WO2021009311A1 - Dérivés hétérocycliques à action pesticide comprenant des substituants contenant du soufre - Google Patents

Dérivés hétérocycliques à action pesticide comprenant des substituants contenant du soufre Download PDF

Info

Publication number
WO2021009311A1
WO2021009311A1 PCT/EP2020/070201 EP2020070201W WO2021009311A1 WO 2021009311 A1 WO2021009311 A1 WO 2021009311A1 EP 2020070201 W EP2020070201 W EP 2020070201W WO 2021009311 A1 WO2021009311 A1 WO 2021009311A1
Authority
WO
WIPO (PCT)
Prior art keywords
spp
alkyl
formula
compounds
methyl
Prior art date
Application number
PCT/EP2020/070201
Other languages
English (en)
Inventor
Vikas SIKERVAR
Indira SEN
Andrew Edmunds
Daniel EMERY
Sebastian RENDLER
André Stoller
Michel Muehlebach
Anke Buchholz
Original Assignee
Syngenta Crop Protection Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Syngenta Crop Protection Ag filed Critical Syngenta Crop Protection Ag
Publication of WO2021009311A1 publication Critical patent/WO2021009311A1/fr

Links

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N25/00Biocides, pest repellants or attractants, or plant growth regulators, characterised by their forms, or by their non-active ingredients or by their methods of application, e.g. seed treatment or sequential application; Substances for reducing the noxious effect of the active ingredients to organisms other than pests
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/90Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having two or more relevant hetero rings, condensed among themselves or with a common carbocyclic ring system
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems

Definitions

  • the present invention relates to pesticidally active, in particular insecticidally active heterocyclic derivatives containing sulfur substituents, to processes for their preparation, to compositions comprising those compounds, and to their use for controlling animal pests, including arthropods and in particular insects or representatives of the order Acarina.
  • Heterocyclic compounds with pesticidal action and with sulfur and cyclic or acyclic amide substitutents are known and described, for example, in WO2015121 136, WO2016124557, WO2016104746,
  • A is CH or N
  • X is S, SO or S0 2 ;
  • Ri is Ci-C 4 alkyl, Ci-C 4 haloalkyl or C3-C6cycloalkyl-Ci-C 4 alkyl;
  • R2 is halogen, Ci-C6haloalkyl, Ci-C 4 haloalkylsulfanyl, Ci-C 4 haloalkylsulfinyl, Ci-C 4 haloalkylsulfonyl or Ci-C6haloalkoxy;
  • R3 is Ci-C6alkyl, C2-C6alkenyl, Ci-C6haloalkyl, Ci-C6alkoxy, Ci-C6haloalkoxy, Ci-C6cyanoalkyl, Ci- Cehydroxyalkyl, Ci-C6alkoxycarbonyl, Ci-C 4 alkoxy-Ci-C 4 alkyl, Ci-C 4 alkylthio-Ci-C 4 alkyl, Ci- C 4 alkylsulfinyl-Ci-C 4 alkyl, Ci-C 4 alkylsulfonyl-Ci-C 4 alkyl, C3-C6cycloalkyl-Ci-C 4 alkyl, C3- C6halocycloalkyl-Ci-C 4 alkyl, C3-C6cycloalkyl or C3-C6cycloalkyl substituted by a substituent selected from cyano, halogen, Ci-C3haloalkyl, CO2H, CON
  • R3 and R 4 together with the -NC(O)- fragment to which they are attached form a 5- or 6-membered saturated heterocyclic ring system which may contain one or two additional ring heteroatoms selected from O, N, or S(0)n, wherein n is 0, 1 or 2, providing that the heterocyclic ring system does not contain adjacent ring oxygen atoms, adjacent ring sulphur atoms, or adjacent ring sulphur and ring oxygen atoms and that the additional ring nitrogen, when present, is substituted by hydrogen or Ci-C 4 alkyl, Ci-C 4 alkoxy, or Ci-C 4 haloalkoxy, and wherein the ring system can be optionally mono- or di- substituted with substituents independently selected from halogen, cyano, Ci-C 4 alkyl, Ci-C 4 alkoxy, Ci- C 4 haloalkyl or oxo;
  • Xi is O, S or NR5; wherein Rs is hydrogen or Ci-C 4 alkyl; or
  • Compounds of formula I which have at least one basic centre can form, for example, acid addition salts, for example with strong inorganic acids such as mineral acids, for example perchloric acid, sulfuric acid, nitric acid, nitrous acid, a phosphorus acid or a hydrohalic acid, with strong organic carboxylic acids, such as Ci-C 4 alkanecarboxylic acids which are unsubstituted or substituted, for example by halogen, for example acetic acid, such as saturated or unsaturated dicarboxylic acids, for example oxalic acid, malonic acid, succinic acid, maleic acid, fumaric acid or phthalic acid, such as hydroxycarboxylic acids, for example ascorbic acid, lactic acid, malic acid, tartaric acid or citric acid, or such as benzoic acid, or with organic sulfonic acids, such as Ci-C 4 alkane- or arylsulfonic acids which are unsubstituted or substituted, for example by
  • Compounds of formula I which have at least one acidic group can form, for example, salts with bases, for example mineral salts such as alkali metal or alkaline earth metal salts, for example sodium, potassium or magnesium salts, or salts with ammonia or an organic amine, such as morpholine, piperidine, pyrrolidine, a mono-, di- or tri-lower-alkylamine, for example ethyl-, diethyl-, triethyl- or dimethylpropylamine, or a mono-, di- or trihydroxy-lower-alkylamine, for example mono-, di- or triethanolamine.
  • the compounds of formula (I) according to the invention are in free form, in oxidized form as a N-oxide or in salt form, e.g. an agronomically usable salt form.
  • N-oxides are oxidized forms of tertiary amines or oxidized forms of nitrogen containing heteroaromatic compounds. They are described for instance in the book“Heterocyclic N-oxides” by A. Albini and S. Pietra, CRC Press, Boca Raton 1991.
  • the compounds of formula I according to the invention also include hydrates which may be formed during the salt formation.
  • substituents are indicated as being itself further substituted, this means that they carry one or more identical or different substituents, e.g. one to four substituents. Normally not more than three such optional substituents are present at the same time. Preferably not more than two such substituents are present at the same time (i.e. the group is substituted by one or two of the substituents indicated). Where the additional substituent group is a larger group, such as cycloalkyl or phenyl, it is most preferred that only one such optional substituent is present. Where a group is indicated as being substituted, e.g. alkyl, this includes those groups that are part of other groups, e.g. the alkyl in alkylthio.
  • Ci-C n alkyl refers to a saturated straight-chain or branched hydrocarbon radical attached via any of the carbon atoms having 1 to n carbon atoms and is, for example, methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, iso-butyl, tert-butyl, pentyl, hexyl isohexyl and their branched isomers.
  • Alkenyl radicals are derived
  • C2-Cn-alkenyl refers to a straight-chain or branched unsaturated alkyl radical, for example, vinyl, allyl, homoallyl, but-1-eneyl, and but-2-eneyl. Where appropriate, the alkeneyl chains can be of either the (E)- or ⁇ -configuration.
  • Ci-C n haloalkyl refers to a straight-chain or branched saturated alkyl radical attached via any of the carbon atoms having 1 to n carbon atoms (as mentioned above), where some or all of the hydrogen atoms in these radicals may be replaced by fluorine, chlorine, bromine and/or iodine, i.e., for example, any one of ch loro methyl, dichloromethyl, trichloromethyl, fluoromethyl, difluoromethyl, trifluoromethyl, chlorofluoromethyl, dichlorofluoromethyl, chlorodifluoromethyl, 2- fluoroethyl, 2-chloroethyl, 2-bromoethyl, 2-iodoethyl, 2, 2-difluoroethyl, 2,2, 2-trifluoroethyl, 2-chloro-2- fluoroethyl, 2-chloro-2, 2-difluor
  • Ci-C2-fluoroalkyl would refer to a Ci-C2-alkyl radical which carries 1 ,2, 3,4, or 5 fluorine atoms, for example, any one of difluoromethyl, trifluoromethyl, 1 - fluoroethyl, 2-fluoroethyl, 2, 2-difluoroethyl, 2,2, 2-trifluoroethyl, 1 ,1 , 2, 2-tetrafluoroethyl or pentafluoroethyl.
  • Ci-C n alkoxy refers to a straight-chain or branched saturated alkyl radical having 1 to n carbon atoms (as mentioned above) which is attached via an oxygen atom, i.e., for example, any one of methoxy, ethoxy, n-propoxy, 1 -methylethoxy, n-butoxy, 1 -methylpropoxy, 2- methylpropoxy or 1 , 1 -dimethylethoxy.
  • Ci-C n haloalkoxy refers to a Ci-C n alkoxy radical as mentioned above which is partially or fully substituted by fluorine, chlorine, bromine and/or iodine, i.e., for example, any one of chloromethoxy, dichloromethoxy, trichloromethoxy, fluoromethoxy, difluoromethoxy, trifluoromethoxy, chlorofluoromethoxy, dichlorofluoromethoxy, chlorodifluoromethoxy, 2- fluoroethoxy, 2-chloroethoxy, 2-bromoethoxy, 2-iodoethoxy, 2, 2-difluoroethoxy, 2,2, 2- trifluoroethoxy, 2-chloro-2-fluoroethoxy, 2-chloro-2, 2-difluoroethoxy, 2, 2-dichloro-2-fluoroethoxy,
  • Ci-C n -alkylsulfanyl or Ci-C n -alkylthio as used herein refers to a straight chain or branched saturated alkyl radical having 1 to n carbon atoms (as mentioned above) which is attached via a sulfur atom, i.e., for example, any one of methylthio, ethylthio, n-propylthio, 1 - methylethylthio, butylthio, 1 -methylpropylthio, 2- methylpropylthio or 1 , 1 -dimethylethylthio.
  • Ci-C n alkylsulfinyl refers to a straight chain or branched saturated alkyl radical having 1 to n carbon atoms (as mentioned above) which is attached via the sulfur atom of the sulfinyl group, i.e., for example, any one of methylsulfinyl, ethylsulfinyl, n-propylsulfinyl, 1 - methylethyl-sulfinyl, n-butylsulfinyl, 1 -methylpropylsulfinyl, 2-methylpropylsulfinyl, 1 , 1 -dimethyl- ethylsulfinyl, n-pentylsulfinyl, 1 -methylbutylsulfinyl, 2-methylbutylsulfinyl, 3-methyl- butylsulfinyl, 1 , 1 , 1 , 1 methyl
  • Ci-C n alkylsulfonyl refers to a straight chain or branched saturated alkyl radical having 1 to n carbon atoms (as mentioned above) which is attached via the sulfur atom of the sulfonyl group, i.e. , for example, any one of methylsulfonyl, ethylsulfonyl, n-propylsulfonyl, isopropylsulfonyl, n-butylsulfonyl, 1 -methylpropylsulfonyl, 2-methylpropylsulfonyl or t-butylsulphonyl.
  • Ci-C n haloalkylsulfanyl refers to a Ci-C n alkylthio radical as mentioned above which is partially or fully substituted by fluorine, chlorine, bromine and/or iodine, i.e., for example, any one of fluoromethylthio, difluoromethylthio, trifluoromethylthio,
  • Ci-C n haloalkylsulfinyl and “Ci-C n haloalkylsulfonyl” refers to the groups above but with the sulfur in oxidations state 1 or 2 respectively.
  • Ci-C n alkoxycarbonyl refers to a straight chain or branched alkoxy radical having 1 to n carbon atoms (as mentioned above) which is attached via the carbon atom of the carbonyl group, i.e., for , any one of methoxycarbonyl, ethoxycarbonyl, n-propoxycarbonyl, 1 - methylethoxycarbonyl, n-butoxycarbonyl, 1 -methylpropoxycarbonyl, 2-methylpropoxycarbonyl or 1 ,
  • Ci-C n -alkylaminocarbonyl refers to a straight chain or branched saturated alkyl radical having 1 to n carbon atoms (as mentioned above) amino chain which is attached via a carbonyl group, for example, N-methylformamide, N-ethylformamaide, N- propylformamaide, N-butylformamide, and N-sec-butylformamide.
  • Ci-C n -dialkylaminocarbonyl refers to two straight chain or branched saturated alkyl radicals having 1 to n carbon atoms (as mentioned above) amino chains which are attached via a carbonyl group, for example, N,N-dimethylformamide, N-ethyl-N-methyl-formamide, N-isopropyl-N-methyl-formamide, N-ethyl-N-propyl-formamide, N-ethyl-N-isopropyl-formamide, and N-isobutyl-N-methyl-formamide
  • Ci-C n cyanoalkyl refers to a straight chain or branched saturated alkyl radicals having 1 to n carbon atoms (as mentioned above) which is substituted by a cyano group, for example cyanomethylene, cyanoethylene, 1 ,1 -dimethylcyanomethyl, cyanomethyl, cyanoethyl, and 1 -dimethylcyanomethyl.
  • C3-C6cycloalkyl refers to 3-6 membered cycloylkyl groups such as cyclopropane, cyclobutane, cyclopropane, cyclopentane and cyclohexane.
  • C3-C6halocycloalkyl refers to 3-6 membered cycloalkyl group (as mentioned above) which is substituted by at least one halogen atom.
  • the prefix“-Ci-C n alkyl” refers to a straight chain or branched saturated alkyl radical attached via any of the carbon atoms having 1 to n carbon atoms (as mentioned above) which is substituted by a Ci-C n alkoxy, Ci-C n alkylthio, Ci- Cnalkylsulfinyl, Ci-C n alkylsulfonyl, C3-C6cycloalkyl, or C3-C6halocycloalkyl radical.
  • Examples include methoxymethyl, methoxyethyl, 1 -methylmethoxylmethyl CH2SCH3, CH2SO2CH3, CH2CH2SCH3, CH2CH2SOCH3, CH2CH2SO2CH3, CH2OCH3, CH2CH2OCH3, or C(CH 3 )20CH3.
  • Halogen is generally fluorine, chlorine, bromine or iodine. This also applies, correspondingly, to halogen in combination with other meanings, such as haloalkyl.
  • R3 and R4 together with the -NC(O)- fragment to which they are attached form a 5- or 6- membered saturated heterocyclic ring system which may contain one or two additional ring heteroatoms selected from O, N, or S(0)n, wherein n is 0, 1 or 2, providing that the heterocyclic ring system does not contain adjacent ring oxygen atoms, adjacent ring sulphur atoms, or adjacent ring sulphur and ring oxygen atoms and that the additional ring nitrogen, when present, is substituted by hydrogen or C1-C4 alkyl, Ci-C 4 alkoxy, or Ci-C 4 haloalkoxy, and wherein the ring system can be optionally mono- or di-substituted with substituents independently selected from halogen, cyano, Ci- C 4 alkyl, Ci-C 4 alkoxy, Ci-C 4 haloalkyl or oxo” as used herein, is best described by the phenyl or pyridyl group being
  • Qa is a radical of Qa1 to Qa15
  • each ring system can be mono- or poly-substituted by substituents independently selected from the group consisting of halogen, cyano, Ci-C 4 alkyl, Ci-C 4 alkoxy, and Ci-C 4 haloalkyl; wherein R ⁇ a is hydrogen, Ci-C 4 alkyl, Ci-C 4 alkoxy, and Ci-C 4 haloalkoxy.
  • A is N.
  • X is S or SO2
  • X is SO2.
  • Ri is ethyl or cyclopropylmethyl.
  • Ri is ethyl
  • R2 is Ci-C 4 haloalkyl, Ci-C 4 haloalkylsulfanyl, Ci-C 4 haloalkylsulfinyl or Ci- C 4 haloalkylsulfonyl.
  • R2 is Ci-C 4 haloalkyl.
  • R2 is trifluoromethyl.
  • R3 is Ci-C6alkyl, Ci-C6haloalkyl, Ci-C6alkoxy, C3-C6cycloalkyl or C3-C6cycloalkyl mono- substituted by cyano.
  • R3 is methyl, ethyl, isopropyl, 2,2,2-trifluoroethyl, methoxy, cyclopropyl or 1 - cyanocyclopropyl.
  • R3 is methyl, ethyl, cyclopropyl or 1 -cyanocyclopropyl.
  • R4 is Ci-C6alkyl, Ci-C6haloalkyl, Ci-C6hydroxyalkyl, Ci-C 4 alkoxy-Ci-C 4 alkyl, Ci-C 4 alkylthio- Ci-C 4 alkyl, Ci-C 4 alkylsulfinyl-Ci-C 4 alkyl, Ci-C 4 alkylsulfonyl-Ci-C 4 alkyl, Ci-C6cyanoalkyl, C3- C6cycloalkyl or C3-C6cycloalkyl mono-substituted by cyano.
  • R4 is methyl, ethyl, isopropyl, t-butyl, trifluoromethyl, difluoromethyl, fluoromethyl, chloromethyl, 2,2,2-trifluoroethyl, 1 -hydroxy-1 -methyl-ethyl, methoxymethyl, methoxyethyl, methylsulfanylmethyl, methylsulfonylmethyl, 2-methylsulfanylethyl, 2-methylsulfonylethyl, 1 -cyano-1 - methyl-ethyl, cyclopropyl or 1 -cyanocyclopropyl.
  • R4 is methyl, ethyl, 2,2,2-trifluoroethyl, methoxymethyl, 1 -cyano-1 -methyl-ethyl, cyclopropyl or 1 -cyanocyclopropyl.
  • Xi is NRs; wherein Rs is Ci-C 4 alkyl.
  • Xi is N-CH3.
  • Embodiments according to the invention are provided as set out below.
  • Embodiment 1 provides compounds of formula I, or an agrochemically acceptable salt, stereoisomer, enantiomer, tautomer or N-oxide thereof, as defined above.
  • Embodiment 2 provides compounds, or an agrochemically acceptable salt, stereoisomer, enantiomer, tautomer or N-oxide thereof, according to embodiment 1 wherein R4 is Ci-C6alkyl, C2-C6alkenyl, Ci- Cehaloalkyl, Ci-C6hydroxyalkyl, Ci-C 4 alkoxy-Ci-C 4 alkyl, Ci-C 4 alkylthio-Ci-C 4 alkyl, Ci-C 4 alkylsulfinyl- Ci-C 4 alkyl, Ci-C 4 alkylsulfonyl-Ci-C 4 alkyl, C3-C6cycloalkyl-Ci-C 2 alkyl, Ci-C6cyanoalkyl, C3-C6cycloalkyl or C3-C6cycloalkyl which is mono- or poly-substituted by substituents independently selected from the group consisting of halogen, cyano, Ci-C3halo
  • Embodiment 3 provides compounds, or an agrochemically acceptable salt, stereoisomer, enantiomer, tautomer or N-oxide thereof, according to any one of embodiments 1 or 2 wherein Ri is ethyl or cyclopropylmethyl.
  • Embodiment 4 provides compounds, or an agrochemically acceptable salt, stereoisomer, enantiomer, tautomer or N-oxide thereof, according to any one of embodiments 1 , 2 or 3 wherein R2 is Ci- C 4 haloalkyl, Ci-C 4 haloalkylsulfanyl, Ci-C 4 haloalkylsulfinyl or Ci-C 4 haloalkylsulfonyl.
  • Embodiment 5 provides compounds, or an agrochemically acceptable salt, stereoisomer, enantiomer, tautomer or N-oxide thereof, according to any one of embodiments 1 , 2, 3 or 4 wherein R3 is Ci- Cealkyl, Ci-C6haloalkyl, Ci-C6alkoxy, C3-C6cycloalkyl or C3-C6cycloalkyl mono-substituted by cyano.
  • Embodiment 6 provides compounds, or an agrochemically acceptable salt, stereoisomer, enantiomer, tautomer or N-oxide thereof, according to any one of embodiments 1 , 2, 3, 4 or 5 wherein R4 is Ci- Cealkyl, Ci-C6haloalkyl, Ci-C6hydroxyalkyl, Ci-C 4 alkoxy-Ci-C 4 alkyl, Ci-C 4 alkylthio-Ci-C 4 alkyl, Ci- C 4 alkylsulfinyl-Ci-C 4 alkyl, Ci-C 4 alkylsulfonyl-Ci-C 4 alkyl, Ci-C6cyanoalkyl, C3-C6cycloalkyl or C3- C6cycloalkyl mono-substituted by cyano.
  • R4 is Ci- Cealkyl, Ci-C6haloalkyl, Ci-C6hydroxyalkyl, Ci-C 4 alkoxy-Ci-C
  • Embodiment 7 provides compounds, or an agrochemically acceptable salt, stereoisomer, enantiomer, tautomer or N-oxide thereof, according to any one of embodiments 1 , 2, 3, 4, 5 or 6 wherein Xi is NRs, wherein Rs is Ci-C 4 alkyl.
  • Embodiment 8 provides compounds, or an agrochemically acceptable salt, stereoisomer, enantiomer, tautomer or N-oxide thereof, according to any one of embodiments 1 , 2, 3, 4, 5, 6 or 7 wherein X is S or SO2.
  • Embodiment 9 provides compounds, or an agrochemically acceptable salt, stereoisomer, enantiomer, tautomer or N-oxide thereof, according to any one of embodiments 1 , 2, 3, 4, 5, 6, 7 or 8 wherein Ri is ethyl.
  • Embodiment 10 provides compounds, or an agrochemically acceptable salt, stereoisomer, enantiomer, tautomer or N-oxide thereof, according to any one of embodiments 1 , 2, 3, 4, 5, 6, 7, 8 or
  • R2 is Ci-C 4 haloalkyl.
  • Embodiment 1 1 provides compounds, or an agrochemically acceptable salt, stereoisomer, enantiomer, tautomer or N-oxide thereof, according to any one of embodiments 1 , 2, 3, 4, 5, 6, 7, 8, 9 or 10 wherein Xi is N-CH3.
  • Embodiment 12 provides compounds, or an agrochemically acceptable salt, stereoisomer, enantiomer, tautomer or N-oxide thereof, according to any one of embodiments 1 , 2, 3, 4, 5, 6, 7, 8, 9,
  • R2 is trifluoromethyl
  • Embodiment 13 provides compounds, or an agrochemically acceptable salt, stereoisomer, enantiomer, tautomer or N-oxide thereof, according to any one of embodiments 1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 1 1 or 12 wherein X is SO2.
  • Embodiment 14 provides compounds, or an agrochemically acceptable salt, stereoisomer, enantiomer, tautomer or N-oxide thereof, according to any one of embodiments 1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 1 1 , 12 or 13 wherein A is N.
  • Embodiment 15 provides compounds, or an agrochemically acceptable salt, stereoisomer, enantiomer, tautomer or N-oxide thereof, according to any one of embodiments 1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 1 1 , 12, or 13 wherein A is CH.
  • Ra 4 is Ci-C6alkyl, C2-C6alkenyl, Ci-C6haloalkyl, Ci-C6hydroxyalkyl, Ci-C 4 alkoxy-Ci-C 4 alkyl, Ci- C 4 alkylthio-Ci-C 4 alkyl, Ci-C 4 alkylsulfinyl-Ci-C 4 alkyl, Ci-C 4 alkylsulfonyl-Ci-C 4 alkyl, C3-C6cycloalkyl-Ci- C2alkyl, Ci-C6cyanoalkyl, C3-C6cycloalkyl or C3-C6cycloalkyl which is mono- or poly-substituted by substituents independently selected from the group consisting of halogen, cyano, Ci-C3haloalkyl, CO2H, CONH2, Ci
  • Ra 4 is Ci-C6alkyl, Ci-C6haloalkyl, Ci-C6hydroxyalkyl, Ci-C 4 alkoxy-Ci-C 4 alkyl, Ci- C 4 alkylthio-Ci-C 4 alkyl, Ci-C 4 alkylsulfinyl-Ci-C 4 alkyl, Ci-C 4 alkylsulfonyl-Ci-C 4 alkyl, Ci-C6cyanoalkyl, C3-C6cycloalkyl or C3-C6cycloalkyl mono-substituted by cyano.
  • R3 is Ci-C6alkyl, Ci-C6haloalkyl, Ci-C6alkoxy, C3- C6cycloalkyl or C3-C6cycloalkyl mono-substituted by cyano.
  • One group of compounds according to this embodiment are compounds of formula (1-1 a) which are compounds of formula (1-1) wherein A is N.
  • Another group of compounds according to this embodiment are compounds of formula (1-1 b) which are compounds of formula (1-1) wherein A is CH.
  • Another group of compounds of formula I according to the invention are those of formula I-2 wherein A, X, Ri , R2, R4, and Xi are as defined for compounds of formula I (above), or an agrochemically acceptable salt, stereoisomer, enantiomer, tautomer or N-oxide thereof, and wherein Ra3 is Ci-C6alkyl, C2-C6alkenyl, Ci-C6haloalkyl, Ci-C6alkoxy, Ci-C6haloalkoxy, Ci-C6cyanoalkyl, Ci- Cehydroxyalkyl, Ci-C6alkoxycarbonyl, Ci-C 4 alkoxy-Ci-C 4 alkyl, Ci-C 4 alkylthio-Ci-C 4 alkyl, Ci- C 4 alkylsulfinyl-Ci-C 4 alkyl, Ci-C 4 alkylsulfonyl-Ci-C 4 alkyl, C3-C6cycloalkyl-Ci
  • A, X, Ri, R2, R4, and Xi are as defined for compounds of formula I (above), and preferably Ra3 is Ci-C6alkyl, Ci-C6haloalkyl, Ci-C6alkoxy, C3-C6cycloalkyl or C3-C6cycloalkyl mono-substituted by cyano.
  • R4 is Ci-C6alkyl, Ci-C6haloalkyl, Ci-C6hydroxyalkyl, Ci-C 4 alkoxy-Ci- C 4 alkyl, Ci-C 4 alkylthio-Ci-C 4 alkyl, Ci-C 4 alkylsulfinyl-Ci-C 4 alkyl, Ci-C 4 alkylsulfonyl-Ci-C 4 alkyl, Ci- C6cyanoalkyl, C3-C6cycloalkyl or C3-C6cycloalkyl mono-substituted by cyano.
  • One group of compounds according to this embodiment are compounds of formula (l-2a) which are compounds of formula (i-2) wherein A is N.
  • Another group of compounds according to this embodiment are compounds of formula (l-2b) which are compounds of formula (i-2) wherein A is CH.
  • X, Ri , R2, R3, R 4 and Xi are as defined for compounds of formula I (above), or an agrochemically acceptable salt, stereoisomer, enantiomer, tautomer or N-oxide thereof.
  • Preferred definitions of X, Ri, R2, R3, R 4 and Xi are as defined for compounds of formula I (above).
  • R4 is Ci-C6alkyl, C2-C6alkenyl, Ci-C6haloalkyl, Ci- Cehydroxyalkyl, Ci-C 4 alkoxy-Ci-C 4 alkyl, Ci-C 4 alkylthio-Ci-C 4 alkyl, Ci-C 4 alkylsulfinyl-Ci-C 4 alkyl, Ci- C 4 alkylsulfonyl-Ci-C 4 alkyl, C3-C6cycloalkyl-Ci-C 2 alkyl, Ci-C6cyanoalkyl, C3-C6cycloalkyl or
  • C3-C6cycloalkyl which is mono- or poly-substituted by substituents independently selected from the group consisting of halogen, cyano, Ci-C3haloalkyl, CO2H, CONH2, Ci-C6alkylaminocarbonyl, Ci- Cedialkylaminocarbonyl and Ci-C 4 alkoxycarbonyl.
  • One group of compounds according to this embodiment are compounds of formula (l-4a) which are compounds of formula (i-4) wherein R4 is Ci-C6alkyl.
  • Another group of compounds according to this embodiment are compounds of formula (l-4b) which are compounds of formula (i-4) wherein R4 is C2-C6alkenyl.
  • Another group of compounds according to this embodiment are compounds of formula (l-4c) which are compounds of formula (i-4) wherein R4 is Ci-C6haloalkyl.
  • Another group of compounds according to this embodiment are compounds of formula (l-4d) which are compounds of formula (i-4) wherein R4 is Ci-C6hydroxyalkyl.
  • Another group of compounds according to this embodiment are compounds of formula (l-4e) which are compounds of formula (i-4) wherein R4 is Ci-C 4 alkoxy-Ci-C 4 alkyl.
  • Another group of compounds according to this embodiment are compounds of formula (l-4f) which are compounds of formula (i-4) wherein R4 is Ci-C 4 alkylthio-Ci-C 4 alkyl.
  • Another group of compounds according to this embodiment are compounds of formula (l-4g) which are compounds of formula (i-4) wherein R4 is Ci-C 4 alkylsulfinyl-Ci-C 4 alkyl.
  • Another group of compounds according to this embodiment are compounds of formula (l-4h) which are compounds of formula (i-4) wherein R4 is Ci-C 4 alkylsulfonyl-Ci-C 4 alkyl.
  • Another group of compounds according to this embodiment are compounds of formula (l-4i) which are compounds of formula (i-4) wherein R4 is C3-C6cycloalkyl-Ci-C 2 alkyl.
  • Another group of compounds according to this embodiment are compounds of formula (l-4j) which are compounds of formula (i-4) wherein R4 is Ci-C6cyanoalkyl.
  • Another group of compounds according to this embodiment are compounds of formula (l-4k) which are compounds of formula (i-4) wherein R4 is C3-C6cycloalkyl.
  • Another group of compounds according to this embodiment are compounds of formula (I-4I) which are compounds of formula (i-4) wherein R4 is C3-C6cycloalkyl which is mono- or poly-substituted by substituents independently selected from the group consisting of halogen, cyano, Ci-C3haloalkyl, CO2H, CONH2, Ci-C6alkylaminocarbonyl, Ci-C6dialkylaminocarbonyl and Ci-C 4 alkoxycarbonyl.
  • X, Ri , R2, R3, R 4 and Xi are as defined for compounds of formula I (above), or an agrochemically acceptable salt, stereoisomer, enantiomer, tautomer or N-oxide thereof.
  • R4 is Ci-C6alkyl, C2-C6alkenyl, Ci-C6haloalkyl, Ci- Cehydroxyalkyl, Ci-C 4 alkoxy-Ci-C 4 alkyl, Ci-C 4 alkylthio-Ci-C 4 alkyl, Ci-C 4 alkylsulfinyl-Ci-C 4 alkyl, Ci- C 4 alkylsulfonyl-Ci-C 4 alkyl, C3-C6cycloalkyl-Ci-C 2 alkyl, Ci-C6cyanoalkyl, C3-C6cycloalkyl or
  • C3-C6cycloalkyl which is mono- or poly-substituted by substituents independently selected from the group consisting of halogen, cyano, Ci-C3haloalkyl, CO2H, CONH2, Ci-C6alkylaminocarbonyl, Ci- Cedialkylaminocarbonyl and Ci-C 4 alkoxycarbonyl.
  • One group of compounds according to this embodiment are compounds of formula (l-5a) which are compounds of formula (I-5) wherein R4 is Ci-C6alkyl.
  • Another group of compounds according to this embodiment are compounds of formula (l-5b) which are compounds of formula (I-5) wherein R4 is C2-C6alkenyl.
  • Another group of compounds according to this embodiment are compounds of formula (l-5c) which are compounds of formula (I-5) wherein R4 is Ci-C6haloalkyl.
  • Another group of compounds according to this embodiment are compounds of formula (l-5d) which are compounds of formula (I-5) wherein R4 is Ci-C6hydroxyalkyl.
  • Another group of compounds according to this embodiment are compounds of formula (l-5e) which are compounds of formula (I-5) wherein R4 is Ci-C 4 alkoxy-Ci-C 4 alkyl.
  • Another group of compounds according to this embodiment are compounds of formula (l-5f) which are compounds of formula (I-5) wherein R4 is Ci-C 4 alkylthio-Ci-C 4 alkyl.
  • Another group of compounds according to this embodiment are compounds of formula (l-5g) which are compounds of formula (I-5) wherein R4 is Ci-C 4 alkylsulfinyl-Ci-C 4 alkyl.
  • Another group of compounds according to this embodiment are compounds of formula (l-5h) which are compounds of formula (I-5) wherein R4 is Ci-C 4 alkylsulfonyl-Ci-C 4 alkyl.
  • Another group of compounds according to this embodiment are compounds of formula (l-5i) which are compounds of formula (I-5) wherein R4 is C3-C6cycloalkyl-Ci-C 2 alkyl.
  • Another group of compounds according to this embodiment are compounds of formula (l-5j) which are compounds of formula (1-5) wherein R4 is Ci-C6cyanoalkyl.
  • Another group of compounds according to this embodiment are compounds of formula (l-5k) which are compounds of formula (I-5) wherein R4 is C3-C6cycloalkyl.
  • Another group of compounds according to this embodiment are compounds of formula (I-5I) which are compounds of formula (i-5) wherein R4 is C3-C6cycloalkyl which is mono- or poly-substituted by substituents independently selected from the group consisting of halogen, cyano, Ci-C3haloalkyl, CO2H, CONH2, Ci-C6alkylaminocarbonyl, Ci-C6dialkylaminocarbonyl and Ci-C 4 alkoxycarbonyl.
  • a preferred group of compounds of formula I according to the invention are those of formula I-6
  • A is CH or N, preferably N;
  • R2 is Ci-C6haloalkyl, preferably trifluoromethyl
  • RX3 is Ci-C6alkyl, Ci-C6haloalkyl, Ci-C6alkoxy, C3-C6cycloalkyl or C3-C6cycloalkyl mono-substituted by cyano; preferably Rx3 is methyl, ethyl, isopropyl, 2,2,2-trifluoroethyl, methoxy, cyclopropyl or 1- cyanocyclopropyl; and
  • RX 4 is Ci-C6alkyl, Ci-C6haloalkyl, Ci-C6hydroxyalkyl, Ci-C 4 alkoxy-Ci-C 4 alkyl, Ci-C 4 alkylthio-Ci- C 4 alkyl, Ci-C 4 alkylsulfinyl-Ci-C 4 alkyl, Ci-C 4 alkylsulfonyl-Ci-C 4 alkyl, Ci-C6cyanoalkyl, C3-C6cycloalkyl or C3-C6cycloalkyl mono-substituted by cyano; preferably Rx 4 is methyl, ethyl, isopropyl, t-butyl, trifluoromethyl, difluoromethyl, fluoromethyl, chloromethyl, 2,2,2-trifluoroethyl, 1 -hydroxy-1 -methyl- ethyl, methoxymethyl, methoxyethyl, methylsulfanylmethyl,
  • One further preferred group of compounds according to this embodiment are compounds of formula (I- 6a) which are compounds of formula (i-6) wherein RX3 is Ci-C6alkyl, C3-C6cycloalkyl or C3-C6cycloalkyl mono-substituted by cyano, preferably methyl, ethyl, cyclopropyl or 1 -cyanocyclopropyl.
  • One further preferred group of compounds according to this embodiment are compounds of formula (I- 6b) which are compounds of formula (I-6) wherein
  • RX 4 is Ci-C6alkyl, Ci-C6haloalkyl, Ci-C 4 alkoxy-Ci-C 4 alkyl, Ci-C6cyanoalkyl, C3-C6cycloalkyl or C3- C6cycloalkyl mono-substituted by cyano, preferably methyl, ethyl, 2,2,2-trifluoroethyl, methoxymethyl, 1 -cyano-1 -methyl-ethyl, cyclopropyl or 1 -cyanocyclopropyl.
  • A is CH or N, preferably N;
  • R2 is Ci-C6haloalkyl, preferably trifluoromethyl
  • RZ3 is Ci-C6alkyl, C3-C6cycloalkyl or C3-C6cycloalkyl mono-substituted by cyano, preferably methyl, ethyl, cyclopropyl or 1 -cyanocyclopropyl; and
  • RZ 4 is Ci-C6alkyl, Ci-C6haloalkyl, Ci-C 4 alkoxy-Ci-C 4 alkyl, Ci-C6cyanoalkyl, C3-C6cycloalkyl or C3- C6cycloalkyl mono-substituted by cyano, preferably methyl, ethyl, 2,2,2-trifluoroethyl, methoxymethyl, 1 -cyano-1 -methyl-ethyl, cyclopropyl or 1 -cyanocyclopropyl; or
  • A is N.
  • A is CH.
  • A is N;
  • R2 is Ci-C6haloalkyl, preferably trifluoromethyl;
  • RZ3 is Ci-C6alkyl or C3-C6cycloalkyl, preferably methyl, ethyl or cyclopropyl;
  • RZ 4 is Ci-C6alkyl, Ci-C6haloalkyl, Ci-C 4 alkoxy-Ci-C 4 alkyl or C3-C6cycloalkyl, preferably methyl, ethyl,
  • A is N;
  • R2 is Ci-C6haloalkyl, preferably trifluoromethyl
  • RZ3 is C3-C6cycloalkyl mono-substituted by cyano, preferably 1 -cyanocyclopropyl;
  • RZ 4 is Ci-C6alkyl, preferably methyl or ethyl.
  • A is N;
  • R2 is Ci-C6haloalkyl, preferably trifluoromethyl
  • RZ3 is is Ci-C6alkyl, preferably methyl or ethyl
  • RZ 4 is Ci-C6cyanoalkyl or C3-C6cycloalkyl mono-substituted by cyano, preferably 1 -cyano-1 -methyl- ethyl or 1 -cyanocyclopropyl.
  • A is N;
  • R2 is Ci-C6haloalkyl, preferably trifluoromethyl
  • RZ3 is is Ci-C6alkyl, preferably methyl or ethyl
  • RZ 4 is Ci-C6alkyl, preferably methyl or ethyl.
  • the foregoing groups and embodiments of the compounds of formula I according to the invention are in free form, in oxidized form as an N-oxide or in salt form, e.g. an agronomically usable salt form.
  • the present invention relates to stereoisomers, enantiomers, or tautomers of the compounds of formula I.
  • Compounds according to the invention may possess any number of benefits including, inter alia, advantageous levels of biological activity for protecting plants against insects or superior properties for use as agrochemical active ingredients (for example, greater biological activity, an advantageous spectrum of activity, an increased safety profile, improved physico-chemical properties, or increased biodegradability or environmental profile).
  • advantageous levels of biological activity for protecting plants against insects or superior properties for use as agrochemical active ingredients for example, greater biological activity, an advantageous spectrum of activity, an increased safety profile, improved physico-chemical properties, or increased biodegradability or environmental profile.
  • certain compounds of formula (I) may show an advantageous safety profile with respect to non-target arthropods, in particular pollinators such as honey bees, solitary bees, and bumble bees.
  • Apis mellifera is particularly, bumble bees.
  • the present invention provides a composition
  • a composition comprising an insecticidally, acaricidally, nematicidally or molluscicidally effective amount of a compound of formula (I), or an agrochemically acceptable salt, stereoisomer, enantiomer, tautomer or N-oxide thereof, as defined in any of embodiments 1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 1 1 , 12, 13, 14 or 15 (above) or any of the
  • the present invention provides a method of combating and controlling insects, acarines, nematodes or molluscs which comprises applying to a pest, to a locus of a pest, or to a plant susceptible to attack by a pest an insecticidally, acaricidally, nematicidally or molluscicidally effective amount of a compound of formula (I), or an agrochemically acceptable salt, stereoisomer, enantiomer, tautomer or N-oxide thereof, as defined in any of embodiments 1 , 2, 3, 4, 5, 6, 7, 8, 9, 10, 1 1 , 12, 13, 14 or 15 (above) or any of the embodiments under compounds of formula (1-1), (i-2), (i-4), (i-5), (i-6) and (i-8) (above) or a composition as defined above.
  • a compound of formula (I) or an agrochemically acceptable salt, stereoisomer, enantiomer, tautomer or N-oxide thereof, as defined in
  • the present invention provides a method for the protection of plant propagation material from the attack by insects, acarines, nematodes or molluscs, which comprises treating the propagation material or the site, where the propagation material is planted, with a composition as defined above.
  • reaction can be performed with reagents such as a peracid, for example peracetic acid or m-chloroperbenzoic acid, or a hydroperoxide, as for example, hydrogen peroxide or tert-butylhydroperoxide, or an inorganic oxidant, such as a monoperoxo-disulfate salt or potassium permanganate.
  • reagents such as a peracid, for example peracetic acid or m-chloroperbenzoic acid, or a hydroperoxide, as for example, hydrogen peroxide or tert-butylhydroperoxide, or an inorganic oxidant, such as a monoperoxo-disulfate salt or potassium permanganate.
  • a peracid for example peracetic acid or m-chloroperbenzoic acid
  • hydroperoxide as for example, hydrogen peroxide or tert-butylhydroperoxide
  • an inorganic oxidant such as
  • Xi , Ri , R2, R3 and R4 are defined as under formula I above, under analogous conditions as described above. These reactions can be performed in various organic or aqueous solvents compatible to these conditions, by temperatures from below 0°C up to the boiling point of the solvent system.
  • Compounds of formula l-a1 can also be directly oxidized to compounds of formula l-a3 under similar conditions as described above.
  • the transformation of compounds of the formula l-a1 into compounds of the formula l-a2 and l-a3 is represented in Scheme 1 .
  • R2, Xi , X, Ri and A are as described in compounds of formula I and Xa1 is halogen (or a pseudo-halogen leaving group, such as triflate), preferably iodine, bromine or chlorine, by treatment with compounds of formula III wherein R 3 and R4 are as described in formula I, optionally in the presence of a base, such as potassium carbonate, cesium carbonate, sodium hydroxide, in an inert solvent, such as toluene, dimethylformamide DMF, N-methyl pyrrolidine, dimethyl sulfoxide DMSO, dioxane, tetrahydrofuran THF, and the like, optionally in the presence of a catalyst, for example palladium(ll)acetate, bis(dibenzylideneacetone)palladium(0) (Pd(dba)2) or tris(dibenzylideneacetone)dipalladium(0) (Pd 2 (dba)3, optionally in form of a chloro
  • R3 is as described under formula I, and in which Xa2 is a leaving group such as halogen, preferably iodine, bromine or chlorine (or a pseudo-halogen leaving group, such as a (halo)alkyl or phenyl sulfonate ester, e.g. triflate), in the presence of a base, such as sodium hydride or an alkaline earth metal hydride, carbonate (e.g.
  • halogen preferably iodine, bromine or chlorine
  • a pseudo-halogen leaving group such as a (halo)alkyl or phenyl sulfonate ester, e.g. triflate
  • a base such as sodium hydride or an alkaline earth metal hydride, carbonate (e.g.
  • R2, Xi, X, Ri, R3 and A are as described in compounds of formula I, by treatment with organic acids, for example trifluoroacetic acid, acetic acid and the like, or mineral acids such as hydrochloric acid, in inert solvents, such as dichloromethane or tetrahydrofuran THF, optionaly in the presence of water, at temperatures between 0 and 80°C, by methods well known to those skilled in the art.
  • organic acids for example trifluoroacetic acid, acetic acid and the like, or mineral acids such as hydrochloric acid
  • inert solvents such as dichloromethane or tetrahydrofuran THF, optionaly in the presence of water, at temperatures between 0 and 80°C, by methods well known to those skilled in the art.
  • R4 is as described in formula I, and wherein Xa3 is halogen, preferably chlorine, by methods known to those skilled in the art and described in for example Tetrahedron, 61 (46) , 10827-10852, 2005.
  • compounds Villa where Xa3 is halogen, preferably chlorine, are formed by treatment of VIII with, for example, oxalyl chloride (COCI)2 or thionyl chloride SOCI2, in the presence of catalytic quantities of N,N-dimethylformamide DMF in inert solvents such as methylene chloride or tetrahydrofuran THF at temperatures between 20 to 100°C, preferably 25°C.
  • COCI oxalyl chloride
  • SOCI2 thionyl chloride
  • compounds of formula Villa can be prepared by treatment of compounds of formula VIII with 1 -ethyl-3-(3- dimethylaminopropyl)carbodiimide (EDC) or dicyclohexyl carbodiimide (DCC) to give the activated species Villa, wherein Xa3 is Xa3i or Xa32 respectively,
  • compounds of formula I can be prepared by reacting compounds of formula VII directly with compounds of formula VIII in the presence of, for example, phosphorus oxychloride, while involving bases, such as pyridine and triethylamine, that serve as both base and solvent/diluent, at temperatures between -30 and 60°C, preferably between -20°C and room temperature.
  • bases such as pyridine and triethylamine
  • a salt thereof such as a hydrohalide salt, preferably a hydrochloride or a hydrobromide salt, or a trifluoroacetic acid salt, or any other equivalent salt
  • R3 is as defined under formula I
  • a copper catalyst such as copper powder, copper(l) iodide or copper sulfate (optionally in form of a hydrate), or mixtures thereof
  • an inert solvent such as alcohols, amides, esters, ethers, nitriles and water
  • the reaction is commonly performed with one or two equivalents of a base, such as potassium phosphate, in presence of a copper catalyst, for example copper (I) iodine, copper sulfate, or copper, and under an oxygen- containing atmosphere.
  • a base such as potassium phosphate
  • a copper catalyst for example copper (I) iodine, copper sulfate, or copper
  • oxygen- containing atmosphere e.g. a base
  • the reaction can be run in an inert solvent, like dioxane, THF, or toluene, usually at temperature between 50 to 150°C and optionaly in presence an additional ligand, for example diamine ligands (e.g. frans-cyclohexyldiamine) or dibenzylideneacetone (dba), or 1 ,10- phenanthroline.
  • diamine ligands e.g. frans-cyclohexyldiamine
  • dba dibenzy
  • compounds of the formula VII wherein R 2 , Xi, X, Ri, R3 and A are as described in compounds of formula I, can be prepared by reacting compounds of the formula II, wherein R 2 , Xi, X, Ri and A are as described in compounds of formula I and Xa1 is halogen (or a pseudo-halogen leaving group, such as triflate), preferably iodine, bromine or chlorine, with reagents of the formula IX
  • a palladium catalyst for example palladium(ll)acetate, bis(dibenzylideneacetone) palladium(O) (Pd(dba) 2 ) or tris(dibenzylideneacetone)dipalladium(0) (Pd 2 (dba)3, optionally in form of a chloroform adduct), or a palladium pre-catalyst such as for example fe/ -BuBrettPhos Pd G3 [(2-Di- fe/ -butylphosphino-3, 6-dimethoxy-2', 4', 6'-tri isopropyl-1 ,T-biphenyl)-2-(2'-amino-1 ,T
  • a ligand for example BINAP, SPhos, t- BuBrettPhos or Xantphos
  • a base such as potassium carbonate, cesium carbonate, sodium or potassium tert-butylate, sodium hydroxide
  • an inert solvent such as toluene, dimethylformamide DMF, dimethylacetamide, N-methyl pyrrolidine, dimethyl sulfoxide DMSO, dioxane, tetrahydrofuran THF, and the like, at temperatures between 60-180°C, optionally under microwave irradiation.
  • Such reactions known to a person skilled in the art as the Buchwald-Hartwig amination, have been reported in the literature, for example in Org. Process Res. Dev. 2019, 23, 1478-1483.
  • R2, Xi , X, Ri and A are as defined in formula I;
  • R3a is cyclopropyl
  • R2 is Ci-C6haloalkyl; even more preferably R2 is CF3.
  • Xi is N(Ci- C 4 alkyl); even more preferably Xi is NCH3.
  • X is S or SO2; even more preferably X is SO2.
  • Ri is Ci-C 4 alkyl; even more preferably Ri is ethyl.
  • A is N.
  • triflate in presence of a base, such as sodium carbonate, potassium carbonate or cesium carbonate, or sodium hydride, in an appropriate solvent such as for example tetrahydrofuran, dioxane, N,N- dimethylformamide, N,N-dimethylacetamide or acetonitrile, at temperatures between 0 and 150°C by methods known to those skilled in the art.
  • a base such as sodium carbonate, potassium carbonate or cesium carbonate, or sodium hydride
  • an appropriate solvent such as for example tetrahydrofuran, dioxane, N,N- dimethylformamide, N,N-dimethylacetamide or acetonitrile
  • triflate in presence of a base, such as sodium carbonate, potassium carbonate or cesium carbonate, or sodium hydride, in an appropriate solvent such as for example tetrahydrofuran, dioxane, N,N-dimethylformamide, N,N-dimethylacetamide or acetonitrile, at temperatures between 0 and 150°C by methods known to those skilled in the art.
  • a base such as sodium carbonate, potassium carbonate or cesium carbonate, or sodium hydride
  • an appropriate solvent such as for example tetrahydrofuran, dioxane, N,N-dimethylformamide, N,N-dimethylacetamide or acetonitrile, at temperatures between 0 and 150°C by methods known to those skilled in the art.
  • R10 is methyl
  • Xa2 is a leaving group such as halogen, preferably iodine, bromine or chlorine (or a pseudo-halogen leaving group, such as a (halo)alkyl or phenyl sulfonate ester, e.g. triflate), in the presence of a base, such as sodium hydride or an alkaline earth metal hydride, carbonate (e.g.
  • sodium carbonate, potassium carbonate or cesium carbonate) or hydroxide in an inert solvent such as tetrahydrofuran, dioxane, N,N-dimethylformamide DMF, N,N-dimethylacetamide or acetonitrile and the like, at temperatures between 0 and 120°C, by procedures well known to those skilled in the art.
  • an inert solvent such as tetrahydrofuran, dioxane, N,N-dimethylformamide DMF, N,N-dimethylacetamide or acetonitrile and the like, at temperatures between 0 and 120°C, by procedures well known to those skilled in the art.
  • Compounds of the formula l-a7 wherein X, A, Xi, Ri, R2 and R4 are as defined in formula I, can be prepared by reacting compounds of the formula VII wherein R3 is hydrogen, defining compounds of the formula Vll-a, wherein X, A, Xi , Ri and F3 ⁇ 4 are as defined in formula I, with compounds of formula Villa, wherein R4 is as described in formula I, and wherein Xa3 is halogen, preferably chlorine, by methods known to those skilled in the art and already described above in scheme 2.
  • compounds of formula l-a7 may be prepared by reacting compounds of formula Vll-a directly with compounds of formula VIII under conditions already described above in scheme 2.
  • R3 is as described under formula I, and in which Xa2 is a leaving group such as halogen, preferably iodine, bromine or chlorine (or a pseudo-halogen leaving group, such as a (halo)alkyl or phenyl sulfonate ester, e.g. triflate); and
  • Xa2 is a leaving group such as halogen, preferably iodine, bromine or chlorine (or a pseudo-halogen leaving group, such as a (halo)alkyl or phenyl sulfonate ester, e.g. triflate); and
  • R6 and R7 are independently hydrogen or Ci-C4alkyl, and in which Xa4 is a leaving group such as a halogen, preferably iodine, bromine or chlorine; and
  • the reactants can be reacted in the presence of a base.
  • suitable bases are alkali metal or alkaline earth metal hydroxides, alkali metal or alkaline earth metal hydrides, alkali metal or alkaline earth metal amides, alkali metal or alkaline earth metal alkoxides, alkali metal or alkaline earth metal acetates, alkali metal or alkaline earth metal carbonates, alkali metal or alkaline earth metal dialkylamides or alkali metal or alkaline earth metal alkylsilylamides, alkylamines, alkylenediamines, free or N-alkylated saturated or unsaturated cycloalkylamines, basic heterocycles, ammonium hydroxides and carbocyclic amines.
  • sodium hydroxide sodium hydride, sodium amide, sodium methoxide, sodium acetate, sodium carbonate, potassium tert- butoxide, potassium hydroxide, potassium carbonate, potassium hydride, lithium diisopropylamide, potassium bis(trimethylsilyl)amide, calcium hydride, triethylamine, diisopropylethylamine,
  • the reactants can be reacted with each other as such, i.e. without adding a solvent or diluent. In most cases, however, it is advantageous to add an inert solvent or diluent or a mixture of these. If the reaction is carried out in the presence of a base, bases which are employed in excess, such as triethylamine, pyridine, N-methylmorpholine or N,N-diethylaniline, may also act as solvents or diluents.
  • the reactions are advantageously carried out in a temperature range from approximately -80°C to approximately +140°C, preferably from approximately -30°C to approximately +100°C, in many cases in the range between ambient temperature and approximately +80°C.
  • a compound of formula I can be converted in a manner known per se into another compound of formula I by replacing one or more substituents of the starting compound of formula I in the customary manner by (an)other substituent(s) according to the invention, and by post modification of compounds of with reactions such as oxidation, alkylation, reduction, acylation and other methods known by those skilled in the art.
  • reaction conditions and starting materials which are suitable in each case, it is possible, for example, in one reaction step only to replace one substituent by another substituent according to the invention, or a plurality of substituents can be replaced by other substituents according to the invention in the same reaction step.
  • Salts of compounds of formula I can be prepared in a manner known per se.
  • acid addition salts of compounds of formula I are obtained by treatment with a suitable acid or a suitable ion exchanger reagent and salts with bases are obtained by treatment with a suitable base or with a suitable ion exchanger reagent.
  • Salts of compounds of formula I can be converted in the customary manner into the free compounds I, acid addition salts, for example, by treatment with a suitable basic compound or with a suitable ion exchanger reagent and salts with bases, for example, by treatment with a suitable acid or with a suitable ion exchanger reagent.
  • Salts of compounds of formula I can be converted in a manner known per se into other salts of compounds of formula I, acid addition salts, for example, into other acid addition salts, for example by treatment of a salt of inorganic acid such as hydrochloride with a suitable metal salt such as a sodium, barium or silver salt, of an acid, for example with silver acetate, in a suitable solvent in which an inorganic salt which forms, for example silver chloride, is insoluble and thus precipitates from the reaction mixture.
  • a salt of inorganic acid such as hydrochloride
  • a suitable metal salt such as a sodium, barium or silver salt
  • the compounds of formula I which have saltforming properties can be obtained in free form or in the form of salts.
  • the compounds of formula I and, where appropriate, the tautomers thereof, in each case in free form or in salt form, can be present in the form of one of the isomers which are possible or as a mixture of these, for example in the form of pure isomers, such as antipodes and/or diastereomers, or as isomer mixtures, such as enantiomer mixtures, for example racemates, diastereomer mixtures or racemate mixtures, depending on the number, absolute and relative configuration of asymmetric carbon atoms which occur in the molecule and/or depending on the configuration of non-aromatic double bonds which occur in the molecule; the invention relates to the pure isomers and also to all isomer mixtures which are possible and is to be understood in each case in this sense hereinabove and hereinbelow, even when stereochemical details are not mentioned specifically in each case.
  • Diastereomer mixtures or racemate mixtures of compounds of formula I, in free form or in salt form, which can be obtained depending on which starting materials and procedures have been chosen can be separated in a known manner into the pure diasteromers or racemates on the basis of the physicochemical differences of the components, for example by fractional crystallization, distillation and/or chromatography.
  • Enantiomer mixtures such as racemates, which can be obtained in a similar manner can be resolved into the optical antipodes by known methods, for example by recrystallization from an optically active solvent, by chromatography on chiral adsorbents, for example high-performance liquid
  • N-oxides can be prepared by reacting a compound of the formula I with a suitable oxidizing agent, for example the H2C>2/urea adduct in the presence of an acid anhydride, e.g. trifluoroacetic anhydride.
  • a suitable oxidizing agent for example the H2C>2/urea adduct
  • an acid anhydride e.g. trifluoroacetic anhydride.
  • the compounds of formula I and, where appropriate, the tautomers thereof, in each case in free form or in salt form, can, if appropriate, also be obtained in the form of hydrates and/or include other solvents, for example those which may have been used for the crystallization of compounds which are present in solid form.
  • Table A-1 provides 22 compounds A-1 .001 to A-1.022 of formula laa wherein Ri is CH2CH3, R2 is CF3, R3 is CH3, X is S, Xi is NCH3, A is N and R4 is as defined in table Y.
  • Table A-2 provides 22 compounds A-2.001 to A-2.022 of formula laa wherein Ri is CH2CH3, R2 is CF3, R 3 is CH 3 , X is SO, Xi is NCH 3 , A is N and R 4 is as defined in table Y.
  • Table A-3 provides 22 compounds A-3.001 to A-3.022 of formula laa wherein Ri is CH2CH3, R2 is CF3, R 3 is CH 3 , X is SO2, Xi is NCH 3 , A is N and R 4 is as defined in table Y.
  • Table A-4 provides 22 compounds A-4.001 to A-4.022 of formula aa wherein Ri is CH 2 CH3, R 2 is CF3, R3 is Cyp, X is S, Xi is NCH3, A is N and R 4 is as defined in table Y.
  • Table A-5 provides 22 compounds A-5.001 to A-5.022 of formula aa wherein Ri is CH2CH3, R2 is CF3, R3 is Cyp, X is SO2, Xi is NCH3, A is N and R 4 is as defined in table Y.
  • Table A-6 provides 22 compounds A-6.001 to A-6.022 of formula laa wherein Ri is CH2CH3, R2 is CF3, R 3 is OCH3, X is SO2, Xi is NCH3, A is N and R 4 is as defined in table Y.
  • Table A- 7 provides 22 compounds A-7.001 to A-7.022 of formula laa wherein Ri is CH2CH3, R2 is CF3,
  • R 3 is CH3CH2
  • X is SO2
  • Xi is NCH3
  • A is N and R 4 is as defined in table Y.
  • Table A-8 provides 22 compounds A-8.001 to A-8.022 of formula laa wherein Ri is CH2CH3, R2 is CF3, R 3 is CH2CF3, X is SO2, Xi is NCH3, A is N and R 4 is as defined in table Y.
  • Table A-9 provides 22 compounds A-9.001 to A-9.022 of formula laa wherein Ri is CH2CH3, R2 is CF3, R 3 is CH3CH2, X is S, Xi is NCH 3 , A is N and R 4 is as defined in table Y.
  • Table A-10 provides 22 compounds A-10.001 to A-10.022 of formula laa wherein Ri is CH2CH3, R2 is CFs, R3 is CH2CF3, X is S, Xi is NCH 3 , A is N and R 4 is as defined in table Y.
  • Table A-1 1 provides 22 compounds A-1 1 .001 to A-1 1 .022 of formula laa wherein Ri is CH2CH3, R2 is CFs, R3 is CH(CH 3 )2, X is S, Xi is NCFh, A is N and R 4 is as defined in table Y.
  • Table A-12 provides 22 compounds A-12.001 to A-12.022 of formula laa wherein Ri is CH2CH3, R2 is CFs, R3 is CH(CH 3 ) 2 , X is SO2, Xi is NCFh, A is N and R 4 is as defined in table Y.
  • Table A-13 provides 22 compounds A-13.001 to A-13.022 of formula laa wherein Ri is CH2CH3, R2 is CFs, R3 is CH(CHS) 2 , X is SO, Xi is NCFh, A is N and R 4 is as defined in table Y.
  • Table A-14 provides 22 compounds A-14.001 to A-14.022 of formula aa wherein Ri is CFhCFh, R2 is CF3, R3 is Cyp, X is SO, Xi is NCFh, A is N and R 4 is as defined in table Y.
  • Table A-15 provides 22 compounds A-15.001 to A-15.022 of formula laa wherein Ri is CFhCFh, R2 is CFs, Rs is CFh, X is SO, Xi is NCFh, A is CH and R 4 is as defined in table Y.
  • Table A-16 provides 22 compounds A-16.001 to A-16.022 of formula laa wherein Ri is CFhCFh, R2 is CFs, Rs is CFh, X is S, Xi is NCFh, A is CH and R 4 is as defined in table Y.
  • Table A-17 provides 22 compounds A-17.001 to A-17.022 of formula laa wherein Ri is CH2CH3, R2 is CFs, Rs is CHs, X is SO2, Xi is NCH 3 , A is CH and R 4 is as defined in table Y.
  • Table A-18 provides 22 compounds A-18.001 to A-18.022 of formula laa wherein Ri is CH2CH3, R2 is CFs, Rs is OCHs, X is SO, Xi is NCH 3 , A is N and R 4 is as defined in table Y.
  • Table A-19 provides 22 compounds A-19.001 to A-19.022 of formula laa wherein Ri is CH2CH3, R2 is defined in table Y.
  • Table A-20 provides 22 compounds A-20.001 to A-20.022 of formula laa wherein Ri is CH2CH3, R2 is defined in table Y.
  • Table A-21 provides 22 compounds A-21 .001 to A-21 .022 of formula laa wherein Ri is CH2CH3, R2 is defined in table Y.
  • Table A-22 provides 22 compounds A-22.001 to A-22.022 of formula laa wherein Ri is CH2CH3, R2 is CFs, Rs is CH3CH2, X is SO, Xi is NCH 3 , A is N and R 4 is as defined in table Y.
  • Table A-23 provides 22 compounds A-23.001 to A-23.022 of formula laa wherein Ri is CH2CH3, R2 is CFs, R3 is OCH3, X is S, Xi is NCH 3 , A is N and R 4 is as defined in table Y.
  • Table A-24 provides 22 compounds A-24.001 to A-24.022 of formula laa wherein Ri is CH2CH3, R2 is CFs, R3 is CH2CF3, X is SO, Xi is NCH 3 , A is N and R 4 is as defined in table Y.
  • Table A-25 provides 22 compounds A-25.001 to A-25.022 of formula laa wherein Ri is CH2CH3, R2 is defined in table Y.
  • Table A-26 provides 22 compounds A-26.001 to A-26.022 of formula laa wherein Ri is CH2CH3, R2 is defined in table Y.
  • Table A-27 provides 22 compounds A-27.001 to A-27.022 of formula laa wherein Ri is CH2CH3, R2 is defined in table Y.
  • Table A-28 provides 22 compounds A-28.001 to A-28.022 of formula laa wherein Ri is CH2CH3, R2 is CFs, R3 is CH2CH3, X is S, Xi is NCH 3 , A is CH and R 4 is as defined in table Y.
  • Table A-29 provides 22 compounds A-29.001 to A-29.022 of formula laa wherein Ri is CH2CH3, R2 is CFs, R3 is CH2CH3, X is SO, Xi is NCHs, A is CH and R 4 is as defined in table Y.
  • Table A-30 provides 22 compounds A-30.001 to A-30.022 of formula laa wherein Ri is CH2CH3, R2 is CFs, Rs is CH2CH3, X is SO2, Xi is NCH 3 , A is CH and R 4 is as defined in table Y.
  • Table A-31 provides 22 compounds A-31 .001 to A-31 .022 of formula laa wherein Ri is CH 2 CH3, R 2 is CF3, R3 is Cyp, X is S, Xi is NCH3, A is CH and R 4 is as defined in table Y.
  • Table A-32 provides 22 compounds A-32.001 to A-32.022 of formula laa wherein Ri is CH 2 CH3, R2 is CFs, Rs is Cyp, X is SO, Xi is NCH 3 , A is CH and R 4 is as defined in table Y.
  • Table A-33 provides 22 compounds A-33.001 to A-33.022 of formula laa wherein Ri is CH2CH3, R2 is CF 3 , R 3 is Cyp, X is SO2, Xi is NCH 3 , A is CH and R 4 is as defined in table Y.
  • the compounds of formula I according to the invention are preventively and/or curatively valuable active ingredients in the field of pest control, even at low rates of application, which have a very favorable biocidal spectrum and are well tolerated by warm-blooded species, fish and plants.
  • the active ingredients according to the invention act against all or individual developmental stages of normally sensitive, but also resistant, animal pests, such as insects, molluscs, nematodes or representatives of the order Acarina.
  • the insecticidal, molluscicidal, nematicidal or acaricidal activity of the active ingredients according to the invention can manifest itself directly, i. e.
  • certain compounds of formula (I) of the invention can be distinguished from known compounds by virtue of greater efficacy at low application rates, which can be verified by the person skilled in the art using experimental procedures similar to or adapted from those outlined in the biological examples, using lower application rates if necessary, for example 50 ppm, 12.5 ppm, 6 ppm, 3 ppm, 1.5 ppm, 0.8 ppm or 0.2 ppm.
  • compounds of formula (I) show advantageous physicochemical properties for application in crop protection, in particular reduced melting point, reduced lipophilicity and increased water solubility. Such properties have been found to be advantageous for plant uptake and systemic distribution, see for example A. Buchholz, S. Trapp, Pest Manag Sci 2016; 72: 929-939) in order to control certain pest species named below.
  • Hyalomma spp. Ixodes spp., Olygonychus spp, Ornithodoros spp., Polyphagotarsone latus,
  • Panonychus spp. Phyllocoptruta oleivora, Phytonemus spp, Polyphagotarsonemus spp, Psoroptes spp., Rhipicephalus spp., Rhizoglyphus spp., Sarcoptes spp., Steneotarsonemus spp, Tarsonemus spp. and Tetranychus spp.;
  • Haematopinus spp. Linognathus spp., Pediculus spp., Pemphigus spp. and Phylloxera spp.;
  • Agriotes spp. Amphimallon majale, Anomala orientalis, Anthonomus spp., Aphodius spp, Astylus atromaculatus, Ataenius spp, Atomaria linearis, Chaetocnema tibialis, Cerotoma spp, Conoderus spp, Cosmopolites spp., Cotinis nitida, Curculio spp., Cyclocephala spp, Dermestes spp., Diabrotica spp., Diloboderus abderus, Epilachna spp., Eremnus spp., Heteronychus arator, Hypothenemus hampei, Lagria vilosa, Leptinotarsa decemLineata, Lissorhoptrus spp., Liogenys spp, Maecolaspis spp, Maladera castanea, Megas
  • Acyrthosium pisum Adalges spp, Agalliana ensigera, Agonoscena targionii, Aleurodicus spp, Aleurocanthus spp, Aleurolobus barodensis, Aleurothrixus floccosus, Aleyrodes brassicae, Amarasca biguttula, Amritodus atkinsoni, Aonidiella spp., Aphididae, Aphis spp., Aspidiotus spp., Aulacorthum solani, Bactericera cockerelli, Bemisia spp, Brachycaudus spp, Brevicoryne brassicae, Cacopsylla spp, Cavariella aegopodii Scop., Ceroplaster spp., Chrysomphalus aonidium, Chrysomphalus dictyospermi, Cicadella spp, Cofana spec
  • Macrosiphum spp. Mahanarva spp, Metcalfa pruinosa, Metopolophium dirhodum, Myndus crudus, Myzus spp., Neotoxoptera sp, Nephotettix spp., Nilaparvata spp., Nippolachnus piri Mats, Odonaspis ruthae, Oregma lanigera Zehnter, Parabemisia myricae, Paratrioza cockerelli, Parlatoria spp., Pemphigus spp., Peregrinus maidis, Perkinsiella spp, Phorodon humuli, Phylloxera spp, Planococcus spp., Pseudaulacaspis spp., Pseudococcus spp., Pseudatomoscelis seriatus, Psylla spp., Pulvinaria
  • Hymenoptera for example, Acromyrmex, Arge spp, Atta spp., Cephus spp., Diprion spp., Diprionidae, Gilpinia polytoma, Hoplo- campa spp., Lasius spp., Monomorium pharaonis, Neodiprion spp., Pogonomyrmex spp, Slenopsis invicta, Solenopsis spp. and Vespa spp.;
  • Coptotermes spp Corniternes cumulans, Incisitermes spp, Macrotermes spp, Mastotermes spp, Microtermes spp, Reticulitermes spp.; Solenopsis geminate
  • Blatta spp. Blattella spp., Gryllotalpa spp., Leucophaea maderae, Locusta spp., Neocurtilla hexadactyla, Periplaneta spp. , Scapteriscus spp, and Schistocerca spp.;
  • the active ingredients according to the invention can be used for controlling, i. e. containing or destroying, pests of the abovementioned type which occur in particular on plants, especially on useful plants and ornamentals in agriculture, in horticulture and in forests, or on organs, such as fruits, flowers, foliage, stalks, tubers or roots, of such plants, and in some cases even plant organs which are formed at a later point in time remain protected against these pests.
  • Suitable target crops are, in particular, cereals, such as wheat, barley, rye, oats, rice, maize or sorghum; beet, such as sugar or fodder beet; fruit, for example pomaceous fruit, stone fruit or soft fruit, such as apples, pears, plums, peaches, almonds, cherries or berries, for example strawberries, raspberries or blackberries; leguminous crops, such as beans, lentils, peas or soya; oil crops, such as oilseed rape, mustard, poppies, olives, sunflowers, coconut, castor, cocoa or ground nuts; cucurbits, such as pumpkins, cucumbers or melons; fibre plants, such as cotton, flax, hemp or jute; citrus fruit, such as oranges, lemons, grapefruit or tangerines; vegetables, such as spinach, lettuce, asparagus, cabbages, carrots, onions, tomatoes, potatoes or bell peppers; Lauraceae, such as avocado, Cinnamonium or camphor; and also tobacco, nuts,
  • compositions and/or methods of the present invention may be also used on any ornamental and/or vegetable crops, including flowers, shrubs, broad-leaved trees and evergreens.
  • the invention may be used on any of the following ornamental species: Ageratum spp., Alonsoa spp., Anemone spp., Anisodontea capsenisis, Anthemis spp., Antirrhinum spp., Aster spp., Begonia spp. (e.g. B. elatior, B. semperfiorens, B. tubereux), Bougainvillea spp., Brachycome spp., Brassica spp.
  • Calceolaria spp. (ornamental), Calceolaria spp., Capsicum annuum, Catharanthus roseus, Canna spp., Centaurea spp., Chrysanthemum spp., Cineraria spp. (C. maritime), Coreopsis spp., Crassula coccinea, Cuphea ignea, Dahlia spp., Delphinium spp., Dicentra spectabilis, Dorotheantus spp., Eustoma grandiflorum, Forsythia spp., Fuchsia spp., Geranium gnaphalium, Gerbera spp.,
  • Gomphrena globosa Heliotropium spp., Helianthus spp., Hibiscus spp., Hortensia spp., Hydrangea spp., Hypoestes phyllostachya, I mpatiens spp. (/. Walleriana), Iresines spp., Kalanchoe spp., Lantana camara, Lavatera trimestris, Leonotis leonurus, Lilium spp., Mesembryanthemum spp., Mimulus spp., Monarda spp., Nemesia spp., Tagetes spp., Dianthus spp.
  • Salvia spp. Scaevola aemola, Schizanthus wisetonensis, Sedum spp., Solanum spp., Surfmia spp., Tagetes spp., Nicotinia spp., Verbena spp., Zinnia spp. and other bedding plants.
  • the invention may be used on any of the following vegetable species: Allium spp. (A. sativum, A. cepa, A. oschaninii, A. Porrum, A. ascalonicum, A. fistulosum), Anthriscus cerefolium, Apium graveolus, Asparagus officinalis, Beta vulgarus, Brassica spp. (B. Oleracea, B. Pekinensis, B. rapa), Capsicum annuum, Cicer arietinum, Cichorium endivia, Cichorum spp. (C. intybus, C. endivia), Citrillus lanatus, Cucumis spp. (C. sativus, C.
  • Petroselinum crispum, Phaseolus spp. P. vulgaris, P. coccineus
  • Pisum sativum Raphanus sativus
  • Rheum rhaponticum Rosemarinus spp.
  • Salvia spp. Scorzonera hispanica
  • Solanum melongena Spinacea oleracea
  • Valerianella spp. V . locusta, V. eriocarpa
  • Vicia faba Vicia faba.
  • Preferred ornamental species include African violet, Begonia, Dahlia, Gerbera, Hydrangea, Verbena, Rosa, Kalanchoe, Poinsettia, Aster, Centaurea, Coreopsis, Delphinium, Monarda, Phlox, Rudbeckia, Sedum, Petunia, Viola, Impatiens, Geranium, Chrysanthemum, Ranunculus, Fuchsia, Salvia, Hortensia, rosemary, sage, St. Johnswort, mint, sweet pepper, tomato and cucumber.
  • the active ingredients according to the invention are especially suitable for controlling Aphis craccivora, Diabrotica balteata, Heliothis virescens, Myzus persicae, Plutella xylostella and
  • the active ingredients according to the invention are further especially suitable for controlling Mamestra (preferably in vegetables), Cydia pomonella (preferably in apples), Empoasca(preferably in vegetables, vineyards), Leptinotarsa (preferably in potatos) and Chilo supressalis (preferably in rice).
  • the active ingredients according to the invention are especially suitable for controlling Aphis craccivora, Diabrotica balteata, Heliothis virescens, Myzus persicae, Plutella xylostella and
  • the active ingredients according to the invention are further especially suitable for controlling Mamestra (preferably in vegetables), Cydia pomonella (preferably in apples), Empoasca(preferably in vegetables, vineyards), Leptinotarsa (preferably in potatos) and Chilo supressalis (preferably in rice).
  • the invention may also relate to a method of controlling damage to plant and parts thereof by plant parasitic nematodes (Endoparasitic-, Semiendoparasitic- and Ectoparasitic nematodes), especially plant parasitic nematodes such as root knot nematodes, Meloidogyne hapla, Meloidogyne incognita, Meloidogyne javanica, Meloidogyne arenaria and other Meloidogyne species; cyst-forming nematodes, Globodera rostochiensis and other Globodera species; Heterodera avenae, Heterodera glycines, Heterodera schachtii, Heterodera trifolii, and other Heterodera species; Seed gall nematodes, Anguina species; Stem and foliar nematodes, Aphelenchoides species; Sting nematodes, Belonolai
  • Needle nematodes Longidorus elongatus and other Longidorus species; Pin nematodes, Pratylenchus species; Lesion nematodes, Pratylenchus neglectus, Pratylenchus penetrans, Pratylenchus curvitatus, Pratylenchus goodeyi and other Pratylenchus species; Burrowing nematodes, Radopholus similis and other Radopholus species; Reniform nematodes, Rotylenchus robustus, Rotylenchus reniformis and other Rotylenchus species; Scutellonema species; Stubby root nematodes, Trichodorus primitivus and other Trichodorus species, Paratrichodorus species; Stunt nematodes, Tylenchorhynchus claytoni, Tylenchorhynchus dubius and other Tylenchorhynchus species; Citrus nematodes, Tyle
  • Meloidogyne spp. Meloidogyne spp.(Melodoigyne incognita), Heterodera spp. ( Heterodera schachtii), Rotylenchus spp. and Pratylenchus spp. can be controlled by compounds of the invention.
  • the compounds of the invention may also have activity against the molluscs.
  • examples of which include, for example, Ampullariidae; Arion (A. ater, A. circumscriptus, A. hortensis, A. rufus);
  • Bradybaenidae (Bradybaena fruticum); Cepaea (C. hortensis, C. Nemoralis); ochlodina; Deroceras (D. agrestis, D. empiricorum, D. laeve, D. reticulatum); Discus (D. rotundatus); Euomphalia; Galba (G. trunculata); Helicelia (H. itala, H. obvia); Helicidae Helicigona arbustorum); Helicodiscus; Helix (H. aperta); Limax (L. cinereoniger, L. flavus, L. marginatus, L. maximus, L. tenellus); Lymnaea; Milax (M. gagates, M. marginatus, M. sowerbyi); Opeas; Pomacea (P. canaticulata); Vallonia and Zanitoides.
  • crops is to be understood as including also crop plants which have been so transformed by the use of recombinant DNA techniques that they are capable of synthesising one or more selectively acting toxins, such as are known, for example, from toxin-producing bacteria, especially those of the genus Bacillus.
  • Toxins that can be expressed by such transgenic plants include, for example, insecticidal proteins, for example insecticidal proteins from Bacillus cereus or Bacillus popilliae; or insecticidal proteins from Bacillus thuringiensis, such as d-endotoxins, e.g. CrylAb, CrylAc, Cry1 F, Cry1 Fa2, Cry2Ab, Cry3A, Cry3Bb1 or Cry9C, or vegetative insecticidal proteins (Vip), e.g. Vip1 , Vip2, Vip3 or Vip3A; or insecticidal proteins of bacteria colonising nematodes, for example Photorhabdus spp. or
  • Xenorhabdus spp. such as Photorhabdus luminescens, Xenorhabdus nematophilus
  • toxins produced by animals such as scorpion toxins, arachnid toxins, wasp toxins and other insect-specific neurotoxins
  • toxins produced by fungi such as Streptomycetes toxins, plant lectins, such as pea lectins, barley lectins or snowdrop lectins
  • agglutinins proteinase inhibitors, such as trypsin inhibitors, serine protease inhibitors, patatin, cystatin, papain inhibitors
  • ribosome-inactivating proteins (RIP) such as ricin, maize-RIP, abrin, luffin, saporin or bryodin
  • steroid metabolism enzymes such as 3-hydroxysteroidoxidase, ecdysteroid-UDP-glycosyl-transferase, cholesterol oxidases, ecd
  • d-endotoxins for example CrylAb, CrylAc, Cry1 F, Cry1 Fa2, Cry2Ab, Cry3A, Cry3Bb1 or Cry9C, or vegetative insecticidal proteins (Vip), for example Vip1 , Vip2, Vip3 or Vip3A, expressly also hybrid toxins, truncated toxins and modified toxins.
  • Hybrid toxins are produced recombinantly by a new combination of different domains of those proteins (see, for example, WO 02/15701).
  • Truncated toxins for example a truncated CrylAb, are known.
  • modified toxins one or more amino acids of the naturally occurring toxin are replaced.
  • preferably non-naturally present protease recognition sequences are inserted into the toxin, such as, for example, in the case of Cry3A055, a cathepsin-G-recognition sequence is inserted into a Cry3A toxin (see WO 03/018810).
  • Examples of such toxins or transgenic plants capable of synthesising such toxins are disclosed, for example, in EP-A-0 374 753, WO 93/07278, WO 95/34656, EP-A-0 427 529, EP-A-451 878 and WO 03/052073.
  • deoxyribonucleic acids and their preparation are known, for example, from WO 95/34656, EP-A-0 367 474, EP-A-0 401 979 and WO 90/13651 .
  • the toxin contained in the transgenic plants imparts to the plants tolerance to harmful insects.
  • insects can occur in any taxonomic group of insects but are especially commonly found in the beetles (Coleoptera), two-winged insects (Diptera) and moths (Lepidoptera).
  • Transgenic plants containing one or more genes that code for an insecticidal resistance and express one or more toxins are known and some of them are commercially available. Examples of such plants are: YieldGard® (maize variety that expresses a CrylAb toxin); YieldGard Rootworm® (maize variety that expresses a Cry3Bb1 toxin); YieldGard Plus® (maize variety that expresses a CrylAb and a Cry3Bb1 toxin); Starlink® (maize variety that expresses a Cry9C toxin); Herculex I® (maize variety that expresses a Cry1 Fa2 toxin and the enzyme phosphinothricine N-acetyltransferase (PAT) to achieve tolerance to the herbicide glufosinate ammonium); NuCOTN 33B® (cotton variety that expresses a CrylAc toxin); Bollgard I® (cotton variety that expresses a
  • transgenic crops are:
  • MIR604 Maize from Syngenta Seeds SAS, Chemin de I'Hobit 27, F-31 790 St. Sauveur, France, registration number C/FR/96/05/10. Maize which has been rendered insect-resistant by transgenic expression of a modified Cry3A toxin. This toxin is Cry3A055 modified by insertion of a cathepsin-G- protease recognition sequence. The preparation of such transgenic maize plants is described in WO 03/018810.
  • MON 863 Maize from Monsanto Europe S.A. 270-272 Avenue de Tervuren, B-1150 Brussels, Belgium, registration number C/DE/02/9. MON 863 expresses a Cry3Bb1 toxin and has resistance to certain Coleoptera insects.
  • NK603 x MON 810 Maize from Monsanto Europe S.A. 270-272 Avenue de Tervuren, B-1150 Brussels, Belgium, registration number C/GB/02/M3/03. Consists of conventionally bred hybrid maize varieties by crossing the genetically modified varieties NK603 and MON 810.
  • NK603 c MON 810 Maize transgenically expresses the protein CP4 EPSPS, obtained from Agrobacterium sp. strain CP4, which imparts tolerance to the herbicide Roundup® (contains glyphosate), and also a CrylAb toxin obtained from Bacillus thuringiensis subsp. kurstaki which brings about tolerance to certain
  • Lepidoptera include the European corn borer.
  • crops is to be understood as including also crop plants which have been so transformed by the use of recombinant DNA techniques that they are capable of synthesising antipathogenic substances having a selective action, such as, for example, the so-called "pathogenesis-related proteins" (PRPs, see e.g. EP-A-0 392 225).
  • PRPs pathogenesis-related proteins
  • Examples of such antipathogenic substances and transgenic plants capable of synthesising such antipathogenic substances are known, for example, from EP-A-0 392 225, WO 95/33818 and EP-A-0 353 191.
  • the methods of producing such transgenic plants are generally known to the person skilled in the art and are described, for example, in the publications mentioned above.
  • Crops may also be modified for enhanced resistance to fungal (for example Fusarium, Anthracnose, or Phytophthora), bacterial (for example Pseudomonas) or viral (for example potato leafroll virus, tomato spotted wilt virus, cucumber mosaic virus) pathogens.
  • fungal for example Fusarium, Anthracnose, or Phytophthora
  • bacterial for example Pseudomonas
  • viral for example potato leafroll virus, tomato spotted wilt virus, cucumber mosaic virus
  • Crops also include those that have enhanced resistance to nematodes, such as the soybean cyst nematode.
  • Crops that are tolerance to abiotic stress include those that have enhanced tolerance to drought, high salt, high temperature, chill, frost, or light radiation, for example through expression of NF-YB or other proteins known in the art.
  • Antipathogenic substances which can be expressed by such transgenic plants include, for example, ion channel blockers, such as blockers for sodium and calcium channels, for example the viral KP1 , KP4 or KP6 toxins; stilbene synthases; bibenzyl synthases; chitinases; glucanases; the so-called "pathogenesis-related proteins" (PRPs; see e.g. EP-A-0 392 225); antipathogenic substances produced by microorganisms, for example peptide antibiotics or heterocyclic antibiotics (see e.g.
  • compositions according to the invention are the protection of stored goods and store rooms and the protection of raw materials, such as wood, textiles, floor coverings or buildings, and also in the hygiene sector, especially the protection of humans, domestic animals and productive livestock against pests of the mentioned type.
  • the present invention also provides a method for controlling pests (such as mosquitoes and other disease vectors; see also http://www.who.int/malaria/vector_control/irs/en/).
  • the method for controlling pests comprises applying the compositions of the invention to the target pests, to their locus or to a surface or substrate by brushing, rolling, spraying, spreading or dipping.
  • an IRS (indoor residual spraying) application of a surface such as a wall, ceiling or floor surface is contemplated by the method of the invention.
  • the method for controlling such pests comprises applying a pesticidally effective amount of the compositions of the invention to the target pests, to their locus, or to a surface or substrate so as to provide effective residual pesticidal activity on the surface or substrate.
  • a pesticidally effective amount of the compositions of the invention to the target pests, to their locus, or to a surface or substrate so as to provide effective residual pesticidal activity on the surface or substrate.
  • Such application may be made by brushing, rolling, spraying, spreading or dipping the pesticidal composition of the invention.
  • an IRS application of a surface such as a wall, ceiling or floor surface is contemplated by the method of the invention so as to provide effective residual pesticidal activity on the surface.
  • compositions for residual control of pests on a substrate such as a fabric material in the form of (or which can be used in the manufacture of) netting, clothing, bedding, curtains and tents.
  • a substrate such as a fabric material in the form of (or which can be used in the manufacture of) netting, clothing, bedding, curtains and tents.
  • Substrates including non-woven, fabrics or netting to be treated may be made of natural fibres such as cotton, raffia, jute, flax, sisal, hessian, or wool, or synthetic fibres such as polyamide, polyester, polypropylene, polyacrylonitrile or the like.
  • the polyesters are particularly suitable.
  • the methods of textile treatment are known, e.g. WO 2008/151984, WO 2003/034823, US 5631072, WO 2005/64072, W02006/128870, EP 1724392, WO 20051 13886 or WO 2007/090739.
  • compositions according to the invention are the field of tree injection/trunk treatment for all ornamental trees as well all sort of fruit and nut trees.
  • the compounds according to the present invention are especially suitable against wood-boring insects from the order Lepidoptera as mentioned above and from the order Coleoptera, especially against woodborers listed in the following tables A and B:
  • the present invention may be also used to control any insect pests that may be present in turfgrass, including for example beetles, caterpillars, fire ants, ground pearls, millipedes, sow bugs, mites, mole crickets, scales, mealybugs ticks, spittlebugs, southern chinch bugs and white grubs.
  • the present invention may be used to control insect pests at various stages of their life cycle, including eggs, larvae, nymphs and adults.
  • the present invention may be used to control insect pests that feed on the roots of turfgrass including white grubs (such as Cyclocephala spp. (e.g. masked chafer, C. lurida),
  • white grubs such as Cyclocephala spp. (e.g. masked chafer, C. lurida)
  • Rhizotrogus spp. e.g. European chafer, R. majalis
  • Cotinus spp. e.g. Green June beetle, C. nitida
  • Popillia spp. e.g. Japanese beetle, P. japonica
  • Phyllophaga spp. e.g. May/June beetle
  • Ataenius spp. e.g. Black turfgrass ataenius, A. spretulus
  • Maladera spp. e.g. Asiatic garden beetle, M.
  • the present invention may also be used to control insect pests of turfgrass that are thatch dwelling, including armyworms (such as fall armyworm Spodoptera frugiperda, and common armyworm Pseudaletia unipuncta), cutworms, billbugs ( Sphenophorus spp. , such as S. venatus verstitus and S. parvulus), and sod webworms (such as Crambus spp. and the tropical sod webworm, Herpetogramma phaeopteralis).
  • armyworms such as fall armyworm Spodoptera frugiperda, and common armyworm Pseudaletia unipuncta
  • cutworms such as Sphenophorus spp. , such as S. venatus verstitus and S. parvulus
  • sod webworms such as Crambus spp. and the tropical sod webworm, Herpetogramma phaeopteralis.
  • the present invention may also be used to control insect pests of turfgrass that live above the ground and feed on the turfgrass leaves, including chinch bugs (such as southern chinch bugs, Blissus insularis), Bermudagrass mite (Eriophyes cynodoniensis), rhodesgrass mealybug (Antonina graminis), two-lined spittlebug ( Propsapia bicincta), leafhoppers, cutworms ( Noctuidae family), and greenbugs.
  • the present invention may also be used to control other pests of turfgrass such as red imported fire ants ( Solenopsis invicta) that create ant mounds in turf.
  • compositions according to the invention are active against ectoparasites such as hard ticks, soft ticks, mange mites, harvest mites, flies (biting and licking), parasitic fly larvae, lice, hair lice, bird lice and fleas.
  • ectoparasites such as hard ticks, soft ticks, mange mites, harvest mites, flies (biting and licking), parasitic fly larvae, lice, hair lice, bird lice and fleas.
  • Anoplurida Haematopinus spp., Linognathus spp., Pediculus spp. and Phtirus spp., Solenopotes spp..
  • Nematocerina and Brachycerina for example Aedes spp., Anopheles spp., Culex spp., Simulium spp., Eusimulium spp., Phlebotomus spp., Lutzomyia spp., Culicoides spp., Chrysops spp., Hybomitra spp., Atylotus spp., Tabanus spp., Haematopota spp., Philipomyia spp., Braula spp., Musca spp., Hydrotaea spp., Stomoxys spp., Haematobia spp., Morellia spp., Fannia spp., Glossina spp., Calliphora spp., Glossina spp., Calliphora spp., Glossina spp., Call
  • Siphonaptrida for example Pulex spp., Ctenocephalides spp., Xenopsylla spp., Ceratophyllus spp..
  • Heteropterida for example Cimex spp., Triatoma spp., Rhodnius spp., Panstrongylus spp..
  • Actinedida Prostigmata
  • Acaridida Acaridida
  • Acarapis spp. Cheyletiella spp., Ornitrocheyletia spp., Myobia spp., Psorergatesspp., Demodex spp., Trombicula spp., Listrophorus spp., Acarus spp., Tyrophagus spp., Caloglyphus spp., Hypodectes spp.,
  • compositions according to the invention are also suitable for protecting against insect infestation in the case of materials such as wood, textiles, plastics, adhesives, glues, paints, paper and card, leather, floor coverings and buildings.
  • compositions according to the invention can be used, for example, against the following pests: beetles such as Hylotrupes bajulus, Chlorophorus pilosis, Anobium punctatum, Xestobium
  • rufovillosum Ptilinuspecticornis, Dendrobium pertinex, Ernobius mollis, Priobium carpini, Lyctus brunneus, Lyctus africanus, Lyctus planicollis, Lyctus linearis, Lyctus pubescens, Trogoxylon aequale, Minthesrugicollis, Xyleborus spec.,Tryptodendron spec., Apate monachus, Bostrychus capucins, Heterobostrychus brunneus, Sinoxylon spec and Dinoderus minutus, and also hymenopterans such as Sirex juvencus, Urocerus gigas, Urocerus gigas taignus and Urocerus augur, and termites such as Kalotermes flavicollis, Cryptotermes brevis, Heterotermes indicola, Reticulitermes flavipes,
  • Reticulitermes santonensis Reticulitermes lucifugus
  • Mastotermes darwiniensis Zootermopsis nevadensis and Coptotermes formosanus
  • bristletails such as Lepisma saccharina.
  • the compounds according to the invention can be used as pesticidal agents in unmodified form, but they are generally formulated into compositions in various ways using formulation adjuvants, such as carriers, solvents and surface-active substances.
  • formulation adjuvants such as carriers, solvents and surface-active substances.
  • the formulations can be in various physical forms, e.g.
  • Such formulations can either be used directly or diluted prior to use.
  • the dilutions can be made, for example, with water, liquid fertilisers, micronutrients, biological organisms, oil or solvents.
  • the formulations can be prepared e.g. by mixing the active ingredient with the formulation adjuvants in order to obtain compositions in the form of finely divided solids, granules, solutions, dispersions or emulsions.
  • the active ingredients can also be formulated with other adjuvants, such as finely divided solids, mineral oils, oils of vegetable or animal origin, modified oils of vegetable or animal origin, organic solvents, water, surface-active substances or combinations thereof.
  • the active ingredients can also be contained in very fine microcapsules.
  • Microcapsules contain the active ingredients in a porous carrier. This enables the active ingredients to be released into the environment in controlled amounts (e.g. slow-release).
  • Microcapsules usually have a diameter of from 0.1 to 500 microns. They contain active ingredients in an amount of about from 25 to 95 % by weight of the capsule weight.
  • the active ingredients can be in the form of a monolithic solid, in the form of fine particles in solid or liquid dispersion or in the form of a suitable solution.
  • the encapsulating membranes can comprise, for example, natural or synthetic rubbers, cellulose, styrene/butadiene copolymers, polyacrylonitrile, polyacrylate, polyesters, polyamides, polyureas, polyurethane or chemically modified polymers and starch xanthates or other polymers that are known to the person skilled in the art.
  • very fine microcapsules can be formed in which the active ingredient is contained in the form of finely divided particles in a solid matrix of base substance, but the
  • microcapsules are not themselves encapsulated.
  • liquid carriers there may be used: water, toluene, xylene, petroleum ether, vegetable oils, acetone, methyl ethyl ketone, cyclohexanone, acid anhydrides, acetonitrile, acetophenone, amyl acetate, 2-butanone, butylene carbonate, chlorobenzene, cyclohexane, cyclohexanol, alkyl esters of acetic acid, diacetone alcohol, 1 ,2-dichloropropane, diethanolamine, p- diethylbenzene, diethylene glycol, diethylene glycol abietate, diethylene glycol butyl ether, diethylene glycol ethyl ether, diethylene glycol methyl ether, A/,A/-dimethylformamide, dimethyl sulfoxide, 1 ,4- dioxane, di
  • Suitable solid carriers are, for example, talc, titanium dioxide, pyrophyllite clay, silica, attapulgite clay, kieselguhr, limestone, calcium carbonate, bentonite, calcium montmorillonite, cottonseed husks, wheat flour, soybean flour, pumice, wood flour, ground walnut shells, lignin and similar substances.
  • a large number of surface-active substances can advantageously be used in both solid and liquid formulations, especially in those formulations which can be diluted with a carrier prior to use.
  • Surface- active substances may be anionic, cationic, non-ionic or polymeric and they can be used as emulsifiers, wetting agents or suspending agents or for other purposes.
  • Typical surface-active substances include, for example, salts of alkyl sulfates, such as diethanolammonium lauryl sulfate; salts of alkylarylsulfonates, such as calcium dodecylbenzenesulfonate; alkylphenol/alkylene oxide addition products, such as nonylphenol ethoxylate; alcohol/alkylene oxide addition products, such as tridecylalcohol ethoxylate; soaps, such as sodium stearate; salts of alkylnaphthalenesulfonates, such as sodium dibutylnaphthalenesulfonate; dialkyl esters of sulfosuccinate salts, such as sodium di(2- ethylhexyl)sulfosuccinate; sorbitol esters, such as sorbitol oleate; quaternary amines, such as lauryltrimethylammonium chloride, polyethylene glycol esters of
  • Further adjuvants that can be used in pesticidal formulations include crystallisation inhibitors, viscosity modifiers, suspending agents, dyes, anti-oxidants, foaming agents, light absorbers, mixing auxiliaries, antifoams, complexing agents, neutralising or pH-modifying substances and buffers, corrosion inhibitors, fragrances, wetting agents, take-up enhancers, micronutrients, plasticisers, glidants, lubricants, dispersants, thickeners, antifreezes, microbicides, and liquid and solid fertilisers.
  • compositions according to the invention can include an additive comprising an oil of vegetable or animal origin, a mineral oil, alkyl esters of such oils or mixtures of such oils and oil derivatives.
  • the amount of oil additive in the composition according to the invention is generally from 0.01 to 10 %, based on the mixture to be applied.
  • the oil additive can be added to a spray tank in the desired concentration after a spray mixture has been prepared.
  • Preferred oil additives comprise mineral oils or an oil of vegetable origin, for example rapeseed oil, olive oil or sunflower oil, emulsified vegetable oil, alkyl esters of oils of vegetable origin, for example the methyl derivatives, or an oil of animal origin, such as fish oil or beef tallow.
  • Preferred oil additives comprise alkyl esters of C8-C22 fatty acids, especially the methyl derivatives of C12-C18 fatty acids, for example the methyl esters of lauric acid, palmitic acid and oleic acid (methyl laurate, methyl palmitate and methyl oleate, respectively).
  • Many oil derivatives are known from the Compendium of Herbicide Adjuvants, 10 th Edition, Southern Illinois University, 2010.
  • the inventive compositions generally comprise from 0.1 to 99 % by weight, especially from 0.1 to 95 % by weight, of compounds of the present invention and from 1 to 99.9 % by weight of a formulation adjuvant which preferably includes from 0 to 25 % by weight of a surface-active substance.
  • the rates of application vary within wide limits and depend on the nature of the soil, the method of application, the crop plant, the pest to be controlled, the prevailing climatic conditions, and other factors governed by the method of application, the time of application and the target crop.
  • a general guideline compounds may be applied at a rate of from 1 to 2000 l/ha, especially from 10 to 1000 l/ha.
  • Preferred formulations can have the following compositions (weight %): Emulsifiable concentrates:
  • active ingredient 1 to 95 %, preferably 60 to 90 %
  • surface-active agent 1 to 30 %, preferably 5 to 20 %
  • liquid carrier 1 to 80 %, preferably 1 to 35 %
  • active ingredient 0.1 to 10 %, preferably 0.1 to 5 %
  • solid carrier 99.9 to 90 %, preferably 99.9 to 99 %
  • active ingredient 5 to 75 %, preferably 10 to 50 %
  • surface-active agent 1 to 40 %, preferably 2 to 30 %
  • active ingredient 0.5 to 90 %, preferably 1 to 80 %
  • surface-active agent 0.5 to 20 %, preferably 1 to 15 %
  • solid carrier 5 to 95 %, preferably 15 to 90 %
  • active ingredient 0.1 to 30 %, preferably 0.1 to 15 %
  • solid carrier 99.5 to 70 %, preferably 97 to 85 %
  • the combination is thoroughly mixed with the adjuvants and the mixture is thoroughly ground in a suitable mill, affording wettable powders that can be diluted with water to give suspensions of the desired concentration.
  • the combination is thoroughly mixed with the adjuvants and the mixture is thoroughly ground in a suitable mill, affording powders that can be used directly for seed treatment.
  • Emulsions of any required dilution which can be used in plant protection, can be obtained from this concentrate by dilution with water.
  • Ready-for-use dusts are obtained by mixing the combination with the carrier and grinding the mixture in a suitable mill. Such powders can also be used for dry dressings for seed.
  • the combination is mixed and ground with the adjuvants, and the mixture is moistened with water.
  • the mixture is extruded and then dried in a stream of air.
  • the finely ground combination is uniformly applied, in a mixer, to the kaolin moistened with polyethylene glycol.
  • Non-dusty coated granules are obtained in this manner.
  • the finely ground combination is intimately mixed with the adjuvants, giving a suspension concentrate from which suspensions of any desired dilution can be obtained by dilution with water.
  • a suspension concentrate from which suspensions of any desired dilution can be obtained by dilution with water.
  • living plants as well as plant propagation material can be treated and protected against infestation by microorganisms, by spraying, pouring or immersion.
  • the finely ground combination is intimately mixed with the adjuvants, giving a suspension concentrate from which suspensions of any desired dilution can be obtained by dilution with water.
  • a suspension concentrate from which suspensions of any desired dilution can be obtained by dilution with water.
  • living plants as well as plant propagation material can be treated and protected against infestation by microorganisms, by spraying, pouring or immersion.
  • 28 parts of the combination are mixed with 2 parts of an aromatic solvent and 7 parts of toluene diisocyanate/polymethylene-polyphenylisocyanate-mixture (8:1).
  • This mixture is emulsified in a mixture of 1 .2 parts of polyvinylalcohol, 0.05 parts of a defoamer and 51 .6 parts of water until the desired particle size is achieved.
  • To this emulsion a mixture of 2.8 parts 1 ,6-diaminohexane in 5.3 parts of water is added. The mixture is agitated until the polymerization reaction is completed.
  • the obtained capsule suspension is stabilized by adding 0.25 parts of a thickener and 3 parts of a dispersing agent.
  • the capsule suspension formulation contains 28% of the active ingredients.
  • the medium capsule diameter is 8-15 microns.
  • the resulting formulation is applied to seeds as an aqueous suspension in an apparatus suitable for that purpose.
  • Formulation types include an emulsion concentrate (EC), a suspension concentrate (SC), a suspo- emulsion (SE), a capsule suspension (CS), a water dispersible granule (WG), an emulsifiable granule (EG), an emulsion, water in oil (EO), an emulsion, oil in water (EW), a micro-emulsion (ME), an oil dispersion (OD), an oil miscible flowable (OF), an oil miscible liquid (OL), a soluble concentrate (SL), an ultra-low volume suspension (SU), an ultra-low volume liquid (UL), a technical concentrate (TK), a dispersible concentrate (DC), a wettable powder (WP), a soluble granule (SG) or any technically feasible formulation in combination with agriculturally acceptable adjuvants.
  • EC emulsion concentrate
  • SC suspension concentrate
  • SE suspo- emulsion
  • CS capsule suspension
  • WG water dispersible granule
  • Mp melting point in °C. Free radicals represent methyl groups. 1 H NMR measurements were recorded on a Brucker 400MHz spectrometer, chemical shifts are given in ppm relevant to a TMS standard. Spectra measured in deuterated solvents as indicated. Either one of the LCMS methods below was used to characterize the compounds. The characteristic LCMS values obtained for each compound were the retention time (“Rt”, recorded in minutes) and the measured molecular ion (M+H) + .
  • Desolvation temperature 500 °C
  • Gas Flow @Cone 50 L/hr
  • Mass range 110-800 Da
  • PDA wavelength range 210-400 nm.
  • Solvent gradient: A Water with 0.1 % formic acid: Acetonitrile (95:5 v/v).
  • Step A Synthesis of 6-(5-bromo-3-ethylsulfonyl-2-pyridyl)-7-methyl-3-(trifluoromethyl)imidazo[4,5- c]pyridazine
  • Step B Synthesis of 5-ethylsulfonyl-N-methyl-6-[7-methyl-3-(trifluoromethyl)imidazo[4,5-c]pyridazin-6- yl]pyridin-3-amine
  • a vessel was charged with a mixture of a 6-(5-bromo-3-ethylsulfonyl-2-pyridyl)-7-methyl-3- (trifluoromethyl)imidazo[4,5-c]pyridazine (3.0 g, 6.7 mmol), 40% aqueous methanamine MeNH2 (7.2 mL, 80 mmol, 12 eq.), copper(ll) sulfate (0.21 g, 1 .3 mmol, 0.2 eq.) and copper (0.085 g, 1 .3 mmol, 0.2 eq.) in tetrahydrofuran THF (3 mL). The vessel was closed and the mixture stirred at 100°C for 4 hours.
  • Step C Synthesis of N-[5-ethylsulfonyl-6-[7-methyl-3-(trifluoromethyl)imidazo[4,5-c]pyridazin-6-yl]-3- pyridyl]-N-methyl-acetamide (title compound P1)
  • Step A Synthesis of N-cyclopropyl-5-ethylsulfonyl-6-[7-methyl-3-(trifluoromethyl)imidazo[4,5- c]pyridazin-6-yl]pyridin-3-amine
  • 6-(5-bromo-3-ethylsulfonyl-2-pyridyl)-7-methyl-3-(trifluoromethyl)imidazo[4,5- c]pyridazine prepared as described above
  • anhydrous toluene (10 ml_)
  • cesium carbonate (1 .1 g, 3.3 mmol
  • Tris(dibenzylideneacetone)dipalladium(0) (0.082 g, 0.089 mmol), 2,2'-bis(diphenyl- phosphino)-1 ,T-binaphthyl (BINAP, 0.1 1 g, 0.18 mmol) and cyclopropanamine (0.19 g, 3.3 mmol, 0.23 ml_) were added to the reaction mixture, which was heated at 1 10°C for 3 hours in the microwave. The mixture was diluted with water (20ml), the product extracted with ethyl acetate (3x 20ml), the combined organic layers dried over sodium sulfate, filtered and evaporated in vacuo.
  • Step B Synthesis of N-cyclopropyl-N-[5-ethylsulfonyl-6-[7-methyl-3-(trifluoromethyl)imidazo[4,5- c]pyridazin-6-yl]-3-pyridyl]acetamide (title compound P7)
  • N-cyclopropyl-5-ethylsulfonyl-6-[7-methyl-3-(trifluoromethyl)imidazo[4,5-c]pyridazin-6- yl]pyridin-3-amine 190 mg, 0.45 mmol
  • pyridine 1 .9 ml_
  • N,N-dimethylpyridin-4-amine 1 1 mg, 0.089 mmol, 0.2 equiv
  • acetyl chloride 0.070 g, 0.89 mmol
  • Step A Synthesis of 1 -[[5-ethylsulfonyl-6-[7-methyl-3-(trifluoromethyl)imidazo[4,5-c]pyridazin-6-yl]-3- pyridyl]amino]cyclopropanecarbonitrile
  • the mixture was degassed with nitrogen for 20 minutes and palladium(ll) acetate (0.024 g, 0.1066 mmol) was added.
  • the reaction mixture was heated at 1 10°C for 1 .5 hours in the microwave, then poured into water (30ml), and the product extracted with ethyl acetate (3x 20ml).
  • the combined organic layers were washed with an aqueous saturated sodium chloride solution (30ml), dried over anhydrous sodium sulfate, filtered and concentrated under reduced pressure.
  • Step B Synthesis of N-(1 -cyanocyclopropyl)-N-[5-ethylsulfonyl-6-[7-methyl-3- (trifluoromethyl)imidazo[4,5-c]pyridazin-6-yl]-3-pyridyl]acetamide (title compound P8)
  • compositions according to the invention can be broadened considerably, and adapted to prevailing circumstances, by adding other insecticidally, acaricidally and/or fungicidally active ingredients.
  • mixtures of the compounds of formula I with other insecticidally, acaricidally and/or fungicidally active ingredients may also have further surprising advantages which can also be described, in a wider sense, as synergistic activity. For example, better tolerance by plants, reduced phytotoxicity, insects can be controlled in their different development stages or better behaviour during their production, for example during grinding or mixing, during their storage or during their use.
  • Suitable additions to active ingredients are, for example, representatives of the following classes of active ingredients: organophosphorus compounds, nitrophenol derivatives, thioureas, juvenile hormones, formamidines, benzophenone derivatives, ureas, pyrrole derivatives, carbamates, pyrethroids, chlorinated hydrocarbons, acylureas, pyridylmethyleneamino derivatives, macrolides, neonicotinoids and Bacillus thuringiensis preparations.
  • the following mixtures of the compounds of formula I with active ingredients are preferred (the abbreviation“TX” means“one compound selected from the group consisting of the compounds described in Tables A-1 to A-33 and Table P of the present invention”):
  • an adjuvant selected from the group of substances consisting of petroleum oils (alternative name) (628) + TX,
  • an acaricide selected from the group of substances consisting of 1 ,1 -bis(4-chlorophenyl)-2- ethoxyethanol (lUPAC name) (910) + TX, 2,4-dichlorophenyl benzenesulfonate (lUPAC/Chemical Abstracts name) (1059) + TX, 2-fluoro-A/-methyl-A/-1 -naphthylacetamide (lUPAC name) (1295) + TX, 4-chlorophenyl phenyl sulfone (lUPAC name) (981) + TX, abamectin (1) + TX, acequinocyl (3) + TX, acetoprole [CCN] + TX, acrinathrin (9) + TX, aldicarb (16) + TX, aldoxycarb (863) + TX, alpha- cypermethrin (202) + TX, amidithion (870) + TX, amid
  • TX amiton (875) + TX, amiton hydrogen oxalate (875) + TX, amitraz (24) + TX, aramite (881) + TX, arsenous oxide (882) + TX, AVI 382 (compound code) + TX, AZ 60541 (compound code) +
  • TX TX
  • TX buprofezin (99) + TX, butocarboxim (103) + TX, butoxycarboxim (104) + TX, butylpyridaben (alternative name) + TX, calcium polysulfide (lUPAC name) (1 1 1) + TX, camphechlor (941) + TX, carbanolate (943) + TX, carbaryl (1 15) + TX, carbofuran (1 18) + TX, carbophenothion (947) + TX, CGA 50’439 (development code) (125) + TX, chinomethionat (126) + TX, chlorbenside (959) + TX, chlordimeform (964) + TX, chlordimeform hydrochloride (964) + TX, chlorfenapyr (130) + TX, chlorfenethol (968) + TX, chlorfenson (970) + TX, chlorfensulfide (971) + TX, chlorfenvinphos (131) + T
  • TX TX
  • an algicide selected from the group of substances consisting of bethoxazin [CCN] + TX, copper dioctanoate (lUPAC name) (170) + TX, copper sulfate (172) + TX, cybutryne [CCN] + TX, dichlone (1052) + TX, dichlorophen (232) + TX, endothal (295) + TX, fentin (347) + TX, hydrated lime [CCN] + TX, nabam (566) + TX, quinoclamine (714) + TX, quinonamid (1379) + TX, simazine (730) + TX, triphenyltin acetate (lUPAC name) (347) and triphenyltin hydroxide (lUPAC name) (347)
  • an anthelmintic selected from the group of substances consisting of abamectin (1) + TX, crufomate (1011) + TX, doramectin (alternative name) [CCN] + TX, emamectin (291) + TX, emamectin benzoate (291) + TX, eprinomectin (alternative name) [CCN] + TX, ivermectin (alternative name) [CCN] + TX, milbemycin oxime (alternative name) [CCN] + TX, moxidectin (alternative name) [CCN] + TX, piperazine [CCN] + TX, selamectin (alternative name) [CCN] + TX, spinosad (737) and thiophanate (1435) + TX,
  • an avicide selected from the group of substances consisting of chloralose (127) + TX, endrin (1 122)
  • TX hydrargaphen (alternative name) [CCN] + TX, kasugamycin (483) + TX, kasugamycin hydrochloride hydrate (483) + TX, nickel bis(dimethyldithiocarbamate) (lUPAC name) (1308) + TX, nitrapyrin (580) + TX, octhilinone (590) + TX, oxolinic acid (606) + TX, oxytetracycline (611) + TX, potassium hydroxyquinoline sulfate (446) + TX, probenazole (658) + TX, streptomycin (744) + TX, streptomycin sesquisulfate (744) + TX, tecloftalam (766) + TX, and thiomersal (alternative name) [CCN] + TX,
  • a biological agent selected from the group of substances consisting of Adoxophyes orana GV
  • Phytoseiulus persimilis (alternative name) (644) + TX, Spodoptera exigua multicapsid nuclear polyhedrosis virus (scientific name) (741) + TX, Steinernema bibionis (alternative name) (742) + TX, Steinernema carpocapsae (alternative name) (742) + TX, Steinernema feltiae (alternative name) (742) + TX, Steinernema glaseri (alternative name) (742) + TX, Steinernema riobrave (alternative name) (742) + TX, Steinernema riobravis (alternative name) (742) + TX, Steinernema scapterisci (alternative name) (742) + TX, Steinernema spp.
  • a soil sterilant selected from the group of substances consisting of iodomethane (lUPAC name) (542) and methyl bromide (537) + TX,
  • a chemosterilant selected from the group of substances consisting of apholate [CCN] + TX, bisazir (alternative name) [CCN] + TX, busulfan (alternative name) [CCN] + TX, diflubenzuron (250) + TX, dimatif (alternative name) [CCN] + TX, hemel [CCN] + TX, hempa [CCN] + TX, metepa [CCN] + TX, methiotepa [CCN] + TX, methyl apholate [CCN] + TX, morzid [CCN] + TX, penfluron (alternative name) [CCN] + TX, tepa [CCN] + TX, thiohempa (alternative name) [CCN] + TX, thiotepa (alternative name) [CCN] + TX, tretamine (alternative name) [CCN] and
  • an insect pheromone selected from the group of substances consisting of (E)-dec-5-en-1-yl acetate with (E)-dec-5-en-1-ol (lUPAC name) (222) + TX, (E)-tridec-4-en-1-yl acetate (lUPAC name) (829) + TX, (E)-6-methylhept-2-en-4-ol (lUPAC name) (541) + TX, (E,Z)-tetradeca-4,10-dien-1-yl acetate (lUPAC name) (779) + TX, (Z)-dodec-7-en-1-yl acetate (lUPAC name) (285) + TX, (Z)-hexadec-11- enal (lUPAC name) (436) + TX, (Z)-hexadec-11 -en-1 -yl acetate (lUPAC name) (437) + TX, (Z)- hexade
  • an insect repellent selected from the group of substances consisting of 2-(octylthio)ethanol (lUPAC name) (591) + TX, butopyronoxyl (933) + TX, butoxy(polypropylene glycol) (936) + TX, dibutyl adipate (lUPAC name) (1046) + TX, dibutyl phthalate (1047) + TX, dibutyl succinate (lUPAC name) (1048) + TX, diethyltoluamide [CCN] + TX, dimethyl carbate [CCN] + TX, dimethyl phthalate [CCN] + TX, ethyl hexanediol (1137) + TX, hexamide [CCN] + TX, methoquin-butyl (1276) + TX, methylneodecanamide [CCN] + TX, oxamate [CCN] and picaridin [CCN] + TX,
  • an insecticide selected from the group of substances consisting of 1-dichloro-1-nitroethane
  • TX azamethiphos (42) + TX, azinphos-ethyl (44) + TX, azinphos-methyl (45) + TX, azothoate (889) + TX, Bacillus thuringiensis delta endotoxins (alternative name) (52) + TX, barium
  • hexafluorosilicate (alternative name) [CCN] + TX, barium polysulfide (lUPAC/Chemical Abstracts name) (892) + TX, barthrin [CCN] + TX, Bayer 22/190 (development code) (893) + TX, Bayer 22408 (development code) (894) + TX, bendiocarb (58) + TX, benfuracarb (60) + TX, bensultap (66) + TX, beta-cyfluthrin (194) + TX, beta-cypermethrin (203) + TX, bifenthrin (76) + TX, bioallethrin (78) + TX, bioallethrin S-cyclopentenyl isomer (alternative name) (79) + TX,
  • TX chlordimeform hydrochloride (964) + TX, chlorethoxyfos (129) + TX, chlorfenapyr (130) + TX, chlorfenvinphos (131) + TX, chlorfluazuron (132) + TX, chlormephos (136) + TX, chloroform [CCN] + TX, chloropicrin (141) + TX, chlorphoxim (989) + TX, chlorprazophos (990) + TX, chlorpyrifos (145) + TX, chlorpyrifos-methyl (146) + TX, chlorthiophos (994) + TX, chromafenozide (150) + TX, cinerin I (696) + TX, cinerin II (696) + TX, cinerins (696) + TX, cis-resmethrin (alternative name) + TX, cismethrin (80) + TX, clocythrin (alter
  • flucythrinate (367) + TX, fluenetil (1 169) + TX, flufenerim [CCN] + TX, flufenoxuron (370) + TX, flufenprox (1 171) + TX, flumethrin (372) + TX, fluvalinate (1 184) + TX, FMC 1 137 (development code) (1 185) + TX, fonofos (1 191) + TX, formetanate (405) + TX, formetanate hydrochloride (405) + TX, formothion (1 192) + TX, formparanate (1 193) + TX, fosmethilan (1 194) + TX, fospirate (1195) + TX, fosthiazate (408) + TX, fosthietan (1196) + TX, furathiocarb (412) + TX, furethrin (1200) + TX, gamma-cyhalothrin (197) + TX, gamm
  • iodomethane (lUPAC name) (542) + TX, IPSP (1229) + TX, isazofos (1231) + TX, isobenzan (1232) + TX, isocarbophos (alternative name) (473) + TX, isodrin (1235) + TX, isofenphos (1236)
  • TX, nitrilacarb 1 :1 zinc chloride complex (1313) + TX, NNI-0101 (compound code) + TX, NNI-0250 (compound code) + TX, nornicotine (traditional name) (1319) + TX, novaluron (585) + TX, noviflumuron (586) + TX, 0-5-dichloro-4-iodophenyl O-ethyl ethylphosphonothioate (lUPAC name) (1057) + TX, 0,0-diethyl 0-4-methyl-2-oxo-2/-/-chromen-7-yl phosphorothioate (lUPAC name) (1074) + TX, 0,0-diethyl 0-6-methyl-2-propylpyrimidin-4-yl phosphorothioate (lUPAC name) (1075) + TX, O,O,O',O'-tetrapropyl dithiopyrophosphate (lU
  • development code (development code) (1382) + TX, rafoxanide (alternative name) [CCN] + TX, resmethrin (719) + TX, rotenone (722) + TX, RU 15525 (development code) (723) + TX, RU 25475 (development code) (1386) + TX, ryania (alternative name) (1387) + TX, ryanodine (traditional name) (1387) + TX, sabadilla (alternative name) (725) + TX, schradan (1389) + TX, sebufos (alternative name) + TX, selamectin (alternative name) [CCN] + TX, SI-0009 (compound code) + TX, SI-0205 (compound code) + TX, SI-0404 (compound code) + TX, SI-0405 (compound code) + TX, silafluofen (728) + TX, SN 72129
  • TX spiromesifen (739) + TX, spirotetrmat (CCN) + TX, sulcofuron (746) + TX, sulcofuron-sodium (746) + TX, sulfluramid (750) + TX, sulfotep (753) + TX, sulfuryl fluoride (756) + TX, sulprofos (1408) + TX, tar oils (alternative name) (758) + TX, tau-fluvalinate (398) + TX, tazimcarb (1412) + TX, TDE (1414) + TX, tebufenozide (762) + TX, tebufenpyrad (763) + TX, tebupirimfos (764) + TX, teflubenzuron (768) + TX, tefluthrin (769) + TX, temephos (770) + TX, TE
  • TX zinc phosphide
  • TX zinc phosphide
  • zolaprofos 1469)
  • ZXI 8901 development code
  • a molluscicide selected from the group of substances consisting of bis(tributyltin) oxide (lUPAC name) (913) + TX, bromoacetamide [CCN] + TX, calcium arsenate [CCN] + TX, cloethocarb (999) + TX, copper acetoarsenite [CCN] + TX, copper sulfate (172) + TX, fentin (347) + TX, ferric phosphate (lUPAC name) (352) + TX, metaldehyde (518) + TX, methiocarb (530) + TX, niclosamide (576) + TX, niclosamide-olamine (576) + TX, pentachlorophenol (623) + TX, sodium
  • a nematicide selected from the group of substances consisting of AKD-3088 (compound code) + TX,
  • phosphamidon (639) + TX, phosphocarb [CCN] + TX, sebufos (alternative name) + TX, selamectin (alternative name) [CCN] + TX, spinosad (737) + TX, terbam (alternative name) + TX, terbufos (773) + TX, tetrachlorothiophene (lUPAC/ Chemical Abstracts name) (1422) + TX, thiafenox (alternative name) + TX, thionazin (1434) + TX, triazophos (820) + TX, triazuron (alternative name) + TX, xylenols [CCN] + TX, YI-5302 (compound code) and zeatin (alternative name) (210) + TX, fluensulfone [318290-98-1] + TX, fluopyram + TX,
  • a nitrification inhibitor selected from the group of substances consisting of potassium ethylxanthate [CCN] and nitrapyrin (580) + TX,
  • a plant activator selected from the group of substances consisting of acibenzolar (6) + TX, acibenzolar-S-methyl (6) + TX, probenazole (658) and Reynoutha sachalinensis extract (alternative name) (720) + TX,
  • a rodenticide selected from the group of substances consisting of 2-isovalerylindan-1 ,3-dione (lUPAC name) (1246) + TX, 4-(quinoxalin-2-ylamino)benzenesulfonamide (lUPAC name) (748) + TX, alpha- chlorohydrin [CCN] + TX, aluminium phosphide (640) + TX, antu (880) + TX, arsenous oxide (882) + TX, barium carbonate (891) + TX, bisthiosemi (912) + TX, brodifacoum (89) + TX,
  • TX chlorophacinone (140) + TX, cholecalciferol (alternative name) (850) + TX, coumachlor (1004) + TX, coumafuryl (1005) + TX, coumatetralyl (175) + TX, crimidine (1009) + TX, difenacoum (246) + TX, difethialone (249) + TX, diphacinone (273) + TX, ergocalciferol (301) + TX, flocoumafen (357) + TX, fluoroacetamide (379) + TX, flupropadine (1183) + TX, flupropadine hydrochloride (1183) + TX, gamma-HCH (430) + TX, HCH (430) + TX, hydrogen cyanide (444) + TX, iodomethane (lUPAC name) (542) + TX, lindane (430) + TX, magnesium pho
  • a synergist selected from the group of substances consisting of 2-(2-butoxyethoxy)ethyl piperonylate (lUPAC name) (934) + TX, 5-(1 ,3-benzodioxol-5-yl)-3-hexylcyclohex-2-enone (lUPAC name) (903) + TX, farnesol with nerolidol (alternative name) (324) + TX, MB-599 (development code) (498) + TX, MGK 264 (development code) (296) + TX, piperonyl butoxide (649) + TX, piprotal (1343) + TX, propyl isomer (1358) + TX, S421 (development code) (724) + TX, sesamex (1393) + TX, sesasmolin (1394) and sulfoxide (1406) + TX,
  • an animal repellent selected from the group of substances consisting of anthraquinone (32) + TX, chloralose (127) + TX, copper naphthenate [CCN] + TX, copper oxychloride (171) + TX, diazinon (227) + TX, dicyclopentadiene (chemical name) (1069) + TX, guazatine (422) + TX, guazatine acetates (422) + TX, methiocarb (530) + TX, pyridin-4-amine (lUPAC name) (23) + TX, thiram (804) + TX, trimethacarb (840) + TX, zinc naphthenate [CCN] and ziram (856) + TX,
  • a virucide selected from the group of substances consisting of imanin (alternative name) [CCN] and ribavirin (alternative name) [CCN] + TX,
  • a wound protectant selected from the group of substances consisting of mercuric oxide (512) + TX, octhilinone (590) and thiophanate-methyl (802) + TX, and biologically active compounds selected from the group of substances consisting of azaconazole (60207-31-0] + TX, bitertanol [70585-36-3] + TX, bromuconazole [116255-48-2] + TX,
  • TX myclozoline [54864-61 -8] + TX, procymidone [32809-16-8] + TX, vinclozoline [50471 -44-8] + TX, boscalid [188425-85-6] + TX, carboxin [5234-68-4] + TX, fenfuram [24691 -80-3] + TX, flutolanil [66332-96-5] + TX, mepronil [55814-41 -0] + TX, oxycarboxin [5259-88-1 ] + TX, penthiopyrad [183675-82-3] + TX, thifluzamide [130000-40-7] + TX, guazatine [108173-90-6] + TX, dodine [2439-10-3] [1 12-65-2] (free base) + TX, iminoctadine [13516-27-3] + TX, azoxystrobin [131860-33-8] + TX, dimoxy
  • TX dichlone [117-80-6] + TX, diclocymet [139920-32-4] + TX, diclomezine [62865-36-5] + TX, dicloran [99-30-9] + TX, diethofencarb [87130-20-9] + TX, dimethomorph [110488-70-5] + TX, SYP-LI90 (Flumorph) [211867-47-9] + TX, dithianon [3347-22-6] + TX, ethaboxam [162650-77-3] + TX, etridiazole [2593-15-9] + TX, famoxadone [131807-57-3] + TX, fenamidone [161326-34-7] +
  • microbials including: Acinetobacter Iwoffii + TX, Acremonium alternatum + TX + TX, Acremonium cephalosporium + TX + TX, Acremonium diospyri + TX, Acremonium obclavatum + TX, Adoxophyes orana granulovirus (AdoxGV) (Capex®) + TX, Agrobacterium radiobacter strain K84 (Galltrol-A®) +
  • TX Alternaria alternate + TX, Alternaria cassia + TX, Alternaria destruens (Smolder®) + TX,
  • Ampelomyces quisqualis (AQ10®) + TX, Aspergillus flavus AF36 (AF36®) + TX, Aspergillus flavus NRRL 21882 (Aflaguard®) + TX, Aspergillus spp.
  • Bacillus subtilis strain AQ178 + TX Bacillus subtilis strain QST 713 (CEASE® + TX, Serenade® + TX, Rhapsody®) + TX, Bacillus subtilis strain QST 714 (JAZZ®) + TX, Bacillus subtilis strain AQ153 + TX, Bacillus subtilis strain AQ743 + TX, Bacillus subtilis strain QST3002 + TX, Bacillus subtilis strain QST3004 + TX, Bacillus subtilis var.
  • amyloliquefaciens strain FZB24 (Taegro® + TX, Rhizopro®) + TX, Bacillus thuringiensis Cry 2Ae + TX, Bacillus thuringiensis Cry1 Ab + TX, Bacillus thuringiensis aizawai GC 91 (Agree®) + TX, Bacillus thuringiensis israelensis (BMP123® + TX, Aquabac® + TX, VectoBac®) + TX, Bacillus thuringiensis kurstaki (Javelin® + TX, Deliver® + TX, CryMax® + TX, Bonide® + TX, Scutella WP® + TX, Turilav WP ® +
  • TX Astuto® + TX, Dipel WP® + TX, Biobit® + TX, Foray®) + TX, Bacillus thuringiensis kurstaki BMP 123 (Baritone®) + TX, Bacillus thuringiensis kurstaki HD-1 (Bioprotec-CAF / 3P®) + TX, Bacillus thuringiensis strain BD#32 + TX, Bacillus thuringiensis strain AQ52 + TX, Bacillus thuringiensis var. aizawai (XenTari® + TX, DiPel®) + TX, bacteria spp.
  • Bradyrhizobium japonicum (TerraMax®) + TX, Brevibacillus brevis + TX, Bacillus thuringiensis tenebrionis (Novodor®) + TX, BtBooster + TX, Burkholderia cepacia (Deny® + TX, Intercept® + TX, Blue Circle®) + TX, Burkholderia gladii + TX, Burkholderia gladioli + TX, Burkholderia spp.
  • TX Canadian thistle fungus (CBH Canadian Bioherbicide®) + TX, Candida butyri + TX, Candida famata + TX, Candida fructus + TX, Candida glabrata + TX, Candida guilliermondii + TX, Candida melibiosica + TX, Candida oleophila strain O + TX, Candida parapsilosis + TX, Candida pelliculosa + TX, Candida pulcherrima + TX, Candida reuêtii + TX, Candida saitoana (Bio-Coat® + TX, Biocure®) + TX, Candida sake + TX, Candida spp.
  • TX Cladosporium tenuissimum + TX, Clonostachys rosea (EndoFine®) + TX, Colletotrichum acutatum + TX, Coniothyrium minitans (Cotans WG®) + TX, Coniothyrium spp. + TX, Cryptococcus albidus (YIELDPLUS®) + TX, Cryptococcus humicola + TX, Cryptococcus infirmo-miniatus + TX,
  • Cryptococcus laurentii + TX TX
  • Cupriavidus campinensis + TX Cydia pomonella granulovirus (CYD-X®) + TX
  • Drechslera hawaiinensis + TX Enterobacter cloacae + TX
  • Enterobacteriaceae + TX Entomophtora virulenta (Vektor®) + TX
  • Epicoccum nigrum + TX Epicoccum purpurascens + TX, Epicoccum
  • TX Filobasidium floriforme + TX, Fusarium acuminatum + TX, Fusarium chlamydosporum + TX, Fusarium oxysporum (Fusaclean® / Biofox C®) + TX, Fusarium proliferatum + TX, Fusarium spp. + TX, Galactomyces geotrichum + TX, Gliocladium catenulatum (Primastop® + TX, Prestop®) + TX, Gliocladium roseum + TX, Gliocladium spp. (SoilGard®) + TX, Gliocladium virens (Soilgard®) + TX, Granulovirus
  • TX Lagenidium giganteum (Laginex®) + TX, Lecanicillium longisporum (Vertiblast®) + TX, Lecanicillium muscarium (Vertiki I®) + TX, Lymantria Dispar nucleopolyhedrosis virus (Disparvirus®) + TX, Marinococcus halophilus + TX, Meira geulakonigii + TX, Metarhizium anisopliae (Met52®) + TX, Metarhizium anisopliae (Destruxin WP®) + TX, Metschnikowia fruticola (Shemer®) + TX, Metschnikowia pulcherrima + TX, Microdochium dimerum (Antibot®) + TX, Micromonospora coerulea + TX, Microsphaeropsis ochracea + TX, Muscodor albus 620 (Muscudor®)
  • TX Phytophthora palmivora (Devine®) + TX, Pichia anomala + TX, Pichia guilermondii + TX, Pichia membranaefaciens + TX, Pichia onychis + TX, Pichia stipites + TX, Pseudomonas aeruginosa + TX, Pseudomonas aureofasciens (Spot-Less Biofungicide®) + TX, Pseudomonas cepacia + TX,
  • Pseudomonas chlororaphis (AtEze®) + TX, Pseudomonas corrugate + TX, Pseudomonas fluorescens strain A506 (BlightBan A506®) + TX, Pseudomonas putida + TX, Pseudomonas reactans + TX, Pseudomonas spp.
  • TX Scytalidium uredinicola + TX, Spodoptera exigua nuclear polyhedrosis virus (Spod-X® + TX, Spexit®) + TX, Serratia marcescens + TX, Serratia plymuthica + TX, Serratia spp. + TX, Sordaria fimicola + TX, Spodoptera littoralis nucleopolyhedrovirus (Littovir®) + TX,
  • Trichoderma asperellum T34 Biocontrol®
  • Trichoderma gamsii TX
  • Trichoderma atroviride Plantmate®
  • Trichoderma harzianum rifai Mycostar®
  • Trichoderma harzianum T-22 Trianum- P® + TX, PlantShield HC® + TX, RootShield® + TX, Trianum-G®) + TX, Trichoderma harzianum T-39 (Trichodex®) + TX, Trichoderma inhamatum + TX, Trichoderma koningii + TX, Trichoderma spp.
  • LC 52 (Sentinel®) + TX, Trichoderma lignorum + TX, Trichoderma longibrachiatum + TX, Trichoderma polysporum (Binab T®) + TX, Trichoderma taxi + TX, Trichoderma virens + TX, Trichoderma virens (formerly Gliocladium virens GL-21) (SoilGuard®) + TX, Trichoderma viride + TX, Trichoderma viride strain ICC 080 (Remedier®) + TX, Trichosporon pullulans + TX, Trichosporon spp. + TX,
  • Plant extracts including: pine oil (Retenol®) + TX, azadirachtin (Plasma Neem Oil® + TX, AzaGuard® + TX, MeemAzal® + TX, Molt-X® + TX, Botanical IGR (Neemazad® + TX, Neemix®) + TX, canola oil (Lilly Miller Vegol®) + TX, Chenopodium ambrosioides near ambrosioides (Requiem®) + TX, Chrysanthemum extract (Crisant®) + TX, extract of neem oil (Trilogy®) + TX, essentials oils of Labiatae (Botania®) + TX, extracts of clove rosemary peppermint and thyme oil (Garden insect killer®) + TX, Glycinebetaine (Greenstim®) + TX, garlic + TX, lemongrass oil (GreenMatch®) + TX, neem oil +
  • pheromones including: blackheaded fireworm pheromone (3M Sprayable Blackheaded Fireworm Pheromone®) + TX, Codling Moth Pheromone (Paramount dispenser-(CM)/ Isomate C-Plus®) + TX, Grape Berry Moth Pheromone (3M MEC-GBM Sprayable Pheromone®) + TX, Leafroller pheromone (3M MEC - LR Sprayable Pheromone®) + TX, Muscamone (Snip7 Fly Bait® + TX, Starbar Premium Fly Bait®) + TX, Oriental Fruit Moth Pheromone (3M oriental fruit moth sprayable pheromone®) + TX, Peachtree Borer Pheromone (Isomate-P®) + TX, Tomato Pinworm Pheromone (3M Sprayable pheromone®) + TX, Entostat powder (extract from palm tree) (Exosex CM®) + TX, (E + TX,Z +
  • Macrobials including: Aphelinus abdominalis + TX, Aphidius ervi (Aphelinus-System®) + TX, Acerophagus papaya + TX, Adalia bipunctata (Adalia-System®) + TX, Adalia bipunctata (Adaline®) + TX, Adalia bipunctata (Aphidalia®) + TX, Ageniaspis citricola + TX, Ageniaspis fuscicollis + TX, Amblyseius andersoni (Anderline® + TX, Andersoni-System®) + TX, Amblyseius californicus (Amblyline® + TX, Spical®) + TX, Amblyseius cucumeris (Thripex® + TX, Bugline cucumeris®) + TX, Amblyseius fallacis (Fallacis®) + TX, Amblyseius swirskii (Bugline
  • TX Coccidoxenoides perminutus (Planopar®) + TX, Coccophagus cowperi + TX, Coccophagus lycimnia + TX, Cotesia fiavipes + TX, Cotesia plutellae + TX, Cryptolaemus montrouzieri (Cryptobug® + TX, Cryptoline®) + TX, Cybocephalus nipponicus + TX, Dacnusa sibirica + TX, Dacnusa sibirica
  • Diglyphus isaea (Diminex®) + TX, Delphastus catalinae (Delphastus®) + TX, Delphastus pusillus + TX, Diachasmimorpha krausii + TX, Diachasmimorpha longicaudata + TX, Diaparsis jucunda + TX, Diaphorencyrtus aligarhensis + TX, Diglyphus isaea + TX, Diglyphus isaea (Miglyphus® + TX, Digline®) + TX, Dacnusa sibirica (DacDigline® + TX, Minex®) + TX, Diversinervus spp.
  • TX Psyttalia concolor (complex) + TX, Quadrastichus spp. + TX, Rhyzobius lophanthae + TX, Rodolia cardinalis + TX, Rumina decollate + TX, Semielacher petiolatus + TX, Sitobion avenae (Ervibank®) + TX, Steinernema carpocapsae (Nematac C® + TX, Millenium® + TX, BioNem C® + TX, NemAttack®
  • TX Steinernematid spp. (Guardian Nematodes®) + TX, Stethorus punctillum (Stethorus®) + TX, Tamarixia radiate + TX, Tetrastichus setifer + TX, Thripobius semiluteus + TX, Torymus sinensis + TX, Trichogramma brassicae (Tricholine b®) + TX, Trichogramma brassicae (Tricho-Strip®) + TX, Trichogramma evanescens + TX, Trichogramma minutum + TX, Trichogramma ostriniae + TX, Trichogramma platneri + TX, Trichogramma pretiosum + TX, Xanthopimpla stemmator, and
  • code + TX such as code AE 1887196 (BSC-BX60309) + TX, code NNI-0745 GR + TX, code IKI-3106 + TX, code JT-L001 + TX, code ZNQ-08056 + TX, code IPPA152201 + TX, code HNPC-A9908 (CAS: [660411-21-2]) + TX, code HNPC-A2005 (CAS:
  • Oxathiapiprolin + TX Fluopyram + TX, Penflufen+ TX, Fluoxopyrosad+ TX, fluoxapiprolin + TX and Flupyradifurone + TX.
  • the designation is not a "common name”, the nature of the designation used instead is given in round brackets for the particular compound; in that case, the lUPAC name, the lUPAC/Chemical Abstracts name, a "chemical name”, a “traditional name”, a “compound name” or a “develoment code” is used or, if neither one of those designations nor a "common name” is used, an "alternative name” is employed.“CAS Reg. No” means the Chemical Abstracts Registry Number.
  • the active ingredient mixture of the compounds of formula I selected from Tables A-1 to A-33 and Table P with active ingredients described above comprises a compound selected from Tables A-1 to A-33 and Table P and an active ingredient as described above preferably in a mixing ratio of from 100:1 to 1 :6000, especially from 50:1 to 1 :50, more especially in a ratio of from 20:1 to 1 :20, even more especially from 10:1 to 1 :10, very especially from 5:1 and 1 :5, special preference being given to a ratio of from 2:1 to 1 :2, and a ratio of from 4:1 to 2:1 being likewise preferred, above all in a ratio of 1 :1 , or 5:1 , or 5:2, or 5:3, or 5:4, or 4:1 , or 4:2, or 4:3, or 3:1 , or 3:2, or 2:1 , or 1 :5, or 2:5, or 3:5, or 4:5, or 1 :4, or 2:4, or 3:4, or 1 :3, or 2:3, or 1 :2, or 1
  • the mixtures as described above can be used in a method for controlling pests, which comprises applying a composition comprising a mixture as described above to the pests or their environment, with the exception of a method for treatment of the human or animal body by surgery or therapy and diagnostic methods practised on the human or animal body.
  • the mixtures comprising a compound of formula I selected from Tables A-1 to A-33 and Table P and one or more active ingredients as described above can be applied, for example, in a single“ready- mix” form, in a combined spray mixture composed from separate formulations of the single active ingredient components, such as a“tank-mix”, and in a combined use of the single active ingredients when applied in a sequential manner, i.e. one after the other with a reasonably short period, such as a few hours or days.
  • the order of applying the compounds of formula I selected from Tables A-1 to A-33 and Table P and the active ingredients as described above is not essential for working the present invention.
  • compositions according to the invention can also comprise further solid or liquid auxiliaries, such as stabilizers, for example unepoxidized or epoxidized vegetable oils (for example epoxidized coconut oil, rapeseed oil or soya oil), antifoams, for example silicone oil, preservatives, viscosity regulators, binders and/or tackifiers, fertilizers or other active ingredients for achieving specific effects, for example bactericides, fungicides, nematocides, plant activators, molluscicides or herbicides.
  • auxiliaries such as stabilizers, for example unepoxidized or epoxidized vegetable oils (for example epoxidized coconut oil, rapeseed oil or soya oil), antifoams, for example silicone oil, preservatives, viscosity regulators, binders and/or tackifiers, fertilizers or other active ingredients for achieving specific effects, for example bactericides, fungicides, nematocides
  • compositions according to the invention are prepared in a manner known per se, in the absence of auxiliaries for example by grinding, screening and/or compressing a solid active ingredient and in the presence of at least one auxiliary for example by intimately mixing and/or grinding the active ingredient with the auxiliary (auxiliaries).
  • auxiliaries for example by grinding, screening and/or compressing a solid active ingredient and in the presence of at least one auxiliary for example by intimately mixing and/or grinding the active ingredient with the auxiliary (auxiliaries).
  • compositions that is the methods of controlling pests of the abovementioned type, such as spraying, atomizing, dusting, brushing on, dressing, scattering or pouring - which are to be selected to suit the intended aims of the prevailing circumstances - and the use of the compositions for controlling pests of the abovementioned type are other subjects of the invention.
  • Typical rates of concentration are between 0.1 and 1000 ppm, preferably between 0.1 and 500 ppm, of active ingredient.
  • the rate of application per hectare is generally 1 to 2000 g of active ingredient per hectare, in particular 10 to 1000 g/ha, preferably 10 to 600 g/ha.
  • a preferred method of application in the field of crop protection is application to the foliage of the plants (foliar application), it being possible to select frequency and rate of application to match the danger of infestation with the pest in question.
  • the active ingredient can reach the plants via the root system (systemic action), by drenching the locus of the plants with a liquid composition or by incorporating the active ingredient in solid form into the locus of the plants, for example into the soil, for example in the form of granules (soil application). In the case of paddy rice crops, such granules can be metered into the flooded paddy-field.
  • the compounds of the invention and compositions thereof are also be suitable for the protection of plant propagation material, for example seeds, such as fruit, tubers or kernels, or nursery plants, against pests of the abovementioned type.
  • the propagation material can be treated with the compound prior to planting, for example seed can be treated prior to sowing.
  • the compound can be applied to seed kernels (coating), either by soaking the kernels in a liquid composition or by applying a layer of a solid composition. It is also possible to apply the compositions when the propagation material is planted to the site of application, for example into the seed furrow during drilling.
  • Typical treatment rates would depend on the plant and pest/fungi to be controlled and are generally between 1 to 200 grams per 100 kg of seeds, preferably between 5 to 150 grams per 100 kg of seeds, such as between 10 to 100 grams per 100 kg of seeds.
  • seed embraces seeds and plant propagules of all kinds including but not limited to true seeds, seed pieces, suckers, corns, bulbs, fruit, tubers, grains, rhizomes, cuttings, cut shoots and the like and means in a preferred embodiment true seeds.
  • the present invention also comprises seeds coated or treated with or containing a compound of formula I.
  • coated or treated with and/or containing generally signifies that the active ingredient is for the most part on the surface of the seed at the time of application, although a greater or lesser part of the ingredient may penetrate into the seed material, depending on the method of application.
  • the seed product When the said seed product is (re)planted, it may absorb the active ingredient.
  • the present invention makes available a plant propagation material adhered thereto with a compound of formula (I). Further, it is hereby made available, a composition comprising a plant propagation material treated with a compound of formula (I).
  • Seed treatment comprises all suitable seed treatment techniques known in the art, such as seed dressing, seed coating, seed dusting, seed soaking and seed pelleting.
  • the seed treatment application of the compound formula (I) can be carried out by any known methods, such as spraying or by dusting the seeds before sowing or during the sowing/planting of the seeds.
  • Example B1 Diabrotica balteata (Corn root worm)
  • Maize sprouts placed onto an agar layer in 24-well microtiter plates were treated with aqueous test solutions prepared from 10 ⁇ 00 ppm DMSO stock solutions by spraying. After drying, the plates were infested with L2 larvae (6 to 10 per well). The samples were assessed for mortality and growth inhibition in comparison to untreated samples 4 days after infestation.
  • the following compounds gave an effect of at least 80% in at least one of the two categories (mortality or growth inhibition) at an application rate of 200 ppm: P1 , P2, P3, P4, P5, P6, P7, P9, P10.
  • Soybean leaves on agar in 24-well microtiter plates were sprayed with aqueous test solutions prepared from 10 ⁇ 00 ppm DMSO stock solutions. After drying the leaves were infested with N2 nymphs. The samples were assessed for mortality and growth inhibition in comparison to untreated samples 5 days after infestation.
  • the following compounds gave an effect of at least 80% in at least one of the two categories (mortality or growth inhibition) at an application rate of 200 ppm: P1 , P2, P3, P4, P5, P6, P7, P8, P9, P10.
  • Example B3 Frankliniella occidentalis (Western flower thrips)
  • Sunflower leaf discs were placed on agar in 24-well microtiter plates and sprayed with aqueous test solutions prepared from 10 ⁇ 00 DMSO stock solutions. After drying the leaf discs were infested with a Frankliniella population of mixed ages. The samples were assessed for mortality 7 days after infestation.
  • 24-well microtiter plates with artificial diet were treated with aqueous test solutions prepared from 10 ⁇ 00 ppm DMSO stock solutions by pipetting. After drying, Plutella eggs were pipetted through a plastic stencil onto a gel blotting paper and the plate was closed with it. The samples were assessed for mortality and growth inhibition in comparison to untreated samples 8 days after infestation.
  • the following compounds gave an effect of at least 80% in at least one of the two categories (mortality or growth inhibition) at an application rate of 200 ppm: P1 , P2, P3, P4, P5, P6, P7, P8, P9, P10.
  • Example B5 Myzus persicae (Green peach aphid). Feeding/Contact activity
  • Sunflower leaf discs were placed onto agar in a 24-well microtiter plate and sprayed with aqueous test solutions prepared from 10 ⁇ 00 ppm DMSO stock solutions. After drying, the leaf discs were infested with an aphid population of mixed ages. The samples were assessed for mortality 6 days after infestation.
  • Example B6 Myzus persicae (Green peach aphid). Systemic activity
  • Roots of pea seedlings infested with an aphid population of mixed ages were placed directly into aqueous test solutions prepared from 10 ⁇ 00 DMSO stock solutions. The samples were assessed for mortality 6 days after placing seedlings into test solutions.
  • Example B7 Plutella xylostella (Diamond back moth)
  • 24-well microtiter plates with artificial diet were treated with aqueous test solutions prepared from 10 ⁇ 00 ppm DMSO stock solutions by pipetting. After drying, the plates were infested with L2 larvae (10 to 15 per well). The samples were assessed for mortality and growth inhibition in comparison to untreated samples 5 days after infestation. The following compounds gave an effect of at least 80% in at least one of the two categories (mortality or growth inhibition) at an application rate of 200 ppm: P1.
  • Example B8 Spodoptera littoralis (Egyptian cotton leaf worm)
  • Cotton leaf discs were placed onto agar in 24-well microtiter plates and sprayed with aqueous test solutions prepared from 10 ⁇ 00 ppm DMSO stock solutions. After drying the leaf discs were infested with five L1 larvae. The samples were assessed for mortality, anti-feeding effect, and growth inhibition in comparison to untreated samples 3 days after infestation. Control of Spodoptera littoralis by a test sample is given when at least one of the categories mortality, anti-feedant effect, and growth inhibition is higher than the untreated sample.
  • Example B9 Nilaparvata lugens (Brown plant hopper)
  • Rice plants were treated with the diluted test solutions in a spray chamber. After drying plants were infested with ⁇ 20 N3 nymphs. 7 days after the treatment samples were assessed for mortality and growth regulation.
  • Example B10 Heterodera schachtii: Juvenile mobility, in vitro profiling in 96 well plate
  • Test solutions are prepared from 10 ⁇ 00 ppm DMSO stock solutions with a TECAN robot to achieve 20 pL of 500, 100, 50, 25, 12.5 and 6.25 ppm. For each concentration three replicates are produced. Per well, 80 pl_ nematode solution is added containing 100 to 150 freshly harvested second stage juveniles of Heterodera schachtii. The plates are covered and stored at room temperature in the dark and incubated for 24 h. Mobility of the exposed juveniles in a treated well is measured using an imaging tool and compared to an average of 12 untreated replicates.
  • Example B11 Comparison of the insecticidal activity of compound P1 according to the invention with compounds from the state of the art:
  • WO2016/104746 against Spodoptera littoralis (Example B8), Diabrotica balteata (Example B1) and Myzus persicae (systemic, Example B6) is summarized in Table B11 : Table B1 1 :
  • Table B1 1 shows that compounds P1 according to the invention exerts a substantially better insecticidal action on Spodoptera littoralis, Diabrotica balteata and Myzus persicae than the compound from the state of the art. This enhanced effect was not to be expected on the basis of the structural similarity of these compounds.
  • Example B12 Tetranychus urticae (Two-spotted spider mite)
  • Bean leaf discs on agar in 24-well microtiter plates were sprayed with aqueous test solutions prepared from 10'OOO ppm DMSO stock solutions. After drying the leaf discs were infested with a mite population of mixed ages. The samples were assessed for mortality on mixed population (mobile stages) 8 days after infestation.
  • Rice plants were sprayed with diluted test solutions in an application chamber. Cut off plants were placed into petri dishes with wetted filter paper, infested with 5 L2 larvae and covered with a plastic lid. Samples were assessed 5 days after infestation for mortality, and growth regulation.
  • the following compounds resulted in at least 80% mortality at an application rate of 50 ppm: P1 .

Abstract

L'invention concerne des composés de formule (I), dans laquelle les substituants sont tels que définis dans la revendication 1. En outre, la présente invention concerne des compositions agrochimiques qui comprennent les composés de formule (I), la préparation de ces compositions, et l'utilisation des composés ou compositions dans l'agriculture ou l'horticulture pour combattre, prévenir ou lutter contre des animaux nuisibles, y compris des arthropodes et en particulier des insectes, des nématodes, des mollusques ou des représentants de l'ordre Acarinas.
PCT/EP2020/070201 2019-07-17 2020-07-16 Dérivés hétérocycliques à action pesticide comprenant des substituants contenant du soufre WO2021009311A1 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
IN201911028792 2019-07-17
IN201911028792 2019-07-17
EP20163135.5 2020-03-13
EP20163135 2020-03-13

Publications (1)

Publication Number Publication Date
WO2021009311A1 true WO2021009311A1 (fr) 2021-01-21

Family

ID=71614909

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2020/070201 WO2021009311A1 (fr) 2019-07-17 2020-07-16 Dérivés hétérocycliques à action pesticide comprenant des substituants contenant du soufre

Country Status (1)

Country Link
WO (1) WO2021009311A1 (fr)

Citations (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0353191A2 (fr) 1988-07-29 1990-01-31 Ciba-Geigy Ag Séquences d'ADN codant des polypeptides avec activité béta-1,3-glucanase
EP0367474A1 (fr) 1988-11-01 1990-05-09 Mycogen Corporation Souche de bacillus thuringiensis appelée b.t. ps81gg, active contre les lépidoptères nuisibles et gène codant une toxine active contre les lépidoptères.
EP0374753A2 (fr) 1988-12-19 1990-06-27 American Cyanamid Company Toxines insecticides, gènes les codant, anticorps les liant, ainsi que cellules végétales et plantes transgéniques exprimant ces toxines
EP0392225A2 (fr) 1989-03-24 1990-10-17 Ciba-Geigy Ag Plantes transgéniques résistantes aux maladies
WO1990013651A1 (fr) 1989-05-09 1990-11-15 Imperial Chemical Industries Plc Genes bacteriens
EP0401979A2 (fr) 1989-05-18 1990-12-12 Mycogen Corporation Souches de bacillus thuringiensis actives contre les lépidoptères nuisibles, et gènes codant pour des toxines actives contre les lépidoptères
EP0427529A1 (fr) 1989-11-07 1991-05-15 Pioneer Hi-Bred International, Inc. Lectines larvicides, et résistance induite des plantes aux insectes
EP0451878A1 (fr) 1985-01-18 1991-10-16 Plant Genetic Systems, N.V. Modification de plantes par techniques de génie génétique pour combattre ou contrôler les insectes
WO1993007278A1 (fr) 1991-10-04 1993-04-15 Ciba-Geigy Ag Sequence d'adn synthetique ayant une action insecticide accrue dans le mais
WO1995033818A2 (fr) 1994-06-08 1995-12-14 Ciba-Geigy Ag Genes pour la synthese des substances antipathogenes
WO1995034656A1 (fr) 1994-06-10 1995-12-21 Ciba-Geigy Ag Nouveaux genes du bacillus thuringiensis codant pour des toxines actives contre les lepidopteres
US5631072A (en) 1995-03-10 1997-05-20 Avondale Incorporated Method and means for increasing efficacy and wash durability of insecticide treated fabric
WO2000015615A1 (fr) 1998-09-15 2000-03-23 Syngenta Participations Ag Pyridinecetones utilises comme herbicides
WO2002015701A2 (fr) 2000-08-25 2002-02-28 Syngenta Participations Ag Nouvelles toxines insecticides derivees de proteines cristallines insecticides de $i(bacillus thuringiensis)
WO2003000906A2 (fr) 2001-06-22 2003-01-03 Syngenta Participations Ag Genes de resistance aux maladies chez les plantes
WO2003018810A2 (fr) 2001-08-31 2003-03-06 Syngenta Participations Ag Toxines cry3a modifiees et sequences d'acides nucleiques les codant
WO2003034823A1 (fr) 2001-10-25 2003-05-01 Siamdutch Mosquito Netting Company Limited Traitement d'une matiere textile au moyen d'un insecticide
WO2003052073A2 (fr) 2001-12-17 2003-06-26 Syngenta Participations Ag Nouvel evenement du mais
WO2005064072A2 (fr) 2003-12-22 2005-07-14 Basf Aktiengesellschaft Composition destinee a l'impregnation de fibres, de tissus et de nappes de filet possedant une activite protectrice contre les parasites
WO2005077934A1 (fr) 2004-02-18 2005-08-25 Ishihara Sangyo Kaisha, Ltd. Anthranilamides, procédé pour la production de ceux-ci et agents antiparasitaires contenant ceux-ci
WO2005113886A1 (fr) 2004-05-12 2005-12-01 Basf Aktiengesellschaft Procede de traitement de substrats flexibles
WO2006087343A1 (fr) 2005-02-16 2006-08-24 Basf Aktiengesellschaft Anilides d'acide carboxylique pyrazole, procedes de production associes et agents les contenant pour la lutte antifongique
EP1724392A2 (fr) 2005-05-04 2006-11-22 Fritz Blanke Gmbh & Co. Kg Procédé d'apprêtage anti-microbien de surfaces textiles
WO2006128870A2 (fr) 2005-06-03 2006-12-07 Basf Aktiengesellschaft Composition pour impregnation de fibres, tissus et filets a action protectrice contre les ravageurs
WO2007026965A1 (fr) 2005-09-02 2007-03-08 Nissan Chemical Industries, Ltd. Composé de benzamide à substitution isoxazoline et agent de lutte contre les organismes nuisibles
WO2007048556A1 (fr) 2005-10-25 2007-05-03 Syngenta Participations Ag Dérivés d'amides hétérocycliques utiles en tant que microbiocides
WO2007090739A1 (fr) 2006-02-03 2007-08-16 Basf Se Procede de traitement de substrats
WO2008151984A1 (fr) 2007-06-12 2008-12-18 Basf Se Formulation aqueuse et processus d'imprégnation de matières non vivantes exerçant une action protectrice contre les parasites
WO2010060231A1 (fr) 2008-11-25 2010-06-03 Qin Zhaohai Aminonitroguanidines condensées, leur synthèse et leur emploi en tant qu'insecticides botaniques
WO2012092115A1 (fr) 2010-12-29 2012-07-05 E. I. Du Pont De Nemours And Company Pesticides à base pyrido[1,2-a]pyrimidines mésoioniques
WO2014119672A1 (fr) 2013-01-31 2014-08-07 住友化学株式会社 Composition et procédé permettant de lutter contre les animaux nuisibles
WO2014119494A1 (fr) 2013-01-31 2014-08-07 住友化学株式会社 Composition pour lutter contre les ravageurs et procédé de lutte contre les ravageurs
WO2014119699A1 (fr) 2013-01-31 2014-08-07 住友化学株式会社 Composition et procédé permettant de lutter contre les animaux nuisibles
WO2014119670A1 (fr) 2013-01-31 2014-08-07 住友化学株式会社 Composition et procédé permettant de lutter contre les animaux nuisibles
WO2014119679A1 (fr) 2013-01-31 2014-08-07 住友化学株式会社 Procédé de lutte contre les animaux nuisibles
WO2014119674A1 (fr) 2013-01-31 2014-08-07 住友化学株式会社 Composition et procédé permettant de lutter contre les animaux nuisibles
WO2014142292A1 (fr) 2013-03-15 2014-09-18 日本農薬株式会社 Composé hétérocyclique condensé ou sel de celui-ci, insecticide agricole et horticole contenant le composé hétérocyclique condensé et procédé d'utilisation de l'insecticide agricole et horticole
WO2015002211A1 (fr) 2013-07-01 2015-01-08 住友化学株式会社 Composé hétérocyclique condensé et son utilisation pour lutter contre les ravageurs
WO2015000715A1 (fr) 2013-07-02 2015-01-08 Syngenta Participations Ag Hétérocycles bi- ou tricycliques à action pesticide avec substituants soufrés
WO2015121136A1 (fr) 2014-02-17 2015-08-20 Bayer Cropscience Ag Dérivés d'hétérocycles bicycliques condensés à substituant 2-(het)aryle comme agent de lutte contre les nuisibles
WO2016030229A1 (fr) 2014-08-25 2016-03-03 Syngenta Participations Ag Dérivés hétérocycliques à action pesticide comportant des substituants contenant du soufre
WO2016039441A1 (fr) 2014-09-12 2016-03-17 日本農薬株式会社 Composé imidazopyridazine ou ses sels et insecticide agricole et horticole contenant ledit composé et son procédé d'utilisation
WO2016059145A1 (fr) 2014-10-16 2016-04-21 Syngenta Participations Ag Dérivés hétérocycliques tétracycliques à action pesticide comportant des substituants contenant du soufre
WO2016104746A1 (fr) 2014-12-26 2016-06-30 日本農薬株式会社 Composé hétérocyclique à groupe cycloalkyle condensé, sel de celui-ci, insecticide agricole et horticole le contenant, et son procédé d'utilisation
WO2016124557A1 (fr) 2015-02-05 2016-08-11 Bayer Cropscience Aktiengesellschaft Dérivés d'hétérocycles bicycliques condensés substitués par 2 (het) aryle utilisés comme agents de lutte contre les insectes et les animaux nuisibles
WO2016124563A1 (fr) 2015-02-05 2016-08-11 Bayer Cropscience Aktiengesellschsaft Dérivés d'hétérocycles bicycliques condensés substitués par 2 (het) aryle utilisés comme agents de lutte contre les insectes et les animaux nuisibles
WO2017055185A1 (fr) 2015-09-28 2017-04-06 Bayer Cropscience Aktiengesellschaft Dérivés d'hétérocycles condensés à substitution 2-(hét)aryle utilisés comme agents de lutte contre les nuisibles
WO2017065183A1 (fr) 2015-10-13 2017-04-20 日本農薬株式会社 Composé hétérocyclique condensé contenant un groupe oxime ou ses sels, et insecticide agricole et horticole contenant ledit composé et son procédé d'utilisation
WO2017146221A1 (fr) 2016-02-26 2017-08-31 日本農薬株式会社 Composé hétérocyclique condensé présentant des hétérocycles liés et ses sels, insecticide agricole/horticole contenant ledit composé, et procédé d'utilisation dudit insecticide
WO2018153778A1 (fr) 2017-02-21 2018-08-30 Syngenta Participations Ag Dérivés hétérocycliques à activité pesticide comportant des substituants contenant du soufre
WO2018215304A1 (fr) 2017-05-22 2018-11-29 Syngenta Participations Ag Composés soufrés de pyridazine tétracyclique et leur utilisation en tant que pesticides
WO2019138018A1 (fr) * 2018-01-15 2019-07-18 Syngenta Participations Ag Dérivés hétérocycliques à activité pesticide comportant des substituants contenant du soufre

Patent Citations (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0451878A1 (fr) 1985-01-18 1991-10-16 Plant Genetic Systems, N.V. Modification de plantes par techniques de génie génétique pour combattre ou contrôler les insectes
EP0353191A2 (fr) 1988-07-29 1990-01-31 Ciba-Geigy Ag Séquences d'ADN codant des polypeptides avec activité béta-1,3-glucanase
EP0367474A1 (fr) 1988-11-01 1990-05-09 Mycogen Corporation Souche de bacillus thuringiensis appelée b.t. ps81gg, active contre les lépidoptères nuisibles et gène codant une toxine active contre les lépidoptères.
EP0374753A2 (fr) 1988-12-19 1990-06-27 American Cyanamid Company Toxines insecticides, gènes les codant, anticorps les liant, ainsi que cellules végétales et plantes transgéniques exprimant ces toxines
EP0392225A2 (fr) 1989-03-24 1990-10-17 Ciba-Geigy Ag Plantes transgéniques résistantes aux maladies
WO1990013651A1 (fr) 1989-05-09 1990-11-15 Imperial Chemical Industries Plc Genes bacteriens
EP0401979A2 (fr) 1989-05-18 1990-12-12 Mycogen Corporation Souches de bacillus thuringiensis actives contre les lépidoptères nuisibles, et gènes codant pour des toxines actives contre les lépidoptères
EP0427529A1 (fr) 1989-11-07 1991-05-15 Pioneer Hi-Bred International, Inc. Lectines larvicides, et résistance induite des plantes aux insectes
WO1993007278A1 (fr) 1991-10-04 1993-04-15 Ciba-Geigy Ag Sequence d'adn synthetique ayant une action insecticide accrue dans le mais
WO1995033818A2 (fr) 1994-06-08 1995-12-14 Ciba-Geigy Ag Genes pour la synthese des substances antipathogenes
WO1995034656A1 (fr) 1994-06-10 1995-12-21 Ciba-Geigy Ag Nouveaux genes du bacillus thuringiensis codant pour des toxines actives contre les lepidopteres
US5631072A (en) 1995-03-10 1997-05-20 Avondale Incorporated Method and means for increasing efficacy and wash durability of insecticide treated fabric
WO2000015615A1 (fr) 1998-09-15 2000-03-23 Syngenta Participations Ag Pyridinecetones utilises comme herbicides
WO2002015701A2 (fr) 2000-08-25 2002-02-28 Syngenta Participations Ag Nouvelles toxines insecticides derivees de proteines cristallines insecticides de $i(bacillus thuringiensis)
WO2003000906A2 (fr) 2001-06-22 2003-01-03 Syngenta Participations Ag Genes de resistance aux maladies chez les plantes
WO2003018810A2 (fr) 2001-08-31 2003-03-06 Syngenta Participations Ag Toxines cry3a modifiees et sequences d'acides nucleiques les codant
WO2003034823A1 (fr) 2001-10-25 2003-05-01 Siamdutch Mosquito Netting Company Limited Traitement d'une matiere textile au moyen d'un insecticide
WO2003052073A2 (fr) 2001-12-17 2003-06-26 Syngenta Participations Ag Nouvel evenement du mais
WO2005064072A2 (fr) 2003-12-22 2005-07-14 Basf Aktiengesellschaft Composition destinee a l'impregnation de fibres, de tissus et de nappes de filet possedant une activite protectrice contre les parasites
WO2005077934A1 (fr) 2004-02-18 2005-08-25 Ishihara Sangyo Kaisha, Ltd. Anthranilamides, procédé pour la production de ceux-ci et agents antiparasitaires contenant ceux-ci
WO2005113886A1 (fr) 2004-05-12 2005-12-01 Basf Aktiengesellschaft Procede de traitement de substrats flexibles
WO2006087343A1 (fr) 2005-02-16 2006-08-24 Basf Aktiengesellschaft Anilides d'acide carboxylique pyrazole, procedes de production associes et agents les contenant pour la lutte antifongique
EP1724392A2 (fr) 2005-05-04 2006-11-22 Fritz Blanke Gmbh & Co. Kg Procédé d'apprêtage anti-microbien de surfaces textiles
WO2006128870A2 (fr) 2005-06-03 2006-12-07 Basf Aktiengesellschaft Composition pour impregnation de fibres, tissus et filets a action protectrice contre les ravageurs
WO2007026965A1 (fr) 2005-09-02 2007-03-08 Nissan Chemical Industries, Ltd. Composé de benzamide à substitution isoxazoline et agent de lutte contre les organismes nuisibles
WO2007048556A1 (fr) 2005-10-25 2007-05-03 Syngenta Participations Ag Dérivés d'amides hétérocycliques utiles en tant que microbiocides
WO2007090739A1 (fr) 2006-02-03 2007-08-16 Basf Se Procede de traitement de substrats
WO2008151984A1 (fr) 2007-06-12 2008-12-18 Basf Se Formulation aqueuse et processus d'imprégnation de matières non vivantes exerçant une action protectrice contre les parasites
WO2010060231A1 (fr) 2008-11-25 2010-06-03 Qin Zhaohai Aminonitroguanidines condensées, leur synthèse et leur emploi en tant qu'insecticides botaniques
WO2012092115A1 (fr) 2010-12-29 2012-07-05 E. I. Du Pont De Nemours And Company Pesticides à base pyrido[1,2-a]pyrimidines mésoioniques
WO2014119672A1 (fr) 2013-01-31 2014-08-07 住友化学株式会社 Composition et procédé permettant de lutter contre les animaux nuisibles
WO2014119494A1 (fr) 2013-01-31 2014-08-07 住友化学株式会社 Composition pour lutter contre les ravageurs et procédé de lutte contre les ravageurs
WO2014119699A1 (fr) 2013-01-31 2014-08-07 住友化学株式会社 Composition et procédé permettant de lutter contre les animaux nuisibles
WO2014119670A1 (fr) 2013-01-31 2014-08-07 住友化学株式会社 Composition et procédé permettant de lutter contre les animaux nuisibles
WO2014119679A1 (fr) 2013-01-31 2014-08-07 住友化学株式会社 Procédé de lutte contre les animaux nuisibles
WO2014119674A1 (fr) 2013-01-31 2014-08-07 住友化学株式会社 Composition et procédé permettant de lutter contre les animaux nuisibles
WO2014142292A1 (fr) 2013-03-15 2014-09-18 日本農薬株式会社 Composé hétérocyclique condensé ou sel de celui-ci, insecticide agricole et horticole contenant le composé hétérocyclique condensé et procédé d'utilisation de l'insecticide agricole et horticole
WO2015002211A1 (fr) 2013-07-01 2015-01-08 住友化学株式会社 Composé hétérocyclique condensé et son utilisation pour lutter contre les ravageurs
EP3018130A1 (fr) * 2013-07-01 2016-05-11 Sumitomo Chemical Company, Limited Composé hétérocyclique condensé et son utilisation pour lutter contre les ravageurs
WO2015000715A1 (fr) 2013-07-02 2015-01-08 Syngenta Participations Ag Hétérocycles bi- ou tricycliques à action pesticide avec substituants soufrés
WO2015121136A1 (fr) 2014-02-17 2015-08-20 Bayer Cropscience Ag Dérivés d'hétérocycles bicycliques condensés à substituant 2-(het)aryle comme agent de lutte contre les nuisibles
WO2016030229A1 (fr) 2014-08-25 2016-03-03 Syngenta Participations Ag Dérivés hétérocycliques à action pesticide comportant des substituants contenant du soufre
WO2016039441A1 (fr) 2014-09-12 2016-03-17 日本農薬株式会社 Composé imidazopyridazine ou ses sels et insecticide agricole et horticole contenant ledit composé et son procédé d'utilisation
WO2016059145A1 (fr) 2014-10-16 2016-04-21 Syngenta Participations Ag Dérivés hétérocycliques tétracycliques à action pesticide comportant des substituants contenant du soufre
WO2016104746A1 (fr) 2014-12-26 2016-06-30 日本農薬株式会社 Composé hétérocyclique à groupe cycloalkyle condensé, sel de celui-ci, insecticide agricole et horticole le contenant, et son procédé d'utilisation
WO2016124557A1 (fr) 2015-02-05 2016-08-11 Bayer Cropscience Aktiengesellschaft Dérivés d'hétérocycles bicycliques condensés substitués par 2 (het) aryle utilisés comme agents de lutte contre les insectes et les animaux nuisibles
WO2016124563A1 (fr) 2015-02-05 2016-08-11 Bayer Cropscience Aktiengesellschsaft Dérivés d'hétérocycles bicycliques condensés substitués par 2 (het) aryle utilisés comme agents de lutte contre les insectes et les animaux nuisibles
WO2017055185A1 (fr) 2015-09-28 2017-04-06 Bayer Cropscience Aktiengesellschaft Dérivés d'hétérocycles condensés à substitution 2-(hét)aryle utilisés comme agents de lutte contre les nuisibles
WO2017065183A1 (fr) 2015-10-13 2017-04-20 日本農薬株式会社 Composé hétérocyclique condensé contenant un groupe oxime ou ses sels, et insecticide agricole et horticole contenant ledit composé et son procédé d'utilisation
WO2017146221A1 (fr) 2016-02-26 2017-08-31 日本農薬株式会社 Composé hétérocyclique condensé présentant des hétérocycles liés et ses sels, insecticide agricole/horticole contenant ledit composé, et procédé d'utilisation dudit insecticide
WO2018153778A1 (fr) 2017-02-21 2018-08-30 Syngenta Participations Ag Dérivés hétérocycliques à activité pesticide comportant des substituants contenant du soufre
WO2018215304A1 (fr) 2017-05-22 2018-11-29 Syngenta Participations Ag Composés soufrés de pyridazine tétracyclique et leur utilisation en tant que pesticides
WO2019138018A1 (fr) * 2018-01-15 2019-07-18 Syngenta Participations Ag Dérivés hétérocycliques à activité pesticide comportant des substituants contenant du soufre

Non-Patent Citations (19)

* Cited by examiner, † Cited by third party
Title
"Manual on Development and Use of FAO and WHO Specifications for Pesticides", 2010, SOUTHERN ILLINOIS UNIVERSITY
"McCutcheon's Detergents and Emulsifiers Annual", 1981, MC PUBLISHING CORP.
A. BUCHHOLZS. TRAPP, PEST MANAG SCI, vol. 72, 2016, pages 929 - 939
ANGEW. CHEM., INT. ED., vol. 42, 2003, pages 5400 - 5449
CHEMICAL ABSTRACTS, Columbus, Ohio, US; abstract no. 929545-74-4
COORD. CHEM. REV., vol. 248, 2004, pages 2337 - 2364
EVANS, D.A.RATZ, ANDREW M.HUFF, BRET E.SHEPPARDGEORGE S., TET. LETT., vol. 35, no. 39, 1994, pages 7171 - 2
GREEN, CHEMISTRY, vol. 16, no. 3, 2014, pages 1480 - 1488
IND. ENG. CHEM. RES., vol. 44, 2005, pages 789 - 798
J. AM. CHEM. SOC., vol. 131, 2009, pages 16720
J. MED. CHEM., vol. 32, no. 12, 1989, pages 2561 - 73
ORG. LETT., vol. 15, 2013, pages 2876
ORG. PROCESS RES. DEV., vol. 23, 2019, pages 1478 - 1483
ORGANIC REACTIONS., vol. 18, 2011, pages 99 - 215
PROC. BCPC, INT. CONGR., vol. 1, 2003, pages 93
SYNLETT, 2003, pages 2428 - 2439
TETRAHEDRON, vol. 61, no. 46, 2005, pages 10827 - 10852
TETRAHEDRON, vol. 65, 2009, pages 6576
TETRAHEDRON, vol. 67, no. 29, 2011, pages 5282 - 5288

Similar Documents

Publication Publication Date Title
US10308650B2 (en) Pesticidally active tetracyclic derivatives with sulfur containing substituents
US10196398B2 (en) Pesticidally active tetracyclic derivatives with sulfur containing substituents
EP3931194B1 (fr) Dérivés hétérocycliques actifs sur le plan pesticide avec des substituants contenant du soufre
US11440910B2 (en) Pesticidally active heterocyclic derivatives with sulfur containing substituents
CA2954238A1 (fr) Derives heterocycliques a action pesticide comportant des substituants contenant du soufre
US20210403478A1 (en) Pesticidally active heterocyclic derivatives with sulfur containing substituents
US11413291B2 (en) Pesticidally active heterocyclic derivatives with sulfur containing substituents
US10945435B2 (en) Imidazopyrimidine derivatives with sulfur containing phenyl and pyridyl substituents
US20170355691A1 (en) Pesticidally active heterocyclic derivatives with sulphur containing substituents
US20230150944A1 (en) Pesticidally active heterocyclic derivatives with sulfoximine containing substituents
WO2019219689A1 (fr) Dérivés hétérocycliques à activité pesticide incorporant des substituants contenant du sulfoximine
WO2019076778A1 (fr) Dérivés hétérocycliques à activité pesticide comportant des substituants contenant du soufre et des sulfonimidamides
WO2020141136A1 (fr) Dérivés hétérocycliques à action pesticide comprenant des substituants contenant du soufre
WO2018215304A1 (fr) Composés soufrés de pyridazine tétracyclique et leur utilisation en tant que pesticides
WO2016012395A1 (fr) Dérivés hétérocycliques actifs du point de vue pesticide comportant des substituants contenant du soufre
WO2019229089A1 (fr) Dérivés hétérocycliques à action pesticide comprenant des substituants contenant du soufre
EP3740485A1 (fr) Dérivés hétérocycliques à activité pesticide comportant des substituants contenant du soufre
EP3931187B1 (fr) Dérivés hétérocycliques actifs sur le plan pesticide avec des substituants contenant du soufre
WO2021009311A1 (fr) Dérivés hétérocycliques à action pesticide comprenant des substituants contenant du soufre
WO2020141135A1 (fr) Dérivés hétérocycliques à action pesticide comprenant des substituants contenant du soufre
WO2019229088A1 (fr) Dérivés hétérocycliques à activité pesticide comportant des substituants contenant du soufre
WO2020120694A1 (fr) Composés hétéroaromatiques bicycliques à action pesticide

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20740317

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20740317

Country of ref document: EP

Kind code of ref document: A1