传输周期其中,所述i大于等于1小于等于M,所述M为每个时间窗内的时间单元总数。
  78. 根据权利要求77所述的装置,其特征在于,所述收发器,具体用于将所述同步信号在每个所述时间窗的所述第i个时间单元内的至少两个符号上,并映射到所述P个天线端口进行传输;
    其中,所述符号为小于所述时间单元的时间单位。
  79. 根据权利要求76-78任意一项所述的装置,其特征在于,所述处理器,具体用于根据预置的天线端口信息确定所述P个天线端口,所述预置的天线端口信息包含所述P个天线端口与所述同步信号的对应关系;或者,
    所述收发器,还用于获取更新的天线端口信息,根据所述更新的天线端口信息确定所述P个天线端口,所述更新的天线端口信息包含所述P个天线端口与所述同步信号的对应关系。
  80. 一种信号检测装置,其特征在于,包括:
    处理器,用于确定每个时间窗内检测同步信号的时间单元;
    其中,所述确定的时间单元包括如下至少一个时间单元:每个所述时间窗的第j个时间单元,每个所述时间窗的第
    Figure PCTCN2014095890-appb-100066
    个时间单元,每个所述时间窗的第j+m个时间单元,所述S为每个所述时间窗包含的时间单元数、所述m为大于或等于1并且小于等于S的正整数,所述j为大于或等于1且小于或等于所述S的正整数;
    收发器,用于在每个所述时间窗的所述确定的时间单元上检测所述同步信号。
  81. 根据权利要求80所述的装置,其特征在于,所述同步信号对应的序列由第一子序列和第二子序列交织组成,其中,所述第一子序列表达式如下:
    Figure PCTCN2014095890-appb-100067
    其中,0<=n<=N/2,所述N为所述同步信号对应的序列的长度,所述d(2n)为所述第一子序列,所述
    Figure PCTCN2014095890-appb-100068
    所述
    Figure PCTCN2014095890-appb-100069
    和所述
    Figure PCTCN2014095890-appb-100070
    为由第一M序列的三个循环移位形成的三个序列,所述c0(n)为由第二M序列的循环移位形成的第一扰码序列,所述
    Figure PCTCN2014095890-appb-100071
    用于表征在每个所述时间窗的第j个时间单元上传输的所述同步信号时的所述第一子序列,所述
    Figure PCTCN2014095890-appb-100072
    用于表征在每个所述时间窗的第
    Figure PCTCN2014095890-appb-100073
    个时间单元上传输所述同步信号 时的所述第一子序列,所述
    Figure PCTCN2014095890-appb-100074
    用于表征在每个所述时间窗的第j+m个时间单元上传输所述同步信号时的所述第一子序列;
    所述第二子序列表达式如下:
    Figure PCTCN2014095890-appb-100075
    其中,所述d(2n+1)为所述第二子序列,所述c1(n)为由所述第二M序列的循环移位形成的第二扰码序列,所述
    Figure PCTCN2014095890-appb-100076
    所述
    Figure PCTCN2014095890-appb-100077
    和所述
    Figure PCTCN2014095890-appb-100078
    为由第三M序列的三个循环移位形成的三个第三扰码序列,所述
    Figure PCTCN2014095890-appb-100079
    用于表征在每个所述时间窗的第j个时间单元上传输所述同步信号时的所述第二子序列,所述
    Figure PCTCN2014095890-appb-100080
    用于表征在每个所述时间窗的第
    Figure PCTCN2014095890-appb-100081
    个时间单元上传输所述同步信号时的所述第二子序列,所述
    Figure PCTCN2014095890-appb-100082
    用于表征在每个所述时间窗的第j+m个时间单元上传输所述同步信号时的所述第二子序列。
  82. 根据权利要求80或81所述的装置,其特征在于,所述收发器,还用于在所述确定每个时间窗内检测同步信号的时间单元之前,获取发送端广播的所述m的值。
  83. 根据权利要求80-82任意一项所述的装置,其特征在于,所述处理器,具体用于:
    根据预置的同步信号信息确定确定每个时间窗内检测同步信号的时间单元;其中,所述预置的同步信号信息包括:每个所述时间窗内检测同步信号的时间单元;或者,
    获取更新的同步信号信息,根据所述更新的同步信号信息确定确定每个时间窗内检测同步信号的时间单元;其中,所述更新的同步信号信息包括:每个所述时间窗内检测同步信号的时间单元。
  84. 根据权利要求80-83任意一项所述的装置,其特征在于,所述处理器,还用于确定连续T个时间窗中检测广播信道的时间单元,所述T为大于零的整数;
    其中,所述T个时间窗中检测广播信道的时间单元为:每个所述时间窗的第j个时间单元;
    所述收发器,还用于在所述确定的T个时间窗中检测广播信道的时间单元上检测所述广播信道。
  85. 根据权利要求84所述的装置,其特征在于,所述广播信道位于每个所述时间窗的r个时间单元上,所述r个时间单元在每个所述时间窗的位置固定,所述r为大于或等于1并且小于或等于S的正整数。
  86. 根据权利要求85所述的装置,其特征在于,所述r与所述m的值相等。
  87. 根据权利要求85或86所述的装置,其特征在于,所述处理器,还用于在所述确定的T个时间窗中待检测广播信道的时间单元上检测所述广播信道之前,获取所述发送端广播的所述r的值。
  88. 根据权利要求84-87任意一项所述的装置,其特征在于,所述处理器,具体用于:
    根据预置的广播信道信息确定所述连续T个时间窗中检测广播信道的时间单元;其中,所述预置的广播信道信息包括:所述时间窗个数T和每个所述时间窗内检测广播信道的时间单元;或者,
    获取更新的广播信道信息,根据所述更新的广播信道信息确定所述连续T个时间窗中检测广播信道的时间单元;其中,所述更新的广播信道信息包括:所述时间窗个数T和每个所述时间窗内检测广播信道的时间单元。
  89. 根据权利要求80-88任意一项所述的装置,其特征在于,所述处理器,还用于确定每个所述时间窗内测量每套下行测量参考信号的时间单元;
    其中,每个所述确定的时间窗内测量每套下行测量参考信号的时间单元包括如下至少一个时间单元:每个所述时间窗的第j个时间单元,每个所述时间窗的第
    Figure PCTCN2014095890-appb-100083
    个时间单元,每个所述时间窗的第j+q个时间单元,所述q为大于或等于1并且小于或等于S的正整数;
    所述收发器,还用于在所述确定的时间窗内测量每套下行测量参考信号的时间单元上进行所述每套下行测量参考信号的信道质量测量。
  90. 根据权利要求89所述的装置,其特征在于,所述处理器,还用于在所述确定的时间窗内测量每套下行测量参考信号的时间单元之前,获取所述发送端广播的所述q的值。
  91. 根据权利要求90所述的装置,其特征在于,所述收发器,具体用于 在所述发送端的高层信令配置的所述每套下行测量参考信号对应的时间单元上进行所述下行测量参考信号的信道质量测量
  92. 根据权利要求89-91任意一项所述的装置,其特征在于,所述处理器,具体用于:
    根据预置的下行测量参考信号信息确定每个所述时间窗内测量每套下行测量参考信号的时间单元;其中,所述预置的下行测量参考信号信息包括:每个所述时间窗内测量所述每套下行测量参考信号的时间单元;或者,
    获取更新的下行测量参考信号信息,根据所述更新的下行测量参考信号信息确定每个所述时间窗内测量每套下行测量参考信号的时间单元;其中,所述更新的下行测量参考信号信息包括:每个所述时间窗内测量所述每套下行测量参考信号的时间单元。
  93. 一种信号检测装置,其特征在于,包括:
    处理器,用于确定每个所述时间窗内测量每套下行测量参考信号的时间单元;
    其中,每个所述确定的时间窗内测量每套下行测量参考信号的时间单元包括如下至少一个时间单元:每个所述时间窗的第j个时间单元,每个所述时间窗的第
    Figure PCTCN2014095890-appb-100084
    个时间单元,每个所述时间窗的第j+q个时间单元,所述q为大于或等于1并且小于或等于S的正整数;所述S为每个所述时间窗包含的时间单元数,所述q为大于或等于1并且小于或等于S的正整数,所述j为大于等于1且小于等于所述S的正整数;
    所述收发器,用于在所述确定的时间窗内测量每套下行测量参考信号的时间单元上进行所述每套下行测量参考信号的信道质量测量
  94. 根据权利要求93所述的装置,其特征在于,所述处理器,还用于在所述确定的时间窗内测量每套下行测量参考信号的时间单元之前,获取所述发送端广播的所述q的值。
  95. 根据权利要求94所述的装置,其特征在于,所述收发器,具体用于在所述发送端的高层信令配置的所述每套下行测量参考信号对应的时间单元上进行所述下行测量参考信号的信道质量测量。
  96. 根据权利要求93-95任意一项所述的装置,其特征在于,所述处理器,具体用于:
    根据预置的下行测量参考信号信息确定每个所述时间窗内测量每套下行测量参考信号的时间单元;其中,所述预置的下行测量参考信号信息包括:每个所述时间窗内测量所述每套下行测量参考信号的时间单元;或者,
    获取更新的下行测量参考信号信息,根据所述更新的下行测量参考信号信息确定每个所述时间窗内测量每套下行测量参考信号的时间单元;其中,所述更新的下行测量参考信号信息包括:每个所述时间窗内测量所述每套下行测量参考信号的时间单元。
  97. 一种信号检测装置,其特征在于,包括:
    处理器,用于确定连续T个时间窗中检测广播信道的时间单元,所述T为大于零的整数;
    其中,所述T个时间窗中检测广播信道的时间单元为:每个所述时间窗的第j个时间单元;所述j为大于或等于1,且小于或等于S的正整数,所述S为每个时间窗包含的时间单元数;
    收发器,用于在所述确定的T个时间窗中检测广播信道的时间单元上检测所述广播信道。
  98. 根据权利要求97所述的装置,其特征在于,所述广播信道位于每个所述时间窗的r个时间单元上,所述r个时间单元在每个所述时间窗的位置固定,所述r为大于或等于1并且小于或等于S的正整数。
  99. 根据权利要求98所述的装置,其特征在于,所述处理器,用于在所述确定的T个时间窗中检测广播信道的时间单元上检测所述广播信道之前,获取所述发送端广播的所述r的值。
  100. 根据权利要求97-99任意一项所述的装置,其特征在于,所述处理器,具体用于:
    根据预置的广播信道信息确定所述连续T个时间窗中检测广播信道的时间单元;其中,所述预置的广播信道信息包括:所述时间窗个数T和每个所述时间窗内检测广播信道的时间单元;或者,
    获取更新的广播信道信息,根据所述更新的广播信道信息确定所述连续T个时间窗中检测广播信道的时间单元;其中,所述更新的广播信道信息包括:所述时间窗个数T和每个所述时间窗内检测广播信道的时间单元。
  101. 一种信号检测装置,其特征在于,包括:
    处理器,用于确定P个天线端口,所述P个天线端口为发送端传输同步信号的天线端口;
    收发器,用于在所述P个天线端口上检测广播信道。
  102. 根据权利要求101所述的装置,其特征在于,所述处理器,具体用于:
    在每个时间窗的第i个时间单元上检测所述P个天线端口对应的所述广播信道;
    在每个所述时间窗的第i个时间单元上检测所述P个天线端口对应的所述同步信号
    每个所述时间窗的第i个所述时间单元上的所述同步信号的传输周期小于或等于每个所述时间窗的第i个所述时间单元上的所述广播信道的传输周期其中,所述i大于等于1小于等于M,所述M为每个时间窗内的时间单元总数。
  103. 根据权利要求102所述的装置,其特征在于,所述收发器,具体用于在每个所述时间窗的所述第i个时间单元内的至少两个符号上检测所述P个天线端口对应的所述同步信号;
    其中,所述符号为小于所述时间单元的时间单位。
  104. 根据权利要求101-103任意一项所述的装置,其特征在于,所述处理器,具体用于:
    根据预置的天线端口信息确定所述P个天线端口,所述预置的天线端口信息包含所述P个天线端口与所述同步信号的对应关系;或者,
    获取更新的天线端口信息,根据所述更新的天线端口信息确定所述P个天线端口,所述更新的天线端口信息包含所述P个天线端口与所述同步信号的对应关系。
  105. 一种信号发送和检测系统,其特征在于,包括至少一个权利要求1-14任意一项所述的信号发送装置和至少一个权利要求28-40任意一项所述的信号检测装置;或者,
    至少一个权利要求15-19任意一项所述的信号发送装置和至少一个权利要求41-44任意一项所述的信号检测装置;或者,
    至少一个权利要求20-23任意一项所述的信号发送装置和至少一个权利要求45-48任意一项所述的信号检测装置;或者,
    至少一个权利要求24-27任意一项所述的信号发送装置和至少一个权利要求49-52任意一项所述的信号检测装置。
  106. 一种信号发送方法,其特征在于,包括:
    确定每个时间窗内用来传输同步信号的时间单元;
    其中,所述确定的时间单元包括如下至少一个时间单元:每个所述时间窗的第j个时间单元,每个所述时间窗的第
    Figure PCTCN2014095890-appb-100085
    个时间单元和每个所述时间窗的第j+m个时间单元,所述S为每个所述时间窗包含的时间单元数,所述m为大于或等于1并且小于或等于S的正整数,所述j为大于或等于1且小于或等于所述S的正整数;
    在每个所述时间窗的所述确定的时间单元上传输所述同步信号。
  107. 根据权利要求106所述的方法,其特征在于,所述同步信号对应的序列由第一子序列和第二子序列交织组成,其中,所述第一子序列表达式如下:
    Figure PCTCN2014095890-appb-100086
    其中,0<=n<=N/2,所述N为所述同步信号对应的序列的长度,所述d(2n)为所述第一子序列,所述
    Figure PCTCN2014095890-appb-100087
    所述
    Figure PCTCN2014095890-appb-100088
    和所述
    Figure PCTCN2014095890-appb-100089
    为由第一M序列的三个循环移位形成的三个序列,所述c0(n)为由第二M序列的循环移位形成的第一扰码序列,所述
    Figure PCTCN2014095890-appb-100090
    用于表征在每个所述时间窗的第j个时间单元上传输的所述同步信号时的所述第一子序列,所述
    Figure PCTCN2014095890-appb-100091
    用于表征在每个所述时间窗的第
    Figure PCTCN2014095890-appb-100092
    个时间单元上传输所述同步信号时的所述第一子序列,所述
    Figure PCTCN2014095890-appb-100093
    用于表征在每个所述时间窗的第j+m个时间单元上传输所述同步信号时的所述第一子序列;
    所述第二子序列表达式如下:
    Figure PCTCN2014095890-appb-100094
    其中,所述d(2n+1)为所述第二子序列,所述c1(n)为由所述第二M序列的循环移位形成的第二扰码序列,所述
    Figure PCTCN2014095890-appb-100095
    所述
    Figure PCTCN2014095890-appb-100096
    和所述
    Figure PCTCN2014095890-appb-100097
    为由第三M序列的三个循环移位形成的三个第三扰码序列,所述
    Figure PCTCN2014095890-appb-100098
    用于表征在每个所述时间窗的第j个时间单元上传输所述同步信号时的所述第二子序列,所述
    Figure PCTCN2014095890-appb-100099
    用于表征在每个所述时间窗的第
    Figure PCTCN2014095890-appb-100100
    个时间单元上传输所述同步信号时的所述第二子序列,所述
    Figure PCTCN2014095890-appb-100101
    用于表征在每个所述时间窗的第j+m个时间单元上传输所述同步信号时的所述第二子序列。
  108. 根据权利要求106或107所述的方法,其特征在于,所述在每个所述时间窗的所述确定的时间单元上传输所述同步信号之前,还包括:
    将所述m通过广播信道发送给用户设备UE。
  109. 根据权利要求106-108任意一项所述的方法,其特征在于,所述确定每个时间窗内用来传输同步信号的时间单元,包括:
    根据预置的同步信号信息确定每个所述时间窗内用来传输所述同步信号的时间单元;其中,所述预置的同步信号信息包括:每个所述时间窗内用来传输所述同步信号的时间单元;或者,
    获取更新的同步信号信息,根据所述更新的同步信号信息确定每个所述时间窗内用来传输所述同步信号的时间单元;其中,所述更新的同步信号信息包括:所述时间窗内用来传输所述同步信号的时间单元。
  110. 根据权利要求106-109任意一项所述的方法,其特征在于,还包括:
    确定连续T个时间窗中用来传输广播信道的时间单元,所述T为大于零的整数;
    其中,所述T个时间窗中用来传输所述广播信道的时间单元为:所述T个时间窗中每个时间窗的第j个时间单元;
    将所述广播信道分别在所述确定的T个时间窗中用来传输广播信道的时间单元进行传输。
  111. 根据权利要求110所述的方法,其特征在于,所述广播信道位于每个所述时间窗的r个时间单元上,所述r个时间单元在每个所述时间窗的位置固定。
  112. 根据权利要求111所述的方法,其特征在于,所述r与所述m的值 相等。
  113. 根据权利要求111或112所述的方法,其特征在于,在所述将所述广播信道分别在所述确定的T个时间窗中用来传输广播信道的时间单元进行传输之前,还包括:
    将所述r通过广播信道发送给用户设备UE。
  114. 根据权利要求110-113任意一项所述的方法,其特征在于,所述确定连续T个时间窗中用来传输广播信道的时间单元,包括:
    根据预置的广播信道信息确定所述连续T个时间窗中用来传输广播信道的时间单元;其中,所述预置的广播信道信息包括:所述时间窗个数T和每个所述时间窗内用来传输广播信道的时间单元;或者,
    获取更新的广播信道信息,根据所述更新的广播信道信息确定所述连续T个时间窗中用来传输广播信道的时间单元;其中,所述更新的广播信道信息包括:所述时间窗个数T和每个所述时间窗内用来传输广播信道的时间单元。
  115. 根据权利要求106-114任意一项所述的方法,其特征在于,还包括:
    确定每个所述时间窗内用来传输每套下行测量参考信号的时间单元;
    其中,每个所述确定的时间窗内用来传输所述每套下行测量参考信号的时间单元包括如下至少一个时间单元:每个所述时间窗的第j个时间单元,每个所述时间窗的第
    Figure PCTCN2014095890-appb-100102
    个时间单元,每个所述时间窗的第j+q个时间单元,所述q为大于或等于1并且小于或等于S的正整数;
    将所述每套下行测量参考信号分别在所述确定的时间窗内用来传输所述下行测量参考信号的时间单元进行传输。
  116. 根据权利要求115所述的方法,其特征在于,所述将所述下行测量参考信号分别在所述确定的时间窗内用来传输所述下行测量参考信号的时间单元进行传输,包括:
    通过如下公式对所述确定的时间窗内用来传输所述每套下行测量参考信号的时间单元进行循环移位,使得所述每套下行测量参考信号固定在每个所述时间窗的第j个时间单元,和/或每个所述时间窗的第j+q个时间单元,和/或每个所述时间窗的第
    Figure PCTCN2014095890-appb-100103
    个时间单元上进行传输:
    Figure PCTCN2014095890-appb-100104
    其中,所述循环移位是对q套所述下行测量参考信号的第k次发射对应的时间单元进行t个时间单元的循环移位,其中,所述q表示每次发射的下行测量参考信号的套数,所述k表示发射的次数,所述t表示每次所述循环移位中所述每套下行测量参考信号被移位的时间单元的个数,所述q、所述k和所述t均为大于零的正整数。
  117. 根据权利要求115或116所述的方法,其特征在于,在所述将所述每套下行测量参考信号分别在所述确定的时间窗内用来传输所述下行测量参考信号的时间单元进行传输之前,还包括:
    将所述q的值通过广播信道发送给用户设备UE。
  118. 根据权利要求117所述的方法,其特征在于,还包括:
    通过高层信令为每个所述UE配置所述UE待测量的所述每套下行测量参考信号对应的时间单元。
  119. 根据权利要求115-118任意一项所述的方法,其特征在于,所述确定每个所述时间窗内用来传输每套下行测量参考信号的时间单元,包括:
    根据预置的下行测量参考信号信息确定每个所述时间窗内用来传输每套下行测量参考信号的时间单元;其中,所述预置的下行测量参考信号信息包括:每个所述时间窗内用来传输每套下行测量参考信号的时间单元;或者,
    获取更新的下行测量参考信号信息,根据所述更新的下行测量参考信号信息确定每个所述时间窗内用来传输每套下行测量参考信号的时间单元;其中,所述更新的下行测量参考信号信息包括:每个所述时间窗内用来传输每套下行测量参考信号的时间单元。
  120. 一种信号发送方法,其特征在于,包括:
    确定每个时间窗内用来传输每套下行测量参考信号的时间单元;
    其中,每个所述确定的时间窗内用来传输所述每套下行测量参考信号的时间单元包括如下至少一个时间单元:每个所述时间窗的第j个时间单元,每个所述时间窗的第
    Figure PCTCN2014095890-appb-100105
    个时间单元,每个所述时间窗的第j+q 个时间单元,所述S为每个所述时间窗包含的时间单元数,所述q为大于或等于1并且小于或等于S的正整数,所述j为大于等于1且小于等于所述S的正整数;
    将所述每套下行测量参考信号分别在所述确定的时间窗内用来传输所述下行测量参考信号的时间单元进行传输。
  121. 根据权利要求120所述的方法,其特征在于,所述将所述下行测量参考信号分别在所述确定的时间窗内用来传输所述下行测量参考信号的时间单元进行传输,包括:
    通过对所述确定的时间窗内用来传输所述每套下行测量参考信号的时间单元进行循环移位,使得所述每套下行测量参考信号固定在每个所述时间窗的第j个时间单元,和/或每个所述时间窗的第j+q个时间单元,和/或每个所述时间窗的第
    Figure PCTCN2014095890-appb-100106
    个时间单元上进行传输:
    Figure PCTCN2014095890-appb-100107
    其中,所述循环移位是对q套所述下行测量参考信号的第k次发射对应的时间单元进行t个时间单元的循环移位,其中,所述q表示每次发射的下行测量参考信号的套数,所述k表示发射的次数,所述t表示每次所述循环移位中所述每套下行测量参考信号被移位的时间单元的个数,所述q、所述k和所述t均为大于零的正整数。
  122. 根据权利要求120或121所述的方法,其特征在于,在所述将所述每套下行测量参考信号分别在所述确定的时间窗内用来传输所述下行测量参考信号的时间单元进行传输之前,还包括:
    将所述q的值通过广播信道发送用户设备UE。
  123. 根据权利要求122所述的方法,其特征在于,还包括:
    通过高层信令为每个所述UE配置所述UE待测量的所述每套下行测量参考信号对应的时间单元。
  124. 根据权利要求120-123任意一项所述的方法,其特征在于,所述确定每个时间窗内用来传输每套下行测量参考信号的时间单元,包括:
    根据预置的下行测量参考信号信息确定每个所述时间窗内用来传输每套下行测量参考信号的时间单元;其中,所述预置的下行测量参考信号信息包括:每个所述时间窗内用来传输每套下行测量参考信号的时间单元;或者,
    获取更新的下行测量参考信号信息,根据所述更新的下行测量参考信号信息确定每个所述时间窗内用来传输每套下行测量参考信号的时间单元;其中,所述更新的下行测量参考信号信息包括:每个所述时间窗内用来传输每套下行测量参考信号的时间单元。
  125. 一种信号发送方法,其特征在于,包括:
    确定连续T个时间窗中用来传输广播信道的时间单元,所述T为大于零的整数;
    其中,所述T个时间窗中用来传输所述广播信道的时间单元为:所述T个时间窗中每个时间窗的第j个时间单元;所述j为大于或等于1,且小于或等于S的正整数,所述S为每个时间窗包含的时间单元数;
    将所述广播信道分别在所述确定的T个时间窗中用来传输广播信道的时间单元进行传输。
  126. 根据权利要求125所述的方法,其特征在于,所述广播信道位于每个所述时间窗的r个时间单元上,所述r个时间单元在每个所述时间窗的位置固定;所述r为大于或等于1并且小于或等于S的正整数。
  127. 根据权利要求126所述的方法,其特征在于,在所述将所述广播信道分别在所述确定的T个时间窗中用来传输广播信道的时间单元进行传输之前,还包括:
    将所述r通过广播信道发送给用户设备UE。
  128. 根据权利要求125-127任意一项所述的方法,其特征在于,所述确定连续T个时间窗中用来传输广播信道的时间单元,包括:
    根据预置的广播信道信息确定所述连续T个时间窗中用来传输广播信道的时间单元;其中,所述预置的广播信道信息包括:所述时间窗个数T和每个所述时间窗中用来传输广播信道的时间单元;或者,
    获取更新的广播信道信息,根据所述更新的广播信道信息确定所述连续 T个时间窗中用来传输广播信道的时间单元;其中,所述更新的广播信道信息包括:所述时间窗个数T和每个所述时间窗中用来传输广播信道的时间单元。
  129. 一种信号发送方法,其特征在于,包括:
    确定P个天线端口,所述P个天线端口为传输同步信号的天线端口;
    将广播信道映射到所述P个天线端口上进行传输。
  130. 根据权利要求129所述的方法,其特征在于,所述将广播信道映射到P个天线端口上进行传输,包括:
    将所述广播信道分别在每个时间窗的第i个时间单元上,并映射到所述P个天线端口进行传输;
    还包括:将所述同步信号分别在每个所述时间窗的第i个时间单元上,并映射到所述P个天线端口进行传输;
    每个所述时间窗的第i个所述时间单元上的所述同步信号的传输周期小于或等于每个所述时间窗的第i个所述时间单元上的所述广播信道的传输周期其中,所述i大于等于1小于等于M,所述M为每个时间窗内的时间单元总数。
  131. 根据权利要求130所述的方法,其特征在于,所述将所述同步信号分别在每个所述时间窗的第i个时间单元上,并映射到所述P个天线端口进行传输,包括:
    将所述同步信号在每个所述时间窗的所述第i个时间单元内的至少两个符号上,并映射到所述P个天线端口进行传输;
    其中,所述符号为小于所述时间单元的时间单位。
  132. 根据权利要求129-131任意一项所述的方法,其特征在于,所述确定P个天线端口,包括:
    根据预置的天线端口信息确定所述P个天线端口,所述预置的天线端口信息包含所述P个天线端口与所述同步信号的对应关系;或者,
    获取更新的天线端口信息,根据所述更新的天线端口信息确定所述P个天线端口,所述更新的天线端口信息包含所述P个天线端口与所述同步信号 的对应关系。
  133. 一种信号检测方法,其特征在于,包括:
    确定每个时间窗内检测同步信号的时间单元;
    其中,所述确定的时间单元包括如下至少一个时间单元:每个所述时间窗的第j个时间单元,每个所述时间窗的第
    Figure PCTCN2014095890-appb-100108
    个时间单元,每个所述时间窗的第j+m个时间单元,所述S为每个所述时间窗包含的时间单元数、所述m为大于或等于1并且小于等于S的正整数,所述j为大于或等于1且小于或等于所述S的正整数;
    在每个所述时间窗的所述确定的时间单元上检测所述同步信号。
  134. 根据权利要求133所述的方法,其特征在于,所述同步信号对应的序列由第一子序列和第二子序列交织组成,其中,所述第一子序列表达式如下:
    Figure PCTCN2014095890-appb-100109
    其中,0<=n<=N/2,所述N为所述同步信号对应的序列的长度,所述d(2n)为所述第一子序列,所述
    Figure PCTCN2014095890-appb-100110
    所述
    Figure PCTCN2014095890-appb-100111
    和所述
    Figure PCTCN2014095890-appb-100112
    为由第一M序列的三个循环移位形成的三个序列,所述c0(n)为由第二M序列的循环移位形成的第一扰码序列,所述
    Figure PCTCN2014095890-appb-100113
    用于表征在每个所述时间窗的第j个时间单元上传输的所述同步信号时的所述第一子序列,所述
    Figure PCTCN2014095890-appb-100114
    用于表征在每个所述时间窗的第
    Figure PCTCN2014095890-appb-100115
    个时间单元上传输所述同步信号时的所述第一子序列,所述
    Figure PCTCN2014095890-appb-100116
    用于表征在每个所述时间窗的第j+m个时间单元上传输所述同步信号时的所述第一子序列;
    所述第二子序列表达式如下:
    Figure PCTCN2014095890-appb-100117
    其中,所述d(2n+1)为所述第二子序列,所述c1(n)为由所述第二M序列的循环移位形成的第二扰码序列,所述
    Figure PCTCN2014095890-appb-100118
    所述
    Figure PCTCN2014095890-appb-100119
    和所述
    Figure PCTCN2014095890-appb-100120
    为由第三M序列的三个循环移位形成的三个第三扰码序列,所述
    Figure PCTCN2014095890-appb-100121
    用于表征在每个所述时间窗的第j个时间单元上传输所述同步信号时的所述第二子序列,所述
    Figure PCTCN2014095890-appb-100122
    用于表征在每个所述时间窗的第
    Figure PCTCN2014095890-appb-100123
    个时间单元上传输所述同步信号时的所述第二子序列,所述
    Figure PCTCN2014095890-appb-100124
    用于表征在每个所述时间窗的第j+m个时间单元上传输所述同步信号时的所述第二子序列。
  135. 根据权利要求133或134所述的方法,其特征在于,在所述确定每个时间窗内检测同步信号的时间单元之前,还包括:
    获取发送端广播的所述m的值。
  136. 根据权利要求133-135任意一项所述的方法,其特征在于,所述确定每个时间窗内检测同步信号的时间单元,包括:
    根据预置的同步信号信息确定确定每个时间窗内检测同步信号的时间单元;其中,所述预置的同步信号信息包括:每个所述时间窗内检测同步信号的时间单元;或者,
    获取更新的同步信号信息,根据所述更新的同步信号信息确定确定每个时间窗内检测同步信号的时间单元;其中,所述更新的同步信号信息包括:每个所述时间窗内检测同步信号的时间单元。
  137. 根据权利要求133-136任意一项所述的方法,其特征在于,还包括:
    确定连续T个时间窗中检测广播信道的时间单元,所述T为大于零的整数;
    其中,所述T个时间窗中检测广播信道的时间单元为:每个所述时间窗的第j个时间单元;
    在所述确定的T个时间窗中检测广播信道的时间单元上检测所述广播信道。
  138. 根据权利要求137所述的方法,其特征在于,所述广播信道位于每个所述时间窗的r个时间单元上,所述r个时间单元在每个所述时间窗的位置固定,所述r为大于或等于1并且小于或等于S的正整数。
  139. 根据权利要求138所述的方法,其特征在于,所述r与所述m的值相等。
  140. 根据权利要求138或139所述的方法,其特征在于,所述在所述确定的T个时间窗中待检测广播信道的时间单元上检测所述广播信道之前,还 包括:
    获取所述发送端广播的所述r的值。
  141. 根据权利要求137-140任意一项所述的方法,其特征在于,所述确定连续T个时间窗中检测广播信道的时间单元,包括:
    根据预置的广播信道信息确定所述连续T个时间窗中检测广播信道的时间单元;其中,所述预置的广播信道信息包括:所述时间窗个数T和每个所述时间窗内检测广播信道的时间单元;或者,
    获取更新的广播信道信息,根据所述更新的广播信道信息确定所述连续T个时间窗中检测广播信道的时间单元;其中,所述更新的广播信道信息包括:所述时间窗个数T和每个所述时间窗内检测广播信道的时间单元。
  142. 根据权利要求133-141任意一项所述的方法,其特征在于,还包括:
    确定每个所述时间窗内测量每套下行测量参考信号的时间单元;
    其中,每个所述确定的时间窗内测量每套下行测量参考信号的时间单元包括如下至少一个时间单元:每个所述时间窗的第j个时间单元,每个所述时间窗的第
    Figure PCTCN2014095890-appb-100125
    个时间单元,每个所述时间窗的第j+q个时间单元,所述q为大于或等于1并且小于或等于S的正整数;
    在所述确定的时间窗内测量每套下行测量参考信号的时间单元上进行所述每套下行测量参考信号的信道质量测量。
  143. 根据权利要求142所述的方法,其特征在于,在所述确定的时间窗内测量每套下行测量参考信号的时间单元之前,还包括:
    获取所述发送端广播的所述q的值。
  144. 根据权利要求143所述的方法,其特征在于,还包括:
    在所述发送端的高层信令配置的所述每套下行测量参考信号对应的时间单元上进行所述下行测量参考信号的信道质量测量。
  145. 根据权利要求142-144任意一项所述的方法,其特征在于,所述确定每个所述时间窗内测量每套下行测量参考信号的时间单元,包括:
    根据预置的下行测量参考信号信息确定每个所述时间窗内测量每套下行测量参考信号的时间单元;其中,所述预置的下行测量参考信号信息包括:每个所述时间窗内测量所述每套下行测量参考信号的时间单元;或者,
    获取更新的下行测量参考信号信息,根据所述更新的下行测量参考信号 信息确定每个所述时间窗内测量每套下行测量参考信号的时间单元;其中,所述更新的下行测量参考信号信息包括:每个所述时间窗内测量所述每套下行测量参考信号的时间单元。
  146. 一种信号检测方法,其特征在于,包括:
    确定每个所述时间窗内测量每套下行测量参考信号的时间单元;
    其中,每个所述确定的时间窗内测量每套下行测量参考信号的时间单元包括如下至少一个时间单元:每个所述时间窗的第j个时间单元,每个所述时间窗的第
    Figure PCTCN2014095890-appb-100126
    个时间单元,每个所述时间窗的第j+q个时间单元,所述q为大于或等于1并且小于或等于S的正整数;所述S为每个所述时间窗包含的时间单元数,所述q为大于或等于1并且小于或等于S的正整数,所述j为大于等于1且小于等于所述S的正整数;
    在所述确定的时间窗内测量每套下行测量参考信号的时间单元上进行所述每套下行测量参考信号的信道质量测量。
  147. 根据权利要求146所述的方法,其特征在于,在所述确定的时间窗内测量每套下行测量参考信号的时间单元之前,还包括:
    获取所述发送端广播的所述q的值。
  148. 根据权利要求147所述的方法,其特征在于,还包括:
    在所述发送端的高层信令配置的所述每套下行测量参考信号对应的时间单元上进行所述下行测量参考信号的信道质量测量。
  149. 根据权利要求146-148任意一项所述的方法,其特征在于,所述确定每个所述时间窗内测量每套下行测量参考信号的时间单元,包括:
    根据预置的下行测量参考信号信息确定每个所述时间窗内测量每套下行测量参考信号的时间单元;其中,所述预置的下行测量参考信号信息包括:每个所述时间窗内测量所述每套下行测量参考信号的时间单元;或者,
    获取更新的下行测量参考信号信息,根据所述更新的下行测量参考信号信息确定每个所述时间窗内测量每套下行测量参考信号的时间单元;其中,所述更新的下行测量参考信号信息包括:每个所述时间窗内测量所述每套下行测量参考信号的时间单元。
  150. 一种信号检测方法,其特征在于,包括:
    确定连续T个时间窗中检测广播信道的时间单元,所述T为大于零的整 数;
    其中,所述T个时间窗中检测广播信道的时间单元为:每个所述时间窗的第j个时间单元;所述j为大于或等于1,且小于或等于S的正整数,所述S为每个时间窗包含的时间单元数;
    在所述确定的T个时间窗中检测广播信道的时间单元上检测所述广播信道。
  151. 根据权利要求150所述的方法,其特征在于,所述广播信道位于每个所述时间窗的r个时间单元上,所述r个时间单元在每个所述时间窗的位置固定,所述r为大于或等于1并且小于或等于S的正整数。
  152. 根据权利要求151所述的方法,其特征在于,所述在所述确定的T个时间窗中检测广播信道的时间单元上检测所述广播信道之前,还包括:
    获取所述发送端广播的所述r的值。
  153. 根据权利要求150-152任意一项所述的方法,其特征在于,所述确定连续T个时间窗中检测广播信道的时间单元,包括:
    根据预置的广播信道信息确定所述连续T个时间窗中检测广播信道的时间单元;其中,所述预置的广播信道信息包括:所述时间窗个数T和每个所述时间窗内检测广播信道的时间单元;或者,
    获取更新的广播信道信息,根据所述更新的广播信道信息确定所述连续T个时间窗中检测广播信道的时间单元;其中,所述更新的广播信道信息包括:所述时间窗个数T和每个所述时间窗内检测广播信道的时间单元。
  154. 一种信号检测方法,其特征在于,包括:
    确定P个天线端口,所述P个天线端口为发送端传输同步信号的天线端口;
    在所述P个天线端口上检测广播信道。
  155. 根据权利要求154所述的方法,其特征在于,所述在所述P个天线端口上检测广播信道,包括:
    在每个时间窗的第i个时间单元上检测所述P个天线端口对应的所述广播信道;
    还包括:在每个所述时间窗的第i个时间单元上检测所述P个天线端口对应的所述同步信号
    每个所述时间窗的第i个所述时间单元上的所述同步信号的传输周期小于或等于每个所述时间窗的第i个所述时间单元上的所述广播信道的传输周期其中,所述i大于等于1小于等于M,M为每个时间窗内的时间单元总数。
  156. 根据权利要求155所述的方法,其特征在于,所述在每个时间窗的第i个时间单元上检测所述P个天线端口对应的所述广播信道,包括:
    在每个所述时间窗的所述第i个时间单元内的至少两个符号上检测所述P个天线端口对应的所述同步信号;
    其中,所述符号为小于所述时间单元的时间单位。
  157. 根据权利要求154-156任意一项所述的方法,其特征在于,所述确定P个天线端口,包括:
    根据预置的天线端口信息确定所述P个天线端口,所述预置的天线端口信息包含所述P个天线端口与所述同步信号的对应关系;或者,
    获取更新的天线端口信息,根据所述更新的天线端口信息确定所述P个天线端口,所述更新的天线端口信息包含所述P个天线端口与所述同步信号的对应关系。
PCT/CN2014/095890 2014-12-31 2014-12-31 信号发送和检测装置、系统及方法 WO2016106680A1 (zh)

Priority Applications (10)

Application Number Priority Date Filing Date Title
CN201480033936.2A CN105934900B (zh) 2014-12-31 2014-12-31 信号发送和检测装置、系统及方法
CN201810745620.6A CN109005019B (zh) 2014-12-31 2014-12-31 信号发送和检测装置、系统及方法
PCT/CN2014/095890 WO2016106680A1 (zh) 2014-12-31 2014-12-31 信号发送和检测装置、系统及方法
EP20191906.5A EP3809614B1 (en) 2014-12-31 2014-12-31 Signal sending apparatus, signal detection apparatus, signal sending and detection system, signal sending method, and signal detection method
CN201910878766.2A CN110740026B (zh) 2014-12-31 2014-12-31 信号发送和检测装置、系统及方法
EP14909489.8A EP3229390B1 (en) 2014-12-31 2014-12-31 Device, system, and method for signal transmission and detection
CN201810718661.6A CN108667587B (zh) 2014-12-31 2014-12-31 信号发送和检测装置、系统及方法
US15/639,373 US10892934B2 (en) 2014-12-31 2017-06-30 Signal sending apparatus, signal detection apparatus, signal sending and detection system, signal sending method, and signal detection method
US16/055,334 US10447522B2 (en) 2014-12-31 2018-08-06 Signal sending apparatus, signal detection apparatus, signal sending and detection system, signal sending method, and signal detection method
US16/055,353 US10554467B2 (en) 2014-12-31 2018-08-06 Signal sending apparatus, signal detection apparatus, signal sending and detection system, signal sending method, and signal detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/095890 WO2016106680A1 (zh) 2014-12-31 2014-12-31 信号发送和检测装置、系统及方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/639,373 Continuation US10892934B2 (en) 2014-12-31 2017-06-30 Signal sending apparatus, signal detection apparatus, signal sending and detection system, signal sending method, and signal detection method

Publications (1)

Publication Number Publication Date
WO2016106680A1 true WO2016106680A1 (zh) 2016-07-07

Family

ID=56283954

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/095890 WO2016106680A1 (zh) 2014-12-31 2014-12-31 信号发送和检测装置、系统及方法

Country Status (4)

Country Link
US (3) US10892934B2 (zh)
EP (2) EP3809614B1 (zh)
CN (4) CN110740026B (zh)
WO (1) WO2016106680A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109392078A (zh) * 2017-08-11 2019-02-26 中兴通讯股份有限公司 信号检测、发送方法及装置、远端用户设备
CN111865864A (zh) * 2018-09-18 2020-10-30 Oppo广东移动通信有限公司 一种信号传输的方法、装置及计算机存储介质

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI665925B (zh) * 2016-10-11 2019-07-11 聯發科技股份有限公司 用於行動通訊中的同步信號塊處理方法及設備
CN110168979B (zh) 2017-01-06 2022-07-15 Idac控股公司 基于检错的同步和广播信道
US10986595B2 (en) * 2017-02-06 2021-04-20 Motorola Mobility Llc Transmitting and receiving a synchronization signal block
US10694480B2 (en) 2017-08-11 2020-06-23 Lenovo (Singapore) Pte. Ltd. Determining synchronization signal block positions
CN114938535B (zh) * 2017-12-15 2024-02-27 上海朗帛通信技术有限公司 一种用于无线通信的通信节点中的方法和装置
CN111050298B (zh) * 2018-10-15 2021-10-22 华为技术有限公司 一种同步信号的发送方法和通信设备
WO2020107314A1 (zh) * 2018-11-29 2020-06-04 鹤壁天海电子信息系统有限公司 一种空口数据同步头搜索方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1325196A (zh) * 2000-05-23 2001-12-05 欧洲三菱电讯有限公司 在移动电信网中同步至少一个移动台的方法
US20040028236A1 (en) * 2002-08-08 2004-02-12 Chelen William E. Time and frequency windowed pocket cardiac stethoscope
CN102484548A (zh) * 2010-07-07 2012-05-30 华为技术有限公司 使用周期性间隔的时间戳包的确定性布局

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2845889B2 (ja) * 1988-05-16 1999-01-13 株式会社日立製作所 衛星通信方式及び衛星通信システム
US5473612A (en) * 1994-11-28 1995-12-05 Motorola, Inc. Method and apparatus for minimizing false detection of packet data in a communication receiver
US6536011B1 (en) 1998-10-22 2003-03-18 Oak Technology, Inc. Enabling accurate demodulation of a DVD bit stream using devices including a SYNC window generator controlled by a read channel bit counter
US6975652B1 (en) * 2000-10-18 2005-12-13 3Com Corporation Clock synchronization of HFC telephone equipment
US6975625B1 (en) * 2001-08-20 2005-12-13 Cisco Technology, Inc. Distributed call control processing
US20090016714A1 (en) * 2003-03-03 2009-01-15 Alexander Soto System and method for performing in-service fiber optic network certification
JP2005276346A (ja) 2004-03-25 2005-10-06 Nec Electronics Corp 同期信号検出装置と情報記録再生装置並びに同期信号検出方法
EP1705620A1 (de) * 2005-03-24 2006-09-27 ista Shared Services GmbH Verfahren zur Synchronisation von Netzknoten und zugehöriges Netzwerk
JP4463780B2 (ja) * 2005-06-14 2010-05-19 株式会社エヌ・ティ・ティ・ドコモ 送信装置および送信方法
US7738422B2 (en) * 2005-08-23 2010-06-15 Alcatel-Lucent Usa Inc. Interference-reducing method of forward link scheduling for wireless networks
US9313064B2 (en) * 2006-04-18 2016-04-12 Interdigital Technology Corporation Method and apparatus for synchronization in an OFDMA evolved UTRA wireless communication system
JP4998479B2 (ja) 2007-02-16 2012-08-15 日本電気株式会社 無線通信システム、無線基地局、無線通信システムにおける共通パイロット信号送信制御方法及びプログラム
US20090125363A1 (en) 2007-10-22 2009-05-14 Nokia Siemens Networks Oy Method, apparatus and computer program for employing a frame structure in wireless communication
CN101425991A (zh) * 2007-11-02 2009-05-06 大唐移动通信设备有限公司 一种广播信息的传输方法和装置
US9307426B2 (en) 2008-06-13 2016-04-05 Telefonaktiebolaget L M Ericsson (Publ) Method and apparatus for testing mobile terminals in an OFDM system
CN101645722B (zh) * 2008-08-05 2013-03-20 中兴通讯股份有限公司 一种天线端口配置信息的检测系统及方法
US8054864B2 (en) * 2008-08-08 2011-11-08 Robert Bosch Gmbh Method for fast synchronization and frequency hop sequence detection in wireless sensor networks
CN101741701B (zh) * 2008-11-12 2012-01-11 中兴通讯股份有限公司 同步调度方法和装置
US9185728B2 (en) * 2009-01-19 2015-11-10 Lg Electronics Inc. Method for setting up carrier in carrier aggregation system and apparatus required for same
EP2389732A4 (en) * 2009-02-01 2012-06-06 Huawei Tech Co Ltd METHOD FOR SENDING REFERENCE SIGNALS
US8958388B2 (en) 2010-11-15 2015-02-17 Futurewei Technologies, Inc. System and method for measuring channel state information in a communications system
WO2013003492A1 (en) * 2011-06-28 2013-01-03 Arun Raghupathy Wide area positioning systems and methods
WO2013022272A2 (en) 2011-08-11 2013-02-14 Lg Electronics Inc. Apparatus for transmitting and receiving downlink control information in a wireless access system and method thereof
JP5726696B2 (ja) 2011-09-28 2015-06-03 京セラ株式会社 基地局及び補正値算出方法
US9769775B2 (en) * 2011-11-11 2017-09-19 Telefonaktiebolaget Lm Ericsson (Publ) Sync interval determination
WO2013089344A1 (en) 2011-12-15 2013-06-20 Lg Electronics Inc. Method for reducing interference of user equipment in wireless access system, and the user equipment for the same
US9516632B2 (en) 2012-01-11 2016-12-06 Samsung Electronics Co., Ltd. Apparatus and method for transmitting/receiving downlink data channel signal transmission information in cellular radio communication system using cooperative multi-point scheme
US9491755B2 (en) * 2012-03-09 2016-11-08 Samsung Electronics Co., Ltd. Methods and apparatus to transmit and receive synchronization signals in a mobile communication system
US9113469B2 (en) * 2012-04-02 2015-08-18 Marvell World Trade Ltd. Cell deployment with different channel bandwidth for carrier aggregation
CN103379072B (zh) * 2012-04-20 2016-12-14 电信科学技术研究院 一种信号传输方法及装置
CN103686987A (zh) 2012-09-26 2014-03-26 北京三星通信技术研究有限公司 发送和接收同步信道、广播信道的方法和设备
US9137766B2 (en) * 2012-10-26 2015-09-15 Qualcomm Incorporated Systems and methods for synchronization of wireless devices in a peer-to-peer network
CN104937874B (zh) * 2012-12-05 2018-05-18 华为技术有限公司 在无线通信系统中传输广播信息的方法和节点
US11177919B2 (en) * 2013-01-18 2021-11-16 Texas Instruments Incorporated Methods for energy-efficient unicast and multicast transmission in a wireless communication system
US8982853B2 (en) * 2013-03-05 2015-03-17 Qualcomm Incorporated Methods and apparatus to control interference
CN103220707B (zh) * 2013-04-28 2016-08-03 重庆邮电大学 一种用于lte系统中天线端口数的检测方法
US9565593B2 (en) 2013-05-20 2017-02-07 Qualcomm Incorporated Techniques for selecting subframe type or for interleaving signals for wireless communications over unlicensed spectrum
US9419750B2 (en) 2013-06-05 2016-08-16 Texas Instruments Incorporated NLOS wireless backhaul uplink communication
CN104348602B (zh) * 2013-08-09 2019-06-18 北京三星通信技术研究有限公司 一种混合双工通信方法、基站及终端
US9775134B2 (en) 2013-09-20 2017-09-26 Samsung Electronics Co., Ltd. System and method for coverage enhancements of broadcast channels
US9143364B2 (en) 2013-10-10 2015-09-22 Broadcom Corporation IQ imbalance estimation using broadcast signals
US10200977B2 (en) 2015-01-30 2019-02-05 Qualcomm Incorporated System information block channel design for enhanced machine type communication with coverage enhancements

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1325196A (zh) * 2000-05-23 2001-12-05 欧洲三菱电讯有限公司 在移动电信网中同步至少一个移动台的方法
US20040028236A1 (en) * 2002-08-08 2004-02-12 Chelen William E. Time and frequency windowed pocket cardiac stethoscope
CN102484548A (zh) * 2010-07-07 2012-05-30 华为技术有限公司 使用周期性间隔的时间戳包的确定性布局

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3229390A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109392078A (zh) * 2017-08-11 2019-02-26 中兴通讯股份有限公司 信号检测、发送方法及装置、远端用户设备
US11290971B2 (en) 2017-08-11 2022-03-29 Xi'an Zhongxing New Software Co., Ltd. Signal detection method and apparatus, signal sending method and apparatus, remote user device, and storage medium
CN111865864A (zh) * 2018-09-18 2020-10-30 Oppo广东移动通信有限公司 一种信号传输的方法、装置及计算机存储介质
CN111865864B (zh) * 2018-09-18 2022-03-15 Oppo广东移动通信有限公司 一种信号传输的方法、装置及计算机存储介质
US11304159B2 (en) 2018-09-18 2022-04-12 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Signal transmission method and apparatus and computer storage medium

Also Published As

Publication number Publication date
CN110740026A (zh) 2020-01-31
EP3809614B1 (en) 2022-08-31
CN105934900B (zh) 2021-02-12
EP3229390A4 (en) 2017-12-06
US10892934B2 (en) 2021-01-12
EP3809614A1 (en) 2021-04-21
US20170302494A1 (en) 2017-10-19
EP3229390B1 (en) 2020-09-09
CN108667587A (zh) 2018-10-16
US10554467B2 (en) 2020-02-04
CN109005019B (zh) 2020-01-03
US20180343159A1 (en) 2018-11-29
CN109005019A (zh) 2018-12-14
US20180343158A1 (en) 2018-11-29
CN108667587B (zh) 2019-08-23
EP3229390A1 (en) 2017-10-11
CN105934900A (zh) 2016-09-07
US10447522B2 (en) 2019-10-15
CN110740026B (zh) 2020-08-21

Similar Documents

Publication Publication Date Title
USRE49368E1 (en) Method and apparatus for communicating to UE an indication of available RS, based on MIMO mode settings
WO2016106680A1 (zh) 信号发送和检测装置、系统及方法
JP6370921B2 (ja) 測定実行方法及び端末
US9907066B2 (en) Method for receiving discovery reference signal by terminal in wireless communication system and device therefor
US10050756B2 (en) Method for tranceiving signal in wireless communication system and apparatus therefor
KR101904944B1 (ko) 무선 통신 시스템에서 단말의 측정 수행 방법 및 이를 위한 장치
EP2919506B1 (en) Channel state information reporting method, user equipment and base station thereof
US10763939B2 (en) Base station, user equipment, and communication signal transmitting and receiving methods
WO2016033978A1 (zh) 准共位置的配置、确定方法及装置
JP2019537879A (ja) 無線通信システムにおいて端末と基地局の間の信号送受信方法及びそれを支援する装置
RU2015153553A (ru) Способ подавления помех в системе беспроводной связи и соответствующее устройство
KR20140012699A (ko) 무선 통신 시스템에서 csi-rs에 기반한 채널 추정 방법 및 이를 위한 장치
KR101740413B1 (ko) 제어 채널 검출 방법, 사용자 기기, 및 기지국
KR20140001875A (ko) 기지국장치, 이동단말장치 및 통신제어방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14909489

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014909489

Country of ref document: EP