WO2016104305A1 - 非水系電解質二次電池用正極活物質とその製造方法、及び該正極活物質を用いた非水系電解質二次電池 - Google Patents

非水系電解質二次電池用正極活物質とその製造方法、及び該正極活物質を用いた非水系電解質二次電池 Download PDF

Info

Publication number
WO2016104305A1
WO2016104305A1 PCT/JP2015/085303 JP2015085303W WO2016104305A1 WO 2016104305 A1 WO2016104305 A1 WO 2016104305A1 JP 2015085303 W JP2015085303 W JP 2015085303W WO 2016104305 A1 WO2016104305 A1 WO 2016104305A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
lithium
active material
electrode active
electrolyte secondary
Prior art date
Application number
PCT/JP2015/085303
Other languages
English (en)
French (fr)
Inventor
健太郎 近藤
横山 潤
佑樹 古市
小向 哲史
Original Assignee
住友金属鉱山株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015212403A external-priority patent/JP6210439B2/ja
Application filed by 住友金属鉱山株式会社 filed Critical 住友金属鉱山株式会社
Priority to KR1020177019674A priority Critical patent/KR101878113B1/ko
Priority to CN201580070580.4A priority patent/CN107112529B/zh
Priority to US15/539,786 priority patent/US10497936B2/en
Publication of WO2016104305A1 publication Critical patent/WO2016104305A1/ja
Priority to US16/661,632 priority patent/US11108043B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a positive electrode active material for a non-aqueous electrolyte secondary battery, a manufacturing method thereof, and a non-aqueous electrolyte secondary battery using the positive electrode active material.
  • a non-aqueous electrolyte secondary battery represented by a lithium ion secondary battery.
  • This lithium ion secondary battery includes a negative electrode, a positive electrode, an electrolyte, and the like, and a material capable of detaching and inserting lithium is used as an active material for the negative electrode and the positive electrode.
  • Such non-aqueous electrolyte secondary batteries are currently being actively researched and developed. Among them, lithium ion secondary batteries using a layered or spinel-type lithium nickel composite oxide as a positive electrode material are among others. Since a high voltage of 4V class can be obtained, practical use is progressing as a battery having a high energy density.
  • the materials mainly proposed so far include lithium cobalt composite oxide (LiCoO 2 ), which is relatively easy to synthesize, lithium nickel composite oxide (LiNiO 2 ) using nickel, which is cheaper than cobalt, and lithium nickel.
  • Examples thereof include cobalt manganese composite oxide (LiNi 1/3 Co 1/3 Mn 1/3 O 2 ) and lithium manganese composite oxide (LiMn 2 O 4 ) using manganese.
  • lithium nickel composite oxides are attracting attention as a material that has good cycle characteristics and can provide high output with low resistance. In recent years, reduction of resistance necessary for high output has been regarded as important.
  • Patent Document 1 contains at least one element selected from Mo, W, Nb, Ta, and Re in an amount of 0.1 to 5 mol% with respect to the total molar amount of Mn, Ni, and Co.
  • Lithium transition metal compound powder for a lithium secondary battery positive electrode material has been proposed, and Mo, W, Nb, Ta, and Li in the surface portion of primary particles and the total of metal elements other than Mo, W, Nb, Ta, and Re
  • the total atomic ratio of Re is preferably 5 times or more of the atomic ratio of the entire primary particle. According to this proposal, it is said that it is possible to achieve both low cost and high safety of lithium transition metal-based compound powder for lithium secondary battery positive electrode material, high load characteristics, and improved powder handleability. .
  • the lithium transition metal compound powder is obtained by pulverizing raw materials in a liquid medium, spray-drying a slurry in which these are uniformly dispersed, and firing the obtained spray-dried body. Therefore, a part of different elements such as Mo, W, Nb, Ta, and Re is replaced with Ni arranged in a layer, and there is a problem that battery characteristics such as battery capacity and cycle characteristics are deteriorated. It was.
  • Patent Document 2 discloses a positive electrode active material for a non-aqueous electrolyte secondary battery having at least a layered lithium transition metal composite oxide, the lithium transition metal composite oxide comprising primary particles and aggregates thereof.
  • a non-aqueous electrolyte having a compound which is present in the form of a particle composed of one or both of secondary particles, and which has at least one selected from the group consisting of molybdenum, vanadium, tungsten, boron and fluorine on at least the surface of the particle A positive electrode active material for a secondary battery has been proposed.
  • the surface of the particles is composed of molybdenum, vanadium, tungsten, boron and fluorine.
  • the effect of at least one additive element selected from the group consisting of molybdenum, vanadium, tungsten, boron and fluorine is considered to be an improvement in initial characteristics, that is, initial discharge capacity and initial efficiency, and refers to output characteristics. It is not a thing. Further, according to the disclosed manufacturing method, since the additive element is mixed with the hydroxide that has been heat-treated at the same time as the lithium compound and fired, a part of the additive element is replaced with nickel arranged in layers. There was a problem that caused the battery characteristics to deteriorate.
  • Patent Document 3 discloses a metal including at least one selected from Ti, Al, Sn, Bi, Cu, Si, Ga, W, Zr, B, and Mo around the positive electrode active material and / or a plurality of these.
  • a positive electrode active material coated with an intermetallic compound and / or oxide obtained by a combination has been proposed. Such a coating can absorb oxygen gas and ensure safety, but no output characteristics are disclosed.
  • the disclosed manufacturing method is a method of coating using a planetary ball mill, and such a coating method causes physical damage to the positive electrode active material, resulting in deterioration of battery characteristics.
  • Patent Document 4 a composite oxide particle mainly composed of lithium nickelate is subjected to heat treatment by adhering a tungstic acid compound, and the content of carbonate ions is 0.15% by weight or less.
  • a positive electrode active material has been proposed. According to this proposal, there is a tungstic acid compound or a decomposition product of the tungstic acid compound on the surface of the positive electrode active material, and the oxidation activity on the surface of the composite oxide particles in a charged state is suppressed. Although gas generation can be suppressed, the output characteristics are not disclosed at all.
  • the disclosed production method preferably comprises a composite oxide particle heated to a boiling point or higher of a solution in which an adherent component is dissolved, and a sulfuric acid compound, a nitric acid compound, a boric acid compound, or a phosphoric acid compound as well as a tungstate compound. Since the solution dissolved in the solvent is applied as the adhering component, and the solvent is removed in a short time, the tungsten compound is not sufficiently dispersed on the surface of the composite oxide particles, so that there is a problem that it is not uniformly applied. .
  • Patent Document 5 discloses a lithium nickel composite oxide composed of primary particles and secondary particles formed by agglomeration of the primary particles, and Li 2 WO 4 .
  • a positive electrode active material for a non-aqueous electrolyte secondary battery having fine particles containing lithium tungstate represented by either Li 4 WO 5 or Li 6 W 2 O 9 has been proposed, and high output is obtained with high capacity. ing.
  • the output is increased while maintaining a high capacity, a further increase in capacity is required.
  • the present invention has an object to provide a positive electrode active material for a non-aqueous electrolyte secondary battery that can provide a high output with a high capacity when used in a positive electrode material.
  • the present inventor has earnestly studied the influence on the powder characteristics of the lithium nickel composite oxide used as the positive electrode active material for nonaqueous electrolyte secondary batteries and the positive electrode resistance of the battery. It has been found that by forming a lithium tungstate compound on the surface of the primary particles constituting the lithium nickel composite oxide powder, the positive electrode resistance of the battery can be reduced and the output characteristics can be improved.
  • a lithium nickel composite oxide is washed with water, a tungsten compound is mixed with the washed cake, and heat-treated to form a lithium tungstate compound on the primary particle surface of the lithium nickel composite oxide.
  • the inventors have found that this is possible and have completed the present invention.
  • the first invention of the present invention have the general formula Li z Ni 1-x-y Co x M y O 2 ( however, 0 ⁇ x ⁇ 0.35,0 ⁇ y ⁇ 0.35,0.95 ⁇ primary particles represented by z ⁇ 1.30, M is at least one element selected from Mn, V, Mg, Mo, Nb, Ti, and Al), and secondary particles formed by aggregation of the primary particles Lithium nickel composite oxide powder having a layered crystal structure composed of water and mixed with water to form a slurry, and the lithium nickel composite oxide powder was washed with water, then solid-liquid separated, and washed lithium nickel composite A water washing process for obtaining a washing cake composed of oxide particles, a mixing process for mixing the washing cake with a tungsten compound powder not containing lithium to obtain a tungsten mixture, and heat treating the obtained tungsten mixture A heat treatment step to heat the tungsten mixture to react the lithium compound present on the surface of the primary particles of the lithium nickel composite oxide with the tungsten compound
  • the second invention of the present invention is a method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery, wherein the slurry concentration in the water washing step of the first invention is 500 to 2500 g / L.
  • a third invention of the present invention is a method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery, wherein the temperature of the slurry in the water washing step of the first and second inventions is 20 to 30 ° C. is there.
  • a non-aqueous electrolyte characterized in that, in the water washing step of the first to third aspects, the moisture content of the resulting washed cake is controlled to 3.0 to 15.0% by mass. It is a manufacturing method of the positive electrode active material for secondary batteries.
  • the tungsten compound not containing lithium used in the mixing step in the first to fourth aspects of the invention is tungsten oxide (WO 3 ) or tungstic acid (WO 3 .H 2 O). It is the manufacturing method of the positive electrode active material for non-aqueous electrolyte secondary batteries characterized.
  • the amount of tungsten contained in the tungsten mixture according to the first to fifth aspects of the present invention is 0. 0 relative to the total number of Ni, Co, and M atoms contained in the lithium nickel composite oxide particles.
  • a positive electrode active for a non-aqueous electrolyte secondary battery characterized in that the atmosphere in the heat treatment step according to the first to sixth aspects is any one of decarboxylated air, inert gas, and vacuum. It is a manufacturing method of a substance.
  • the eighth invention of the present invention is a method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery, wherein the heat treatment temperature in the first heat treatment step of the first to seventh inventions is 60 to 80 ° C. is there.
  • a ninth aspect of the present invention there is provided a method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery, wherein the temperature of the heat treatment in the second heat treatment step of the first to eighth aspects is 100 to 200 ° C. It is.
  • a non-aqueous electrolyte secondary battery comprising a lithium-nickel composite oxide powder having a layered crystal structure composed of primary particles and secondary particles formed by aggregation of the primary particles.
  • a use positive electrode active material the general formula: Li z Ni 1-x- y Co x M y W a O 2 + ⁇ (although, 0 ⁇ x ⁇ 0.35,0 ⁇ y ⁇ 0.35,0.95 ⁇ z ⁇ 1.30, 0 ⁇ a ⁇ 0.03, 0 ⁇ ⁇ ⁇ 0.15, and M is at least one element selected from Mn, V, Mg, Mo, Nb, Ti and Al)
  • lithium tungstate is present on the primary particle surface of the lithium nickel composite oxide, and the amount of lithium contained in the lithium compound other than the lithium tungstate compound present on the primary particle surface of the lithium nickel composite oxide is the positive electrode active Material
  • a positive electrode active material for a non-aqueous electrolyte secondary battery characterized by being 0.05% by mass or less based on the total amount.
  • the amount of tungsten contained in the positive electrode active material in the tenth aspect of the invention is from 0.05 to the total number of atoms of Ni, Co and M contained in the lithium metal composite oxide powder.
  • the lithium tungstate according to the tenth and eleventh aspects of the present invention is present on the primary particle surface of the lithium metal composite oxide as fine particles having a particle diameter of 1 to 500 nm. It is a positive electrode active material for electrolyte secondary batteries.
  • the lithium tungstate according to the tenth and eleventh aspects of the present invention is present on the primary particle surface of the lithium metal composite oxide as a coating having a thickness of 1 to 200 nm. It is a positive electrode active material for electrolyte secondary batteries.
  • the lithium tungstate in the tenth and eleventh aspects of the present invention is a primary particle of the lithium metal composite oxide as both a fine particle having a particle diameter of 1 to 500 nm and a coating having a thickness of 1 to 200 nm.
  • a fifteenth aspect of the present invention is the positive electrode active material for a non-aqueous electrolyte secondary battery according to the tenth to fourteenth aspects, wherein the sulfate radical content is 0.05% by mass or less.
  • the sixteenth aspect of the present invention is a non-aqueous electrolyte secondary battery having a positive electrode containing the positive electrode active material for a non-aqueous electrolyte secondary battery obtained in the tenth to fifteenth aspects of the present invention.
  • a positive electrode active material for a non-aqueous electrolyte secondary battery when used as a positive electrode material for a battery, a positive electrode active material for a non-aqueous electrolyte secondary battery that can realize high output with high capacity and good cycle characteristics can be obtained. Furthermore, the manufacturing method is easy and suitable for production on an industrial scale, and its industrial value is extremely large.
  • Positive electrode active material for nonaqueous electrolyte secondary battery of the present invention is: A positive electrode active material for a non-aqueous electrolyte secondary battery (hereinafter simply referred to as “non-aqueous electrolyte secondary battery”) having a layered crystal structure composed of primary particles and secondary particles formed by aggregation of primary particles. .
  • a positive electrode active material comprising the composition of the positive electrode active material the general formula: Li z Ni 1-x- y Co x M y W a O 2 + ⁇ (although, 0 ⁇ x ⁇ 0.35,0 ⁇ y ⁇ 0.35, 0.95 ⁇ z ⁇ 1.30, 0 ⁇ a ⁇ 0.03, 0 ⁇ ⁇ ⁇ 0.15, M is from Mn, V, Mg, Mo, Nb, Ti and Al At least one element selected from the above, and lithium tungstate is present on the surface of the primary particle of the lithium nickel composite oxide, and lithium contained in lithium compounds other than lithium tungstate existing on the surface of the primary particle.
  • the amount is positive electrode active material It is characterized by being 0.05% by mass or less with respect to the total amount of quality.
  • the composition as a base material is the general formula: Li z Ni 1-x- y Co x M y O 2 ( however, 0 ⁇ x ⁇ 0.35,0 ⁇ y ⁇ 0.35,0.95 ⁇
  • M is at least one element selected from Mn, V, Mg, Mo, Nb, Ti, and Al
  • lithium metal composite oxide powder whose base material is composed of primary particles and secondary particles formed by agglomeration of primary particles (hereinafter, secondary particles and primary particles present alone are combined to form “lithium”
  • the metal composite oxide particles are sometimes referred to as “metal composite oxide particles.”
  • lithium tungstate is present on the primary particle surface of the lithium nickel composite oxide, and tungstic acid present on the primary particle surface of the lithium nickel composite oxide.
  • lithium tungstate (hereinafter sometimes referred to as “LWO”) is formed on the surface of the lithium nickel composite oxide particles and the surface of the primary particles inside.
  • LWO lithium tungstate
  • This LWO has high lithium ion conductivity and has an effect of promoting the movement of lithium ions.
  • a Li conduction path is formed at the interface with the electrolytic solution. Therefore, the reaction resistance of the positive electrode active material (hereinafter referred to as “positive electrode resistance”). The output characteristics are improved.
  • the battery capacity the charge / discharge capacity of the battery (hereinafter sometimes referred to as “battery capacity”) is also improved. is there.
  • the specific surface area is reduced regardless of the coating thickness, and thus the coating has high lithium ion conductivity.
  • the contact area with the electrolytic solution is reduced.
  • the formation of the compound tends to be concentrated on the surface of a specific particle. Therefore, although the layered material as the coating has high lithium ion conductivity, the effects of improving the charge / discharge capacity and reducing the reaction resistance of the positive electrode can be obtained, but there is still room for improvement.
  • the surface of the primary particle in the present invention refers to the surface of the primary particle exposed on the outer surface of the secondary particle and the space near and inside the surface of the secondary particle through which the electrolyte solution can permeate through the outside of the secondary particle.
  • the surface of the primary particle exposed to the surface is included. Furthermore, even a grain boundary between primary particles is included as long as the primary particles are not completely bonded and the electrolyte solution can penetrate.
  • LWO is preferably present on the surface of the primary particles as fine particles having a particle diameter of 1 to 500 nm.
  • the lithium ion conductivity can be effectively improved with a sufficient contact area with the electrolyte, thereby improving the charge / discharge capacity and reducing the reaction resistance of the positive electrode more effectively.
  • the particle diameter is less than 1 nm, fine particles may not have sufficient lithium ion conductivity.
  • the particle diameter exceeds 500 nm, the formation of fine particles on the surface of the primary particles becomes non-uniform, and the effect of reducing the reaction resistance may not be sufficiently obtained.
  • the particle size of the fine particles is more preferably 1 to 300 nm, and further preferably 5 to 200 nm.
  • the LWO does not need to be completely formed on the entire surface of the primary particle, and may be in a scattered state. Even in the scattered state, if LWO is formed on the outer surface of the lithium nickel composite oxide particles and the surface of the primary particles exposed to the inside, an effect of reducing reaction resistance can be obtained. Further, it is not necessary that all the fine particles exist as fine particles having a particle diameter of 1 to 500 nm, and preferably 50% or more of the fine particles formed on the surface of the primary particles are formed in the particle diameter range of 1 to 500 nm. High effect can be obtained.
  • the primary particle surface is coated with a thin film
  • a conduction path of Li can be formed at the interface with the electrolyte while suppressing a decrease in specific surface area, which means higher charge / discharge capacity and reduced reaction resistance.
  • An effect is obtained.
  • the surface of the primary particles is coated with such a thin film-like LWO, it is preferably present on the primary particle surface of the lithium metal composite oxide as a film having a thickness of 1 to 200 nm.
  • the film thickness is more preferably 1 to 150 nm, and the film thickness is further preferably 1 to 100 nm. If the film thickness is less than 1 nm, the film may not have sufficient lithium ion conductivity. Moreover, when a film thickness exceeds 200 nm, lithium ion conductivity will fall and the higher effect of reaction resistance reduction may not be acquired.
  • this coating may be partially formed on the surface of the primary particles, and the film thickness range of all coatings may not be 1 to 200 nm. If a film having a film thickness of 1 to 200 nm is formed at least partially on the primary particle surface, a high effect can be obtained. Furthermore, even when the fine particle form and the thin film form form are mixed and LWO is formed on the primary particle surface, a high effect on the battery characteristics can be obtained.
  • the property of the primary particle surface of such a lithium nickel composite oxide can be judged by, for example, observing with a field emission scanning electron microscope or a transmission electron microscope, and the positive electrode active material for the non-aqueous electrolyte secondary battery of the present invention As for, it has been confirmed that lithium tungstate is formed on the primary particle surface of the lithium nickel composite oxide.
  • LWO is formed non-uniformly between lithium nickel composite oxide particles
  • the movement of lithium ions between lithium nickel composite oxide particles becomes non-uniform. Load is applied, which tends to deteriorate cycle characteristics and increase reaction resistance. Therefore, it is preferable that LWO is uniformly formed between the lithium nickel composite oxide particles.
  • the amount of lithium contained in the lithium compound other than lithium tungstate present on the primary particle surface is based on the total amount of the positive electrode active material. 0.05 mass% or less, preferably 0.03 mass% or less.
  • lithium tungstate lithium hydroxide and lithium carbonate are present on the primary particle surface of the lithium nickel composite oxide particles, and the lithium compound that can represent the abundance as an excess amount of these lithium is the conductivity of lithium. It is bad and inhibits the movement of lithium ions from the lithium nickel composite oxide material.
  • the excess lithium amount is preferably 0.01% by mass or more.
  • the positive electrode active material preferably has a sulfate radical (sulfate group) content (also referred to as sulfate group content) of 0.05% by mass or less, more preferably 0.025% by mass or less, and further 0.020% by mass or less. Is preferred.
  • a sulfate radical (sulfate group) content also referred to as sulfate group content
  • the negative electrode material is used in the battery by an amount corresponding to the irreversible capacity of the positive electrode active material.
  • the capacity per weight and volume of the battery as a whole is reduced, and excess lithium accumulated in the negative electrode as an irreversible capacity becomes a problem in terms of safety, which is not preferable.
  • the lower limit of the sulfate group content in the positive electrode active material is not particularly limited, but is, for example, 0.001% by mass or more.
  • the sulfate group content can be determined by converting the measured S (sulfur element) amount into the sulfate group (SO 4 ) amount by IPC emission spectroscopic analysis (ICP method).
  • the amount of tungsten contained in the lithium tungstate is 3.0 atomic% or less, preferably 0.05 to 2.0 atomic%, based on the total number of Ni, Co and M atoms contained in the lithium nickel composite oxide. More preferably, it is 0.08 to 1.0 atomic%.
  • the effect of improving the output characteristics can be obtained by adding 3.0 atomic% or less of tungsten.
  • the amount of LWO formed is sufficient to reduce the positive electrode resistance, and a sufficient primary particle surface that can be contacted with the electrolyte is secured. It is possible to make the amount as high as possible, and it is possible to further achieve both high charge / discharge capacity and output characteristics.
  • the amount of tungsten is less than 0.05 atomic%, the effect of improving the output characteristics may not be sufficiently obtained. If the amount of tungsten exceeds 2.0 atomic%, the amount of the above-mentioned compound formed becomes too large, and lithium nickel Lithium conduction between the composite oxide and the electrolytic solution may be inhibited, and the charge / discharge capacity may be reduced.
  • the total amount of lithium in the positive electrode active material is such that the ratio “Li / Me” of the number of atoms of Ni, Co and M in the positive electrode active material (Me) to the number of Li atoms is 0.95 to 1. 30, preferably 0.97 to 1.25, more preferably 0.97 to 1.20.
  • the Li / Me of the lithium metal composite oxide particles as the core material is preferably 0.95 to 1.25, more preferably 0.95 to 1.20, and a high battery capacity can be obtained.
  • the core material is lithium metal composite oxide particles that do not contain an LW compound, and becomes a positive electrode active material by forming an LW compound on the primary particle surface of the lithium metal composite oxide particles.
  • Li / Me is less than 0.95, the reaction resistance of the positive electrode in the non-aqueous electrolyte secondary battery using the obtained positive electrode active material increases, and the output of the battery decreases.
  • Li / Me exceeds 1.30, the initial discharge capacity of the positive electrode active material decreases and the reaction resistance of the positive electrode also increases. Since the lithium content contained in the LWO is supplied from the lithium nickel composite oxide particles serving as a base material, the amount of lithium in the entire positive electrode active material does not change before and after the formation of the LWO.
  • the Li / Me of the lithium nickel composite oxide particles as the core material after the LWO formation is reduced from that before the formation, the Li / Me of the positive electrode active material as a whole is more preferably 0.97 or more. Discharge capacity and reaction resistance can be obtained. Therefore, in order to obtain a higher battery capacity, it is more preferable that the total amount of lithium in the positive electrode active material is 0.97 to 1.15.
  • the Li / Me of the lithium nickel composite oxide particles as the core material is more preferably 0.95 to 1.15, and further preferably 0.95 to 1.10.
  • the positive electrode active material of the present invention is provided with lithium tungstate on the primary particle surface of lithium nickel composite oxide particles to improve output characteristics and cycle characteristics.
  • the characteristic should just be in the range of the positive electrode active material used normally.
  • the effect of providing lithium tungstate on the primary particle surface of the lithium nickel composite oxide particles is, for example, such as lithium cobalt composite oxide, lithium manganese composite oxide, lithium nickel cobalt manganese composite oxide, etc.
  • the present invention can be applied not only to powders, but also to positive electrode active materials for lithium secondary batteries that are generally used as well as the positive electrode active materials listed in the present invention.
  • Water washing step the composition comprising a base material formula Li z Ni 1-x-y Co x M y O 2 ( however, 0 ⁇ x ⁇ 0.35,0 ⁇ y ⁇ 0.35,0.95 ⁇ z ⁇ 1.30, M is at least one element selected from Mn, V, Mg, Mo, Nb, Ti and Al) and secondary particles formed by agglomeration of primary particles and primary particles
  • a lithium nickel composite oxide powder having a layered crystal structure is mixed with water to form a slurry, washed with water, filtered and solid-liquid separated, and washed with a lithium nickel composite oxide particles. It is a process to obtain.
  • Lithium nickel composite oxide powder especially nickel composite hydroxide, or lithium nickel composite oxide powder obtained by calcining nickel composite oxide and lithium compound, is the unreacted lithium on the surface of secondary particles or primary particles.
  • the compound is present. Therefore, by washing with water, it is possible to remove excess unreacted lithium compounds such as lithium hydroxide and lithium carbonate, sulfate groups, and other impurity elements that deteriorate the battery characteristics from the lithium nickel composite oxide particles. Furthermore, in the water washing step, moisture necessary for promoting the reaction between the lithium compound and the tungsten compound present on the primary particle surface of the lithium nickel composite oxide can be imparted to the lithium nickel composite oxide powder.
  • the slurry concentration is preferably 500 to 2500 g / L, and more preferably 750 to 2000 g / L.
  • the slurry concentration “g / L” means the amount “g” of lithium nickel composite oxide particles mixed with 1 L of water.
  • the slurry concentration is less than 750 g / L, the lithium compound existing on the surface of the lithium nickel composite oxide particles necessary for the reaction with the tungsten compound is washed away, and the reaction between the lithium compound and the tungsten compound in the subsequent process is sufficient. You may not be able to proceed.
  • the slurry concentration exceeds 1500 g / L, more than necessary unreacted lithium compounds and impurity elements may remain, and the battery characteristics may be deteriorated.
  • the washing temperature is preferably 10 to 40 ° C, more preferably 20 to 30 ° C. If the washing temperature is lower than 10 ° C., the lithium compound will remain more than necessary, and the battery characteristics may be deteriorated. Further, when the temperature is higher than 40 ° C., the lithium compound may be washed away excessively.
  • the washing time is not particularly limited, but is preferably about 5 to 60 minutes. If the washing time is short, lithium compounds and impurities on the surface of the lithium nickel composite oxide particles may not be sufficiently removed and may remain. On the other hand, even if the washing time is increased, the cleaning effect is not improved and the productivity is lowered.
  • the water used for forming the slurry is not particularly limited, but water of less than 10 ⁇ S / cm is preferable in terms of electrical conductivity measurement in order to prevent deterioration of battery characteristics due to adhesion of impurities to the positive electrode active material. More preferred is water of cm or less.
  • the method of solid-liquid separation after washing with water is not particularly limited, and is carried out by a commonly used apparatus or method.
  • a suction filter, a centrifuge, a filter press and the like are preferably used.
  • the cake of the washed lithium nickel composite oxide particles obtained by solid-liquid separation after washing with water that is, the moisture content of the washed cake is preferably 2.0% by mass or more. More preferably, the content is set to ⁇ 15.0% by mass, and more preferably 6.5 to 11.5% by mass.
  • the moisture content is set to 2.0% by mass or more, the amount of moisture necessary for promoting the reaction between the lithium compound and the tungsten compound present on the surface of the washed lithium nickel composite oxide particles is more sufficient. Can be.
  • the tungsten compound dissolves, and the tungsten contained in the tungsten compound penetrates into the voids between the primary particles communicating with the outside of the secondary particles and the incomplete grain boundary together with moisture, and enters the primary particle surface.
  • a sufficient amount of tungsten can be dispersed.
  • the productivity can be further improved by shortening the drying time. Moreover, it can further suppress that the elution of lithium from lithium nickel complex oxide particle increases, and the battery characteristic at the time of using the obtained positive electrode active material for the positive electrode of a battery deteriorates.
  • the mixing step the tungsten cake powder not containing lithium is mixed with the washing cake obtained in the water washing step, and the tungsten mixture with the lithium nickel composite oxide particles constituting the washing cake (hereinafter simply referred to as “mixture”). ).
  • the tungsten compound to be used penetrates to the surface of the primary particles inside the secondary particles, it is preferable that the tungsten compound is soluble in water contained in the mixture. Moreover, since the water
  • the tungsten compound does not contain lithium and may be dissolved in water during heating in the heat treatment step, such as tungsten oxide, tungstic acid, ammonium tungstate, sodium tungstate, and the like.
  • Tungsten oxide (WO 3 ) or tungstic acid (WO 3 .H 2 O) which has a low possibility of contamination, is more preferable.
  • the amount of tungsten contained in this mixture is preferably 3.0 atomic percent or less with respect to the total number of Ni, Co and M atoms contained in the lithium nickel composite oxide particles, 0.05 It is more preferably from 3.0 to 3.0 atomic%, further preferably from 0.05 to 2.0 atomic%, particularly preferably from 0.08 to 1.0 atomic%.
  • the amount of tungsten contained in the lithium tungstate in the positive electrode active material can be within a preferable range, and the high charge / discharge capacity and the output characteristics of the positive electrode active material can be further compatible.
  • the cleaning cake and the tungsten compound are preferably mixed at a temperature of 50 ° C. or lower. If the temperature exceeds 50 ° C., the moisture content in the mixture necessary for promoting the reaction between the lithium compound and the tungsten compound may not be obtained by drying during mixing.
  • a general mixer When mixing the lithium nickel composite oxide cleaning cake and the tungsten compound powder, a general mixer can be used.
  • the mixture may be sufficiently mixed using a shaker mixer, a Laedige mixer, a Julia mixer, a V blender or the like so that the shape of the lithium nickel composite oxide is not destroyed.
  • the heat treatment step is a step of heat-treating the tungsten mixture. Furthermore, the lithium compound present on the surface of the primary particles of the lithium nickel composite oxide is reacted with the tungsten compound to dissolve the tungsten compound and disperse tungsten on the surface of the primary particles.
  • the use of a tungsten compound that does not contain lithium and the first heat treatment step in which the tungsten compound is dissolved by reacting the lithium compound with the tungsten compound to disperse tungsten on the primary particle surface are important.
  • the first heat treatment step by heating a mixture containing a tungsten compound not containing lithium, not only the lithium eluted in the mixture but also the lithium compound remaining on the primary particle surface of the lithium nickel composite oxide particles Reacts with the tungsten compound to form lithium tungstate.
  • excess lithium in the obtained positive electrode active material can be greatly reduced and battery characteristics can be improved.
  • the lithium nickel composite oxide particles also have an effect of extracting lithium present in excess, and the extracted lithium reacts with the tungsten compound to form a positive electrode active material. It contributes to the improvement of crystallinity and can improve the battery characteristics.
  • Lithium tungstate formed by such a reaction dissolves with the moisture in the mixture, penetrates to the voids between the primary particles inside the secondary particles and imperfect grain boundaries, and disperses tungsten on the surface of the primary particles. Can do. In order to cause the lithium compound and the tungsten compound to react with each other and disperse tungsten in this manner, it is preferable that the reaction proceeds sufficiently and moisture remains until the tungsten penetrates.
  • the heat treatment temperature in the first heat treatment step is preferably 60 to 80 ° C. If it is less than 60 degreeC, reaction of the lithium compound and tungsten compound which exist on the primary particle surface of lithium nickel complex oxide does not fully occur, and a required amount of lithium tungstate may not be synthesized. On the other hand, when the temperature is higher than 80 ° C., the evaporation of moisture is too early, and the reaction between the lithium compound and the tungsten compound existing on the surface of the primary particles and the penetration of tungsten may not sufficiently proceed.
  • the heating time of the first heat treatment step is not particularly limited, but is preferably 0.5 to 2 hours so that the lithium compound and the tungsten compound react and sufficiently infiltrate tungsten.
  • heat treatment is performed at a temperature higher than the heat treatment temperature of the first heat treatment step, thereby sufficiently evaporating moisture in the mixture and forming a lithium tungstate compound on the primary particle surface of the lithium nickel composite oxide particles.
  • the heat treatment temperature is preferably 100 to 200 ° C. If it is less than 100 degreeC, evaporation of a water
  • the heat treatment time of the second heat treatment step is not particularly limited, but is preferably 1 to 15 hours, and preferably 5 to 12 hours, in order to sufficiently evaporate water and form a lithium tungstate compound.
  • the atmosphere in the heat treatment step is preferably decarboxylated air, an inert gas, or a vacuum atmosphere in order to avoid reaction of moisture in the atmosphere or carbonic acid with lithium on the surface of the lithium nickel composite oxide particles.
  • Non-aqueous electrolyte secondary battery of the present invention includes a positive electrode, a negative electrode, a non-aqueous electrolyte solution, and the like, and includes the same components as a general non-aqueous electrolyte secondary battery.
  • the embodiment described below is merely an example, and the nonaqueous electrolyte secondary battery of the present invention can be variously modified based on the knowledge of those skilled in the art based on the embodiment described in the present specification. It can be implemented in an improved form. Moreover, the use of the nonaqueous electrolyte secondary battery of the present invention is not particularly limited.
  • a positive electrode of a non-aqueous electrolyte secondary battery is produced as follows. First, a powdered positive electrode active material, a conductive material, and a binder are mixed, and, if necessary, a target solvent such as activated carbon and viscosity adjustment is added and kneaded to prepare a positive electrode mixture paste. Each mixing ratio in the positive electrode mixture paste is also an important factor for determining the performance of the non-aqueous electrolyte secondary battery.
  • the content of the positive electrode active material is 60 to 95 parts by mass in the same manner as the positive electrode of a general non-aqueous electrolyte secondary battery, and the conductive material
  • the content of is preferably 1 to 20 parts by mass, and the content of the binder is preferably 1 to 20 parts by mass.
  • the obtained positive electrode mixture paste is applied to the surface of a current collector made of, for example, an aluminum foil and dried to disperse the solvent. If necessary, pressurization may be performed by a roll press or the like to increase the electrode density. In this way, a sheet-like positive electrode can be produced.
  • the sheet-like positive electrode can be cut into an appropriate size or the like according to the target battery and used for battery production.
  • the method for manufacturing the positive electrode is not limited to the illustrated one, and other methods may be used.
  • the conductive agent for example, graphite (natural graphite, artificial graphite, expanded graphite, etc.), carbon black materials such as acetylene black, ketjen black (registered trademark), and the like can be used.
  • the binder plays a role of anchoring the active material particles.
  • PVDF polyvinylidene fluoride
  • PTFE polytetrafluoroethylene
  • fluorine rubber ethylene propylene diene rubber
  • styrene butadiene cellulosic resin
  • An acid or the like can be used.
  • a positive electrode active material, a conductive material, and activated carbon are dispersed, and a solvent that dissolves the binder is added to the positive electrode mixture.
  • a solvent that dissolves the binder is added to the positive electrode mixture.
  • an organic solvent such as N-methyl-2-pyrrolidone can be used as the solvent.
  • Activated carbon can be added to the positive electrode mixture in order to increase the electric double layer capacity.
  • Negative electrode A negative electrode mixture in which a negative electrode active material capable of occluding and desorbing lithium ions is mixed with a binder and an appropriate solvent is added to the negative electrode for the negative electrode. Is applied to the surface of a metal foil current collector such as copper, dried, and compressed to increase the electrode density as necessary.
  • the negative electrode active material for example, natural graphite, artificial graphite, a fired organic compound such as phenol resin, and a powdery carbon material such as coke can be used.
  • a fluorine-containing resin such as PVDF can be used as the negative electrode binder, as in the case of the positive electrode, and a solvent for dispersing these active materials and the binder can be N-methyl-2-pyrrolidone or the like.
  • Organic solvents can be used.
  • (C) Separator A separator is interposed between the positive electrode and the negative electrode.
  • the separator separates the positive electrode and the negative electrode and retains the electrolyte, and a thin film such as polyethylene or polypropylene and a film having many minute holes can be used.
  • Non-aqueous electrolyte The non-aqueous electrolyte is obtained by dissolving a lithium salt as a supporting salt in an organic solvent.
  • organic solvent examples include cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate, and trifluoropropylene carbonate, chain carbonates such as diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate, and dipropyl carbonate, and tetrahydrofuran, A single compound selected from ether compounds such as 2-methyltetrahydrofuran and dimethoxyethane, sulfur compounds such as ethyl methyl sulfone and butane sultone, phosphorus compounds such as triethyl phosphate and trioctyl phosphate, or a mixture of two or more. Can be used.
  • the non-aqueous electrolyte solution may contain a radical scavenger, a surfactant, a flame retardant, and the like.
  • the shape of the nonaqueous electrolyte secondary battery of the present invention composed of the positive electrode, the negative electrode, the separator, and the nonaqueous electrolyte solution described above is various, such as a cylindrical type and a laminated type. can do.
  • the positive electrode and the negative electrode are laminated through a separator to form an electrode body, and the obtained electrode body is impregnated with a non-aqueous electrolyte and communicated with the positive electrode current collector and the outside. Connect between the positive electrode terminal and between the negative electrode current collector and the negative electrode terminal leading to the outside using a current collecting lead, etc., and seal the battery case to complete the non-aqueous electrolyte secondary battery. .
  • the nonaqueous electrolyte secondary battery using the positive electrode active material of the present invention has a high capacity and a high output.
  • the non-aqueous electrolyte secondary battery using the positive electrode active material according to the present invention obtained in a more preferable form has a high initial discharge capacity of 165 mAh / g or more and low when used for the positive electrode of a 2032 type coin battery, for example.
  • a positive electrode resistance is obtained, and a high capacity and a high output are obtained.
  • the measuring method of the positive electrode resistance in this invention is illustrated, it will become as follows.
  • the frequency dependence of the battery reaction is measured by a general AC impedance method as an electrochemical evaluation method
  • the Nyquist diagram based on the solution resistance, the negative electrode resistance and the negative electrode capacity, and the positive electrode resistance and the positive electrode capacity is shown in FIG. Is obtained as follows.
  • the battery reaction at the electrode consists of a resistance component accompanying the charge transfer and a capacity component due to the electric double layer. When these are expressed as an electric circuit, it becomes a parallel circuit of resistance and capacity. It is represented by an equivalent circuit in which circuits are connected in series.
  • Fitting calculation is performed on the Nyquist diagram measured using this equivalent circuit, and each resistance component and capacitance component can be estimated.
  • the positive electrode resistance is equal to the diameter of the semicircle on the low frequency side of the obtained Nyquist diagram. From the above, the positive electrode resistance can be estimated by performing AC impedance measurement on the manufactured positive electrode and performing fitting calculation on the obtained Nyquist diagram with an equivalent circuit.
  • the performance (initial stage discharge capacity, positive electrode resistance, cycling characteristics) was measured.
  • the present invention will be specifically described with reference to examples, but the present invention is not limited to these examples.
  • the coin-type battery 1 is composed of a case 2 and an electrode 3 accommodated in the case 2.
  • the case 2 has a positive electrode can 2a that is hollow and open at one end, and a negative electrode can 2b that is disposed in the opening of the positive electrode can 2a.
  • the negative electrode can 2b is disposed in the opening of the positive electrode can 2a, A space for accommodating the electrode 3 is formed between the negative electrode can 2b and the positive electrode can 2a.
  • the electrode 3 includes a positive electrode 3a, a separator 3c, and a negative electrode 3b, which are stacked in this order.
  • the positive electrode 3a contacts the inner surface of the positive electrode can 2a
  • the negative electrode 3b contacts the inner surface of the negative electrode can 2b. As shown in FIG.
  • the case 2 includes a gasket 2c, and relative movement is fixed by the gasket 2c so as to maintain a non-contact state between the positive electrode can 2a and the negative electrode can 2b. Further, the gasket 2c also has a function of sealing a gap between the positive electrode can 2a and the negative electrode can 2b to block the inside and outside of the case 2 in an airtight and liquid tight manner.
  • the coin type battery 1 shown in FIG. 2 was manufactured as follows. First, 52.5 mg of a positive electrode active material for a non-aqueous electrolyte secondary battery, 15 mg of acetylene black, and 7.5 mg of polytetrafluoroethylene resin (PTFE) are mixed and press-molded to a diameter of 11 mm and a thickness of 100 ⁇ m at a pressure of 100 MPa. A positive electrode 3a was produced. The produced positive electrode 3a was dried at 120 ° C. for 12 hours in a vacuum dryer.
  • PTFE polytetrafluoroethylene resin
  • the coin-type battery 1 shown in FIG. 2 was produced in a glove box in an Ar atmosphere in which the dew point was controlled at ⁇ 80 ° C.
  • the negative electrode 3b a negative electrode sheet in which graphite powder having an average particle diameter of about 20 ⁇ m punched into a disk shape with a diameter of 14 mm and polyvinylidene fluoride were applied to a copper foil was used.
  • the separator 3c a polyethylene porous film having a film thickness of 25 ⁇ m was used.
  • electrolytic solution an equivalent mixed solution (manufactured by Toyama Pharmaceutical Co., Ltd.) of ethylene carbonate (EC) and diethyl carbonate (DEC) using 1M LiClO 4 as a supporting electrolyte was used.
  • the initial discharge capacity and positive electrode resistance showing the performance of the manufactured coin battery 1 were evaluated as follows.
  • the initial discharge capacity is left for about 24 hours after the coin-type battery 1 is manufactured, and after the open circuit voltage OCV (Open Circuit Voltage) is stabilized, the current density with respect to the positive electrode is set to 0.1 mA / cm 2 and the cut-off voltage 4
  • OCV Open Circuit Voltage
  • the capacity when the battery was charged to 3 V, discharged after a pause of 1 hour to a cutoff voltage of 3.0 V was defined as the initial discharge capacity.
  • the Nyquist plot shown in FIG. can get. Since this Nyquist plot is expressed as the sum of the characteristic curve indicating the solution resistance, the negative electrode resistance and its capacity, and the positive electrode resistance and its capacity, the fitting calculation is performed using an equivalent circuit based on this Nyquist plot, and the positive resistance The value of was calculated.
  • the evaluation of the cycle characteristics was performed based on the capacity retention rate after the cycle test and the increase rate of the positive electrode resistance.
  • the cycle test was paused for 10 minutes after the initial discharge capacity measurement, and the charge / discharge cycle was repeated 500 cycles (charge / discharge) including the initial discharge capacity measurement in the same manner as the initial discharge capacity measurement.
  • the discharge capacity at the 500th cycle was measured, and the percentage of the discharge capacity at the 500th cycle with respect to the discharge capacity at the first cycle (initial discharge capacity) was determined as the capacity retention rate (%).
  • the positive electrode resistance after 500 cycles was measured and evaluated by the increase rate (times) from the positive electrode resistance before the cycle test.
  • each sample of the reagent special grade manufactured by Wako Pure Chemical Industries, Ltd. was used for producing the composite hydroxide, producing the positive electrode active material, and the secondary battery.
  • Lithium nickel composite oxidation represented by Li 1.025 Ni 0.91 Co 0.06 Al 0.03 O 2 obtained by a known technique in which an oxide containing Ni as a main component and lithium hydroxide are mixed and fired A powder of physical particles was used as a base material. 100 mL of 25 ° C. pure water was added to a 150 g base material to form a slurry, which was then washed with water for 15 minutes. After washing with water, solid-liquid separation was performed by filtration using a Nutsche. The moisture content of the washed cake was 8.5% by mass.
  • tungsten oxide WO 3
  • WAB Willy et Bacofen
  • the obtained mixed powder was placed in an aluminum bag, purged with nitrogen gas, laminated, and placed in a dryer heated to 80 ° C. for about 1 hour. After heating, it was taken out from the aluminum bag, replaced with a SUS container, left to dry for 10 hours using a vacuum dryer heated to 190 ° C., and then cooled in the furnace.
  • the mixture was pulverized through a sieve having an opening of 38 ⁇ m to obtain a positive electrode active material having a lithium tungstate compound on the primary particle surface.
  • the tungsten content was 0.30 atomic% with respect to the total number of Ni, Co and Al atoms, and Li / Me was 0.99. Was confirmed.
  • required in conversion from the sulfur content measured by the IPC method was 0.01 mass%.
  • the obtained positive electrode active material was embedded in a resin and subjected to a cross section polisher to prepare an observation sample.
  • the cross section was observed by SEM using the sample at a magnification of 5000, the primary particles and the secondary particles were aggregated, and lithium tungstate fine particles were formed on the primary particle surfaces. It was confirmed.
  • the particle diameter of the fine particles was 20 to 150 nm.
  • secondary particles with lithium tungstate formed on the primary particle surface account for 85% of the observed number of secondary particles, and it was confirmed that lithium tungstate was uniformly formed between the secondary particles. It was.
  • Example 1 A positive electrode active material was prepared in the same manner as in Example 1 except that 200 mL of 25 ° C. pure water was added to a 150 g base material to form a slurry, and no tungsten compound was added to the washed cake after solid-liquid separation. Obtained and evaluated. The results are shown in Tables 1 and 2.
  • FIG. 3 shows an example of a cross-sectional SEM observation result of the positive electrode active material obtained in the example of the present invention.
  • the obtained positive electrode active material is composed of secondary particles formed by agglomeration of primary particles and primary particles. It was confirmed that lithium tungstate was formed on the primary particle surface. The position where the lithium tungstate compound is confirmed is indicated by a circle in FIG.
  • Example 6 since the washing temperature was as high as 40 ° C., the amount of the lithium compound present on the primary particle surface of the lithium nickel composite oxide necessary for the reaction with the tungsten compound was increased, and the lithium tungstate compound was increased. When formed, the lithium extracted from the crystal of the lithium nickel composite oxide increased and the crystallinity was lowered, so that the capacity retention rate of the cycle test was slightly lowered. In Example 7, since the moisture content of the cleaning cake was low, the reaction between the lithium compound present on the primary particle surface of the lithium nickel composite oxide and the tungsten compound became insufficient, and the formation of the lithium tungstate compound decreased. Since the dispersibility is reduced and the amount of surplus lithium is slightly increased, the output characteristics and the battery characteristics of the cycle test are slightly decreased.
  • Comparative Example 1 since the lithium tungstate according to the present invention is not formed on the primary particle surface, the positive electrode resistance is significantly high, and it is difficult to meet the demand for higher output. Further, in Comparative Example 2, since lithium tungstate was added to the cleaning cake, surplus lithium in the positive electrode active material was increased, and the output characteristics and the battery characteristics of the cycle test were deteriorated.
  • the non-aqueous electrolyte secondary battery of the present invention is suitable for a power source of a small portable electronic device (such as a notebook personal computer or a mobile phone terminal) that always requires a high capacity, and an electric vehicle battery that requires a high output. Also suitable.
  • a small portable electronic device such as a notebook personal computer or a mobile phone terminal
  • an electric vehicle battery that requires a high output. Also suitable.
  • the nonaqueous electrolyte secondary battery of the present invention has excellent safety, and can be downsized and increased in output, so that it is suitable as a power source for electric vehicles subject to restrictions on mounting space.
  • the present invention can be used not only as a power source for an electric vehicle driven purely by electric energy but also as a power source for a so-called hybrid vehicle used in combination with a combustion engine such as a gasoline engine or a diesel engine.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

 正極材として用いられた場合に高容量、高出力が得られる非水系電解質二次電池用正極活物質を提供することを目的とする。 一般式:LiNi1-x-yCo(MはMn、V、Mg、Mo、Nb、Ti及びAlから選ばれる少なくとも1種の元素)で表される一次粒子及び一次粒子が凝集して構成された二次粒子からなるLiNi複合酸化物粒子を、水と混合して水洗した後に固液分離して洗浄ケーキを得る水洗工程と、その洗浄ケーキに、Liを含有しないW化合物粉末を混合してW混合物を得る混合工程と、そのW混合物を熱処理する熱処理工程を有し、その熱処理工程がW混合物の熱処理により、一次粒子表面にWを分散させる第1熱処理工程と、次に行う第1熱処理工程より高い温度で熱処理して一次粒子表面にタングステン酸リチウム化合物を形成する第2熱処理工程を有することを特徴とする非水系電解質二次電池用正極活物質の製造方法。

Description

非水系電解質二次電池用正極活物質とその製造方法、及び該正極活物質を用いた非水系電解質二次電池
 本発明は、非水系電解質二次電池用正極活物質とその製造方法、及び該正極活物質を用いた非水系電解質二次電池に関するものである。
 近年、携帯電話やノート型パソコンなどの携帯電子機器の普及に伴い、高いエネルギー密度を有する小型で軽量な二次電池の開発が強く望まれている。また、ハイブリット自動車を始めとする電気自動車用の電池として高出力の二次電池の開発が強く望まれている。
 このような要求を満たす二次電池として、リチウムイオン二次電池に代表される非水系電解質二次電池がある。このリチウムイオン二次電池は、負極及び正極と電解液等で構成され、負極及び正極の活物質は、リチウムを脱離及び挿入することの可能な材料が用いられている。
 このような非水系電解質二次電池は、現在研究、開発が盛んに行われているところであるが、中でも、層状またはスピネル型のリチウムニッケル複合酸化物を正極材料に用いたリチウムイオン二次電池は、4V級の高い電圧が得られるため、高いエネルギー密度を有する電池として実用化が進んでいる。
 これまで主に提案されている材料としては、合成が比較的容易なリチウムコバルト複合酸化物(LiCoO)や、コバルトよりも安価なニッケルを用いたリチウムニッケル複合酸化物(LiNiO)、リチウムニッケルコバルトマンガン複合酸化物(LiNi1/3Co1/3Mn1/3)、マンガンを用いたリチウムマンガン複合酸化物(LiMn)などを挙げることができる。
 このうちリチウムニッケル複合酸化物は、サイクル特性が良く、低抵抗で高出力が得られる材料として注目されており、近年では高出力化に必要な低抵抗化が重要視されている。
 上記低抵抗化を実現する方法として異元素の添加が用いられており、とりわけW、Mo、Nb、Ta、Reなどの高価数をとることができる遷移金属が有用とされている。
 例えば、特許文献1には、Mo、W、Nb、Ta及びReから選ばれる1種以上の元素が、Mn、Ni及びCoの合計モル量に対して0.1~5モル%含有されているリチウム二次電池正極材料用リチウム遷移金属系化合物粉体が提案され、一次粒子の表面部分のLi並びにMo、W、Nb、Ta及びRe以外の金属元素の合計に対するMo、W、Nb、Ta及びReの合計の原子比が、一次粒子全体の該原子比の5倍以上であることが好ましいとされている。
 この提案によれば、リチウム二次電池正極材料用リチウム遷移金属系化合物粉体の低コスト化及び高安全性化と高負荷特性、粉体取り扱い性向上の両立を図ることができるとされている。
 しかし、上記リチウム遷移金属系化合物粉体は、原料を液体媒体中で粉砕し、これらを均一に分散させたスラリーを噴霧乾燥し、得られた噴霧乾燥体を焼成することで得ている。そのため、Mo、W、Nb、Ta及びReなどの異元素の一部が層状に配置されているNiと置換してしまい、電池の容量やサイクル特性などの電池特性が低下してしまう問題があった。
 また、特許文献2には、少なくとも層状構造のリチウム遷移金属複合酸化物を有する非水電解質二次電池用正極活物質であって、そのリチウム遷移金属複合酸化物は、一次粒子及びその凝集体である二次粒子の一方または両方からなる粒子の形態で存在し、その粒子の少なくとも表面に、モリブデン、バナジウム、タングステン、ホウ素及びフッ素からなる群から選ばれる少なくとも1種を備える化合物を有する非水電解質二次電池用正極活物質が提案されている。
 これにより、より一層厳しい使用環境下においても優れた電池特性を有する非水電解質二次電池用正極活物質が得られるとされ、特に、粒子の表面にモリブデン、バナジウム、タングステン、ホウ素及びフッ素からなる群から選ばれる少なくとも1 種を有する化合
物を有することにより、熱安定性、負荷特性及び出力特性の向上を損なうことなく、初期特性が向上するとしている。
 しかしながら、このモリブデン、バナジウム、タングステン、ホウ素及びフッ素からなる群から選ばれる少なくとも1種の添加元素による効果は、初期特性、すなわち初期放電容量及び初期効率の向上にあるとされ、出力特性に言及したものではない。また、開示されている製造方法によれば、添加元素をリチウム化合物と同時に熱処理した水酸化物と混合して焼成するため、添加元素の一部が層状に配置されているニッケルと置換してしまい電池特性の低下を招く問題があった。
 さらに、特許文献3には、正極活物質の周りにTi、Al、Sn、Bi、Cu、Si、Ga、W、Zr、B、Moから選ばれた少なくとも一種を含む金属及びまたはこれら複数個の組み合わせにより得られる金属間化合物、及びまたは酸化物を被覆した正極活物質が提案されている。
 このような被覆により、酸素ガスを吸収させ安全性を確保できるとしているが、出力特性に関しては全く開示されていない。また、開示されている製造方法は、遊星ボールミルを用いて被覆するものであり、このような被覆方法では、正極活物質に物理的なダメージを与えてしまい、電池特性が低下してしまう。
 また、特許文献4には、ニッケル酸リチウムを主体とする複合酸化物粒子にタングステン酸化合物を被着させて加熱処理を行ったもので、炭酸イオンの含有量が0.15重量%以下である正極活物質が提案されている。
 この提案によれば、正極活物質の表面にタングステン酸化合物またはタングステン酸化合物の分解物が存在し、充電状態における複合酸化物粒子表面の酸化活性を抑制するため、非水電解液等の分解によるガス発生を抑制することができるとしているが、出力特性に関しては全く開示されていない。
 さらに、開示されている製造方法は、好ましくは被着成分を溶解した溶液の沸点以上に加熱した複合酸化物粒子に、タングステン酸化合物とともに硫酸化合物、硝酸化合物、ホウ酸化合物またはリン酸化合物を被着成分として溶媒に溶解した溶液を被着させるものであり、溶媒を短時間で除去するため、複合酸化物粒子表面にタングステン化合物が十分に分散されず、均一に被着されないという問題点がある。
 また、リチウムニッケル複合酸化物の高出力化に関する改善も行われている。
 例えば特許文献5には、一次粒子および、その一次粒子が凝集して構成された二次粒子からなるリチウムニッケル複合酸化物であって、そのリチウムニッケル複合酸化物の表面に、LiWO、LiWO、Liのいずれかで表されるタングステン酸リチウムを含む微粒子を有する非水系電解質二次電池用正極活物質が提案され、高容量とともに高出力が得られるとされている。
 しかしながら、高容量が維持されながら高出力化されているものの、更なる高容量化が要求されている。
特開2009‐289726号公報 特開2005‐251716号公報 特開平11‐16566号公報 特開2010‐40383号公報 特開2013‐125732号公報
 本発明は係る問題点に鑑み、正極材に用いられた場合に高容量とともに高出力が得られる非水系電解質二次電池用正極活物質を提供することを目的とする。
 本発明者は、上記課題を解決するため、非水系電解質二次電池用正極活物質として用いられているリチウムニッケル複合酸化物の粉体特性、及び電池の正極抵抗に対する影響について鋭意研究したところ、リチウムニッケル複合酸化物粉末を構成する一次粒子表面に、タングステン酸リチウム化合物を形成させることで、電池の正極抵抗を低減して出力特性を向上させることが可能であることを見出した。
 さらに、その製造方法として、リチウムニッケル複合酸化物を水洗し、その洗浄ケーキにタングステン化合物を混合し、熱処理することにより、リチウムニッケル複合酸化物の一次粒子表面にタングステン酸リチウム化合物を形成させることが可能であることを見出し、本発明を完成するに至った。
 すなわち、本発明の第1の発明は、一般式LiNi1-x-yCo(ただし、0≦x≦0.35、0≦y≦0.35、0.95≦z≦1.30、MはMn、V、Mg、Mo、Nb、Ti及びAlから選ばれる少なくとも1種の元素)で表される一次粒子及び、一次粒子が凝集して形成された二次粒子からなる層状構造の結晶構造を有するリチウムニッケル複合酸化物粉末を、水と混合してスラリーを形成して、前記リチウムニッケル複合酸化物粉末を水洗した後に固液分離し、洗浄されたリチウムニッケル複合酸化物粒子で構成される洗浄ケーキを得る水洗工程と、その洗浄ケーキに、リチウムを含有しないタングステン化合物粉末を混合してタングステン混合物を得る混合工程と、得られたタングステン混合物を熱処理する熱処理工程を有し、その熱処理工程が、タングステン混合物を熱処理することにより、洗浄後リチウムニッケル複合酸化物の一次粒子表面に存在するリチウム化合物とタングステン化合物を反応させてタングステン化合物を溶解して、一次粒子表面にタングステンを分散させたリチウムニッケル複合酸化物粒子を形成する第1熱処理工程と、第1熱処理工程の次に行う、第1熱処理工程より高い温度で熱処理することにより、リチウムニッケル複合酸化物の一次粒子表面にタングステン酸リチウム化合物を形成したリチウムニッケル複合酸化物粒子を形成する第2熱処理工程を有することを特徴とする非水系電解質二次電池用正極活物質の製造方法である。
 本発明の第2の発明は、第1の発明の水洗工程におけるスラリー濃度が、500~2500g/Lであることを特徴とする非水系電解質二次電池用正極活物質の製造方法である。
 本発明の第3の発明は、第1及び第2の発明の水洗工程におけるスラリーの温度が、20~30℃であることを特徴とする非水系電解質二次電池用正極活物質の製造方法である。
 本発明の第4の発明は、第1~3の発明の水洗工程において、得られる洗浄ケーキの水分率が、3.0~15.0質量%に制御されることを特徴とする非水系電解質二次電池用正極活物質の製造方法である。
 本発明の第5の発明は、第1~4の発明における混合工程において用いるリチウムを含有しないタングステン化合物が、酸化タングステン(WO)、またはタングステン酸(WO・HO)であることを特徴とする非水系電解質二次電池用正極活物質の製造方法である。
 本発明の第6の発明は、第1~5の発明におけるタングステン混合物に含まれるタングステン量が、リチウムニッケル複合酸化物粒子に含まれるNi、Co及びMの原子数の合計に対して、0.05~2.0原子%であることを特徴とする非水系電解質二次電池用正極活物質の製造方法である。
 本発明の第7の発明は、第1~6の発明における熱処理工程における雰囲気が、脱炭酸空気、不活性ガス、真空のいずれかであることを特徴とする非水系電解質二次電池用正極活物質の製造方法である。
 本発明の第8の発明は、第1~7の発明の第1熱処理工程における熱処理温度が、60~80℃であることを特徴とする非水系電解質二次電池用正極活物質の製造方法である。
 本発明の第9の発明は、第1~8の発明の第2熱処理工程における熱処理の温度が、100~200℃であることを特徴とする非水系電解質二次電池用正極活物質の製造方法である。
 本発明の第10の発明は、一次粒子及び、一次粒子が凝集して形成された二次粒子からなる層状構造の結晶構造を有するリチウムニッケル複合酸化物粉末から構成された非水系電解質二次電池用正極活物質であって、一般式:LiNi1-x-yCo2+α(ただし、0≦x≦0.35、0≦y≦0.35、0.95≦z≦1.30、0<a≦0.03、0≦α≦0.15、Mは、Mn、V、Mg、Mo、Nb、TiおよびAlから選ばれる少なくとも1種の元素)で表され、そのリチウムニッケル複合酸化物の一次粒子表面にタングステン酸リチウムが存在し、そのリチウムニッケル複合酸化物の一次粒子表面に存在するタングステン酸リチウム化合物以外のリチウム化合物に含有されるリチウム量が、正極活物質の全量に対して0.05質量%以下であることを特徴とする非水系電解質二次電池用正極活物質である。
 本発明の第11の発明は、第10の発明における正極活物質に含まれタングステン量が、リチウム金属複合酸化物粉末に含まれるNi、Co及びMの原子数の合計に対して0.05~2.0原子%であることを特徴とする非水系電解質二次電池用正極活物質である。
 本発明の第12の発明は、第10及び第11の発明におけるタングステン酸リチウムが、粒子径1~500nmの微粒子として前記リチウム金属複合酸化物の一次粒子表面に存在することを特徴とする非水系電解質二次電池用正極活物質である。
 本発明の第13の発明は、第10及び第11の発明におけるタングステン酸リチウムが、膜厚1~200nmの被膜として前記リチウム金属複合酸化物の一次粒子表面に存在することを特徴とする非水系電解質二次電池用正極活物質である。
 本発明の第14の発明は、第10及び第11の発明におけるタングステン酸リチウムが、粒子径1~500nmの微粒子及び膜厚1~200nmの被膜の両形態として前記リチウム金属複合酸化物の一次粒子表面に存在することを特徴とする非水系電解質二次電池用正極活物質である。
 本発明の第15の発明は、第10~第14の発明において、硫酸根含有量が0.05質量%以下であることを特徴とする非水系電解質二次電池用正極活物質である。
 本発明の第16の発明は、第10~15の発明で得られた非水系電解質二次電池用正極活物質を含む正極を有する非水系電解質二次電池である。
 本発明によれば、電池の正極材に用いた場合に、高容量とともに高出力が実現可能であり、サイクル特性が良好な非水系電解質二次電池用正極活物質が得られる。
 さらに、その製造方法は、容易で工業的規模での生産に適したものであり、その工業的価値は極めて大きい。
インピーダンス評価の測定例と解析に使用した等価回路の概略説明図である。 電池評価に使用したコイン型電池1の概略断面図である。 本発明のリチウムニッケル複合酸化物の断面SEM写真(観察倍率10000倍)である。
 以下、本発明について、まず本発明の非水系電解質二次電池用正極活物質について説明した後、その製造方法と本発明による正極活物質を用いた非水系電解質二次電池について説明する。
(1)非水系電解質二次電池用正極活物質
 本発明の非水系電解質二次電池用正極活物質は、
 一次粒子と、一次粒子が凝集して形成された二次粒子とからなる層状構造の結晶構造を有するリチウムニッケル複合酸化物粉末から構成された非水系電解質二次電池用正極活物質(以下、単に正極活物質ということがある。)であって、正極活物質の組成が一般式:LiNi1-x-yCo2+α(ただし、0≦x≦0.35、0≦y≦0.35、0.95≦z≦1.30、0<a≦0.03、0≦α≦0.15、Mは、Mn、V、Mg、Mo、Nb、TiおよびAlから選ばれる少なくとも1種の元素)で表され、そのリチウムニッケル複合酸化物の一次粒子表面に、タングステン酸リチウムが存在し、その一次粒子表面に存在するタングステン酸リチウム以外のリチウム化合物に含有されるリチウム量が、正極活物質の全量に対して0.05質量%以下であることを特徴とするものである。
 本発明においては、母材として組成が一般式:LiNi1-x-yCo(ただし、0≦x≦0.35、0≦y≦0.35、0.95≦z≦1.30、MはMn、V、Mg、Mo、Nb、Ti及びAlから選ばれる少なくとも1種の元素)で表されるリチウムニッケル複合酸化物を用いることにより、高い充放電容量を得るものである。より高い充放電容量を得るためには、上記一般式において、x+y≦0.2、0.95≦z≦1.10とすることが好ましい。
 さらに、その母材が一次粒子と一次粒子が凝集して形成された二次粒子とから構成されたリチウム金属複合酸化物粉末(以下、二次粒子と単独で存在する一次粒子を合わせて「リチウム金属複合酸化物粒子」ということがある。)の形態を採り、そのリチウムニッケル複合酸化物の一次粒子表面にタングステン酸リチウムを存在させるとともに、リチウムニッケル複合酸化物の一次粒子表面に存在するタングステン酸リチウム以外のリチウム化合物に含有されるリチウム量を正極活物質の全量に対して0.05質量%以下にすることにより、充放電容量を維持しながら出力特性を向上させ、さらにサイクル特性を向上させたものである。
 一般的に、正極活物質の表面が異種化合物により完全に被覆されてしまうと、リチウムイオンの移動(インターカレーション)が大きく制限されるため、結果的にリチウムニッケル複合酸化物の持つ高容量という長所が消されてしまう。
 対して、本発明においては、リチウムニッケル複合酸化物粒子の表面及び内部の一次粒子の表面にタングステン酸リチウム(以下、タングステン酸リチウムを「LWO」ということがある。)を形成させているが、このLWOは、リチウムイオン伝導性が高く、リチウムイオンの移動を促す効果がある。このため、リチウムニッケル複合酸化物の一次粒子表面にLWOを形成させることで、電解液との界面でLiの伝導パスを形成することから、正極活物質の反応抵抗(以下、「正極抵抗」ということがある。)を低減して出力特性を向上させるものである。
 すなわち、正極抵抗が低減されることで、電池内で損失される電圧が減少し、実際に負荷側に印加される電圧が相対的に高くなるため、高出力が得られる。また、負荷側への印加電圧が高くなることで、正極でのリチウムの挿抜が十分に行われるため、電池の充放電容量(以下、「電池容量」ということがある。)も向上するものである。
 ここで、正極活物質の二次粒子表面のみを層状物で被覆した場合には、その被覆厚みに関わらず、比表面積の低下が起こるため、たとえ被覆物が高いリチウムイオン伝導性を持っていたとしても、電解液との接触面積が小さくなってしまう。また、層状物を形成すると、化合物の形成が特定の粒子表面に集中するという結果になり易い。
 したがって、被覆物としての層状物が高いリチウムイオン伝導性を持っていることにより、充放電容量の向上、正極の反応抵抗の低減という効果が得られるものの、十分ではなく改善の余地がある。
 さらに、電解液との接触は、一次粒子表面で起こるため、一次粒子表面にLWOが形成されていることが重要である。
 ここで、本発明における一次粒子表面とは、二次粒子の外面で露出している一次粒子の表面と二次粒子外部と通じて電解液が浸透可能な二次粒子の表面近傍及び内部の空隙に露出している一次粒子の表面を含むものである。さらに、一次粒子間の粒界であっても一次粒子の結合が不完全で電解液が浸透可能な状態となっていれば含まれるものである。
 この電解液との接触は、一次粒子が凝集して構成された二次粒子の外面のみでなく、上記二次粒子の表面近傍及び内部の空隙、さらには上記不完全な粒界でも生じるため、上記一次粒子の表面にもLWOを形成させ、リチウムイオンの移動を促すことが必要である。
 即ち、電解液との接触が可能な一次粒子表面のより多くににLWOを形成させることで、正極活物質の反応抵抗をより一層低減させることが可能となる。
 したがって、正極抵抗低減のより高い効果を得るため、LWOは、粒子径1~500nmの微粒子として一次粒子表面に存在することが好ましい。
 このような形態を採ることにより、電解液との接触面積を十分なものとして、リチウムイオン伝導性を効果的に向上できるため、充放電容量を向上させるとともに正極の反応抵抗をより効果的に低減させることができる。
 その粒子径が1nm未満では、微細な粒子が十分なリチウムイオン伝導性を有しない場合がある。また、粒子径が500nmを超えると、一次粒子表面における微粒子の形成が不均一になり、反応抵抗の低減効果が十分に得られない場合があるためである。微粒子を一次粒子表面に均一に形成させてより高い効果を得るため、微粒子の粒径を1~300nmとすることがより好ましく、5~200nmとすることがさらに好ましい。
 ここで、LWOは完全に一次粒子表面の全面において形成されている必要はなく、点在している状態でもよい。
 点在している状態でも、リチウムニッケル複合酸化物粒子の外面及び内部に露出している一次粒子表面にLWOが形成されていれば、反応抵抗の低減効果が得られる。また、微粒子は、全てが粒子径1~500nmの微粒子として存在する必要がなく、好ましくは一次粒子表面に形成された微粒子の個数で50%以上が、1~500nmの粒子径範囲で形成されていれば高い効果が得られる。
 一方、一次粒子表面を薄膜で被覆すると、比表面積の低下を抑制しながら、電解液との界面でLiの伝導パスを形成させることができ、より高い充放電容量の向上、反応抵抗の低減という効果が得られる。このような薄膜状のLWOにより一次粒子表面を被覆する場合には、膜厚1~200nmの被膜としてリチウム金属複合酸化物の一次粒子表面に存在することが好ましい。より高い上記効果を得るためには、膜厚は1~150nmがより好ましく、膜厚は1~100nmがさらに好ましい。
 その膜厚が1nm未満では、被膜が十分なリチウムイオン伝導性を有しない場合がある。また、膜厚が200nmを超えると、リチウムイオン伝導性が低下し、反応抵抗低減のより高い効果が得られない場合がある。
 しかし、この被膜は、一次粒子表面上で部分的に形成されていてもよく、全ての被膜の膜厚範囲が1~200nmでなくてもよい。一次粒子表面に少なくとも部分的に膜厚が1~200nmの被膜が形成されていれば、高い効果が得られる。
 さらに、微粒子形態と薄膜の被膜形態が混在して一次粒子表面にLWOが形成されている場合にも、電池特性に対する高い効果が得られる。
 このようなリチウムニッケル複合酸化物の一次粒子表面の性状は、例えば、電界放射型走査電子顕微鏡、透過型電子顕微鏡で観察することにより判断でき、本発明の非水系電解質二次電池用正極活物質については、リチウムニッケル複合酸化物の一次粒子表面にタングステン酸リチウムが形成されていることを確認している。
 一方、リチウムニッケル複合酸化物粒子間で不均一にLWOが形成された場合は、リチウムニッケル複合酸化物粒子間でのリチウムイオンの移動が不均一となるため、特定のリチウムニッケル複合酸化物粒子に負荷がかかり、サイクル特性の悪化や反応抵抗の上昇を招きやすい。
 したがって、リチウムニッケル複合酸化物粒子間においても均一にLWOが形成されていることが好ましい。
 さらに、本発明の正極活物質においては、一次粒子表面に存在するタングステン酸リチウム以外のリチウム化合物に含有されるリチウム量(以下、「余剰リチウム量」という。)は、正極活物質の全量に対して0.05質量%以下、好ましくは0.03質量%以下である。
 このように余剰リチウム量を制限することにより、高い充放電容量と出力特性を得るとともにサイクル特性を向上させている。
 リチウムニッケル複合酸化物粒子の一次粒子表面には、タングステン酸リチウム以外にも水酸化リチウムおよび炭酸リチウムが存在し、これらの余剰リチウム量として存在量を表すことができるリチウム化合物は、リチウムの伝導性が悪く、リチウムニッケル複合酸化物質からのリチウムイオンの移動を阻害している。
 すなわち、余剰リチウム量を低減することで、タングステン酸リチウムによるリチウムイオンの移動促進効果を高め、充放電時のリチウムニッケル複合酸化物への負荷を低減してサイクル特性を向上させることができる。
 また、余剰リチウム量を制御することで、リチウムニッケル複合酸化物粒子間でのリチウムイオンの移動も均一化され、特定のリチウムニッケル複合酸化物粒子に負荷がかかることが抑制され、サイクル特性を向上させることができる。
 余剰リチウムが少なくなり過ぎることは、タングステン酸リチウムが形成される際にリチウムニッケル複合酸化物粒子の結晶中から過剰にリチウムが引き抜かれていることを示している。したがって、電池特性の低下を抑制するため、余剰リチウム量は0.01質量%以上であることが好ましい。
 さらに、正極活物質は、硫酸根(硫酸基)含有量(硫酸基含有量とも称す)が好ましくは0.05質量%以下、より好ましくは0.025質量%以下、さらに0.020質量%以下が好ましい。
 このように正極活物質中の硫酸根含有量が、0.05質量%を超えると、電池を構成する際、正極活物質の不可逆容量に相当する分、負極材料を余計に電池に使用せざるを得ず、その結果、電池全体としての重量当たり及び体積当たりの容量が小さくなる上、不可逆容量として負極に蓄積された余分なリチウムは安全性の面からも問題となるため好ましくない。また、正極活物質中の硫酸根含有量の下限は、特に限定されないが、例えば、0.001質量%以上である。
 硫酸根含有量は、IPC発光分光分析(ICP法)により、測定されたS(硫黄元素)量を、硫酸根(SO)量に換算して求めることができる。
 タングステン酸リチウムに含まれるタングステン量は、リチウムニッケル複合酸化物に含まれるNi、Co及びMの原子数の合計に対して、3.0原子%以下、好ましくは0.05~2.0原子%、より好ましくは0.08~1.0原子%である。3.0原子%以下のタングステンを添加することで、出力特性の改善効果が得られる。
 さらに、0.05~2.0原子%とすることにより、LWOの形成量を正極抵抗を低減させるために十分な量とするとともに、電解液との接触が可能な一次粒子表面を十分に確保できる量とすることができ、高い充放電容量と出力特性をさらに両立することができる。
 タングステン量が0.05原子%未満では、出力特性の改善効果が十分に得られない場合があり、タングステン量が2.0原子%を超えると、形成される上記化合物が多くなり過ぎてリチウムニッケル複合酸化物と電解液のリチウム伝導が阻害され、充放電容量が低下することがある。
 また、正極活物質全体のリチウム量は、正極活物質中のNi、Co及びMの原子数の和(Me)とLiの原子数との比「Li/Me」が、0.95~1.30であり、0.97~1.25であることが好ましく、0.97~1.20であることがより好ましい。これにより、芯材としてのリチウム金属複合酸化物粒子のLi/Meを好ましくは0.95~1.25、より好ましくは0.95~1.20として高い電池容量を得るとともに、LWOの形成に十分な量のリチウムを確保することができる。ここで、芯材とはLW化合物を含まないリチウム金属複合酸化物粒子であり、リチウム金属複合酸化物粒子の一次粒子表面にLW化合物が形成されることで正極活物質となる。
 そのLi/Meが0.95未満であると、得られた正極活物質を用いた非水系電解質二次電池における正極の反応抵抗が大きくなるため、電池の出力が低くなってしまう。また、Li/Meが1.30を超えると、正極活物質の初期放電容量が低下するとともに、正極の反応抵抗も増加してしまう。LWOに含まれるリチウム分は、母材となるリチウムニッケル複合酸化物粒子から供給されるため、LWOの形成前後において正極活物質全体のリチウム量は変化しない。
 すなわち、LWO形成後の芯材としてのリチウムニッケル複合酸化物粒子のLi/Meは、形成前より減少するため、正極活物質全体のLi/Meを0.97以上とすることでより良好な充放電容量と反応抵抗を得ることができる。
 したがって、より高い電池容量を得るためには、正極活物質全体のリチウム量は、0.97~1.15であることがより好ましい。また、芯材としてのリチウムニッケル複合酸化物粒子のLi/Meは、0.95~1.15であることがより好ましく、0.95~1.10であることがさらに好ましい。
 本発明の正極活物質は、リチウムニッケル複合酸化物粒子の一次粒子表面にタングステン酸リチウムを設け、出力特性およびサイクル特性を改善するもので、正極活物質としての粒径、タップ密度などの粉体特性は、通常に用いられる正極活物質の範囲内であればよい。
 また、リチウムニッケル複合酸化物粒子の一次粒子表面に、タングステン酸リチウムを設けることによる効果は、たとえば、リチウムコバルト系複合酸化物、リチウムマンガン系複合酸化物、リチウムニッケルコバルトマンガン系複合酸化物などの粉末、さらに本発明で掲げた正極活物質だけでなく一般的に使用されるリチウム二次電池用正極活物質にも適用できる。
(2)正極活物質の製造方法
 以下、本発明の非水系電解質二次電池用正極活物質の製造方法を工程ごとに詳細に説明する。
[水洗工程]
 水洗工程は、母材となるその組成が一般式LiNi1-x-yCo(ただし、0≦x≦0.35、0≦y≦0.35、0.95≦z≦1.30、MはMn、V、Mg、Mo、Nb、Ti及びAlから選ばれる少なくとも1種の元素)で表される一次粒子及び一次粒子が凝集して形成された二次粒子からなる層状構造の結晶構造を有するリチウムニッケル複合酸化物粉末を、水と混合してスラリーを形成して水洗し、濾過及び固液分離して洗浄されたリチウムニッケル複合酸化物粒子からなる洗浄ケーキを得る工程である。
 リチウムニッケル複合酸化物粉末、特にニッケル複合水酸化物、もしくはニッケル複合酸化物とリチウム化合物を焼成して得られたリチウムニッケル複合酸化物粉末は、二次粒子や一次粒子の表面に未反応のリチウム化合物が存在している。
 したがって、水洗することで、リチウムニッケル複合酸化物粒子から電池特性を劣化させる過剰な水酸化リチウムや炭酸リチウムなどの未反応のリチウム化合物や硫酸根、その他の不純物元素を除去することができる。
 さらに、水洗工程では、リチウムニッケル複合酸化物の一次粒子表面に存在するリチウム化合物とタングステン化合物との反応を促進させるために必要な水分をリチウムニッケル複合酸化物粉末に付与することができる。
 このようなリチウムニッケル複合酸化物粉末に対する水洗は、スラリー濃度を500~2500g/Lとすることが好ましく、750~2000g/Lとすることがより好ましい。ここで、スラリー濃度は「g/L」は、水1Lと混合するリチウムニッケル複合酸化物粒子の量「g」を意味する。
 スラリー濃度が750g/L未満では、タングステン化合物との反応に必要なリチウムニッケル複合酸化物粒子の表面に存在するリチウム化合物まで洗い流されてしまい、後工程でのリチウム化合物とタングステン化合物との反応が十分に進まないことがある。
 一方、スラリー濃度が1500g/Lを超えると、必要以上の未反応のリチウム化合物や不純物元素が残存し、電池特性を劣化させてしまうことがある。
 水洗温度は、10~40℃とすることが好ましく、20~30℃とすることがより好ましい。水洗温度が10℃より低いと必要以上にリチウム化合物が残存することになり、電池特性を劣化させてしまうことがある。また、40℃より高いとリチウム化合物が過剰に洗い流されてしまうことがある。
 水洗時間は特に限定されないが、5~60分間程度とすることが好ましい。水洗時間が短いと、リチウムニッケル複合酸化物の粒子表面のリチウム化合物や不純物が十分に除去されず、残留することがある。一方、水洗時間を長くしても洗浄効果の改善はなく、生産性が低下する。
 スラリーを形成するために使用する水は、特に限定されないが、正極活物質への不純物の付着による電池特性の低下を防ぐ上では、電気伝導率測定で10μS/cm未満の水が好ましく、1μS/cm以下の水がより好ましい。
 水洗後の固液分離の方法は、特に限定されるものではなく、通常に用いられる装置や方法で実施される。例えば、吸引濾過機、遠心機、フィルタープレスなどが好ましく用いられる。
 ここで、水洗後の固液分離によって得られた洗浄されたリチウムニッケル複合酸化物粒子からなるケーキ、すなわち、洗浄ケーキの水分率は、2.0質量%以上とすることが好ましく、3.0~15.0質量%とすることがより好ましく、6.5~11.5質量%とすることがより好ましい。
 水分率を2.0質量%以上とすることで、その洗浄されたリチウムニッケル複合酸化物粒子の表面に存在するリチウム化合物とタングステン化合物との反応を促進させるために必要な水分の量をより十分なものとすることできる。この十分な量の水により、タングステン化合物が溶解し、二次粒子外部と通じている一次粒子間の空隙や不完全な粒界まで水分とともにタングステン化合物に含まれるタングステンが浸透し、一次粒子表面に十分な量のタングステンを分散させることができる。
 また、より好ましくは3.0~15.0質量%、さらに好ましくは6.5~11.5質量%とすることで、洗浄ケーキのスラリー化による高粘度化を抑制してタングステン化合物の混合を容易にするとともに、乾燥時間を短縮して生産性をさらに向上させることができる。また、リチウムニッケル複合酸化物粒子からのリチウムの溶出が増加し、得られる正極活物質を電池の正極に用いた際の電池特性が悪化することをさらに抑制することができる。
[混合工程]
 混合工程は、水洗工程で得られた洗浄ケーキに、リチウムを含有しないタングステン化合物粉末を混合して、洗浄ケーキを構成するリチウムニッケル複合酸化物粒子とのタングステン混合物(以下、単に「混合物」という。)を得る工程である。
 使用するタングステン化合物は、二次粒子内部の一次粒子の表面まで浸透させるため、混合物に含有される水分に溶解する水溶性であることが好ましい。また、混合物中の水分はリチウムの溶出によってアルカリ性となるため、アルカリ性において溶解可能な化合物であってもよい。また、混合物は、後工程の熱処理工程で加熱されるため、常温では水に溶解させることが困難であっても、熱処理時の加温で水に溶解する、もしくはリチウムニッケル複合酸化物粒子表面のリチウム化合物と反応してタングステン酸リチウムを形成して溶解するものあればよい。
 さらに、溶解したタングステン化合物は、二次粒子内部の一次粒子の表面まで浸透できる量があればよいため、混合後、さらには加熱後に一部は固体の状態となっていてもよい。
 このように、タングステン化合物は、リチウムを含まず、かつ熱処理工程時の加熱の際に、水に溶解可能な状態となっていればよく、酸化タングステン、タングステン酸、タングステン酸アンモニウム、タングステン酸ナトリウムなどが好ましく、不純物混入の可能性が低い酸化タングステン(WO)またはタングステン酸(WO・HO)がより好ましい。
 さらに、この混合物中に含まれるタングステン量を、リチウムニッケル複合酸化物粒子に含まれるNi、CoおよびMの原子数の合計に対して、3.0原子%以下とすることが好ましく、0.05~3.0原子%とすることがより好ましく、0.05~2.0原子%とすることがさらに好ましく、0.08~1.0原子%とすることが特に好ましい。
 これにより、正極活物質中におけるタングステン酸リチウムに含まれるタングステン量を好ましい範囲とすることができ、正極活物質の高い充放電容量と出力特性をさらに両立することができる。
 また、洗浄ケーキとタングステン化合物との混合は、50℃以下の温度で行うことが好ましい。
 50℃を超える温度とすると、混合中の乾燥によりリチウム化合物とタングステン化合物との反応を促進させるために必要な混合物中の水分量が得られないことがある。
 リチウムニッケル複合酸化物の洗浄ケーキとタングステン化合物の粉末を混合する際には、一般的な混合機を用いることができる。例えば、シェーカーミキサーやレーディゲミキサー、ジュリアミキサー、Vブレンダーなどを用いてリチウムニッケル複合酸化物の形骸が破壊されない程度で十分に混合してやればよい。
[熱処理工程]
 熱処理工程は、タングステン混合物を熱処理する工程であり、さらにリチウムニッケル複合酸化物の一次粒子表面に存在するリチウム化合物とタングステン化合物を反応させてタングステン化合物を溶解させ、一次粒子表面にタングステンを分散させる第1熱処理工程と、その第1熱処理工程の熱処理温度より高い温度で熱処理することにより、リチウムニッケル複合酸化物の一次粒子表面にタングステン酸リチウム化合物を形成させる第2熱処理工程を有するものである。
 ここで、リチウムを含有しないタングステン化合物を用いることと、リチウム化合物とタングステン化合物を反応させてタングステン化合物を溶解させ、一次粒子表面にタングステンを分散させる第1熱処理工程が重要である。
 第1熱処理工程において、リチウムを含有しないタングステン化合物を含む混合物を加熱することで、混合物中に溶出しているリチウムのみならず、リチウムニッケル複合酸化物粒子の一次粒子表面に残存しているリチウム化合物がタングステン化合物と反応してタングステン酸リチウムが形成される。このタングステン酸リチウムの形成により、得られる正極活物質における余剰リチウムを大幅に低減して電池特性を向上させることができる。
 さらには、リチウムニッケル複合酸化物粒子中に過剰に存在するリチウムを引き抜く効果も有し、その引き抜かれたリチウムはタングステン化合物と反応し、正極活物質となった際のリチウムニッケル複合酸化物粒子の結晶性の向上にも寄与し、電池特性をより高いものとすることができる。
 このような反応によって形成されたタングステン酸リチウムは、混合物中の水分で溶解し、二次粒子内部の一次粒子間の空隙や不完全な粒界まで浸透し、一次粒子表面にタングステンを分散させることができる。
 このようにリチウム化合物とタングステン化合物と反応させ、タングステンを分散させるためには、反応が十分に進行し、かつタングステンが浸透するまで水分が残存することが好ましい。
 したがって、第1熱処理工程における熱処理温度は、60~80℃とすることが好ましい。
 60℃未満では、リチウムニッケル複合酸化物の一次粒子表面に存在するリチウム化合物とタングステン化合物の反応が十分に起こらず、必要量のタングステン酸リチウムが合成されないことがある。一方、80℃より高い場合は、水分の蒸発が早過ぎるため、一次粒子の表面に存在するリチウム化合物とタングステン化合物との反応とタングステンの浸透が十分に進まないことがある。
 第1熱処理工程の加熱時間は、特に限定されないが、リチウム化合物とタングステン化合物が反応し、タングステンを十分に浸透させるため、0.5~2時間とすることが好ましい。
 第2熱処理工程は、第1熱処理工程の熱処理温度より高い温度で熱処理することにより、混合物中の水分を十分に蒸発させ、リチウムニッケル複合酸化物粒子の一次粒子表面にタングステン酸リチウム化合物を形成させるものであり、その熱処理温度は、100~200℃とすることが好ましい。
 100℃未満では、水分の蒸発が十分ではなく、タングステン酸リチウム化合物が十分に形成されない場合がある。一方、200℃を超えると、タングステン酸リチウムを介してリチウムニッケル複合酸化物粒子同士がネッキングを形成したり、リチウムニッケル複合酸化物粒子の比表面積が大きく低下したりすることで電池特性が低下してしまうことがある。
 第2熱処理工程の熱処理時間は、特に限定されないが、水分を十分に蒸発させてタングステン酸リチウム化合物を形成させるために1~15時間とすることが好ましく、5~12時間とすることが好ましい。
 熱処理工程における雰囲気は、雰囲気中の水分や炭酸とリチウムニッケル複合酸化物粒子の表面のリチウムの反応を避けるため、脱炭酸空気、不活性ガスまたは真空雰囲気とすることが好ましい。
(3)非水系電解質二次電池
 本発明の非水系電解質二次電池は、正極、負極及び非水系電解液などからなり、一般の非水系電解質二次電池と同様の構成要素により構成される。なお、以下で説明する実施形態は例示に過ぎず、本発明の非水系電解質二次電池は、本明細書に記載されている実施形態を基に、当業者の知識に基づいて種々の変更、改良を施した形態で実施することができる。また、本発明の非水系電解質二次電池は、その用途を特に限定するものではない。
(a)正極
 先に述べた非水系電解質二次電池用正極活物質を用い、例えば、以下のようにして、非水系電解質二次電池の正極を作製する。
 まず、粉末状の正極活物質、導電材、結着剤を混合し、さらに必要に応じて活性炭、粘度調整等の目的の溶剤を添加し、これを混練して正極合材ペーストを作製する。
 その正極合材ペースト中のそれぞれの混合比も、非水系電解質二次電池の性能を決定する重要な要素となる。溶剤を除いた正極合材の固形分の全質量を100質量部とした場合、一般の非水系電解質二次電池の正極と同様、正極活物質の含有量を60~95質量部とし、導電材の含有量を1~20質量部とし、結着剤の含有量を1~20質量部とすることが好ましい。
 得られた正極合材ペーストを、例えば、アルミニウム箔製の集電体の表面に塗布し、乾燥して、溶剤を飛散させる。必要に応じ、電極密度を高めるべく、ロールプレス等により加圧することもある。このようにして、シート状の正極を作製することができる。
 シート状の正極は、目的とする電池に応じて適当な大きさに裁断等をして、電池の作製に供することができる。ただし、正極の作製方法は、例示のものに限られることなく、他の方法によってもよい。
 正極の作製にあたって、導電剤としては、例えば、黒鉛(天然黒鉛、人造黒鉛、膨張黒鉛など)や、アセチレンブラック、ケッチェンブラック(登録商標)などのカーボンブラック系材料などを用いることができる。
 結着剤は、活物質粒子をつなぎ止める役割を果たすもので、例えば、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン(PTFE)、フッ素ゴム、エチレンプロピレンジエンゴム、スチレンブタジエン、セルロース系樹脂、ポリアクリル酸などを用いることができる。
 なお、必要に応じ、正極活物質、導電材、活性炭を分散させ、結着剤を溶解する溶剤を正極合材に添加する。
 溶剤としては、具体的には、N-メチル-2-ピロリドン等の有機溶剤を用いることができる。また、正極合材には、電気二重層容量を増加させるために、活性炭を添加することができる。
(b)負極
 負極には、金属リチウムやリチウム合金等、あるいは、リチウムイオンを吸蔵及び脱離できる負極活物質に、結着剤を混合し、適当な溶剤を加えてペースト状にした負極合材を、銅等の金属箔集電体の表面に塗布し、乾燥し、必要に応じて電極密度を高めるべく圧縮して形成したものを使用する。
 負極活物質としては、例えば、天然黒鉛、人造黒鉛、フェノール樹脂等の有機化合物焼成体、コークス等の炭素物質の粉状体を用いることができる。この場合、負極結着剤としては、正極同様、PVDF等の含フッ素樹脂等を用いることができ、これらの活物質及び結着剤を分散させる溶剤としては、N-メチル-2-ピロリドン等の有機溶剤を用いることができる。
(c)セパレータ
 正極と負極との間には、セパレータを挟み込んで配置する。
 セパレータは、正極と負極とを分離し、電解質を保持するものであり、ポリエチレン、ポリプロピレン等の薄い膜で、微少な孔を多数有する膜を用いることができる。
(d)非水系電解液
 非水系電解液は、支持塩としてのリチウム塩を有機溶媒に溶解したものである。
 使用する有機溶媒としては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、トリフルオロプロピレンカーボネート等の環状カーボネート、また、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジプロピルカーボネート等の鎖状カーボネート、さらに、テトラヒドロフラン、2-メチルテトラヒドロフラン、ジメトキシエタン等のエーテル化合物、エチルメチルスルホン、ブタンスルトン等の硫黄化合物、リン酸トリエチル、リン酸トリオクチル等のリン化合物等から選ばれる1種を単独で、あるいは2種以上を混合して用いることができる。
 支持塩としては、LiPF、LiBF、LiClO、LiAsF、LiN(CFSO等、及びそれらの複合塩を用いることができる。
 さらに、非水系電解液は、ラジカル捕捉剤、界面活性剤及び難燃剤等を含んでいてもよい。
(e)電池の形状、構成
 以上、説明した正極、負極、セパレータ及び非水系電解液で構成される本発明の非水系電解質二次電池の形状は、円筒型、積層型等、種々のものとすることができる。
 いずれの形状を採る場合であっても、正極及び負極を、セパレータを介して積層させて電極体とし、得られた電極体に、非水系電解液を含浸させ、正極集電体と外部に通ずる正極端子との間、及び、負極集電体と外部に通ずる負極端子との間を、集電用リード等を用いて接続し、電池ケースに密閉して、非水系電解質二次電池を完成させる。
(f)特性
 本発明の正極活物質を用いた非水系電解質二次電池は、高容量で高出力となる。
 特に、より好ましい形態で得られた本発明による正極活物質を用いた非水系電解質二次電池は、例えば、2032型コイン電池の正極に用いた場合、165mAh/g以上の高い初期放電容量と低い正極抵抗が得られ、さらに高容量で高出力である。また、熱安定性が高く、安全性においても優れているといえる。
 なお、本発明における正極抵抗の測定方法を例示すれば、次のようになる。
 電気化学的評価手法として一般的な交流インピーダンス法にて電池反応の周波数依存性について測定を行うと、溶液抵抗、負極抵抗と負極容量、及び正極抵抗と正極容量に基づくナイキスト線図が図1のように得られる。
 電極における電池反応は、電荷移動に伴う抵抗成分と電気二重層による容量成分とからなり、これらを電気回路で表すと抵抗と容量の並列回路となり、電池全体としては溶液抵抗と負極、正極の並列回路を直列に接続した等価回路で表される。
 この等価回路を用いて測定したナイキスト線図に対してフィッティング計算を行い、各抵抗成分、容量成分を見積もることができる。
 正極抵抗は、得られるナイキスト線図の低周波数側の半円の直径と等しい。
 以上のことから、作製される正極について、交流インピーダンス測定を行い、得られたナイキスト線図に対し等価回路でフィッティング計算することで、正極抵抗を見積もることができる。
 本発明により得られた正極活物質を用いた正極を有する二次電池について、その性能(初期放電容量、正極抵抗、サイクル特性)を測定した。
 以下、本発明の実施例を用いて具体的に説明するが、本発明は、これらの実施例によって何ら限定されるものではない。
(電池の製造及び評価)
 正極活物質の評価には、図2に示す2032型コイン電池1(以下、コイン型電池と称す)を使用した。
 図2に示すように、コイン型電池1は、ケース2と、このケース2内に収容された電極3とから構成されている。
 ケース2は、中空かつ一端が開口された正極缶2aと、この正極缶2aの開口部に配置される負極缶2bとを有しており、負極缶2bを正極缶2aの開口部に配置すると、負極缶2bと正極缶2aとの間に電極3を収容する空間が形成されるように構成されている。
 電極3は、正極3a、セパレータ3c及び負極3bとからなり、この順で並ぶように積層されており、正極3aが正極缶2aの内面に接触し、負極3bが負極缶2bの内面に接触するようにケース2に収容されている。
 なお、ケース2はガスケット2cを備えており、このガスケット2cによって、正極缶2aと負極缶2bとの間が非接触の状態を維持するように相対的な移動が固定されている。また、ガスケット2cは、正極缶2aと負極缶2bとの隙間を密封してケース2内と外部との間を気密液密に遮断する機能も有している。
 図2に示すコイン型電池1は、以下のようにして製作した。
 まず、非水系電解質二次電池用正極活物質52.5mg、アセチレンブラック15mg、及びポリテトラフッ化エチレン樹脂(PTFE)7.5mgを混合し、100MPaの圧力で直径11mm、厚さ100μmにプレス成形して、正極3aを作製した。作製した正極3aを真空乾燥機中120℃で12時間乾燥した。
 この正極3aと、負極3b、セパレータ3c及び電解液とを用いて、図2に示すコイン型電池1を、露点が-80℃に管理されたAr雰囲気のグローブボックス内で作製した。
 なお、負極3bには、直径14mmの円盤状に打ち抜かれた平均粒径20μm程度の黒鉛粉末とポリフッ化ビニリデンが銅箔に塗布された負極シートを用いた。
 セパレータ3cには膜厚25μmのポリエチレン多孔膜を用いた。電解液には、1MのLiClOを支持電解質とするエチレンカーボネート(EC)とジエチルカーボネート(DEC)の等量混合液(富山薬品工業株式会社製)を用いた。
 製造したコイン型電池1の性能を示す初期放電容量、正極抵抗は、以下のように評価した。
 初期放電容量は、コイン型電池1を製作してから24時間程度放置し、開回路電圧OCV(Open Circuit Voltage)が安定した後、正極に対する電流密度を0.1mA/cmとしてカットオフ電圧4.3Vまで充電し、1時間の休止後、カットオフ電圧3.0Vまで放電したときの容量を初期放電容量とした。
 正極抵抗は、コイン型電池1を充電電位4.1Vで充電して、周波数応答アナライザ及びポテンショガルバノスタット(ソーラトロン製、1255B)を使用して交流インピーダンス法により測定すると、図1に示すナイキストプロットが得られる。
 このナイキストプロットは、溶液抵抗、負極抵抗とその容量、及び、正極抵抗とその容量を示す特性曲線の和として表しているため、このナイキストプロットに基づき等価回路を用いてフィッティング計算を行い、正極抵抗の値を算出した。
 サイクル特性の評価は、サイクル試験後の容量維持率と正極抵抗の増加率により行った。サイクル試験は、初期放電容量測定後、10分間休止し、初期放電容量測定と同様に充放電サイクルを、初期放電容量測定も含めて500サイクル(充放電)繰り返した。500サイクル目の放電容量を測定して、1サイクル目の放電容量(初期放電容量)に対する500サイクル目の放電容量の百分率を容量維持率(%)として求めた。また、500サイクル後の正極抵抗を測定し、サイクル試験前の正極抵抗からの増加率(倍)により評価した。
 なお、本実施例では、複合水酸化物製造、正極活物質及び二次電池の作製には、和光純薬工業株式会社製試薬特級の各試料を使用した。
 Niを主成分とする酸化物と水酸化リチウムを混合して焼成する公知技術で得られたLi1.025Ni0.91Co0.06Al0.03で表されるリチウムニッケル複合酸化物粒子の粉末を母材とした。
 150gの母材に、25℃の純水を100mL添加しスラリーとし、15分間の水洗を行った。水洗後はヌッチェを用いて濾過することで固液分離した。洗浄ケーキの水分率は8.5質量%であった。
 次にリチウムニッケル複合酸化物に含まれるNi、Co及びAlの原子数の合計に対してW量が0.30原子%となるように、洗浄ケーキに酸化タングステン(WO)を1.08g添加し、シェーカーミキサー装置(ウィリー・エ・バッコーフェン(WAB)社製TURBULA TypeT2C)を用いて十分に混合し、混合粉末を得た。
 得られた混合粉末はアルミ製袋中に入れ、窒素ガスパージした後にラミネートし、80℃に加温した乾燥機に1時間ほど入れた。加温後はアルミ製袋から取り出し、SUS製容器に入れ替え、190℃に加温した真空乾燥機を用いて10時間、静置乾燥し、その後炉冷した。
 最後に目開き38μmの篩にかけ解砕することにより、一次粒子表面にタングステン酸リチウム化合物を有する正極活物質を得た。
 得られた正極活物質をICP法により分析したところ、タングステン含有量はNi、Co及びAlの原子数の合計に対して0.30原子%であり、Li/Meは、0.99であることが確認された。また、IPC法により測定された硫黄含有量から換算して求めた硫酸根含有量は、0.01質量%であった。
[余剰リチウム分析]
 得られた正極活物質の余剰リチウムを、正極活物質から溶出してくるLiを滴定することにより評価した。得られた正極活物質に純水を加えて一定時間攪拌後、ろ過したろ液のpHを測定しながら塩酸を加えていくことにより出現する中和点から溶出するリチウムの化合物状態を分析して余剰リチウム量を評価したところ、余剰リチウム量は、正極活物質の全量に対して0.02質量%であった。
[タングステン酸リチウムの形態分析]
 得られた正極活物質を、樹脂に埋め込み、クロスセクションポリッシャ加工を行い観察用試料を作製した。その試料を用いて倍率を5000倍としたSEMによる断面観察を行ったところ、一次粒子および一次粒子が凝集した二次粒子からなり、その一次粒子表面にタングステン酸リチウムの微粒子が形成されていることを確認した。その微粒子の粒子径は、20~150nmであった。
 また、一次粒子表面にタングステン酸リチウムが形成されている二次粒子は、観察した二次粒子数の85%であり、二次粒子間で均一にタングステン酸リチウムが形成されていることが確認された。
 さらに、得られた正極活物質の一次粒子の表面付近を透過型電子顕微鏡(TEM)により観察したところ、一次粒子の表面に膜厚2~65nmの被膜が形成され、被膜はタングステン酸リチウムであることを確認した。
[電池評価]
 得られた正極活物質を使用して作製された正極を有する図2に示すコイン型電池1の電池特性を評価した。なお、サイクル試験前の正極抵抗は実施例1を「1.00」とした相対値を評価値とした。
 初期放電容量は、216mAh/gであった。
 以下、実施例及び比較例については、実施例1と変更した物質、条件のみを示す。また、実施例1の水洗工程から熱処理工程までの条件を表1に、評価結果を表2に示す。
 リチウムニッケル複合酸化物に含まれるNi、Co及びAlの原子数の合計に対してW量が0.15原子%となるように、洗浄ケーキに酸化タングステン(WO)を0.52g添加した以外は、実施例1と同様にして正極活物質を得るとともに評価を行った。
 その結果を表1及び表2に示す。
 リチウムニッケル複合酸化物に含まれるNi、Co及びAlの原子数の合計に対してW量が0.10原子%となるように、洗浄ケーキに酸化タングステン(WO)を0.36g添加した以外は、実施例1と同様にして正極活物質を得るとともに評価を行った。
 その結果を表1及び表2に示す。
 150gの母材に25℃の純水を150mL添加しスラリーとしたこと、リチウムニッケル複合酸化物に含まれるNi、Co及びAlの原子数の合計に対してW量が0.15原子%となるように、洗浄ケーキに酸化タングステン(WO)を0.54g添加したこと以外は、実施例1と同様にして正極活物質を得るとともに評価を行った。
 その結果を表1及び表2に示す。
 150gの母材に25℃の純水を200mL添加してスラリーとしたこと、リチウムニッケル複合酸化物に含まれるNi、Co及びAlの原子数の合計に対してW量が0.15原子%となるように、洗浄ケーキに酸化タングステン(WO)を0.54g添加したこと以外は、実施例1と同様にして正極活物質を得るとともに評価を行った。
 その結果を表1及び表2に示す。
 150gの母材に40℃の純水を100mL添加しスラリーとしたこと、リチウムニッケル複合酸化物に含まれるNi、Co及びAlの原子数の合計に対してW量が0.15原子%となるように、洗浄ケーキに酸化タングステン(WO)を0.54g添加したこと以外は、実施例1と同様にして正極活物質を得るとともに評価を行った。
 その結果を表1及び表2に示す。
 水洗後のヌッチェを用いた濾過における条件を調整し、固液分離後の洗浄ケーキの水分率を2.5質量%に調整したこと、リチウムニッケル複合酸化物に含まれるNi、Co及びAlの原子数の合計に対してW量が0.15原子%となるように、洗浄ケーキに酸化タングステン(WO)を0.54g添加したこと以外は、実施例1と同様にして正極活物質を得るとともに評価を行った。
 その結果を表1及び表2に示す。
(比較例1)
 150gの母材に25℃の純水を200mL添加してスラリーとしたこと、固液分離後の洗浄ケーキにタングステン化合物を添加しなかったこと以外は、実施例1と同様にして正極活物質を得るとともに評価を行った。
 その結果を表1及び表2に示す。
(比較例2)
 150gの母材に25℃の純水を200mL添加してスラリーとしたこと、リチウムニッケル複合酸化物に含まれるNi、Co及びAlの原子数の合計に対してW量が0.15原子%となるように、洗浄ケーキにタングステ酸リチウム(LWO:LiWO)を添加したこと以外は、実施例1と同様にして正極活物質を得るとともに評価を行った。
 その結果を表1及び表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
[評価]
 表1および表2から明らかなように、実施例1~7の正極活物質は、本発明に従って製造されたため、比較例に比べて初期放電容量が高く、正極抵抗も低いものとなっており、また、サイクル特性も良好であって、優れた特性を有した電池となっている。
 また、図3に本発明の実施例で得られた正極活物質の断面SEM観察結果の一例を示すが、得られた正極活物質は一次粒子及び一次粒子が凝集して構成された二次粒子からなり、一次粒子表面にタングステン酸リチウムが形成されていることが確認された。タングステン酸リチウム化合物が確認された位置を図3において丸印で示す。
 実施例6は、水洗温度が40℃と高かったため、タングステン化合物との反応に必要なリチウムニッケル複合酸化物の一次粒子表面に存在するリチウム化合物の洗い流された量が多くなり、タングステン酸リチウム化合物が形成される際にリチウムニッケル複合酸化物の結晶中から引き抜かれたリチウムが増加して結晶性が低下したため、サイクル試験の容量維持率がやや低下している。
 実施例7は、洗浄ケーキの水分率が低かったため、リチウムニッケル複合酸化物の一次粒子表面に存在しているリチウム化合物とタングステン化合物の反応が不十分となり、タングステン酸リチウム化合物の形成が減少するとともに分散性が低下し、また余剰リチウムもやや多くなったため、出力特性とサイクル試験の電池特性がやや低下している。
 対して、比較例1は、一次粒子表面に本発明に係るタングステン酸リチウムが形成されていないため、正極抵抗が大幅に高く、高出力化の要求に対応することは困難である。
 また、比較例2は、洗浄ケーキにタングステン酸リチウムを添加したため、正極活物質の余剰リチウムが増加し、出力特性とサイクル試験の電池特性が低下している。
 本発明の非水系電解質二次電池は、常に高容量を要求される小型携帯電子機器(ノート型パーソナルコンピュータや携帯電話端末など)の電源に好適であり、高出力が要求される電気自動車用電池にも好適である。
 また、本発明の非水系電解質二次電池は、優れた安全性を有し、小型化、高出力化が可能であることから、搭載スペースに制約を受ける電気自動車用電源として好適である。なお、本発明は、純粋に電気エネルギーで駆動する電気自動車用の電源のみならず、ガソリンエンジンやディーゼルエンジンなどの燃焼機関と併用するいわゆるハイブリッド車用の電源としても用いることができる。
 1  コイン型電池
 2  ケース
 2a 正極缶
 2b 負極缶
 2c ガスケット
 3  電極
 3a 正極
 3b 負極
 3c セパレータ

Claims (16)

  1.  一般式:LiNi1-x-yCo(ただし、0≦x≦0.35、0≦y≦0.35、0.95≦z≦1.30、MはMn、V、Mg、Mo、Nb、Ti及びAlから選ばれる少なくとも1種の元素)で表される一次粒子及び一次粒子が凝集して形成された二次粒子からなる層状構造の結晶構造を有するリチウムニッケル複合酸化物粉末を、水と混合してスラリーを形成して、前記リチウムニッケル複合酸化物粉末を水洗した後に固液分離し、洗浄されたリチウムニッケル複合酸化物粒子で構成される洗浄ケーキを得る水洗工程と、
      前記洗浄ケーキに、リチウムを含有しないタングステン化合物粉末を混合してタングステン混合物を得る混合工程と、
      前記タングステン混合物を熱処理する熱処理工程を有し、
       前記熱処理工程が、前記タングステン混合物を熱処理することにより、洗浄後リチウムニッケル複合酸化物一次粒子表面に存在するリチウム化合物とタングステン化合物を反応させて前記タングステン化合物を溶解して、一次粒子表面にタングステンを分散させたリチウムニッケル複合酸化物粒子を形成する第1熱処理工程と、
        前記第1熱処理工程の次に行う前記第1熱処理工程より高い温度で熱処理することにより、前記リチウムニッケル複合酸化物の一次粒子表面にタングステン酸リチウム化合物を形成したリチウムニッケル複合酸化物粒子を形成する第2熱処理工程
    を有することを特徴とする非水系電解質二次電池用正極活物質の製造方法。
  2.  前記水洗工程におけるスラリー濃度が、500~2500g/Lであることを特徴とする請求項1に記載の非水系電解質二次電池用正極活物質の製造方法。
  3.  前記水洗工程におけるスラリーの温度が、20~30℃であることを特徴とする請求項1または2に記載の非水系電解質二次電池用正極活物質の製造方法。
  4.  前記水洗工程において、得られる洗浄ケーキの水分率が、3.0~15.0質量%に制御されることを特徴とする請求項1~3のいずれか1項に記載の非水系電解質二次電池用正極活物質の製造方法。
  5.  前記混合工程において用いるリチウムを含有しないタングステン化合物が、酸化タングステン(WO)、またはタングステン酸(WO・HO)であることを特徴とする請求項1~4のいずれか1項に記載の非水系電解質二次電池用正極活物質の製造方法。
  6.  前記タングステン混合物に含まれるタングステン量が、前記リチウムニッケル複合酸化物粒子に含まれるNi、Co及びMの原子数の合計に対して、0.05~2.0原子%であることを特徴とする請求項1~5のいずれか1項に記載の非水系電解質二次電池用正極活物質の製造方法。
  7.  前記熱処理工程における雰囲気が、脱炭酸空気、不活性ガス、真空のいずれかであることを特徴とする請求項1~6のいずれか1項に記載の非水系電解質二次電池用正極活物質の製造方法。
  8.  前記第1熱処理工程における熱処理の温度が、60~80℃であることを特徴とする請求項1~7のいずれか1項に記載の非水系電解質二次電池用正極活物質の製造方法。
  9.  前記第2熱処理工程における熱処理の温度が、100~200℃であることを特徴とする請求項1~8のいずれか1項に記載の非水系電解質二次電池用正極活物質の製造方法。
  10.  一次粒子および一次粒子が凝集して形成された二次粒子からなる層状構造の結晶構造を有するリチウムニッケル複合酸化物粉末から構成された非水系電解質二次電池用正極活物質であって、
     一般式:LiNi1-x-yCo2+α(ただし、0≦x≦0.35、0≦y≦0.35、0.95≦z≦1.30、0<a≦0.03、0≦α≦0.15、Mは、Mn、V、Mg、Mo、Nb、TiおよびAlから選ばれる少なくとも1種の元素)で表され、前記リチウムニッケル複合酸化物の一次粒子表面にタングステン酸リチウムが存在し、
     前記リチウムニッケル複合酸化物の一次粒子表面に存在するタングステン酸リチウム以外のリチウム化合物に含有されるリチウム量が、正極活物質の全量に対して0.05質量%以下であることを特徴とする非水系電解質二次電池用正極活物質。
  11.  前記正極活物質に含まれるタングステン量が、前記リチウムニッケル複合酸化物粉末に含まれるNi、Co及びMの原子数の合計に対して0.05~2.0原子%であることを特徴とする請求項10に記載の非水系電解質二次電池用正極活物質。
  12.  前記タングステン酸リチウムが、粒子径1~500nmの微粒子として前記リチウム金属複合酸化物の一次粒子表面に存在することを特徴とする請求項10または11に記載の非水系電解質二次電池用正極活物質。
  13.  前記タングステン酸リチウムが、膜厚1~200nmの被膜として前記リチウム金属複合酸化物の一次粒子表面に存在することを特徴とする請求項10または11に記載の非水系電解質二次電池用正極活物質。
  14.  前記タングステン酸リチウムが、粒子径1~500nmの微粒子及び膜厚1~200nmの被膜の両形態として前記リチウム金属複合酸化物の一次粒子表面に存在することを特徴とする請求項10または11に記載の非水系電解質二次電池用正極活物質。
  15.  硫酸根含有量が0.05質量%以下であることを特徴とする10~14のいずれか1項に記載の非水系電解質二次電池用正極活物質。
  16.  請求項10~15のいずれか1項に記載の非水系電解質二次電池用正極活物質を含む正極を有することを特徴とする非水系電解質二次電池。
PCT/JP2015/085303 2014-12-26 2015-12-17 非水系電解質二次電池用正極活物質とその製造方法、及び該正極活物質を用いた非水系電解質二次電池 WO2016104305A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020177019674A KR101878113B1 (ko) 2014-12-26 2015-12-17 비수계 전해질 이차 전지용 정극 활물질과 그 제조 방법, 및 상기 정극 활물질을 이용한 비수계 전해질 이차 전지
CN201580070580.4A CN107112529B (zh) 2014-12-26 2015-12-17 非水系电解质二次电池用正极活性物质和其制造方法、以及使用了该正极活性物质的非水系电解质二次电池
US15/539,786 US10497936B2 (en) 2014-12-26 2015-12-17 Positive electrode active material for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery using said positive electrode active material
US16/661,632 US11108043B2 (en) 2014-12-26 2019-10-23 Method for producing positive electrode active material for nonaqueous electrolyte secondary battery

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014264247 2014-12-26
JP2014-264247 2014-12-26
JP2015212403A JP6210439B2 (ja) 2014-12-26 2015-10-28 非水系電解質二次電池用正極活物質とその製造方法、及び該正極活物質を用いた非水系電解質二次電池
JP2015-212403 2015-10-28

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/539,786 A-371-Of-International US10497936B2 (en) 2014-12-26 2015-12-17 Positive electrode active material for nonaqueous electrolyte secondary battery, method for producing same, and nonaqueous electrolyte secondary battery using said positive electrode active material
US16/661,632 Division US11108043B2 (en) 2014-12-26 2019-10-23 Method for producing positive electrode active material for nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
WO2016104305A1 true WO2016104305A1 (ja) 2016-06-30

Family

ID=56150326

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/085303 WO2016104305A1 (ja) 2014-12-26 2015-12-17 非水系電解質二次電池用正極活物質とその製造方法、及び該正極活物質を用いた非水系電解質二次電池

Country Status (1)

Country Link
WO (1) WO2016104305A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019103037A1 (ja) * 2017-11-21 2019-05-31 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質、非水系電解質二次電池用正極活物質の製造方法
CN111801820A (zh) * 2018-03-02 2020-10-20 户田工业株式会社 Li-Ni复合氧化物颗粒粉末和非水电解质二次电池
EP3653582A4 (en) * 2018-03-09 2020-11-25 Lg Chem, Ltd. ACTIVE CATHODE MATERIAL, ITS MANUFACTURING PROCESS, AND CATHODE ELECTRODE AND SECONDARY BATTERY INCLUDING IT
US20210218022A1 (en) * 2018-03-01 2021-07-15 Sumitomo Chemical Company, Limited Lithium metal composite oxide, lithium secondary battery positive electrode active material, positive electrode, and lithium secondary battery
CN113382965A (zh) * 2019-02-27 2021-09-10 松下知识产权经营株式会社 非水电解质二次电池用正极活性物质的制造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010040383A (ja) * 2008-08-06 2010-02-18 Sony Corp 正極活物質の製造方法および正極活物質
JP2013125732A (ja) * 2011-12-16 2013-06-24 Sumitomo Metal Mining Co Ltd 非水系電解質二次電池用正極活物質とその製造方法、および該正極活物質を用いた非水系電解質二次電池
JP2013137947A (ja) * 2011-12-28 2013-07-11 Panasonic Corp リチウムイオン二次電池およびリチウムイオン二次電池用正極活物質の製造方法
JP2013152866A (ja) * 2012-01-25 2013-08-08 Sumitomo Metal Mining Co Ltd 非水系電解質二次電池用正極活物質とその製造方法、および該正極活物質を用いた非水系電解質二次電池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010040383A (ja) * 2008-08-06 2010-02-18 Sony Corp 正極活物質の製造方法および正極活物質
JP2013125732A (ja) * 2011-12-16 2013-06-24 Sumitomo Metal Mining Co Ltd 非水系電解質二次電池用正極活物質とその製造方法、および該正極活物質を用いた非水系電解質二次電池
JP2013137947A (ja) * 2011-12-28 2013-07-11 Panasonic Corp リチウムイオン二次電池およびリチウムイオン二次電池用正極活物質の製造方法
JP2013152866A (ja) * 2012-01-25 2013-08-08 Sumitomo Metal Mining Co Ltd 非水系電解質二次電池用正極活物質とその製造方法、および該正極活物質を用いた非水系電解質二次電池

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019103037A1 (ja) * 2017-11-21 2019-05-31 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質、非水系電解質二次電池用正極活物質の製造方法
JPWO2019103037A1 (ja) * 2017-11-21 2020-12-17 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質、非水系電解質二次電池用正極活物質の製造方法
JP7099475B2 (ja) 2017-11-21 2022-07-12 住友金属鉱山株式会社 非水系電解質二次電池用正極活物質、非水系電解質二次電池用正極活物質の製造方法
US11735728B2 (en) 2017-11-21 2023-08-22 Sumitomo Metal Mining Co., Ltd. Cathode active material for non-aqueous electrolyte secondary battery and method of manufacturing cathode active material for non-aqueous electrolyte secondary battery
US20210218022A1 (en) * 2018-03-01 2021-07-15 Sumitomo Chemical Company, Limited Lithium metal composite oxide, lithium secondary battery positive electrode active material, positive electrode, and lithium secondary battery
CN111801820A (zh) * 2018-03-02 2020-10-20 户田工业株式会社 Li-Ni复合氧化物颗粒粉末和非水电解质二次电池
EP3653582A4 (en) * 2018-03-09 2020-11-25 Lg Chem, Ltd. ACTIVE CATHODE MATERIAL, ITS MANUFACTURING PROCESS, AND CATHODE ELECTRODE AND SECONDARY BATTERY INCLUDING IT
US11482702B2 (en) 2018-03-09 2022-10-25 Lg Chem, Ltd. Positive electrode active material, preparation method thereof, positive electrode including same and secondary battery
CN113382965A (zh) * 2019-02-27 2021-09-10 松下知识产权经营株式会社 非水电解质二次电池用正极活性物质的制造方法
CN113382965B (zh) * 2019-02-27 2023-10-10 松下知识产权经营株式会社 非水电解质二次电池用正极活性物质的制造方法

Similar Documents

Publication Publication Date Title
JP6210439B2 (ja) 非水系電解質二次電池用正極活物質とその製造方法、及び該正極活物質を用いた非水系電解質二次電池
JP6777081B2 (ja) 非水電解質二次電池用正極活物質および非水電解質二次電池
JP5822708B2 (ja) 非水系電解質二次電池用正極活物質とその製造方法、および該正極活物質を用いた非水系電解質二次電池
JP6555636B2 (ja) 非水系電解質二次電池用正極活物質およびその製造方法
JP5772626B2 (ja) 非水系電解質二次電池用正極活物質とその製造方法、および該正極活物質を用いた非水系電解質二次電池
JP5035712B2 (ja) 非水系電解質二次電池用正極活物質とその製造方法、および該正極活物質を用いた非水系電解質二次電池
JP6818225B2 (ja) 非水系電解質二次電池用正極活物質の製造方法
JP6090609B2 (ja) 非水系電解質二次電池用正極活物質とその製造方法、および該正極活物質を用いた非水系電解質二次電池
JP6090608B2 (ja) 非水系電解質二次電池用正極活物質とその製造方法、および該正極活物質を用いた非水系電解質二次電池
JP6978182B2 (ja) 非水系電解質二次電池用正極活物質とその製造方法、および該正極活物質を用いた非水系電解質二次電池
JP2016167439A5 (ja)
JP2012079464A5 (ja)
JP2016111000A5 (ja)
JP6724361B2 (ja) 非水系電解質二次電池用正極活物質とその製造方法、及び非水系電解質二次電池
JP2016110999A5 (ja)
JP7055587B2 (ja) 非水系電解質二次電池用正極活物質の製造方法
JP6582750B2 (ja) 非水系電解質二次電池用正極活物質の製造方法
JP2016207635A5 (ja)
WO2016104305A1 (ja) 非水系電解質二次電池用正極活物質とその製造方法、及び該正極活物質を用いた非水系電解質二次電池
WO2016140207A1 (ja) 非水系電解質二次電池用正極活物質およびその製造方法
WO2016171081A1 (ja) 非水系電解質二次電池用正極活物質とその製造方法、および該正極活物質を用いた非水系電解質二次電池
JP2020202193A (ja) 非水系電解質二次電池用正極活物質及び該正極活物質を用いた非水系電解質二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15872874

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15539786

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20177019674

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 15872874

Country of ref document: EP

Kind code of ref document: A1