CN201096703Y - 颗粒粒度、浓度和密度测量装置 - Google Patents

颗粒粒度、浓度和密度测量装置 Download PDF

Info

Publication number
CN201096703Y
CN201096703Y CNU2007200750639U CN200720075063U CN201096703Y CN 201096703 Y CN201096703 Y CN 201096703Y CN U2007200750639 U CNU2007200750639 U CN U2007200750639U CN 200720075063 U CN200720075063 U CN 200720075063U CN 201096703 Y CN201096703 Y CN 201096703Y
Authority
CN
China
Prior art keywords
concentration
computing machine
density
transducer
grain graininess
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNU2007200750639U
Other languages
English (en)
Inventor
苏明旭
蔡小舒
薛明华
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Shanghai for Science and Technology
Original Assignee
University of Shanghai for Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Shanghai for Science and Technology filed Critical University of Shanghai for Science and Technology
Priority to CNU2007200750639U priority Critical patent/CN201096703Y/zh
Application granted granted Critical
Publication of CN201096703Y publication Critical patent/CN201096703Y/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

一种颗粒粒度、浓度和密度测量装置,涉及超声测量技术领域;所要解决的是提高超声测量通用性和准确性的技术问题;该测量装置包括依次连接的计算机、信号处理电路、脉冲波发射/接收电路、宽带换能器,宽带换能器设于缓冲板外侧;装置由计算机控制,发射电路发出脉冲电信号,经触发换能器,反回的直接反射波和透射回波经过信号处理电路传输给计算机进行处理;计算机为能进行将信号根据设定公式计算得混合物密度、由已知的颗粒物和连续介质密度计算得浓度值、由直接反射波和透射回波计算得颗粒粒度分布的计算机;计算机设有用于显示测量结果的曲线和数据的屏幕。本实用新型具有基于反射式超声信号测量和分析的,通用性强,测量结果准确的特点。

Description

颗粒粒度、浓度和密度测量装置
技术领域
本实用新型涉及超声测量技术,特别是涉及一种利用反射式超声信号对两相流(悬浊液或乳浊液)中处于离散状态颗粒的粒度、浓度以及混合物密度进行同时测量的装置的技术。
背景技术
对两相流中分散状颗粒粒度和浓度进行测量,在涉及两相流动的能源、化工、医药、环境、水利、材料等领域中具有广泛应用背景。现有颗粒测量方法如筛分法、显微镜法、全息法、电感应法、沉降法和光散射法等,通常很难实现高浓度条件下的快速,非接触在线测量。
超声波具有宽的频带范围,强的穿透能力,可在有色甚至不透明的物质中传播并具有测量速度快,容易实现测量和数据处理的自动化等优点,超声波传感器价格低且耐污损。
由于超声在颗粒系中的传播规律与颗粒物的粒度和浓度密切相关,可用作颗粒粒度和浓度测量。现有的超声颗粒浓度测量方法,多采用经验公式或事先标定,未能很好考虑多分散分布状态的颗粒物的粒度差异对声衰减、声速谱影响,严格的声学理论模型已表明颗粒尺寸大小及分布差异对声衰减、声速影响很大,忽略该影响导致测量方法通用性差,难以确保结果准确,也不能获得颗粒的粒度分布。
实用新型内容
针对上述现有技术中存在的缺陷,本实用新型所要解决的技术问题是提供一种基于反射式超声信号测量和分析的,通用性强,测量结果准确的颗粒粒度、浓度和密度测量装置。
本实用新型所提供的一种颗粒粒度、浓度和密度测量装置,包括进行数据处理的计算机(带分析软件),连接计算机的信号处理电路,连接信号处理电路的脉冲波发射/接收电路,连接脉冲波发射/接收电路的宽带换能器,宽带换能器设于缓冲板外侧;装置由计算机控制,发射电路发出脉冲电信号,经触发换能器,声波部分被缓冲板反射回来由换能器接收设为直接反射波,另一部分透射后在待测颗粒两相流中传播并被反射板反射再由换能器接收设为透射回波,并经过信号处理电路传输给计算机处理;所述计算机为能进行将信号根据设定公式计算得混合物密度、由已知的颗粒物和连续介质密度计算得浓度值、由直接反射波和透射回波计算得颗粒粒度分布的计算机;计算机设有用于直接显示测量结果的曲线和数据的屏幕。
进一步的,所述信号处理电路设有高速A/D转换单元和信号放大单元。
进一步的,所述宽带换能器为自发自收宽带换能器。
进一步的,所述计算机设有用于保存测量结果的硬盘;供以后分析使用。
进一步的,所述缓冲板和反射板为管道中相对的二侧壁。
进一步的,所述缓冲板设于宽带探头凹槽的一侧,所述反射板设于宽带探头凹槽对面的另一侧;宽带探头以法兰形式和管道连接或插入管道中作在线检测。
利用本实用新型提供的颗粒粒度、浓度和密度测量装置,由于采用基于反射式超声信号测量和分析的计算模式,可以对悬浊液或乳剂形式的颗粒物样品进行颗粒粒度、浓度和等效密度的检测,避难了多分散分布状态的颗粒物的粒度差异对声衰减、声速谱影响,提高了测量方法通用性,确保了测量结果的准确性,同时可以用作含颗粒物液液,液固两相流的在线测量。
附图说明
图1是本实用新型实施例的颗粒粒度、浓度和密度测量装置的结构示意图;
图2是本实用新型实施例的颗粒粒度、浓度和密度测量过程中的多次反射信号的示意图;
图3是本实用新型实施例的颗粒粒度、浓度和密度测量探头的结构示意图。
具体实施方式
以下结合附图说明对本实用新型的实施例作进一步详细描述,但本实施例并不用于限制本实用新型,凡是采用本实用新型的相似结构及其相似变化,均应列入本实用新型的保护范围。
本实用新型实施例的颗粒粒度、浓度和密度测量工作原理:
①反射系数和声学特征阻抗测量:通过比较待测样品和标定物质的反射信号,当分别测量区放置样品或者标定物质,在缓冲板和测量区界面间有不同反射系数。将而这相比,有如下关系:
R s R c = M s M c
其中,Rs和Rc分别为对样品和标定物质(如纯水)进行测试时的反射系数,Ms和Mc为对应超声信号的幅度;进一步换算出两相介质声学特征阻抗:
Z s = Z b ( 1 + R s 1 - R s )
其中Zs表示颗粒和连续介质的两相体混合物(以下简称:混合物)的声学特征阻抗,Zb表示壁面的声学特征阻抗。按
ρs=Zs/c
即可通过测量声速直接计算混合物等效密度,利用已知的颗粒和连续相密度,可以求解浓度
φ=[ρpsl)]/[ρspl)]
上式中下标p指颗粒,l指连续介质(通常为液体)。由于声阻抗法可直接测得浓度,降低声衰减谱求解粒度困难。同时反射系数可修正声衰减计算中界面反射和透射损失。
②衰减系数和声速测量:如图1所示,换能器4发出声波部分被缓冲板5反射,部分透过缓冲板在介质6中传播并由对面反射板7反射,再次通过介质6和缓冲板5并被换能器4接收,这样即可得到直接反射波A和透射回波B(如图2所示),由快速傅立叶变换技术得直接反射波A和透射回波B的幅值谱并修正了声反射,透射和扩散损失后得声衰减谱
α meas ( f ) = 1 L ln ( M A ( f ) M B ( f ) ) - α c ;
其中MA(f)为直接反射波幅值,MB(f)为透射回波幅值,L为声程,而αc为考虑声反射,扩散效果的超声衰减修正系数,可标定获取。同时,由直接反射波A和透射回波B的时差可测声速
c=ΔL/Δt=ΔL/(tB-tA)
其中ΔL为声程差,而Δt为2波形记录时间差。
③采用宽带换能器,对时域信号作快速傅立叶变换得超声幅值相位谱,以中心频率10MHz宽带换能器为例,其在-6dB内衰减包含频率范围约5~15MHz,为反演提供了丰富的频谱信息。
④按照声波动理论,高浓度颗粒两相体系中复波数公式:
κ 2 = ω 2 k a * × ρ [ ρ ′ ( 1 - φ + φS ) + ρS ( 1 - φ ) ] ρ ′ ( 1 - φ ) 2 + ρ [ S + φ ( 1 - φ ) ]
式中:角频率ω=2πf,φ为颗粒浓度,ka *为绝热压缩系数,S是浓度,粒度和物性的函数。声衰减系数和声速可按,衰减系数α=-Im(κ),声速c=ω/Re(κ),由复波数κ给出。通过上述公式,可以计算不同超声频率,颗粒粒度和浓度时的超声衰减系数(声速)。
⑤为求解颗粒粒度分布,按照上面计算的理论声衰减系数(αtheory(f))与实验测量信号换算得的声衰减系数αmeas(f)=ln[MA(f)/MB(f)]/L-αc构造误差函数,
E = Σ i = 1 N f ( α meas ( f i ) - α theory ( f i ) α theory , i ) 2 N f
这样,可以按照最优化理论进行优化目标函数;为计算颗粒粒度分布,需要将颗粒粒度分布采用某一或一组函数形式进行描述,可采用Rosin-Ramma函数,正态分布,对数正态分布等;上述3种函数分布均包含一个名义尺寸参数和分布宽度参数,在优化时称待定参数。在进行优化时,事先人为设定初始参数,这样可计算出理论超声衰减和初始目标函数,按照最优化的理论中的Davidon-Fletcher-Powell(DFP)方法,可以在初始参数附近唯一的确定局部最优解,为获得全局最优求解,应重新设定初始值并最终选择目标函数最小的结果即为最终求解结果。同时,为避免出现非物理解情况(如参数为负数),可以采用罚函数手段。在获得求解参数后,带入颗粒粒度分布参数函数计算颗粒粒度的频率分布和累计分布。本实用新型除了采用DFP(Davidon-Fletcher-Powell)方法之外,还可用最速下降法(Steepest Descentmethod)和模拟退火法(Simulated Annealing method)等优化方法。
本实用新型实施例的颗粒粒度、浓度和密度测量原理,包括以下步骤:
1)采集直接反射波和透射回波:由收/发换能器发射的单个窄脉冲超声波反射后所述收/发换能器获得直接反射波和透射回波信号;
2)获得反射系数和声学特征阻抗:在数据处理的计算机中对时域信号作快速傅立叶变换得超声幅值相位谱,由公式:
R s R c = M s M c Z s = Z b ( 1 + R s 1 - R s ) 计算获得反射系数和声学特征阻抗;
3)获得衰减系数和声速:在数据处理的计算机中由快速傅立叶变换技术得直接反射波A和透射回波B的幅值谱并修正了声反射,透射和扩散损失后得声衰减谱,(该修正可以通过2)中反射系数结果或用标准物质标定),由于采用二次不同超声波比值,消除了换能器超声发射功率不同的影响;即如
α meas ( f ) = 1 L ln ( M A ( f ) M B ( f ) ) - α c ;
其中MA(f)为直接反射波幅值,MB(f)为透射回波幅值,L为声程,而αc为考虑声反射,扩散效果的超声衰减修正系数,可采用超声吸收特性已知的介质(例如水)进行标定。同时,由直接反射波A和透射回波B的时差可测声速
c=ΔL/Δt=ΔL/(tB-tA)
其中ΔL为声程差,而Δt为2波形记录时间差。
4)计算颗粒和连续介质构成的混合物(如悬浊液)等效密度:在数据处理的计算机中由公式:
ρs=Zs/c,能直接计算混合物等效密度,其中Zs指混合物的阻抗,通过测量标定物质和待测混合物中的超声波信号和反射系数后,按 Z s = Z b ( 1 + R s 1 - R s ) 换算得(该计算结果不受颗粒粒度的影响,且可以直接用在液液两相流中)。
5)计算颗粒浓度:在数据处理的计算机中由公式:
φ=[ρpsl)]/[ρspl)]能直接计算颗粒浓度,其中混合物等效密度ρs由上一步得(计算结果不受颗粒粒度的影响,公式也可以直接用在液液两相流浓度计算中);
如果仅仅完成混合物等效密度和浓度计算,可以采用单一频率的超声换能器即可。
6)计算颗粒粒度:在数据处理的计算机中按照声波动理论,高浓度颗粒两相体系中复波数公式(公式中浓度已经由前面获得,可以作为已知量,减少了颗粒粒度求解中的未知数个数):
κ 2 = ω 2 k a * × ρ [ ρ ′ ( 1 - φ + φS ) + ρS ( 1 - φ ) ] ρ ′ ( 1 - φ ) 2 + ρ [ S + φ ( 1 - φ ) ]
式中:φ为颗粒浓度,R为颗粒半径,ka *为绝热压缩系数,S是浓度,粒度和物性的函数。声衰减系数和声速可按,衰减系数:α=-Im(κ)
声速:c=ω/Re(κ)
为求解颗粒粒度分布,按照上面计算的理论声衰减系数(αtheory(f))与实验测量信号换算得的声衰减系数αmeas(f)=ln[MA(f)/MB(f)]/L-αc构造误差函数,
E = Σ i = 1 N f ( α meas ( f i ) - α theory ( f i ) α theory , i ) 2 N f
这样,可以按照最优化理论进行优化。为计算颗粒粒度分布,需要将颗粒粒度分布采用某一或一组函数形式进行描述,可采用Rosin-Ramma函数,正态分布,对数正态分布等;上述3种函数分布均包含一个名义尺寸参数和分布宽度参数,此参数在优化时称待定参数,如得以确定,即可完全获得颗粒粒度的分布状况。在进行优化时,事先人为设定初始参数,这样可计算出理论超声衰减和初始目标函数,按照最优化的理论中的Davidon-Fletcher-Powell(DFP)方法,可以在初始参数附近唯一的确定局部最优解,为获得全局最优求解,应重新设定初始值并最终选择目标函数最小的结果极为最终求解结果。同时,为避免出现非物理解情况(如参数为负数),可以采用罚函数手段。在获得求解参数后,带入颗粒粒度分布参数函数计算颗粒粒度的频率分布和累计分布。本实用新型除了采用DFP(Davidon-Fletcher-Powell)方法之外,还可用最速下降法(Steepest Descent method)和模拟退火法(SimulatedAnnealing method)等优化方法。
如图1所示,本实用新型实施例所提供的一种颗粒粒度、浓度和密度测量装置,包括进行数据处理的计算机1,连接计算机1的设有高速A/D转换单元和信号放大单元的信号处理电路2,连接信号处理电路2的脉冲波发射/接收电路3,连接脉冲波发射/接收电路的换能器4,(宽带)换能器4设于管道壁缓冲板5的外侧;装置由计算机1控制,发射电路3发出脉冲电信号,经触发换能器4,声波部分被缓冲板5反射回来记为直接反射波A,另一部分透射后在待测颗粒两相流6中传播并被反射板7反射再由换能器4接收记为透射回波B,并经过信号放大单元、高速A/D转换单元传输给计算机1处理,信号为如图2所示波形,分析后换算得反射系数,声特性阻抗,声衰减系数和声速。由测量值可算得混合物密度ρs=Zs/c,由已知的颗粒物和连续介质密度按公式φ=[ρpsl)]/[ρspl)]计算得浓度值。再由换能器测量直接反射波A和透射回波B作频谱分析并考虑反射修正得到的声衰减谱和理论声衰减谱的误差作为目标函数
E = Σ i = 1 N f ( α meas ( f i ) - α theory ( f i ) α theory , i ) 2 N f
采用Davidon-Fletcher-Powell(DFP)方法进行优化,计算得颗粒粒度分布。本实用新型除了采用DFP(Davidon-Fletcher-Powell)方法之外,还可用最速下降法(Steepest Descent method)和模拟退火法(Simulated Annealing method)等优化方法。
如图3所示,本实用新型另一实施例采用宽带探头,将测量部件做成探头形式,在探头凹槽的一侧设保护缓冲板10,保护缓冲板10外侧设宽带换能器9,并由电缆线8连接脉冲波发射/接收电路;在探头凹槽对面的另一侧设反射板11;宽带探头以法兰形式和管道连接或插入管道中作在线检测,对时域信号作快速傅立叶变换得超声幅值相位谱,为反演提供了丰富的频谱信息。
用本装置可以对样品池或在线管道内颗粒两相介质的粒度和分布、浓度进行测量。在线管道测量时装置通过法兰连接,亦可直接附着在管道外壁上。测量结果以曲线和数据的形式直接显示在计算机屏幕上,同时保存在硬盘上供以后分析使用。
本实用新型所述计算机包括单板机、单片机、可编程微处理器和DSP(数字处理芯片等。

Claims (6)

1、一种颗粒粒度、浓度和密度测量装置,其特征在于,包括进行数据处理的计算机,连接计算机的信号处理电路,连接信号处理电路的脉冲波发射/接收电路,连接脉冲波发射/接收电路的宽带换能器,宽带换能器设于缓冲板外侧;
所述装置由计算机控制,发射电路发出脉冲电信号,经触发换能器,反射回来的直接反射波和透射回波经过信号处理电路传输给计算机进行处理,所述计算机为能进行将信号根据设定公式计算得混合物密度、由已知的颗粒物和连续介质密度计算得浓度值、由直接反射波和透射回波计算得颗粒粒度分布的计算机;
计算机设有用于直接显示测量结果的曲线和数据的屏幕。
2、根据权利要求1所述的颗粒粒度、浓度和密度测量装置,其特征在于,所述信号处理电路设有高速A/D转换单元和信号放大单元。
3、根据权利要求1所述的颗粒粒度、浓度和密度测量装置,其特征在于,所述宽带换能器为自发自收宽带换能器。
4、根据权利要求1所述的颗粒粒度、浓度和密度测量装置,其特征在于,所述计算机设有用于保存测量结果的硬盘。
5、根据权利要求1所述的颗粒粒度、浓度和密度测量装置,其特征在于,所述缓冲板和反射板为管道中相对的二侧壁。
6、根据权利要求1所述的颗粒粒度、浓度和密度测量装置,其特征在于,所述缓冲板设于宽带探头凹槽的一侧,所述反射板设于宽带探头凹槽对面的另一侧;宽带探头以法兰形式和管道连接或插入管道中作在线检测。
CNU2007200750639U 2007-09-27 2007-09-27 颗粒粒度、浓度和密度测量装置 Expired - Fee Related CN201096703Y (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNU2007200750639U CN201096703Y (zh) 2007-09-27 2007-09-27 颗粒粒度、浓度和密度测量装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNU2007200750639U CN201096703Y (zh) 2007-09-27 2007-09-27 颗粒粒度、浓度和密度测量装置

Publications (1)

Publication Number Publication Date
CN201096703Y true CN201096703Y (zh) 2008-08-06

Family

ID=39923756

Family Applications (1)

Application Number Title Priority Date Filing Date
CNU2007200750639U Expired - Fee Related CN201096703Y (zh) 2007-09-27 2007-09-27 颗粒粒度、浓度和密度测量装置

Country Status (1)

Country Link
CN (1) CN201096703Y (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101936863A (zh) * 2010-02-11 2011-01-05 国家粮食局科学研究院 利用粮堆中机械波传播过程检测粮堆密度的装置及方法
CN101864517B (zh) * 2010-06-08 2011-12-07 首钢总公司 连续退火机组连退机组炉内张力综合优化设定方法
CN104905382A (zh) * 2015-06-05 2015-09-16 华南理工大学 一种变频超声辅助冷冻面团的方法及装置
CN105300856A (zh) * 2015-11-11 2016-02-03 上海理工大学 基于超声阻抗谱对颗粒浓度和尺寸的测量方法
WO2016091208A1 (zh) * 2014-12-12 2016-06-16 通用电气公司 测量方法及系统
CN105842130B (zh) * 2016-05-18 2019-04-05 陕西煤业化工技术研究院有限责任公司 一种非牛顿基液流体纳米颗粒团聚超声监测装置及方法
CN109655386A (zh) * 2018-11-26 2019-04-19 重庆川仪分析仪器有限公司 颗粒物浓度检测装置及检测方法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101936863B (zh) * 2010-02-11 2012-01-18 国家粮食局科学研究院 利用粮堆中机械波传播过程检测粮堆密度的装置及方法
CN101936863A (zh) * 2010-02-11 2011-01-05 国家粮食局科学研究院 利用粮堆中机械波传播过程检测粮堆密度的装置及方法
CN101864517B (zh) * 2010-06-08 2011-12-07 首钢总公司 连续退火机组连退机组炉内张力综合优化设定方法
CN105738257B (zh) * 2014-12-12 2019-06-18 通用电气公司 测量方法及系统
US10605711B2 (en) 2014-12-12 2020-03-31 General Electric Company Ultrasonic measuring method and system for measuring particle size and mass concentration
WO2016091208A1 (zh) * 2014-12-12 2016-06-16 通用电气公司 测量方法及系统
CN105738257A (zh) * 2014-12-12 2016-07-06 通用电气公司 测量方法及系统
CN104905382A (zh) * 2015-06-05 2015-09-16 华南理工大学 一种变频超声辅助冷冻面团的方法及装置
CN104905382B (zh) * 2015-06-05 2018-04-13 华南理工大学 一种变频超声辅助冷冻面团的方法及装置
CN105300856B (zh) * 2015-11-11 2017-09-29 上海理工大学 基于超声阻抗谱对颗粒浓度和尺寸的测量方法
CN105300856A (zh) * 2015-11-11 2016-02-03 上海理工大学 基于超声阻抗谱对颗粒浓度和尺寸的测量方法
CN105842130B (zh) * 2016-05-18 2019-04-05 陕西煤业化工技术研究院有限责任公司 一种非牛顿基液流体纳米颗粒团聚超声监测装置及方法
CN109655386A (zh) * 2018-11-26 2019-04-19 重庆川仪分析仪器有限公司 颗粒物浓度检测装置及检测方法
CN109655386B (zh) * 2018-11-26 2024-04-02 重庆川仪分析仪器有限公司 颗粒物浓度检测装置

Similar Documents

Publication Publication Date Title
CN101169363B (zh) 颗粒粒度、浓度和密度测量方法及其装置
CN201096703Y (zh) 颗粒粒度、浓度和密度测量装置
CN101169364B (zh) 对离散状态颗粒粒度分布测量的方法及其装置
US7966882B2 (en) Self-calibrating method for measuring the density and velocity of sound from two reflections of ultrasound at a solid-liquid interface
CN100455999C (zh) 一种超声波测量液位的装置及方法
US6595061B2 (en) Noninvasive detection of corrosion, MIC, and foreign objects in containers using guided ultrasonic waves
CN101135626A (zh) 一种颗粒粒度和浓度测量方法及其装置
KR20040020869A (ko) 서스펜션 입자의 초음파 사이징을 위한 방법 및 장치
WO2006055449A2 (en) System and method for ultrasonic measuring concentration of particle properties
CN101490543A (zh) 超声波探伤装置和方法
Zhang et al. Comparison of experimental measurements of material grain size using ultrasound
CN102621224A (zh) 一种测量固态材料超声波衰减系数的方法
CN201096702Y (zh) 一种颗粒粒度和浓度的测量装置
CN105300856A (zh) 基于超声阻抗谱对颗粒浓度和尺寸的测量方法
Bloxham et al. Combining simulated and experimental data to simulate ultrasonic array data from defects in materials with high structural noise
CN107860822B (zh) 一种混合质量超声在线非侵入式检测方法
Liu et al. Investigation of ultrasonic backscatter using three-dimensional finite element simulations
CN201130136Y (zh) 对离散状态颗粒粒度分布测量的装置
Strybulevych et al. Characterizing a model food gel containing bubbles and solid inclusions using ultrasound
Eren Accuracy in real time ultrasonic applications and transit-time flow meters
McLaren et al. Transmit–receive mode responses from finite‐sized targets in fluid media
Vander Meulen et al. Layer contributions to the nonlinear acoustic radiation from stratified media
Arciniegas et al. Experimental simultaneous measurement of ultrasonic properties and thickness for defect detection in curved polymer samples
Simonetti et al. Ultrasonic interferometry for the measurement of shear velocity and attenuation in viscoelastic solids
Kruger et al. Broadband ultrasonic backscattering applied to nondestructive characterization of materials

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20080806

Termination date: 20100927