WO2016184299A1 - 一种微纳米粒子性能参数的测量方法 - Google Patents

一种微纳米粒子性能参数的测量方法 Download PDF

Info

Publication number
WO2016184299A1
WO2016184299A1 PCT/CN2016/080297 CN2016080297W WO2016184299A1 WO 2016184299 A1 WO2016184299 A1 WO 2016184299A1 CN 2016080297 W CN2016080297 W CN 2016080297W WO 2016184299 A1 WO2016184299 A1 WO 2016184299A1
Authority
WO
WIPO (PCT)
Prior art keywords
micro
nanoparticles
ultrasonic
nano particles
nanoparticle
Prior art date
Application number
PCT/CN2016/080297
Other languages
English (en)
French (fr)
Inventor
周国富
李皓
白鹏飞
林烈鑫
井一涵
Original Assignee
深圳市国华光电科技有限公司
华南师范大学
深圳市国华光电研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市国华光电科技有限公司, 华南师范大学, 深圳市国华光电研究院 filed Critical 深圳市国华光电科技有限公司
Publication of WO2016184299A1 publication Critical patent/WO2016184299A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object

Definitions

  • the invention relates to the measurement of characteristic mechanical property parameters of micro-nanoparticles, in particular to a method for measuring performance parameters of micro-nanoparticles.
  • Nanomaterials are solid materials composed of very fine particles with particle sizes on the order of nanometers (usually referred to as 1-100 nm), usually divided into two levels: nanoparticles and nanosolids. Nanomaterials are closely related to applications since they are known.
  • nanomaterials have been used in catalysis, environmental protection, energy industry and the preparation of new engineering, magnetic and protective materials.
  • the cross-infiltration of nanotechnology with electronics, medicine, biology, computer science, and military science has produced new disciplines such as nanoelectronics, nanomedicine, and other traditional disciplines with nano-prefixes, showing a broader range of nanomaterials.
  • the detection method is applied to the solid-liquid interface and is a detection of macromolecules, which cannot be performed for micro-nano level detection and other contact surface detection.
  • Drop weight method when the liquid is dropped from the capillary tip, the size of the droplet is related to the surface tension of the liquid, that is, the larger the surface tension, the larger the droplet is, and the relationship between the two formula:
  • Equation (2) W is the weight of the droplet; R is the radius of the tip of the capillary, the magnitude of which is determined by the measuring instrument; f is the correction factor. It is more convenient to measure the droplet volume in a general laboratory, so equation (2) can be written as:
  • V is the droplet volume
  • is the density of the liquid
  • f is the correction factor
  • a. can only be regarded as an empirical method; b. can not be used to determine the surface tension to achieve a slower balance, and the method can not reach a complete balance; c. there is accurate measurement of liquid volume and good control solution Problems such as dripping speed; d. Only in the case of liquid, and at the same time, the particle size of the droplet cannot satisfy the micro-nano level.
  • Atomic force microscopy tests the elastic coefficient of material particles.
  • Atomic force microscopy is called AFM, which is Atomic Force Microscope.
  • AFM Atomic Force Microscope
  • the force to be detected is the van der Waals force between atoms and atoms, so in this system, tiny cantilevers are used. Detects the amount of change in force between atoms.
  • the microcantilever is typically made of a silicon or silicon nitride wafer that is typically 100-500 um long and about 500 nm - 5 um thick.
  • the tip of the microcantilever has a sharp tip for detecting the interaction between the sample and the tip.
  • the force spectrum curve obtained by AFM is used in biomedicine: after detecting a cell, the AFM will be based on the resistance encountered. Give a value indicating the strength, that is, the force spectrum of the particle, and through the deformation of the particle, using the Young's modulus, the corresponding elastic coefficient can be obtained.
  • AFM AFM
  • the detection method is more accurate in air detection, but when the liquid sample is detected, due to the presence of solvent molecules, the detection of the probe will be seriously affected, and the detection accuracy cannot be ensured, and the accuracy cannot be achieved at the same time.
  • the purpose of the project is to make it impossible to link the two tests together.
  • the detection methods for the characteristic mechanical properties of micro-nanoparticles cannot provide reliable, accurate and precise detection results, and many detection methods have lower limits on the size of the particles. It is impossible to reach the micro-nano level, which is more severely restricted by the external environment and has a small application range.
  • the present invention provides a method for measuring performance parameters of micro-nanoparticles.
  • Step 10 Build a measurement system for micro-nanoparticle performance parameters, the measurement system includes:
  • Detecting vessel for carrying micro-nano particles to be detected
  • Constant temperature control regulator used to control and adjust the temperature in the detection vessel to reach the required temperature value
  • An ultrasonic module for emitting ultrasonic waves to the micro-nanoparticles, receiving an ultrasonic echo signal reflected and scattered by the micro-nanoparticles, and transmitting the ultrasonic echo signals to the information analysis processing module;
  • a muffling module for absorbing excess ultrasonic signals in the detection vessel
  • the signal analysis processing module is configured to process the ultrasonic echo signal to obtain the backscattering intensity of the micro-nanoparticle, and obtain the surface tension and the elastic coefficient of the micro-nanoparticle based on the characteristic formula;
  • Step 20 preparing micro-nano particles, and recording the number of micro-nano particles and the concentration of the micro-nano particles;
  • Step 30 placing a solid-liquid continuous phase medium in the detection vessel, adjusting the temperature in the vessel to a desired temperature by a thermostat controller, and placing the micro-nanoparticles in the solid-liquid continuous phase medium after the temperature is stabilized, And maintaining a constant temperature in the detection vessel;
  • Step 40 Control the ultrasonic module to send ultrasonic waves of the desired frequency to the micro-nano particles, record the applied sound pressure, and observe and record the change of the radius of the micro-nano particles in real time;
  • Step 50 The ultrasonic module receives the ultrasonic echo signal reflected and scattered by the micro-nano particles, and transmits the ultrasonic echo signal to the information analysis processing module; the ultrasonic echo signal is processed by the signal analysis processing module to obtain the back of the micro-nanoparticle Scattering intensity
  • Step 60 The signal analysis processing module determines the surface tension and the elastic coefficient of the micro-nano particles based on the characteristic formula.
  • the present invention can also be improved as follows.
  • the surface tension and the elastic coefficient of the micro-nanoparticle are obtained based on the characteristic formula, which is specifically:
  • the elastic coefficient K S is calculated by the following characteristic formulas (1) and (2):
  • I s is the backscattering intensity of the micro-nanoparticles
  • I is the intensity of the incident acoustic waves
  • N is the number of micro-nanoparticles
  • V is the volume of the micro-nanoparticles
  • ⁇ S is the effective scattering area of the single scattering micro-nanoparticles
  • ⁇ S is the density of the micro-nanoparticles
  • ⁇ L is the density of the medium
  • K is the gas polytropic index
  • R is the radius of the micro-nanoparticles as a function of time
  • the surface tension ⁇ is given by the following characteristic formulas (3), (4), (5):
  • ⁇ L is the density of the medium
  • R is the radius of the particle as a function of time
  • R O is the initial radius of the particle
  • P V is the internal pressure of the particle
  • ⁇ L is the dynamic viscosity of the medium
  • P O is the hydrostatic pressure
  • P ac (t) is the sound pressure
  • c is the velocity of the ultrasonic waves in the medium
  • P GO is the pressure inside the particles.
  • the ultrasound module includes a pulse generation receiver, a transmission transducer, a reception transducer, and a preamplifier;
  • the signal analysis processing module includes an oscilloscope and a computer;
  • the pulse generation receiver is configured to provide a driving voltage for the transmitting transducer, and provide an ultrasonic echo signal amplified by the preamplifier to the oscilloscope for display;
  • the receiving transducer receives an ultrasonic echo signal reflected and scattered by the micro-nanoparticles, and outputs the received ultrasonic echo signal to a preamplifier for amplification;
  • the computer is configured to read the signal displayed on the oscilloscope, obtain the backscattering intensity of the micro-nanoparticle according to the ultrasonic echo signal, and obtain the surface tension and the elastic coefficient of the micro-nanoparticle based on the characteristic formula.
  • the ultrasonic module consisting of a pulse transmitting receiver, a transmitting/receiving transducer and a preamplifier can transmit and receive ultrasonic waves, realize integration of receiving and transmitting, and reduce unnecessary
  • the ultrasonic frequency used can be changed at any time to realize the ultrasonic detection of different frequencies.
  • the critical external force of different particles can be detected, and the critical value of the particles can be determined. When testing, it will not cause harm to the inspectors.
  • the detecting vessel is a cylindrical water tank, and the transmitting transducer and the receiving transducer are mounted on a top of the cylindrical water tank; the sound absorbing module is correspondingly disposed in the cylindrical water tank The bottom is for absorbing excess ultrasonic signals in the cylindrical water tank.
  • the above technical solution has the beneficial effects that the transmitting transducer, the receiving transducer and the muffling module are disposed on the top and the bottom of the cylindrical water tank, so that the muffling module can well eliminate the noise and the clutter. Improve and ensure the accuracy of the test.
  • the muffling module is a sound absorbing material such as a sound absorbing tile or a sound absorbing cotton.
  • the micro-nano particles are prepared by a microfluidic control preparation technology, and the number of micro-nano particles and micro-nano particles are obtained by recording the preparation of the micro-nano particles by using an experimental device such as a super-high speed camera. Concentration parameters.
  • microfluidic control preparation technology Through the microfluidic control preparation technology, the micro-nano level is achieved, and at the same time, the uniform size of most micro-nano particles is ensured, and the test particles have a good unity, and the utilization is utilized.
  • Microfluidic technology can also change the size of particles and prepare particles of different sizes for detecting the surface tension and elastic modulus of particles of different sizes.
  • the measuring method further comprises the following steps:
  • Step 60 The ultrasonic module is controlled to send ultrasonic waves of a desired frequency to the micro-nano particles to be detected, and the critical point of the micro-nano particles is detected by adjusting the sound pressure of the ultrasonic waves, and the sound pressure at this time is recorded; the frequency of the ultrasonic waves is adjusted, and the ultrasonic wave is detected.
  • Step 70 The temperature in the vessel is adjusted by the thermostat controller, and step 60 is repeatedly performed to determine the critical point of the micro-nanoparticle under optimal conditions.
  • the invention has the beneficial effects that the method of the invention can accurately detect the elastic coefficient and surface tension of the micro-nano particles in the same test system and test environment, and provide accurate experimental data for studying the relationship between the elastic coefficient and the surface tension. Therefore, the material characteristics can be more deeply understood, and the service life and quality of the material can be improved.
  • the invention utilizes ultrasonic wave for detection, has good ultrasonic directionality, strong penetrating ability, easy to obtain relatively concentrated sound energy, can be effectively propagated in a medium such as gas, liquid, solid, solid solution; can transmit very strong energy, Produces reflection, interference, superposition and resonance phenomena, which can cause strong impact and cavitation at the interface when propagating in a liquid medium;
  • the method of the present invention is not limited by the detection medium and the object to be detected, making the invention widely applicable.
  • a stable test environment is provided through the constant temperature water tank, and is not restricted and affected by the external environment and conditions, and the ultrasonic wave is absorbed by the muffling module, thereby effectively reducing the ultrasonic impurity. Waves and other interferences ensure the accuracy of the test; the ultrasonic module consisting of a pulse transmitting receiver, a transmitting/receiving transducer, and a preamplifier can transmit and receive ultrasonic waves, achieving integration of receiving and transmitting, and reducing Unnecessary operation and equipment troubles, at the same time, according to the needs of the test, the ultrasonic frequency used can be changed at any time to realize the ultrasonic detection of different frequencies. At the same time, the critical external force of different particles can be detected, and the particle is determined. The critical value, when testing, will not cause harm to the inspector.
  • the method of the present invention can also measure the critical point of micro-nano particles under different conditions, and can directly control the rupture of the particles by determining the critical point of the micro-nano particles under optimal conditions, especially in the medical field. It is conducive to the research of micro-nano materials.
  • FIG. 1 is a schematic structural view of a measurement system of micro-nanoparticle performance parameters.
  • the invention discloses a method for measuring performance parameters of micro-nano particles, comprising the following steps:
  • FIG. 1 is a schematic structural diagram of a measurement system for performance parameters of micro-nano particles; as shown in FIG. 1 , the measurement system includes: a detection vessel 1 for carrying a test to be detected Micro-nanoparticle 4; thermostatically controlled regulator: for adjusting the temperature inside the detection vessel 1; an ultrasonic module for emitting ultrasonic waves to the micro-nanoparticles 4, receiving ultrasonic echo signals reflected and scattered by the micro-nanoparticles 4, and Transmitting ultrasonic echo signals to information points
  • the processing module; the muffling module 3 is configured to absorb the excess ultrasonic signal in the detecting vessel 1; the signal analysis processing module is configured to process the ultrasonic echo signal to obtain the backscattering intensity of the micro-nanoparticle 4, and based on the characteristic formula The surface tension and the modulus of elasticity of the micro-nanoparticles 4 were obtained.
  • the ultrasound module includes a pulse generation receiver, a transmission transducer, a reception transducer, and a preamplifier;
  • the signal analysis processing module includes an oscilloscope and a computer; and a pulse generation receiver for transducing the transmission Providing a driving voltage, and supplying an ultrasonic echo signal amplified by the preamplifier to the oscilloscope for display; transmitting a transducer for outputting ultrasonic waves of the corresponding frequency according to the driving voltage to the micro-nanoparticle 4; receiving a transducer that receives an ultrasonic echo signal reflected and scattered by the micro-nanoparticles 4 and outputs the received ultrasonic echo signal to a preamplifier for amplification; and a computer for reading the signal displayed on the oscilloscope
  • the backscattering intensity of the micro-nanoparticles 4 is obtained from the ultrasonic echo signals, and the surface tension and the elastic modulus of the micro-nanoparticles 4 are obtained based on the
  • the detecting vessel 1 is a cylindrical water tank, the transmitting transducer and the receiving transducer are mounted on the front wall of the cylindrical water tank; and the muffling module 3 is correspondingly placed at the bottom of the cylindrical water tank for Absorbing the excess ultrasonic signal in the cylindrical water tank can eliminate the interference of noise and clutter, and improve and ensure the accuracy of detection.
  • Step 20 preparing micro-nanoparticles 4, and recording the number of micro-nanoparticles 4 and the concentration of micro-nanoparticles 4;
  • step S20 is specifically: preparing micro-nanoparticles 4 by microfluidic control preparation technology, using a super-high speed camera, through The recording of the preparation of the micro-nanoparticles 4 yields the number of micro-nanoparticles and the concentration parameter of the micro-nanoparticles 4; using the microfluidic control preparation technology to achieve the micro-nano level, ensuring the uniform size of most of the micro-nanoparticles 4, It ensures that the test particles have good singularity.
  • the size of the particles can be changed to prepare particles of different sizes for detecting the surface tension and elastic modulus of particles of different sizes.
  • Step 30 placing a solid-liquid continuous phase medium 2 into the detection vessel 1, and adjusting the temperature in the vessel to a desired temperature by a thermostat controller. After the temperature is stabilized, the micro-nanoparticles 4 are placed in the solid-liquid continuous phase. In the medium 2, the temperature in the detection vessel 1 is kept constant. Through the thermostat controller, In order to keep the detection time in a stable environment, the influence of the external environment on the detection result can be effectively avoided. At the same time, the temperature of the constant temperature water tank can be adjusted to realize the detection at different temperatures, and the particles can be determined at different temperatures.
  • the different conditions of the particles, the specific conditions of the particles, is conducive to the comprehensive detection of particles, without receiving the influence of the external environment and conditions, to ensure the accuracy of the test; the use of solid-liquid continuous phase medium 2 can be used to micro-nanoparticles in the medium
  • the motion parameter is used as a continuous function of space point and time. Therefore, mathematical tools can be used to solve its performance parameters.
  • the ultrasonic wave has no obvious attenuation in the solid-liquid continuous medium, and has little effect on the detection effect and the intensity of the echo.
  • Step 40 The ultrasonic module is controlled to send ultrasonic waves of the desired frequency to the micro-nanoparticles 4, the applied sound pressure is recorded, and the radius change of the micro-nanoparticles 4 is observed and recorded in real time; specifically, the pulse-generating receiver is used in the embodiment.
  • the transmitting transducer, the receiving transducer, and the preamplifier are used as ultrasonic modules to transmit ultrasonic waves of a specific frequency and achieve reception, ensuring the singularity of the frequency, the accuracy of the detection, and the detection by different frequencies. Determine the stability and mechanical properties of the particles under different frequencies and sound pressure conditions without being restricted, and more accurate test results can be obtained.
  • Step 50 The ultrasonic module receives the ultrasonic echo signal reflected and scattered by the micro-nanoparticle 4, and transmits the ultrasonic echo signal to the information analysis processing module; the ultrasonic echo signal is processed by the signal analysis processing module to obtain the micro-nanoparticle 4 Backscattering intensity;
  • the signal analysis processing module includes an oscilloscope and a computer; the oscilloscope is used to display the ultrasonic echo signal, and the computer is used to read the signal displayed on the oscilloscope, and obtain the micro according to the ultrasonic echo signal. Backscattering intensity of the nanoparticles 4;
  • Step 60 The signal analysis processing module determines the surface tension and the elastic coefficient of the micro-nanoparticles 4 based on the characteristic formula.
  • the surface tension and the elastic coefficient of the micro-nanoparticles 4 are obtained based on the characteristic formula, which are specifically:
  • the elastic coefficient K S is calculated by the following characteristic formulas (1) and (2):
  • I S is the backscattering intensity of the micro-nanoparticles
  • I is the intensity of the incident sound waves
  • N is the number of the micro-nano particles
  • V is the volume of the micro-nano particles
  • ⁇ S is the effective scattering area of the single scattering micro-nanoparticles
  • ⁇ S is the density of the micro-nanoparticles
  • ⁇ L is the density of the medium
  • K is the gas polytropic index
  • R is the radius of the micro-nanoparticles as a function of time
  • the surface tension ⁇ is given by the following characteristic formulas (3), (4), (5):
  • ⁇ L is the density of the medium
  • R is the radius of the particle as a function of time
  • R O is the initial radius of the particle
  • P V is the internal pressure of the particle
  • ⁇ L is the dynamic viscosity of the medium
  • P O is the hydrostatic pressure
  • P ac (t) is the sound pressure
  • c is the velocity of the ultrasonic wave in the medium
  • P GO is the pressure inside the particle
  • the above characteristic equation (3) is the Rayleigh-Plesset equation (ie Rayleigh-Kings equation), and the Rayleigh-Plesset equation was first proposed by Lord Rayleigh to analyze the mechanical properties such as dynamic pressure and surface tension of particles. Characteristic equation
  • the above characteristic equation (4) is the Herring equation (ie Hering formula); the characteristic equation (5) is the Keller-Miksis equation (ie Keller-Mixsis equation); the Herring equation and the Keller-Miksis equation are Prosperetti (Prosperetti) Peretti) was first proposed to solve for surface tension values in the case of radius attenuation caused by particle vibration.
  • the measurement method further includes the following steps:
  • Step 60 The ultrasonic module is controlled to send ultrasonic waves of a desired frequency to the micro-nanoparticles 4 to be detected, and the critical point of the micro-nanoparticles 4 is detected by adjusting the sound pressure of the ultrasonic waves, and the sound pressure at this time is recorded; the frequency of the ultrasonic waves is adjusted, Detecting the sound pressure when the micro-nanoparticles 4 are at the critical point at different frequencies; in this embodiment, specifically, the driving voltage is supplied by the pulse transmitting receiver of the ultrasonic module, and is converted into a required signal by transmitting the transducer
  • the ultrasonic wave of the frequency is vertically aligned with the transmitting micro-nanoparticle 4 to be detected, and the critical point of the micro-nanoparticle 4 is detected by adjusting the sound pressure of the ultrasonic wave, the sound pressure at this time is recorded, and Perform correlation calculations; adjust the frequency of the transmitting transducer, and then adjust the sound pressure of the ultrasonic waves at different frequencies to detect
  • Step 70 The temperature in the vessel is adjusted by the thermostat controller, and step 60 is repeatedly performed to determine the critical point of the micro-nanoparticles 4 under optimal conditions.
  • the method of the invention utilizes the ratio of backscattering intensity to incident intensity of the free micro-nanoparticles in the solid-liquid continuous phase medium, and the parameters of sound pressure, particle concentration, particle size, medium viscosity, medium density, etc. Characteristic mechanical parameters; can better understand the characteristics of micro-nanoparticles, by detecting the elastic coefficient and surface tension of the particles, and the setting of different parameters, it can better study under what conditions, the particles are the most stable and the longest service life. It is also possible to directly control the rupture of the particles by determining the critical point of the micro-nano particles under optimal conditions, especially in the medical field, which is beneficial to the research of micro-nano materials.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Dispersion Chemistry (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

一种微纳米粒子性能参数的测量方法,包括:搭建一微纳米粒子性能参数的测量系统;该系统包括检测器皿,恒温控制调节器,超声模块,消声模块,信号分析处理模块,利用固液连续相介质中自由微纳米粒子对超声波的背向散射强度与入射强度比值,以及声压、粒子浓度、粒子尺寸、介质粘度、介质密度等参数来计算得到粒子的特征力学参数。该方法可以实现在同一测试系统和测试环境下对微纳米粒子的弹性系数和表面张力进行精确检测,为研究弹性系数和表面张力的关系提供精确的实验数据,因而可以更加深入地了解材料的特性,提高材料的使用寿命、质量。

Description

一种微纳米粒子性能参数的测量方法 技术领域
本发明涉及微纳米粒子的特征力学性能参数的测量,具体涉及一种微纳米粒子性能参数的测量方法。
背景技术
微纳米粒子的特征力学性能参数,特别是表面张力和弹性系数,与粒子的稳定性密切相关。通过研究和检测微纳米粒子的特征力学性能参数,能够更好地研究在什么条件下,微纳米粒子最稳定,使用寿命最长,还可以得到粒子在外界的作用下,最大的稳定临界点等重要信息,从而可以通过控制外界条件,使得粒子能够稳定的,长时间的使用。纳米材料是指材料粒子尺寸在纳米数量级(通常指1-100nm)的极细粒子组成的固体材料,通常划分为两个层次:纳米微粒和纳米固体。纳米材料自从被人们所认识,就与应用紧密联系在一起。纳米粒子的特殊效应导致了纳米材料的特殊性质,而这些特殊性质带来了纳米材料的广泛应用。目前,纳米材料已经在催化、环保、能源行业及新型工程、磁性和防护材料的制备等方面等到了一定的应用。纳米科技与电子学、医学、生物学、计算机科学和军事科学等的交叉渗透,产生了诸如纳米电子学,纳米医学等传统学科前冠以纳米前缀的新学科,为纳米材料展现更为广阔的应用前景,因此,通过研究微纳米粒子,对于微纳米材料的发展有着巨大的作用,同时也是符合国家的重点发展对象。
现有粒子表面张力和弹性系数的常见测量方法:
1、粒子表面张力检测方法:
(1)接触角测量法,在洁净的毛细管中液体平衡时所满足的条件是ρghπγ2=2πrγLAcosθ,式中ρ是液体密度,h是液体在毛细管中上升高度,r 是毛细管半径,γLA是待测液体表面张力系数,θ是液体和毛细管壁的接触角。可利用前面提供的实验仪器,通过对接触角、毛细管管径和液体在毛细管中上升高度的测量,来测定特定温度下液体的特征力学性能参数。
缺点:该检测方法是应用在固体-液交界面上的检测,而且是大分子的检测,对于微纳米级别的检测以及其他接触面的检测,无法进行。
(2)滴重法(滴体积法),自-毛细管滴头滴下液体时,液滴的大小与液体的表面张力有关,即表面张力越大,滴下的液滴也越大,二者存在关系式:
W=2πRγf       (1)
γ=W/(2πRf)      (2)
式中,W为液滴的重量;R为毛细管的滴头半径,其值的大小由测量仪器决定;f为校正系数。一般实验室中测定液滴体积更为方便,因此式(2)又可写为:
γ=(Vρg/R)*(1/2πf)           (3)
式中,V为液滴体积;ρ为液体的密度;f为校正因子。对于特定的测量仪器和被测液体,R和ρ是固定的,在测量过程中,只要测出数滴液体的体积,就可计算出该液体的表面张力。
缺点:a.至今只能算是一种经验方法;b.不能用来测定达到平衡较慢的表面张力,同时该法也不能达到完全的平衡;c.存在准确测定液体体积和很好地控制液滴滴落速度等问题;d.只适用于液体的情况下,同时对于液滴的粒径,无法满足微纳米级别的。
(3)毛细管上升法,将一支毛细管插入液体中,液体将沿毛细管上升,升到一定高度后,毛细管内外液体将达到平衡状态,液体就不再上升了。此时,液面对液体所施加的向上的拉力与液体总的向下的力相等,则γ=1/2ρlg ghr cosθ式中γ为表面张力;r为毛细管的半径;h为毛细管 中液面上升的高度;ρl为测量液体的密度;ρg为气体的密度(空气和蒸汽);g为当地的重力加速度;θ为液体与管壁的接触角。若毛细管管径很小,而且θ=0时,则上式可简化为γ=1/2ρghr。
缺点:a.不易选得内径均匀的毛细管和准确测定内径值;b.液体与管壁的接触角不易测量;c.溶液的纯度会对表面张力的测量造成不同程度的影响。d.需要较多液体才能获得水平基准面(一般认为直径在10cm以上液面才能看作平面),所以基准液面的确定可能产生误差;e.只适用于液体的检测,无法用于气体等的检测,而且达不到微纳米的级别。
目前,还有许多现代仪器方法,如最大气泡压力法差分最大气泡压力法、Wilhelmy盘法、滴外形法等。但是,上述的所有方法,均是对液体的表面张力的检测,无法实现微纳米级材料粒子表面张力的检测。而且,这种检测方法,只是局限在液气的条件下,无法测试其他环境下的特征力学性能参数。
2、粒子弹性系数检测方法:
原子力显微镜测试材料粒子的弹性系数,原子力显微镜称为AFM,即Atomic Force Microscope,在AFM的系统中,所要检测的力是原子与原子之间的范德华力,所以在本系统中是使用微小悬臂来检测原子之间力的变化量。微悬臂通常由一个一般100-500um长和大约500nm-5um厚的硅片或氮化硅片制成。微悬臂顶端有一个尖锐针尖,用来检测样品-针尖间的相互作用力,利用AFM获得的力谱曲线在生物医学中的应用:在探测一个细胞之后,根据所遇到的阻力,AFM就会赋予一个表明力度的数值,即为粒子的力谱,并通过粒子的变形情况,利用杨氏模量,就可以得到相应的弹性系数。
缺点:AFM的缺点在于成像范围太小,速度慢,受探头的影响太大。该检测方法是在空气中检测,较为精确,但检测液体样品时,由于溶剂分子的存在,将会严重影响探头的检测,无法保证检测精度,同时也不能达到本 项目的目的,更无法将两个检测量联系到一起。
目前,对于微纳米粒子,特别是液相体系中处于自由状态的微纳米粒子特征力学性能参数的检测方法,都无法提供可靠、准确、精密的检测结果,而且很多检测方法对于粒子的尺寸下限都无法达到微纳米级,受外部环境的限制比较严重,可应用范围小。
发明内容
为解决现有技术中存在的问题,本发明提供一种微纳米粒子性能参数的测量方法。
本发明解决上述技术问题的技术方案如下:一种微纳米粒子性能参数的测量方法,包括如下步骤:
步骤10:搭建一微纳米粒子性能参数的测量系统,该测量系统包括:
检测器皿,用于承载待检测的微纳米粒子;
恒温控制调节器:用于控制、调节检测器皿内的温度达到所需的温度值;
超声模块,用于将超声波发射至微纳米粒子,接收由微纳米粒子反射和散射的超声波回波信号,并将超声波回波信号传输至信息分析处理模块;
消声模块,用于吸收检测器皿中多余的超声波信号;
信号分析处理模块,用于对超声波回波信号进行处理得到微纳米粒子的背向散射强度,并基于特征公式求得微纳米粒子的表面张力和弹性系数;
步骤20:制备微纳米粒子,并记录微纳米粒子个数、微纳米粒子的浓度;
步骤30:向检测器皿内放置固液连续相介质,通过恒温控制器调节器皿内的温度达到所需温度,待温度稳定后,将所述微纳米粒子置于所述固液连续相介质中,并维持检测器皿内温度恒定;
步骤40:控制超声模块向微纳米粒子发送所需频率的超声波,记录施加的声压,实时观测并记录微纳米粒子的半径变化情况;
步骤50:超声模块接收由微纳米粒子反射和散射的超声波回波信号,并将超声波回波信号传输至信息分析处理模块;由信号分析处理模块对超声波回波信号进行处理得到微纳米粒子的背向散射强度;
步骤60:信号分析处理模块基于特征公式求得微纳米粒子的表面张力和弹性系数。
在上述技术方案的基础上,本发明还可以做如下改进。
进一步,所述步骤S60中基于特征公式求得微纳米粒子的表面张力和弹性系数,其具体为:
弹性系数KS由以下特征公式(1)和(2)计算出:
Figure PCTCN2016080297-appb-000001
Figure PCTCN2016080297-appb-000002
其中,Is为微纳米粒子背向散射强度,I为入射声波的强度,N为微纳米粒子的个数,V为微纳米粒子的体积,∑S为单个散射微纳米粒子的有效散射面积,ρS为微纳米粒子的密度,ρL为介质的密度,K为气体多变指数,R为随时间变化的微纳米粒子的半径;
表面张力σ由以下特征公式(3)、(4)、(5)给出:
Figure PCTCN2016080297-appb-000003
Figure PCTCN2016080297-appb-000004
Figure PCTCN2016080297-appb-000005
其中,ρL为介质的密度,R为随时间变化的粒子的半径,RO为粒子的初始半径,PV为粒子的内部压力,ηL为介质的动力粘度,PO为流体静压力,Pac(t)为声压,c为介质中超声波的速度,PGO为粒子内部的压强。
进一步,所述超声模块包括脉冲发生接收器、发送换能器、接收换能器、前置放大器;所述信号分析处理模块包括示波器和计算机;
所述脉冲发生接收器,其用于为所述发送换能器提供驱动电压,并将经前置放大器放大的超声波回波信号提供给所述示波器进行显示;
所述发送换能器,其用于根据所述驱动电压输出相应频率的超声波至微纳米粒子;
所述接收换能器,其接收由微纳米粒子反射和散射的超声波回波信号,并将接收的超声波回波信号输出至前置放大器进行放大;
所述计算机,其用于对示波器上显示的信号进行读取,根据超声波回波信号得到微纳米粒子的背向散射强度,并基于特征公式求得微纳米粒子的表面张力和弹性系数。
上述进一步技术方案的有益效果是:通过由脉冲发送接收器、发送/接收换能器、前置放大器组成的超声模块,可以发射和接受超声波,实现了接收和发射的一体化,减少了不必要的操作和设备的麻烦,同时可以根据测试的需要,随时的改变所用的超声频率,实现不同频率的超声波的检测,同时,可以检测出不同粒子的临界外部作用力的大小,确定粒子的临界值,在进行检测时,更不会对检测人员造成伤害。
进一步,所述检测器皿为圆柱形水槽,所述发送换能器和接收换能器安装在所述圆柱形水槽的顶部;所述消声模块相对应的置于所述圆柱形水槽的 底部,用于吸收所述圆柱形水槽中多余的超声波信号。
上述进一步技术方案的有益效果是:将发送换能器、接收换能器与消声模块相对的设置在圆柱形水槽的顶部和底部,使消声模块能够很好的消除杂声、杂波,提高和确保检测的准确性。
进一步,所述消声模块为消声瓦或消声棉等消声材料。
进一步,所述步骤S20其具体为:通过微流控制制备技术制备微纳米粒子,利用如超高速摄像机等实验设备,通过对微纳米粒子制备的记录,得出微纳米粒子个数、微纳米粒子的浓度参数。
上述进一步技术方案的有益效果是:通过微流控制备技术,达到了微纳米级别,同时确保了绝大部分微纳米粒子的统一尺寸,保证了测试粒子有很好的单一性,还有,利用微流控技术,还可以改变粒子的尺寸,制备出不同大小的粒子,用于检测不同大小的粒子的表面张力和弹性系数。
进一步,该测量方法还包括如下步骤:
步骤60:控制超声模块向待检测的微纳米粒子发送所需频率的超声波,通过调节超声波的声压,检测出微纳米粒子的临界点,记录此时的声压;调节超声波的频率,检测出在不同频率下,微纳米粒子处于临界点时的声压;
步骤70:通过恒温控制器调节器皿内的温度,重复执行步骤60,确定最佳条件下的微纳米粒子的临界点。
本发明的有益效果是:本发明所述方法可以实现在同一测试系统和测试环境下对微纳米粒子的弹性系数和表面张力进行精确检测,为研究弹性系数和表面张力的关系提供精确的实验数据,因而可以更加深入地了解材料的特性,提高材料的使用寿命、质量。本发明利用超声波进行检测,超声波向性好,穿透能力强,易于获得较集中的声能,可在气体、液体、固体、固熔体等介质中有效传播;可传递很强的能量,会产生反射、干涉、叠加和共振现象,在液体介质中传播时,可在界面上产生强烈的冲击和空化现象;因而, 本发明所述方法不会受到检测介质和检测的对象的限制,使得本发明应用广泛。
另外,在本发明所述方法中,通过恒温水槽,提供一个稳定的测试环境,不会受到外界环境和条件的限制和影响,通过消声模块,将多余的超声波进行吸收,可以有效减少超声杂波等干扰,确保了测试的精确度;通过由脉冲发送接收器、发送/接收换能器、前置放大器组成的超声模块,可以发射和接受超声波,实现了接收和发射的一体化,减少了不必要的操作和设备的麻烦,同时可以根据测试的需要,随时的改变所用的超声频率,实现不同频率的超声波的检测,同时,可以检测出不同粒子的临界外部作用力的大小,确定粒子的临界值,在进行检测时,更不会对检测人员造成伤害。
另外,本发明所述方法还可以测得不同条件下的微纳米粒子临界点,可以通过确定最佳条件下的微纳米粒子的临界点直接控制粒子的破裂,特别是医学领域可以有广泛的应用,有利于微纳米材料的研究。
附图说明
图1为微纳米粒子性能参数的测量系统结构示意图。
具体实施方式
以下结合附图对本发明的原理和特征进行描述,所举实例只用于解释本发明,并非用于限定本发明的范围。
本发明一种微纳米粒子性能参数的测量方法,包括如下步骤:
步骤S10:搭建一微纳米粒子性能参数的测量系统,图1为微纳米粒子性能参数的测量系统结构示意图;如图1所示,该测量系统,包括:检测器皿1,用于承载待检测的微纳米粒子4;恒温控制调节器:用于调节检测器皿1内的温度;超声模块,用于将超声波发射至微纳米粒子4,接收由微纳米粒子4反射和散射的超声波回波信号,并将超声波回波信号传输至信息分 析处理模块;消声模块3,用于吸收检测器皿1中多余的超声波信号;信号分析处理模块,用于对超声波回波信号进行处理得到微纳米粒子4的背向散射强度,并基于特征公式求得微纳米粒子4的表面张力和弹性系数。
在本具体实施例中,超声模块包括脉冲发生接收器、发送换能器、接收换能器、前置放大器;信号分析处理模块包括示波器和计算机;脉冲发生接收器,其用于为发送换能器提供驱动电压,并将经前置放大器放大的超声波回波信号提供给所述示波器进行显示;发送换能器,其用于根据所述驱动电压输出相应频率的超声波至微纳米粒子4;接收换能器,其接收由微纳米粒子4反射和散射的超声波回波信号,并将接收的超声波回波信号输出至前置放大器进行放大;计算机,其用于对示波器上显示的信号进行读取,根据超声波回波信号得到微纳米粒子4的背向散射强度,基于特征公式求得微纳米粒子4的表面张力和弹性系数。在本具体实施例中,检测器皿1为圆柱形水槽,发送换能器和接收换能器安装在圆柱形水槽的前壁;消声模块3相对应的置于圆柱形水槽的底部,用于吸收圆柱形水槽中多余的超声波信号,能够很好的消除杂声、杂波的干扰,提高和确保检测的准确性。
步骤20:制备微纳米粒子4,并记录微纳米粒子4个数、微纳米粒子4的浓度;步骤S20其具体为:通过微流控制制备技术制备微纳米粒子4,利用超高速摄像机,通过对微纳米粒子4制备的记录,得出微纳米粒子4个数、微纳米粒子4的浓度参数;采用微流控制备技术,达到微纳米级别,确保了绝大部分微纳米粒子4的统一尺寸,保证了测试粒子有很好的单一性,另外,利用微流控技术,还可以改变颗粒的尺寸,制备出不同大小的颗粒,用于检测不同大小的颗粒的表面张力和弹性系数。
步骤30:向检测器皿1内放置固液连续相介质2,通过恒温控制器调节器皿内的温度达到所需温度,待温度稳定后,将所述微纳米粒子4置于所述固液连续相介质2中,并维持检测器皿1内温度恒定。通过恒温控制器,可 以使得检测时刻保持在一个稳定的环境下,可以有效地避免外界环境对检测结果的影响,同时,可以通过调节恒温水槽的温度,实现在不同温度下的检测,能够确定在不同温度下,颗粒的不同状态,得到颗粒的具体情况,有利于综合的检测粒子,而不会收到外界环境和条件的影响,保证了测试的准确性;使用固液连续相介质2可将微纳米粒子在介质中的运动参数作为空间点和时间的连续函数,因而可以采用数学工具来求解其性能参数;另外超声波在固液连续介质中无明显衰减,对检测的效果和回波的强度影响小。
步骤40:控制超声模块向微纳米粒子4发送所需频率的超声波,记录施加的声压,实时观测并记录微纳米粒子4的半径变化情况;具体的,在本实施例中使用脉冲发生接收器、发送换能器、接收换能器、前置放大器作为超声模块,可以发送特定频率的超声波,并实现接收,确保了频率的单一性,检测的准确性,并且可以通过不同频率来进行检测,确定不同频率、声压条件下,颗粒的稳定和力学特性,而不会受到限制,可以得到更加精准的测试结果。
步骤50:超声模块接收由微纳米粒子4反射和散射的超声波回波信号,并将超声波回波信号传输至信息分析处理模块;由信号分析处理模块对超声波回波信号进行处理得到微纳米粒子4的背向散射强度;在本实施例中,信号分析处理模块包括示波器和计算机;示波器用于显示超声波回波信号,计算机用于对示波器上显示的信号进行读取,根据超声波回波信号得到微纳米粒子4的背向散射强度;
步骤60:信号分析处理模块基于特征公式求得微纳米粒子4的表面张力和弹性系数。所述步骤S60中基于特征公式求得微纳米粒子4的表面张力和弹性系数,其具体为:
弹性系数KS由以下特征公式(1)和(2)计算出:
Figure PCTCN2016080297-appb-000006
Figure PCTCN2016080297-appb-000007
其中,IS为微纳米粒子背向散射强度,I为入射声波的强度,N为微纳米粒子的个数,V为微纳米粒子的体积,∑S为单个散射微纳米粒子的有效散射面积,ρS为微纳米粒子的密度,ρL为介质的密度,K为气体多变指数,R为随时间变化的微纳米粒子的半径;
表面张力σ由以下特征公式(3)、(4)、(5)给出:
Figure PCTCN2016080297-appb-000008
Figure PCTCN2016080297-appb-000009
Figure PCTCN2016080297-appb-000010
其中,ρL为介质的密度,R为随时间变化的粒子的半径,RO为粒子的初始半径,PV为粒子的内部压力,ηL为介质的动力粘度,PO为流体静压力,Pac(t)为声压,c为介质中超声波的速度,PGO为粒子内部的压强,又
Figure PCTCN2016080297-appb-000011
上述特征方程(3)是Rayleigh-Plesset方程(即瑞利-金斯方程),Rayleigh-Plesset方程是Lord Rayleigh(瑞利)最早提出的,用于分析粒子的动态压力和表面张力等力学特性的特征方程;
上述特征方程(4)是Herring方程(即赫林公式);特征方程(5)是Keller-Miksis方程(即凯勒-米克西斯方程);Herring方程和Keller-Miksis方程是Prosperetti(普罗斯佩雷蒂)最早提出,适用于求解在粒子振动个引起的半径衰减的情况下的表面张力值。
该测量方法还包括如下步骤:
步骤60:控制超声模块向待检测的微纳米粒子4发送所需频率的超声波,通过调节超声波的声压,检测出微纳米粒子4的临界点,记录此时的声压;调节超声波的频率,检测出在不同频率下,微纳米粒子4处于临界点时的声压;在本实施例中,具体的,由超声模块的脉冲发送接收器提供驱动电压,经由发送换能器,转换成所需频率的超声波,将发送换能器垂直的对准要检测的微纳米粒子4,通过调节超声波的声压,检测出微纳米粒子4的临界点,将此时的声压记录下来,并将其进行相关计算;将发送换能器的频率进行调节,然后在不同的频率的情况下,调节超声波的声压,检测出微纳米粒子4在不同的超声波频率的条件下,不同的临界点,并将其进行记录;
步骤70:通过恒温控制器调节器皿内的温度,重复执行步骤60,确定最佳条件下的微纳米粒子4的临界点。
本发明所述方法利用固液连续相介质中自由微纳米粒子对超声波的背向散射强度与入射强度比值,以及声压、粒子浓度、粒子尺寸、介质粘度、介质密度等参数来计算得到粒子的特征力学参数;可以更好的了解微纳米粒子的特性,通过检测粒子的弹性系数和表面张力,以及不同参数的设置,能够更好地研究在什么条件下,粒子是最稳定,使用寿命最长,更可以通过确定最佳条件下的微纳米粒子的临界点直接控制粒子的破裂,特别是医学领域应用更加广泛,有利于微纳米材料的研究。
以上所述实施步骤和方法仅仅表达了本发明的一种实施方式,描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。在不脱离本 发明专利构思的前提下,所作的变形和改进应当都属于本发明专利的保护范围。

Claims (7)

  1. 一种微纳米粒子性能参数的测量方法,其特征在于,包括如下步骤:
    步骤10:搭建一微纳米粒子性能参数的测量系统,该测量系统包括:
    检测器皿,用于承载待检测的微纳米粒子;
    恒温控制调节器:用于控制、调节检测器皿内的温度达到所需的温度值;
    超声模块,用于将超声波发射至微纳米粒子,接收由微纳米粒子反射和散射的超声波回波信号,并将超声波回波信号传输至信息分析处理模块;
    消声模块,用于吸收检测器皿中多余的超声波信号;
    信号分析处理模块,用于对超声波回波信号进行处理得到微纳米粒子的背向散射强度,并基于特征公式求得微纳米粒子的表面张力和弹性系数;
    步骤20:制备微纳米粒子,并记录微纳米粒子个数、微纳米粒子的浓度;
    步骤30:向检测器皿内放置固液连续相介质,通过恒温控制器调节器皿内的温度达到所需温度,待温度稳定后,将所述微纳米粒子置于所述固液连续相介质中,并维持检测器皿内温度恒定;
    步骤40:控制超声模块向微纳米粒子发送所需频率的超声波,记录施加的声压,实时观测并记录微纳米粒子的半径变化情况;
    步骤50:超声模块接收由微纳米粒子反射和散射的超声波回波信号,并将超声波回波信号传输至信息分析处理模块;由信号分析处理模块对超声波回波信号进行处理得到微纳米粒子的背向散射强度;
    步骤60:信号分析处理模块基于特征公式求得微纳米粒子的表面张力和弹性系数。
  2. 根据权利要求1所述一种微纳米粒子性能参数的测量方法,其特征在于:所述步骤S60中基于特征公式求得微纳米粒子的表面张力和弹性系数,其具体为:
    弹性系数Ks由以下特征公式(1)和(2)计算出:
    Figure PCTCN2016080297-appb-100001
    Figure PCTCN2016080297-appb-100002
    其中,Is为微纳米粒子背向散射强度,I为入射声波的强度,N为微纳米粒子的个数,V为微纳米粒子的体积,∑S为单个散射微纳米粒子的有效散射面积,ρS为微纳米粒子的密度,ρL为介质的密度,K为气体多变指数,R为随时间变化的微纳米粒子的半径;
    表面张力σ由以下特征公式(3)、(4)、(5)给出:
    Figure PCTCN2016080297-appb-100003
    Figure PCTCN2016080297-appb-100004
    Figure PCTCN2016080297-appb-100005
    其中,ρL为介质的密度,R为随时间变化的粒子的半径,R0为粒子的初始半径,RV为粒子的内部压力,ηL为介质的动力粘度,P0为流体静压力,Pac(t)为声压,c为介质中超声波的速度,PG0为粒子内部的压强。
  3. 根据权利要求1或2所述一种微纳米粒子性能参数的测量方法,其特征在于:所述超声模块包括脉冲发生接收器、发送换能器、接收换能器、 前置放大器;所述信号分析处理模块包括示波器和计算机;
    所述脉冲发生接收器,其用于为所述发送换能器提供驱动电压,并将经前置放大器放大的超声波回波信号提供给所述示波器进行显示;
    所述发送换能器,其用于根据所述驱动电压输出相应频率的超声波至微纳米粒子;
    所述接收换能器,其接收由微纳米粒子反射和散射的超声波回波信号,并将接收的超声波回波信号输出至前置放大器进行放大;
    所述计算机,其用于对示波器上显示的信号进行读取,根据超声波回波信号得到微纳米粒子的背向散射强度,并基于特征公式求得微纳米粒子的表面张力和弹性系数。
  4. 根据权利要求3所述一种微纳米粒子性能参数的测量方法,其特征在于:所述检测器皿为圆柱形水槽,所述发送换能器和接收换能器安装在所述圆柱形水槽的顶部;所述消声模块相对应的置于所述圆柱形水槽的底部,用于吸收所述圆柱形水槽中多余的超声波信号。
  5. 根据权利要求1或2所述一种微纳米粒子性能参数的测量方法,其特征在于:所述消声模块为消声瓦或消声棉。
  6. 根据权利要求1或2所述一种微纳米粒子性能参数的测量方法,其特征在于,所述步骤S20其具体为:通过微流控制制备技术制备微纳米粒子,利用超高速摄像机,通过对微纳米粒子制备的记录,得出微纳米粒子个数、微纳米粒子的浓度参数。
  7. 根据权利要求1或2所述一种微纳米粒子性能参数的测量方法,其特征在于:该测量方法还包括如下步骤:
    步骤60:控制超声模块向待检测的微纳米粒子发送所需频率的超声波,通过调节超声波的声压,检测出微纳米粒子的临界点,记录此时的声压;调节超声波的频率,检测出在不同频率下,微纳米粒子处于临界点时的声压;
    步骤70:通过恒温控制器调节器皿内的温度,重复执行步骤60,确定最佳条件下的微纳米粒子的临界点。
PCT/CN2016/080297 2015-05-20 2016-04-27 一种微纳米粒子性能参数的测量方法 WO2016184299A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510263349.9A CN104880390B (zh) 2015-05-20 2015-05-20 一种微纳米粒子性能参数的测量方法
CN201510263349.9 2015-05-20

Publications (1)

Publication Number Publication Date
WO2016184299A1 true WO2016184299A1 (zh) 2016-11-24

Family

ID=53947967

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/080297 WO2016184299A1 (zh) 2015-05-20 2016-04-27 一种微纳米粒子性能参数的测量方法

Country Status (2)

Country Link
CN (1) CN104880390B (zh)
WO (1) WO2016184299A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104880390B (zh) * 2015-05-20 2017-10-27 华南师范大学 一种微纳米粒子性能参数的测量方法
CN108132085B (zh) * 2017-12-21 2019-05-28 山东理工大学 一种基于隧道效应的纳微质量测量装置与方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2709698A1 (de) * 1977-03-05 1978-09-07 Battelle Institut E V Verfahren und vorrichtung zur bestimmung von dichte, oberflaechenspannung und viskositaet an kleinen fluessigkeitsvolumina
JP2000338113A (ja) * 1999-05-27 2000-12-08 Hitachi Ltd 化学分析装置
US20050193805A1 (en) * 2002-11-07 2005-09-08 Williams Roger O. Acoustic method for determining the viscosity and/or surface tension of a liquid
CN102830049A (zh) * 2012-09-03 2012-12-19 北京理工大学 多相流体颗粒粒度超声阵列微纳检测方法
CN203941081U (zh) * 2014-05-09 2014-11-12 黄河科技学院 一种测量不同温度下液体表面张力系数的实验装置
CN104880390A (zh) * 2015-05-20 2015-09-02 华南师范大学 一种微纳米粒子性能参数的测量方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0609518A2 (pt) * 2005-03-22 2011-10-18 Commw Scient And Ind Reseaech Organisation sistema e método para determinar propriedades médias de partìculas constituintes de uma amostra de material
US7661293B2 (en) * 2007-02-06 2010-02-16 Cosense, Inc. Ultrasonic system for detecting and quantifying of air bubbles/particles in a flowing liquid

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2709698A1 (de) * 1977-03-05 1978-09-07 Battelle Institut E V Verfahren und vorrichtung zur bestimmung von dichte, oberflaechenspannung und viskositaet an kleinen fluessigkeitsvolumina
JP2000338113A (ja) * 1999-05-27 2000-12-08 Hitachi Ltd 化学分析装置
US20050193805A1 (en) * 2002-11-07 2005-09-08 Williams Roger O. Acoustic method for determining the viscosity and/or surface tension of a liquid
CN102830049A (zh) * 2012-09-03 2012-12-19 北京理工大学 多相流体颗粒粒度超声阵列微纳检测方法
CN203941081U (zh) * 2014-05-09 2014-11-12 黄河科技学院 一种测量不同温度下液体表面张力系数的实验装置
CN104880390A (zh) * 2015-05-20 2015-09-02 华南师范大学 一种微纳米粒子性能参数的测量方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MAJID, M. ET AL.: "Fabrication, characterization, and measurement of some physicochemical properties of ZnO nanofluids", INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, vol. 31, 15 March 2010 (2010-03-15), pages 599 - 605, XP027474498 *

Also Published As

Publication number Publication date
CN104880390A (zh) 2015-09-02
CN104880390B (zh) 2017-10-27

Similar Documents

Publication Publication Date Title
Mollinger et al. Measurement of the lift force on a particle fixed to the wall in the viscous sublayer of a fully developed turbulent boundary layer
US7984642B2 (en) System and method for ultrasonic measuring of particle properties
CN101169363A (zh) 颗粒粒度、浓度和密度测量方法及其装置
US9645119B2 (en) System for measuring propagation velocity of sound wave and method of measuring propagation velocity of sound wave
CN108318384B (zh) 一种基于液滴机械振动的液体表面张力测试方法
WO2016129399A1 (ja) 超音波粒子径測定器及び超音波測定装置
CN114459649B (zh) 一种基于压电换能器阵列的无基线数据平面应力场在线监测方法、系统、设备和介质
CN114994175B (zh) 模态分解双谱分析的空耦超声应力检测装置及方法
CN104251883A (zh) 一种非接触式检测岩石声波速度的方法
Falou et al. The measurement of ultrasound scattering from individual micron-sized objects and its application in single cell scattering
WO2016184299A1 (zh) 一种微纳米粒子性能参数的测量方法
US7010962B2 (en) Characterization of liquids using gas bubbles
Hossein et al. Application of acoustic techniques to fluid-particle systems–a review
CN201096703Y (zh) 颗粒粒度、浓度和密度测量装置
CN109490417B (zh) 一种金属材料平面各向异性超声检测方法
Addali Monitoring gas void fraction in two-phase flow with acoustic emission
Richards et al. Sound absorption by suspensions of nonspherical particles: Measurements compared with predictions using various particle sizing techniques
CN106680375A (zh) 用于确定材料的弹性模量的空气耦合超声检测方法
CN203224419U (zh) 液体密度仪
CN215574842U (zh) 一种煤试样的可调围压超声波测试装置
RU2416089C1 (ru) Способ определения вязкости магнитной жидкости или магнитного коллоида
CN104122170A (zh) 液体密度仪
CN112464580A (zh) 基于三维时序原位观测装置的沉积物输运通量动态分析方法
RU2650753C1 (ru) Способ определения параметров взвешенных частиц
Liberzon et al. An inexpensive method for measurements of static pressure fluctuations

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16795786

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16795786

Country of ref document: EP

Kind code of ref document: A1