WO2016106603A1 - 电子束熔融及激光铣削复合3d打印设备 - Google Patents

电子束熔融及激光铣削复合3d打印设备 Download PDF

Info

Publication number
WO2016106603A1
WO2016106603A1 PCT/CN2014/095664 CN2014095664W WO2016106603A1 WO 2016106603 A1 WO2016106603 A1 WO 2016106603A1 CN 2014095664 W CN2014095664 W CN 2014095664W WO 2016106603 A1 WO2016106603 A1 WO 2016106603A1
Authority
WO
WIPO (PCT)
Prior art keywords
electron beam
powder
laser milling
processing platform
printing apparatus
Prior art date
Application number
PCT/CN2014/095664
Other languages
English (en)
French (fr)
Inventor
徐毅
李军旗
聂炎
Original Assignee
深圳市圆梦精密技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市圆梦精密技术研究院 filed Critical 深圳市圆梦精密技术研究院
Priority to PCT/CN2014/095664 priority Critical patent/WO2016106603A1/zh
Priority to US15/110,557 priority patent/US20160325383A1/en
Priority to EP14909275.1A priority patent/EP3228405A4/en
Publication of WO2016106603A1 publication Critical patent/WO2016106603A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K28/00Welding or cutting not covered by any of the preceding groups, e.g. electrolytic welding
    • B23K28/02Combined welding or cutting procedures or apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/20Direct sintering or melting
    • B22F10/28Powder bed fusion, e.g. selective laser melting [SLM] or electron beam melting [EBM]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K15/00Electron-beam welding or cutting
    • B23K15/002Devices involving relative movement between electronbeam and workpiece
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K15/00Electron-beam welding or cutting
    • B23K15/0046Welding
    • B23K15/0086Welding welding for purposes other than joining, e.g. built-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K15/00Electron-beam welding or cutting
    • B23K15/06Electron-beam welding or cutting within a vacuum chamber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/08Devices involving relative movement between laser beam and workpiece
    • B23K26/0869Devices involving movement of the laser head in at least one axial direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/12Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure
    • B23K26/1224Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure in vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/12Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure
    • B23K26/127Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure in an enclosure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • B23K26/342Build-up welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/346Working by laser beam, e.g. welding, cutting or boring in combination with welding or cutting covered by groups B23K5/00 - B23K25/00, e.g. in combination with resistance welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/362Laser etching
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/70Auxiliary operations or equipment
    • B23K26/702Auxiliary equipment
    • B23K26/703Cooling arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K37/00Auxiliary devices or processes, not specially adapted to a procedure covered by only one of the preceding main groups
    • B23K37/02Carriages for supporting the welding or cutting element
    • B23K37/0211Carriages for supporting the welding or cutting element travelling on a guide member, e.g. rail, track
    • B23K37/0235Carriages for supporting the welding or cutting element travelling on a guide member, e.g. rail, track the guide member forming part of a portal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P23/00Machines or arrangements of machines for performing specified combinations of different metal-working operations not covered by a single other subclass
    • B23P23/04Machines or arrangements of machines for performing specified combinations of different metal-working operations not covered by a single other subclass for both machining and other metal-working operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y30/00Apparatus for additive manufacturing; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y40/00Auxiliary operations or equipment, e.g. for material handling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F10/00Additive manufacturing of workpieces or articles from metallic powder
    • B22F10/70Recycling
    • B22F10/73Recycling of powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/20Cooling means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/22Driving means
    • B22F12/224Driving means for motion along a direction within the plane of a layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/30Platforms or substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/40Radiation means
    • B22F12/49Scanners
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/60Planarisation devices; Compression devices
    • B22F12/67Blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F12/00Apparatus or devices specially adapted for additive manufacturing; Auxiliary means for additive manufacturing; Combinations of additive manufacturing apparatus or devices with other processing apparatus or devices
    • B22F12/90Means for process control, e.g. cameras or sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency

Definitions

  • the present invention relates to the technical field of 3D printing devices, and more particularly to electron beam melting and laser milling composite 3D printing devices.
  • Metal fused 3D printing technology (Selective Laser Melting, SLM) is a high-brightness laser that directly melts the metal powder material without the need for a binder.
  • SLM Selective Laser Melting
  • the 3D model directly forms an arbitrarily complex structural part equivalent to that of the casting.
  • the metal-melting 3D printing technology can form parts that reach the casting strength level, the shape of the formed parts is large and the surface finish is not high. Thus, the formed parts need to be processed twice by conventional machining methods. Processing can get the shape and surface accuracy required by the aerospace manufacturing industry. Most parts of the aerospace industry, such as engine nozzles, blades, honeycomb combustion chambers, etc., are generally complex thin-wall or lattice sandwich structures, or larger-sized shapes, or free-form surfaces, etc. When the parts processed by the metal-melting 3D printing technology are placed in the machine for secondary processing, the following problems exist:
  • the object of the present invention is to provide an electron beam melting and laser milling composite 3D printing device, which aims to solve the problem that the parts processed by the metal melting 3D printing technology are subjected to secondary processing in the prior art, and the clamping is difficult and the processing error is large. Parts are variability and difficult to machine.
  • an electron beam melting and laser milling composite 3D printing apparatus comprising a base, the base being provided with a processing platform moving vertically; the base being provided with a metal powder for laying The processing platform forms a powder-laying structure of a metal powder layer; the processing platform is respectively provided with an electron beam emitting structure and a laser milling head movable in a three-dimensional space; the electron beam emitting structure emitting electron beam pair is located at the The metal powder layer on the processing platform is melt processed to form a single layer or a plurality of layers of approximate shapes; the laser milling head emits a laser beam to mill a single layer or a plurality of layers of approximate shapes formed on the processing platform.
  • the base is provided with two guide rails arranged side by side, the processing platform is located between the two guide rails;
  • the powder laying structure comprises a scraper and a powder storage box, and the two ends of the scraper respectively Actively connected to the two guide rails, a gap between the lower end of the scraper and the processing platform;
  • the powder storage tank has a powder storage chamber with an upper end opening and used for installing metal powder, and the base is provided with a through hole in which an upper end of the powder storage chamber is aligned;
  • a powder moving chamber of the powder storage tank is provided with a vertical movement and a powder conveying table for transporting metal powder to the base, the powder conveying powder
  • the stages are respectively arranged in alignment with the upper end opening and the through hole of the powder storage chamber.
  • the base is provided with two guide rails arranged side by side, the processing platform is located between the two guide rails;
  • the powder spreading structure comprises a scraper and a powder leakage tank located above the scraper.
  • the two ends of the scraper are respectively movably connected to the two guide rails, and a gap is formed between the lower end of the scraper and the processing platform;
  • the powder leakage tank is provided with a powder storage chamber for installing metal powder, and the leakage powder
  • the lower end of the box is provided with a powder leakage hole, and the upper end of the blade is provided with a powder collecting groove for collecting metal powder dropped through the powder leakage hole.
  • the paving structure comprises two of the scraping blades and two of the powder leakage boxes, and the two scraping blades are respectively provided with a front end and a rear end of the processing platform, and the two powder leakage boxes are respectively located Above the two scrapers.
  • two sides of the processing platform are respectively provided with sensors for detecting the thickness of the metal powder layer laid on the processing platform.
  • the electron beam emitting structure includes an electron beam generator that emits an electron beam and a coil that energizes to generate a magnetic field, and an electron beam emitted from the electron beam generator passes through a magnetic field generated by the coil.
  • the two guide rails are movably connected with a gantry
  • the gantry includes two spaced apart connecting arms and a cross beam, and the lower ends of the two connecting arms are movably connected to the two rails respectively.
  • the two ends of the beam are respectively connected to the upper ends of the two connecting arms;
  • the beam is movably connected with a moving terminal of the beam moving, and
  • the moving terminal is movably connected with a connecting plate that moves up and down with respect to the moving terminal.
  • the laser milling head is coupled to the connecting plate.
  • a cooling pipeline for circulating cooling water is disposed in the laser milling head.
  • the electron beam melting and laser milling composite 3D printing apparatus further includes a recovery tank having a recovery chamber for recovering metal powder on the susceptor, the recovery tank being located at the pedestal Below the bottom, a recovery port communicating with the recovery chamber is provided in the base.
  • the electron beam melting and laser milling composite 3D printing apparatus is in a processing space of the processing chamber, and the processing space of the processing chamber is vacuum or filled with an inert gas.
  • the present invention provides an electron beam melting and laser milling composite 3D printing device processing part, and uses the electron beam emitted by the electron beam emitting structure to melt the metal powder layer layer by layer, and then laser-mills the laser beam pair of the hair.
  • the single-layer or multi-layer approximation is milled and the cycle is repeated until the part is finished.
  • the 3D printing device combines the traditional laser-milling-based precision removal with electron beam melting.
  • the 3D printing-based incremental lamination manufacturing process integrates into one, which can overcome the defects of the traditional 3D printing technology in terms of size and shape accuracy, and can also overcome the constraints of the machining process on the complexity of the components, etc.
  • FIG. 1 is a perspective view of an electron beam melting and laser milling composite 3D printing apparatus according to an embodiment of the present invention
  • FIG. 2 is a perspective view of a laser milling head according to an embodiment of the present invention.
  • the 3D printing apparatus 1 provided by the present invention combines laser milling processing and electron beam melting, which can be used for molding various parts, such as parts required for the aerospace manufacturing industry.
  • the electron beam melting and laser milling composite 3D printing apparatus 1 includes a susceptor 100, a powder spreading structure, an electron beam emitting structure 101, and a laser milling head 114, wherein the susceptor 100 serves as a basis for the entire 3D printing apparatus 1, and functions as a carrier.
  • the base 100 is provided with a processing platform 109 moving in a vertical direction, on which the metal powder is laid; the powder-laying structure is disposed on the base 100, and the powder-laying structure is used for conveying metal powder and the like to the processing platform.
  • the metal powder forms a metal powder layer on the processing platform 109;
  • the electron beam emission structure 101 is located above the processing platform 109, which emits an electron beam that can move in a horizontal plane, and the electron beam is used for melt processing a metal powder layer formed on the processing platform 109 to form a single layer or multiple layers of approximate shapes;
  • laser milling The head 114 is located above the processing platform 109, which can be moved in a three-dimensional manner in space. The laser milling head 114 can emit a laser beam to mill a single or multiple layers of the melt-formed shape on the processing platform 109.
  • the XY plane parallel to the processing platform 109 is set to a horizontal plane
  • the Z direction is a vertical direction
  • the plane perpendicular to the horizontal plane is a vertical plane, so that the processing platform 109 can move up and down in the Z direction.
  • the electron beam emitted by the electron beam emitting structure 101 moves in the XY plane, and the laser milling head 114 can move in the X, Y, and Z directions.
  • the electron beam molten metal powder layer emitted from the electron beam emitting structure 101 is used for 3D printing, and the laser beam emitted from the laser milling head 114 is applied to the electron beam emitting structure 101.
  • the single-layer or multi-layer approximation of the secondary processing is milled, and the 3D printing technology and milling are integrated.
  • the powder coating structure transports the metal powder onto the processing platform 109 and is laid on the processing platform 109 to form a metal powder layer; according to the 3D printing technology, the electron beam emitting structure 101 emits an electron beam to the metal powder on the processing platform 109.
  • step 1) the electron beam emitted by the electron beam emitting structure 101 is moved in a horizontal plane, and a single layer or a plurality of layers are formed in the metal powder layer on the processing platform 109; in the step 2), the laser milling head 114 is used.
  • the emitted laser beam moves in a three-dimensional space and can be milled in all directions for various types of single or multi-layer approximations.
  • the electron beam melting and laser milling composite 3D printing apparatus 1 provided by the embodiment is used to process the parts, and the metal powder layer is melted layer by layer by the electron beam, and then the single or multi-layer approximate body is milled by the laser beam emitted from the laser milling head 114. Processing, repeating the cycle until the part is finished, the 3D printing device integrates the traditional laser-milling-based removal precision machining with the electron beam fusion 3D printing-based incremental laminate manufacturing process, which can overcome the traditional The defects of 3D printing technology in terms of size and shape accuracy can also overcome the constraints of the machining process on the complexity of the components. In this way, it is not necessary to perform secondary processing on the processed parts to avoid the difficulty of current clamping and processing.
  • the problem of large error, deformation of parts during processing and difficulty in processing opens up a broader application space for 3D printing technology and provides new methods and means for the manufacture of core precision parts in the aerospace industry.
  • the laser beam emitted by the laser milling head 114 is used to mill a single layer or a plurality of layers, which is a non-contact milling process, which avoids the defects of the traditional tool directly contacting the single or multiple layers of the approximate body. Greatly improve the precision of milling.
  • the powder spreading structure comprises a scraper 104 and a powder storage box 103, and the scraper 104
  • the two ends are respectively movably connected to the two guide rails 105, so that the scraper 104 can be moved along the guide rail 105 in a horizontal plane, and the lower end surface of the scraper 104 has a gap with the processing platform 109;
  • the powder storage box 103 has an upper end opening.
  • the powder storage chamber of the powder storage tank 103 is used for storing metal powder.
  • the powder storage tank 103 is located below the base 100, and in the base 100, there is a passage connecting the upper end of the powder storage box 103.
  • the hole that is, the through hole is aligned with the upper end opening of the powder tank 103, of course, the through hole is also located between the two guide rails 105.
  • the powder storage box 103 is further provided with a powder conveying table which can be moved up and down, and the powder conveying table is arranged in alignment with the upper end opening of the powder storage box 103 and the through hole in the base 100, so that when the scraper 104 needs to be in the processing platform
  • the powder powder bed carries the metal powder and moves upwards, respectively passing through the upper end opening of the powder storage box 103 and the through hole of the base 100 until the metal powder is exposed on the base 100, so that The metal powder can be scraped onto the processing platform 109 by the doctor blade 104 to form a metal powder layer.
  • the thickness of the metal powder layer formed on the processing platform 109 each time coincides with the gap between the lower end of the doctor blade 104 and the processing platform 109.
  • the thickness of the metal powder layer laid on the processing platform 109 each time can be selected, and only the blade 104 needs to be adjusted to adjust the gap between the lower end of the blade 104 and the processing platform 109.
  • the powder-laying structure includes two the above-mentioned scrapers 104 and two of the above-mentioned powder storage boxes 103, such that the two ends of the two scrapers 104 are movably connected to the two guide rails 105, respectively. And the two scrapers 104 are respectively disposed at the front end and the rear end of the processing platform 109.
  • the two scrapers 104 can be used for interaction, which greatly improves the spreading efficiency.
  • the powder spreading structure may further include the above-mentioned scraper 104 and the powder leakage box, and the powder leakage box is located above the base 100, wherein the powder storage chamber is provided, and the metal powder is stored.
  • the powder storage chamber of the powder leakage tank In the powder storage chamber of the powder leakage tank.
  • a powder leakage hole is arranged at a lower end of the leakage powder box, and the leakage powder hole is connected to the leakage powder cavity, and the metal powder in the leakage powder cavity can fall on the base 100 through the leakage powder hole, and the powder coating operation is performed by the scraper 104.
  • the metal powder is laid on the processing platform 109 to form a metal powder layer.
  • the powder leakage holes are arranged in a strip shape, so that the width of the metal powder layer after being laid by the doctor blade 104 is ensured to meet the needs of use. In general, it is ensured that the length of the powder leakage hole is slightly larger than the width of the processing platform 109.
  • two powder leakage boxes may be disposed, which are respectively located at the front end and the rear end of the processing platform 109, and cooperate with the two scrapers 104 to realize the interaction. Paving operation.
  • sensors 107 are respectively disposed on both sides of the processing platform 109, and the sensor 107 is used for the metal powder laid on the processing platform 109.
  • the thickness of the layer is detected, and the information detected by the sensor 107 is fed back to the control center, and the gap between the processing platform 109 and the doctor blade 104 is adjusted by the control center.
  • a plurality of the above-mentioned sensors 107 are respectively disposed on both sides of the processing platform 109 along the sides of the processing platform 109.
  • the electron beam emitting structure 101 includes an electron beam generator and a coil, wherein the electron beam generator can emit an electron beam, and the emitted electron beam is energized by the coil to form a magnetic field, so that the electron beam can be changed by adjusting the magnetic field of the coil.
  • the transmission path realizes the movement of the electron beam in the horizontal plane, and processes the shape requirements of the approximate body member as needed, and correspondingly adjusts the magnetic field generated by the coil, thereby realizing the deflection of the electron beam.
  • a lifting motor 111 is connected below the processing platform 109, and the driving of the processing platform 109 is driven by the power of the lifting motor 111, and the paving structure is laid on the processing platform 109 each time.
  • the lifting platform controls the processing platform 109 to descend a fixed distance, thereby ensuring that the distance of the focus of the electron beam emitted by the electron beam emitting structure 101 falls on the metal powder layer.
  • a gantry 106 is disposed on the two guide rails 105.
  • the gantry 106 includes two connecting arms 1062 and a cross member 1061.
  • the lower ends of the two connecting arms 1062 are movably connected to the two guide rails 105, respectively. It is movable along the guide rail 105, and the beam 1061 is connected to the upper ends of the two connecting arms 1062 such that the beam 1061 is arranged across the rails 105 in a span.
  • a moving terminal 112 is movably coupled to the beam 1061, and the moving terminal 112 is movable along the beam 1061.
  • a connecting plate 113 is also movably connected to the moving terminal, and the connecting plate 113 is movable up and down with respect to the moving terminal, that is, moving in the vertical direction and moving in the Z direction.
  • the laser milling head 114 is attached to the web 113 such that when the web 113 is moved vertically, the laser milling head 114 is also moved vertically.
  • the beam 1061 can be moved along the two guide rails 105, that is, in the Y direction, and the moving terminal 112 can be moved along the beam 1061, that is, moved in the X direction, and the connecting plate 113 is opposed to the connecting plate.
  • the 113 moves up and down, that is, moves in the Z direction, so that the laser milling head 114 can move in the three-dimensional space.
  • the laser milling head 114 is provided with a cooling pipe 115.
  • the cooling pipe 115 is connected to the cooling water.
  • the heat generated during the working process of the components in the head 114 serves to dissipate heat, ensuring better working efficiency and performance of the laser milling head 114.
  • the electron beam melting and laser milling composite 3D printing apparatus 1 further includes a metal powder recovery structure for recovering the remaining metal powder processed on the susceptor 100, thereby facilitating the metal powder. Recycling.
  • the metal powder recovery structure includes a recovery tank 110, and the recovery tank 110 is provided with a recovery chamber for accommodating the recovered metal powder.
  • the recovery tank 110 is located below the base 100, and a recovery port is disposed in the base 100.
  • the recovery port communicates with the recovery chamber of the recovery tank 110, so that the remaining metal powder processed on the susceptor 100 can enter the recovery chamber of the recovery tank 110 through the recovery port, recover the metal powder in the chamber, and filter the residue. Re-cycle.
  • the recovery port is disposed on the side of the processing platform 109.
  • the recovery port is disposed at the rear end of the processing platform 109; or, the two scrapers 104 cooperate with each other.
  • the recovery ports may be respectively disposed at the front end and the rear end of the processing platform 109; or, as other embodiments, the recovery ports may be disposed on both sides of the processing platform 109.
  • the apparatus 1 further includes a processing chamber having a processing space, and the processing space is in a vacuum state, or the processing space is filled with an inert gas, and the above-mentioned susceptor 100 is disposed in a processing space of the processing chamber, that is, an electron beam
  • the fusion and laser milling composite 3D printing device 1 is installed in the processing space of the processing chamber, thus reducing the influence of the environment on the melting or solidification of the metal, improving the mechanical and physical properties of the metal, and opening up the metal electron beam melting 3D printing technology.
  • the wide application space provides new methods and means for the manufacture of high melting point metals.

Abstract

一种电子束熔融及激光铣削复合3D打印设备(1)包括基座(100),基座上设有加工平台(109);基座上设有用于将金属粉铺设以加工平台上的铺粉结构;加工平台的上方分别设有电子束发射结构(101)以及激光铣削头(114);电子束发射结构发射电子束对金属粉进行熔融以形成单层或多层近似形体;激光铣削头发射激光束对单层或多层近似形体进行铣削加工。所述设备将以激光铣削为主的去除式加工与以电子束熔融3D打印为主的增量叠层制造工艺集成,无需对加工后的零件进行二次加工,避免装夹困难、加工误差大、加工时零件出现变形以及难以加工的问题。

Description

电子束熔融及激光铣削复合3D打印设备 技术领域
本发明涉及3D打印设备的技术领域,尤其涉及电子束熔融及激光铣削复合3D打印设备。
背景技术
金属熔融3D打印技术(Selective Laser Melting,SLM)是利用高亮度激光直接熔化金属粉末材料,无需粘结剂,由3D模型直接成型出与铸件性能相当的任意复杂结构零件。
金属熔融3D打印技术虽然可以成型出达到铸造强度级别的零件,但是成型出的零件的形状误差大、表面光洁度不高,这样,成型后的零件则需要采用传统的机械加工方式对此进行二次加工,才能得到航空制造工业所要求的形状及表面精度。而航空航天行业大部分零件,如发动机喷嘴、叶片、蜂窝结构的燃烧室等,一般是复杂薄壁或点阵夹芯结构,或是尺寸较大的形状,或是自由曲面等形状,当采用金属熔融3D打印技术加工出来的零件,再放入机床进行二次加工时,则存在以下问题:
1) 、装夹困难,或装夹后,由于坐标变换无法精确定位零件参考点,导致加工误差大;
2) 、对于薄壁结构的零件,加工时,由于无支撑零件的面,导致零件应力变形;
3) 、部分零件由于内部结构复杂,刀具无法伸入其内部,导致难以加工。
由于上述问题的存在,导致目前金属熔融3D打印技术虽然已经应用到飞机零件的生产制造中,但应用面较窄,仅应用于一些对精度、强度要求不高的零件,或者形状较简单及容易二次机械加工的零件的加工上,距离广泛应用还存在较大差距。
技术问题
本发明的目的在于提供电子束熔融及激光铣削复合3D打印设备,旨在解决现有技术中,采用金属熔融3D打印技术加工的零件在机床进行二次加工,存在装夹困难、加工误差大、零件易变性及难以加工的问题。
技术解决方案
本发明是这样实现的,电子束熔融及激光铣削复合3D打印设备,包括基座,所述基座上设有沿竖向移动的加工平台;所述基座上设有用于将金属粉铺设在所述加工平台形成金属粉层的铺粉结构;所述加工平台的上方分别设有电子束发射结构以及可在立体空间移动的激光铣削头;所述电子束发射结构发射电子束对位于所述加工平台上的金属粉层进行熔融加工以形成单层或多层近似形体;所述激光铣削头发射激光束对形成在所述加工平台上的单层或多层近似形体进行铣削加工。
进一步地,所述基座上设有两个相间隔并排布置的导轨,所述加工平台位于两所述导轨之间;所述铺粉结构包括刮刀以及储粉箱,所述刮刀的两端分别活动连接于两所述导轨,所述刮刀的下端与所述加工平台之间具有间隙;所述储粉箱具有上端开口且用于装置金属粉的储粉腔,所述基座中设有与所述储粉腔的上端开口对齐的通孔;所述储粉箱的储粉腔中设有竖向移动且用于将金属粉运送至所述基座上的运粉台,所述运粉台分别与所述储粉腔的上端开口及通孔对齐布置。
进一步地,所述基座上设有两个相间隔并排布置的导轨,所述加工平台位于两所述导轨之间;所述铺粉结构包括刮刀以及位于所述刮刀上方的漏粉箱,所述刮刀的两端分别活动连接于两所述导轨,所述刮刀的下端与所述加工平台之间具有间隙;所述漏粉箱中设有用于装置金属粉的储粉腔,所述漏粉箱的下端设有漏粉孔,所述刮刀的上端设有用于收集经由所述漏粉孔落下的金属粉的集粉槽。
进一步地,所述铺粉结构包括两个所述刮刀及两个所述漏粉箱,两个所述刮刀分别设置有所述加工平台的前端及后端,两个所述漏粉箱分别位于两个所述刮刀的上方。
进一步地,所述加工平台的两侧分别设有用于检测铺设在所述加工平台上的金属粉层厚度的传感器。
进一步地,所述电子束发射结构包括发射电子束的电子束发生器以及通电产生磁场的线圈,所述电子束发生器发射的电子束穿过所述线圈产生的磁场。
进一步地,两个所述导轨上活动连接有门架,所述门架包括两个相间隔布置的连接臂以及横梁,两个所述连接臂的下端分别活动连接在两个所述导轨上,所述横梁的两端分别连接在两个所述连接臂的上端;所述横梁上活动连接有横梁移动的移动端子,所述移动端子上活动连接有相对于所述移动端子上下移动的连接板,所述激光铣削头连接于所述连接板上。
进一步地,所述激光铣削头内设有供冷却水流通的冷却管路。
进一步地,所述电子束熔融及激光铣削复合3D打印设备还包括回收箱,所述回收箱中具有用于装置回收所述基座上金属粉的回收腔,所述回收箱位于所述基座的下方,所述基座中设有连通所述回收腔的回收口。
进一步地,所述电子束熔融及激光铣削复合3D打印设备装置在加工室的加工空间内,所述加工室的加工空间呈真空状或充有惰性气体。
有益效果
与现有技术相比,本发明提供的电子束熔融及激光铣削复合3D打印设备加工零件,利用电子束发射结构发射的电子束逐层熔融金属粉层后,利用激光铣削头发出的激光束对单层或多层近似形体进行铣削加工,循环重复直至零件加工完毕,该3D打印设备将传统的以激光铣削为主的去除式精密加工与以电子束熔融 3D打印为主的增量叠层制造工艺集成为一体,既能克服传统3D打印技术在尺寸和形状精度等方面的缺陷,也可以克服切削加工对零部件复杂程度等方面的制约,这样,则不需要对加工后的零件进行二次加工,避免现时装夹困难、加工误差大、加工时零件出现变形以及难以加工的问题,为3D打印技术开辟更加广阔的应用空间,为航空航天产业核心精密零部件的生产制造提供新的方法和手段;另外,采用激光束对单层或多层近似形体进行铣削加工,属于非接触式铣削加工,避免传统式刀具直接与单层或多层近似形体直接接触加工存在的缺陷,大大提高铣削加工的精度。
附图说明
图1是本发明实施例提供的电子束熔融及激光铣削复合3D打印设备的立体示意图;
图2是本发明实施例提供的激光铣削头的立体示意图。
本发明的实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
以下结合具体实施例对本发明的实现进行详细的描述。
如图1~2所示,为本发明提供的较佳实施例。
本发明提供的3D打印设备1,复合了激光铣削加工及电子束熔融,其可以用于成型各种零件,如航空制造工业所需的零件等。
电子束熔融及激光铣削复合3D打印设备1包括基座100、铺粉结构、电子束发射结构101以及激光铣削头114,其中,基座100作为整个3D打印设备1的基础,起到承载作用,基座100上设有沿竖直方向移动的加工平台109,金属粉被铺设在该加工平台109上;铺粉结构设置在基座100上,铺粉结构用于将金属粉等输送到加工平台109上,且金属粉在加工平台109上形成金属粉层;电子束发射结构 101位于加工平台109的上方,其发射可以在水平面移动的电子束,且该电子束用于对形成在加工平台109上的金属粉层进行熔融加工以形成单层或多层近似形体;激光铣削头114位于加工平台109的上方,其可以在空间中立体移动,该激光铣削头114可以发射激光束对加工平台109上熔融成型的单层或多层近似形体进行铣削加工。
参照图1所示,设定平行于加工平台109的XY平面为水平面,Z方向则为竖直方向,垂直于水平面的平面为竖直平面,这样,加工平台109可以在沿Z方向上下移动,电子束发射结构101发射的电子束在XY平面移动,而激光铣削头114可以在X、Y、Z方向移动。
在上述的电子束熔融及激光铣削复合3D打印设备1中,采用电子束发射结构101发射的电子束熔融金属粉层进行3D打印,利用激光铣削头114发射的激光束对电子束发射结构101每次加工的单层或多层近似形体进行铣削加工,融合3D打印技术及铣削加工为一体。
在实际加工过程中,其具体操作过程如下:
1)、铺粉结构将金属粉输送至加工平台109上,并铺设在加工平台109上,形成金属粉层;按照3D打印技术,电子束发射结构101发射电子束对加工平台109上的金属粉层熔融加工,逐行逐层堆积形成单层或多层的近似形体;
2)、利用激光铣削头114发射的激光束对加工平台109上形成的单层或多层的近似形体进行铣削,以达到构件所需的尺寸及表面精度;
3)、重复循环上述步骤1)及步骤2),一直到最后零件的形状加工完毕。
每次完成上述步骤1)及2),加工平台109则会向下移动一定距离,以保证重新布置在加工平台109上的金属粉层与电子束发射结构101发射的电子束的焦点之间的距离保持不变。在步骤1)中,利用电子束发射结构101发出的电子束在水平面移动,在加工平台109上的金属粉层中成型单层或多层近似形体;在步骤2)中,利用激光铣削头114发射的激光束在立体空间移动,可以对各种类型的单层或多层近似形体全方位进行铣削。
利用本实施例提供的电子束熔融及激光铣削复合3D打印设备1加工零件,利用电子束逐层熔融金属粉层后,利用激光铣削头114发射的激光束对单层或多层近似形体进行铣削加工,循环重复直至零件加工完毕,该3D打印设备将传统的以激光铣削为主的去除式精密加工与以电子束熔融3D打印为主的增量叠层制造工艺集成为一体,既能克服传统3D打印技术在尺寸和形状精度等方面的缺陷,也可以克服切削加工对零部件复杂程度等方面的制约,这样,则不需要对加工后的零件进行二次加工,避免现时装夹困难、加工误差大、加工时零件出现变形以及难以加工的问题,为3D打印技术开辟更加广阔的应用空间,为航空航天产业核心精密零部件的生产制造提供新的方法和手段。
另外,采用激光铣削头114发射的激光束对单层或多层近似形体进行铣削加工,属于非接触式铣削加工,避免传统式刀具直接与单层或多层近似形体直接接触加工存在的缺陷,大大提高铣削加工的精度。
本实施例中,在基座100上设有两排相间隔并行布置的导轨105,该两个导轨105布置在加工平台109的两侧;铺粉结构包括刮刀104以及储粉箱103,刮刀104的两端分别活动连接在两个导轨105上,这样,刮刀104则可以沿着导轨105在水平面上移动,且刮刀104的下端面与加工平台109之间具有间隙;储粉箱103具有上端开口的储粉腔,储粉箱103的储粉腔用于存储金属粉,该储粉箱103位于基座100的下方,且在基座100中,设有连通该储粉箱103上端开口的通孔,也就是说,通孔与储粉箱103的上端开口对齐,当然,该通孔也位于两个导轨105之间。
在储粉箱103中还设有可以上下移动的运粉台,该运粉台与储粉箱103的上端开口及基座100中的通孔分别对齐布置,这样,当刮刀104需要在加工平台109上铺设金属粉层时,运粉台上运载着金属粉,并向上移动,分别穿过储粉箱103的上端开口及基座100的通孔,直至金属粉显露在基座100上,这样,利用刮刀104则可以将金属粉刮至加工平台109上,形成金属粉层,当然,每次形成在加工平台109上的金属粉层的厚度,与刮刀104下端与加工平台109的间隙一致。
这样,根据实际加工需要,则可以选择每次铺设在加工平台109上的金属粉层的厚度,只需要调整刮刀104,调节刮刀104下端与加工平台109之间的间隙则可。
作为优选的实施例,本实施例中,铺粉结构包括有两个上述的刮刀104以及两个上述的储粉箱103,这样,两个刮刀104的两端分别活动连接在两个导轨105上,且两个刮刀104分别设置在加工平台109的前端及后端,这样,在利用刮刀104进行铺粉时,则可以利用两个刮刀104交互操作,大大提高了铺粉效率。
或者,作为其它实施例,本实施例中,铺粉结构还可以是包括上述的刮刀104以及漏粉箱,该漏粉箱位于基座100的上方,其中设有储粉腔,金属粉则存储在该漏粉箱的储粉腔中。在漏粉箱的下端设有漏粉孔,该漏粉孔连通漏粉腔,漏粉腔内的金属粉可以通过该漏粉孔落在基座100上,并由刮刀104进行铺粉操作,将金属粉铺设在加工平台109上,形成金属粉层。
具体地,漏粉孔呈条状延伸布置,这样,保证通过刮刀104进行铺粉后的金属粉层的宽度满足使用需要。一般情况下,保证漏粉孔的长度略大于加工平台109的宽度。
当然,对于设置漏粉箱实现自上而下漏粉的结构,也可以设置两个漏粉箱,分别位于加工平台109的上方的前端及后端,并且,配合两个刮刀104,实现交互式铺粉操作。
为了对铺设在加工平台109上的金属粉层的厚度进行检测,本实施例中,在加工平台109的两侧分别设有传感器107,该传感器107用于对铺设在加工平台109上的金属粉层的厚度进行检测,传感器107检测的信息通过反馈给控制中心,进而由控制中心对加工平台109与刮刀104之间的间隙进行调节。
具体地,为了更加准确的检测金属粉层的厚度,本实施例,在加工平台109的两侧,沿着加工平台109的侧边延伸,分别布置有多个上述的传感器107。
电子束发射结构101包括电子束发生器以及线圈,其中,电子束发生器可以发射电子束,其发射的电子束通过线圈通电形成的磁场,这样,通过对线圈磁场的调节,则可以改变电子束的传输路径,实现电子束在水平面的移动,根据需要加工近似形体构件的形状要求,对应地调节线圈产生的磁场,从而实现电子束的偏移。
为了实现加工平台109上上下移动,上述的加工平台109下方连接有升降马达111,利用该升降马达111的动力驱动,驱动加工平台109的上下移动,当每次铺粉结构在加工平台109上铺设一层金属粉层后,升降平台则控制加工平台109下降固定距离,从而保证电子束发射结构101发射的电子束的焦点落在金属粉层上的距离不变。
本实施例中,在两个导轨105上设有门架106,该门架106包括两相间隔布置的连接臂1062以及横梁1061,两连接臂1062的下端分别活动连接在两导轨105上,且可以沿着导轨105移动,横梁1061连接在两连接臂1062的上端,这样,横梁1061则呈横跨状布置在两个导轨105之间。在横梁1061上活动连接有移动端子112,该移动端子112可以沿着横梁1061移动。
在上述的移动端子上还活动连接有连接板113,该连接板113可以相对移动端子上下移动,也就是沿着竖向移动,沿着Z方向移动。激光铣削头114连接在该连接板113上,这样,当连接板113在竖向移动时,激光铣削头114也随之在竖向移动。
在上述的结构中,横梁1061可以沿着两个导轨105移动,也就是沿着Y方向移动,移动端子112可以沿着横梁1061移动,也就是沿着X方向移动,连接板113相对于连接板113上下移动,也就是沿Z方向移动,这样,激光铣削头114则可以在立体空间移动。
另外,激光铣削头114内设有冷却管路115,该冷却管路115中供冷却水连通,这样,通过在冷却管路115内流通冷却水,则可以利用冷却水的流动,带走激光铣削头114中个构件工作过程中产生的热量,起到散热的效果,保证激光铣削头114较佳的工作效率及性能。
本实施例中,电子束熔融及激光铣削复合3D打印设备1还包括金属粉回收结构,该金属粉回收结构用于将基座100上加工剩余的金属粉进行回收,这样,则有利于金属粉的循环利用。
具体地,金属粉回收结构包括回收箱110,该回收箱110中设有用于容置回收的金属粉的回收腔,回收箱110位于基座100的下方,在基座100中设有回收口,该回收口连通回收箱110的回收腔,这样,基座100上加工剩余的金属粉则可以通过回收口进入回收箱110的回收腔中,回收腔内的金属粉,进行残渣滤除,则可以重新循环使用。
本实施例中,回收口布置在加工平台109的侧边,当然,沿着刮刀104铺粉时的移动方向,回收口布置在加工平台109的后端;或者,对于两个刮刀104配合交互式铺粉的操作,回收口可以分别设置在加工平台109的前端及后端;或者,作为其它实施例,回收口可以布置的加工平台109的两侧。
为了使得电子束熔融及激光铣削复合3D打印设备1在加工的过程中,金属粉不会被氧化,从而使得成型的零件的性能较佳,本实施例中,电子束熔融及激光铣削复合3D打印设备1还包括加工室,该加工室内具有加工空间,且该加工空间呈真空状态,或者,加工空间内充入惰性气体,上述的基座100布置在加工室的加工空间内,也就是电子束熔融及激光铣削复合3D打印设备1装置在加工室的加工空间内,这样,可以减少环境对金属熔融或凝固时的影响,提高金属的机械以及物理性能,为金属电子束熔融3D打印技术开辟更加广阔的应用空间,为高熔点金属的生产制造提供新的方法和手段。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 电子束熔融及激光铣削复合3D打印设备,其特征在于,包括基座,所述基座上设有沿竖向移动的加工平台;所述基座上设有用于将金属粉铺设在所述加工平台形成金属粉层的铺粉结构;所述加工平台的上方分别设有电子束发射结构以及可在立体空间移动的激光铣削头;所述电子束发射结构发射电子束对位于所述加工平台上的金属粉层进行熔融加工以形成单层或多层近似形体;所述激光铣削头发射激光束对形成在所述加工平台上的单层或多层近似形体进行铣削加工。
  2. 如权利要求1所述的电子束熔融及激光铣削复合3D打印设备,其特征在于,所述基座上设有两个相间隔并排布置的导轨,所述加工平台位于两所述导轨之间;所述铺粉结构包括刮刀以及储粉箱,所述刮刀的两端分别活动连接于两所述导轨,所述刮刀的下端与所述加工平台之间具有间隙;所述储粉箱具有上端开口且用于装置金属粉的储粉腔,所述基座中设有与所述储粉腔的上端开口对齐的通孔;所述储粉箱的储粉腔中设有竖向移动且用于将金属粉运送至所述基座上的运粉台,所述运粉台分别与所述储粉腔的上端开口及通孔对齐布置。
  3. 如权利要求1所述的电子束熔融及激光铣削复合3D打印设备,其特征在于,所述基座上设有两个相间隔并排布置的导轨,所述加工平台位于两所述导轨之间;所述铺粉结构包括刮刀以及位于所述刮刀上方的漏粉箱,所述刮刀的两端分别活动连接于两所述导轨,所述刮刀的下端与所述加工平台之间具有间隙;所述漏粉箱中设有用于装置金属粉的储粉腔,所述漏粉箱的下端设有漏粉孔,所述刮刀的上端设有用于收集经由所述漏粉孔落下的金属粉的集粉槽。
  4. 如权利要求3所述的电子束熔融及激光铣削复合3D打印设备,其特征在于,所述铺粉结构包括两个所述刮刀及两个所述漏粉箱,两个所述刮刀分别设置有所述加工平台的前端及后端,两个所述漏粉箱分别位于两个所述刮刀的上方。
  5. 如权利要求1至4任一项所述的电子束熔融及激光铣削复合3D打印设备,其特征在于,所述加工平台的两侧分别设有用于检测铺设在所述加工平台上的金属粉层厚度的传感器。
  6. 如权利要求1至4任一项所述的电子束熔融及激光铣削复合3D打印设备,其特征在于,所述电子束发射结构包括发射电子束的电子束发生器以及通电产生磁场的线圈,所述电子束发生器发射的电子束穿过所述线圈产生的磁场。
  7. 如权利要求1至4任一项所述的电子束熔融及激光铣削复合3D打印设备,其特征在于,两个所述导轨上活动连接有门架,所述门架包括两个相间隔布置的连接臂以及横梁,两个所述连接臂的下端分别活动连接在两个所述导轨上,所述横梁的两端分别连接在两个所述连接臂的上端;所述横梁上活动连接有横梁移动的移动端子,所述移动端子上活动连接有相对于所述移动端子上下移动的连接板,所述激光铣削头连接于所述连接板上。
  8. 如权利要求1至4任一项所述的电子束熔融及激光铣削复合3D打印设备,其特征在于,所述激光铣削头内设有供冷却水流通的冷却管路。
  9. 如权利要求1至4任一项所述的电子束熔融及激光铣削复合3D打印设备,其特征在于,所述电子束熔融及激光铣削复合3D打印设备还包括回收箱,所述回收箱中具有用于装置回收所述基座上金属粉的回收腔,所述回收箱位于所述基座的下方,所述基座中设有连通所述回收腔的回收口。
  10. 如权利要求1至4任一项所述的电子束熔融及激光铣削复合3D打印设备,其特征在于,所述电子束熔融及激光铣削复合3D打印设备装置在加工室的加工空间内,所述加工室的加工空间呈真空状或充有惰性气体。
PCT/CN2014/095664 2014-12-30 2014-12-30 电子束熔融及激光铣削复合3d打印设备 WO2016106603A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2014/095664 WO2016106603A1 (zh) 2014-12-30 2014-12-30 电子束熔融及激光铣削复合3d打印设备
US15/110,557 US20160325383A1 (en) 2014-12-30 2014-12-30 Electron beam melting and laser milling composite 3d printing apparatus
EP14909275.1A EP3228405A4 (en) 2014-12-30 2014-12-30 Electron beam melting and laser milling composite 3d printing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/095664 WO2016106603A1 (zh) 2014-12-30 2014-12-30 电子束熔融及激光铣削复合3d打印设备

Publications (1)

Publication Number Publication Date
WO2016106603A1 true WO2016106603A1 (zh) 2016-07-07

Family

ID=56283878

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/095664 WO2016106603A1 (zh) 2014-12-30 2014-12-30 电子束熔融及激光铣削复合3d打印设备

Country Status (3)

Country Link
US (1) US20160325383A1 (zh)
EP (1) EP3228405A4 (zh)
WO (1) WO2016106603A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109848416A (zh) * 2019-04-12 2019-06-07 上海应用技术大学 一种金属选区激光熔化用的烟尘过滤及粉末回收装置
WO2021017129A1 (zh) * 2019-07-31 2021-02-04 西安增材制造国家研究院有限公司 一种增材制造装置及成形方法

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104014793B (zh) * 2014-05-15 2016-01-27 东莞市亚美精密机械配件有限公司 挤出式金属流3d打印机
CN107486557B (zh) * 2017-06-26 2023-07-04 西安铂力特增材技术股份有限公司 一种刮刀装置
US10894395B2 (en) 2018-08-02 2021-01-19 Ford Motor Company Methods for making 3D parts using composite based additive manufacturing with perforated sheets and parts formed therefrom
US11167375B2 (en) 2018-08-10 2021-11-09 The Research Foundation For The State University Of New York Additive manufacturing processes and additively manufactured products
KR102214404B1 (ko) 2018-10-24 2021-02-09 한국철도기술연구원 3d 프린팅에 이용되는 파우더 적층 장치 및 이를 이용한 3d 프린팅 방법
CN110014154B (zh) * 2019-05-22 2024-04-05 宁波中久东方光电技术有限公司 激光熔覆镗削复合机床
CN111940351A (zh) * 2020-09-01 2020-11-17 晋中学院 一种3d打印设备金属粉末清理装置
CN112355325B (zh) * 2020-09-28 2022-12-16 西安增材制造国家研究院有限公司 一种基于随动粉缸的ebsm设备
CN112496346A (zh) * 2020-11-18 2021-03-16 江西鑫润材料科技有限公司 一种金属增材制造用针对合金粉末回收的装置
CN112475323B (zh) * 2020-11-25 2022-01-07 北京星航机电装备有限公司 一种金属3d打印机成形缸系统
CN112809020A (zh) * 2020-12-22 2021-05-18 安徽省春谷3D打印智能装备产业技术研究院有限公司 一种具有筛分导料机构的3d金属打印机铺粉装置
CN114346495B (zh) * 2022-01-25 2023-11-03 深圳市鼎美达科技有限公司 一种激光打印用金属部件的镭雕设备

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000073108A (ja) * 1998-08-26 2000-03-07 Matsushita Electric Works Ltd 金属粉末焼結部品の表面仕上げ方法
CN1347783A (zh) * 2000-10-05 2002-05-08 松下电工株式会社 制作三维物体的方法及装置
JP2004175093A (ja) * 2002-09-30 2004-06-24 Matsushita Electric Works Ltd 三次元形状造形物の製造方法
JP2005097692A (ja) * 2003-09-25 2005-04-14 Matsushita Electric Works Ltd 三次元形状造形物の製造方法及びその装置
JP5456379B2 (ja) * 2009-06-05 2014-03-26 パナソニック株式会社 三次元形状造形物の製造方法
CN104010750A (zh) * 2011-12-20 2014-08-27 米其林集团总公司 用于粉末基增材制造的机器和方法
JP5599921B1 (ja) * 2013-07-10 2014-10-01 パナソニック株式会社 三次元形状造形物の製造方法
CN104493165A (zh) * 2014-12-30 2015-04-08 深圳市圆梦精密技术研究院 电子束熔融及激光铣削复合3d打印设备
CN204524257U (zh) * 2014-12-30 2015-08-05 深圳市圆梦精密技术研究院 电子束熔融及激光铣削复合3d打印设备

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3612815A (en) * 1970-01-16 1971-10-12 Smith Corp A O Electron beam apparatus
US4541055A (en) * 1982-09-01 1985-09-10 Westinghouse Electric Corp. Laser machining system
DE4113633C2 (de) * 1991-04-26 1994-06-30 Manfred Toeller Bearbeitungsvorrichtung
US5398193B1 (en) * 1993-08-20 1997-09-16 Alfredo O Deangelis Method of three-dimensional rapid prototyping through controlled layerwise deposition/extraction and apparatus therefor
JP2913263B2 (ja) * 1995-07-07 1999-06-28 株式会社山和エンヂニアリング 固形物粉砕乾燥装置
US6401002B1 (en) * 1999-04-29 2002-06-04 Nanotek Instruments, Inc. Layer manufacturing apparatus and process
US7777155B2 (en) * 2007-02-21 2010-08-17 United Technologies Corporation System and method for an integrated additive manufacturing cell for complex components
JP5022846B2 (ja) * 2007-09-20 2012-09-12 株式会社小森コーポレーション 印刷されたシート状物への散粉装置
CN201227612Y (zh) * 2008-06-25 2009-04-29 上海胜狮冷冻货柜有限公司 集装箱箱外自动喷粉装置
KR101377832B1 (ko) * 2009-08-25 2014-03-26 가부시끼가이샤 도시바 레이저 조사 장치 및 레이저 시공 방법
EP2495056A1 (en) * 2011-03-01 2012-09-05 Siemens Aktiengesellschaft Laser build up method using vibration and apparatus
DE112012002221T5 (de) * 2011-05-23 2014-02-20 Panasonic Corp. Verfahren zum Erzeugen eines dreidimensionalen Formobjektes
US9566742B2 (en) * 2012-04-03 2017-02-14 Massachusetts Institute Of Technology Methods and apparatus for computer-assisted spray foam fabrication

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000073108A (ja) * 1998-08-26 2000-03-07 Matsushita Electric Works Ltd 金属粉末焼結部品の表面仕上げ方法
CN1347783A (zh) * 2000-10-05 2002-05-08 松下电工株式会社 制作三维物体的方法及装置
JP2004175093A (ja) * 2002-09-30 2004-06-24 Matsushita Electric Works Ltd 三次元形状造形物の製造方法
JP2005097692A (ja) * 2003-09-25 2005-04-14 Matsushita Electric Works Ltd 三次元形状造形物の製造方法及びその装置
JP5456379B2 (ja) * 2009-06-05 2014-03-26 パナソニック株式会社 三次元形状造形物の製造方法
CN104010750A (zh) * 2011-12-20 2014-08-27 米其林集团总公司 用于粉末基增材制造的机器和方法
JP5599921B1 (ja) * 2013-07-10 2014-10-01 パナソニック株式会社 三次元形状造形物の製造方法
CN104493165A (zh) * 2014-12-30 2015-04-08 深圳市圆梦精密技术研究院 电子束熔融及激光铣削复合3d打印设备
CN204524257U (zh) * 2014-12-30 2015-08-05 深圳市圆梦精密技术研究院 电子束熔融及激光铣削复合3d打印设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3228405A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109848416A (zh) * 2019-04-12 2019-06-07 上海应用技术大学 一种金属选区激光熔化用的烟尘过滤及粉末回收装置
WO2021017129A1 (zh) * 2019-07-31 2021-02-04 西安增材制造国家研究院有限公司 一种增材制造装置及成形方法

Also Published As

Publication number Publication date
EP3228405A4 (en) 2018-09-19
EP3228405A1 (en) 2017-10-11
US20160325383A1 (en) 2016-11-10

Similar Documents

Publication Publication Date Title
WO2016106603A1 (zh) 电子束熔融及激光铣削复合3d打印设备
WO2016106615A1 (zh) 多个电子束熔融和铣削复合3d打印设备
WO2016106610A1 (zh) 多轴铣削加工及激光熔融复合3d打印设备
CN104001915B (zh) 一种高能束增材制造大尺寸金属零部件的设备及其控制方法
CN109590470B (zh) 一种多能场增材制造成形系统
CN104741609B (zh) 电子束熔融及切削复合3d打印设备
WO2012148233A2 (en) Metal product having internal space formed therein and method of manufacturing thereof
CN105252145A (zh) 一种金属薄板叠加制造复杂形状零件的方法和设备
CN104493165A (zh) 电子束熔融及激光铣削复合3d打印设备
WO2016154931A1 (zh) 电子束熔融及切削复合3d打印设备
CN109434109B (zh) 一种基于动态粉缸的激光选区熔化成形方法
CN104768681A (zh) 三维形状造型物的制造方法及其制造装置
CN203843168U (zh) 一种高能束增材制造大尺寸金属零部件的设备
WO2018082097A1 (zh) 粉末积层制造的检测修补装置及其方法
CN109365815B (zh) 一种激光选区熔化成形设备
CN204524257U (zh) 电子束熔融及激光铣削复合3d打印设备
CN104493166A (zh) 利用层流状态的直流等离子体炬进行金属部件快速成形方法
CN109604596B (zh) 一种增材制造动态铺粉系统
CN104526359A (zh) 多个电子束熔融和铣削复合3d打印设备
CN108380879A (zh) 以激光为热源的送丝3d打印机及其打印方法
CN109648079B (zh) 一种应用于增材制造的气氛保护装置
CN204524789U (zh) 多个电子束熔融和铣削复合3d打印设备
CN107123927A (zh) Ld芯片共晶焊接系统
CN107971488B (zh) 一种激光3d打印设备
WO2016017861A1 (ko) 서로 다른 두께의 금속판재를 사용한 3차원 금속판재 제작 시스템 및 방법

Legal Events

Date Code Title Description
REEP Request for entry into the european phase

Ref document number: 2014909275

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15110557

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14909275

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE