WO2016104746A1 - Composé hétérocyclique à groupe cycloalkyle condensé, sel de celui-ci, insecticide agricole et horticole le contenant, et son procédé d'utilisation - Google Patents

Composé hétérocyclique à groupe cycloalkyle condensé, sel de celui-ci, insecticide agricole et horticole le contenant, et son procédé d'utilisation Download PDF

Info

Publication number
WO2016104746A1
WO2016104746A1 PCT/JP2015/086338 JP2015086338W WO2016104746A1 WO 2016104746 A1 WO2016104746 A1 WO 2016104746A1 JP 2015086338 W JP2015086338 W JP 2015086338W WO 2016104746 A1 WO2016104746 A1 WO 2016104746A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
halo
reaction
acid
alkyl
Prior art date
Application number
PCT/JP2015/086338
Other languages
English (en)
Japanese (ja)
Inventor
樹 米村
Original Assignee
日本農薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本農薬株式会社 filed Critical 日本農薬株式会社
Publication of WO2016104746A1 publication Critical patent/WO2016104746A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/90Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having two or more relevant hetero rings, condensed among themselves or with a common carbocyclic ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems

Definitions

  • the present invention relates to an agricultural and horticultural insecticide containing a condensed heterocyclic compound having a cycloalkyl group or a salt thereof as an active ingredient, and a method of using the same.
  • Patent Documents 1 to 6 Such a document does not disclose any compound in which a cycloalkylpyridyl group is bonded to a condensed heterocyclic ring.
  • the condensed heterocyclic compound having a cycloalkylpyridyl group or the like represented by the general formula (1) or a salt thereof is excellent against agricultural and horticultural pests. It has been found that it has a controlling effect and has led to the present invention.
  • R 1 is (a1) (C 1 -C 6 ) alkyl group; (a2) (C 3 -C 6 ) cycloalkyl (C 1 -C 6 ) alkyl group; (a3) (C 3 -C 6 ) cycloalkyl group; a4) (C 2 -C 6) alkenyl; or (a5) (C 2 -C 6 ) alkynyl group; and.
  • R 2 represents (b1) a halogen atom; (b2) (C 3 -C 6 ) cycloalkyl group; (b3) halo (C 3 -C 6 ) cycloalkyl group; (b4) (C 3 -C 6 ) cyclo An alkyl (C 1 -C 6 ) alkyl group; (b5) a halo (C 3 -C 6 ) cycloalkyl (C 1 -C 6 ) alkyl group; (b6) (C 1 -C 6 ) alkylthio group; (b7) Halo (C 1 -C 6 ) alkoxy group; (b8) halo (C 1 -C 6 ) alkylthio group; (b9) (C 1 -C 6 ) alkylsulfinyl group; (b10) (C 1 -C 6 ) alkyl (B11) cyano group; (b12) (C 1 -C 6 ) alkyl group; (b
  • R 4 represents (c1) a halogen atom; (c2) a cyano group; (c3) a nitro group; (c4) (C 1 -C 6 ) alkyl group; (c5) (C 1 -C 6 ) alkoxy group; ) Halo (C 1 -C 6 ) alkyl group; (c7) halo (C 1 -C 6 ) alkoxy group; (c8) (C 1 -C 6 ) alkylthio group; (c9) (C 1 -C 6 ) alkyl (C10) (C 1 -C 6 ) alkylsulfonyl group; (c11) halo (C 1 -C 6 ) alkylthio group; (c12) halo (C 1 -C 6 ) alkylsulfinyl group; or (c13) A halo (C 1 -C 6 ) alkylsulfonyl group; m represents 0, 1, or 2. ⁇ A condensed
  • R 1 represents (a1) (C 1 -C 6 ) alkyl group;
  • R 2 is, (b1) a halogen atom;
  • (b2) C 3 -C 6) cycloalkyl group;
  • (b6) C 1 -C 6) alkylthio group;
  • (b7) halo (C 1 -C 6) alkoxy group
  • (B8) halo (C 1 -C 6 ) alkylthio group;
  • (b9) (C 1 -C 6 ) alkylsulfinyl group;
  • (b10) (C 1 -C 6 ) alkylsulfonyl group;
  • b12) (C 1 -C 6 ) alkyl group;
  • (b13) (C 2 -C 6 ) alkenyl group;
  • (b14) C 2 -C 6 ) alkynyl group;
  • [5] A method for using an agricultural and horticultural insecticide characterized by treating a plant or soil with an effective amount of the condensed heterocyclic compound according to any one of [1] to [3],
  • An ectoparasite control agent comprising an effective amount of the fused heterocyclic compound according to any one of [1] to [3] as an active ingredient.
  • the fused heterocyclic compound having a cycloalkylpyridyl group or a salt thereof of the present invention not only has an excellent effect as an agricultural and horticultural insecticide, but also pests parasitic on domestic animals such as pets such as dogs and cats or cattle and sheep Also has an effect on.
  • halo means “halogen atom” and represents a chlorine atom, a bromine atom, an iodine atom or a fluorine atom.
  • (C 1 -C 6 ) alkyl group means, for example, methyl group, ethyl group, normal propyl group, isopropyl group, normal butyl group, isobutyl group, secondary butyl group, tertiary butyl group, normal pentyl group, isopentyl group Tertiary pentyl group, neopentyl group, 2,3-dimethylpropyl group, 1-ethylpropyl group, 1-methylbutyl group, 2-methylbutyl group, normal hexyl group, isohexyl group, 2-hexyl group, 3-hexyl group, A linear or branched alkyl group having 1 to 6 carbon atoms such as a 2-methylpentyl group, a 3-methylpentyl group, a 1,1,2-trimethylpropyl group, or a 3,3-dimethylbutyl group .
  • the "(C 3 -C 6) cycloalkyl group” include cyclopropyl group, a cyclobutyl group, a cyclopentyl group, an alkyl group having a carbon number of 3 to 6 ring such as a cyclohexyl group, "(C 1 - Examples of the “C 6 ) alkoxy group” include a methoxy group, an ethoxy group, a normal propoxy group, an isopropoxy group, a normal butoxy group, a secondary butoxy group, a tertiary butoxy group, a normal pentyloxy group, an isopentyloxy group, and a tertiary group.
  • Pentyloxy group Pentyloxy group, neopentyloxy group, 2,3-dimethylpropyloxy group, 1-ethylpropyloxy group, 1-methylbutyloxy group, normal hexyloxy group, isohexyloxy group, 1,1,2-trimethylpropyl group
  • examples of the “(C 2 -C 6 ) alkynyloxy group” include linear or branched carbon such as propynyloxy group, butynyloxy group, pentynyloxy group, hexynyl
  • Examples of the “(C 1 -C 6 ) alkylthio group” include methylthio group, ethylthio group, normal propylthio group, isopropylthio group, normal butylthio group, secondary butylthio group, tertiary butylthio group, and normal pentylthio group.
  • the “(C 1 -C 6 ) alkylsulfinyl group” includes, for example, Methylsulfinyl group, ethylsulfinyl group, normal propylsulfinyl group, isopropyl Rufinyl group, normal butylsulfinyl group, secondary butylsulfinyl group, tertiary butylsulfinyl group, normal pentylsulfinyl group,
  • alkyl sulfinyl group and the "(C 1 -C 6) alkylsulfonyl group", for example, methylsulfonyl group, ethylsulfonyl group, n-propylsulfonyl group, isopropylsulfonyl Group, normal butylsulfonyl group, secondary butylsulfonyl group, tertiary butylsulfonyl group, normal pentylsulfonyl group, isopentylsulfonyl group, tertiary pentylsulfonyl group, neopentylsulfonyl group, 2,3-dimethylpropylsulfonyl group, 1 -Straight-chain or branched-chain carbon atoms of 1 to 6 such as ethylpropylsulfonyl group, 1-methylbutylsulfonyl group
  • Halo (C 1 -C 6 ) alkyl group “halo (C 2 -C 6 ) alkenyl group”, “halo (C 2 -C 6 ) alkynyl group”, “halo (C 3 -C 6 )”, respectively “Cycloalkyl group”, “halo (C 3 -C 6 ) cycloalkyloxy group”, “halo (C 1 -C 6 ) alkoxy group”, “halo (C 2 -C 6 ) alkenyloxy group”, “halo ( “C 2 -C 6 ) alkynyloxy”, “halo (C 1 -C 6 ) alkylthio”, “halo (C 1 -C 6 ) alkylsulfinyl”, “halo (C 1 -C 6 ) alkylsulfonyl” ”,“ Halo (C 2 -C 6 ) alkenylthio ”,“ halo (C 2 -C 6 ) alkyn
  • Examples of the salt of the condensed heterocyclic compound represented by the general formula (1) of the present invention include inorganic acid salts such as hydrochloride, sulfate, nitrate, and phosphate, acetate, fumarate, maleate, and salt.
  • examples include organic acid salts such as acid salts, methanesulfonic acid salts, benzenesulfonic acid salts, paratoluenesulfonic acid salts, and salts with inorganic or organic bases such as sodium ions, potassium ions, calcium ions, and trimethylammonium salts. it can.
  • the condensed heterocyclic compound represented by the general formula (1) of the present invention and salts thereof may have one or more asymmetric centers in the structural formula, and two or more optical isomers and dia Stereomers may exist, and the present invention includes all the optical isomers and a mixture in which they are contained in an arbitrary ratio.
  • the compound represented by the general formula (1) of the present invention and salts thereof may have two kinds of geometric isomers derived from the carbon-carbon double bond in the structural formula. Includes all geometric isomers and mixtures containing them in any proportion.
  • R 1 is (a1) (C 1 -C 6 ) alkyl group;
  • R 2 is, (b1) a halogen atom;
  • (b2) C 3 -C 6) cycloalkyl group;
  • (b6) C 1 -C 6) alkylthio group;
  • (b7) halo (C 1 -C 6) alkoxy group
  • (B8) halo (C 1 -C 6 ) alkylthio group;
  • (b9) (C 1 -C 6 ) alkylsulfinyl group;
  • (b10) C 1 -C 6 ) alkylsulfonyl group;
  • b12) C 1 -C 6 ) alkyl group;
  • (b13) (C 2 -C 6 ) alkenyl group;
  • (b14) C 2 -C 6 ) alkynyl group;
  • (b15) tri
  • R 2 is (b1) a halogen atom; or (b2) (C 3 -C 6 ) cycloalkyl group;
  • R 1 is (a1) (C 1 -C 6 ) alkyl group;
  • R 3 is (d2) (C 1 -C 6 ) alkyl group;
  • R 4 is (c6 ) A halo (C 1 -C 6 ) alkyl group;
  • the complex heterocyclic compound or a salt thereof of the present invention can be produced, for example, by the following production method, but the present invention is not limited to these.
  • step [a] The carboxylic acid represented by the general formula (2) and the pyridazine compound represented by the general formula (3) are reacted in the presence of a condensing agent, a base and an inert solvent.
  • a diamide compound represented by (2-1) can be produced.
  • Examples of the condensing agent used in this reaction include diethyl cyanophosphate (DEPC), carbonyldiimidazole (CDI), 1,3-dicyclohexylcarbodiimide (DCC), chlorocarbonates, 2-chloro-1-methylpyridinium iodide.
  • DEPC diethyl cyanophosphate
  • CDI carbonyldiimidazole
  • DCC 1,3-dicyclohexylcarbodiimide
  • chlorocarbonates 2-chloro-1-methylpyridinium iodide.
  • the amount used may be appropriately selected from the range of 1 mol to 1.5 mol relative to the compound represented by the general formula (2).
  • the base examples include inorganic bases such as sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, acetates such as sodium acetate, potassium acetate, potassium t-butoxide, sodium methoxy And alkali metal alkoxides such as sodium ethoxide; tertiary amines such as triethylamine, diisopropylethylamine, 1,8-diazabicyclo [5.4.0] undec-7-ene, pyridine, dimethylaminopyridine, etc. Nitrogen aromatic compounds and the like can be mentioned, and the amount used is usually in the range of 1 to 10 moles compared to the compound represented by the general formula (2).
  • inorganic bases such as sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, acetates such as sodium acetate, potassium acetate, potassium t-butoxide, sodium methoxy And alkali metal
  • the inert solvent used in this reaction is not particularly limited as long as it does not significantly inhibit the progress of this reaction.
  • aromatic hydrocarbons such as benzene, toluene and xylene
  • halogens such as methylene chloride, chloroform and carbon tetrachloride.
  • Hydrocarbons Halogenated aromatic hydrocarbons such as chlorobenzene and dichlorobenzene, linear or cyclic ethers such as diethyl ether, methyl tertiary butyl ether, dioxane and tetrahydrofuran, esters such as ethyl acetate, dimethylformamide, dimethyl
  • the inert solvent include amides such as acetamide, ketones such as acetone and methyl ethyl ketone, polar solvents such as dimethyl sulfoxide and 1,3-dimethyl-2-imidazolidinone, Use alone or in combination of two or more Door can be.
  • each reactant may be used in an equimolar amount, but any of the reactants can be used in excess.
  • the reaction temperature can be from room temperature to the boiling range of the inert solvent used, and the reaction time is not constant depending on the reaction scale and reaction temperature, but it may be in the range of several minutes to 48 hours.
  • the target product may be isolated from the reaction system containing the target product by a conventional method, and the target product can be produced by purification by recrystallization, column chromatography or the like, if necessary.
  • the monoamide compound represented by the general formula (2-2) comprises a diamide compound represented by the general formula (2-1) and a pyridazine compound represented by the general formula (3). It can be produced by reacting in the presence of a base and an inert solvent.
  • Examples of the base used in this reaction include inorganic bases such as sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium bicarbonate and potassium bicarbonate, acetates such as sodium acetate and potassium acetate, potassium t Alkali metal alkoxides such as butoxide, sodium methoxide, sodium ethoxide; tertiary amines such as triethylamine, diisopropylethylamine, 1,8-diazabicyclo [5.4.0] undec-7-ene, pyridine, dimethyl
  • examples thereof include nitrogen-containing aromatic compounds such as aminopyridine, and the amount used is usually in the range of 1 to 10 moles compared to the diamide compound represented by the general formula (2-1). .
  • the inert solvent used in this reaction is not particularly limited as long as it does not significantly inhibit the progress of this reaction.
  • aromatic hydrocarbons such as benzene, toluene and xylene
  • halogens such as methylene chloride, chloroform and carbon tetrachloride.
  • Hydrocarbons Halogenated aromatic hydrocarbons such as chlorobenzene and dichlorobenzene, linear or cyclic ethers such as diethyl ether, methyl tertiary butyl ether, dioxane and tetrahydrofuran, esters such as ethyl acetate, dimethylformamide, dimethyl
  • the inert solvent include amides such as acetamide, ketones such as acetone and methyl ethyl ketone, polar solvents such as dimethyl sulfoxide and 1,3-dimethyl-2-imidazolidinone, Use alone or in combination of two or more Door can be.
  • each reactant may be used in an equimolar amount, but any of the reactants can be used in excess.
  • the reaction temperature can be from room temperature to the boiling range of the inert solvent used, and the reaction time is not constant depending on the reaction scale and reaction temperature, but it may be in the range of several minutes to 48 hours.
  • the target product may be isolated from the reaction system containing the target product by a conventional method, and the target product can be produced by purification by recrystallization, column chromatography or the like, if necessary. In addition, it can be used in the next step without purification after completion of the reaction.
  • step [c] The imidazopyridazine compound represented by the general formula (1-2) is obtained by reacting the monoamide compound represented by the general formula (2-2) in the presence of an acid and an inert solvent. Can be manufactured.
  • Examples of the acid used in this reaction include inorganic acids such as hydrochloric acid, sulfuric acid and nitric acid, organic acids such as formic acid, acetic acid, propionic acid, trifluoroacetic acid and benzoic acid, sulfones such as methanesulfonic acid and trifluoromethanesulfonic acid. Acids, phosphoric acids, etc. can be exemplified, and the amount used is appropriately selected from the range of 0.01-fold to 10-fold mol with respect to the monoamide compound represented by the general formula (2-2). It ’s fine.
  • inorganic acids such as hydrochloric acid, sulfuric acid and nitric acid
  • organic acids such as formic acid, acetic acid, propionic acid, trifluoroacetic acid and benzoic acid
  • sulfones such as methanesulfonic acid and trifluoromethanesulfonic acid.
  • Acids, phosphoric acids, etc. can be exempl
  • the inert solvent used in this reaction is not particularly limited as long as it does not significantly inhibit the progress of this reaction.
  • aromatic hydrocarbons such as benzene, toluene and xylene
  • halogens such as methylene chloride, chloroform and carbon tetrachloride.
  • Hydrocarbons halogenated aromatic hydrocarbons such as chlorobenzene and dichlorobenzene
  • chain or cyclic ethers such as diethyl ether, methyl tertiary butyl ether, dioxane and tetrahydrofuran, esters such as ethyl acetate, dimethylformamide, dimethyl
  • the inert solvent include amides such as acetamide, ketones such as acetone and methyl ethyl ketone, polar solvents such as dimethyl sulfoxide and 1,3-dimethyl-2-imidazolidinone. Use alone or in combination of two or more Door can be.
  • the reaction temperature can be from room temperature to the boiling range of the inert solvent used, and the reaction time is not constant depending on the reaction scale and reaction temperature, but it may be in the range of several minutes to 48 hours.
  • the target product may be isolated from the reaction system containing the target product by a conventional method, and the target product can be produced by purification by recrystallization, column chromatography or the like, if necessary.
  • step [d] This reaction is represented by the general formula (1-1) by reacting the imidazopyridazine compound represented by the general formula (1-2) with an oxidizing agent in an inert solvent. An imidazopyridazine compound can be produced.
  • oxidizing agent used in this reaction examples include peroxides such as hydrogen peroxide, perbenzoic acid, and m-chloroperbenzoic acid. These oxidizing agents can be appropriately selected in the range of 0.8-fold to 5-fold moles relative to the imidazopyridazine compounds represented by the general formula (1-2).
  • the inert solvent that can be used in this reaction is not particularly limited as long as it does not significantly inhibit this reaction.
  • examples thereof include linear or cyclic ethers such as diethyl ether, tetrahydrofuran, and dioxane; aromatic carbonization such as benzene, toluene, and xylene.
  • Hydrogens Halogenated hydrocarbons such as methylene chloride, chloroform and carbon tetrachloride, Halogenated aromatic hydrocarbons such as chlorobenzene and dichlorobenzene; Nitriles such as acetonitrile, Esters such as ethyl acetate, Formic acid, Acetic acid, etc.
  • Organic acids such as: N, N-dimethylformamide, N, N-dimethylacetamide, 1,3-dimethyl-2-imidazolidinone, water, and other polar solvents, and these inert solvents can be used alone or Two or more kinds can be mixed and used.
  • the reaction temperature in this reaction may be appropriately selected within the range of ⁇ 10 ° C. to the reflux temperature of the inert solvent used.
  • the reaction time varies depending on the reaction scale, reaction temperature, and the like, and is not constant but may be appropriately selected within the range of several minutes to 48 hours.
  • the target product may be isolated from the reaction system containing the target product by a conventional method, and the target product can be produced by purification by recrystallization, column chromatography or the like, if necessary.
  • step [e] An imidazopyridazine compound represented by the general formula (1-1) and a boric acid compound represented by the general formula (4) in an inert solvent in the presence of a metal catalyst and a base
  • the cross-coupling reaction is carried out according to the method described in the literature (Journal of Synthetic Organic Chemistry Vol.69 No.7 2011; Chem. Rev. 2011, 4475; WO2013 / 018928 pamphlet), and is represented by the general formula (1).
  • Pyridazine compounds can be produced.
  • palladium compounds such as zero-valent or divalent palladium metals and salts (including complexes) can be used, and they may be supported on activated carbon or the like.
  • Preferred examples include palladium (0) / carbon, palladium (II) acetate, palladium (II) chloride, bis (triphenylphosphine) palladium (II) chloride, tetrakis (triphenylphosphine) palladium (0), and the like. I can do things.
  • This reaction can also be performed by adding a ligand.
  • the ligands include triphenylphosphine (PPh 3 ), methyldiphenylphosphine (Ph 2 PCH 3 ), trifurylphosphine (P (2-furyl) 3 ), tri (o-tolyl) phosphine (P (o-tol 3 ), tri (cyclohexyl) phosphine (PCy 3 ), dicyclohexylphenylphosphine (PhPCy 2 ), tri (t-butyl) phosphine (P t Bu 3 ), 2,2′-bis (diphenylphosphino) -1, 1′-binaphthyl (BINAP), diphenylphosphinoferrocene (DPPF), 1,1′-bis (di-t-butylphosphino) ferrocene (D t BPF), N, N-dimethyl-1- [2- ( Diphen
  • Examples of the base that can be used in this reaction include inorganic bases such as sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, cesium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate; sodium hydride, potassium hydride and the like.
  • Alkoxides such as alkali metal hydrides, sodium methoxide, sodium ethoxide, potassium tertiary butoxide and the like can be mentioned.
  • the amount of the base used is usually in the range of about 1 to 5 times mol for the compound represented by formula (V).
  • Commercially available sodium methanethiolate and sodium ethanethiolate can also be used, and in this case, compound (VI) may not be used.
  • the inert solvent that can be used in this reaction is not particularly limited as long as it does not significantly inhibit this reaction.
  • examples thereof include alcohols such as methanol, ethanol, propanol, butanol, and 2-propanol, and chains such as diethyl ether, tetrahydrofuran, and dioxane.
  • aromatic hydrocarbons such as benzene, toluene and xylene
  • halogenated hydrocarbons such as methylene chloride, chloroform and carbon tetrachloride
  • halogenated aromatic hydrocarbons such as chlorobenzene and dichlorobenzene
  • acetonitrile And polar solvents such as N, N-dimethylformamide, N, N-dimethylacetamide, dimethyl sulfoxide, 1,3-dimethyl-2-imidazolidinone, etc.
  • the reaction temperature in this reaction may usually be in the range of about 0 ° C. to the boiling point of the solvent used, and the reaction time is not constant depending on the reaction scale, reaction temperature, etc., but may be appropriately selected within the range of several minutes to 48 hours. .
  • the compound represented by the general formula (4) is usually used in an amount of about 1 to 5 moles compared to the imidazopyridazine compound represented by the general formula (1-1).
  • this reaction can also be performed in the atmosphere of inert gas, such as nitrogen gas and argon gas, for example.
  • the target product may be isolated from the reaction system containing the target product by a conventional method, and the target product can be produced by purification by recrystallization, column chromatography or the like, if necessary.
  • the production intermediate of the compound of the present invention represented by the general formula (2) can be produced by the following method.
  • the available dichloropyridine carboxylic acid (2-g) can be synthesized according to the Heck reaction and the method described in JP-A No. 2005-272338 to synthesize pyridine carboxylic acid (2-f) into which an ester group has been introduced.
  • the pyridinedicarboxylic acid ester (2-e) is first converted into a pyridinecarboxylic acid chloride by chlorinating the pyridinecarboxylic acid (2-f) having an ester group introduced therein and a chlorinating agent in an inert solvent. Can be converted.
  • Examples of the solvent used in this reaction include ethers such as THF, ethylene glycol dimethyl ether, tert-butyl methyl ether, and 1,4-dioxane, aromatic hydrocarbons such as toluene and xylene, and halogenation such as dichloromethane and chloroform. Examples include hydrocarbons and mixtures thereof.
  • Examples of the chlorinating agent used in the reaction include thionyl chloride and oxalyl dichloride. In this reaction, the chlorinating agent can be used usually at a ratio of 1 to 10 moles per 1 mole of pyridinecarboxylic acid (2-f) having an ester group introduced.
  • This reaction may be carried out usually in the range of 0 to 100 ° C., and the reaction time is usually in the range of 0.1 to 24 hours.
  • a pyridine carboxylic acid chloride can be produced by distilling off the solvent, excess chlorinating agent and the like.
  • the tertiary butyl ester compound of pyridine represented by the general formula (2-e) can be produced by reacting the pyridinecarboxylic acid chloride with tertiary butyl alcohol in the presence of a base and an inert solvent.
  • the solvent used in this reaction include ethers such as THF, ethylene glycol dimethyl ether, tert-butyl methyl ether, and 1,4-dioxane, aromatic hydrocarbons such as toluene and xylene, and halogenation such as dichloromethane and chloroform. Examples include hydrocarbons and mixtures thereof.
  • Examples of the base used in this reaction include inorganic bases such as sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium bicarbonate and potassium bicarbonate, acetates such as sodium acetate and potassium acetate, potassium t Alkali metal alkoxides such as butoxide, sodium methoxide, sodium ethoxide; tertiary amines such as triethylamine, diisopropylethylamine, 1,8-diazabicyclo [5.4.0] undec-7-ene, pyridine, dimethyl
  • Examples thereof include nitrogen-containing aromatic compounds such as aminopyridine, and the amount thereof can be used in the range of usually 1 to 10 times moles relative to the pyridinecarboxylic acid chloride.
  • Pyridine dicarboxylic acid ester (2-d) is obtained by reacting a tertiary butyl ester compound of pyridine represented by general formula (2-e) with a compound represented by general formula (5) in an inert solvent. Can be manufactured.
  • Examples of the base used in this reaction include inorganic bases such as sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium bicarbonate and potassium bicarbonate, acetates such as sodium acetate and potassium acetate, potassium t Alkali metal alkoxides such as butoxide, sodium methoxide, sodium ethoxide; tertiary amines such as triethylamine, diisopropylethylamine, 1,8-diazabicyclo [5.4.0] undec-7-ene, pyridine, dimethyl Nitrogen-containing aromatic compounds such as aminopyridine can be mentioned, and the amount used is usually in the range of 1 to 10 moles with respect to the tertiary butyl ester compound represented by the general formula (2-e). used. Moreover, when using the alkali salt of the compound represented by General formula (5), it is not necessary to use a base.
  • inorganic bases such as sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbon
  • the inert solvent used in this reaction is not particularly limited as long as it does not significantly inhibit the progress of this reaction.
  • aromatic hydrocarbons such as benzene, toluene and xylene
  • halogens such as methylene chloride, chloroform and carbon tetrachloride.
  • Hydrocarbons Halogenated aromatic hydrocarbons such as chlorobenzene and dichlorobenzene, linear or cyclic ethers such as diethyl ether, methyl tertiary butyl ether, dioxane and tetrahydrofuran, esters such as ethyl acetate, dimethylformamide, dimethyl
  • the inert solvent include amides such as acetamide, ketones such as acetone and methyl ethyl ketone, polar solvents such as dimethyl sulfoxide and 1,3-dimethyl-2-imidazolidinone, Use alone or in combination of two or more Door can be.
  • the compound represented by the general formula (5) and the tertiary butyl ester compound of pyridine represented by the general formula (2-e) may be used in an equimolar amount. It is also possible to use excess reactants.
  • the reaction temperature can be carried out from ⁇ 10 ° C. in the boiling range of the inert solvent to be used, and the reaction time is not constant depending on the reaction scale and reaction temperature, but may be in the range of several minutes to 48 hours.
  • the target product may be isolated from the reaction system containing the target product by a conventional method, and the target product can be produced by purification by recrystallization, column chromatography or the like, if necessary.
  • Pyridine dicarboxylic acid (2-c) can be produced by reacting a tertiary butyl ester compound of pyridine represented by the general formula (2-d) in an acid and / or an inert solvent.
  • Examples of the acid used in this reaction include inorganic acids such as hydrochloric acid, sulfuric acid and nitric acid, organic acids such as formic acid, acetic acid, propionic acid, trifluoroacetic acid and benzoic acid, sulfones such as methanesulfonic acid and trifluoromethanesulfonic acid.
  • inorganic acids such as hydrochloric acid, sulfuric acid and nitric acid
  • organic acids such as formic acid, acetic acid, propionic acid, trifluoroacetic acid and benzoic acid
  • sulfones such as methanesulfonic acid and trifluoromethanesulfonic acid.
  • An acid etc. can be illustrated, and the amount used may be appropriately selected from the range of 1 to 10 moles relative to the tertiary butyl ester compound represented by the general formula (2-d).
  • the acids can be used as a solvent.
  • the inert solvent used in this reaction is not particularly limited as long as it does not significantly inhibit the progress of this reaction.
  • aromatic hydrocarbons such as benzene, toluene and xylene
  • halogens such as methylene chloride, chloroform and carbon tetrachloride.
  • Hydrocarbons halogenated aromatic hydrocarbons such as chlorobenzene and dichlorobenzene
  • chain or cyclic ethers such as diethyl ether, methyl tertiary butyl ether, dioxane and tetrahydrofuran, esters such as ethyl acetate, dimethylformamide, dimethyl
  • the inert solvent include amides such as acetamide, ketones such as acetone and methyl ethyl ketone, polar solvents such as dimethyl sulfoxide and 1,3-dimethyl-2-imidazolidinone.
  • amides such as acetamide
  • ketones such as acetone and methyl ethyl ketone
  • polar solvents such as dimethyl sulfoxide and 1,3-dimethyl-2-imidazolidinone.
  • the reaction temperature can be from room temperature to the boiling range of the inert solvent used, and the reaction time is not constant depending on the reaction scale and reaction temperature, but it may be in the range of several minutes to 48 hours.
  • the target product may be isolated from the reaction system containing the target product by a conventional method, and the target product can be produced by purification by recrystallization, column chromatography or the like, if necessary.
  • the pyridinecarboxylic acid (2-b) is prepared by combining pyridinecarboxylic acid represented by the general formula (2-c) with DPPA (diphenylphosphoric acid azide) in the presence of tertiary butyl alcohol.
  • DPPA diphenylphosphoric acid azide
  • the aminopyridinecarboxylic acid (2-a) can be produced by reacting the pyridinecarboxylic acid compound represented by the general formula (2-b) with an acid and an inert solvent.
  • Examples of the acid used in this reaction include inorganic acids such as hydrochloric acid, sulfuric acid and nitric acid, organic acids such as formic acid, acetic acid, propionic acid, trifluoroacetic acid and benzoic acid, sulfones such as methanesulfonic acid and trifluoromethanesulfonic acid.
  • An acid etc. can be illustrated, and the use amount thereof may be appropriately selected from the range of 1 to 10 moles relative to the tertiary butyl ester compound represented by the general formula (2-d). . In some cases, it can also be used as a solvent.
  • the inert solvent used in this reaction is not particularly limited as long as it does not significantly inhibit the progress of this reaction.
  • aromatic hydrocarbons such as benzene, toluene and xylene
  • halogens such as methylene chloride, chloroform and carbon tetrachloride.
  • Hydrocarbons halogenated aromatic hydrocarbons such as chlorobenzene and dichlorobenzene
  • chain or cyclic ethers such as diethyl ether, methyl tertiary butyl ether, dioxane and tetrahydrofuran, esters such as ethyl acetate, dimethylformamide, dimethyl
  • the inert solvent include amides such as acetamide, ketones such as acetone and methyl ethyl ketone, polar solvents such as dimethyl sulfoxide and 1,3-dimethyl-2-imidazolidinone. Use alone or in combination of two or more Door can be.
  • the reaction temperature can be from ⁇ 10 ° C. in the boiling range of the inert solvent to be used, and the reaction time is not constant depending on the reaction scale and reaction temperature, but it may be in the range of several minutes to 48 hours.
  • the target product may be isolated from the reaction system containing the target product by a conventional method, and the target product can be produced by purification by recrystallization, column chromatography or the like, if necessary.
  • the halopyridinecarboxylic acid (2) is produced from the aminopyridinecarboxylic acid compound represented by the general formula (2-a) according to the method described in Sandmayer reaction, Chem.CRev. 1988, 88, 765. be able to.
  • General formula (3) which is a production intermediate of the compound of the present invention, can be produced by the following method.
  • an iodopyridazine compound represented by the general formula (3-4) produced by a method described in the literature (Tetrahedron 1999, 55, 15067) and an iodoalkyl are synthesized in the presence of a metal catalyst, a base and an inert solvent.
  • a cross-coupling reaction is carried out according to the method described (Joint Synthetic Organic Chemistry Journal Vol. 69 No. 7 2011; Chem. Rev. 2011, 4475; WO2013 / 018928 pamphlet), and is represented by the general formula (3-3).
  • Pyridazine compounds can be produced.
  • palladium compounds such as zero-valent or divalent palladium metals and salts (including complexes) can be used, and they may be supported on activated carbon or the like.
  • Preferred examples include palladium (0) / carbon, palladium (II) acetate, palladium (II) chloride, bis (triphenylphosphine) palladium (II) chloride, tetrakis (triphenylphosphine) palladium (0), and the like. I can do things.
  • This reaction can also be performed by adding a ligand.
  • the ligands include triphenylphosphine (PPh 3 ), methyldiphenylphosphine (Ph 2 PCH 3 ), trifurylphosphine (P (2-furyl) 3 ), tri (o-tolyl) phosphine (P (o-tol 3 ), tri (cyclohexyl) phosphine (PCy 3 ), dicyclohexylphenylphosphine (PhPCy 2 ), tri (t-butyl) phosphine (P t Bu 3 ), 2,2′-bis (diphenylphosphino) -1, 1′-binaphthyl (BINAP), diphenylphosphinoferrocene (DPPF), 1,1′-bis (di-t-butylphosphino) ferrocene (D t BPF), N, N-dimethyl-1- [2- ( Diphen
  • Examples of the base that can be used in the present invention include hydroxides such as lithium hydroxide, sodium hydroxide, and potassium hydroxide, lithium carbonate, lithium hydrogen carbonate, sodium carbonate, sodium hydrogen carbonate, potassium carbonate, potassium hydrogen carbonate, cesium carbonate, and the like.
  • Examples thereof include organic bases such as picoline, lutidine, triethylamine, tributylamine and diisopropylethylamine.
  • the amount of the base used may be appropriately selected from the range of 1 mol to 5.0 mol based on the compound represented by the general formula (II-5).
  • the reaction temperature in this reaction may usually be in the range of about 0 ° C. to the boiling point of the solvent used, and the reaction time is not constant depending on the reaction scale, reaction temperature, etc., but may be appropriately selected within the range of several minutes to 48 hours. .
  • the aminopyridazine compound represented by the general formula (3-2) can be produced by reacting the pyridazine compound represented by the general formula (3-3) with the amino compound (R 3 NH 2 ).
  • the inert solvent used in this reaction is not particularly limited as long as it does not significantly inhibit the progress of this reaction.
  • aromatic hydrocarbons such as benzene, toluene and xylene
  • halogens such as methylene chloride, chloroform and carbon tetrachloride.
  • Halogenated aromatic hydrocarbons such as chlorobenzene and dichlorobenzene, linear or cyclic ethers such as diethyl ether, methyl tertiary butyl ether, dioxane and tetrahydrofuran, esters such as ethyl acetate, dimethylformamide, dimethyl Amides such as acetamide, ketones such as acetone and methyl ethyl ketone; and inert solvents such as dimethyl sulfoxide and 1,3-dimethyl-2-imidazolidinone can be exemplified, and these inert solvents can be used alone or as 2 Can be used by mixing more than one species
  • a base may be used as necessary.
  • the base include inorganic bases such as sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate; sodium acetate, potassium acetate Acetates such as potassium t-butoxide, sodium methoxide, sodium ethoxide, and other alkali metal alkoxides, triethylamine, diisopropylethylamine, 1,8-diazabicyclo [5.4.0] undec-7-ene, etc.
  • Secondary amines; nitrogen-containing aromatic compounds such as pyridine and dimethylaminopyridine, etc. can be mentioned, and the amount used is usually 1 to 10 mol per mol of the compound represented by formula (3-3). Used in the range of
  • the reaction temperature in this reaction may be appropriately selected within the range of ⁇ 10 ° C. to the reflux temperature of the inert solvent used.
  • the reaction time varies depending on the reaction scale, reaction temperature, and the like, and is not constant but may be appropriately selected within the range of several minutes to 48 hours.
  • the amino compound (R 3 NH 2 ) can be appropriately selected within the range of 1 to 5 moles relative to the pyridazine compound represented by the general formula (3-3).
  • the target product may be isolated from the reaction system containing the target product by a conventional method, and the target product can be produced by purification by recrystallization, column chromatography or the like, if necessary.
  • a halopyridazine compound represented by the general formula (3-1) can be produced by reacting the aminopyridazine compound represented by the general formula (3-2) with a halogenating agent.
  • the inert solvent that can be used in this reaction is not particularly limited as long as it does not significantly inhibit this reaction. Examples thereof include alcohols such as methanol, ethanol, propanol, butanol, and 2-propanol; chains such as diethyl ether, tetrahydrofuran, and dioxane.
  • cyclic ethers aromatic hydrocarbons such as benzene, toluene and xylene, esters such as ethyl acetate, N, N-dimethylformamide, N, N-dimethylacetamide, 1,3-dimethyl-2-imidazolide
  • aromatic hydrocarbons such as benzene, toluene and xylene
  • esters such as ethyl acetate, N, N-dimethylformamide, N, N-dimethylacetamide, 1,3-dimethyl-2-imidazolide
  • Nonpolar, water, acetic acid and other polar solvents can be mentioned, and these inert solvents can be used alone or in admixture of two or more.
  • halogenating agent used in the reaction examples include chlorine, bromine, iodine halogen molecules, halogenated succinimides such as NCS and NBS, halogenated hydantoins such as DIH, and thionyl chloride.
  • the reaction temperature in this reaction may be appropriately selected within the range of ⁇ 30 ° C. to the reflux temperature of the inert solvent used.
  • the reaction time varies depending on the reaction scale, reaction temperature, and the like, and is not constant but may be appropriately selected within the range of several minutes to 48 hours.
  • the target product may be isolated from the reaction system containing the target product by a conventional method, and the target product can be produced by purification by recrystallization, column chromatography or the like, if necessary.
  • the aminopyridazine compound (3) can be produced by reacting the halopyridazine compound represented by the general formula (3-1) with ammonia in the presence of a copper catalyst and a solvent.
  • the inert solvent used in this reaction is not particularly limited as long as it does not significantly inhibit the progress of this reaction.
  • alcohols such as methanol, ethanol, propanol, butanol and 2-propanol
  • aromatics such as benzene, toluene and xylene are used.
  • Inert solvents such as amides, dimethyl sulfoxide, 1,3-dimethyl-2-imidazolidinone can be exemplified, and these inert solvents can be used alone or in admixture of two or more.
  • copper catalyst used in this reaction copper oxide, copper bromide, copper chloride and the like can be used.
  • the amount used can be appropriately selected within the range of 1 to 5 moles compared to the halopyridazine compound represented by formula (3-1).
  • the reaction temperature in this reaction may be appropriately selected within the range of ⁇ 10 ° C. to the reflux temperature of the inert solvent used.
  • the reaction time varies depending on the reaction scale, reaction temperature, and the like, and is not constant but may be appropriately selected within the range of several minutes to 48 hours.
  • Ammonia can be appropriately selected in the range of 1 to 5 moles relative to the halopyridazine compound represented by the general formula (3-1).
  • an autoclave can be used.
  • the target product may be isolated from the reaction system containing the target product by a conventional method, and the target product can be produced by purification by recrystallization, column chromatography or the like, if necessary.
  • Me represents a methyl group
  • Et represents an ethyl group
  • Vinyl represents a vinyl group
  • n-Pr represents a normal propyl group
  • i-Pr represents an isopropyl group
  • c-Pr represents a cyclopropyl group
  • I-Bu represents an isobutyl group
  • t-Bu represents a tertiary butyl group
  • n-Pent represents a normal pentyl group
  • n-Hex represents a normal hexyl group
  • Ac represents an acetyl group.
  • Physical properties indicate melting point (° C.).
  • the agricultural and horticultural insecticide containing the condensed heterocyclic compound represented by the general formula (1) of the present invention or a salt thereof as an active ingredient is various agricultural and forestry and horticultural plants that harm paddy rice, fruit trees, vegetables, other crops, and florets. Suitable for controlling pests such as stored pests, sanitary pests, nematodes and the like.
  • Examples of the pests or nematodes include the following. Lepidoptera (Lepidoptera) pests such as Parasa consocia, Redwood (Anomis mesogona), Papilio xuthus, Matsumuraeses azukivora, Ostrinia scapulalis, African exotic empti (Spod) (Hyphantria cunea), Awanoiga (Ostrinia furnacalis), Ayayoto (Pseudaletia separata), Iga (Tinea translucens), Bactra furfuryla, Parnara guttata, Ira inferens), Brachmia triannulella, Monema flavescens, Iraqusinu Waiba (Trichoplusia ni), Pleuroptya ruralis, Cystidia couaggaria, Lampides boeticus, Males flamingo (Helicoverpa armigera) Phararodonta man
  • Hemiptera pests, for example, Nezara antennata, red beetle (Stenotus rubrovittatus), red beetle (Graphosoma rubrolineatum), red beetle (Trigonotylus coelestialium), Aeschynteles maculatus), red beetle (Creontiades pallidifer), red beetle bug (Dysdercus cingulatus), red beetle (Chrysomphalus ficus), red beetle (Aonidiella aurantii), red crab beetle (Graptops) Scale insects (Icerya purchasi), Japanese beetle (Piezodorus hybneri), Japanese beetle (Lagynotomus elongatus), Japanese white beetle (Thaia subrufa), Japanese black beetle (Scotinophara luridaito) , St
  • Coleoptera (Coleoptera) pests include, for example, Xystrocera globosa, Aobaarie-hane-kakushi (Paederus fuscipes), Ahanamuri (Eucetonia roelofsi), Azuki beetle (Callosobruchus chinensis), Arimodosium (Hypera postica), rice weevil (Echinocnemus squameus), rice beetle (Oulema oryzae), rice beetle (Oulema oryzae), rice beetle (Donacia provosti), rice weevil (Lissorhoptruss (Epilachna varivestis), bean weevil (Acanthoscelides obtectus), western corn rootworm (Diabrotica virgifera virgifera), beetle weevil (Involvulus cupreus), cucumber beetle (Aulacophora fe
  • Culex pipiens pallens red flies fly (Pegomya hyoscyami), red spider fly (Liriomyza huidobrensis), house fly (Musca domestica), rice flies Flies Fruit flies (Rhacochlaena japonica), fruit flies (Muscina stabulans), fruit flies such as fruit flies (Megaselia spiracularis), giant butterflies (Clogmia albipunctata), mushroom moth (Tipula aino), hormone moth (Pipula) rhynchus), Anopheles sinensis, Japanese flies (Hylemya brassicae), Soybean fly (Asphondylia sp.), Panax fly (Delia platura), Onion fly (Delia antiqua) RRen ), Ceratitis capitata, Bradysia agrestis, sugar beetle fly (P
  • Hymenoptera Pristomyrmex ⁇ ponnes
  • Arbatidae Moneorumium pharaohnis
  • Pheidole noda Athalia rosae
  • Cristoforma Kuriphilus
  • Hornets black bee (Athalia infumata infumata), horned bee (Arge g pagana), Japanese bee (Athalia ⁇ japonica), cricket (Acromyrmex spp.), Fire ant (Solenopsis spp.), Apple honey bee (Arlen ali) (Ochetellus glaber) and the like.
  • insects of the order Diptera Hortocoryphus lineosus
  • Kera Gryllotalpa sp.
  • Coago Oxya hyla intricata
  • Cobainago Oxya yezoensis
  • Tosama locust Locusta migrago
  • Oneya Homorocoryphus jezoensis
  • emma cricket Teogryllus emma
  • Thrips examples of thrips of the order Thrips (Selenothrips rubrocinctus), thrips (Stenchaetothrips biformis), Thrips thrips (Haplothrips , Lithrips floridensis, Thrips simplex, Thrips nigropilosus, Helothripes Leeuwenia pasanii), Shiritakuthamis (Litotetothrips pasaniae), Citrus srips (Scirtothrips citri), Hempothrips chinensis, Soybean thrips (Mycterothrips glycines), Da Thrips setosus, Thripsrtsaw Thrips hawaiiensis, Haplothrips kurdjumovi, Thrips coloratus , Lilyripa vaneeckei, and the like.
  • mite moths (Leptotrombidium akamushi), Ashinowa spider mite (Tetranychus ludeni), American dock ticks (Dermacentor variabilis), Ichinami spider mite (Tetranychus truncatus), house dust mite (Ornithonyssus bacoti), mite Tetranychus viennensis), ticks (Tetranychus kanzawai), ticks (Rhipicephalus sanguineus) and other ticks (Cheyletus acc malaccensis), stag beetle tick (Tyrophagus putrescent moth) Tick (Dermacentor taiwanicus), Chinese cabbage mite (Acaphylla theavagrans), Chinese dust mite (Polyphagotarsonemus latus), Tomato mite (Aculops lycopersici), Trichoid mite (Ornithonyssus sylvairum), Nami spider mite (
  • Amite termites (Reticulitermes miyatakei), American termites (Incisitermes minor), Termites (Coptotermes formosanus), Termites (Hodotermopsis japonica), Common termites (Reticulitermes termm ants) , Glyptotermes , Nakajima termite (Glyptotermes nakajimai), Nitobe termite (Pericapritermes nitobei), Yamato termite (Reticulitermes speratus) and the like.
  • cockroach Periplaneta fuliginosa
  • German cockroach Blattella germanica
  • Great cockroach Blatta orientalis
  • Greater cockroach Periplaneta brunnea
  • Greater cockroach Blattella lituriplanet (Periplaneta americana) and the like.
  • fleas examples include human fleas (Pulex irritans), cat fleas (Ctenocephalides felis), and fleas (Ceratophyllus gallinae).
  • Nematodes for example, strawberry nematode (Nothotylenchus acris), rice scallop nematode (Aphelenchoides besseyi), red-footed nematode (Pratylenchus penetrans), red-knot nematode (Meloidogyne hapla), sweet potato nematode (Meloidogyne rostochiensis), Javaloid nematode (Meloidogyne javanica), soybean cyst nematode (Heterodera glycines), southern nematode nematode (Pratylenchus coffeae), and pterolenchus nematode (Pratylenchus neglectus)
  • mollusks examples include Pomacea canaliculata, Achatina fulica, slug (Meghimatium bilineatum), Lehmannina valentiana, Limax flavus, and Acusta despecta Is mentioned.
  • the agricultural and horticultural insecticide of the present invention has a strong insecticidal effect against tomato kibaga (Tuta absoluta) as other pests.
  • animal parasite ticks Boophilus microplus
  • black tick ticks Raicephalus sanguineus
  • yellow tick ticks Haemaphysalis longicornis
  • yellow ticks Haemaphysalis flava
  • tsurigane tick ticks Haemaphysata tick
  • Tick Haemaphysalis concinna
  • tick Haemaphysalis japonica
  • tuna Haemaphysalis kitaokai
  • tick Haemaphysalis ias
  • tick Ixodes ovatus
  • tick desmite Ticks Dermanyssus, ticks such as Amblyomma testudinarium, Haemaphysalis megaspinosa, Dermacentor reticulatus, and Dermacentor taiwanesis gallinae
  • avian mite Ornithonyssus sylviarum
  • fleas to be controlled include, for example, ectoparasite worms belonging to the order Flea (Siphonaptera), more specifically fleas belonging to the family Flea (Pulicidae), Cleaphyllus (Ceratephyllus), etc. .
  • Fleas belonging to the family flea family include, for example, dog fleas (Ctenocephalides canis), cat fleas (Ctenocephalides felis), human fleas (Pulex irritans), elephant fleas (Echidnophaga gallinacea), keops mouse fleas (Xenopsylla cheopis), Leptopsylla segnis), European mouse minnow (Nosopsyllus fasciatus), and Yamato mouse minnow (Monopsyllus anisus).
  • ectoparasites to be controlled include, for example, cattle lice (Haematopinus eurysternus), horse lice (Haematopinus asini), sheep lice (Dalmalinia ovis), cattle lice (Linognathus vituli), pig lice (Haematopinus ⁇ suius ⁇ pubis), And lice like head lice (Pediculus capitis), and lice like dog lice (Trichodectes canis), blood-sucking dipteries such as Tabibus trigonus, Culicoides schultzei, and Simulium ornatum Examples include pests.
  • endoparasites include nematodes such as pneumoniae, benthic, nodular worms, gastric parasites, roundworms, and filamentous worms, manson cleft worms, broad-headed crest worms, berries Tapeworms such as tapeworms, multi-headed tapeworms, single-banded tapeworms, and multi-banded tapeworms, flukes such as Schistosoma japonicum, and liver fluke, and coccidium, malaria parasites, intestinal granulocysts, toxoplasma And protozoa such as Cryptosporidium.
  • nematodes such as pneumoniae, benthic, nodular worms, gastric parasites, roundworms, and filamentous worms, manson cleft worms, broad-headed crest worms, berries Tapeworms such as tapeworms, multi-headed tapeworms, single-banded tapeworms, and multi-banded tapeworms,
  • the agricultural and horticultural insecticide containing the fused heterocyclic compound represented by the general formula (1) or a salt thereof of the present invention as an active ingredient damages paddy field crops, field crops, fruit trees, vegetables, other crops, and flowers. It has a remarkable control effect on the pests that it gives, so that it matches the time when the occurrence of the pests is predicted, before the occurrence of the pests or when the occurrence is confirmed, nursery facilities, paddy fields, fields, fruit trees, vegetables, etc.
  • the desired effects of the agricultural and horticultural insecticide of the present invention can be obtained by treating the seeds such as crops, seeds such as flower buds, paddy field water, stalks and leaves or soil and other cultivation carriers.
  • Useful plants to which the agricultural and horticultural insecticide of the present invention can be used are not particularly limited, and examples thereof include cereals (eg, rice, barley, wheat, rye, oats, corn, etc.), beans (soybean, Red beans, broad beans, green beans, green beans, peanuts, etc.), fruit trees and fruits (apples, citrus fruits, pears, peaches, peaches, plums, cherry peaches, walnuts, chestnuts, almonds, bananas, etc.), leaves and fruit vegetables (cabbage, Tomato, spinach, broccoli, lettuce, onion, green onion (satsuki, parrot), green pepper, eggplant, strawberry, pepper, ladle, leek, etc., root vegetables (carrot, potato, sweet potato, sweet potato, daiko, kabu, lotus root, gobo) , Garlic, raccoon, etc.), crops for processing (crab, hemp, beet, hop, sugar cane, sugar beet, olive, rubber, coffee, tobacco, tea, etc
  • the “plant” includes HPPD inhibitors such as isoxaflutol, ALS inhibitors such as imazetapyr and thifensulfuron methyl, EPSP synthase inhibitors such as glyphosate, glutamine synthase inhibitors such as glufosinate, cetoxydim and the like. Also included are plants that have been rendered resistant by classical breeding methods or genetic recombination techniques to resistance to herbicides such as acetyl CoA carboxylase inhibitors, bromoxynil, dicamba, 2,4-D.
  • HPPD inhibitors such as isoxaflutol
  • ALS inhibitors such as imazetapyr and thifensulfuron methyl
  • EPSP synthase inhibitors such as glyphosate
  • glutamine synthase inhibitors such as glufosinate, cetoxydim and the like.
  • plants that have been rendered resistant by classical breeding methods or genetic recombination techniques to resistance to herbicides such as
  • Plants to which tolerance to an acetyl-CoA carboxylase inhibitor has been imparted are Procedures of the National Academy of Sciences of the United States of America (Proc. Natl. Acad. Sci). USA) 87, 7175-7179 (1990).
  • a mutant acetyl CoA carboxylase resistant to an acetyl CoA carboxylase inhibitor has been reported in Weed Science 53, 728-746 (2005).
  • Introducing a plant resistant to an acetyl-CoA carboxylase inhibitor by introducing a mutation associated with imparting resistance into a plant or introducing a mutation associated with imparting resistance into a plant acetyl-CoA carboxylase, and further, chimeric plastic technology (Gura T. et al. 1999.
  • toxins expressed in transgenic plants insecticidal proteins derived from Bacillus cereus and Bacillus popirie; ⁇ - such as Cry1Ab, Cry1Ac, Cry1F, Cry1Fa2, Cry2Ab, Cry3A, Cry3Bb1 or Cry9C derived from Bacillus thuringiensis Endotoxins, insecticidal proteins such as VIP1, VIP2, VIP3 or VIP3A; nematicidal insecticidal proteins; toxins produced by animals such as scorpion toxins, spider toxins, bee toxins or insect-specific neurotoxins; filamentous fungal toxins; plant lectins; Agglutinin; protease inhibitors such as trypsin inhibitor, serine protease inhibitor, patatin, cystatin, papain inhibitor; lysine, corn-RIP, abrin, ruffin, saporin, bryodin, etc.
  • ⁇ - such as Cry1Ab, Cry1Ac, Cry1F,
  • Bosome inactivating protein RIP
  • steroid metabolic enzymes such as 3-hydroxysteroid oxidase, ecdysteroid-UDP-glucosyltransferase, cholesterol oxidase; ecdysone inhibitor; HMG-CoA reductase; sodium channel, calcium channel inhibitor, etc. Ion channel inhibitor; juvenile hormone esterase; diuretic hormone receptor; stilbene synthase; bibenzyl synthase; chitinase; glucanase and the like.
  • toxins expressed in such genetically modified plants Cry1Ab, Cry1Ac, Cry1F, Cry1Fa2, Cry2Ab, Cry3A, Cry3Bb1, Cry9C, Cry34Ab, Cry35Ab and other ⁇ -endotoxin proteins, VIP1, VIP2, VIP3 or VIP3A etc.
  • insecticidal protein hybrid toxins partially defective toxins, and modified toxins.
  • Hybrid toxins are produced by new combinations of different domains of these proteins using recombinant techniques.
  • Cry1Ab lacking a part Cry1Ab lacking a part of the amino acid sequence is known.
  • the modified toxin one or more amino acids of the natural toxin are substituted.
  • Examples of these toxins and recombinant plants capable of synthesizing these toxins are EP-A-0 374 753, WO 93/07278, WO 95/34656, EP-A-0 427 529, EP-A-451 878. , WO 03/052073, and the like.
  • Toxins contained in these recombinant plants particularly confer resistance to Coleoptera, Hemiptera pests, Diptera pests, Lepidoptera pests and nematodes.
  • the agricultural and horticultural insecticides of the present invention can be used in combination or systematized with these techniques.
  • the insecticide for agricultural and horticultural use according to the present invention is used as it is to control various pests, or appropriately diluted with water or the like, or suspended in an amount effective for controlling the pests or nematodes.
  • pests and nematodes occurring in fruit trees, cereals, vegetables, etc., in addition to spraying on the foliage, seed immersion in seeds, seed dressing, calper treatment Etc.
  • it can be used for nutrient solution in nutrient solution (hydroponics) cultivation, smoke, or trunk injection.
  • the agricultural and horticultural insecticide of the present invention may be used as it is, appropriately diluted with water or the like or suspended in an amount effective for pest control in a place where the occurrence of the pest is predicted.
  • the agricultural and horticultural insecticide of the present invention may be used as it is, appropriately diluted with water or the like or suspended in an amount effective for pest control in a place where the occurrence of the pest is predicted.
  • they can also be used as application to house building materials, smoke, bait and the like.
  • Seed treatment methods include, for example, a method in which a liquid or solid preparation is diluted or undiluted and the seed is immersed in a liquid state to infiltrate the drug, a solid preparation or liquid preparation is mixed with the seed, Examples thereof include a method of treating and adhering to the surface of the seed, a method of coating the seed by mixing with an adhesive carrier such as resin and polymer, and a method of spraying around the seed simultaneously with planting.
  • the “seed” for performing the seed treatment means a plant body at the initial stage of cultivation used for the propagation of plants, for example, for seeds, bulbs, tubers, seed buds, stock buds, baskets, bulbs, or cuttings. Mention may be made of plants for vegetative propagation.
  • the “soil” or “cultivation carrier” of the plant when carrying out the method of use of the present invention refers to a support for cultivating crops, particularly a support for growing roots, and the material is not particularly limited. However, any material that can grow plants may be used, and so-called soil, seedling mats, water, etc. may be used. Specific materials include, for example, sand, pumice, vermiculite, diatomaceous earth, agar, gel-like substances, high It may be a molecular substance, rock wool, glass wool, wood chip, bark or the like.
  • a spraying method for crop foliage stored grain pests, house pests, hygiene pests, forest pests, etc., dilute liquid preparations such as emulsions and flowables or solid preparations such as wettable powders or granular wettable powders with water as appropriate.
  • Examples of the application method to the soil include, for example, a method in which a liquid preparation is diluted or not diluted with water and applied to a plant stock or a seedling nursery, etc.
  • a method of spraying to a nursery, etc. a method of spraying powder, wettable powder, granule wettable powder, granule, etc. before sowing or transplanting and mixing with the whole soil, a planting hole, making before planting or planting a plant body
  • Examples thereof include a method of spraying powder, wettable powder, wettable powder, granule, etc. on the strip.
  • the dosage form may vary depending on the time of application such as application at seeding, application at greening period, application at transplanting, etc. Apply by mold. It can also be applied by mixing with soil, and it can be mixed with soil and powder, granulated wettable powder or granules, for example, mixed with ground soil, mixed with soil covering, mixed with the entire soil. Simply, the soil and the various preparations may be applied alternately in layers.
  • solid preparations such as jumbo agents, packs, granules, granule wettable powders, and liquid preparations such as flowables and emulsions are usually sprayed on flooded paddy fields.
  • an appropriate formulation can be sprayed and injected into the soil as it is or mixed with fertilizer.
  • a chemical solution such as emulsion or flowable as a source of water flowing into a paddy field such as a water mouth or an irrigation device, it can be applied in a labor-saving manner along with the supply of water.
  • the plant source of the plant being cultivated In field crops, it can be treated to seeds or a cultivation carrier close to the plant body from sowing to raising seedling.
  • treatment on the plant source of the plant being cultivated is suitable.
  • a spray treatment using a granule or a irrigation treatment in a liquid of a drug diluted or not diluted with water can be performed. It is also a preferable treatment to mix the granules with the cultivation carrier before sowing and then sow.
  • the irrigation treatment of the liquid drug or the granule spraying treatment to the seedling nursery is preferred.
  • a granule is treated in a planting hole at the time of planting or is mixed with a cultivation carrier in the vicinity of the transplantation site.
  • the agricultural and horticultural insecticide of the present invention is generally used in a form convenient for use according to a conventional method for agricultural chemical preparations. That is, the condensed heterocyclic compound represented by the general formula (1) of the present invention or a salt thereof is dissolved in an appropriate inert carrier or, if necessary, together with an auxiliary agent in an appropriate ratio.
  • the composition of the present invention can contain, in addition to the active ingredient, additive components usually used in agricultural chemical formulations or animal parasite control agents as required.
  • additive components include a carrier such as a solid carrier and a liquid carrier, a surfactant, a dispersant, a wetting agent, a binder, a tackifier, a thickener, a colorant, a spreading agent, a spreading agent, and an antifreezing agent. , Anti-caking agents, disintegrants, decomposition inhibitors and the like. In addition, you may use a preservative, a plant piece, etc. for an additional component as needed. These additive components may be used alone or in combination of two or more.
  • the solid support examples include natural minerals such as quartz, clay, kaolinite, pyrophyllite, sericite, talc, bentonite, acid clay, attapulgite, zeolite, diatomaceous earth, and inorganic salts such as calcium carbonate, ammonium sulfate, sodium sulfate, and potassium chloride.
  • liquid carrier examples include monohydric alcohols such as methanol, ethanol, propanol, isopropanol, and butanol, and polyhydric alcohols such as ethylene glycol, diethylene glycol, propylene glycol, hexylene glycol, polyethylene glycol, polypropylene glycol, and glycerin.
  • monohydric alcohols such as methanol, ethanol, propanol, isopropanol, and butanol
  • polyhydric alcohols such as ethylene glycol, diethylene glycol, propylene glycol, hexylene glycol, polyethylene glycol, polypropylene glycol, and glycerin.
  • Alcohols such as propylene glycol ether, ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, diisobutyl ketone, cyclohexanone, ethyl ether, dioxane, ethylene glycol monoethyl ether, dipropyl ether, tetrahydrofuran, etc.
  • ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, diisobutyl ketone, cyclohexanone, ethyl ether, dioxane, ethylene glycol monoethyl ether, dipropyl ether, tetrahydrofuran, etc.
  • Ethers normal paraffins, naphthenes, isoparaffins, kerosene, mineral oils and other aliphatic hydrocarbons
  • Aromatic hydrocarbons such as benzene, toluene, xylene, solvent naphtha, alkylnaphthalene, halogenated hydrocarbons such as dichloromethane, chloroform, carbon tetrachloride, ethyl acetate, diisopropyl phthalate, dibutyl phthalate, dioctyl phthalate, dimethyl adipate, etc.
  • Esters lactones such as ⁇ -butyrolactone, amides such as dimethylformamide, diethylformamide, dimethylacetamide, N-alkylpyrrolidinone, nitriles such as acetonitrile, sulfur compounds such as dimethylsulfoxide, soybean oil, rapeseed oil, Examples thereof include vegetable oils such as cottonseed oil and castor oil, and water. These may be used alone or in combination of two or more.
  • surfactants used as dispersants and wetting agents include sorbitan fatty acid esters, polyoxyethylene sorbitan fatty acid esters, sucrose fatty acid esters, polyoxyethylene fatty acid esters, polyoxyethylene resin acid esters, polyoxyethylene fatty acid diesters, Polyoxyethylene alkyl ether, polyoxyethylene alkyl aryl ether, polyoxyethylene alkyl phenyl ether, polyoxyethylene dialkyl phenyl ether, polyoxyethylene alkyl phenyl ether formalin condensate, polyoxyethylene polyoxypropylene block copolymer, polystyrene polyoxyethylene Block polymer, alkyl polyoxyethylene polypropylene block copolymer ether, polyoxye Lenalkylamine, polyoxyethylene fatty acid amide, polyoxyethylene fatty acid bisphenyl ether, polyalkylene benzyl phenyl ether, polyoxyalkylene styryl phenyl ether, acetylene dio
  • binders and tackifiers include carboxymethyl cellulose and salts thereof, dextrin, water-soluble starch, xanthan gum, guar gum, sucrose, polyvinyl pyrrolidone, gum arabic, polyvinyl alcohol, polyvinyl acetate, sodium polyacrylate, and an average molecular weight of 6000 to 20000.
  • Polyethylene glycol polyethylene oxide having an average molecular weight of 100,000 to 5,000,000, phospholipid (for example, cephalin, lecithin, etc.) cellulose powder, dextrin, modified starch, polyaminocarboxylic acid chelate compound, cross-linked polyvinylpyrrolidone, maleic acid and styrenes Polymers, (meth) acrylic acid copolymers, half-esters of polycarboxylic alcohol polymers and dicarboxylic acid anhydrides, water soluble salts of polystyrene sulfonic acid, para Fin, terpene, polyamide resins, polyacrylate, polyoxyethylene, wax, polyvinyl alkyl ethers, alkylphenol-formalin condensates, synthetic resin emulsions, and the like.
  • phospholipid for example, cephalin, lecithin, etc.
  • cellulose powder dextrin
  • polyaminocarboxylic acid chelate compound cross-linked polyviny
  • thickener examples include xanthan gum, guar gum, diyutane gum, carboxymethylcellulose, polyvinylpyrrolidone, carboxyvinyl polymer, acrylic polymer, starch compound, water-soluble polymer such as polysaccharide, high-purity bentonite, fumed silica (fumed Inorganic fine powders such as silica and white carbon.
  • the colorant examples include inorganic pigments such as iron oxide, titanium oxide and Prussian blue, organic dyes such as alizarin dyes, azo dyes and metal phthalocyanine dyes.
  • antifreezing agent examples include polyhydric alcohols such as ethylene glycol, diethylene glycol, propylene glycol, and glycerin.
  • Adjuvants for preventing caking and promoting disintegration include, for example, polysaccharides such as starch, alginic acid, mannose, galactose, polyvinylpyrrolidone, fumed silica (fumed silica), ester gum, petroleum resin, sodium tripolyphosphate, Sodium hexametaphosphate, metal stearate, cellulose powder, dextrin, methacrylate copolymer, polyvinylpyrrolidone, polyaminocarboxylic acid chelate compound, sulfonated styrene / isobutylene / maleic anhydride copolymer, starch / polyacrylonitrile graft copolymer A polymer etc. are mentioned.
  • the decomposition inhibitor examples include desiccants such as zeolite, quicklime and magnesium oxide, antioxidants such as phenolic compounds, amine compounds, sulfur compounds and phosphoric acid compounds, and ultraviolet absorbers such as salicylic acid compounds and benzophenone compounds. It is done.
  • desiccants such as zeolite, quicklime and magnesium oxide
  • antioxidants such as phenolic compounds, amine compounds, sulfur compounds and phosphoric acid compounds
  • ultraviolet absorbers such as salicylic acid compounds and benzophenone compounds. It is done.
  • preservative examples include potassium sorbate, 1,2-benzothiazolin-3-one, and the like.
  • functional aids such as metabolic degradation inhibitors such as piperonyl butoxide, antifreezing agents such as propylene glycol, antioxidants such as BHT, UV absorbers and other supplements as necessary Agents can also be used.
  • the blending ratio of the active ingredient compound can be adjusted as necessary, and may be appropriately selected from the range of 0.01 to 90 parts by weight in 100 parts by weight of the agricultural and horticultural insecticide of the present invention.
  • 0.01 to 50 parts by weight 0.01 to 50% by weight based on the total weight of the agricultural and horticultural insecticide
  • the amount of the agricultural and horticultural insecticide of the present invention depends on various factors such as purpose, target pests, crop growth status, pest occurrence tendency, weather, environmental conditions, dosage form, application method, application location, application time, etc. Although it varies, the active ingredient compound may be suitably selected from the range of 0.001 g to 10 kg per 10 ares, preferably 0.01 g to 1 kg depending on the purpose.
  • Agricultural and horticultural insecticides of the present invention are pests to be controlled, other agricultural and horticultural insecticides, acaricides, nematicides, fungicides, for the purpose of expanding the appropriate period of control or reducing the dose. It can also be used by mixing with biological pesticides, etc., and can also be used by mixing with herbicides, plant growth regulators, fertilizers, etc., depending on the usage situation.
  • Examples of other agricultural and horticultural insecticides, acaricides, and nematicides used for such purposes include: 3,5-xylyl methylcarbamate (XMC), Bacillus thuringienses aizawai, Bacillus thuringienses israelensis, Bacillus thuringienses japonensis, Bacillus thuringienses kurstaki, Bacillus thuringienses tenebrionis, Bacillus thuringienses produced crystalline protein toxin, BPMC, Bt toxin C chlorfenson), DCIP (dichlorodiisopropyl ether), DD (1, 3-dichloropropene), DDT, NAC, O-4-dimethylsulfamoylphenyl O, O-diethyl phosphorothioate (DSP), O-ethyl O-4-nitrophenyl phenylphosphonothioate (EPN), triprop
  • Examples of agricultural and horticultural fungicides used for similar purposes include aureofungin, azaconazole, azithiram, acipetacs, acibenzolar, acibenzolar-S-methyl. ), Azoxystrobin, anilazine, amisulbrom, ampropylfos, ametoctradin, allyl alcohol, aldimorph, amobam, isothianyl (Isotianil), isovaledione, isopyrazam, isoprothiolane, ipconazole, iprodione, iprovalicarb, iprobenfos, imazalil Iminoctadine, iminoctadine-albesilate, iminoctadine-triacetate, imibenconazole, uniconazole, uniconazole-P, eclomeole, echlomez Edifenphos, etaconazole, ethaboxam, e
  • herbicides for example, 1-naphthylacetamide, 2,4-PA, 2,3,6-TBA, 2,4,5-T, 2,4,5-TB, 2,4-D, 2, 4-DB, 2,4-DEB, 2,4-DEP, 3,4-DA, 3,4-DB, 3,4-DP, 4-CPA, 4-CPB, 4-CPP, MCP, MCPA, MCPA thioethyl, MCPB, ioxynil, aclonifen, azafenidin, acifluorfen, aziprotryne, azimsulfuron, aslam, acetochlor, Atrazine, atraton, anisuron, anilofos, abiglycine, abscisic acid, amicarbazone, amidosulfuron, amitrole, amino Cyclopyrachlor (aminocyclopyrachlor), aminopyralid (aminopyralid), Amibu Gin (amibuzin), amiprophos-methyl,
  • biological pesticides include nuclear polyhedrosis virus (NPV), granulosis virus (GV), cytoplasmic polyhedrosis virus (CPV), insect pox virus (Entomopoxivirus, EPV) ) Virus preparations, Monocrosporium ⁇ ⁇ phymatophagum, Steinernema ⁇ carpocapsae, Steinernema kushidai, Pasturia ⁇ pene insecticides, and Pasturia pene insecticides Sterilization of microbial pesticides, Trichoderma lignorum, Agrobacterium radiobactor, non-pathogenic Erwinia carotovora, Bacillus subtilis, etc.
  • microbial pesticide to be used by using mixed such as biological pesticides utilized as herbicides, such as Xanthomonas campestris (Xanthomonas campestris), the same effect can be expected.
  • examples of biological pesticides include Encarsia formosa, Aphidius colemani, Aphidoletes aphidimyza, Diglyphus isaea, Dacnusahysrica persimilis), natural enemies such as Amblyseius cucumeris, Orius sauteri, microbial pesticides such as Beauveria brongniartii, (Z) -10-tetradecenyl acetate, (E, Z) ) -4,10-tetradecadinyl acetate, (Z) -8-dodecenyl acetate, (Z) -11-tetradecenyl acetate, (Z) -13-icosen-10-one, 14-methyl-1 - May also be used in combination with pheromone agents such as octadecene It is a function.
  • pheromone agents such as octadecene It is a function.
  • Triethylamine (2 mL), 4-dimethylaminopyridine (20 mg) and 1-methyl-2-chloropyridinium iodide (694 mg) were sequentially added.
  • the reaction solution was stirred at room temperature for 30 minutes and then heated to reflux for 3 hours. After cooling to room temperature, water was added and the mixture was extracted several times with ethyl acetate, and then the organic layer was dried and concentrated, and subjected to column chromatography to obtain the desired diamide (675 mg, 36%).
  • Formulation Example 1 Compound of the present invention 10 parts Xylene 70 parts N-methylpyrrolidone 10 parts Mixing of polyoxyethylene nonylphenyl ether and calcium alkylbenzenesulfonate 10 parts The above is uniformly mixed and dissolved to prepare an emulsion.
  • Formulation Example 2 Compound of the present invention 3 parts Clay powder 82 parts Diatomaceous earth powder 15 parts The above is mixed and ground uniformly to form a powder.
  • Formulation Example 3 Compound of the present invention 5 parts Mixed powder of bentonite and clay 90 parts lignin sulfonate 5 parts The above is uniformly mixed, kneaded with an appropriate amount of water, granulated and dried to give granules.
  • Formulation Example 4 Compound of the present invention 20 parts Kaolin, synthetic highly dispersed silicic acid 75 parts Polyoxyethylene nonylphenyl ether and calcium alkylbenzene sulfonate 5 parts The above is uniformly mixed and ground to obtain a wettable powder.
  • Control value test against peach aphid (Myzus persicae) Chinese cabbage was planted in a plastic pot having a diameter of 8 cm and a height of 8 cm to breed a peach aphid, and the number of parasites in each pot was investigated.
  • the condensed heterocyclic compound represented by the general formula (1) of the present invention or a salt thereof is dispersed in water and diluted to 500 ppm of a chemical solution.
  • the chemical solution is sprayed on the stems and leaves of a potted Chinese cabbage and air-dried.
  • the number of parasites of the peach aphid parasitizing each Chinese cabbage on the 6th day after drug spraying was calculated, the control value was calculated from the following formula, and the determination was made according to the following criteria.
  • Ta Number of parasites before spraying in the treated zone
  • Ca Number of parasites before spraying in the untreated zone
  • C Number of parasites after spraying in the untreated zone
  • the compounds of the present invention 1-5, 1-6, 1-15, 1-33, 2-1, 2-2, 2-3, 2-4, 2-5, 2-6, 2-7 2-8, 2-9, 2-12, 2-13, 2-14, 2-15, 2-16, 2-19, 3-1, 3-2, 3-3, 3-5, 3 -6, 3-7, 3-8, 3-9, 3-10, 3-11, 3-12, 4-1, 4-2, 4-3, 4-4, 4-5, 4-6 4-7, 4-8, 4-9, 4-10, 4-11, 4-12, 4-13, 4-14, 4-15, 5-1, 5-2, 5-3, 5 -4, 5-5, 5-6, 5-7, 5-8, 5-9, 5-10, 5-11, 5-12, 5-13, 5-14, 5-15, and 5- 16 showed the activity of A.
  • Test Example 2 Insecticidal test against Japanese brown planthopper (Laodelphax striatella)
  • the condensed heterocyclic compound represented by the general formula (1) of the present invention or a salt thereof is dispersed in water and diluted to a chemical solution of 500 ppm, and then rice seedlings (variety: Nipponbare) Was soaked for 30 seconds, air-dried, put into a glass test tube, inoculated with 10 each of the three Japanese beetles, and then plugged, and after 8 days of inoculation, the number of live and dead insects was investigated. And the determination was made according to the determination criteria of Test Example 1.
  • the compounds of the present invention 1-4, 1-5, 1-6, 1-15, 1-33, 2-1, 2-2, 2-3, 2-4, 2-5, 2-6 2-7, 2-8, 2-9, 2-12, 2-13, 2-14, 2-16, 2-19, 3-1, 3-2, 3-3, 3-4, 3 -7, 3-7, 3-9, 3-9, 3-10, 3-11, 3-12, 4-2, 4-3, 4-4, 4-5, 4-6, 4-7 4-8, 4-9, 4-10, 4-11, 4-12, 4-13, 4-14, 4-15, 5-1, 5-2, 5-3, 5-4, 5 -7, 5-8, 5-9, 5-11, 5-11, 5-13, 5-13, 5-14, 5-15, and 5-16 showed activity of A.
  • Test Example 3 Insecticidal test for Plutella xylostella Sponge seedlings are allowed to lay eggs and lay eggs, and two days after release, Chinese cabbage seedlings with spawning eggs are condensed into a complex of the general formula (1) of the present invention.
  • the drug containing a ring compound as an active ingredient was immersed in a chemical solution diluted to 500 ppm for about 30 seconds, air-dried, and then allowed to stand in a thermostatic chamber at 25 ° C.
  • Six days after immersion in the chemical solution the number of hatching insects was investigated, the death rate was calculated according to the following formula, and the determination was made according to the criterion of Test Example 1. 1 zone, 10 heads, 3 units.
  • the compounds of the present invention 1-4, 1-5, 1-6, 1-15, 1-24, 1-33, 2-1, 2-2, 2-3, 2-4, 2-5 2-6, 2-7, 2-8, 2-9, 2-10, 2-12, 2-13, 2-14, 2-15, 2-16, 2-19, 3-1, 3 -2, 3-3, 3-4, 3-5, 3-6, 3-7, 3-8, 3-9, 3-10, 3-11, 3-12, 4-1, 4-2 4-3, 4-4, 4-5, 4-6, 4-7, 4-8, 4-9, 4-10, 4-11, 4-12, 4-13, 4-14, 4 -15, 5-1, 5-2, 5-3, 5-4, 5-5, 5-6, 5-7, 5-8, 5-9, 5-10, 5-11, 5-12 5-13, 5-14, 5-15, and 5-16 showed A activity.
  • the compound according to the present invention has an excellent control effect against a wide range of agricultural and horticultural pests and is useful.

Abstract

En raison des dommages occasionnés par les insectes nuisibles, etc. qui sont maintenant de plus en plus importants dans la production de récoltes en agriculture, dans les jardins, etc., et en raison de facteurs tels que l'apparition d'insectes nuisibles résistent aux produits chimiques existants, l'objet de la présente invention est de développer et de pourvoir à un nouvel insecticide agricole et horticole. La solution selon l'invention porte sur : un composé d'imidazopyridazine représenté par la formule générale (1) (1) [dans la formule, R1 représente un groupe alkyle, R2 représente un atome d'halogène ou un groupe cycloalkyle, R3 représente un groupe alkyle, R4 représente un groupe haloalkyle, et m représente 0, 1 ou 2] ou un sel de celui-ci ; un insecticide agricole et horticole le contenant à titre d'ingrédient actif ; et son procédé d'utilisation.
PCT/JP2015/086338 2014-12-26 2015-12-25 Composé hétérocyclique à groupe cycloalkyle condensé, sel de celui-ci, insecticide agricole et horticole le contenant, et son procédé d'utilisation WO2016104746A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-264915 2014-12-26
JP2014264915A JP2018052816A (ja) 2014-12-26 2014-12-26 シクロアルキル基を有する縮合複素環化合物又はその塩類及び該化合物を含有する農園芸用殺虫剤並びにその使用方法

Publications (1)

Publication Number Publication Date
WO2016104746A1 true WO2016104746A1 (fr) 2016-06-30

Family

ID=56150758

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/086338 WO2016104746A1 (fr) 2014-12-26 2015-12-25 Composé hétérocyclique à groupe cycloalkyle condensé, sel de celui-ci, insecticide agricole et horticole le contenant, et son procédé d'utilisation

Country Status (2)

Country Link
JP (1) JP2018052816A (fr)
WO (1) WO2016104746A1 (fr)

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018099812A1 (fr) 2016-12-01 2018-06-07 Syngenta Participations Ag Dérivés hétérocycliques à activité pesticide comportant des substituants contenant du soufre
WO2018108726A1 (fr) 2016-12-15 2018-06-21 Syngenta Participations Ag Dérivés polycycliques à activité pesticide comportant des substituants contenant du soufre
WO2018124129A1 (fr) * 2016-12-27 2018-07-05 日本農薬株式会社 Composé hétérocyclique fusionné possédant un groupe oxime ou sels de celui-ci, et pesticide à usage agricole et horticole comprenant ces composés ainsi que procédé de mise en œuvre de ce pesticide
WO2018199208A1 (fr) * 2017-04-27 2018-11-01 日本農薬株式会社 Composé hétérocyclique à noyau à 5 chaînons contenant de l'azote ou sel de celui-ci, insecticide agricole et horticole le contenant, et son procédé d'utilisation
WO2018202494A1 (fr) 2017-05-02 2018-11-08 Bayer Aktiengesellschaft Dérivés d'hétérocycles condensés à substitution 2-(hét)aryle utilisés comme pesticides
WO2018202540A1 (fr) 2017-05-02 2018-11-08 Syngenta Participations Ag Dérivés hétérocycliques à activité pesticide comportant des substituants contenant du soufre
WO2018202501A1 (fr) 2017-05-02 2018-11-08 Bayer Aktiengesellschaft Dérivés d'hétérocycles condensés à substitution 2-(hét)aryle utilisés comme pesticides
WO2018215304A1 (fr) 2017-05-22 2018-11-29 Syngenta Participations Ag Composés soufrés de pyridazine tétracyclique et leur utilisation en tant que pesticides
WO2019059244A1 (fr) 2017-09-21 2019-03-28 日本農薬株式会社 Composé de benzimidazole ayant un groupe cyclopropylpyridyle ou sel de celui-ci, pesticide agricole et horticole contenant ledit composé, et procédé d'utilisation dudit pesticide
WO2019068572A1 (fr) 2017-10-04 2019-04-11 Bayer Aktiengesellschaft Dérivés hétérocycliques utilisés comme pesticides
WO2019138018A1 (fr) 2018-01-15 2019-07-18 Syngenta Participations Ag Dérivés hétérocycliques à activité pesticide comportant des substituants contenant du soufre
WO2019201921A1 (fr) 2018-04-20 2019-10-24 Bayer Aktiengesellschaft Dérivés hétérocycliques utilisés comme pesticides
WO2019229089A1 (fr) 2018-05-31 2019-12-05 Syngenta Participations Ag Dérivés hétérocycliques à action pesticide comprenant des substituants contenant du soufre
WO2019234158A1 (fr) 2018-06-06 2019-12-12 Syngenta Crop Protection Ag Dérivés hétérocycliques à action pesticide comportant des substituants contenant de la sulfoximine
WO2019234160A1 (fr) 2018-06-06 2019-12-12 Syngenta Crop Protection Ag Dérivés hétérocycliques à activité pesticide comportant des substituants contenant du soufre
WO2020013147A1 (fr) 2018-07-10 2020-01-16 日本農薬株式会社 Composé de benzimidazole ayant un groupe alkylènedioxy qui peut être halogéné ou un sel de celui-ci, pesticide agricole et horticole contenant ledit composé, et procédé d'utilisation associé
WO2020084075A1 (fr) 2018-10-24 2020-04-30 Syngenta Crop Protection Ag Dérivés hétérocycliques à action pesticide avec des substituants contenant de la sulfoximine
WO2020141136A1 (fr) 2018-12-31 2020-07-09 Syngenta Crop Protection Ag Dérivés hétérocycliques à action pesticide comprenant des substituants contenant du soufre
WO2021009311A1 (fr) 2019-07-17 2021-01-21 Syngenta Crop Protection Ag Dérivés hétérocycliques à action pesticide comprenant des substituants contenant du soufre
WO2021049596A1 (fr) 2019-09-12 2021-03-18 日本農薬株式会社 Produit insecticide agricole et horticole mettant en oeuvre en tant que principe actif un compose imidazopyridazine possedant un groupe cyclopropane oxadiazole substitue ou des sels de celui-ci, agent de lutte antiparasitaire contre ectoparasites et endoparasites chez les animaux, ainsi que procedes d'utilisation de ceux-ci
WO2021049595A1 (fr) 2019-09-12 2021-03-18 日本農薬株式会社 Produit insecticide agricole et horticole mettant en oeuvre en tant que principe actif un compose heterocycle condense possedant un groupe cyclopropane oxadiazole substitue ou des sels de celui-ci, agent de lutte antiparasitaire contre ectoparasites et endoparasites chez les animaux, ainsi que procedes d'utilisation de ceux-ci
WO2021049597A1 (fr) 2019-09-12 2021-03-18 日本農薬株式会社 Agent insecticide pour une utilisation agricole ou horticole ou agent de lutte contre les ectoparasites ou endoparasites pour animaux contenant chacun un composé d'imidazopyridazine ou un sel de celui-ci comme principe actif, et utilisation dudit agent insecticide et dudit agent de lutte
WO2021105399A1 (fr) 2019-11-27 2021-06-03 Syngenta Crop Protection Ag Procédé de préparation d'acides 5-chloro-pyridine-2-carboxyliques et de carboxylates avec des substituants contenant 3 atomes de soufre
WO2021175959A1 (fr) 2020-03-04 2021-09-10 Syngenta Crop Protection Ag Procédé de préparation de carboxylates et d'amides d'acide 5-chloro-3-alkylsulfanyl-pyridine-2-carboxylique
WO2021219810A1 (fr) 2020-04-30 2021-11-04 Syngenta Crop Protection Ag Dérivés hétérocycliques à action pesticide comprenant des substituants contenant du soufre
WO2022128524A1 (fr) 2020-12-14 2022-06-23 Basf Se Pesticides sulfoximines
US11632955B2 (en) 2016-12-01 2023-04-25 Sumitomo Chemical Company, Limited Heterocyclic compound and harmful arthropods control agent comprising the same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7142680B2 (ja) 2018-03-20 2022-09-27 栃木住友電工株式会社 スチールコード、タイヤ
JPWO2020175491A1 (ja) * 2019-02-26 2021-11-11 日本曹達株式会社 ピリジン n−オキサイド化合物および有害生物防除剤

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014142292A1 (fr) * 2013-03-15 2014-09-18 日本農薬株式会社 Composé hétérocyclique condensé ou sel de celui-ci, insecticide agricole et horticole contenant le composé hétérocyclique condensé et procédé d'utilisation de l'insecticide agricole et horticole
WO2015000715A1 (fr) * 2013-07-02 2015-01-08 Syngenta Participations Ag Hétérocycles bi- ou tricycliques à action pesticide avec substituants soufrés

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014142292A1 (fr) * 2013-03-15 2014-09-18 日本農薬株式会社 Composé hétérocyclique condensé ou sel de celui-ci, insecticide agricole et horticole contenant le composé hétérocyclique condensé et procédé d'utilisation de l'insecticide agricole et horticole
WO2015000715A1 (fr) * 2013-07-02 2015-01-08 Syngenta Participations Ag Hétérocycles bi- ou tricycliques à action pesticide avec substituants soufrés

Cited By (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11632955B2 (en) 2016-12-01 2023-04-25 Sumitomo Chemical Company, Limited Heterocyclic compound and harmful arthropods control agent comprising the same
WO2018099812A1 (fr) 2016-12-01 2018-06-07 Syngenta Participations Ag Dérivés hétérocycliques à activité pesticide comportant des substituants contenant du soufre
WO2018108726A1 (fr) 2016-12-15 2018-06-21 Syngenta Participations Ag Dérivés polycycliques à activité pesticide comportant des substituants contenant du soufre
JP2020502115A (ja) * 2016-12-15 2020-01-23 シンジェンタ パーティシペーションズ アーゲー 硫黄含有置換基を有する有害生物防除に活性な複素環式誘導体
CN110022682B (zh) * 2016-12-15 2022-03-01 先正达参股股份有限公司 具有含硫取代基的杀有害生物活性杂环衍生物
JP7113014B2 (ja) 2016-12-15 2022-08-04 シンジェンタ パーティシペーションズ アーゲー 硫黄含有置換基を有する有害生物防除に活性な複素環式誘導体
CN110022682A (zh) * 2016-12-15 2019-07-16 先正达参股股份有限公司 具有含硫取代基的杀有害生物活性杂环衍生物
CN110114354B (zh) * 2016-12-27 2022-04-29 日本农药株式会社 具有肟基的缩合杂环化合物或其盐类以及含有这些化合物的农业园艺用杀虫剂及其使用方法
JPWO2018124129A1 (ja) * 2016-12-27 2019-10-31 日本農薬株式会社 オキシム基を有する縮合複素環化合物又はその塩類、及びそれらの化合物を含有する農園芸用殺虫剤並びにその使用方法
RU2745412C2 (ru) * 2016-12-27 2021-03-24 Нихон Нохияку Ко., Лтд. Конденсированное гетероциклическое соединение, содержащее оксимную группу, или его соль, сельскохозяйственный и садоводческий инсектицид, включающий указанное соединение или его соль, и способ применения инсектицида
WO2018124129A1 (fr) * 2016-12-27 2018-07-05 日本農薬株式会社 Composé hétérocyclique fusionné possédant un groupe oxime ou sels de celui-ci, et pesticide à usage agricole et horticole comprenant ces composés ainsi que procédé de mise en œuvre de ce pesticide
US10856548B2 (en) 2016-12-27 2020-12-08 Nihon Nohyaku Co., Ltd. Oxime group-containing condensed heterocyclic compound or salt thereof, agricultural and horticultural insecticide comprising the compound or the salt, and method for using the insecticide
CN110114354A (zh) * 2016-12-27 2019-08-09 日本农药株式会社 具有肟基的缩合杂环化合物或其盐类以及含有这些化合物的农业园艺用杀虫剂及其使用方法
WO2018199208A1 (fr) * 2017-04-27 2018-11-01 日本農薬株式会社 Composé hétérocyclique à noyau à 5 chaînons contenant de l'azote ou sel de celui-ci, insecticide agricole et horticole le contenant, et son procédé d'utilisation
WO2018202540A1 (fr) 2017-05-02 2018-11-08 Syngenta Participations Ag Dérivés hétérocycliques à activité pesticide comportant des substituants contenant du soufre
JP7119004B2 (ja) 2017-05-02 2022-08-16 バイエル・アクチエンゲゼルシヤフト 有害生物防除剤としての2-(ヘタ)アリール置換縮合二環式ヘテロ環式誘導体
WO2018202494A1 (fr) 2017-05-02 2018-11-08 Bayer Aktiengesellschaft Dérivés d'hétérocycles condensés à substitution 2-(hét)aryle utilisés comme pesticides
US11089783B2 (en) 2017-05-02 2021-08-17 Bayer Aktiengesellschaft 2-(het)aryl-substituted fused heterocycle derivatives as pesticides
WO2018202501A1 (fr) 2017-05-02 2018-11-08 Bayer Aktiengesellschaft Dérivés d'hétérocycles condensés à substitution 2-(hét)aryle utilisés comme pesticides
US11505553B2 (en) 2017-05-02 2022-11-22 Bayer Aktiengesellschaft 2-(Het)aryl-substituted fused heterocycle derivatives as pesticides
JP2020518597A (ja) * 2017-05-02 2020-06-25 バイエル・アクチエンゲゼルシヤフト 有害生物防除剤としての2−(ヘタ)アリール置換縮合二環式ヘテロ環式誘導体
WO2018215304A1 (fr) 2017-05-22 2018-11-29 Syngenta Participations Ag Composés soufrés de pyridazine tétracyclique et leur utilisation en tant que pesticides
US11252962B2 (en) 2017-09-21 2022-02-22 Nihon Nohyaku Co., Ltd. Cyclopropylpyridyl group-containing benzimidazole compound or salt thereof, agricultural and horticultural insecticide comprising the compound or the salt, and method for using the insecticide
JPWO2019059244A1 (ja) * 2017-09-21 2020-11-05 日本農薬株式会社 シクロプロピルピリジル基を有するベンゾイミダゾール化合物又はその塩類、及びそれらの化合物を含有する農園芸用殺虫剤並びにその使用方法
WO2019059244A1 (fr) 2017-09-21 2019-03-28 日本農薬株式会社 Composé de benzimidazole ayant un groupe cyclopropylpyridyle ou sel de celui-ci, pesticide agricole et horticole contenant ledit composé, et procédé d'utilisation dudit pesticide
US10981935B2 (en) 2017-10-04 2021-04-20 Bayer Aktiengesellschaft Heterocycle derivatives as pesticides
WO2019068572A1 (fr) 2017-10-04 2019-04-11 Bayer Aktiengesellschaft Dérivés hétérocycliques utilisés comme pesticides
JP2021510709A (ja) * 2018-01-15 2021-04-30 シンジェンタ パーティシペーションズ アーゲー 硫黄含有置換基を有する殺有害生物的に活性な複素環式誘導体
CN111836810A (zh) * 2018-01-15 2020-10-27 先正达参股股份有限公司 具有含硫取代基的杀有害生物活性的杂环衍生物
WO2019138018A1 (fr) 2018-01-15 2019-07-18 Syngenta Participations Ag Dérivés hétérocycliques à activité pesticide comportant des substituants contenant du soufre
JP7337810B2 (ja) 2018-01-15 2023-09-04 シンジェンタ パーティシペーションズ アーゲー 硫黄含有置換基を有する殺有害生物的に活性な複素環式誘導体
WO2019201921A1 (fr) 2018-04-20 2019-10-24 Bayer Aktiengesellschaft Dérivés hétérocycliques utilisés comme pesticides
WO2019229089A1 (fr) 2018-05-31 2019-12-05 Syngenta Participations Ag Dérivés hétérocycliques à action pesticide comprenant des substituants contenant du soufre
WO2019234160A1 (fr) 2018-06-06 2019-12-12 Syngenta Crop Protection Ag Dérivés hétérocycliques à activité pesticide comportant des substituants contenant du soufre
EP4342297A2 (fr) 2018-06-06 2024-03-27 Syngenta Crop Protection AG Dérivés hétérocycliques à activité pesticide comportant des substituants contenant de la sulfoximine
WO2019234158A1 (fr) 2018-06-06 2019-12-12 Syngenta Crop Protection Ag Dérivés hétérocycliques à action pesticide comportant des substituants contenant de la sulfoximine
CN112384516A (zh) * 2018-07-10 2021-02-19 日本农药株式会社 具有任选被卤代的亚烷基二氧基的苯并咪唑化合物或其盐类、以及含有这些化合物的农业园艺用杀虫剂及其使用方法
WO2020013147A1 (fr) 2018-07-10 2020-01-16 日本農薬株式会社 Composé de benzimidazole ayant un groupe alkylènedioxy qui peut être halogéné ou un sel de celui-ci, pesticide agricole et horticole contenant ledit composé, et procédé d'utilisation associé
JPWO2020013147A1 (ja) * 2018-07-10 2021-08-05 日本農薬株式会社 ベンゾイミダゾール化合物又はその塩類、及びそれらの化合物を含有する農園芸用殺虫剤並びにその使用方法
JP7174050B2 (ja) 2018-07-10 2022-11-17 日本農薬株式会社 ベンゾイミダゾール化合物又はその塩類、及びそれらの化合物を含有する農園芸用殺虫剤並びにその使用方法
US11882835B2 (en) 2018-07-10 2024-01-30 Nihon Nohyaku Co., Ltd. Benzimidazole compound having an optionally halogenated alkylenedioxy group or salt thereof, agricultural and horticultural insecticide comprising the compound or the salt, and method for using the insecticide
WO2020084075A1 (fr) 2018-10-24 2020-04-30 Syngenta Crop Protection Ag Dérivés hétérocycliques à action pesticide avec des substituants contenant de la sulfoximine
WO2020141136A1 (fr) 2018-12-31 2020-07-09 Syngenta Crop Protection Ag Dérivés hétérocycliques à action pesticide comprenant des substituants contenant du soufre
WO2021009311A1 (fr) 2019-07-17 2021-01-21 Syngenta Crop Protection Ag Dérivés hétérocycliques à action pesticide comprenant des substituants contenant du soufre
WO2021049597A1 (fr) 2019-09-12 2021-03-18 日本農薬株式会社 Agent insecticide pour une utilisation agricole ou horticole ou agent de lutte contre les ectoparasites ou endoparasites pour animaux contenant chacun un composé d'imidazopyridazine ou un sel de celui-ci comme principe actif, et utilisation dudit agent insecticide et dudit agent de lutte
EP4029866A4 (fr) * 2019-09-12 2023-06-28 Nihon Nohyaku Co., Ltd. Agent insecticide pour une utilisation agricole ou horticole ou agent de lutte contre les ectoparasites ou endoparasites pour animaux contenant chacun un composé d'imidazopyridazine ou un sel de celui-ci comme principe actif, et utilisation dudit agent insecticide et dudit agent de lutte
WO2021049595A1 (fr) 2019-09-12 2021-03-18 日本農薬株式会社 Produit insecticide agricole et horticole mettant en oeuvre en tant que principe actif un compose heterocycle condense possedant un groupe cyclopropane oxadiazole substitue ou des sels de celui-ci, agent de lutte antiparasitaire contre ectoparasites et endoparasites chez les animaux, ainsi que procedes d'utilisation de ceux-ci
WO2021049596A1 (fr) 2019-09-12 2021-03-18 日本農薬株式会社 Produit insecticide agricole et horticole mettant en oeuvre en tant que principe actif un compose imidazopyridazine possedant un groupe cyclopropane oxadiazole substitue ou des sels de celui-ci, agent de lutte antiparasitaire contre ectoparasites et endoparasites chez les animaux, ainsi que procedes d'utilisation de ceux-ci
WO2021105399A1 (fr) 2019-11-27 2021-06-03 Syngenta Crop Protection Ag Procédé de préparation d'acides 5-chloro-pyridine-2-carboxyliques et de carboxylates avec des substituants contenant 3 atomes de soufre
CN115210220A (zh) * 2020-03-04 2022-10-18 先正达农作物保护股份公司 用于制备5-氯-3-烷基硫烷基-吡啶-2-甲酸酰胺和甲酸酯的方法
WO2021175959A1 (fr) 2020-03-04 2021-09-10 Syngenta Crop Protection Ag Procédé de préparation de carboxylates et d'amides d'acide 5-chloro-3-alkylsulfanyl-pyridine-2-carboxylique
WO2021219810A1 (fr) 2020-04-30 2021-11-04 Syngenta Crop Protection Ag Dérivés hétérocycliques à action pesticide comprenant des substituants contenant du soufre
WO2022128524A1 (fr) 2020-12-14 2022-06-23 Basf Se Pesticides sulfoximines

Also Published As

Publication number Publication date
JP2018052816A (ja) 2018-04-05

Similar Documents

Publication Publication Date Title
JP6581284B2 (ja) ベンゾオキサゾール化合物又はその塩類及び該化合物を含有する農園芸用殺虫剤並びにその使用方法
JP6388671B2 (ja) シクロアルキルピリジル基を有する縮合複素環化合物又はその塩類及び該化合物を含有する農園芸用殺虫剤並びにその使用方法
JP6577051B2 (ja) 3h‐ピロロピリジン化合物若しくはそのn‐オキサイド、又はそれらの塩類及び該化合物を含有する農園芸用殺虫剤並びにその使用方法
JP6488402B2 (ja) オキシム基を有する縮合複素環化合物又はその塩類及び該化合物を含有する農園芸用殺虫剤並びにその使用方法
JP6263166B2 (ja) 縮合複素環化合物又はその塩類及び該化合物を含有する農園芸用殺虫剤並びにその使用方法
WO2016104746A1 (fr) Composé hétérocyclique à groupe cycloalkyle condensé, sel de celui-ci, insecticide agricole et horticole le contenant, et son procédé d'utilisation
WO2017061497A1 (fr) Composé hétérocyclique condensé ou sels de celui-ci, insecticide à visée agricole et horticole le contenant, et son procédé d'utilisation
WO2016039441A1 (fr) Composé imidazopyridazine ou ses sels et insecticide agricole et horticole contenant ledit composé et son procédé d'utilisation
WO2016039444A1 (fr) Composé d'imidazopyridazine ou ses sels, insecticide agricole et horticole contenant ledit composé et utilisation associée
WO2014148451A1 (fr) Composé hétérocyclique condensé ou son sel, pesticide pour un usage agricole et horticole contenant ledit composé et son procédé d'utilisation
JP6728399B2 (ja) オキシム基を有する縮合複素環化合物又はその塩類、及びそれらの化合物を含有する農園芸用殺虫剤並びにその使用方法
WO2017146221A1 (fr) Composé hétérocyclique condensé présentant des hétérocycles liés et ses sels, insecticide agricole/horticole contenant ledit composé, et procédé d'utilisation dudit insecticide
WO2015072463A1 (fr) Composé amide ou son sel, produit agricole/horticole insecticide/bactéricide contenant ledit composé, et procédé pour son utilisation
WO2017146220A1 (fr) Composé de quinoléine présentant un hétérocycle condensé lié à celui-ci, n-oxyde ou sels correspondants et insecticide agricole et horticole contenant le composé et procédé pour son utilisation
WO2017026384A1 (fr) Composé imidazole ou ses sels, et insecticide agricole et horticole contenant ledit composé et son procédé d'utilisation
WO2014157600A1 (fr) Composé hétérocyclique condensé ou ses sels, pesticide agricole et horticole contenant ledit composé et son procédé d'utilisation
JP2015003906A (ja) 縮合複素環化合物又はその塩類及び該化合物を含有する農園芸用殺虫剤並びにその使用方法
JP6717968B2 (ja) N‐アルキルスルホニルインドリン化合物及び該化合物を含有する農園芸用殺虫剤並びにその使用方法
WO2018199210A1 (fr) Composé hétérocyclique fusionné ou sel de celui-ci, insecticide agricole et horticole contenant l'un ou l'autre composé et procédé d'utilisation de l'insecticide agricole et horticole
WO2018003976A1 (fr) Composé hétérocyclique n-alkylsulfonyle fusionné ou leur sels, pesticide contenant ledit composé et procédé d'utilisation dudit pesticide
WO2018105632A1 (fr) Composé de quinoléine ayant un groupe carbamate, sel de celui-ci, insecticide pour une utilisation agricole et horticole contenant ledit composé, et utilisation dudit insecticide
WO2018199208A1 (fr) Composé hétérocyclique à noyau à 5 chaînons contenant de l'azote ou sel de celui-ci, insecticide agricole et horticole le contenant, et son procédé d'utilisation
WO2018043675A1 (fr) Composé hétérocyclique fusionné ayant un groupe hydrazonyle ou des sels de celui-ci, pesticide pour une utilisation agricole et horticole contenant ledit composé, et son procédé d'utilisation
WO2018199209A1 (fr) Composé hétérocyclique ayant un groupe éther d'oxime conjugué ou un sel de celui-ci, insecticide agricole et horticole le comprenant et son procédé d'utilisation
TWI735306B (zh) 氧氮雜環庚三烯酮衍生物及含有該衍生物之農園藝用殺蟲劑以及該農園藝用殺蟲劑之使用方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15873314

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15873314

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP