WO2016106464A1 - Dispositivo y método para la clasificación del tamaño de burbujas en un líquido - Google Patents

Dispositivo y método para la clasificación del tamaño de burbujas en un líquido Download PDF

Info

Publication number
WO2016106464A1
WO2016106464A1 PCT/CL2015/050061 CL2015050061W WO2016106464A1 WO 2016106464 A1 WO2016106464 A1 WO 2016106464A1 CL 2015050061 W CL2015050061 W CL 2015050061W WO 2016106464 A1 WO2016106464 A1 WO 2016106464A1
Authority
WO
WIPO (PCT)
Prior art keywords
bubbles
signal
ultrasonic
size
ultrasonic signals
Prior art date
Application number
PCT/CL2015/050061
Other languages
English (en)
French (fr)
Inventor
Néstor BECERRA YOMA
Muhammad Salman KHAN
Walid Gad Barakat HUSSEIN
Felipe Sebastián ESPIC CALDERÓN
Juan Antonio ZAMORANO NAVARRO
Original Assignee
Universidad De Chile
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad De Chile filed Critical Universidad De Chile
Priority to AU2015375301A priority Critical patent/AU2015375301A1/en
Priority to US15/541,338 priority patent/US20170356882A1/en
Publication of WO2016106464A1 publication Critical patent/WO2016106464A1/es

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/02Analysing fluids
    • G01N29/036Analysing fluids by measuring frequency or resonance of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/222Constructional or flow details for analysing fluids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/34Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor
    • G01N29/348Generating the ultrasonic, sonic or infrasonic waves, e.g. electronic circuits specially adapted therefor with frequency characteristics, e.g. single frequency signals, chirp signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/36Detecting the response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/42Detecting the response signal, e.g. electronic circuits specially adapted therefor by frequency filtering or by tuning to resonant frequency
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/4445Classification of defects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/4463Signal correction, e.g. distance amplitude correction [DAC], distance gain size [DGS], noise filtering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/4481Neural networks
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/44Processing the detected response signal, e.g. electronic circuits specially adapted therefor
    • G01N29/46Processing the detected response signal, e.g. electronic circuits specially adapted therefor by spectral analysis, e.g. Fourier analysis or wavelet analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/024Mixtures
    • G01N2291/02433Gases in liquids, e.g. bubbles, foams
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02845Humidity, wetness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/10Number of transducers
    • G01N2291/102Number of transducers one emitter, one receiver

Definitions

  • the present invention relates to the technical field of measurement methods and devices, specifically with size classification and measurement methods, in particular with a device and a method using said device for the measurement and classification of bubble sizes.
  • a device and a method using said device for the measurement and classification of bubble sizes In a liquid medium. Background
  • Fluids that have a high bubble content are widely used in a variety of industries such as mining, food, medicine and other industrial processes. Bubble flows through liquids are key procedures in processes such as fermentation in bioreactors, biological wastewater treatments, or for the separation of minerals. It is widely known that the size, density and movement of the bubbles affects the efficiency of these processes, and therefore the measurement and control of the flow of bubbles is crucial.
  • the flotation process is a system that uses bubble flow as a physical method to separate hydrophobic particles from those hydrophilic. For example, in mining, this process allows the particles of minerals of interest found in the flotation cells to adhere to the bubbles and rise to the surface where they are removed.
  • bubble characterization and detection methods are based on passive acoustic techniques, capillary suction tests, high-speed photography, endoscopic optical tests and optical wave sensors (Vázquez A., Sánchez RM, Salinas-Rodr ⁇ guez E., Soria A ., Manasseh R. A look ath three measurement techniques for bubble size determination.Measurement Science & Technology. 2004 (15): 290-296).
  • Patent document GB2336905 describes a method for monitoring bubbles in a moving liquid medium that uses a light beam emitter and a receiver that detects variations or interferences in said beam, whose size and concentration in number of bubbles is derived directly from the analysis. of the received signal.
  • optical methods are limited by the light conditions and purity of the liquid for measurement, considerably reducing the range of applications where it can be used and the accuracy of the measurements.
  • patent document WO20140161 10 describes a method for determining the distribution of bubble sizes in a liquid, measuring acoustic signals in the range of 50 to 500 Hz. This method is based on finding the natural frequency of swing of a bubble according to its size (diameter). The typical use of single frequencies has shown that it has certain limitations, such as masking small bubbles in the presence of large ones (Leighton TG The acoustic bubble. Academic Press, London, UK. 1994: 129-152). By using two frequencies in a non-linear mixture of signals, the probability of false detections is reduced and is a relatively accurate method of detecting and measuring gas bubbles.
  • the transducers located at a short distance.
  • it is designed to detect one bubble at a time, which prevents it from being used, for example, in flotation tanks where the bubbles rise freely towards the surface with irregular paths, at different speeds and at a non-uniform radial distance from the center of the ultrasound beam when passing through a tube of limited diameter with the transducers located at a short distance.
  • an optimized alternative method of measurement, classification and analysis of bubble sizes is required, capable of performing the analyzes online and simultaneously to a heterogeneous group of bubble sizes, with a high level of precision and low number of masking errors.
  • An object of the present invention is to provide a device for classifying the size of bubbles in a liquid medium, said device comprising:
  • an electrical transducer receiving ultrasonic signals, located at an angle less than 180 degrees with respect to the emitting electrical transducer;
  • the ultrasonic signal receiving electrical transducer is preferably located at 90 degrees with respect to the emitting electrical transducer.
  • the transmitter circuit comprises an ultrasonic signal generator attached to a power amplifier and this in turn to an impedance adapter.
  • Said ultrasonic signal generator generates a sustained signal in the frequency time f c , which is emitted by the electric transducer emitting to the liquid.
  • the signal emitted in the liquid is of sinusoidal type, whose wavelength corresponding to the frequency f c has to be smaller than the smaller diameter of the bubbles to be classified.
  • the ultrasonic signal receiver circuit comprises a band pass filter that has a passing band with the same central frequency f c as the signal generated by the transmitter circuit. Following the band pass filter, a signal amplifier is placed and attached to it is an envelope detector.
  • the envelope detector comprises a wave rectifier bridge, connected to a low-pass filter, and a differential amplifier connected to the latter.
  • a second object of the invention relates to a method for the classification of bubble sizes comprising the steps of:
  • the ultrasonic signal generated by the ultrasonic signal transmitter circuit is a signal sustained at the frequency time f c , which is emitted by the electrical transducer emitting to the liquid.
  • the signal emitted in the liquid is of sinusoidal type, whose wavelength corresponding to the frequency f c has to be smaller than the smaller diameter of the bubbles to be classified.
  • the mentioned receiver circuit performs additional steps for the processing of the ultrasonic signals reflected by the bubbles, in order to generate two-dimensional patterns in the time domain that contain information about their size. These additional stages are:
  • the step of extracting the envelope of the signals reflected by the bubbles with a view to generating the two-dimensional patterns in the time domain that contain information about the size of these comprises the steps of:
  • Figure 1 shows a representative scheme of the invention, indicating the parts of the device and the functional connections between its parts.
  • Figure 2 shows a representative scheme of the ultrasonic signal transmitter circuit.
  • Figure 3 shows a representative scheme of the receiver circuit of the signals reflected by the bubbles.
  • Figure 4 shows a representative scheme of the arrangement of the electrical transducers emitting and receiving ultrasonic signals, and the generated ultrasonic field.
  • Figure 5 is an example of two-dimensional patterns in the time domain of different bubble sizes.
  • Figure 6 is a scheme or process flow that shows the processes for obtaining the necessary parameters for the classification of bubble sizes.
  • Figure 7 shows an embodiment of the invention in a mining flotation cell.
  • the present invention relates to a device and a method using said device for the measurement and size classification of air bubbles found in a liquid medium.
  • the invention uses a two-dimensional (2-D) pattern of time domain approach, which they represent the bubble trail when they cross a directive ultrasound beam or an ultrasonic field formed by a transmitter transducer attached to a transmitter circuit. The energy reflected by the bubbles that cross this field is captured by a receiver transducer connected to a receiver circuit.
  • the processing of said 2-D patterns in the time domain allows to obtain patterns in the frequency domain, with the average spectral distributions being representative of the corresponding bubble sizes. After training a classifier with parameters obtained from the frequency patterns of bubbles of known sizes, the unknown sizes of the analyzed bubbles can be classified.
  • the present invention provides a device and a method that uses said device for measuring and classifying the size of bubbles flowing into a liquid in an industrial process.
  • This invention provides a simultaneous and accurate measurement of a plurality of bubbles ascending through a liquid medium, estimating the parameters obtained from the patterns in the frequency domain, and classifying the size of the bubbles detected in line, which finally allows to modify the flow of air into the liquid in order to optimize the industrial process.
  • Figure 1 shows a general scheme of the device and the functional connection between all its components.
  • the device for the classification of the size of bubbles in a liquid medium comprises an electrical transducer emitting ultrasonic signals 1 and an electrical transducer receiving ultrasonic signals 2, located at an angle less than 180 degrees with respect to the emitting electrical transducer 1.
  • the angle between the emitting electrical transducer 1 and the receiving electrical transducer 2 is 90 degrees, as shown in Figure 1.
  • the arrangement between transducers below 180 degrees allows a correct measurement of the signal reflected by the bubbles, being able to be located even at 0 degrees, that is, next to each other, without affecting the principle of the methodology.
  • the emitting electrical transducer 1 is operatively connected to an ultrasonic signal transmitter circuit 3, which generates the ultrasonic signals that are then emitted by the emitting electrical transducer 1.
  • the receiving electrical transducer 2 is operatively connected to a circuit ultrasonic signal receiver 4, which processes the signals reflected by the bubbles. These processed signals are converted to digital signals by an analog-digital converter 5. Said digital signals are processed by a digitized signal processor 6.
  • Figure 2 shows the parts that preferably make up the signal transmitter circuit 3. It is composed of an ultrasonic signal generator 7, which produces a signal sustained over time at a fundamental frequency f c , which is then emitted by the emitting electric transducer 1 to the liquid.
  • Said periodic signal generated by the signal generator 7 could be sinusoidal, square or of any kind, however the signal emitted in the liquid is sinusoidal, and whose wavelength in the liquid must be less than the smaller diameter of the bubble that is wants to classify, so that the bubble reflects the signal. For example, within a plurality of bubbles it was determined that the smaller one was 2.5 mm. To measure and classify the sizes of said plurality of bubbles, a sinusoidal signal of frequency 1 MHz, equivalent to a wavelength of approximately 1.5 mm, was used in order to cover all the bubble sizes to be considered.
  • FIG. 1 Operationally linked to the ultrasonic signal generator 7, there is an amplifier 8 of the signal that allows the signal power to be increased to an appropriate level, and this in turn is connected to an impedance adapter 9 to avoid power losses of the signal. signal when it passes to the emitting electric transducer 1 to be transmitted.
  • Figure 3 shows the parts that preferably make up the ultrasonic signal receiver circuit 4. After capturing the ultrasonic signals reflected by the bubbles with the receiving electrical transducer 2, these are processed by a band 10 pass filter to reduce noise outside the band of interest, whose pass band has as its central frequency the frequency of the signal generated by the transmitter circuit, f c . Attached to the band pass filter 10 is a signal amplifier 11 that allows to increase the amplitude of the signal that is transmitted to the envelope detector 12.
  • the envelope detector 12 is composed of a rectifier bridge 13 that rectifies the wave so that the signal is of constant polarity. Attached to this bridge rectifier is a low-pass filter 14 that eliminates the frequency signal f c to keep only the signal envelope for the following stages.
  • the cut-off frequency chosen in the low-pass filter 14 must be such that it allows the frequency signal f c to be eliminated and at the same time allows it to be used as an antialias filter for the subsequent analog / digital conversion stage with the analog / digital converter 5 After passing through the low-pass filter, the signal is represented as the potential difference between its two outputs.
  • the signal In order for the signal to be transmitted to a digitized signal processor 6, the signal is referenced to ground and amplified with a differential amplifier 15.
  • the analog / digital converter 5 attached to the amplifier 15 converts the signal so that it can be processed and analyzed in the digitized signal processor 6.
  • the methodology can be carried out to determine and classify the sizes of bubbles that are present in a liquid medium.
  • a consistent or directional ultrasonic field scheme through which the bubbles pass through is shown in Figure 4.
  • the time-held ultrasonic signal is generated - defining the term "sustained” as the opposite of a signal that is generated by pulses or pulse trains - at a fundamental frequency f c , which then It is emitted by the emitting electric transducer 1.
  • the signal emitted in the liquid is sinusoidal and its wavelength in the liquid is smaller than the smaller diameter of the bubbles to be classified.
  • This signal is emitted by the transducer emitter 1, thus generating an ultrasonic field 16 corresponding to a coherent beam through which bubbles 17 pass.
  • the bubbles 17 that cross the beam reflect the signal that is captured by the receiving electrical transducer 2, which also has a coherent directive gain.
  • the electrical signal captured by the receiving electrical transducer 2 corresponding to the ultrasonic waves reflected by the bubbles 17, is processed by the ultrasonic signal receiving circuit 4, where it passes through the envelope detector 12 designed to capture the distinctive characteristics of the different Bubble sizes inherent in the ultrasound signals reflected by generating 2-D patterns in the time domain. These 2-D patterns have built-in information on the rate of rise of the bubbles, which in turn depends on their size.
  • Figure 5 shows three examples of two-dimensional patterns, represented with normalized amplitude versus time in seconds, of three different bubble sizes, 2.5 mm, 5 mm and 6.5 mm, respectively. These graphs are the result after the signal captured by the receiver transducer 2, is processed with the band pass filter 10, amplified with the signal amplifier 11, and its envelope removed with the envelope detector 12 in the receiver circuit 4.
  • the signals are processed for further classification.
  • a scheme of the processing of the signals in the frequency domain is shown in Figure 6.
  • these are filtered for noise elimination, and divided into frames or frames of constant duration that are multiplied by an appropriate window, such as Hamming, Hanning, etc.
  • an appropriate window such as Hamming, Hanning, etc.
  • FFT fast Fourier transform
  • LPC linear prediction analysis
  • the parameters for the classification of the bubble sizes are extracted, indicated in the scheme of Figure 6 as parametric extraction, these parameters can be spectral centroid, spectral entropy, spectral slope, or any other similar that can be derived from the FFT, and the LPC coefficients.
  • the classification process consists of two stages: training a classifier and testing or operation with the trained classifier.
  • a classifier is understood as those mathematical models that are implemented with a program within the digitized signal processor 6, such as neural networks or the Bayesian classifier.
  • the training stage consists of entering and estimating the classifier coefficients, based on the parameters extracted in the frequency domain for the classification of bubbles of known sizes.
  • the predictive polynomial coefficients themselves are used in the case of the LPC analysis, as well as the classification parameters extracted from the FFT of known bubble sizes.
  • the analysis of unknown bubble sizes is performed, for which the necessary parameters for classification are extracted.
  • the testing or operation stage consists in using said parameters for the classification of unknown sizes of bubbles and enter them into the trained classifier, which allows you to type or classify the bubbles within one of the previously trained sizes.
  • the present invention allows the determination in line and without human supervision of the diameter of the bubbles, in contrast to other technologies such as those based on photographs.
  • FIG 7 An embodiment of the invention is that shown in Figure 7, corresponding to a flotation cell 18 such as those used in mining, for the separation of particles of interest.
  • the operation of selective separation of particles via flotation occurs from a suspension of said particles in a liquid medium, called pulp phase 19, which is introduced into the flotation cell 18.
  • This industrial process consists of the injection of air 20 to through a tube to the flotation cell 18, where bubbles 17 are formed at the bottom of the cell, which begin their ascent at different speeds depending on their size.
  • the bubbles 17 carry with them the suspended particles 21, which accumulate on the surface forming a foam phase 22 which is then permanently removed from the rest of the suspension constituting the process concentrate.
  • the sizes of the bubbles in this process must be, depending on the case, approximately 1 mm, however it varies according to the air injection 20. When the bubble size mode is displaced towards significantly small or large values with respect to this value , the process becomes inefficient.
  • the device for the classification of bubble sizes is inserted into the cell, as shown in Figure 7.
  • the emitter 1 and receiver 2 electrical transducers were placed inside the flotation cell 18, operatively linked to the ultrasonic signal transmitter circuit 3 and the ultrasonic signal receiver circuit 4, respectively.
  • the signal is generated by the signal transmitter circuit 3 and is emitted by the emitter electric transducer 1 forming an ultrasonic field.
  • the captured signal is processed analogously by the ultrasonic signal receiving circuit 4, generating 2-D patterns in the time domain according to the bubble sizes.
  • the analog / digital converter 5 allows the analog signal to be digitized for analysis by the digitized signal processor 6.
  • the bubble sizes are then classified by processing the necessary parameters for classification within the trained classifier, which allows monitor the process of bubble formation in line and without human supervision, and thus automatically adjust, as far as possible, the injection of air to regulate the formation of bubbles of the size that is required for the process of floating them.

Landscapes

  • Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Acoustics & Sound (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Mathematical Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

La presente invención se refiere a un dispositivo y un método que utiliza dicho dispositivo para la medición y clasificación de tamaños de burbujas en un medio líquido. Esta invención comprende dos transductores eléctricos emisor y receptor localizados en un ángulo menor a 180 grados uno respecto del otro, y un circuito transmisor y un circuito receptor de señales ultrasónicas unidos operativamente a los transductores eléctricos emisor y receptor, respectivamente. La clasificación de los tamaños de las burbujas se basa en patrones bidimensionales en el dominio del tiempo que representan el rastro de las burbujas cuando cruzan un campo ultrasónico generado. Esta invención es de gran utilidad para monitorear procesos que involucren generación de burbujas en medios líquidos tales como la flotación en minería.

Description

DISPOSITIVO Y MÉTODO PARA LA CLASIFICACIÓN DEL TAMAÑO DE
BURBUJAS EN LÍQUIDO
Campo Técnico La presente invención se relaciona con el campo técnico de los métodos y dispositivos de medición, específicamente con métodos de clasificación y medición de tamaños, en particular con un dispositivo y un método que utiliza dicho dispositivo para la medición y clasificación de tamaños de burbujas en un medio líquido. Antecedentes
Los fluidos que tienen un alto contenido de burbujas son ampliamente utilizados en una variedad de industrias tales como en la minería, alimentación, medicina y otros procesos industriales. Los flujos de burbujas a través de líquidos son procedimientos clave en procesos tales como la fermentación en biorreactores, tratamientos biológicos de aguas servidas, o para la separación de minerales. Es ampliamente conocido que el tamaño, la densidad y el movimiento de las burbujas afecta la eficiencia de estos procesos, y por tanto es crucial la medición y control del flujo de burbujas.
En particular, el proceso de flotación es un sistema que utiliza el flujo de burbujas como un método físico para separar partículas hidrofóbicas de aquellas hidrofílicas. Por ejemplo, en minería, este proceso permite que las partículas de minerales de interés que se encuentran en las celdas de flotación se adhieran a las burbujas y asciendan a la superficie donde son retiradas. Actualmente, este proceso se encuentra en uso en diversas aplicaciones, como por ejemplo separación de minerales de cobre, los cuales son de alta importancia y valor para Chile; separación de minerales de sulfuro de ganga de sílice (y de otros minerales de sulfuro); separación de cloruro de potasio (silvita) a partir de cloruro de sodio (halita); separación del carbón de minerales que forman cenizas; eliminación de los minerales de silicato de minerales de hierro; la separación de minerales de fosfato de silicatos; e incluso aplicaciones no minerales como la eliminación de tinta del papel prensa reciclado, entre otros (Kawatra S.K. Froth Flotation - Fundamental Principies. Michigan Technological University. Department of Chemical Engineering. College of Engineering. 201 1 ).
Para entender los flujos de las burbujas, se han desarrollado diferentes estrategias para determinar la forma, el diámetro o el volumen de cada una de las burbujas que se encuentran en el fluido, sin embargo no existe una medición estandarizada. Algunos métodos de caracterización y detección de burbujas se basan en técnicas acústicas pasivas, ensayos de succión por capilaridad, fotografía de alta velocidad, ensayos ópticos endoscopicos y sensores de onda ópticos (Vázquez A., Sánchez R.M., Salinas-Rodríguez E., Soria A., Manasseh R. A look ath three measurement techniques for bubble size determination. Measurement Science & Technology. 2004(15): 290 - 296).
El documento de patente GB2336905 describe un método para monitorear burbujas en un medio líquido en movimiento que utiliza un emisor de haz de luz y un receptor que detecta variaciones o interferencias en dicho haz, cuyo tamaño y concentración en número de burbujas se deriva directamente del análisis de la señal recibida. Sin embargo, los métodos ópticos están limitados por las condiciones de luz y pureza del líquido para la medición, disminuyendo considerablemente el rango de aplicaciones donde éste se puede utilizar y la precisión de las mediciones.
Respecto a los métodos acústicos, el documento de patente WO20140161 10 describe un método para determinar la distribución de tamaños de burbujas en un líquido, midiendo señales acústicas en el rango de los 50 a 500 Hz. Este método se basa en encontrar la frecuencia natural de oscilación de una burbuja según su tamaño (diámetro). El uso típico de frecuencias únicas ha demostrado que tiene ciertas limitaciones, como por ejemplo, enmascarar burbujas pequeñas en presencia de aquellas grandes (Leighton T.G. The acoustic bubble. Academic Press, London, UK. 1994: 129 - 152). Al usar dos frecuencias en una mezcla no lineal de señales, se reduce la probabilidad de detecciones falsas y constituye un método relativamente preciso para detectar y medir burbujas de gas. Sin embargo, éste método ha sido utilizado típicamente para la detección de un solo tamaño de burbuja, tomando el segundo armónico de resonancia como máximo global, mientras que otras fuentes no lineales podrían estar induciendo una señal. Si bien estas señales llegan a su máximo nivel alrededor de la resonancia de la burbuja, éstas sufren efectos de otras fuentes de sonido, como por ejemplo, turbulencia, efecto del transductor, etc., las cuales pueden generar señales detectando la presencia de una burbuja resonante cuando ésta no está presente (Ainslie M.A., Leighton T.G. Review of scattering and extintion cross-sections, damping factors, and resonance frequencies of a spherical gas bubble. The Journal of the Acoustical Society of America. 201 1 (130): 3184 - 3208). También se ha visto en el estado de la técnica, que los estudios consideran modelos simples de resonancia de burbujas, ignorando los efectos relacionados a las propiedades elásticas de la superficie de éstas, tales como rigidez, efecto multi-burbuja, inercia y proximidad a los contornos. Además, el método de resonancia es de difícil aplicabilidad en línea, ya que la frecuencia de excitación varía en un intervalo dado para encontrar aquella en la que la burbuja resuena con mayor intensidad, es decir, si la burbuja siguiente no es de igual tamaño que la anterior, el método de resonancia pierde sensibilidad y exactitud.
Por otra parte, el estado de la técnica divulga también algunos métodos para la detección y medición de tamaños de burbujas utilizando ultrasonido. Por ejemplo, el documento US2002/0134134 menciona el uso de un detector de envolvente de ultrasonido para detectar burbujas en la sangre en un dispositivo médico. La sangre con burbujas pasa por un tubo con una cierta velocidad, suponiendo que tanto el líquido como las burbujas tienen la misma velocidad. De forma transversal al tubo está situado un transmisor y un receptor de ultrasonido en línea de vista, es decir, uno frente al otro. Las burbujas atraviesan e irrumpen el haz de ultrasonido y la atenuación de la energía captada por el transmisor receptor, entrega una estimación del diámetro de las burbujas. Otra invención similar es la descrito en el documento de patente US2014/0360248, en la cual utilizan dos emisores y dos receptores ultrasónicos ubicados uno frente al otro a través de un tubo por donde pasa el líquido con burbujas. Los generadores de señales ultrasónicas pueden ser a daptados para emitir pulsos o trenes de señales ultrasónicas, los cuales son alterados cuando la burbuja atraviesa por la señal. Estos métodos mencionados tienen una aplicabilidad limitada dado que requieren que ambos transductores se encuentren situados uno frente al otro a una distancia corta, suficiente para que la señal de ultrasonido no se vea afectada por interferencias del medio. Además, está diseñado para detectar una burbuja a la vez, lo que impide que pueda ser utilizado por ejemplo, en tanques de flotación donde las burbujas suben libremente hacia la superficie con trayectorias irregulares, a velocidades diferentes y a una distancia radial no-uniforme respecto al centro del haz de ultrasonido al pasar por un tubo de diámetro limitado con los transductores situados a corta distancia.
En consecuencia, se requiere de un método alternativo optimizado de medición, clasificación y análisis de tamaños de burbujas, capaz de realizar los análisis en línea y de forma simultánea a un grupo heterogéneo de tamaños de burbujas, con un alto nivel de precisión y bajo número de errores por enmascaramiento.
Sumario de la invención
Un objeto de la presente invención es proporcionar un dispositivo para la clasificación del tamaño de burbujas en un medio líquido, dicho dispositivo que comprende:
- un transductor eléctrico emisor de señales ultrasónicas;
- un transductor eléctrico receptor de señales ultrasónicas, localizado en un ángulo menor de 180 grados con respecto al transductor eléctrico emisor;
- circuitos transmisores y receptores de señales ultrasónicas conectados operativamente a dichos transductores eléctricos emisor y receptor de señales ultrasónicas, respectivamente;
- un convertidor análogo-digital conectado al circuito receptor de señales ultrasónicas; y
- un procesador para señales digitalizadas conectado al convertidor análogo-digital. El transductor eléctrico receptor de señales ultrasónicas está localizado de forma preferente a 90 grados con respecto al transductor eléctrico emisor.
El circuito transmisor comprende un generador de señales ultrasónicas unido a un amplificador de potencia y éste a su vez a un adaptador de impedancia. Dicho generador de señales ultrasónicas genera una señal sostenida en el tiempo de frecuencia fc, que es emitida por el transductor eléctrico emisor al líquido. La señal emitida en el líquido es de tipo sinusoidal, cuya longitud de onda correspondiente a la frecuencia fc tiene que ser menor que el menor diámetro de las burbujas a clasificar. El circuito receptor de señales ultrasónicas comprende un filtro pasa banda que presenta una banda de paso con igual frecuencia central fc que la señal generada por el circuito transmisor. A continuación del filtro pasa banda, se sitúa un amplificador de señal y unido a éste un detector de envolvente. A su vez, el detector de envolvente comprende un puente rectificador de onda, conectado a un filtro pasa-bajo, y un amplificador diferencial conectado a éste último.
Un segundo objeto de la invención, se refiere a un método para la clasificación de tamaños de burbujas que comprende las etapas de:
- generar un campo ultrasónico mediante un circuito transmisor de señales ultrasónicas y emitir dicho campo ultrasónico a través de un transductor eléctrico emisor de señales ultrasónicas;
- detectar burbujas que atraviesan dicho campo ultrasónico a través de un transductor eléctrico receptor, dichas burbujas que reflejan señales ultrasónicas en correspondencia a la velocidad de ascensión que dependen de su tamaño;
- procesar con un circuito receptor de señales ultrasónicas la señal ultrasónica reflejada por las burbujas para generar patrones bidimensionales en el dominio del tiempo que contienen información del tamaño estas; - procesar los patrones bidimensionales en el dominio del tiempo mediante técnicas de procesamiento digital de señales en el dominio de la frecuencia para generar patrones en frecuencia que contienen información del tamaño de las burbujas; - clasificar dichos patrones en frecuencia relacionados con el tamaño de las burbujas mediante una etapa de entrenamiento de un clasificador y una etapa de operación con el clasificador entrenado.
La señal ultrasónica generada por el circuito transmisor de señales ultrasónicas es una señal sostenida en el tiempo de frecuencia fc, que es emitida por el transductor eléctrico emisor al líquido. La señal emitida en el líquido es de tipo sinusoidal, cuya longitud de onda correspondiente a la frecuencia fc tiene que ser menor que el menor diámetro de las burbujas a clasificar.
El circuito receptor mencionado realiza etapas adicionales para el procesamiento de las señales ultrasónicas reflejadas por las burbujas, con el fin de generar patrones bidimensionales en el dominio del tiempo que contienen información del tamaño de éstas. Dichas etapas adicionales son:
- filtrar las señales ultrasónicas reflejadas por las burbujas en un filtro de pasa banda;
- amplificar las señales ultrasónicas reflejadas filtradas; y - extraer la envolvente de las señales reflejadas por las burbujas mediante un detector de envolvente.
Además, la etapa de extraer la envolvente de las señales reflejadas por las burbujas con vista a generar los patrones bidimensionales en el dominio del tiempo que contienen información del tamaño de éstas, comprende las etapas de:
- rectificar la señal reflejada por las burbujas mediante un puente rectificador; - filtrar las señales ultrasónicas rectificadas reflejadas por las burbujas mediante un filtro de pasa-bajos para obtener los patrones bidimensionales en el dominio del tiempo; y
- amplificar los patrones bidimensionales con un amplificador conectado a un conversor análogo/digital.
Luego de la obtención de los patrones bidimensionales, estos se procesan mediante técnicas de procesamiento digital de señales en el dominio de la frecuencia para la generación de patrones en frecuencia en dicho dominio, que contienen información del tamaño de las burbujas, y comprende las etapas adicionales de:
- dividir las señales ultrasónicas en cuadros de duración constante y multiplicarlas por una ventana apropiada;
- estimar simultáneamente en cada cuadro la transformada rápida de Fourier y los coeficientes de predicción lineal; y - extraer de la transformada rápida de Fourier y el análisis de predicción lineal los parámetros necesarios para la clasificación del tamaño de las burbujas.
Estos parámetros necesarios para la clasificación de tamaños de burbujas que resultan del procesamiento en el dominio de la frecuencia con la transformada rápida de Fourier y del análisis de predicción lineal, se seleccionan del grupo que incluye centroide espectral, energía espectral, entropía espectral, pendiente espectral, factor de cresta espectral, roll off espectral y coeficientes de predicción lineal o cualquier otro parámetro para la clasificación de tamaños de burbujas. Para clasificar los patrones en el dominio de la frecuencia relacionados con el tamaño de las burbujas se realiza una etapa de entrenamiento de un clasificador, el cual se selecciona del grupo que incluye redes neuronales y el clasificador Bayesiano, y una etapa de operación con el clasificador entrenado. La etapa de entrenamiento del clasificador comprende estimar los coeficientes del clasificador a partir de los parámetros obtenidos de los patrones en el dominio de la frecuencia, necesarios para la clasificación de las burbujas, con burbujas de tamaños conocidos. Luego, para la etapa de operación con el clasificador entrenado, se utilizan los parámetros obtenidos de los patrones en el dominio de la frecuencia de las burbujas de tamaños desconocidos, y clasificarlas en cuanto a su tamaño con el clasificador entrenado.
Breve descripción de las figuras
La Figura 1 muestra un esquema representativo de la invención, indicando las partes del dispositivo y las conexiones funcionales entre sus partes. La Figura 2 muestra un esquema representativo del circuito transmisor de señales ultrasónicas.
La Figura 3 muestra un esquema representativo del circuito receptor de las señales reflejadas por las burbujas.
La Figura 4 muestra un esquema representativo de la disposición de los transductores eléctricos emisor y receptor de señales ultrasónicas, y el campo ultrasónico generado.
La Figura 5 es un ejemplo de patrones bidimensionales en el dominio del tiempo de diferentes tamaños de burbujas.
La Figura 6 es un esquema o flujo de proceso que muestra los procesamientos para la obtención de los parámetros necesarios para la clasificación de los tamaños de las burbujas.
La Figura 7 muestra un ejemplo de realización de la invención en una celda de flotación de la minería.
Descripción detallada de la invención La presente invención se refiere a un dispositivo y un método que utiliza dicho dispositivo para la medición y clasificación por tamaño de burbujas de aire que se encuentran en un medio líquido. La invención utiliza un enfoque de clasificación de patrones bidimensionales (2-D) en el dominio del tiempo, que representan el rastro de burbujas cuando cruzan un haz de ultrasonido directivo o un campo ultrasónico formado por un transductor emisor unido a un circuito transmisor. La energía reflejada por las burbujas que cruzan este campo es capturada por un transductor receptor conectado a un circuito receptor. El procesamiento de dichos patrones 2-D en el dominio del tiempo permite obtener patrones en el dominio de la frecuencia, siendo las distribuciones espectrales promedios representativas de los tamaños correspondientes de las burbujas. Después de entrenar un clasificador con parámetros obtenidos a partir de los patrones en frecuencia de burbujas de tamaños conocidos, se puede clasificar los tamaños desconocidos de las burbujas analizadas.
El flujo de burbujas en líquidos forma parte importante de una serie de procesos industriales, donde el tamaño y por tanto la velocidad de las burbujas que se introducen en el líquido son un paso crucial para obtener un proceso adecuado y eficiente. En consecuencia, la presente invención proporciona un dispositivo y un método que utiliza dicho dispositivo para la medición y clasificación del tamaño de las burbujas que fluyen dentro de un líquido en un proceso industrial. Esta invención proporciona una medición simultánea y precisa de una pluralidad de burbujas que ascienden a través de un medio líquido, estimando los parámetros obtenidos a partir de los patrones en el dominio de la frecuencia, y clasificando el tamaño de las burbujas detectadas en línea, lo que finalmente permite modificar la entrada de flujo de aire al líquido con el fin de optimizar el proceso industrial.
Para mayor claridad de la invención, se muestra una serie de figuras representativas que ejemplifican el dispositivo, sus componentes y conexiones funcionales entre sus partes. Se debe tener en cuenta que las figuras aquí mostradas son sólo representativas, y no deben ser consideradas como una limitación de la invención.
La Figura 1 muestra un esquema general del dispositivo y la conexión funcional entre todos sus componentes. El dispositivo para la clasificación del tamaño de burbujas en un medio líquido comprende un transductor eléctrico emisor de señales ultrasónicas 1 y un transductor eléctrico receptor de señales ultrasónicas 2, localizado en un ángulo menor a 180 grados con respecto al transductor eléctrico emisor 1. En una realización preferida, el ángulo entre el transductor eléctrico emisor 1 y el transductor eléctrico receptor 2 es de 90 grados, como se muestra en la Figura 1 . La disposición entre los transductores a menor de 180 grados permite una correcta medición de la señal reflejada por las burbujas, pudiendo localizarse incluso a 0 grados, es decir, uno al lado del otro, sin afectar mayormente el principio de la metodología.
El transductor eléctrico emisor 1 , está conectado operativamente a un circuito transmisor de señales ultrasónicas 3, que genera las señales ultrasónicas que luego son emitidas por el transductor eléctrico emisor 1. A su vez, el transductor eléctrico receptor 2, está conectado operativamente a un circuito receptor de señales ultrasónicas 4, que procesa las señales reflejadas por las burbujas. Estas señales procesadas son convertidas a señales digitales por un convertidor análogo-digital 5. Dichas señales digitales son procesadas por un procesador de señales digitalizadas 6. En la Figura 2 se muestran las partes que preferentemente componen el circuito transmisor de señales 3. Está compuesto por un generador de señales ultrasónicas 7, que produce una señal sostenida en el tiempo a una frecuencia fundamental fc, que luego es emitida por el transductor eléctrico emisor 1 al líquido. Dicha señal periódica generada por el generador de señales 7 pudiese ser sinusoidal, cuadrada o de cualquier tipo, sin embargo la señal emitida en el líquido es sinusoidal, y cuya longitud de onda en el líquido debe ser menor al menor diámetro de la burbuja que se quiere clasificar, para que la burbuja refleje la señal. Por ejemplo, dentro de una pluralidad de burbujas se determinó que la de menor tamaño era de 2,5 mm. Para medir y clasificar los tamaños de dicha pluralidad de burbujas, se utilizó una señal de tipo sinusoidal de frecuencia 1 MHz, equivalente a una longitud de onda de aproximadamente 1 ,5 mm, de forma de abarcar todos los tamaños de burbujas a considerar. Unido operacionalmente al generador de señales ultrasónica 7, se encuentra un amplificador 8 de la señal que permite aumentar la potencia de la señal a un nivel adecuado, y éste a su vez está unido a un adaptador de impedancia 9 para evitar pérdidas de potencia de la señal cuando ésta pasa hacia el transductor eléctrico emisor 1 para ser transmitida. La Figura 3 muestra las partes que preferentemente componen el circuito receptor de señales ultrasónicas 4. Luego de capturar las señales ultrasónicas reflejadas por las burbujas con el transductor eléctrico receptor 2, estas son procesadas por un filtro pasa banda 10 para reducir el ruido fuera de la banda de interés, cuya banda de paso tiene como frecuencia central la frecuencia de la señal generada por el circuito transmisor, fc. Unido al filtro pasa banda 10 se encuentra un amplificador de señal 11 que permite aumentar la amplitud de la señal que es transmitida hacia el detector de envolvente 12. Este sistema permite extraer la envolvente de la señal reflejada por las burbujas. El detector de envolvente 12 se compone de un puente rectificador 13 que rectifica la onda para que la señal sea de polaridad constante. Unido a este puente rectificador se encuentra un filtro pasa-bajos 14 que elimina la señal de la frecuencia fc para mantener sólo la envolvente de la señal para las siguientes etapas. La frecuencia de corte escogida en el filtro pasa-bajos 14, debe ser tal que permita eliminar la señal de frecuencia fc y a la vez permita ser utilizado como filtro antialias para la posterior etapa de conversión análogo/digital con el convertidor análogo/digital 5. Luego de su paso por el filtro pasa-bajo, la señal se representa como la diferencia de potencial entre sus dos salidas. Para que la señal pueda ser transmitida a un procesador de señales digitalizadas 6, la señal es referenciada a tierra y amplificada con un amplificador diferencial 15. El convertidor análogo/digital 5 unido al amplificador 15 convierte la señal para que pueda ser procesada y analizada en el procesador de señales digitalizadas 6.
Con el dispositivo descrito se puede realizar la metodología para determinar y clasificar los tamaños de burbujas que están presentes en un medio líquido. En la Figura 4 se muestra un esquema del campo ultrasónico coherente o direccional por el cual atraviesan las burbujas. A través del circuito transmisor de señales ultrasónicas 3 se genera la señal ultrasónica sostenida en el tiempo - definiendo el término "sostenida" como lo contrario a una señal que se genera mediante pulsos o trenes de pulsos- a una frecuencia fundamental fc, que luego es emitida por el transductor eléctrico emisor 1. La señal emitida en el líquido es sinusoidal y su longitud de onda en el líquido es menor que el menor diámetro de las burbujas a clasificar. Esta señal es emitida por el transductor emisor 1 , generándose así un campo ultrasónico 16 correspondiente a un haz coherente por donde pasan las burbujas 17. Las burbujas 17 que cruzan el haz reflejan la señal que es capturada por el transductor eléctrico receptor 2, la cual también tiene una ganancia directiva coherente. La señal eléctrica capturada por el transductor eléctrico receptor 2 que corresponde a las ondas ultrasónicas reflejadas por las burbujas 17, es procesada por el circuito receptor de señales ultrasónicas 4, donde pasa por el detector de envolvente 12 diseñado para capturar las características distintivas de los diferentes tamaños de burbujas inherentes a las señales de ultrasonido reflejadas mediante la generación de patrones 2-D en el dominio del tiempo. Estos patrones 2-D tienen incorporada la información de la velocidad de ascenso de las burbujas, la que su vez depende del tamaño de estas.
A modo de ejemplo, en un entorno controlado, una burbuja de aire ascendente experimenta principalmente una fuerza de arrastre (FD) y una flotabilidad (Fe) en direcciones opuestas, es decir, en equilibrio FD = -FB. La fuerza de flotabilidad se expresa como Fs = p Vg, y la fuerza de arrastre como FD = Ο.δθρ^πι2, donde p es la densidad del líquido, g es la gravedad, V y r son el volumen y el radio de la burbuja respectivamente, v es la velocidad de subida de la burbuja, y C es el coeficiente de arrastre. Esto indica que la velocidad de subida de la burbuja varía proporcionalmente con su tamaño. Por tanto, las burbujas más grandes suben a la superficie con mayor velocidad, sus perturbaciones o inestabilidades en la trayectoria son más rápidas, lo que repercute en mayores componentes de alta frecuencia en los patrones 2-D en el dominio del tiempo generados por el circuito receptor. El resultado del procesamiento de la señal ultrasónica reflejada por la burbuja a través del circuito receptor de señales ultrasónicas 4 es la obtención de patrones 2-D en el dominio del tiempo que contiene información del tamaño de las burbujas.
En la Figura 5 se muestran tres ejemplos de patrones bidimensionales, representados con amplitud normalizada versus tiempo en segundos, de tres tamaños diferentes de burbujas, 2,5 mm, 5 mm y 6,5 mm, respectivamente. Estos gráficos son el resultado luego que la señal capturada por el transductor receptor 2, es procesada con el filtro pasa banda 10, amplificada con el amplificador de señal 11 , y extraída su envolvente con el detector de envolvente 12 en el circuito receptor 4.
Luego de obtener los patrones en el dominio de la frecuencia, a través del procesador de señales digitalizadas 6, se procesan las señales para su posterior clasificación. En la Figura 6 se muestra un esquema del procesamiento de las señales en el dominio de la frecuencia. Después de la conversión análogo/digital de la señal, éstas se filtran para la eliminación de ruido, y se dividen en trames o cuadros de duración constante que se multiplican por una ventana apropiada, como por ejemplo, Hamming, Hanning, etc. En cada ventana se estima, simultáneamente la transformada rápida de Fourier (FFT) y el análisis de predicción lineal (LPC). Los patrones obtenidos se denominan "patrones en el dominio de la frecuencia". Como resultado de la FFT y del análisis LPC, se extraen los parámetros para la clasificación de los tamaños de las burbujas, indicado en el esquema de la Figura 6 como extracción paramétrica, estos parámetros pueden ser centroide espectral, entropía espectral, pendiente espectral, o cualquier otro similar que se pueda derivar a partir de la FFT, y los coeficientes LPC. Con estos parámetros, se puede entonces estimar y clasificar los tamaños de las burbujas mediante un proceso de clasificación con un clasificador entrenado. El proceso de clasificación consiste en dos etapas: entrenamiento de un clasificador y testeo u operación con el clasificador entrenado. Un clasificador se entiende como aquellos modelos matemáticos que se implementan con un programa dentro del procesador de señales digitalizadas 6, como por ejemplo, redes neuronales o el clasificador Bayesiano. La etapa de entrenamiento consiste en ingresar y estimar los coeficientes del clasificador, a partir de los parámetros extraídos en el dominio de la frecuencia para la clasificación de burbujas de tamaños conocidos. Para este proceso se utilizan los propios coeficientes del polinomio predictor en el caso del análisis LPC, como también los parámetros de clasificación extraídos de la FFT de tamaños de burbujas conocidos. Luego, durante el testeo u operación, se realiza el análisis de tamaños de burbujas desconocidos, para el cual se extraen los parámetros necesarios para su clasificación. La etapa de testeo u operación consiste en utilizar dichos parámetros para la clasificación de tamaños desconocidos de burbujas e ingresarlos en el clasificador entrenado, lo que permite encasillar o clasificar las burbujas dentro de uno de los tamaños previamente entrenados.
Debido a los componentes, su disposición en el equipo y la metodología aplicada en esta invención, se reduce el enmascaramiento e interferencia al medir múltiples burbujas en comparación con las metodologías de medición de tamaño de burbujas basadas en frecuencia de resonancia. Además, el uso de un solo componente sinusoidal sostenido en el tiempo, es decir, no en pulsos ni en trenes de pulsos, simplifica la electrónica requerida en los circuitos transmisor y receptor. Finalmente, la presente invención permite la determinación en línea y sin supervisión humana del diámetro de las burbujas, en contraste con otras tecnologías como las basadas en fotografías.
Una realización de la invención es la que se muestra en la Figura 7, correspondiente a una celda de flotación 18 como las que se utilizan en minería, para la separación de partículas de interés. La operación de separación selectiva de partículas vía flotación ocurre a partir de una suspensión de dichas partículas en un medio líquido, denominado fase pulpa 19, la cual se introduce en la celda de flotación 18. Este proceso industrial consiste en la inyección de aire 20 a través de un tubo a la celda de flotación 18, donde se forman burbujas 17 en el fondo de la celda, las cuales comienzan su ascenso a diferentes velocidades dependiendo del tamaño de éstas. Al subir a la superficie, las burbujas 17 arrastran consigo las partículas en suspensión 21 , las cuales se acumulan en la superficie formando una fase espuma 22 que luego es removida en forma definitiva del resto de la suspensión constituyendo el concentrado del proceso. Los tamaños de las burbujas en este proceso deben ser, dependiendo del caso, de aproximadamente 1 mm, sin embargo varía según la inyección de aire 20. Cuando la moda del tamaño de burbujas se ve desplazada hacia valores significativamente pequeños o grandes respecto de este valor, el proceso se vuelve ineficiente. Para diagnosticar el funcionamiento del proceso de flotación, el dispositivo para la clasificación de tamaños de burbujas se inserta en la celda, como se muestra en la Figura 7. Los transductores eléctricos emisor 1 y receptor 2 se colocaron dentro de la celda de flotación 18, unidos operativamente al circuito transmisor de señales ultrasónicas 3 y al circuito receptor de señales ultrasónicas 4, respectivamente. La señal se genera por el circuito transmisor de señales 3 y se emite por el transductor eléctrico emisor 1 formando un campo ultrasónico. A medida que las burbujas con y sin partículas ascienden, algunas atraviesan este campo ultrasónico y reflejan señales ultrasónicas que son captadas por el transductor eléctrico receptor 2. La señal capturada se procesa análogamente por el circuito receptor de señales ultrasónicas 4, generando patrones 2-D en el dominio del tiempo de acuerdo a los tamaños de las burbujas. El conversor análogo/digital 5 permite que la señal análoga se digitalice para su análisis mediante el procesador de señales digitalizadas 6. Los tamaños de las burbujas se clasifican entonces mediante el procesamiento de los parámetros necesarios para la clasificación dentro del clasificador entrenado, lo que permite monitorear el proceso de formación de burbujas en línea y sin supervisión humana, y así ir ajustando, en lo posible automáticamente, la inyección de aire para regular la formación de burbujas del tamaño que se requiera para el proceso de flotación de las mismas.

Claims

REIVINDICACIONES
1 . Un dispositivo para la clasificación del tamaño de burbujas en un medio líquido, CARACTERIZADO porque comprende: - un transductor eléctrico emisor 1 de señales ultrasónicas;
- un transductor eléctrico receptor 2 de señales ultrasónicas, localizado en un ángulo menor a 180 grados con respecto al transductor eléctrico emisor 1 ;
- circuitos transmisores 3 y receptores 4 de señales ultrasónicas conectados operativamente a dichos transductores eléctricos emisor 1 y receptor 2 de señales ultrasónicas, respectivamente;
- un convertidor análogo-digital 5 conectado al circuito receptor 4 de señales ultrasónicas; y
- y un procesador 6 para señales digitalizadas conectado al convertidor análogo-digital 5.
2. El dispositivo de la reivindicación 1 , CARACTERIZADO porque el transductor eléctrico receptor 2 de señales ultrasónicas está localizado en un ángulo de 90 grados con respecto al transductor eléctrico emisor 1.
3. El dispositivo de la reivindicación 1 , CARACTERIZADO porque el circuito transmisor 3 comprende un generador de señales ultrasónicas 7 unido a un amplificador de potencia 8 y éste a su vez a un adaptador de impedancia 9.
4. El dispositivo de la reivindicación 3, CARACTERIZADO porque el generador de señales ultrasónicas 7 genera una señal sostenida en el tiempo de frecuencia fundamental c que es emitida por el transductor eléctrico emisor 1 al líquido.
5. El dispositivo de la reivindicación 4, CARACTERIZADO porque la señal emitida en el líquido es sinusoidal y su longitud de onda en el líquido correspondiente a la frecuencia fundamental fc tiene que ser menor que el menor diámetro de las burbujas a clasificar.
6. El dispositivo de la reivindicación 1 , CARACTERIZADO porque el circuito receptor 4 de señales ultrasónicas comprende un filtro pasa banda 10, a continuación del cual se sitúa un amplificador de señal 11 , y unido a este un detector de envolvente 12.
7. El dispositivo de la reivindicación 6, CARACTERIZADO porque el filtro pasa banda 10 presenta una banda de paso con igual frecuencia central c que la señal generada por el circuito transmisor 3.
8. El dispositivo de la reivindicación 6, CARACTERIZADO porque el detector de envolvente 12 comprende un puente rectificador de onda 13, conectado a un filtro pasa-bajo 14, y un amplificador de señal 15 conectado a este último.
9. Un método para la clasificación de tamaños de burbujas, CARACTERIZADO porque comprende las etapas de:
- generar un campo ultrasónico mediante un circuito transmisor 3 de señales ultrasónicas y emitir dicho campo ultrasónico a través de un transductor eléctrico emisor 1 de señales ultrasónicas;
- detectar burbujas que atraviesan dicho campo ultrasónico a través de un transductor eléctrico receptor 2, dichas burbujas que reflejan señales ultrasónicas en correspondencia a la velocidad de ascensión que dependen de su tamaño;
- procesar con un circuito receptor 4 de señales ultrasónicas la señal ultrasónica reflejada por las burbujas para generar patrones bidimensionales en el dominio del tiempo que contienen información del tamaño de éstas;
- procesar los patrones bidimensionales en el dominio del tiempo mediante técnicas de procesamiento digital de señales en el dominio de la frecuencia para generar patrones en frecuencia que contienen información del tamaño de las burbujas; - clasificar dichos patrones en frecuencia que contienen información del tamaño de las burbujas mediante una etapa de entrenamiento de un clasificador y una etapa de operación con el clasificador entrenado.
10. El método de la reivindicación 9, CARACTERIZADO porque la señal ultrasónica generada por el circuito transmisor 3 de señales ultrasónicas es una señal sostenida en el tiempo de frecuencia fundamental c que es emitida por el transductor eléctrico emisor 1 al líquido.
1 1 . El método de la reivindicación 10, CARACTERIZADO porque la señal emitida en el líquido es sinusoidal y su longitud de onda en el líquido correspondiente a la frecuencia fundamental fc tiene que ser menor que el menor diámetro de las burbujas a clasificar.
12. El método de la reivindicación 9, CARACTERIZADO porque para el procesamiento de las señales ultrasónicas reflejadas por las burbujas con vistas a generar los patrones bidimensionales en el dominio del tiempo que contienen información del tamaño de estas, el circuito receptor 4 realiza las etapas adicionales de:
- filtrar las señales ultrasónicas reflejadas por las burbujas en un filtro de pasa banda 10;
- amplificar las señales ultrasónicas reflejadas filtradas con un amplificador 11 ; y
- extraer la envolvente de las señales reflejadas por las burbujas mediante un detector de envolvente 12.
13. El método de la reivindicación 12, CARACTERIZADO porque la etapa de extraer la envolvente de las señales reflejadas por las burbujas con vistas a generar los patrones bidimensionales en el dominio del tiempo que contienen información del tamaño de estas comprende adicionalmente las etapas de:
- rectificar la señal reflejada por las burbujas mediante un puente rectificador 13; - filtrar las señales ultrasónicas rectificadas reflejadas por las burbujas mediante un filtro de pasa-bajos 14 para obtener los patrones bidimensionales en el dominio del tiempo; y
- amplificar los patrones bidimensionales en el dominio del tiempo con un amplificador 15 conectado a un conversor análogo/digital 5.
14. El método de la reivindicación 9, CARACTERIZADO porque el procesamiento de los patrones bidimensionales en el dominio del tiempo mediante técnicas de procesamiento digital de señales en el dominio de la frecuencia para la generación de patrones en frecuencia que contienen información del tamaño de las burbujas comprende adicionalmente las etapas de:
- dividir las señales ultrasónicas en cuadros de duración constante y multiplicarlas por una ventana apropiada;
- estimar simultáneamente en cada cuadro la transformada rápida de Fourier y los coeficientes de predicción lineal; y
- extraer de la transformada rápida de Fourier y el análisis de predicción lineal los parámetros necesarios para la clasificación de las burbujas.
15. El método de la reivindicación 14, CARACTERIZADO porque los parámetros necesarios para la clasificación de las burbujas que resultan del procesamiento en el dominio de la frecuencia con la transformada rápida de Fourier y del análisis de predicción lineal, se seleccionan del grupo que consiste en centroide espectral, energía espectral, entropía espectral, pendiente espectral, factor de cresta espectral, roll off espectral y coeficiente del predicción lineal.
16. El método de la reivindicación 9, CARACTERIZADO porque el clasificador se selecciona del grupo que incluye redes neuronales y el clasificador Bayesiano.
17. El método de la reivindicación 16, CARACTERIZADO porque la etapa de entrenamiento del clasificador comprende estimar los coeficientes del clasificador a partir de los parámetros necesarios para la clasificación de las burbujas con burbujas de tamaños conocidos.
18. El método de la reivindicación 9, CARACTERIZADO porque la etapa de operación con el clasificador entrenado comprende utilizar los parámetros necesarios para la clasificación de las burbujas de tamaños desconocidos y clasificarlas en cuanto a su tamaño con el clasificador entrenado.
PCT/CL2015/050061 2014-12-30 2015-12-29 Dispositivo y método para la clasificación del tamaño de burbujas en un líquido WO2016106464A1 (es)

Priority Applications (2)

Application Number Priority Date Filing Date Title
AU2015375301A AU2015375301A1 (en) 2014-12-30 2015-12-29 Device and method for bubble size classification in liquids
US15/541,338 US20170356882A1 (en) 2014-12-30 2015-12-29 Device and method for bubble size classification in liquids

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CL2014003603A CL2014003603A1 (es) 2014-12-30 2014-12-30 Dispositivo para clasificación de tamaño de burbujas en un medio líquido, que comprende un transductor eléctrico emisor de señales ultrasónicas, un transductor eléctrico receptor de señales ultrasónicas, circuitos transmisores y receptores de señales ultrasónicas, un convertidor analógico-digital, y un procesador para señales digitalizadas; método asociado
CL3603-2014 2014-12-30

Publications (1)

Publication Number Publication Date
WO2016106464A1 true WO2016106464A1 (es) 2016-07-07

Family

ID=56283754

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CL2015/050061 WO2016106464A1 (es) 2014-12-30 2015-12-29 Dispositivo y método para la clasificación del tamaño de burbujas en un líquido

Country Status (4)

Country Link
US (1) US20170356882A1 (es)
AU (1) AU2015375301A1 (es)
CL (1) CL2014003603A1 (es)
WO (1) WO2016106464A1 (es)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107290429A (zh) * 2017-07-10 2017-10-24 无锡海鹰电子医疗系统有限公司 用于检测深层结构裂隙的超声测量系统及检测方法
JP2020143937A (ja) * 2019-03-04 2020-09-10 中道鉄工株式会社 超音波式漏れ検査装置
JP2020143938A (ja) * 2019-03-04 2020-09-10 中道鉄工株式会社 超音波式漏れ検査装置
JP7426071B2 (ja) * 2019-12-18 2024-02-01 国立研究開発法人産業技術総合研究所 気泡検出装置、気泡検出方法およびそのプログラム
CN111189915B (zh) * 2020-01-13 2022-08-19 明君 一种水力机械空化发生的实时判定方法
CN114137250B (zh) 2021-12-02 2022-10-11 浙江大学 一种黏性流体气泡上升中速度和形变量的测量系统和方法
WO2024077112A1 (en) * 2022-10-07 2024-04-11 Labcyte Inc. Ultrasonic bubble remediation
CN117074520B (zh) * 2023-10-12 2024-01-05 四川聚元药业集团有限公司 一种用于白芍提取液成份分析的检测系统

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4730493A (en) * 1985-09-30 1988-03-15 Novatome Process and device for ultrasonic detection of gas bubbles in a liquid metal
US7010962B2 (en) * 2003-01-24 2006-03-14 Sinha Naveen N Characterization of liquids using gas bubbles
WO2008097473A1 (en) * 2007-02-06 2008-08-14 Fresenius Medical Care Holdings, Inc. Ultrasonic system for detecting and quantifying of air bubbles/particles in a flowing liquid

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060060991A1 (en) * 2004-09-21 2006-03-23 Interuniversitair Microelektronica Centrum (Imec) Method and apparatus for controlled transient cavitation
US7805978B2 (en) * 2006-10-24 2010-10-05 Zevex, Inc. Method for making and using an air bubble detector
US8340913B2 (en) * 2008-03-03 2012-12-25 Schlumberger Technology Corporation Phase behavior analysis using a microfluidic platform
CA2623793C (en) * 2008-03-03 2010-11-23 Schlumberger Canada Limited Microfluidic apparatus and method for measuring thermo-physical properties of a reservoir fluid
US8336981B2 (en) * 2009-10-08 2012-12-25 Hewlett-Packard Development Company, L.P. Determining a healthy fluid ejection nozzle
WO2013017969A1 (en) * 2011-08-04 2013-02-07 Sik- The Swedish Institute For Food And Biotechnology Fluid visualisation and characterisation system and method; a transducer
KR101647107B1 (ko) * 2015-01-08 2016-08-11 한국원자력연구원 기포의 크기 및 개체수 조절장치와 조절방법

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4730493A (en) * 1985-09-30 1988-03-15 Novatome Process and device for ultrasonic detection of gas bubbles in a liquid metal
US7010962B2 (en) * 2003-01-24 2006-03-14 Sinha Naveen N Characterization of liquids using gas bubbles
WO2008097473A1 (en) * 2007-02-06 2008-08-14 Fresenius Medical Care Holdings, Inc. Ultrasonic system for detecting and quantifying of air bubbles/particles in a flowing liquid

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUSSEIN, W. ET AL.: "A novel ultrasound based technique for classifying gas bubble sizes in liquids.", EN MEASUREMENT SCIENCE AND TECHNOLOGY, vol. 25, no. 125302, 7 November 2014 (2014-11-07), pages 11 *

Also Published As

Publication number Publication date
CL2014003603A1 (es) 2015-07-10
AU2015375301A1 (en) 2017-07-20
US20170356882A1 (en) 2017-12-14

Similar Documents

Publication Publication Date Title
WO2016106464A1 (es) Dispositivo y método para la clasificación del tamaño de burbujas en un líquido
JP2019516074A (ja) 超微粒子サイズ検出のためのレーザー・センサー
JP5960721B2 (ja) パイプライン内の流体または流体成分の流速を測定するための装置および方法
CN109764950A (zh) 一种基于加速度计的同振式矢量水听器绝对校准方法
CN106290580B (zh) 一种真空高低频声学测量装置及方法
EP3309543A3 (en) Apparatus and methods for photoacoustic measurement of light absorption of particulate and gaseous species
JP2014127921A5 (es)
Akanyeti et al. What information do Kármán streets offer to flow sensing?
CN110531363A (zh) 一种淡水水体气泡的声学信号识别方法
US7010962B2 (en) Characterization of liquids using gas bubbles
US6601447B1 (en) Acoustic anemometer for simultaneous measurement of three fluid flow vector components
CN112763750A (zh) 一种基于光声效应的气体流速传感器
Fernandes et al. Cross-correlation-based optical flowmeter
CN107133589A (zh) 基于维纳滤波器的消噪算法
Dos Santos et al. Recovering of Corrupted Ultrasonic Waves, for Determination of TOF Using the Zero-Crossing Detection Technique
CN107218932B (zh) 面向mems湍流探测的共模抑制振动补偿传感器结构
McMillan Turbulence Measurements in a High Reynolds Number Tidal Channel
JPH07318476A (ja) 微粒子分析装置
RU2556324C1 (ru) Способ и устройство для измерения скорости течений и волновых процессов в океане
US10509138B2 (en) System and method for discriminating between origins of vibrations in an object and determination of contact between blunt bodies traveling in a medium
RU2563603C1 (ru) Способ определения чувствительности по полю гидроакустического приемника
CN113188746B (zh) 一种非接触式区域流体涡量测量方法
RU112770U1 (ru) Система для определения профиля скорости течения
JP2013244285A (ja) 検体情報処理装置
ES2909649B2 (es) Procedimiento de espectrometria de analitos multiparametrica asistida por hidrodinamica

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15874447

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15541338

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2015375301

Country of ref document: AU

Date of ref document: 20151229

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15874447

Country of ref document: EP

Kind code of ref document: A1