WO2016104160A1 - Air-cooled engine unit - Google Patents

Air-cooled engine unit Download PDF

Info

Publication number
WO2016104160A1
WO2016104160A1 PCT/JP2015/084619 JP2015084619W WO2016104160A1 WO 2016104160 A1 WO2016104160 A1 WO 2016104160A1 JP 2015084619 W JP2015084619 W JP 2015084619W WO 2016104160 A1 WO2016104160 A1 WO 2016104160A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
combustion chamber
unit
sensor
passage portion
Prior art date
Application number
PCT/JP2015/084619
Other languages
French (fr)
Japanese (ja)
Inventor
誠 脇村
Original Assignee
ヤマハ発動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=56150190&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2016104160(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by ヤマハ発動機株式会社 filed Critical ヤマハ発動機株式会社
Priority to BR112017013422-5A priority Critical patent/BR112017013422B1/en
Priority to ES15872729T priority patent/ES2791149T3/en
Priority to EP15872729.7A priority patent/EP3239505B1/en
Priority to TW104143218A priority patent/TWI568923B/en
Publication of WO2016104160A1 publication Critical patent/WO2016104160A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D29/00Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto
    • F02D29/02Controlling engines, such controlling being peculiar to the devices driven thereby, the devices being other than parts or accessories essential to engine operation, e.g. controlling of engines by signals external thereto peculiar to engines driving vehicles; peculiar to engines driving variable pitch propellers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/08Other arrangements or adaptations of exhaust conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • F01N3/28Construction of catalytic reactors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P1/00Air cooling
    • F01P1/02Arrangements for cooling cylinders or cylinder heads, e.g. ducting cooling-air from its pressure source to cylinders or along cylinders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2451Methods of calibrating or learning characterised by what is learned or calibrated
    • F02D41/2454Learning of the air-fuel ratio control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2340/00Dimensional characteristics of the exhaust system, e.g. length, diameter or volume of the apparatus; Spatial arrangements of exhaust apparatuses
    • F01N2340/02Dimensional characteristics of the exhaust system, e.g. length, diameter or volume of the apparatus; Spatial arrangements of exhaust apparatuses characterised by the distance of the apparatus to the engine, or the distance between two exhaust treating apparatuses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2560/00Exhaust systems with means for detecting or measuring exhaust gas components or characteristics
    • F01N2560/02Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor
    • F01N2560/025Exhaust systems with means for detecting or measuring exhaust gas components or characteristics the means being an exhaust gas sensor for measuring or detecting O2, e.g. lambda sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2590/00Exhaust or silencing apparatus adapted to particular use, e.g. for military applications, airplanes, submarines
    • F01N2590/04Exhaust or silencing apparatus adapted to particular use, e.g. for military applications, airplanes, submarines for motorcycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/08Parameters used for exhaust control or diagnosing said parameters being related to the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/027Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions using knock sensors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D9/00Controlling engines by throttling air or fuel-and-air induction conduits or exhaust conduits
    • F02D9/08Throttle valves specially adapted therefor; Arrangements of such valves in conduits
    • F02D9/10Throttle valves specially adapted therefor; Arrangements of such valves in conduits having pivotally-mounted flaps
    • F02D9/1035Details of the valve housing
    • F02D9/1055Details of the valve housing having a fluid by-pass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P5/00Advancing or retarding ignition; Control therefor
    • F02P5/04Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions
    • F02P5/145Advancing or retarding ignition; Control therefor automatically, as a function of the working conditions of the engine or vehicle or of the atmospheric conditions using electrical means
    • F02P5/15Digital data processing
    • F02P5/152Digital data processing dependent on pinking

Definitions

  • the present invention relates to an air-cooled engine unit.
  • an air-cooled engine unit such as Patent Document 1 has a higher temperature of the engine body than a water-cooled engine unit. Therefore, the air-cooled engine unit is more likely to knock than the water-cooled engine unit. Conventionally, in order to prevent knocking, the compression ratio of the air-cooled engine unit is set lower than that of the water-cooled engine unit.
  • the air-cooled engine unit has a catalyst that purifies the exhaust gas.
  • the air-cooled engine unit is required to shorten the time until the catalyst changes from the inactive state to the active state.
  • the time required for the catalyst to change from the inactive state to the active state is referred to as the time required for the activation of the catalyst.
  • the compression ratio of the air-cooled engine unit is low. Therefore, if the catalyst is disposed near the engine body, the catalyst may be overheated and deteriorated by heat.
  • An object of the present invention is to provide an air-cooled engine unit that can suppress the deterioration of the catalyst even if the catalyst is arranged near the engine body.
  • the engine unit of the present invention has a compression ratio of 10 or more, an engine main body forming at least one combustion chamber, a heat dissipating part that dissipates heat generated in the engine main body from the surface of the engine main body, and the combustion
  • An exhaust port formed in the chamber is connected to an atmospheric discharge port that discharges exhaust gas to the atmosphere, and the inside is disposed in the exhaust passage unit and an exhaust passage unit through which exhaust gas flows from the exhaust port toward the atmospheric discharge port
  • a combustion chamber adjacently arranged catalyst The path length from the exhaust port of the exhaust passage portion to the upstream end of the catalyst disposed in the vicinity of the combustion chamber is shorter than the path length from the downstream end of the catalyst disposed near the combustion chamber of the exhaust passage portion to the atmosphere discharge port.
  • the air-cooled engine unit includes an engine body, a heat radiating section, an exhaust passage section, and a combustion chamber adjacently arranged catalyst.
  • the engine body forms at least one combustion chamber.
  • the heat dissipating part dissipates heat generated in the engine body from the surface of the engine body.
  • the exhaust passage section connects an exhaust port formed in the combustion chamber and an atmospheric discharge port for discharging exhaust gas to the atmosphere. In the exhaust passage portion, exhaust gas flows through the interior from the exhaust port toward the atmospheric discharge port.
  • the combustion chamber adjacently arranged catalyst is arranged in the exhaust passage portion.
  • the path length from the exhaust port of the exhaust passage portion to the upstream end of the catalyst adjacent to the combustion chamber is shorter than the path length from the downstream end of the catalyst adjacent to the combustion chamber of the exhaust passage portion to the atmospheric discharge port. That is, the combustion chamber adjacently arranged catalyst is arranged near the engine body. Thereby, the time required for the activation of the catalyst can be shortened.
  • an air-cooled engine tends to have a higher temperature of the engine body than a water-cooled engine.
  • the air-cooled engine unit of the present invention has a high compression ratio of 10 or more as compared with the conventional air-cooled engine unit. Due to the high compression ratio, the temperature of the exhaust gas discharged from the combustion chamber can be lowered.
  • the temperature of the exhaust gas flowing into the combustion chamber adjacently disposed catalyst can be reduced. Therefore, even if the combustion chamber adjacently disposed catalyst is disposed near the engine body, deterioration due to overheating of the combustion chamber adjacently disposed catalyst can be suppressed.
  • the air-cooled engine unit of the present invention includes a control device that controls the operation of the air-cooled engine unit, and the control device performs the air-cooling when a predetermined idle stop condition is satisfied during operation of the air-cooled engine unit.
  • An idle stop control unit that automatically stops the operation of the engine unit, and when the predetermined restart condition is satisfied while the operation of the air cooling engine unit is stopped by the idle stop control unit, It is preferable to include a restart control unit that restarts the operation of the engine unit.
  • the control device includes an idle stop control unit and a restart control unit.
  • the idle stop control unit automatically stops the operation of the air-cooled engine unit when a predetermined idle stop condition is satisfied during the operation of the air-cooled engine unit. This stop may be referred to as idle stop.
  • the restart control unit restarts the operation of the air-cooled engine unit when a predetermined restart condition is satisfied in a state where the operation of the air-cooled engine unit is stopped by the idle stop control unit. That is, if a predetermined idle stop condition is satisfied during idling, the operation is automatically stopped. Thereafter, the operation is restarted if a predetermined restart condition is satisfied. During idling, the temperature of the exhaust gas discharged from the combustion chamber is lowered.
  • the air-cooled engine unit has a high compression ratio. Therefore, the temperature of the exhaust gas discharged from the combustion chamber is further lowered during idling. However, since the air-cooled engine unit performs idle stop, it can prevent the idle state from continuing for a long time. Thereby, it can prevent that the temperature of a catalyst falls rather than activation temperature. As a result, exhaust purification performance can be improved.
  • the air-cooled engine unit of the present invention controls a knocking sensor that detects knocking of the engine body, an ignition device that ignites fuel in the combustion chamber, and an ignition timing of the ignition device based on a signal of the knocking sensor. And a control device.
  • the air-cooled engine unit includes a knocking sensor, an ignition device, and a control device.
  • the knocking sensor detects knocking that occurs in the engine body.
  • the ignition device ignites the fuel in the combustion chamber.
  • the control device controls the ignition timing of the ignition device that ignites the fuel in the combustion chamber based on the signal of the knocking sensor. Specifically, when knocking is detected, the ignition timing is retarded. Thereby, it is possible to prevent large knocking from occurring. If the compression ratio of the engine body is high, knocking of the engine body tends to occur.
  • the air-cooled engine unit includes a knocking sensor, and retards the ignition timing when knocking occurs. Therefore, it is not necessary to retard the ignition timing excessively to prevent knocking.
  • the retard of the ignition timing can be reduced. Thereby, the temperature of the exhaust gas discharged from the combustion chamber can be lowered. Thus, the temperature of the exhaust gas can be lowered while suppressing the retard of the ignition timing. As a result, it is possible to further suppress deterioration due to overheating of the combustion chamber adjacently arranged catalyst while ensuring torque.
  • An air-cooled engine unit is disposed upstream of the combustion chamber adjacently arranged catalyst in the exhaust passage portion in the exhaust gas flow direction, detects an oxygen concentration of the exhaust gas in the exhaust passage portion, and the combustion It is preferable to include a fuel supply device that supplies fuel into the room and a control device that controls a fuel supply amount of the fuel supply device based on a signal from the oxygen sensor.
  • the air-cooled engine unit includes the oxygen sensor, the fuel supply device, and the control device.
  • the oxygen sensor is arranged upstream of the combustion chamber adjacently arranged catalyst in the exhaust passage portion in the exhaust gas flow direction.
  • the oxygen sensor detects the oxygen concentration of the exhaust gas in the exhaust passage.
  • the fuel supply device supplies fuel into the combustion chamber.
  • the control device controls the fuel supply amount of the fuel supply device based on the signal of the oxygen sensor. If the compression ratio of the engine body is high, the temperature of the exhaust gas will be low. Therefore, the temperature of the oxygen sensor provided in the exhaust passage portion also decreases. If the temperature of the oxygen sensor becomes too low, the oxygen sensor becomes inactive. Thereby, the detection accuracy of the oxygen sensor decreases.
  • the oxygen sensor is disposed upstream of the combustion chamber adjacently disposed catalyst disposed near the engine body. That is, the oxygen sensor is arranged closer to the engine body than the combustion chamber adjacently arranged catalyst. Therefore, the temperature of the exhaust gas that contacts the oxygen sensor can be increased. That is, a decrease in the temperature of the oxygen sensor can be suppressed. Therefore, the active state of the oxygen sensor can be maintained. As a result, the accuracy of control of the fuel supply amount can be maintained.
  • an intake port formed in the combustion chamber is connected to an air intake port for sucking air from the atmosphere, and air flows through the interior from the air intake port toward the intake port.
  • a close proximity throttle valve, a close proximity throttle opening sensor for detecting an open degree of the close proximity throttle valve, and an engine speed detection Control of the fuel supply amount of the fuel supply device and control of the ignition timing of the ignition device are performed based on an engine rotational speed sensor, a signal from the combustion chamber adjacently arranged throttle opening sensor, and a signal from the engine rotational speed sensor.
  • the air-cooled engine unit includes an intake passage portion, an ignition device, a fuel supply device, a combustion chamber adjacently disposed throttle valve, a combustion chamber adjacently disposed throttle opening sensor, an engine speed sensor, and a control. Device.
  • the intake passage portion connects an intake port formed in the combustion chamber and an air intake port that sucks air from the air. The air flows in the intake passage portion from the air intake port toward the intake port.
  • the ignition device ignites the fuel in the combustion chamber.
  • the fuel supply device supplies fuel into the combustion chamber.
  • the throttle valve close to the combustion chamber is provided in the intake passage portion.
  • the combustion chamber adjacently arranged throttle opening sensor detects the opening of the combustion chamber adjacently arranged throttle valve.
  • the engine rotation speed sensor detects the engine rotation speed.
  • the control device controls the fuel supply amount of the fuel supply device and the ignition timing of the ignition device based on the signal of the throttle opening sensor disposed close to the combustion chamber and the signal of the engine speed sensor.
  • the path length from the combustion chamber adjacently arranged throttle valve in the intake passage to the intake port is shorter than the path length from the air intake port of the intake passage to the combustion chamber adjacently arranged throttle valve. That is, the combustion chamber adjacently arranged throttle valve is arranged at a position close to the combustion chamber. Therefore, the delay in the change in the amount of air taken into the combustion chamber can be reduced with respect to the change in the opening degree of the throttle valve close to the combustion chamber.
  • the control device controls the fuel supply amount and the ignition timing based on the signal of the throttle opening sensor disposed close to the combustion chamber.
  • the delay in controlling the fuel supply and the ignition timing with respect to the change in the opening degree of the throttle valve close to the combustion chamber.
  • the delay in the change in the amount of air taken into the combustion chamber is small with respect to the change in the opening degree of the throttle valve close to the combustion chamber. Therefore, when the opening degree of the throttle valve close to the combustion chamber changes, the time difference between the change in the fuel supply amount and the ignition timing and the change in the air amount taken into the combustion chamber can be reduced. Therefore, the accuracy of control of the fuel supply amount and the ignition timing can be improved. In addition, the following effects can be obtained by improving the accuracy of ignition timing control.
  • an intake port formed in the combustion chamber is connected to an air intake port for sucking air from the atmosphere, and air flows through the interior from the air intake port toward the intake port.
  • An intake pressure sensor that includes an intake passage and is provided in the intake passage and detects the internal pressure of the intake passage, and an intake air temperature sensor that is provided in the intake passage and detects the temperature in the intake passage It is preferable not to have.
  • the air-cooled engine unit does not have the intake pressure sensor that detects the internal pressure of the intake passage portion. Further, the air-cooled engine unit does not have an intake air temperature sensor that detects the temperature in the intake passage portion. Therefore, the intake pressure and the intake temperature are not used for controlling the fuel supply amount and the ignition timing. Therefore, the control of the fuel supply amount and the ignition timing can be simplified.
  • FIG. 1 is a left side view of a motorcycle to which an air-cooled engine unit according to an embodiment is applied. It is a schematic diagram of an air-cooled engine unit. It is a cross-sectional schematic diagram of a muffler. It is a control block diagram of an air-cooled engine unit. It is a partial detailed view of the control block of the air-cooled engine unit. It is an intake air amount map corresponding to the throttle opening and the engine speed. It is a graph which shows an example of the relationship between a throttle opening degree, an engine speed, and a basic fuel supply amount. It is a figure which shows the relationship between a throttle opening, an engine speed, and an oxygen feedback control area
  • the front-rear direction is the vehicle front-rear direction viewed from a rider seated on a seat 9 (described later) of the motorcycle 1.
  • the left-right direction is the left-right direction of the vehicle when viewed from a rider seated on the seat 9.
  • the vehicle left-right direction is the same as the vehicle width direction.
  • the arrow F direction and the arrow B direction in FIG. 1 represent the front and back
  • the arrow U direction and the arrow D direction represent the upper side and the lower side.
  • the motorcycle 1 of the present embodiment includes a front wheel 2, a rear wheel 3, and a vehicle body frame 4.
  • the vehicle body frame 4 has a head pipe 4a at the front thereof.
  • a steering shaft (not shown) is rotatably inserted into the head pipe 4a.
  • the upper end portion of the steering shaft is connected to the handle unit 5.
  • An upper end portion of a pair of front forks 6 is fixed to the handle unit 5.
  • a lower end portion of the front fork 6 supports the front wheel 2.
  • the handle unit 5 is provided with a right grip (not shown) and a left grip 12.
  • the right grip is an accelerator grip that adjusts the output of the engine. If the accelerator grip is rotated to the front side of the rider while the rider holds the accelerator grip, the engine output increases. Specifically, the throttle opening increases. Further, when the accelerator grip is rotated to the opposite side, the engine output decreases. Specifically, the throttle opening decreases.
  • a brake lever 13 is provided in front of the left grip 12.
  • a display device 14 is disposed in front of the handle unit 5. Although illustration is omitted, the display device 14 displays the vehicle speed, the engine speed, and the like. The display device 14 is provided with an indicator (indicator light).
  • a pair of swing arms 7 are swingably supported on the body frame 4.
  • the rear end portion of the swing arm 7 supports the rear wheel 3.
  • One end of the rear suspension 8 is attached to a position behind the swing center of each swing arm 7.
  • the other end of the rear suspension 8 is attached to the vehicle body frame 4.
  • a seat 9 and a fuel tank 10 are supported on the upper part of the body frame 4.
  • the fuel tank 10 is disposed in front of the seat 9.
  • An air-cooled engine unit 11 is mounted on the body frame 4.
  • the air-cooled engine unit 11 is disposed below the fuel tank 10.
  • the vehicle body frame 4 is mounted with a battery (not shown) that supplies power to electronic devices such as various sensors.
  • the air-cooled engine unit 11 is a natural air-cooled engine.
  • the air-cooled engine unit 11 is a 4-stroke single cylinder engine.
  • the 4-stroke engine is an engine that repeats an intake stroke, a compression stroke, a combustion stroke (expansion stroke), and an exhaust stroke.
  • the air-cooled engine unit 11 includes an engine body 20, an intake unit 40, and an exhaust unit 50.
  • the engine body 20 includes a crankcase 21, a cylinder body 22, a cylinder head 23, and a head cover 24.
  • the cylinder body 22 is attached to the upper end portion of the crankcase 21.
  • the cylinder head 23 is attached to the upper end portion of the cylinder body 22.
  • the head cover 24 is attached to the upper end portion of the cylinder head 23.
  • a fin portion 25 is formed on at least a part of the surface of the engine body 20.
  • the fin portion 25 is formed on the surface of the cylinder body 22 and the surface of the cylinder head 23.
  • the fin portion 25 is composed of a plurality of fins. Each fin is formed to protrude from the surface of the engine body 20.
  • the fin portion 25 is formed on substantially the entire circumference of the cylinder body 22 and the cylinder head 23.
  • the fin portion 25 radiates heat generated in the engine body 20.
  • the fin portion 25 corresponds to the heat radiating portion of the present invention.
  • FIG. 2 is a diagram schematically showing the air-cooled engine unit 11.
  • the crankcase 21 houses a crankshaft 26, a starter motor 27, a transmission (not shown), a generator (not shown), and the like.
  • the transmission is a device that changes the ratio between the rotational speed of the crankshaft 26 and the rotational speed of the rear wheel 3.
  • the rotation of the crankshaft 26 is transmitted to the rear wheel 3 via the transmission.
  • the starter motor 27 rotates the crankshaft 26 when the engine is started.
  • the starter motor 27 is operated by electric power from a battery (not shown).
  • the generator generates electric power by the rotational force of the crankshaft 26.
  • the battery is charged with the electric power.
  • an ISG Integrated / Starter / Generator
  • the ISG is an apparatus in which a starter motor 27 and a generator are integrated.
  • the crankcase 21 is provided with an engine rotation speed sensor 71 and a knocking sensor 72.
  • the engine rotation speed sensor 71 detects the rotation speed of the crankshaft 26, that is, the engine rotation speed.
  • the engine rotation speed is the rotation speed of the crankshaft 26 per unit time.
  • the knocking sensor 72 detects knocking that occurs in the engine body 20. Knocking is a phenomenon in which a metallic striking sound or striking vibration is generated when abnormal combustion occurs in a combustion chamber 30 described later. Normally, the air-fuel mixture starts to burn after being ignited by spark discharge, and the flame propagates to the surroundings. In the present specification, the air-fuel mixture is an air-fuel mixture. Knocking occurs when an unburned air-fuel mixture that has not reached flame propagation spontaneously ignites in the combustion chamber 30.
  • the configuration of knocking sensor 72 is not particularly limited as long as knocking can be detected.
  • the cylinder body 22 has a cylinder hole 22a.
  • a piston 28 is slidably accommodated in the cylinder hole 22a.
  • the piston 28 is connected to the crankshaft 26 via a connecting rod 29.
  • the engine body 20 is provided with an engine temperature sensor 73.
  • the engine temperature sensor 73 detects the temperature of the engine body 20. Specifically, the temperature of the cylinder body 22 is detected.
  • the combustion chamber 30 (see FIG. 2) is formed by the lower surface of the cylinder head 23, the cylinder hole 22a, and the piston 28.
  • the space formed by the lower surface of the cylinder head 23, the cylinder hole 22 a and the piston 28 regardless of the position of the piston 28 is defined as the combustion chamber 30.
  • the compression ratio of the engine body 20 is 10 or more. The compression ratio is a value obtained by dividing the volume of the combustion chamber 30 when the piston 28 is at the bottom dead center by the volume of the combustion chamber 30 when the piston 28 is at the top dead center.
  • the tip of the spark plug 31 is disposed.
  • the tip of the spark plug generates a spark discharge.
  • the spark plug 31 is connected to the ignition coil 32.
  • the ignition coil 32 stores electric power for causing spark discharge of the spark plug 31.
  • a device in which the ignition plug 31 and the ignition coil 32 are combined corresponds to the ignition device of the present invention.
  • An intake port 33 and an exhaust port 34 are formed on the surface defining the combustion chamber 30 of the cylinder head 23. That is, the intake port 33 and the exhaust port 34 are formed in the combustion chamber 30.
  • the intake port 33 is opened and closed by an intake valve 35.
  • the exhaust port 34 is opened and closed by an exhaust valve 36.
  • the intake valve 35 and the exhaust valve 36 are opened and closed by a valve gear (not shown) housed in the cylinder head 23. The valve gear operates in conjunction with the crankshaft 26.
  • the air-cooled engine unit 11 has an intake passage portion 41 that connects the intake port 33 and an air intake port 41c facing the atmosphere.
  • a passage part means the wall body etc. which surround a path
  • the air inlet 41c sucks air from the atmosphere.
  • the air sucked from the air suction port 41 c flows in the intake passage 41 toward the intake port 33.
  • a part of the intake passage portion 41 is formed in the engine body 20, and the remaining portion of the intake passage portion 41 is formed in the intake unit 40.
  • the intake unit 40 has an intake pipe connected to the engine body 20. Further, the intake unit 40 includes an injector 42, a throttle valve 45, and a bypass valve 46.
  • the upstream and downstream in the air flow direction in the intake passage portion 41 may be simply referred to as upstream and downstream.
  • the air-cooled engine unit 11 has an exhaust passage portion 51 that connects the exhaust port 34 and the atmospheric discharge port 64a facing the atmosphere.
  • the combustion gas generated in the combustion chamber 30 is discharged to the exhaust passage portion 51 through the exhaust port 34.
  • the combustion gas discharged from the combustion chamber is referred to as exhaust gas.
  • the exhaust gas flows in the exhaust passage 51 toward the atmospheric discharge port 64a.
  • the exhaust gas is discharged to the atmosphere from the air discharge port 64a.
  • a part of the exhaust passage portion 51 is formed in the engine body 20, and the remaining portion of the exhaust passage portion 51 is formed in the exhaust unit 50.
  • the exhaust unit 50 has an exhaust pipe 52 (see FIG. 1) connected to the engine body 20. Further, the exhaust unit 50 includes a catalyst 53 and a muffler 54.
  • the muffler 54 is a device that reduces noise caused by exhaust gas.
  • the upstream and downstream in the exhaust gas flow direction in the exhaust passage 51 may be simply referred to as upstream and downstream.
  • an injector 42 is arranged in the intake passage 41.
  • the injector 42 injects fuel to the air sucked from the air inlet 41c. More specifically, the injector 42 injects fuel to the air in the intake passage 41.
  • the injector 42 corresponds to the fuel supply device of the present invention.
  • the injector 42 is connected to the fuel tank 10 via the fuel hose 43.
  • a fuel pump 44 is disposed inside the fuel tank 10. The fuel pump 44 pumps the fuel in the fuel tank 10 to the fuel hose 43.
  • the intake passage portion 41 has a main intake passage portion 41a and a bypass intake passage portion 41b.
  • a throttle valve 45 is provided in the main intake passage portion 41a.
  • the throttle valve 45 is disposed upstream of the injector 42.
  • the bypass intake passage portion 41b is connected to the main intake passage portion 41a so as to bypass the throttle valve 45. That is, the bypass intake passage portion 41b communicates the upstream portion and the downstream portion of the throttle valve 45 of the main intake passage portion 41a.
  • the throttle valve corresponds to the throttle valve close to the combustion chamber of the present invention.
  • the path formed inside the intake passage 41 is referred to as an intake path.
  • the path length of any part of the intake passage 41 is the length of the path formed inside this part.
  • the path length from the air inlet 41c of the intake passage 41 to the throttle valve 45 is defined as a path length D1.
  • a path length from the throttle valve 45 of the intake passage portion 41 to the intake port 33 is defined as a path length D2.
  • the path length D2 is shorter than the path length D1. That is, the throttle valve 45 is disposed at a position close to the combustion chamber 30.
  • a volume from the air inlet 41c of the intake passage 41 to the throttle valve 45 is defined as a volume V1.
  • the volume from the throttle valve 45 of the intake passage 41 to the intake port 33 is defined as a volume V2.
  • the volume V1 is larger than the volume V2.
  • the throttle valve 45 is connected to an accelerator grip (not shown) via a throttle wire.
  • the air-cooled engine unit 11 has a throttle opening sensor (throttle position sensor) 74 that detects the opening of the throttle valve 45.
  • the opening degree of the throttle valve 45 is referred to as a throttle opening degree.
  • the throttle opening sensor 74 outputs a signal representing the throttle opening by detecting the position of the throttle valve 45.
  • the throttle opening sensor 74 corresponds to the throttle opening sensor disposed close to the combustion chamber of the present invention.
  • a bypass valve 46 is provided in the bypass intake passage 41b.
  • the bypass valve 46 is disposed to adjust the flow rate of air flowing through the bypass intake passage portion 41b.
  • the bypass valve 46 is a manually operated valve.
  • the bypass valve 46 is configured by, for example, an adjustment screw.
  • the bypass intake passage portion 41b is not provided with a valve mechanism whose opening degree is controlled by an ECU 80 described later.
  • the intake passage 41 is not provided with an intake pressure sensor for detecting the internal pressure of the intake passage 41.
  • the internal pressure of the intake passage 41 is referred to as intake pressure.
  • the intake passage portion 41 is not provided with an intake air temperature sensor that detects the temperature in the intake passage portion 41.
  • the temperature of the air in the intake passage portion 41 is referred to as intake air temperature.
  • a catalyst 53 is disposed in the exhaust passage 51.
  • the catalyst 53 corresponds to the combustion chamber adjacently arranged catalyst of the present invention.
  • the catalyst 53 is disposed in the exhaust pipe 52 of the exhaust unit 50 (see FIG. 1).
  • a path formed inside the exhaust passage 51 is referred to as an exhaust path.
  • the path length of any part of the exhaust passage 51 is the length of the path formed inside this part.
  • the path length from the exhaust port 34 of the exhaust passage 51 to the upstream end of the catalyst 53 is defined as a path length D3.
  • a path length from the downstream end of the catalyst 53 of the exhaust passage 51 to the atmospheric discharge port 64a is defined as a path length D4.
  • the path length D3 is shorter than the path length D4.
  • the catalyst 53 is disposed at a position close to the combustion chamber 30.
  • a volume from the exhaust port 34 of the exhaust passage 51 to the upstream end of the catalyst 53 is defined as a volume V3.
  • the volume from the downstream end of the catalyst 53 of the exhaust passage 51 to the atmospheric discharge port 64a is defined as a volume V4.
  • the volume V3 is smaller than the volume V4.
  • the catalyst 53 is disposed below the engine body 20.
  • Catalyst 53 is a three-way catalyst.
  • the three-way catalyst is a catalyst that is removed by oxidizing or reducing three substances of hydrocarbon (HC), carbon monoxide (CO), and nitrogen oxide (NOx) in the exhaust gas.
  • the catalyst 53 may be a catalyst that removes any one or two of hydrocarbon, carbon monoxide, and nitrogen oxide.
  • the catalyst 53 may not be a redox catalyst.
  • the catalyst 53 may be an oxidation catalyst or a reduction catalyst that removes harmful substances only by either oxidation or reduction.
  • the catalyst 53 has a configuration in which a noble metal having an exhaust gas purification action is attached to a base material.
  • the catalyst 53 of this embodiment is a metal-based catalyst.
  • the catalyst 53 may be a ceramic-based catalyst.
  • An oxygen sensor 75 is disposed upstream of the catalyst 53 in the exhaust passage 51.
  • the oxygen sensor 75 detects the oxygen concentration in the exhaust gas.
  • the oxygen sensor 75 outputs a voltage signal corresponding to the oxygen concentration in the exhaust gas.
  • the oxygen sensor 75 outputs a signal having a high voltage value when the air-fuel ratio of the air-fuel mixture is rich, and outputs a signal having a low voltage value when the air-fuel ratio is lean.
  • the rich state refers to a state where fuel is excessive with respect to the target air-fuel ratio.
  • the lean state is a state where air is excessive with respect to the target air-fuel ratio. That is, the oxygen sensor 75 detects whether the air-fuel ratio of the air-fuel mixture is in a rich state or a lean state.
  • the oxygen sensor 75 has a sensor element portion made of a solid electrolyte body mainly composed of zirconia.
  • the oxygen sensor 75 can detect the oxygen concentration when the sensor element unit is heated to a high temperature and becomes activated.
  • a linear A / F sensor that outputs a linear detection signal corresponding to the oxygen concentration of the exhaust gas may be used as the oxygen sensor 75.
  • the linear A / F sensor continuously detects a change in oxygen concentration in the exhaust gas.
  • the muffler 54 is provided downstream of the catalyst 53 in the exhaust passage 51. As shown in FIG. 3, the muffler 54 has an outer cylinder 60, three pipes 61 to 63 accommodated in the outer cylinder 60, and a tail pipe 64.
  • the inside of the outer cylinder 60 is partitioned into three expansion chambers 60a, 60b, 60c by two separators 65, 66.
  • One end of the first pipe 61 is connected to the exhaust pipe 52 (see FIG. 1).
  • the first pipe 61 is inserted inside the third pipe 63 that penetrates the separator 65.
  • a gap is formed between the outer peripheral surface of the first pipe 61 and the inner peripheral surface of the third pipe 63.
  • the first pipe 61 passes through the two separators 65 and 66.
  • the other end of the first pipe 61 is disposed in the first expansion chamber 60a.
  • the second pipe 62 passes through the two separators 65 and 66.
  • the second pipe 62 communicates the first expansion chamber 60a and the second expansion chamber 60b.
  • the third pipe 63 communicates the second expansion chamber 60b and the third expansion chamber 60c.
  • the tail pipe 64 communicates the third expansion chamber 60 c and the space outside the outer cylinder 60.
  • the end of the tail pipe 64 is exposed to the outside of the outer cylinder 60.
  • An end portion of the tail pipe 64 forms an atmospheric discharge port 64a.
  • the first pipe 61, the first expansion chamber 60a, the second pipe 62, the second expansion chamber 60b, the gap between the third pipe 63 and the first pipe 61, the third expansion chamber 60c, and the tail pipe 64 A path through which the exhaust gas flows is formed in order.
  • the length of the path formed in the muffler 54 is longer than the maximum length of the muffler 54.
  • a sound absorbing material such as glass wool may be disposed between the inner surface of the outer cylinder 60 and the outer surfaces of the pipes 61 to 64, but may not be disposed.
  • the structure inside the muffler 54 is not limited to the structure shown in the schematic diagram of FIG.
  • the air-cooled engine unit 11 has an ECU (Electronic Control Unit) 80 that controls the operation of the air-cooled engine unit 11.
  • the ECU 80 corresponds to the control device of the present invention.
  • the ECU 80 is connected to various sensors such as an engine rotation speed sensor 71, a knocking sensor 72, an engine temperature sensor 73, a throttle opening degree sensor 74, and an oxygen sensor 75.
  • the ECU 80 is connected to the ignition coil 32, the injector 42, the fuel pump 44, the starter motor 27, the display device 14, and the like.
  • the ECU 80 includes a CPU, a ROM, a RAM, and the like.
  • the CPU executes information processing based on programs and various data stored in the ROM and RAM. Thereby, ECU80 implement
  • the ECU 80 includes a fuel supply amount control unit 81, an ignition timing control unit 82, an idle stop control unit 83, a restart control unit 84, and the like as function processing units.
  • the ECU 80 has an operation instruction unit 85.
  • the operation instruction unit 85 transmits an operation command signal to the ignition coil 32, the injector 42, the fuel pump 44, the starter motor 27, the generator, the display device 14 and the like based on the information processing result of each function processing unit. .
  • the idle stop control unit 83 and the operation instruction unit 85 correspond to the idle stop control unit 83 of the present invention.
  • the restart control unit 84 and the operation instruction unit 85 correspond to the restart control unit 84 of the present invention.
  • the fuel supply amount control unit 81 determines the fuel supply amount of the injector 42.
  • the fuel supply amount is a fuel injection amount. More specifically, the fuel supply amount control unit 81 controls the fuel injection time by the injector 42.
  • the air-fuel ratio in the air-fuel mixture is preferably the stoichiometric air-fuel ratio (stoichiometry).
  • the fuel supply amount control unit 81 increases or decreases the fuel supply amount as necessary. For example, until the air-cooled engine unit 11 is warmed up, the fuel supply amount is larger than that in the normal time. Also, during acceleration, the amount of fuel supply is larger than usual in order to increase the output of the air-cooled engine unit 11. Further, the fuel supply is cut during deceleration.
  • the fuel supply amount control unit 81 includes a basic fuel supply amount calculation unit 86, a final fuel supply amount calculation unit 87, and an oxygen feedback learning unit 88.
  • the basic fuel supply amount calculation unit 86 calculates a basic fuel supply amount.
  • the final fuel supply amount calculation unit 87 corrects the basic fuel supply amount calculated by the basic fuel supply amount calculation unit 86 to calculate the final fuel supply amount.
  • the basic fuel supply amount calculation unit 86 calculates the basic fuel supply amount based on the signal from the throttle opening sensor 74 and the signal from the engine speed sensor 71.
  • the basic fuel supply amount calculation unit 86 calculates the basic fuel supply amount in all opening regions of the opening degree of the throttle valve 45 and all rotation speed regions of the engine rotation speed.
  • the basic fuel supply amount calculation unit 86 calculates a basic fuel supply amount for the region based on the two signals. Specifically, the map shown in FIG. 6 is used for calculating the basic fuel supply amount.
  • the map in FIG. 6 shows the intake air amount (A11, A12... A1n, A21, A22,...) With respect to the throttle opening (K1, K2... Km) and the engine speed (C1, C2... Cn).
  • the intake air amount is the mass flow rate of the air that is inhaled.
  • the intake air amount is set for all opening regions of the throttle opening and all rotation speed regions of the engine rotation speed.
  • This map and other maps described later are stored in the ROM.
  • the basic fuel supply amount calculation unit 86 obtains the intake air amount based on the map of FIG.
  • the basic fuel supply amount calculation unit 86 determines a basic fuel supply amount that can achieve the target air-fuel ratio with respect to the intake air amount obtained from the map.
  • FIG. 7 is a graph showing an example of the relationship between the throttle opening, the engine speed, and the basic fuel supply amount.
  • the final fuel supply amount calculation unit 87 includes an oxygen sensor correction cancellation unit 89, an oxygen sensor correction unit 90, an oxygen feedback learning correction unit 91, and an engine temperature sensor correction unit 92.
  • the oxygen sensor correction unit 90 corrects the basic fuel supply amount based on the signal from the oxygen sensor 75. Control of the fuel supply amount based on the signal from the oxygen sensor 75 is referred to as oxygen feedback control.
  • the oxygen sensor correction cancellation unit 89 determines whether or not to temporarily cancel the correction of the basic fuel supply amount by the oxygen sensor correction unit 90. That is, the oxygen sensor correction cancellation unit 89 determines whether or not to temporarily cancel the oxygen feedback control. This determination is made based on the signal from the throttle opening sensor 74 and the signal from the engine speed sensor 71.
  • the map shown in FIG. 8 is used for this determination.
  • the map of FIG. 8 displays an oxygen feedback control area associated with the throttle opening and the engine speed.
  • the oxygen feedback control region is a hatched region. As shown in FIG. 8, the oxygen feedback control region does not include a region where the throttle opening is particularly large.
  • the oxygen feedback control region does not include a region where the throttle opening is particularly low and the engine speed is high.
  • the oxygen sensor correction cancellation unit 89 determines whether or not the signal from the throttle opening sensor 74 and the signal from the engine rotation speed sensor 71 are included in the oxygen feedback control region. When both signals are not included in the oxygen feedback control region, the oxygen sensor correction cancel unit 89 determines to cancel the correction. On the other hand, when both signals are included in the oxygen feedback control region, the oxygen sensor correction cancel unit 89 determines not to cancel the correction.
  • the oxygen sensor correction canceling unit 89 cancels the correction by the oxygen sensor correcting unit 90.
  • the cancellation of the correction by the oxygen sensor correction unit 90 specifically means that the arithmetic processing by the oxygen sensor correction unit 90 is not performed.
  • the cancellation of the correction by the oxygen sensor correction unit 90 may be to execute the following processing.
  • the oxygen sensor correction unit 90 uses the correction value that is not based on the signal from the oxygen sensor 75 to perform a calculation process that results in the same result as when the correction is not performed. For example, when the oxygen sensor correction unit 90 performs a calculation process for adding a correction value to the basic fuel supply amount, the correction value may be zero.
  • the oxygen sensor correction unit 90 corrects the basic fuel supply amount. As described above, the oxygen sensor correction unit 90 corrects the basic fuel supply amount based on the signal from the oxygen sensor 75. Specifically, when the signal from the oxygen sensor 75 indicates a lean state, the basic fuel supply amount is corrected so that the next fuel supply amount increases. On the other hand, when the signal from the oxygen sensor 75 indicates a rich state, the basic fuel supply amount is corrected so that the next fuel supply amount is reduced.
  • the oxygen feedback learning correction unit 91 corrects the basic fuel supply amount.
  • the oxygen feedback learning correction unit 91 corrects the basic fuel supply amount based on an oxygen feedback environment learning correction value and an oxygen feedback bypass valve learning correction value described later.
  • the result of correcting the basic fuel supply amount by the oxygen sensor correction unit 90 or the oxygen feedback learning correction unit 91 is referred to as a corrected fuel supply amount.
  • the engine temperature sensor correction unit 92 corrects the corrected fuel supply amount or the basic fuel supply amount based on the signal from the engine temperature sensor 73.
  • the final fuel supply amount calculation unit 87 determines the value corrected by the engine temperature sensor correction unit 92 as the final fuel supply amount.
  • the operation instruction unit 85 operates the fuel pump 44 and the injector 42 based on the final fuel supply amount calculated by the final fuel supply amount calculation unit 87.
  • the air-cooled engine unit 11 of this embodiment does not include an intake pressure sensor. Therefore, the ECU 80 does not directly grasp a change in atmospheric pressure due to a change in altitude or the like. However, when the atmospheric pressure changes, the intake air amount changes. Further, the ECU 80 does not directly grasp the opening degree of the bypass valve 46 disposed in the bypass intake passage portion 41b. However, when the throttle opening is small, the change in the intake air amount due to the change in the opening of the bypass valve 46 is large. When the throttle opening is large, the change in the intake air amount due to the change in the opening of the bypass valve 46 is small.
  • the oxygen feedback learning unit 88 is provided in order to control the fuel supply amount corresponding to the change in the atmospheric pressure and the change in the opening degree of the bypass valve 46.
  • the oxygen feedback learning unit 88 performs oxygen feedback learning. Oxygen feedback learning for learning changes in atmospheric pressure is referred to as oxygen feedback environment learning.
  • the oxygen feed learning for learning the change in the opening degree of the bypass valve 46 is referred to as oxygen feedback bypass valve learning.
  • the oxygen feedback learning includes oxygen feedback environment learning and oxygen feedback bypass valve learning.
  • the oxygen feedback learning unit 88 performs oxygen feedback environment learning and oxygen feedback bypass valve learning once for each operation of the air-cooled engine unit 11. That is, it is performed once each from the start to the stop of the air-cooled engine unit 11.
  • the map shown in FIG. 9 is used for oxygen feedback learning.
  • the map of FIG. 9 displays an oxygen feedback environment learning area associated with the throttle opening and the engine speed.
  • the map of FIG. 9 displays an oxygen feedback bypass valve learning region associated with the throttle opening and the engine speed.
  • the oxygen feedback environment learning area and the oxygen feedback bypass valve learning area are hatched areas.
  • the oxygen feedback environment learning area and the oxygen feedback bypass valve learning area are included in the oxygen feedback control area shown in FIG.
  • the oxygen feedback learning unit 88 determines whether the signal of the engine speed sensor 71 and the signal of the throttle opening sensor 74 are in the oxygen feedback environment learning region after the air-cooled engine unit 11 is started. When these two signals are in the oxygen feedback environment learning region, the oxygen feedback learning unit 88 performs oxygen feedback environment learning. Specifically, first, the difference between the final fuel supply amount calculated by performing the oxygen feedback control and the basic fuel supply amount obtained from the map shown in FIG. 6 is calculated. This difference is stored in the ROM or RAM as an oxygen feedback environment learning value. Then, the calculated oxygen feedback environment learning value and the already stored oxygen feedback environment learning value are compared with those having the same throttle opening and engine speed. If the two compared values are different, it can be determined that the atmospheric pressure has changed.
  • the oxygen feedback learning unit 88 calculates an oxygen feedback environment learning correction value.
  • the oxygen feedback environment learning correction value is calculated based on the difference between the two oxygen feedback environment learning values compared.
  • the oxygen feedback learning correction unit 91 corrects the basic combustion supply amount based on the oxygen feedback environment learning correction value.
  • the oxygen feedback learning unit 88 determines whether the signal of the engine speed sensor 71 and the signal of the throttle opening sensor 74 are in the oxygen feedback bypass valve learning region after the air-cooled engine unit 11 is started. When these two signals are in the oxygen feedback bypass valve learning region, the oxygen feedback learning unit 88 performs oxygen feedback bypass valve learning. Specifically, first, the difference between the final fuel supply amount calculated by performing the oxygen feedback control and the basic fuel supply amount obtained from the map shown in FIG. 6 is calculated. This difference is stored in the ROM or RAM as the oxygen feedback bypass valve learning value. Then, the calculated oxygen feedback bypass valve learned value and the already stored oxygen feedback bypass valve learned value are compared with those having the same throttle opening and engine speed.
  • the oxygen feedback learning unit 88 calculates an oxygen feedback bypass valve learning correction value.
  • the oxygen feedback bypass valve learning correction value is calculated based on the difference between the two compared oxygen feedback bypass valve learning values.
  • the oxygen feedback learning correction unit 91 corrects the basic combustion supply amount based on the oxygen feedback bypass valve learning correction value.
  • the ignition timing control unit 82 calculates the ignition timing.
  • the ignition timing is the discharge timing of the spark plug 31.
  • the ignition timing is represented by the rotation angle of the crankshaft 26 with respect to the compression top dead center.
  • the compression top dead center is the top dead center of the piston 28 between the compression stroke and the combustion stroke.
  • the minimum advance angle corresponding to the ignition timing at which the torque is maximum is called MBT (Minimummadvance for the Best Torque).
  • MBT Minimum advance angle corresponding to the ignition timing at which the torque is maximum
  • MBT Minimum advance angle corresponding to the ignition timing at which the torque is maximum
  • MBT Minimum advance angle corresponding to the ignition timing at which the torque is maximum
  • MBT Minimum advance angle corresponding to the ignition timing at which the torque is maximum
  • MBT Minimum advance angle corresponding to the ignition timing at which the torque is maximum
  • MBT Minimum advance angle corresponding to the ignition timing at which the torque is maximum
  • the ignition timing is close to the advance corresponding to MBT
  • the ignition timing is close to MBT
  • the ignition timing control unit 82 includes a basic ignition timing calculation unit 93 and a final ignition timing calculation unit 94.
  • the basic ignition timing calculation unit 93 calculates a basic ignition timing.
  • the final ignition timing calculation unit 94 corrects the basic ignition timing calculated by the basic ignition timing calculation unit 93 to calculate the final ignition timing.
  • the basic ignition timing calculation unit 93 calculates the basic ignition timing based on the signal from the throttle opening sensor 74 and the signal from the engine speed sensor 71.
  • the basic ignition timing calculation unit 93 calculates the basic ignition timing in all opening regions of the throttle valve 45 and all rotation speed regions of the engine rotation speed.
  • the basic ignition timing calculation unit 93 calculates the basic ignition timing for the region based on the two signals. Specifically, the basic ignition timing is obtained using a map (not shown) in which the basic ignition timing is associated with the throttle opening and the engine speed. In this map, the basic ignition timing is set for all opening regions of the throttle opening and all rotation speed regions of the engine rotation speed.
  • FIG. 10 is a graph showing an example of the relationship among the throttle opening, the engine speed, and the basic ignition timing.
  • the final ignition timing calculation unit 94 includes a knocking sensor correction cancellation unit 95, a knocking sensor correction unit 96, and an engine temperature sensor correction unit 97.
  • the knocking sensor correction unit 96 corrects the basic ignition timing based on the signal from the knocking sensor 72. Control of the ignition timing based on the signal of the knocking sensor 72 is referred to as knocking control.
  • the knocking sensor correction cancellation unit 95 determines whether or not to cancel the correction by the knocking sensor correction unit 96. That is, the knocking sensor correction cancellation unit 95 determines whether or not to perform knocking control. This determination is made based on the signal from the throttle opening sensor 74 and the signal from the engine speed sensor 71.
  • the map shown in FIG. 11 is used for this determination.
  • a knocking control region associated with the throttle opening and the engine speed is displayed.
  • the knocking control region is a hatched region.
  • the knocking control region is a region where the throttle opening is particularly large. That is, the knocking control region is a region where the engine load is large.
  • the knocking sensor correction cancellation unit 95 determines whether or not the signal from the throttle opening sensor 74 and the signal from the engine rotation speed sensor 71 are included in the knocking control region. When both signals are not included in the knocking control region, the knocking sensor correction cancellation unit 95 determines to cancel the correction. On the other hand, when both signals are included in the knocking control region, the knocking sensor correction cancellation unit 95 determines not to cancel the correction.
  • the knocking sensor correction cancellation unit 95 determines to cancel the correction
  • the knocking sensor correction cancellation unit 95 cancels the correction by the knocking sensor correction unit 96.
  • the cancellation of the correction by the knocking sensor correction unit 96 specifically means that the arithmetic processing by the knocking sensor correction unit 96 is not performed.
  • the cancellation of the correction by the knocking sensor correction unit 96 may be to execute the following processing.
  • the knocking sensor correction unit 96 uses a correction value that is not based on the signal of the knocking sensor 72 to perform a calculation process that results in the same result as when the correction is not performed.
  • the knocking sensor correction unit 96 corrects the basic ignition timing.
  • the knocking sensor correction unit 96 corrects the basic ignition timing based on the signal from the knocking sensor 72. Specifically, knocking sensor correction unit 96 first determines the presence or absence of knocking of engine body 20 based on a signal from knocking sensor 72. The determination of the presence or absence of knocking is made based on the peak value of the signal from the knocking sensor 72, for example. When it is determined that knocking is present, the knocking sensor correction unit 96 corrects the basic ignition timing so as to retard the basic ignition timing by a predetermined retardation value.
  • the knocking sensor correction unit 96 corrects the basic ignition timing to advance by a predetermined advance value. As a result, when there is no knocking, the ignition timing approaches the MBT by a predetermined advance value. When knocking occurs, the ignition timing is delayed from the MBT by a predetermined delay value. Thereby, the occurrence of knocking is suppressed. Therefore, it is possible to improve the output and fuel consumption by preventing the occurrence of large knocking and making the ignition timing as close to MBT as possible.
  • the result of correcting the basic ignition timing by the knocking sensor correction unit 96 is referred to as corrected ignition timing.
  • the engine temperature sensor correction unit 97 corrects the corrected ignition timing or basic ignition timing based on the signal from the engine temperature sensor 73.
  • the final ignition timing calculation unit 94 determines the value corrected by the engine temperature sensor correction unit 97 as the final ignition timing.
  • the operation instructing unit 85 energizes the ignition coil 32 based on the final ignition timing calculated by the final ignition timing calculating unit 94 to operate the spark plug 31.
  • the air-cooled engine unit 11 of this embodiment does not include an intake pressure sensor. Therefore, the ECU 80 does not grasp changes in atmospheric pressure due to changes in altitude. However, by performing knocking control in the knocking control region, it is possible to make the ignition timing as close to MBT as possible even when the atmospheric pressure changes. Therefore, fuel consumption and output can be increased.
  • the idle stop control unit 83 stops the operation of the air-cooled engine unit 11 when a predetermined idle stop condition is satisfied during the operation of the air-cooled engine unit 11.
  • a state in which the operation of the air-cooled engine unit 11 is automatically stopped by the control by the idle stop control unit 83 is set as an idle stop state.
  • the idle stop control unit 83 gives the following command to the operation instruction unit 85.
  • the command is a command for stopping the ignition operation of the spark plug 31 and stopping the fuel supply from the injector 42. Thereby, the operation of the air-cooled engine unit 11 is stopped.
  • the idle stop condition of this embodiment is that all of the following conditions A1 to A6 continue for a predetermined time.
  • the predetermined time is, for example, 3 seconds.
  • A4 The engine temperature is equal to or higher than a predetermined value (for example, 60 ° C.).
  • A5 The remaining battery level is equal to or greater than a predetermined value.
  • the ECU 80 turns on the indicator of the display device 14. Thereby, the rider can know that it is in an idle stop state. Further, in the idle stop state, the piston 28 stops at or near the bottom dead center. The ECU 80 injects fuel from the injector 42 in the idle stop state.
  • the restart control unit 84 restarts the operation of the air-cooled engine unit 11 when a predetermined restart condition is satisfied in the idle stop state.
  • the restart condition of the present embodiment is that the throttle opening is equal to or greater than a predetermined opening. Therefore, the rider can restart the operation of the air-cooled engine unit 11 by operating an accelerator grip (not shown).
  • the restart control unit 84 instructs the operation instruction unit 85 to operate the starter motor 27 when a predetermined restart condition is satisfied. Thereby, the starter motor 27 is operated. Furthermore, the restart control unit 84 starts control by the fuel supply amount control unit 81 and the ignition timing control unit 82 when a predetermined restart condition is satisfied. Thereby, fuel is injected from the injector 42 and spark discharge of the spark plug 31 is performed, and the operation of the air-cooled engine unit 11 is restarted. More specifically, the ignition timing control unit 82 ignites the fuel supplied to the combustion chamber 30 in the idling stop state at the first compression top dead center after the starter motor 27 is operated. To control. Thereby, the operation of the air-cooled engine unit 11 can be restarted quickly. Furthermore, the noise of the starter motor 27 at the time of restart can be suppressed.
  • the compression ratio of the engine body 20 of the present embodiment is 10 or more.
  • Table 1 shows an example of exhaust gas temperatures of an air-cooled engine having a compression ratio of 11 and an air-cooled engine having a compression ratio of 9.5.
  • the exhaust temperature in Table 1 indicates the temperature of the exhaust gas at the time when it is discharged from the engine body.
  • the higher the compression ratio the lower the temperature of the exhaust gas. This is because the higher the compression ratio, the higher the thermal efficiency.
  • the operation of the air-cooled engine unit 11 is stopped when a predetermined idle stop condition is satisfied.
  • the idle operation state the engine speed is low, so the temperature of the exhaust gas is low.
  • the temperature of the catalyst 53 decreases as the exhaust gas whose temperature has decreased passes through the catalyst 53.
  • the temperature of the exhaust gas is low in the first place. Therefore, in the idle operation state, the temperature of the exhaust gas becomes considerably low. Therefore, at the time of idling, the temperature of the catalyst 53 may be lowered to a temperature at which it becomes inactive.
  • the operation of the air-cooled engine unit 11 is stopped, so that the exhaust gas whose temperature has decreased can be prevented from passing through the catalyst 53.
  • the temperature of the catalyst 53 can be maintained at a high temperature, and the active state of the catalyst 53 can be maintained.
  • Table 2 shows an example of the result of comparing the exhaust gas temperature and the catalyst temperature when the idle operation is stopped and when it is not stopped.
  • the Example in Table 2 shows the result 20 seconds after the idle operation state is stopped. In the embodiment, after shifting from the normal operation state to the idle operation state, the idle operation state is stopped.
  • the comparative example in Table 2 shows the result 20 seconds after the transition from the normal operation state to the idle operation.
  • the first temperature in Table 2 indicates the temperature of the exhaust gas in the vicinity of the engine body in the exhaust passage portion.
  • the second temperature in Table 2 indicates the temperature of the exhaust gas upstream of the catalyst in the exhaust passage portion and in the vicinity of the catalyst. As is apparent from Table 2, the temperature of the catalyst can be maintained at a higher temperature by stopping the idle operation state than when continuing the idle operation state.
  • the air-cooled engine unit 11 of the present embodiment has the following characteristics.
  • a path length D3 from the exhaust port 34 of the exhaust passage portion 51 to the catalyst 53 is shorter than a path length D1 from the catalyst 53 of the exhaust passage portion 51 to the atmospheric discharge port 64a. That is, the catalyst 53 is disposed near the engine body 20. Thereby, the time required for the activation of the catalyst 53 can be shortened.
  • an air-cooled engine tends to have a higher temperature of the engine body 20 than a water-cooled engine.
  • the air-cooled engine unit 11 of the present embodiment has a higher compression ratio of the engine body 20 of 10 or more than the conventional air-cooled engine unit. Due to the high compression ratio, the temperature of the exhaust gas discharged from the combustion chamber 30 can be lowered.
  • the temperature of the exhaust gas flowing into the catalyst 53 can be reduced. Therefore, even if the catalyst 53 is disposed near the engine body 20, deterioration due to overheating of the catalyst 53 can be suppressed.
  • the idle stop control unit 83 automatically stops the operation of the air-cooled engine unit 11 when a predetermined idle stop condition is satisfied during the operation of the air-cooled engine unit 11.
  • the restart control unit 84 restarts the operation of the air-cooled engine unit 11 when a predetermined restart condition is satisfied in a state where the operation of the air-cooled engine unit 11 is stopped by the idle stop control unit 83. That is, if a predetermined idle stop condition is satisfied during idling, the operation is automatically stopped. Thereafter, the operation is restarted if a predetermined restart condition is satisfied. During idling, the temperature of the exhaust gas discharged from the combustion chamber 30 decreases.
  • the air-cooled engine unit 11 of this embodiment has a high compression ratio.
  • the temperature of the exhaust gas discharged from the combustion chamber 30 is further lowered during idling.
  • the air-cooled engine unit 11 of the present embodiment performs idle stop, it can prevent the idle state from continuing for a long time. Thereby, it can prevent that the temperature of the catalyst 53 falls below active temperature. As a result, exhaust purification performance can be improved.
  • the ECU 80 controls the ignition timing of the spark plug 31 that ignites the fuel in the combustion chamber 30 based on the signal from the knocking sensor 72. Specifically, when knocking is detected, the ignition timing is retarded. Thereby, it is possible to prevent large knocking from occurring. If the compression ratio of the engine body 20 is high, the engine body 20 is likely to knock. However, the air-cooled engine unit 11 of the present embodiment includes the knocking sensor 72 and retards the ignition timing when knocking occurs. Therefore, it is not necessary to retard the ignition timing excessively to prevent knocking. That is, the retard of the ignition timing can be reduced. Thereby, the temperature of the exhaust gas discharged from the combustion chamber 30 can be lowered. Thus, the temperature of the exhaust gas can be lowered while suppressing the retard of the ignition timing. As a result, deterioration due to overheating of the catalyst 53 can be suppressed while securing torque.
  • the ECU 80 controls the fuel supply amount of the injector 42 based on the signal from the oxygen sensor 75. If the compression ratio of the engine body 20 is high, the temperature of the exhaust gas will be low. Therefore, the temperature of the oxygen sensor 75 provided in the exhaust passage portion 51 also decreases. If the temperature of the oxygen sensor 75 becomes too low, the oxygen sensor 75 becomes inactive. Thereby, the detection accuracy of the oxygen sensor 75 decreases.
  • the oxygen sensor 75 of the present embodiment is arranged upstream of the catalyst 53 arranged near the engine body 20. That is, the oxygen sensor 75 is arranged closer to the engine body 20 than the catalyst 53. Therefore, the temperature of the exhaust gas that contacts the oxygen sensor 75 can be increased. That is, a decrease in the temperature of the oxygen sensor 75 can be suppressed. Therefore, the active state of the oxygen sensor 75 can be maintained. As a result, the accuracy of control of the fuel supply amount can be maintained.
  • the path length D2 from the throttle valve 45 to the intake port 33 in the intake passage 41 is shorter than the path length D1 from the air intake port 41c of the intake passage 41 to the throttle valve 45. That is, the throttle valve 45 is disposed at a position close to the combustion chamber 30. Therefore, the delay in the change in the amount of air taken into the combustion chamber 30 with respect to the change in the opening degree of the throttle valve 45 can be reduced.
  • the ECU 80 controls the fuel supply amount of the injector 42 and the ignition timing of the spark plug 31 based on the signal from the throttle opening sensor 74. Therefore, it is possible to reduce the delay in controlling the fuel supply and the ignition timing with respect to the change in the opening degree of the throttle valve 45.
  • the delay in the change in the amount of air taken into the combustion chamber 30 is small with respect to the change in the opening degree of the throttle valve 45. Therefore, when the opening degree of the throttle valve 45 changes, the time difference between the change in the fuel supply amount and the ignition timing and the change in the air amount taken into the combustion chamber can be reduced. Therefore, the accuracy of control of the fuel supply amount and the ignition timing can be improved. In addition, the following effects can be obtained by improving the accuracy of ignition timing control. That is, even if the knocking sensor 72 is not provided, it is possible to reduce the excessive retard of the ignition timing for preventing knocking. Thereby, the temperature of the exhaust gas can be lowered while suppressing the retard of the ignition timing. As a result, deterioration due to overheating of the catalyst adjacent to the combustion chamber can be suppressed while securing torque.
  • the air-cooled engine unit 11 does not have an intake pressure sensor that detects the internal pressure of the intake passage portion 41. Further, the air-cooled engine unit 11 does not have an intake air temperature sensor that detects the temperature in the intake passage portion 41. Therefore, the intake pressure and the intake temperature are not used for controlling the fuel supply amount and the ignition timing. Therefore, the control of the fuel supply amount and the ignition timing can be simplified.
  • the final fuel supply amount calculation unit 87 may include a correction unit that corrects the fuel supply amount in addition to the oxygen sensor correction unit 90 and the engine temperature sensor correction unit 92.
  • the final fuel supply amount calculation unit 87 may include a correction unit that corrects the fuel supply amount according to the transient characteristics during acceleration / deceleration.
  • the final ignition timing calculation unit 94 may include a correction unit that corrects the ignition timing in addition to the knocking sensor correction unit 96 and the engine temperature sensor correction unit 97. Further, the final ignition timing calculation unit 94 may not include the engine temperature sensor correction unit 97.
  • the operation of the air-cooled engine unit 11 is stopped when a predetermined idle stop condition is satisfied during idling.
  • the ECU 80 does not have to include the idle stop control unit 83 and the restart control unit 84.
  • the catalyst 53 is disposed below the engine body, but the position of the catalyst 53 is not limited to this.
  • the arrangement position of the catalyst 53 may be a position where the path length D3 is shorter than the path length D4.
  • the catalyst 53 may be disposed in front of the engine body 20.
  • a plurality of catalysts may be arranged in the exhaust passage portion 51.
  • the catalyst that most purifies the exhaust gas discharged from the combustion chamber 30 in the exhaust path corresponds to the combustion chamber adjacently arranged catalyst of the present invention. That is, the combustion chamber adjacently arranged catalyst has the highest contribution to purify the exhaust gas.
  • the other catalyst is disposed upstream or downstream of the combustion chamber adjacently disposed catalyst.
  • the degree of contribution of purification of each of the plurality of catalysts can be measured by the following method.
  • a case where the number of catalysts is two will be described as an example.
  • the catalyst disposed upstream is referred to as a front catalyst
  • the catalyst disposed downstream is referred to as a rear catalyst.
  • the engine unit in this state is referred to as a measurement engine unit A.
  • the measurement engine unit A is operated to measure the concentration of harmful substances contained in the exhaust gas discharged from the atmospheric discharge port 64a in the warm-up state.
  • the engine unit in this state is referred to as a measurement engine unit B.
  • the measurement engine unit B is operated to measure the concentration of harmful substances contained in the exhaust gas discharged from the atmospheric discharge port 64a in the warm-up state.
  • the measurement engine unit A has a front catalyst and does not have a rear catalyst.
  • the measurement engine unit B does not have a front catalyst and a rear catalyst. Therefore, the degree of contribution of the purification of the front catalyst is calculated from the difference between the measurement result of the measurement engine unit A and the measurement result of the measurement engine unit B. Further, the contribution of the purification of the rear catalyst is calculated from the difference between the measurement result of the measurement engine unit A and the measurement result of the engine unit of the modified example.
  • the injector 42 is disposed so as to inject fuel into the intake passage portion 41, but may be disposed so as to inject fuel into the combustion chamber 30.
  • the injector 42 may be disposed in the engine body 20.
  • the injector 42 corresponds to the fuel supply device of the present invention.
  • the fuel supply device of the present invention is not limited to an injector.
  • the fuel supply device of the present invention may be a device that supplies fuel into the combustion chamber.
  • the fuel supply device of the present invention may be, for example, a carburetor that supplies fuel to the combustion chamber by negative pressure.
  • a bypass valve 46 whose opening degree can be manually changed is arranged in the bypass intake passage 41b.
  • a valve whose opening degree can be controlled by the ECU 80 may be arranged.
  • the air-cooled engine unit 11 may have an intake pressure sensor that detects the internal pressure of the intake passage portion 41.
  • a signal from the intake pressure sensor may be used for controlling the fuel supply amount and / or controlling the ignition timing.
  • the air-cooled engine unit 11 may have an intake air temperature sensor that detects the temperature of air in the intake passage portion 41. In this case, a signal from the intake air temperature sensor may be used for controlling the fuel supply amount and / or controlling the ignition timing.
  • the air-cooled engine unit 11 may not include the knocking sensor 72.
  • the air-cooled engine unit 11 of the above embodiment is a natural air-cooled engine unit.
  • the air-cooled engine unit of the present invention may be a forced air-cooled engine unit.
  • the forced air cooling engine unit includes a shroud and a fan.
  • the shroud is disposed so as to cover at least a part of the engine body. Air is introduced into the shroud by driving the fan.
  • the engine unit 11 of the above embodiment is a single cylinder engine unit, but the air-cooled engine unit of the present invention may be a multi-cylinder engine unit having a plurality of combustion chambers.
  • the number of the air intake ports 41c may be smaller than the number of the plurality of combustion chambers 30. That is, a portion of the intake passage portion 41 formed for one combustion chamber 30 may also serve as a portion of the intake passage portion 41 formed for another combustion chamber 30.
  • the number of atmospheric inlets 41c may be one.
  • the number of atmospheric discharge ports 64a may be smaller than the number of the plurality of combustion chambers 30. That is, a part of the exhaust passage portion 51 formed for one combustion chamber 30 may also serve as a part of the exhaust passage portion 51 formed for another combustion chamber 30.
  • the number of atmospheric discharge ports 64a may be one. Further, when the number of combustion chambers 30 is an odd number of 4 or more, the atmospheric discharge ports 64a may be arranged one by one on the left and right.
  • the combustion chamber of the present invention may have a configuration having a main combustion chamber and a sub-combustion chamber connected to the main combustion chamber.
  • one combustion chamber is formed by the main combustion chamber and the sub-combustion chamber.
  • the above embodiment is an example in which the air-cooled engine unit of the present invention is applied to a sports type motorcycle.
  • the application target of the air-cooled engine unit of the present invention is not limited to a sports type motorcycle.
  • the air-cooled engine unit of the present invention may be applied to a motorcycle other than the sport type.
  • the engine unit of the present invention may be applied to a scooter type motorcycle.
  • the air-cooled engine unit of the present invention may be applied to a lean vehicle other than a motorcycle.
  • a lean vehicle is a vehicle having a vehicle body frame that leans to the right of the vehicle when turning right and leans to the left of the vehicle when turning left.
  • the air-cooled engine unit of the present invention may be applied to a straddle-type vehicle other than a motorcycle.
  • the saddle riding type vehicle refers to all vehicles that ride in a state in which an occupant straddles a saddle.
  • the saddle riding type vehicle includes a motorcycle, a tricycle, a four-wheel buggy (ATV: All Terrain Vehicle), a water bike, a snowmobile, and the like.
  • ATV All Terrain Vehicle
  • the route length of an arbitrary portion of the intake passage portion 41 is the length of a route formed inside this portion.
  • the path length refers to the path length of the middle line of the path.
  • the path length of the expansion chambers (60a, 60b, 60c) of the muffler 54 means the length of the path connecting the center of the expansion chamber inlet to the center of the expansion chamber outlet at the shortest distance.
  • the upstream end of the catalyst 53 means an end where the path length from the combustion chamber 30 in the catalyst 53 is the shortest.
  • the downstream end of the catalyst 53 means an end where the path length from the combustion chamber 30 in the catalyst 53 is the longest. Similar definitions apply to upstream and downstream ends of elements other than the catalyst 53.
  • Air-cooled engine unit 20
  • Engine body 25 Fin part (heat dissipation part) 30 Combustion chamber 31
  • Spark plug ignition device
  • Ignition coil ignition device
  • Intake Port 34
  • Exhaust Port 41
  • Intake Passage 41c
  • Air Intake Port 42
  • Injector (Fuel Supply Device)
  • Throttle valve throttle valve close to combustion chamber
  • 51 Exhaust passage part
  • Catalyst Combustion chamber proximity catalyst
  • 64a Atmospheric discharge port 71
  • Engine rotation speed sensor 72
  • Knocking sensor 73
  • Engine temperature sensor 72
  • Throttle opening sensor throttle opening sensor arranged close to combustion chamber
  • Oxygen sensor 80
  • ECU control device
  • Fuel supply amount control unit 82
  • Ignition timing control unit 83
  • Idle stop control unit 84
  • Operation instruction unit 85

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Electrical Control Of Ignition Timing (AREA)

Abstract

Provided is an air-cooled engine unit capable of suppressing the degradation of a catalyst, even when the catalyst is arranged near an engine body. This air-cooled engine unit (11) has a compression ratio of 10 or higher, and comprises a catalyst (53) that is arranged in an exhaust gas passage section (51) and arranged near a combustion chamber. The path length of the exhaust gas passage section (51) from an exhaust gas port to the catalyst (53) is shorter than the path length of the exhaust gas passage section (51) from the catalyst (53) to an atmospheric release opening (64a).

Description

空冷式エンジンユニットAir-cooled engine unit
 本発明は、空冷式エンジンユニットに関する。 The present invention relates to an air-cooled engine unit.
 例えば特許文献1のような空冷式エンジンユニットは、水冷式エンジンユニットに比べて、エンジン本体の温度が高くなる。そのため、空冷式のエンジンユニットは、水冷式エンジンユニットに比べてノッキングが発生しやすい。従来、ノッキングを防止するために、空冷式エンジンユニットの圧縮比は、水冷式エンジンユニットに比べて低めに設定されている。 For example, an air-cooled engine unit such as Patent Document 1 has a higher temperature of the engine body than a water-cooled engine unit. Therefore, the air-cooled engine unit is more likely to knock than the water-cooled engine unit. Conventionally, in order to prevent knocking, the compression ratio of the air-cooled engine unit is set lower than that of the water-cooled engine unit.
特開平10-067372号公報JP-A-10-067372
 空冷式エンジンユニットは、排ガスを浄化する触媒を有する。空冷式エンジンユニットは、触媒が非活性状態から活性状態に変化するまでの時間を短縮化することが求められている。以下の説明において、触媒が非活性状態から活性状態に変化するまでの時間を、触媒の活性化に要する時間という。触媒の活性化に要する時間を短縮化する方法として、触媒をエンジン本体の近く配置することが考えられる。しかしながら、空冷式エンジンユニットの圧縮比は低い。そのため、触媒をエンジン本体の近くに配置すると、触媒が過熱されて熱により劣化する恐れがある。 The air-cooled engine unit has a catalyst that purifies the exhaust gas. The air-cooled engine unit is required to shorten the time until the catalyst changes from the inactive state to the active state. In the following description, the time required for the catalyst to change from the inactive state to the active state is referred to as the time required for the activation of the catalyst. As a method for shortening the time required for the activation of the catalyst, it is conceivable to dispose the catalyst near the engine body. However, the compression ratio of the air-cooled engine unit is low. Therefore, if the catalyst is disposed near the engine body, the catalyst may be overheated and deteriorated by heat.
 本発明は、エンジン本体の近くに触媒を配置しても、触媒の劣化を抑えることができる空冷式エンジンユニットを提供することを目的とする。 An object of the present invention is to provide an air-cooled engine unit that can suppress the deterioration of the catalyst even if the catalyst is arranged near the engine body.
課題を解決するための手段及び発明の効果Means for Solving the Problems and Effects of the Invention
 本発明のエンジンユニットは、圧縮比が10以上であって、少なくとも1つの燃焼室を形成するエンジン本体と、前記エンジン本体で発生した熱を前記エンジン本体の表面から放熱させる放熱部と、前記燃焼室に形成された排気ポートと大気に排ガスを放出する大気放出口とをつなぎ、その内部を、前記排気ポートから前記大気放出口に向かって排ガスが流れる排気通路部と、前記排気通路部内に配置された燃焼室近接配置触媒とを備える。前記排気通路部の前記排気ポートから前記燃焼室近接配置触媒の上流端までの経路長は、前記排気通路部の前記燃焼室近接配置触媒の下流端から前記大気放出口までの経路長より短い。 The engine unit of the present invention has a compression ratio of 10 or more, an engine main body forming at least one combustion chamber, a heat dissipating part that dissipates heat generated in the engine main body from the surface of the engine main body, and the combustion An exhaust port formed in the chamber is connected to an atmospheric discharge port that discharges exhaust gas to the atmosphere, and the inside is disposed in the exhaust passage unit and an exhaust passage unit through which exhaust gas flows from the exhaust port toward the atmospheric discharge port A combustion chamber adjacently arranged catalyst. The path length from the exhaust port of the exhaust passage portion to the upstream end of the catalyst disposed in the vicinity of the combustion chamber is shorter than the path length from the downstream end of the catalyst disposed near the combustion chamber of the exhaust passage portion to the atmosphere discharge port.
 空冷式エンジンユニットは、エンジン本体と、放熱部と、排気通路部と、燃焼室近接配置触媒とを備える。エンジン本体は、少なくとも1つの燃焼室を形成する。放熱部は、エンジン本体で発生した熱をエンジン本体の表面から放熱させる。排気通路部は、燃焼室に形成された排気ポートと大気に排ガスを放出する大気放出口とをつなぐ。排気通路部は、その内部を、排気ポートから大気放出口に向かって排ガスが流れる。燃焼室近接配置触媒は、排気通路部内に配置される。排気通路部の排気ポートから燃焼室近接配置触媒の上流端までの経路長は、排気通路部の燃焼室近接配置触媒の下流端から大気放出口までの経路長より短い。つまり、燃焼室近接配置触媒は、エンジン本体の近くに配置されている。それにより、触媒の活性化に要する時間を短縮化することができる。
 一般的に、空冷式エンジンは、水冷式エンジンに比べて、エンジン本体の温度が高くなりやすい。しかしながら、本発明の空冷式エンジンユニットは、従来の空冷式エンジンユニットと比較して、エンジン本体の圧縮比が10以上と高い。圧縮比が高いことにより、燃焼室から排出される排ガスの温度を下げることができる。そのため、エンジン本体の近くに燃焼室近接配置触媒を配置しても、燃焼室近接配置触媒に流入する排ガスの温度を低減できる。したがって、エンジン本体の近くに燃焼室近接配置触媒を配置しても、燃焼室近接配置触媒の過熱による劣化を抑えることができる。
The air-cooled engine unit includes an engine body, a heat radiating section, an exhaust passage section, and a combustion chamber adjacently arranged catalyst. The engine body forms at least one combustion chamber. The heat dissipating part dissipates heat generated in the engine body from the surface of the engine body. The exhaust passage section connects an exhaust port formed in the combustion chamber and an atmospheric discharge port for discharging exhaust gas to the atmosphere. In the exhaust passage portion, exhaust gas flows through the interior from the exhaust port toward the atmospheric discharge port. The combustion chamber adjacently arranged catalyst is arranged in the exhaust passage portion. The path length from the exhaust port of the exhaust passage portion to the upstream end of the catalyst adjacent to the combustion chamber is shorter than the path length from the downstream end of the catalyst adjacent to the combustion chamber of the exhaust passage portion to the atmospheric discharge port. That is, the combustion chamber adjacently arranged catalyst is arranged near the engine body. Thereby, the time required for the activation of the catalyst can be shortened.
Generally, an air-cooled engine tends to have a higher temperature of the engine body than a water-cooled engine. However, the air-cooled engine unit of the present invention has a high compression ratio of 10 or more as compared with the conventional air-cooled engine unit. Due to the high compression ratio, the temperature of the exhaust gas discharged from the combustion chamber can be lowered. Therefore, even if the combustion chamber adjacently disposed catalyst is disposed near the engine body, the temperature of the exhaust gas flowing into the combustion chamber adjacently disposed catalyst can be reduced. Therefore, even if the combustion chamber adjacently disposed catalyst is disposed near the engine body, deterioration due to overheating of the combustion chamber adjacently disposed catalyst can be suppressed.
 本発明の空冷式エンジンユニットは、前記空冷式エンジンユニットの動作を制御する制御装置を備え、前記制御装置は、前記空冷式エンジンユニットの運転中に所定のアイドル停止条件が満たされると、前記空冷式エンジンユニットの運転を自動的に停止させるアイドル停止制御部と、前記アイドル停止制御部により前記空冷式エンジンユニットの運転が停止された状態で、所定の再始動条件が満たされると、前記空冷式エンジンユニットの運転を再始動させる再始動制御部とを含むことが好ましい。 The air-cooled engine unit of the present invention includes a control device that controls the operation of the air-cooled engine unit, and the control device performs the air-cooling when a predetermined idle stop condition is satisfied during operation of the air-cooled engine unit. An idle stop control unit that automatically stops the operation of the engine unit, and when the predetermined restart condition is satisfied while the operation of the air cooling engine unit is stopped by the idle stop control unit, It is preferable to include a restart control unit that restarts the operation of the engine unit.
 制御装置は、アイドル停止制御部と、再始動制御部とを含む。アイドル停止制御部は、空冷式エンジンユニットの運転中に所定のアイドル停止条件が満たされると、空冷式エンジンユニットの運転を自動的に停止させる。この停止を、アイドルストップと称する場合がある。再始動制御部は、アイドル停止制御部により空冷式エンジンユニットの運転が停止された状態で、所定の再始動条件が満たされると、空冷式エンジンユニットの運転を再始動させる。つまり、アイドル時に所定のアイドル停止条件を満たすと、運転が自動的に停止される。そして、その後、所定の再始動条件を満たせば運転が再始動される。
 アイドル時には、燃焼室から排出される排ガスの温度が低くなる。空冷式エンジンユニットは圧縮比が高い。そのため、アイドル時に、燃焼室から排出される排ガスの温度はさらに低くなる。しかし、空冷式エンジンユニットはアイドルストップを行うため、アイドル状態が長時間継続することを防止できる。それにより、触媒の温度が活性温度よりも低下することを防止できる。その結果、排気浄化性能を向上できる。
The control device includes an idle stop control unit and a restart control unit. The idle stop control unit automatically stops the operation of the air-cooled engine unit when a predetermined idle stop condition is satisfied during the operation of the air-cooled engine unit. This stop may be referred to as idle stop. The restart control unit restarts the operation of the air-cooled engine unit when a predetermined restart condition is satisfied in a state where the operation of the air-cooled engine unit is stopped by the idle stop control unit. That is, if a predetermined idle stop condition is satisfied during idling, the operation is automatically stopped. Thereafter, the operation is restarted if a predetermined restart condition is satisfied.
During idling, the temperature of the exhaust gas discharged from the combustion chamber is lowered. The air-cooled engine unit has a high compression ratio. Therefore, the temperature of the exhaust gas discharged from the combustion chamber is further lowered during idling. However, since the air-cooled engine unit performs idle stop, it can prevent the idle state from continuing for a long time. Thereby, it can prevent that the temperature of a catalyst falls rather than activation temperature. As a result, exhaust purification performance can be improved.
 本発明の空冷式エンジンユニットは、前記エンジン本体のノッキングを検出するノッキングセンサと、前記燃焼室内の燃料に点火する点火装置と、前記ノッキングセンサの信号に基づいて前記点火装置の点火時期を制御する制御装置とを備えることが好ましい。 The air-cooled engine unit of the present invention controls a knocking sensor that detects knocking of the engine body, an ignition device that ignites fuel in the combustion chamber, and an ignition timing of the ignition device based on a signal of the knocking sensor. And a control device.
 この構成によると、空冷式エンジンユニットは、ノッキングセンサと、点火装置と、制御装置とを備える。ノッキングセンサは、エンジン本体に発生するノッキングを検出する。点火装置は、燃焼室内の燃料に点火する。制御装置は、ノッキングセンサの信号に基づいて、燃焼室内の燃料に点火する点火装置の点火時期を制御する。具体的には、ノッキングを検知した場合には点火時期を遅角させる。これにより、大きなノッキングが発生するのを防止できる。
 エンジン本体の圧縮比が高いと、エンジン本体のノッキングが生じやすい。しかし、空冷式エンジンユニットは、ノッキングセンサを備えており、ノッキングが起きたときに点火時期を遅角させる。そのため、ノッキングの予防のために点火時期を余分に遅角させなくてもよい。つまり、点火時期の遅角を減らすことができる。それにより、燃焼室から排出される排ガスの温度を低下させることができる。このように、点火時期の遅角を抑制しつつ、排ガスの温度を低下させることができる。その結果、トルクを確保しつつ、燃焼室近接配置触媒の過熱による劣化をより一層抑制できる。
According to this configuration, the air-cooled engine unit includes a knocking sensor, an ignition device, and a control device. The knocking sensor detects knocking that occurs in the engine body. The ignition device ignites the fuel in the combustion chamber. The control device controls the ignition timing of the ignition device that ignites the fuel in the combustion chamber based on the signal of the knocking sensor. Specifically, when knocking is detected, the ignition timing is retarded. Thereby, it is possible to prevent large knocking from occurring.
If the compression ratio of the engine body is high, knocking of the engine body tends to occur. However, the air-cooled engine unit includes a knocking sensor, and retards the ignition timing when knocking occurs. Therefore, it is not necessary to retard the ignition timing excessively to prevent knocking. That is, the retard of the ignition timing can be reduced. Thereby, the temperature of the exhaust gas discharged from the combustion chamber can be lowered. Thus, the temperature of the exhaust gas can be lowered while suppressing the retard of the ignition timing. As a result, it is possible to further suppress deterioration due to overheating of the combustion chamber adjacently arranged catalyst while ensuring torque.
 本発明の空冷式エンジンユニットは、前記排気通路部の前記燃焼室近接配置触媒よりも排ガスの流れ方向の上流に配置され、前記排気通路部内の排ガスの酸素濃度を検出する酸素センサと、前記燃焼室内に燃料を供給する燃料供給装置と、前記酸素センサの信号に基づいて前記燃料供給装置の燃料供給量を制御する制御装置とを備えることが好ましい。 An air-cooled engine unit according to the present invention is disposed upstream of the combustion chamber adjacently arranged catalyst in the exhaust passage portion in the exhaust gas flow direction, detects an oxygen concentration of the exhaust gas in the exhaust passage portion, and the combustion It is preferable to include a fuel supply device that supplies fuel into the room and a control device that controls a fuel supply amount of the fuel supply device based on a signal from the oxygen sensor.
 この構成によると、空冷式エンジンユニットは、酸素センサと、燃料供給装置と、制御装置とを備える。酸素センサは、排気通路部の燃焼室近接配置触媒よりも排ガスの流れ方向の上流に配置される。酸素センサは、排気通路部内の排ガスの酸素濃度を検出する。燃料供給装置は、燃焼室内に燃料を供給する。制御装置は、酸素センサの信号に基づいて燃料供給装置の燃料供給量を制御する。
 エンジン本体の圧縮比が高いと、排ガスの温度が低くなる。そのため、排気通路部に設けた酸素センサの温度も低下する。仮に、酸素センサの温度が低くなり過ぎると酸素センサが不活性状態となる。それにより、酸素センサの検出精度が低下する。しかし、酸素センサは、エンジン本体の近くに配置された燃焼室近接配置触媒よりも上流に配置される。つまり、酸素センサは、燃焼室近接配置触媒よりもさらにエンジン本体の近くに配置される。そのため、酸素センサに接触する排ガスの温度を高めることができる。つまり、酸素センサの温度の低下を抑制できる。よって、酸素センサの活性状態を維持できる。その結果、燃料供給量の制御の精度を維持できる。
According to this configuration, the air-cooled engine unit includes the oxygen sensor, the fuel supply device, and the control device. The oxygen sensor is arranged upstream of the combustion chamber adjacently arranged catalyst in the exhaust passage portion in the exhaust gas flow direction. The oxygen sensor detects the oxygen concentration of the exhaust gas in the exhaust passage. The fuel supply device supplies fuel into the combustion chamber. The control device controls the fuel supply amount of the fuel supply device based on the signal of the oxygen sensor.
If the compression ratio of the engine body is high, the temperature of the exhaust gas will be low. Therefore, the temperature of the oxygen sensor provided in the exhaust passage portion also decreases. If the temperature of the oxygen sensor becomes too low, the oxygen sensor becomes inactive. Thereby, the detection accuracy of the oxygen sensor decreases. However, the oxygen sensor is disposed upstream of the combustion chamber adjacently disposed catalyst disposed near the engine body. That is, the oxygen sensor is arranged closer to the engine body than the combustion chamber adjacently arranged catalyst. Therefore, the temperature of the exhaust gas that contacts the oxygen sensor can be increased. That is, a decrease in the temperature of the oxygen sensor can be suppressed. Therefore, the active state of the oxygen sensor can be maintained. As a result, the accuracy of control of the fuel supply amount can be maintained.
 本発明の空冷式エンジンユニットは、前記燃焼室に形成された吸気ポートと大気から空気を吸入する大気吸入口とをつなぎ、その内部を、前記大気吸入口から前記吸気ポートに向かって空気が流れる吸気通路部と、前記燃焼室内の燃料に点火する点火装置と、前記燃焼室内に燃料を供給する燃料供給装置と、前記吸気通路部に設けられる燃焼室近接配置スロットル弁であって、前記吸気通路部の前記大気吸入口から前記燃焼室近接配置スロットル弁までの経路長が、前記吸気通路部の前記燃焼室近接配置スロットル弁から前記吸気ポートまでの経路長より長くなる位置に配置された前記燃焼室近接配置スロットル弁と、前記燃焼室近接配置スロットル弁の開度を検出する燃焼室近接配置スロットル開度センサと、エンジン回転速度を検出するエンジン回転速度センサと、前記燃焼室近接配置スロットル開度センサの信号と前記エンジン回転速度センサの信号に基づいて、前記燃料供給装置の燃料供給量の制御と前記点火装置の点火時期の制御を行う制御装置とを備えることが好ましい。 In the air-cooled engine unit of the present invention, an intake port formed in the combustion chamber is connected to an air intake port for sucking air from the atmosphere, and air flows through the interior from the air intake port toward the intake port. An intake passage portion, an ignition device for igniting fuel in the combustion chamber, a fuel supply device for supplying fuel into the combustion chamber, and a combustion chamber adjacently arranged throttle valve provided in the intake passage portion, the intake passage The combustion is disposed at a position where a path length from the atmosphere intake port of the portion to the throttle valve close to the combustion chamber is longer than a path length from the throttle valve close to the combustion chamber of the intake passage portion to the intake port A close proximity throttle valve, a close proximity throttle opening sensor for detecting an open degree of the close proximity throttle valve, and an engine speed detection Control of the fuel supply amount of the fuel supply device and control of the ignition timing of the ignition device are performed based on an engine rotational speed sensor, a signal from the combustion chamber adjacently arranged throttle opening sensor, and a signal from the engine rotational speed sensor. And a control device.
 この構成によると、空冷式エンジンユニットは、吸気通路部と、点火装置と、燃料供給装置と、燃焼室近接配置スロットル弁と、燃焼室近接配置スロットル開度センサと、エンジン回転速度センサと、制御装置とを備える。吸気通路部は、燃焼室に形成された吸気ポートと大気から空気を吸入する大気吸入口とをつなぐ。吸気通路部は、その内部を、大気吸入口から吸気ポートに向かって空気が流れる。点火装置は、燃焼室内の燃料に点火する。燃料供給装置は、燃焼室内に燃料を供給する。燃焼室近接配置スロットル弁は、吸気通路部に設けられる。燃焼室近接配置スロットル開度センサは、燃焼室近接配置スロットル弁の開度を検出する。エンジン回転速度センサは、エンジン回転速度を検出する。制御装置は、燃焼室近接配置スロットル開度センサの信号とエンジン回転速度センサの信号に基づいて、燃料供給装置の燃料供給量の制御と点火装置の点火時期の制御を行う。
 吸気通路部の燃焼室近接配置スロットル弁から吸気ポートまでの経路長は、吸気通路部の大気吸入口から燃焼室近接配置スロットル弁までの経路長より短い。つまり、燃焼室近接配置スロットル弁は燃焼室に近い位置に配置されている。そのため、燃焼室近接配置スロットル弁の開度の変化に対して、燃焼室に吸入される空気量の変化の遅れを少なくできる。
 制御装置は、燃焼室近接配置スロットル開度センサの信号に基づいて、燃料供給量と点火時期の制御を行う。そのため、燃焼室近接配置スロットル弁の開度の変化に対して、燃料供給と点火時期の制御の遅れを少なくできる。上述したように、燃焼室近接配置スロットル弁の開度の変化に対して、燃焼室に吸入される空気量の変化の遅れは少ない。したがって、燃焼室近接配置スロットル弁の開度が変化した場合に、燃料供給量と点火時期の変更と、燃焼室に吸入される空気量の変化との時間差を少なくできる。そのため、燃料供給量と点火時期の制御の精度を向上できる。
 また、点火時期の制御の精度が向上したことにより、以下の効果も得られる。即ち、たとえノッキングセンサを設けなくても、ノッキングを予防するための点火時期の余分な遅角を低減できる。それにより、点火時期の遅角を抑制しつつ、排ガスの温度を低下させることができる。その結果、トルクを確保しつつ、燃焼室近接配置触媒の過熱による劣化を抑制できる。
According to this configuration, the air-cooled engine unit includes an intake passage portion, an ignition device, a fuel supply device, a combustion chamber adjacently disposed throttle valve, a combustion chamber adjacently disposed throttle opening sensor, an engine speed sensor, and a control. Device. The intake passage portion connects an intake port formed in the combustion chamber and an air intake port that sucks air from the air. The air flows in the intake passage portion from the air intake port toward the intake port. The ignition device ignites the fuel in the combustion chamber. The fuel supply device supplies fuel into the combustion chamber. The throttle valve close to the combustion chamber is provided in the intake passage portion. The combustion chamber adjacently arranged throttle opening sensor detects the opening of the combustion chamber adjacently arranged throttle valve. The engine rotation speed sensor detects the engine rotation speed. The control device controls the fuel supply amount of the fuel supply device and the ignition timing of the ignition device based on the signal of the throttle opening sensor disposed close to the combustion chamber and the signal of the engine speed sensor.
The path length from the combustion chamber adjacently arranged throttle valve in the intake passage to the intake port is shorter than the path length from the air intake port of the intake passage to the combustion chamber adjacently arranged throttle valve. That is, the combustion chamber adjacently arranged throttle valve is arranged at a position close to the combustion chamber. Therefore, the delay in the change in the amount of air taken into the combustion chamber can be reduced with respect to the change in the opening degree of the throttle valve close to the combustion chamber.
The control device controls the fuel supply amount and the ignition timing based on the signal of the throttle opening sensor disposed close to the combustion chamber. Therefore, it is possible to reduce the delay in controlling the fuel supply and the ignition timing with respect to the change in the opening degree of the throttle valve close to the combustion chamber. As described above, the delay in the change in the amount of air taken into the combustion chamber is small with respect to the change in the opening degree of the throttle valve close to the combustion chamber. Therefore, when the opening degree of the throttle valve close to the combustion chamber changes, the time difference between the change in the fuel supply amount and the ignition timing and the change in the air amount taken into the combustion chamber can be reduced. Therefore, the accuracy of control of the fuel supply amount and the ignition timing can be improved.
In addition, the following effects can be obtained by improving the accuracy of ignition timing control. That is, even if a knocking sensor is not provided, it is possible to reduce an extra retard of the ignition timing for preventing knocking. Thereby, the temperature of the exhaust gas can be lowered while suppressing the retard of the ignition timing. As a result, deterioration due to overheating of the catalyst adjacent to the combustion chamber can be suppressed while securing torque.
 本発明の空冷式エンジンユニットは、前記燃焼室に形成された吸気ポートと大気から空気を吸入する大気吸入口とをつなぎ、その内部を、前記大気吸入口から前記吸気ポートに向かって空気が流れる吸気通路部を備え、前記吸気通路部に設けられて前記吸気通路部の内部圧力を検出する吸気圧センサ、および、前記吸気通路部に設けられて前記吸気通路部内の温度を検出する吸気温センサを有しないことが好ましい。 In the air-cooled engine unit of the present invention, an intake port formed in the combustion chamber is connected to an air intake port for sucking air from the atmosphere, and air flows through the interior from the air intake port toward the intake port. An intake pressure sensor that includes an intake passage and is provided in the intake passage and detects the internal pressure of the intake passage, and an intake air temperature sensor that is provided in the intake passage and detects the temperature in the intake passage It is preferable not to have.
 この構成によると、空冷式エンジンユニットは、吸気通路部の内部圧力を検出する吸気圧センサを有しない。さらに、空冷式エンジンユニットは、吸気通路部内の温度を検出する吸気温センサを有しない。そのため、燃料供給量と点火時期の制御に、吸気圧および吸気温を使用しない。したがって、燃料供給量と点火時期の制御をよりシンプルにできる。 According to this configuration, the air-cooled engine unit does not have the intake pressure sensor that detects the internal pressure of the intake passage portion. Further, the air-cooled engine unit does not have an intake air temperature sensor that detects the temperature in the intake passage portion. Therefore, the intake pressure and the intake temperature are not used for controlling the fuel supply amount and the ignition timing. Therefore, the control of the fuel supply amount and the ignition timing can be simplified.
実施形態に係る空冷式エンジンユニットが適用された自動二輪車の左側面図である。1 is a left side view of a motorcycle to which an air-cooled engine unit according to an embodiment is applied. 空冷式エンジンユニットの模式図である。It is a schematic diagram of an air-cooled engine unit. マフラーの断面模式図である。It is a cross-sectional schematic diagram of a muffler. 空冷式エンジンユニットの制御ブロック図である。It is a control block diagram of an air-cooled engine unit. 空冷式エンジンユニットの制御ブロックの部分詳細図である。It is a partial detailed view of the control block of the air-cooled engine unit. スロットル開度とエンジン回転速度に対応した吸入空気量マップである。It is an intake air amount map corresponding to the throttle opening and the engine speed. スロットル開度とエンジン回転速度と基本燃料供給量との関係の一例を示すグラフである。It is a graph which shows an example of the relationship between a throttle opening degree, an engine speed, and a basic fuel supply amount. スロットル開度とエンジン回転速度と酸素フィードバック制御領域との関係を示す図である。It is a figure which shows the relationship between a throttle opening, an engine speed, and an oxygen feedback control area | region. スロットル開度とエンジン回転速度と酸素フィードバック学習領域との関係を示す図である。It is a figure which shows the relationship between a throttle opening, an engine speed, and an oxygen feedback learning area | region. スロットル開度とエンジン回転速度と基本点火時期との関係の一例を示すグラフである。It is a graph which shows an example of the relationship between a throttle opening degree, an engine speed, and basic ignition timing. スロットル開度とエンジン回転速度とノッキング制御領域との関係を示す図である。It is a figure which shows the relationship between a throttle opening, an engine speed, and a knocking control area | region.
 以下、本発明の実施の形態について説明する。本実施形態は、本発明の空冷式エンジンユニットが適用された自動二輪車の一例である。なお、以下の説明において、前後方向とは、自動二輪車1の後述するシート9に着座したライダーから視た車両前後方向のことである。左右方向とは、シート9に着座したライダーから視たときの車両左右方向のことである。車両左右方向は、車幅方向と同じである。また、図1中の矢印F方向と矢印B方向は、前方と後方を表しており、矢印U方向と矢印D方向は、上方と下方を表している。 Hereinafter, embodiments of the present invention will be described. This embodiment is an example of a motorcycle to which the air-cooled engine unit of the present invention is applied. In the following description, the front-rear direction is the vehicle front-rear direction viewed from a rider seated on a seat 9 (described later) of the motorcycle 1. The left-right direction is the left-right direction of the vehicle when viewed from a rider seated on the seat 9. The vehicle left-right direction is the same as the vehicle width direction. Moreover, the arrow F direction and the arrow B direction in FIG. 1 represent the front and back, and the arrow U direction and the arrow D direction represent the upper side and the lower side.
 [自動二輪車の全体構成]
 図1に示すように本実施形態の自動二輪車1は、前輪2と、後輪3と、車体フレーム4とを備えている。車体フレーム4は、その前部にヘッドパイプ4aを有する。ヘッドパイプ4aには、ステアリングシャフト(図示せず)が回転可能に挿入されている。ステアリングシャフトの上端部は、ハンドルユニット5に連結されている。ハンドルユニット5には、一対のフロントフォーク6の上端部が固定されている。フロントフォーク6の下端部は、前輪2を支持している。
[Overall structure of motorcycle]
As shown in FIG. 1, the motorcycle 1 of the present embodiment includes a front wheel 2, a rear wheel 3, and a vehicle body frame 4. The vehicle body frame 4 has a head pipe 4a at the front thereof. A steering shaft (not shown) is rotatably inserted into the head pipe 4a. The upper end portion of the steering shaft is connected to the handle unit 5. An upper end portion of a pair of front forks 6 is fixed to the handle unit 5. A lower end portion of the front fork 6 supports the front wheel 2.
 ハンドルユニット5には、右グリップ(図示せず)と左グリップ12が設けられている。右グリップは、エンジンの出力を調整するアクセルグリップである。ライダーがアクセルグリップを握った状態で、アクセルグリップをライダーの手前側に回動させると、エンジン出力が増加する。具体的にはスロットル開度が増加する。また、その反対側にアクセルグリップを回動させると、エンジン出力が減少する。具体的にはスロットル開度が減少する。また、左グリップ12の前方には、ブレーキレバー13が設けられている。また、ハンドルユニット5の前方には、表示装置14が配置されている。図示は省略するが、表示装置14には、車速や、エンジン回転速度などが表示される。また、表示装置14には、インジケータ(表示灯)が設けられている。 The handle unit 5 is provided with a right grip (not shown) and a left grip 12. The right grip is an accelerator grip that adjusts the output of the engine. If the accelerator grip is rotated to the front side of the rider while the rider holds the accelerator grip, the engine output increases. Specifically, the throttle opening increases. Further, when the accelerator grip is rotated to the opposite side, the engine output decreases. Specifically, the throttle opening decreases. A brake lever 13 is provided in front of the left grip 12. A display device 14 is disposed in front of the handle unit 5. Although illustration is omitted, the display device 14 displays the vehicle speed, the engine speed, and the like. The display device 14 is provided with an indicator (indicator light).
 車体フレーム4には、一対のスイングアーム7が揺動可能に支持されている。スイングアーム7の後端部は、後輪3を支持している。各スイングアーム7の揺動中心より後方の位置には、リヤサスペンション8の一端部が取り付けられている。リヤサスペンション8の他端部は、車体フレーム4に取り付けられている。 A pair of swing arms 7 are swingably supported on the body frame 4. The rear end portion of the swing arm 7 supports the rear wheel 3. One end of the rear suspension 8 is attached to a position behind the swing center of each swing arm 7. The other end of the rear suspension 8 is attached to the vehicle body frame 4.
 車体フレーム4の上部には、シート9と燃料タンク10が支持されている。燃料タンク10は、シート9の前方に配置されている。また、車体フレーム4には、空冷式エンジンユニット11が搭載されている。空冷式エンジンユニット11は、燃料タンク10の下方に配置されている。また、車体フレーム4には、各種センサなどの電子機器に電力を供給するバッテリ(図示せず)が搭載されている。 A seat 9 and a fuel tank 10 are supported on the upper part of the body frame 4. The fuel tank 10 is disposed in front of the seat 9. An air-cooled engine unit 11 is mounted on the body frame 4. The air-cooled engine unit 11 is disposed below the fuel tank 10. The vehicle body frame 4 is mounted with a battery (not shown) that supplies power to electronic devices such as various sensors.
 [空冷式エンジンユニットの構成]
 空冷式エンジンユニット11は、自然空冷式のエンジンである。空冷式エンジンユニット11は、4ストローク式の単気筒エンジンである。4ストローク式のエンジンとは、吸気行程、圧縮行程、燃焼行程(膨張行程)、および排気行程を繰り返すエンジンである。空冷式エンジンユニット11は、エンジン本体20と、吸気ユニット40と、排気ユニット50を有する。
[Configuration of air-cooled engine unit]
The air-cooled engine unit 11 is a natural air-cooled engine. The air-cooled engine unit 11 is a 4-stroke single cylinder engine. The 4-stroke engine is an engine that repeats an intake stroke, a compression stroke, a combustion stroke (expansion stroke), and an exhaust stroke. The air-cooled engine unit 11 includes an engine body 20, an intake unit 40, and an exhaust unit 50.
 エンジン本体20は、クランクケース21と、シリンダボディ22と、シリンダヘッド23と、ヘッドカバー24とを備えている。シリンダボディ22は、クランクケース21の上端部に取り付けられる。シリンダヘッド23は、シリンダボディ22の上端部に取り付けられる。ヘッドカバー24は、シリンダヘッド23の上端部に取り付けられる。 The engine body 20 includes a crankcase 21, a cylinder body 22, a cylinder head 23, and a head cover 24. The cylinder body 22 is attached to the upper end portion of the crankcase 21. The cylinder head 23 is attached to the upper end portion of the cylinder body 22. The head cover 24 is attached to the upper end portion of the cylinder head 23.
 エンジン本体20の少なくとも一部の表面には、フィン部25が形成されている。フィン部25は、シリンダボディ22の表面と、シリンダヘッド23の表面に形成されている。フィン部25は、複数のフィンで構成されている。各フィンは、エンジン本体20の表面から突出して形成されている。フィン部25は、シリンダボディ22とシリンダヘッド23のほぼ全周に形成されている。フィン部25は、エンジン本体20で発生した熱を放熱させる。フィン部25は、本発明の放熱部に相当する。 A fin portion 25 is formed on at least a part of the surface of the engine body 20. The fin portion 25 is formed on the surface of the cylinder body 22 and the surface of the cylinder head 23. The fin portion 25 is composed of a plurality of fins. Each fin is formed to protrude from the surface of the engine body 20. The fin portion 25 is formed on substantially the entire circumference of the cylinder body 22 and the cylinder head 23. The fin portion 25 radiates heat generated in the engine body 20. The fin portion 25 corresponds to the heat radiating portion of the present invention.
 図2は、空冷式エンジンユニット11を模式的に示した図である。図2に示すように、クランクケース21は、クランク軸26、スタータモータ27、変速機(図示せず)、発電機(図示せず)等を収容している。変速機は、クランク軸26の回転速度と後輪3の回転速度との比を変化させる装置である。クランク軸26の回転は、変速機を介して後輪3に伝達されるようになっている。スタータモータ27は、エンジン始動時にクランク軸26を回転させる。スタータモータ27は、バッテリ(図示せず)からの電力により作動する。発電機は、クランク軸26の回転力によって電力を生成する。その電力で、バッテリが充電される。なお、スタータモータ27と発電機を配置する代わりに、ISG(Integrated Starter Generator)を配置してもよい。ISGは、スタータモータ27と発電機が一体化された装置である。 FIG. 2 is a diagram schematically showing the air-cooled engine unit 11. As shown in FIG. 2, the crankcase 21 houses a crankshaft 26, a starter motor 27, a transmission (not shown), a generator (not shown), and the like. The transmission is a device that changes the ratio between the rotational speed of the crankshaft 26 and the rotational speed of the rear wheel 3. The rotation of the crankshaft 26 is transmitted to the rear wheel 3 via the transmission. The starter motor 27 rotates the crankshaft 26 when the engine is started. The starter motor 27 is operated by electric power from a battery (not shown). The generator generates electric power by the rotational force of the crankshaft 26. The battery is charged with the electric power. Instead of arranging the starter motor 27 and the generator, an ISG (Integrated / Starter / Generator) may be arranged. The ISG is an apparatus in which a starter motor 27 and a generator are integrated.
 クランクケース21には、エンジン回転速度センサ71と、ノッキングセンサ72が設けられている。エンジン回転速度センサ71は、クランク軸26の回転速度、即ち、エンジン回転速度を検出する。エンジン回転速度とは、単位時間当たりのクランク軸26の回転数のことである。ノッキングセンサ72は、エンジン本体20に発生するノッキングを検知する。ノッキングとは、後述する燃焼室30内において異常燃焼が発生することで、金属性の打撃音または打撃的な振動が発生する現象である。通常は、火花放電による点火をきっかけに混合気が燃焼を開始して、その火炎が周囲に伝播していく。なお、本明細書において、混合気とは、空気と燃料との混合気のことである。ノッキングは、火炎伝播が届いていない未燃焼の混合気が燃焼室30内で自然発火することで起こる。ノッキングセンサ72の構成は、ノッキングを検知できるものであれば特に限定されない。 The crankcase 21 is provided with an engine rotation speed sensor 71 and a knocking sensor 72. The engine rotation speed sensor 71 detects the rotation speed of the crankshaft 26, that is, the engine rotation speed. The engine rotation speed is the rotation speed of the crankshaft 26 per unit time. The knocking sensor 72 detects knocking that occurs in the engine body 20. Knocking is a phenomenon in which a metallic striking sound or striking vibration is generated when abnormal combustion occurs in a combustion chamber 30 described later. Normally, the air-fuel mixture starts to burn after being ignited by spark discharge, and the flame propagates to the surroundings. In the present specification, the air-fuel mixture is an air-fuel mixture. Knocking occurs when an unburned air-fuel mixture that has not reached flame propagation spontaneously ignites in the combustion chamber 30. The configuration of knocking sensor 72 is not particularly limited as long as knocking can be detected.
 シリンダボディ22には、シリンダ孔22aが形成されている。シリンダ孔22aには、ピストン28が摺動可能に収容されている。ピストン28は、コネクティングロッド29を介してクランク軸26に連結されている。また、エンジン本体20には、エンジン温度センサ73が設けられている。エンジン温度センサ73は、エンジン本体20の温度を検出する。具体的には、シリンダボディ22の温度を検出する。 The cylinder body 22 has a cylinder hole 22a. A piston 28 is slidably accommodated in the cylinder hole 22a. The piston 28 is connected to the crankshaft 26 via a connecting rod 29. The engine body 20 is provided with an engine temperature sensor 73. The engine temperature sensor 73 detects the temperature of the engine body 20. Specifically, the temperature of the cylinder body 22 is detected.
 シリンダヘッド23の下面とシリンダ孔22aとピストン28によって、燃焼室30(図2参照)が形成される。本明細書では、ピストン28の位置に関わらず、シリンダヘッド23の下面とシリンダ孔22aとピストン28によって形成される空間を、燃焼室30とする。エンジン本体20の圧縮比は、10以上である。圧縮比とは、ピストン28が上死点にあるときの燃焼室30の容積によって、ピストン28が下死点にあるときの燃焼室30の容積を割った値である。 The combustion chamber 30 (see FIG. 2) is formed by the lower surface of the cylinder head 23, the cylinder hole 22a, and the piston 28. In the present specification, the space formed by the lower surface of the cylinder head 23, the cylinder hole 22 a and the piston 28 regardless of the position of the piston 28 is defined as the combustion chamber 30. The compression ratio of the engine body 20 is 10 or more. The compression ratio is a value obtained by dividing the volume of the combustion chamber 30 when the piston 28 is at the bottom dead center by the volume of the combustion chamber 30 when the piston 28 is at the top dead center.
 燃焼室30には、点火プラグ31の先端部が配置されている。点火プラグの先端部は、火花放電を発生させる。この火花放電によって、燃焼室30内の混合気は点火される。点火プラグ31は、点火コイル32に接続されている。点火コイル32は、点火プラグ31の火花放電を生じさせるための電力を蓄える。点火プラグ31と点火コイル32とを合わせた装置が、本発明の点火装置に相当する。 In the combustion chamber 30, the tip of the spark plug 31 is disposed. The tip of the spark plug generates a spark discharge. By this spark discharge, the air-fuel mixture in the combustion chamber 30 is ignited. The spark plug 31 is connected to the ignition coil 32. The ignition coil 32 stores electric power for causing spark discharge of the spark plug 31. A device in which the ignition plug 31 and the ignition coil 32 are combined corresponds to the ignition device of the present invention.
 シリンダヘッド23の燃焼室30を画定する面には、吸気ポート33と排気ポート34が形成されている。つまり、吸気ポート33と排気ポート34は、燃焼室30に形成される。吸気ポート33は、吸気バルブ35によって開閉される。排気ポート34は、排気バルブ36によって開閉される。吸気バルブ35および排気バルブ36は、シリンダヘッド23内に収容された動弁装置(図示せず)によって開閉駆動される。動弁装置は、クランク軸26と連動して作動する。 An intake port 33 and an exhaust port 34 are formed on the surface defining the combustion chamber 30 of the cylinder head 23. That is, the intake port 33 and the exhaust port 34 are formed in the combustion chamber 30. The intake port 33 is opened and closed by an intake valve 35. The exhaust port 34 is opened and closed by an exhaust valve 36. The intake valve 35 and the exhaust valve 36 are opened and closed by a valve gear (not shown) housed in the cylinder head 23. The valve gear operates in conjunction with the crankshaft 26.
 空冷式エンジンユニット11は、吸気ポート33と大気に面する大気吸入口41cとをつなぐ吸気通路部41を有する。なお、通路部とは、経路を囲んで経路を形成する壁体等を意味し、経路とは対象が通過する空間を意味する。大気吸入口41cは大気から空気を吸入する。大気吸入口41cから吸い込まれた空気は、吸気通路部41内を吸気ポート33に向かって流れる。吸気通路部41の一部は、エンジン本体20に形成されており、吸気通路部41の残りの部分は、吸気ユニット40に形成されている。吸気ユニット40は、エンジン本体20に接続された吸気管を有する。さらに、吸気ユニット40は、インジェクタ42とスロットル弁45とバイパス弁46を有する。以下の説明において、吸気通路部41における空気の流れ方向の上流および下流を、単に上流および下流という場合がある。 The air-cooled engine unit 11 has an intake passage portion 41 that connects the intake port 33 and an air intake port 41c facing the atmosphere. In addition, a passage part means the wall body etc. which surround a path | route and form a path | route, and a path | route means the space through which object passes. The air inlet 41c sucks air from the atmosphere. The air sucked from the air suction port 41 c flows in the intake passage 41 toward the intake port 33. A part of the intake passage portion 41 is formed in the engine body 20, and the remaining portion of the intake passage portion 41 is formed in the intake unit 40. The intake unit 40 has an intake pipe connected to the engine body 20. Further, the intake unit 40 includes an injector 42, a throttle valve 45, and a bypass valve 46. In the following description, the upstream and downstream in the air flow direction in the intake passage portion 41 may be simply referred to as upstream and downstream.
 空冷式エンジンユニット11は、排気ポート34と大気に面する大気放出口64aとをつなぐ排気通路部51を有する。燃焼室30で発生した燃焼ガスは、排気ポート34を介して排気通路部51に排出される。燃焼室から排出された燃焼ガスを、排ガスと称する。排ガスは排気通路部51内を大気放出口64aに向かって流れる。排ガスは大気放出口64aから大気に放出される。排気通路部51の一部は、エンジン本体20に形成されており、排気通路部51の残りの部分は、排気ユニット50に形成されている。排気ユニット50は、エンジン本体20に接続された排気管52(図1参照)を有する。さらに、排気ユニット50は、触媒53とマフラー54を有する。マフラー54は、排ガスによる騒音を低減する装置である。以下の説明において、排気通路部51における排ガスの流れ方向の上流および下流を、単に上流および下流という場合がある。 The air-cooled engine unit 11 has an exhaust passage portion 51 that connects the exhaust port 34 and the atmospheric discharge port 64a facing the atmosphere. The combustion gas generated in the combustion chamber 30 is discharged to the exhaust passage portion 51 through the exhaust port 34. The combustion gas discharged from the combustion chamber is referred to as exhaust gas. The exhaust gas flows in the exhaust passage 51 toward the atmospheric discharge port 64a. The exhaust gas is discharged to the atmosphere from the air discharge port 64a. A part of the exhaust passage portion 51 is formed in the engine body 20, and the remaining portion of the exhaust passage portion 51 is formed in the exhaust unit 50. The exhaust unit 50 has an exhaust pipe 52 (see FIG. 1) connected to the engine body 20. Further, the exhaust unit 50 includes a catalyst 53 and a muffler 54. The muffler 54 is a device that reduces noise caused by exhaust gas. In the following description, the upstream and downstream in the exhaust gas flow direction in the exhaust passage 51 may be simply referred to as upstream and downstream.
 吸気通路部41には、インジェクタ42が配置されている。インジェクタ42は、大気吸入口41cから吸い込まれた空気に対して燃料を噴射する。より詳細には、インジェクタ42は、吸気通路部41内の空気に対して燃料を噴射する。インジェクタ42は、本発明の燃料供給装置に相当する。インジェクタ42は、燃料ホース43を介して燃料タンク10に接続されている。燃料タンク10の内部には、燃料ポンプ44が配置されている。燃料ポンプ44は、燃料タンク10内の燃料を燃料ホース43へと圧送する。 In the intake passage 41, an injector 42 is arranged. The injector 42 injects fuel to the air sucked from the air inlet 41c. More specifically, the injector 42 injects fuel to the air in the intake passage 41. The injector 42 corresponds to the fuel supply device of the present invention. The injector 42 is connected to the fuel tank 10 via the fuel hose 43. A fuel pump 44 is disposed inside the fuel tank 10. The fuel pump 44 pumps the fuel in the fuel tank 10 to the fuel hose 43.
 吸気通路部41は、メイン吸気通路部41aと、バイパス吸気通路部41bを有する。メイン吸気通路部41aには、スロットル弁45が設けられる。スロットル弁45は、インジェクタ42よりも上流に配置される。バイパス吸気通路部41bは、スロットル弁45をバイパスするように、メイン吸気通路部41aに接続される。つまり、バイパス吸気通路部41bは、メイン吸気通路部41aのスロットル弁45の上流部分と下流部分を連通させる。スロットル弁は、本発明の燃焼室近接配置スロットル弁に相当する。 The intake passage portion 41 has a main intake passage portion 41a and a bypass intake passage portion 41b. A throttle valve 45 is provided in the main intake passage portion 41a. The throttle valve 45 is disposed upstream of the injector 42. The bypass intake passage portion 41b is connected to the main intake passage portion 41a so as to bypass the throttle valve 45. That is, the bypass intake passage portion 41b communicates the upstream portion and the downstream portion of the throttle valve 45 of the main intake passage portion 41a. The throttle valve corresponds to the throttle valve close to the combustion chamber of the present invention.
 吸気通路部41の内側に形成される経路を、吸気経路と称する。吸気通路部41の任意の部位の経路長とは、この部位の内側に形成される経路の長さのことである。図2に示すように、吸気通路部41の大気吸入口41cからスロットル弁45までの経路長を、経路長D1とする。吸気通路部41のスロットル弁45から吸気ポート33までの経路長を、経路長D2とする。経路長D2は、経路長D1より短い。つまり、スロットル弁45は、燃焼室30に近い位置に配置されている。吸気通路部41の大気吸入口41cからスロットル弁45までの容積を、容積V1とする。吸気通路部41のスロットル弁45から吸気ポート33までの容積を、容積V2とする。容積V1は、容積V2より大きい。 The path formed inside the intake passage 41 is referred to as an intake path. The path length of any part of the intake passage 41 is the length of the path formed inside this part. As shown in FIG. 2, the path length from the air inlet 41c of the intake passage 41 to the throttle valve 45 is defined as a path length D1. A path length from the throttle valve 45 of the intake passage portion 41 to the intake port 33 is defined as a path length D2. The path length D2 is shorter than the path length D1. That is, the throttle valve 45 is disposed at a position close to the combustion chamber 30. A volume from the air inlet 41c of the intake passage 41 to the throttle valve 45 is defined as a volume V1. The volume from the throttle valve 45 of the intake passage 41 to the intake port 33 is defined as a volume V2. The volume V1 is larger than the volume V2.
 スロットル弁45は、スロットルワイヤを介して、アクセルグリップ(図示せず)に接続されている。ライダーがアクセルグリップを回動操作することによって、スロットル弁45の開度が変更される。空冷式エンジンユニット11は、スロットル弁45の開度を検出するスロットル開度センサ(スロットルポジションセンサ)74を有する。以下、スロットル弁45の開度を、スロットル開度という。スロットル開度センサ74は、スロットル弁45の位置を検出することにより、スロットル開度を表す信号を出力する。スロットル開度センサ74は、本発明の燃焼室近接配置スロットル開度センサに相当する。 The throttle valve 45 is connected to an accelerator grip (not shown) via a throttle wire. When the rider rotates the accelerator grip, the opening degree of the throttle valve 45 is changed. The air-cooled engine unit 11 has a throttle opening sensor (throttle position sensor) 74 that detects the opening of the throttle valve 45. Hereinafter, the opening degree of the throttle valve 45 is referred to as a throttle opening degree. The throttle opening sensor 74 outputs a signal representing the throttle opening by detecting the position of the throttle valve 45. The throttle opening sensor 74 corresponds to the throttle opening sensor disposed close to the combustion chamber of the present invention.
 バイパス吸気通路部41bには、バイパス弁46が設けられている。バイパス弁46は、バイパス吸気通路部41bを流れる空気の流量を調整するために配置されている。バイパス弁46は、手動で操作される弁である。バイパス弁46は、例えば、アジャストスクリューによって構成されている。バイパス吸気通路部41bには、後述するECU80によって開度が制御される弁機構は設けられていない。 A bypass valve 46 is provided in the bypass intake passage 41b. The bypass valve 46 is disposed to adjust the flow rate of air flowing through the bypass intake passage portion 41b. The bypass valve 46 is a manually operated valve. The bypass valve 46 is configured by, for example, an adjustment screw. The bypass intake passage portion 41b is not provided with a valve mechanism whose opening degree is controlled by an ECU 80 described later.
 吸気通路部41には、吸気通路部41の内部圧力を検出する吸気圧センサは配置されていない。吸気通路部41の内部圧力を、吸気圧という。吸気通路部41には、吸気通路部41内の温度を検出する吸気温センサは配置されていない。吸気通路部41内の空気の温度を、吸気温度という。 The intake passage 41 is not provided with an intake pressure sensor for detecting the internal pressure of the intake passage 41. The internal pressure of the intake passage 41 is referred to as intake pressure. The intake passage portion 41 is not provided with an intake air temperature sensor that detects the temperature in the intake passage portion 41. The temperature of the air in the intake passage portion 41 is referred to as intake air temperature.
 排気通路部51内には、触媒53が配置されている。触媒53は、本発明の燃焼室近接配置触媒に相当する。触媒53は、排気ユニット50の排気管52内に配置されている(図1参照)。排気通路部51の内側に形成される経路を、排気経路と称する。排気通路部51の任意の部位の経路長とは、この部位の内側に形成される経路の長さのことである。図2に示すように、排気通路部51の排気ポート34から触媒53の上流端までの経路長を、経路長D3とする。排気通路部51の触媒53の下流端から大気放出口64aまでの経路長を、経路長D4とする。経路長D3は、経路長D4よりも短い。つまり、触媒53は、燃焼室30に近い位置に配置されている。排気通路部51の排気ポート34から触媒53の上流端までの容積を、容積V3とする。排気通路部51の触媒53の下流端から大気放出口64aまでの容積を、容積V4とする。容積V3は、容積V4より小さい。図1に示すように、触媒53は、エンジン本体20の下方に配置されている。 In the exhaust passage 51, a catalyst 53 is disposed. The catalyst 53 corresponds to the combustion chamber adjacently arranged catalyst of the present invention. The catalyst 53 is disposed in the exhaust pipe 52 of the exhaust unit 50 (see FIG. 1). A path formed inside the exhaust passage 51 is referred to as an exhaust path. The path length of any part of the exhaust passage 51 is the length of the path formed inside this part. As shown in FIG. 2, the path length from the exhaust port 34 of the exhaust passage 51 to the upstream end of the catalyst 53 is defined as a path length D3. A path length from the downstream end of the catalyst 53 of the exhaust passage 51 to the atmospheric discharge port 64a is defined as a path length D4. The path length D3 is shorter than the path length D4. That is, the catalyst 53 is disposed at a position close to the combustion chamber 30. A volume from the exhaust port 34 of the exhaust passage 51 to the upstream end of the catalyst 53 is defined as a volume V3. The volume from the downstream end of the catalyst 53 of the exhaust passage 51 to the atmospheric discharge port 64a is defined as a volume V4. The volume V3 is smaller than the volume V4. As shown in FIG. 1, the catalyst 53 is disposed below the engine body 20.
 触媒53は、三元触媒である。三元触媒とは、排ガス中の炭化水素(HC)、一酸化炭素(CO)および窒素酸化物(NOx)の3物質を酸化または還元することで除去する触媒である。なお、触媒53は、炭化水素、一酸化炭素、および窒素酸化物のいずれか1つまたは2つを除去する触媒であってもよい。触媒53は、酸化還元触媒でなくてもよい。触媒53は、酸化または還元のいずれか一方だけで有害物質を除去する酸化触媒または還元触媒であってもよい。触媒53は、排ガス浄化作用を有する貴金属が基材に付着された構成となっている。本実施形態の触媒53は、メタル基材の触媒である。なお、触媒53は、セラミック基材の触媒であってもよい。 Catalyst 53 is a three-way catalyst. The three-way catalyst is a catalyst that is removed by oxidizing or reducing three substances of hydrocarbon (HC), carbon monoxide (CO), and nitrogen oxide (NOx) in the exhaust gas. The catalyst 53 may be a catalyst that removes any one or two of hydrocarbon, carbon monoxide, and nitrogen oxide. The catalyst 53 may not be a redox catalyst. The catalyst 53 may be an oxidation catalyst or a reduction catalyst that removes harmful substances only by either oxidation or reduction. The catalyst 53 has a configuration in which a noble metal having an exhaust gas purification action is attached to a base material. The catalyst 53 of this embodiment is a metal-based catalyst. The catalyst 53 may be a ceramic-based catalyst.
 排気通路部51の触媒53よりも上流には、酸素センサ75が配置されている。酸素センサ75は、排ガス中の酸素濃度を検出する。酸素センサ75は、排ガス中の酸素濃度に応じた電圧信号を出力する。酸素センサ75は、混合気の空燃比がリッチ状態のときは電圧値の高い信号を出力し、空燃比がリーン状態のときは電圧値の低い信号を出力する。リッチ状態とは、目標空燃比に対して燃料が過剰な状態をいう。リーン状態とは、目標空燃比に対して空気が過剰な状態をいう。つまり、酸素センサ75は、混合気の空燃比がリッチ状態とリーン状態のどちらで有るかを検出する。酸素センサ75は、ジルコニアを主体とした固体電解質体からなるセンサ素子部を有する。このセンサ素子部が、高温に加熱されて活性化状態となったときに、酸素センサ75は酸素濃度を検知できる。なお、酸素センサ75として、排ガスの酸素濃度に応じたリニアな検出信号を出力するリニアA/Fセンサを用いてもよい。リニアA/Fセンサは、排ガス中の酸素濃度の変化を連続的に検出する。 An oxygen sensor 75 is disposed upstream of the catalyst 53 in the exhaust passage 51. The oxygen sensor 75 detects the oxygen concentration in the exhaust gas. The oxygen sensor 75 outputs a voltage signal corresponding to the oxygen concentration in the exhaust gas. The oxygen sensor 75 outputs a signal having a high voltage value when the air-fuel ratio of the air-fuel mixture is rich, and outputs a signal having a low voltage value when the air-fuel ratio is lean. The rich state refers to a state where fuel is excessive with respect to the target air-fuel ratio. The lean state is a state where air is excessive with respect to the target air-fuel ratio. That is, the oxygen sensor 75 detects whether the air-fuel ratio of the air-fuel mixture is in a rich state or a lean state. The oxygen sensor 75 has a sensor element portion made of a solid electrolyte body mainly composed of zirconia. The oxygen sensor 75 can detect the oxygen concentration when the sensor element unit is heated to a high temperature and becomes activated. Note that a linear A / F sensor that outputs a linear detection signal corresponding to the oxygen concentration of the exhaust gas may be used as the oxygen sensor 75. The linear A / F sensor continuously detects a change in oxygen concentration in the exhaust gas.
 マフラー54は、排気通路部51の触媒53より下流に設けられている。図3に示すように、マフラー54は、外筒60と、外筒60に収容された3つのパイプ61~63と、テールパイプ64とを有する。外筒60の内部は、2つのセパレータ65、66によって3つの膨張室60a、60b、60cに仕切られている。第1パイプ61の一端は、排気管52に接続される(図1参照)。第1パイプ61は、セパレータ65を貫通する第3パイプ63の内側に挿通されている。第1パイプ61の外周面と第3パイプ63の内周面との間には隙間が形成されている。第1パイプ61は、2つのセパレータ65、66を貫通する。第1パイプ61の他端は、第1膨張室60a内に配置されている。第2パイプ62は、2つのセパレータ65、66を貫通する。第2パイプ62は、第1膨張室60aと第2膨張室60bを連通させる。第3パイプ63は、第2膨張室60bと第3膨張室60cを連通させる。テールパイプ64は、第3膨張室60cと外筒60の外側の空間を連通させる。テールパイプ64の端部は、外筒60の外部に露出している。テールパイプ64の端部が、大気放出口64aを形成している。マフラー54内には、第1パイプ61、第1膨張室60a、第2パイプ62、第2膨張室60b、第3パイプ63と第1パイプ61の隙間、第3膨張室60c、テールパイプ64の順で排ガスが流れる経路が形成されている。マフラー54内に形成される経路の長さは、マフラー54の最大長さよりも長い。外筒60の内面とパイプ61~64の外面の間には、例えばグラスウール等の吸音材が配置されていてもよいが、配置されていなくてもよい。なお、マフラー54の内部の構造は、図3に示す模式図の構造に限らない。 The muffler 54 is provided downstream of the catalyst 53 in the exhaust passage 51. As shown in FIG. 3, the muffler 54 has an outer cylinder 60, three pipes 61 to 63 accommodated in the outer cylinder 60, and a tail pipe 64. The inside of the outer cylinder 60 is partitioned into three expansion chambers 60a, 60b, 60c by two separators 65, 66. One end of the first pipe 61 is connected to the exhaust pipe 52 (see FIG. 1). The first pipe 61 is inserted inside the third pipe 63 that penetrates the separator 65. A gap is formed between the outer peripheral surface of the first pipe 61 and the inner peripheral surface of the third pipe 63. The first pipe 61 passes through the two separators 65 and 66. The other end of the first pipe 61 is disposed in the first expansion chamber 60a. The second pipe 62 passes through the two separators 65 and 66. The second pipe 62 communicates the first expansion chamber 60a and the second expansion chamber 60b. The third pipe 63 communicates the second expansion chamber 60b and the third expansion chamber 60c. The tail pipe 64 communicates the third expansion chamber 60 c and the space outside the outer cylinder 60. The end of the tail pipe 64 is exposed to the outside of the outer cylinder 60. An end portion of the tail pipe 64 forms an atmospheric discharge port 64a. In the muffler 54, the first pipe 61, the first expansion chamber 60a, the second pipe 62, the second expansion chamber 60b, the gap between the third pipe 63 and the first pipe 61, the third expansion chamber 60c, and the tail pipe 64 A path through which the exhaust gas flows is formed in order. The length of the path formed in the muffler 54 is longer than the maximum length of the muffler 54. A sound absorbing material such as glass wool may be disposed between the inner surface of the outer cylinder 60 and the outer surfaces of the pipes 61 to 64, but may not be disposed. The structure inside the muffler 54 is not limited to the structure shown in the schematic diagram of FIG.
 図4に示すように、空冷式エンジンユニット11は、空冷式エンジンユニット11の動作を制御するECU(Electronic Control Unit)80を有する。ECU80は、本発明の制御装置に相当する。ECU80は、エンジン回転速度センサ71、ノッキングセンサ72、エンジン温度センサ73、スロットル開度センサ74、酸素センサ75等の各種センサと接続されている。また、ECU80は、点火コイル32、インジェクタ42、燃料ポンプ44、スタータモータ27、表示装置14等と接続されている。 As shown in FIG. 4, the air-cooled engine unit 11 has an ECU (Electronic Control Unit) 80 that controls the operation of the air-cooled engine unit 11. The ECU 80 corresponds to the control device of the present invention. The ECU 80 is connected to various sensors such as an engine rotation speed sensor 71, a knocking sensor 72, an engine temperature sensor 73, a throttle opening degree sensor 74, and an oxygen sensor 75. The ECU 80 is connected to the ignition coil 32, the injector 42, the fuel pump 44, the starter motor 27, the display device 14, and the like.
 ECU80は、CPU、ROM、RAMなどで構成されている。CPUは、ROMやRAMに記憶されたプログラムや各種データに基づいて情報処理を実行する。これにより、ECU80は複数の機能処理部の各機能を実現させる。図4に示すように、ECU80は、機能処理部として、燃料供給量制御部81、点火時期制御部82、アイドル停止制御部83、再始動制御部84などを有する。さらに、ECU80は、作動指示部85を有する。作動指示部85は、各機能処理部の情報処理の結果に基づいて、点火コイル32、インジェクタ42、燃料ポンプ44、スタータモータ27、発電機、表示装置14等に対して動作指令信号を送信する。アイドル停止制御部83および作動指示部85は、本発明のアイドル停止制御部83に相当する。再始動制御部84および作動指示部85は、本発明の再始動制御部84に相当する。 The ECU 80 includes a CPU, a ROM, a RAM, and the like. The CPU executes information processing based on programs and various data stored in the ROM and RAM. Thereby, ECU80 implement | achieves each function of a some function processing part. As shown in FIG. 4, the ECU 80 includes a fuel supply amount control unit 81, an ignition timing control unit 82, an idle stop control unit 83, a restart control unit 84, and the like as function processing units. Further, the ECU 80 has an operation instruction unit 85. The operation instruction unit 85 transmits an operation command signal to the ignition coil 32, the injector 42, the fuel pump 44, the starter motor 27, the generator, the display device 14 and the like based on the information processing result of each function processing unit. . The idle stop control unit 83 and the operation instruction unit 85 correspond to the idle stop control unit 83 of the present invention. The restart control unit 84 and the operation instruction unit 85 correspond to the restart control unit 84 of the present invention.
 燃料供給量制御部81は、インジェクタ42の燃料供給量を決定する。燃料供給量とは、燃料噴射量である。より具体的には、燃料供給量制御部81は、インジェクタ42による燃料噴射時間を制御する。燃焼効率と、触媒53の排気浄化効率を高めるには、混合気中の空燃比が理論空燃比(ストイキオメトリ)であることが好ましい。燃料供給量制御部81は、必要に応じて、燃料供給量を増減させる。たとえば、空冷式エンジンユニット11の暖機完了までは、燃料供給量は通常時よりも多い。また、加速時も、空冷式エンジンユニット11の出力を増大させるために、燃料供給量は通常時よりも多い。また、減速時には、燃料供給はカットされる。 The fuel supply amount control unit 81 determines the fuel supply amount of the injector 42. The fuel supply amount is a fuel injection amount. More specifically, the fuel supply amount control unit 81 controls the fuel injection time by the injector 42. In order to increase the combustion efficiency and the exhaust gas purification efficiency of the catalyst 53, the air-fuel ratio in the air-fuel mixture is preferably the stoichiometric air-fuel ratio (stoichiometry). The fuel supply amount control unit 81 increases or decreases the fuel supply amount as necessary. For example, until the air-cooled engine unit 11 is warmed up, the fuel supply amount is larger than that in the normal time. Also, during acceleration, the amount of fuel supply is larger than usual in order to increase the output of the air-cooled engine unit 11. Further, the fuel supply is cut during deceleration.
 図5に示すように、燃料供給量制御部81は、基本燃料供給量算出部86と、最終燃料供給量算出部87と、酸素フィードバック学習部88を含む。基本燃料供給量算出部86は、基本燃料供給量を算出する。最終燃料供給量算出部87は、基本燃料供給量算出部86により算出された基本燃料供給量を補正して、最終燃料供給量を算出する。 5, the fuel supply amount control unit 81 includes a basic fuel supply amount calculation unit 86, a final fuel supply amount calculation unit 87, and an oxygen feedback learning unit 88. The basic fuel supply amount calculation unit 86 calculates a basic fuel supply amount. The final fuel supply amount calculation unit 87 corrects the basic fuel supply amount calculated by the basic fuel supply amount calculation unit 86 to calculate the final fuel supply amount.
 基本燃料供給量算出部86は、スロットル開度センサ74の信号とエンジン回転速度センサ71の信号に基づいて、基本燃料供給量を算出する。基本燃料供給量算出部86は、スロットル弁45の開度の全ての開度領域とエンジン回転速度の全ての回転速度領域において、基本燃料供給量を算出する。基本燃料供給量算出部86は、上記2つの信号に基づいて、上記領域について、基本燃料供給量を算出する。具体的には、基本燃料供給量の算出には、図6に示すマップが使用される。図6のマップは、スロットル開度(K1、K2・・・Km)とエンジン回転速度(C1、C2・・・Cn)に対して吸入空気量(A11、A12・・・A1n、A21、A22・・・、Am1、Am2・・・Amn)を対応付けたマップである。吸入空気量とは、吸入される空気の質量流量のことである。このマップにおいて、吸入空気量は、スロットル開度の全ての開度領域と、エンジン回転速度の全ての回転速度領域に対して設定されている。このマップおよび後述する他のマップはROMに記憶されている。基本燃料供給量算出部86は、まず、図6のマップに基づいて吸入空気量を求める。そして、基本燃料供給量算出部86は、マップから求めた吸入空気量に対して、目標空燃比を達成できる基本燃料供給量を決定する。図7は、スロットル開度とエンジン回転速度と基本燃料供給量の関係の一例を示すグラフである。 The basic fuel supply amount calculation unit 86 calculates the basic fuel supply amount based on the signal from the throttle opening sensor 74 and the signal from the engine speed sensor 71. The basic fuel supply amount calculation unit 86 calculates the basic fuel supply amount in all opening regions of the opening degree of the throttle valve 45 and all rotation speed regions of the engine rotation speed. The basic fuel supply amount calculation unit 86 calculates a basic fuel supply amount for the region based on the two signals. Specifically, the map shown in FIG. 6 is used for calculating the basic fuel supply amount. The map in FIG. 6 shows the intake air amount (A11, A12... A1n, A21, A22,...) With respect to the throttle opening (K1, K2... Km) and the engine speed (C1, C2... Cn). .., Am1, Am2,... The intake air amount is the mass flow rate of the air that is inhaled. In this map, the intake air amount is set for all opening regions of the throttle opening and all rotation speed regions of the engine rotation speed. This map and other maps described later are stored in the ROM. First, the basic fuel supply amount calculation unit 86 obtains the intake air amount based on the map of FIG. The basic fuel supply amount calculation unit 86 determines a basic fuel supply amount that can achieve the target air-fuel ratio with respect to the intake air amount obtained from the map. FIG. 7 is a graph showing an example of the relationship between the throttle opening, the engine speed, and the basic fuel supply amount.
 最終燃料供給量算出部87は、酸素センサ補正キャンセル部89と、酸素センサ補正部90と、酸素フィードバック学習補正部91と、エンジン温度センサ補正部92を含む。酸素センサ補正部90は、酸素センサ75の信号に基づいて基本燃料供給量を補正する。酸素センサ75の信号に基づいた燃料供給量の制御を、酸素フィードバック制御という。 The final fuel supply amount calculation unit 87 includes an oxygen sensor correction cancellation unit 89, an oxygen sensor correction unit 90, an oxygen feedback learning correction unit 91, and an engine temperature sensor correction unit 92. The oxygen sensor correction unit 90 corrects the basic fuel supply amount based on the signal from the oxygen sensor 75. Control of the fuel supply amount based on the signal from the oxygen sensor 75 is referred to as oxygen feedback control.
 酸素センサ補正キャンセル部89は、酸素センサ補正部90による基本燃料供給量の補正を一時的にキャンセルするか否か判定する。つまり、酸素センサ補正キャンセル部89は、酸素フィードバック制御を一時的にキャンセルするか否か判定する。この判定は、スロットル開度センサ74の信号とエンジン回転速度センサ71の信号に基づいて行われる。 The oxygen sensor correction cancellation unit 89 determines whether or not to temporarily cancel the correction of the basic fuel supply amount by the oxygen sensor correction unit 90. That is, the oxygen sensor correction cancellation unit 89 determines whether or not to temporarily cancel the oxygen feedback control. This determination is made based on the signal from the throttle opening sensor 74 and the signal from the engine speed sensor 71.
 具体的には、この判定には、図8に示すマップが用いられる。図8のマップには、スロットル開度とエンジン回転速度に対応付けられた酸素フィードバック制御領域が表示されている。酸素フィードバック制御領域はハッチングを付した領域である。図8に示すように、酸素フィードバック制御領域は、スロットル開度が特に大きい領域は含まない。また、酸素フィードバック制御領域は、スロットル開度が特に低く且つエンジン回転速度が速い領域は含まない。 Specifically, the map shown in FIG. 8 is used for this determination. The map of FIG. 8 displays an oxygen feedback control area associated with the throttle opening and the engine speed. The oxygen feedback control region is a hatched region. As shown in FIG. 8, the oxygen feedback control region does not include a region where the throttle opening is particularly large. The oxygen feedback control region does not include a region where the throttle opening is particularly low and the engine speed is high.
 酸素センサ補正キャンセル部89は、スロットル開度センサ74の信号とエンジン回転速度センサ71の信号が、酸素フィードバック制御領域に含まれるか否かを判定する。両信号が酸素フィードバック制御領域に含まれない場合には、酸素センサ補正キャンセル部89は、補正をキャンセルすると判定する。一方、両信号が酸素フィードバック制御領域に含まれる場合には、酸素センサ補正キャンセル部89は、補正をキャンセルしないと判定する。 The oxygen sensor correction cancellation unit 89 determines whether or not the signal from the throttle opening sensor 74 and the signal from the engine rotation speed sensor 71 are included in the oxygen feedback control region. When both signals are not included in the oxygen feedback control region, the oxygen sensor correction cancel unit 89 determines to cancel the correction. On the other hand, when both signals are included in the oxygen feedback control region, the oxygen sensor correction cancel unit 89 determines not to cancel the correction.
 酸素センサ補正キャンセル部89は、補正をキャンセルすると判定した場合、酸素センサ補正部90による補正をキャンセルする。酸素センサ補正部90による補正をキャンセルするとは、具体的には、酸素センサ補正部90による演算処理を行わないことである。なお、酸素センサ補正部90による補正をキャンセルするとは、以下の処理を実行することであってもよい。即ち、酸素センサ補正部90が、酸素センサ75の信号に基づかない補正値を使って、補正していないのと同じになる結果になる演算処理を行う。例えば、酸素センサ補正部90において、基本燃料供給量に補正値を足す演算処理を行う場合、この補正値をゼロとしてもよい。 When the oxygen sensor correction canceling unit 89 determines to cancel the correction, the oxygen sensor correction canceling unit 89 cancels the correction by the oxygen sensor correcting unit 90. The cancellation of the correction by the oxygen sensor correction unit 90 specifically means that the arithmetic processing by the oxygen sensor correction unit 90 is not performed. The cancellation of the correction by the oxygen sensor correction unit 90 may be to execute the following processing. In other words, the oxygen sensor correction unit 90 uses the correction value that is not based on the signal from the oxygen sensor 75 to perform a calculation process that results in the same result as when the correction is not performed. For example, when the oxygen sensor correction unit 90 performs a calculation process for adding a correction value to the basic fuel supply amount, the correction value may be zero.
 酸素センサ補正キャンセル部89が、補正をキャンセルしないと判定した場合には、酸素センサ補正部90は、基本燃料供給量を補正する。上述したように、酸素センサ補正部90は、酸素センサ75の信号に基づいて、基本燃料供給量を補正する。具体的には、酸素センサ75の信号がリーン状態を示す信号の場合、次回の燃料供給量が増えるように基本燃料供給量は補正される。一方、酸素センサ75の信号がリッチ状態を示す信号の場合、次回の燃料供給量が減るように基本燃料供給量は補正される。 If the oxygen sensor correction cancellation unit 89 determines not to cancel the correction, the oxygen sensor correction unit 90 corrects the basic fuel supply amount. As described above, the oxygen sensor correction unit 90 corrects the basic fuel supply amount based on the signal from the oxygen sensor 75. Specifically, when the signal from the oxygen sensor 75 indicates a lean state, the basic fuel supply amount is corrected so that the next fuel supply amount increases. On the other hand, when the signal from the oxygen sensor 75 indicates a rich state, the basic fuel supply amount is corrected so that the next fuel supply amount is reduced.
 酸素センサ補正キャンセル部89が、酸素センサ補正部90による補正をキャンセルした場合、酸素フィードバック学習補正部91は、基本燃料供給量を補正する。酸素フィードバック学習補正部91は、後述する酸素フィードバック環境学習補正値および酸素フィードバックバイパス弁学習補正値に基づいて、基本燃料供給量を補正する。 When the oxygen sensor correction cancellation unit 89 cancels the correction by the oxygen sensor correction unit 90, the oxygen feedback learning correction unit 91 corrects the basic fuel supply amount. The oxygen feedback learning correction unit 91 corrects the basic fuel supply amount based on an oxygen feedback environment learning correction value and an oxygen feedback bypass valve learning correction value described later.
 酸素センサ補正部90または酸素フィードバック学習補正部91によって基本燃料供給量を補正した結果を、補正燃料供給量と称する。エンジン温度センサ補正部92は、エンジン温度センサ73の信号に基づいて、補正燃料供給量または基本燃料供給量を補正する。最終燃料供給量算出部87は、エンジン温度センサ補正部92によって補正された値を、最終燃料供給量と決定する。作動指示部85は、最終燃料供給量算出部87によって算出された最終燃料供給量に基づいて、燃料ポンプ44とインジェクタ42を作動させる。 The result of correcting the basic fuel supply amount by the oxygen sensor correction unit 90 or the oxygen feedback learning correction unit 91 is referred to as a corrected fuel supply amount. The engine temperature sensor correction unit 92 corrects the corrected fuel supply amount or the basic fuel supply amount based on the signal from the engine temperature sensor 73. The final fuel supply amount calculation unit 87 determines the value corrected by the engine temperature sensor correction unit 92 as the final fuel supply amount. The operation instruction unit 85 operates the fuel pump 44 and the injector 42 based on the final fuel supply amount calculated by the final fuel supply amount calculation unit 87.
 本実施形態の空冷式エンジンユニット11は、吸気圧センサを備えていない。そのため、ECU80は、標高の変化などによる大気圧の変化を直接的には把握しない。しかし、大気圧が変化すると、吸入空気量が変化する。また、ECU80は、バイパス吸気通路部41bに配置されたバイパス弁46の開度を直接的には把握していない。しかし、スロットル開度が小さい場合、バイパス弁46の開度の変化による吸入空気量の変化が大きい。なお、スロットル開度が大きい場合には、バイパス弁46の開度の変化による吸入空気量の変化は小さい。 The air-cooled engine unit 11 of this embodiment does not include an intake pressure sensor. Therefore, the ECU 80 does not directly grasp a change in atmospheric pressure due to a change in altitude or the like. However, when the atmospheric pressure changes, the intake air amount changes. Further, the ECU 80 does not directly grasp the opening degree of the bypass valve 46 disposed in the bypass intake passage portion 41b. However, when the throttle opening is small, the change in the intake air amount due to the change in the opening of the bypass valve 46 is large. When the throttle opening is large, the change in the intake air amount due to the change in the opening of the bypass valve 46 is small.
 酸素フィードバック制御を行う場合には、大気圧の変化またはバイパス弁46の開度の変化により吸入空気量が変化しても、適切な燃料供給量に制御できる。しかし、酸素フィードバック制御を行わない場合には、適切な燃料供給量に制御するには、大気圧の変化とバイパス弁46の開度の変化に対応した補正を行う必要がある。そこで、本実施形態では、大気圧の変化とバイパス弁46の開度の変化に対応した燃料供給量の制御を行うために、酸素フィードバック学習部88を設けている。酸素フィードバック学習部88は、酸素フィードバック学習を行う。大気圧の変化を学習する酸素フィードバック学習を、酸素フィードバック環境学習と称する。バイパス弁46の開度の変化を学習する酸素フィード学習を、酸素フィードバックバイパス弁学習と称する。酸素フィードバック学習は、酸素フィードバック環境学習と、酸素フィードバックバイパス弁学習とを含む。酸素フィードバック学習部88は、酸素フィードバック環境学習と酸素フィードバックバイパス弁学習を、空冷式エンジンユニット11の運転ごとに1回ずつ行う。つまり、空冷式エンジンユニット11の始動から停止までの間に1回ずつ行う。 When performing oxygen feedback control, even if the intake air amount changes due to a change in the atmospheric pressure or a change in the opening degree of the bypass valve 46, the fuel supply amount can be controlled to an appropriate amount. However, when oxygen feedback control is not performed, in order to control to an appropriate fuel supply amount, it is necessary to perform correction corresponding to changes in atmospheric pressure and changes in the opening degree of the bypass valve 46. Therefore, in the present embodiment, the oxygen feedback learning unit 88 is provided in order to control the fuel supply amount corresponding to the change in the atmospheric pressure and the change in the opening degree of the bypass valve 46. The oxygen feedback learning unit 88 performs oxygen feedback learning. Oxygen feedback learning for learning changes in atmospheric pressure is referred to as oxygen feedback environment learning. The oxygen feed learning for learning the change in the opening degree of the bypass valve 46 is referred to as oxygen feedback bypass valve learning. The oxygen feedback learning includes oxygen feedback environment learning and oxygen feedback bypass valve learning. The oxygen feedback learning unit 88 performs oxygen feedback environment learning and oxygen feedback bypass valve learning once for each operation of the air-cooled engine unit 11. That is, it is performed once each from the start to the stop of the air-cooled engine unit 11.
 酸素フィードバック学習には、図9に示すマップが用いられる。図9のマップには、スロットル開度とエンジン回転速度に対応付けられた酸素フィードバック環境学習領域が表示されている。図9のマップには、スロットル開度とエンジン回転速度に対応付けられた酸素フィードバックバイパス弁学習領域が表示されている。酸素フィードバック環境学習領域および酸素フィードバックバイパス弁学習領域は、ハッチングを付した領域である。酸素フィードバック環境学習領域および酸素フィードバックバイパス弁学習領域は、図8に示す酸素フィードバック制御領域に含まれる。 The map shown in FIG. 9 is used for oxygen feedback learning. The map of FIG. 9 displays an oxygen feedback environment learning area associated with the throttle opening and the engine speed. The map of FIG. 9 displays an oxygen feedback bypass valve learning region associated with the throttle opening and the engine speed. The oxygen feedback environment learning area and the oxygen feedback bypass valve learning area are hatched areas. The oxygen feedback environment learning area and the oxygen feedback bypass valve learning area are included in the oxygen feedback control area shown in FIG.
 酸素フィードバック学習部88は、空冷式エンジンユニット11の始動後、エンジン回転速度センサ71の信号とスロットル開度センサ74の信号が酸素フィードバック環境学習領域にあるか否かを判定する。そして、この2つの信号が酸素フィードバック環境学習領域にある場合、酸素フィードバック学習部88は、酸素フィードバック環境学習を行う。具体的には、まず、酸素フィードバック制御を行って算出された最終燃料供給量と、図6に示すマップから求められた基本燃料供給量との差が算出される。この差は、酸素フィードバック環境学習値として、ROMまたはRAMに記憶される。そして、算出された酸素フィードバック環境学習値と、既に記憶された酸素フィードバック環境学習値のうち、スロットル開度とエンジン回転速度が同じものとが比較される。比較された2つの値が異なる場合には、大気圧が変化したと判断することができる。そこで、比較された2つの値が異なる場合には、酸素フィードバック学習部88は、酸素フィードバック環境学習補正値を算出する。酸素フィードバック環境学習補正値は、比較された2つの酸素フィードバック環境学習値の差に基づいて算出される。酸素フィードバック学習補正部91は、酸素フィードバック環境学習補正値に基づいて基本燃焼供給量を補正する。 The oxygen feedback learning unit 88 determines whether the signal of the engine speed sensor 71 and the signal of the throttle opening sensor 74 are in the oxygen feedback environment learning region after the air-cooled engine unit 11 is started. When these two signals are in the oxygen feedback environment learning region, the oxygen feedback learning unit 88 performs oxygen feedback environment learning. Specifically, first, the difference between the final fuel supply amount calculated by performing the oxygen feedback control and the basic fuel supply amount obtained from the map shown in FIG. 6 is calculated. This difference is stored in the ROM or RAM as an oxygen feedback environment learning value. Then, the calculated oxygen feedback environment learning value and the already stored oxygen feedback environment learning value are compared with those having the same throttle opening and engine speed. If the two compared values are different, it can be determined that the atmospheric pressure has changed. Therefore, when the two compared values are different, the oxygen feedback learning unit 88 calculates an oxygen feedback environment learning correction value. The oxygen feedback environment learning correction value is calculated based on the difference between the two oxygen feedback environment learning values compared. The oxygen feedback learning correction unit 91 corrects the basic combustion supply amount based on the oxygen feedback environment learning correction value.
 酸素フィードバック学習部88は、空冷式エンジンユニット11の始動後、エンジン回転速度センサ71の信号とスロットル開度センサ74の信号が酸素フィードバックバイパス弁学習領域にあるか否かを判定する。そして、この2つの信号が酸素フィードバックバイパス弁学習領域にある場合、酸素フィードバック学習部88は、酸素フィードバックバイパス弁学習を行う。具体的には、まず、酸素フィードバック制御を行って算出された最終燃料供給量と、図6に示すマップから求められた基本燃料供給量との差が算出される。この差は、酸素フィードバックバイパス弁学習値として、ROMまたはRAMに記憶される。そして、算出された酸素フィードバックバイパス弁学習値と、既に記憶された酸素フィードバックバイパス弁学習値のうち、スロットル開度とエンジン回転速度が同じものとが比較される。比較された2つの値が異なる場合には、バイパス弁46の開度が変化したと判断することができる。そこで、比較された2つの値が異なる場合には、酸素フィードバック学習部88は、酸素フィードバックバイパス弁学習補正値を算出する。酸素フィードバックバイパス弁学習補正値は、比較された2つの酸素フィードバックバイパス弁学習値の差に基づいて算出される。酸素フィードバック学習補正部91は、酸素フィードバックバイパス弁学習補正値に基づいて基本燃焼供給量を補正する。 The oxygen feedback learning unit 88 determines whether the signal of the engine speed sensor 71 and the signal of the throttle opening sensor 74 are in the oxygen feedback bypass valve learning region after the air-cooled engine unit 11 is started. When these two signals are in the oxygen feedback bypass valve learning region, the oxygen feedback learning unit 88 performs oxygen feedback bypass valve learning. Specifically, first, the difference between the final fuel supply amount calculated by performing the oxygen feedback control and the basic fuel supply amount obtained from the map shown in FIG. 6 is calculated. This difference is stored in the ROM or RAM as the oxygen feedback bypass valve learning value. Then, the calculated oxygen feedback bypass valve learned value and the already stored oxygen feedback bypass valve learned value are compared with those having the same throttle opening and engine speed. If the two compared values are different, it can be determined that the opening of the bypass valve 46 has changed. Therefore, when the two compared values are different, the oxygen feedback learning unit 88 calculates an oxygen feedback bypass valve learning correction value. The oxygen feedback bypass valve learning correction value is calculated based on the difference between the two compared oxygen feedback bypass valve learning values. The oxygen feedback learning correction unit 91 corrects the basic combustion supply amount based on the oxygen feedback bypass valve learning correction value.
 点火時期制御部82は、点火時期を算出する。点火時期とは、点火プラグ31の放電タイミングのことである。点火時期は、圧縮上死点を基準としたクランク軸26の回転角度で表される。なお、圧縮上死点とは、圧縮行程と燃焼行程の間のピストン28の上死点のことである。トルクが最大となる点火時期に対応する最小進角をMBT(Minimum advance for the Best Torque)という。以下、点火時期がMBTに対応する進角に近いことを、点火時期がMBTに近い、点火時期がMBTに対応する進角に比べて遅角側にあることを、点火時期がMBTより遅い、などと表現する。燃費と出力を高めるには、点火時期がMBTに近いほど好ましい。しかし、MBTではノッキングが起きやすい。そのため、点火時期はMBTより遅らせる。その上で、大きいノッキングを防止しながら、点火時期をMBTにできるだけ近づけるように制御する。 The ignition timing control unit 82 calculates the ignition timing. The ignition timing is the discharge timing of the spark plug 31. The ignition timing is represented by the rotation angle of the crankshaft 26 with respect to the compression top dead center. The compression top dead center is the top dead center of the piston 28 between the compression stroke and the combustion stroke. The minimum advance angle corresponding to the ignition timing at which the torque is maximum is called MBT (Minimummadvance for the Best Torque). Hereinafter, the ignition timing is close to the advance corresponding to MBT, the ignition timing is close to MBT, the ignition timing is on the retard side compared to the advance corresponding to MBT, the ignition timing is later than MBT, And so on. In order to increase fuel consumption and output, it is preferable that the ignition timing is closer to MBT. However, knocking easily occurs in MBT. Therefore, the ignition timing is delayed from MBT. Then, the ignition timing is controlled as close as possible to MBT while preventing large knocking.
 点火時期制御部82は、基本点火時期算出部93と、最終点火時期算出部94を含む。基本点火時期算出部93は、基本点火時期を算出する。最終点火時期算出部94は、基本点火時期算出部93によって算出された基本点火時期を補正して、最終点火時期を算出する。 The ignition timing control unit 82 includes a basic ignition timing calculation unit 93 and a final ignition timing calculation unit 94. The basic ignition timing calculation unit 93 calculates a basic ignition timing. The final ignition timing calculation unit 94 corrects the basic ignition timing calculated by the basic ignition timing calculation unit 93 to calculate the final ignition timing.
 基本点火時期算出部93は、スロットル開度センサ74の信号とエンジン回転速度センサ71の信号に基づいて、基本点火時期を算出する。基本点火時期算出部93は、スロットル弁45の開度の全ての開度領域とエンジン回転速度の全ての回転速度領域において、基本点火時期を算出する。基本点火時期算出部93は、上記2つの信号に基づいて、上記領域について、基本点火時期を算出する。具体的には、スロットル開度とエンジン回転速度に対して基本点火時期を対応付けたマップ(図示せず)を用いて、基本点火時期を求める。このマップにおいて、基本点火時期は、スロットル開度の全ての開度領域と、エンジン回転速度の全ての回転速度領域に対して設定されている。図10は、スロットル開度とエンジン回転速度と基本点火時期の関係の一例を示すグラフである。 The basic ignition timing calculation unit 93 calculates the basic ignition timing based on the signal from the throttle opening sensor 74 and the signal from the engine speed sensor 71. The basic ignition timing calculation unit 93 calculates the basic ignition timing in all opening regions of the throttle valve 45 and all rotation speed regions of the engine rotation speed. The basic ignition timing calculation unit 93 calculates the basic ignition timing for the region based on the two signals. Specifically, the basic ignition timing is obtained using a map (not shown) in which the basic ignition timing is associated with the throttle opening and the engine speed. In this map, the basic ignition timing is set for all opening regions of the throttle opening and all rotation speed regions of the engine rotation speed. FIG. 10 is a graph showing an example of the relationship among the throttle opening, the engine speed, and the basic ignition timing.
 最終点火時期算出部94は、ノッキングセンサ補正キャンセル部95と、ノッキングセンサ補正部96と、エンジン温度センサ補正部97を含む。ノッキングセンサ補正部96は、ノッキングセンサ72の信号に基づいて、基本点火時期を補正する。ノッキングセンサ72の信号に基づいた点火時期の制御を、ノッキング制御という。ノッキングセンサ補正キャンセル部95は、ノッキングセンサ補正部96による補正をキャンセルするか否か判定する。つまり、ノッキングセンサ補正キャンセル部95は、ノッキング制御を行うか否かを判定する。この判定は、スロットル開度センサ74の信号とエンジン回転速度センサ71の信号に基づいて行われる。 The final ignition timing calculation unit 94 includes a knocking sensor correction cancellation unit 95, a knocking sensor correction unit 96, and an engine temperature sensor correction unit 97. The knocking sensor correction unit 96 corrects the basic ignition timing based on the signal from the knocking sensor 72. Control of the ignition timing based on the signal of the knocking sensor 72 is referred to as knocking control. The knocking sensor correction cancellation unit 95 determines whether or not to cancel the correction by the knocking sensor correction unit 96. That is, the knocking sensor correction cancellation unit 95 determines whether or not to perform knocking control. This determination is made based on the signal from the throttle opening sensor 74 and the signal from the engine speed sensor 71.
 具体的には、この判定には、図11に示すマップが用いられる。図11のマップには、スロットル開度とエンジン回転速度に対応付けられたノッキング制御領域が表示されている。ノッキング制御領域はハッチングを付した領域である。図11に示すように、ノッキング制御領域は、スロットル開度が特に大きい領域である。つまり、ノッキング制御領域は、エンジンの負荷が大きい領域である。 Specifically, the map shown in FIG. 11 is used for this determination. In the map of FIG. 11, a knocking control region associated with the throttle opening and the engine speed is displayed. The knocking control region is a hatched region. As shown in FIG. 11, the knocking control region is a region where the throttle opening is particularly large. That is, the knocking control region is a region where the engine load is large.
 ノッキングセンサ補正キャンセル部95は、スロットル開度センサ74の信号とエンジン回転速度センサ71の信号が、ノッキング制御領域に含まれるか否かを判定する。両信号がノッキング制御領域に含まれない場合には、ノッキングセンサ補正キャンセル部95は、補正をキャンセルすると判定する。一方、両信号がノッキング制御領域に含まれる場合には、ノッキングセンサ補正キャンセル部95は、補正をキャンセルしないと判定する。 The knocking sensor correction cancellation unit 95 determines whether or not the signal from the throttle opening sensor 74 and the signal from the engine rotation speed sensor 71 are included in the knocking control region. When both signals are not included in the knocking control region, the knocking sensor correction cancellation unit 95 determines to cancel the correction. On the other hand, when both signals are included in the knocking control region, the knocking sensor correction cancellation unit 95 determines not to cancel the correction.
 ノッキングセンサ補正キャンセル部95は、補正をキャンセルすると判定した場合には、ノッキングセンサ補正部96による補正をキャンセルする。ノッキングセンサ補正部96による補正をキャンセルとは、具体的には、ノッキングセンサ補正部96による演算処理を行わないことである。なお、ノッキングセンサ補正部96による補正をキャンセルとは、以下の処理を実行することであってもよい。即ち、ノッキングセンサ補正部96が、ノッキングセンサ72の信号に基づかない補正値を使って、補正していないのと同じになる結果になる演算処理を行う。 When the knocking sensor correction cancellation unit 95 determines to cancel the correction, the knocking sensor correction cancellation unit 95 cancels the correction by the knocking sensor correction unit 96. The cancellation of the correction by the knocking sensor correction unit 96 specifically means that the arithmetic processing by the knocking sensor correction unit 96 is not performed. The cancellation of the correction by the knocking sensor correction unit 96 may be to execute the following processing. In other words, the knocking sensor correction unit 96 uses a correction value that is not based on the signal of the knocking sensor 72 to perform a calculation process that results in the same result as when the correction is not performed.
 ノッキングセンサ補正キャンセル部95が、補正をキャンセルしないと判定した場合には、ノッキングセンサ補正部96は、基本点火時期を補正する。ノッキングセンサ補正部96は、ノッキングセンサ72の信号に基づいて基本点火時期を補正する。具体的には、ノッキングセンサ補正部96は、まず、ノッキングセンサ72の信号に基づいて、エンジン本体20のノッキングの有無を判定する。ノッキングの有無の判定は、例えば、ノッキングセンサ72の信号のピーク値に基づいて行う。ノッキングセンサ補正部96は、ノッキング有りと判定した場合、基本点火時期を、所定の遅角値だけ遅角させるように補正する。また、ノッキングセンサ補正部96は、ノッキングなしと判定した場合、基本点火時期を、所定の進角値だけ進角させるように補正する。これにより、ノッキングがないときには点火時期が所定の進角値ずつMBTに近づいていく。また、ノッキングがあるときには点火時期が所定の遅角値ずつMBTより遅れていく。それにより、ノッキングの発生が抑制される。したがって、大きなノッキングの発生を防止しつつ、点火時期をできるだけMBTに近づけて、出力と燃費を向上させることができる。 When the knocking sensor correction cancellation unit 95 determines that the correction is not canceled, the knocking sensor correction unit 96 corrects the basic ignition timing. The knocking sensor correction unit 96 corrects the basic ignition timing based on the signal from the knocking sensor 72. Specifically, knocking sensor correction unit 96 first determines the presence or absence of knocking of engine body 20 based on a signal from knocking sensor 72. The determination of the presence or absence of knocking is made based on the peak value of the signal from the knocking sensor 72, for example. When it is determined that knocking is present, the knocking sensor correction unit 96 corrects the basic ignition timing so as to retard the basic ignition timing by a predetermined retardation value. Further, when it is determined that there is no knocking, the knocking sensor correction unit 96 corrects the basic ignition timing to advance by a predetermined advance value. As a result, when there is no knocking, the ignition timing approaches the MBT by a predetermined advance value. When knocking occurs, the ignition timing is delayed from the MBT by a predetermined delay value. Thereby, the occurrence of knocking is suppressed. Therefore, it is possible to improve the output and fuel consumption by preventing the occurrence of large knocking and making the ignition timing as close to MBT as possible.
 ノッキングセンサ補正部96によって基本点火時期を補正した結果を、補正点火時期と称する。エンジン温度センサ補正部97は、エンジン温度センサ73の信号に基づいて、補正点火時期または基本点火時期を補正する。最終点火時期算出部94は、エンジン温度センサ補正部97によって補正された値を、最終点火時期と決定する。作動指示部85は、最終点火時期算出部94によって算出された最終点火時期に基づいて、点火コイル32に通電して、点火プラグ31を作動させる。 The result of correcting the basic ignition timing by the knocking sensor correction unit 96 is referred to as corrected ignition timing. The engine temperature sensor correction unit 97 corrects the corrected ignition timing or basic ignition timing based on the signal from the engine temperature sensor 73. The final ignition timing calculation unit 94 determines the value corrected by the engine temperature sensor correction unit 97 as the final ignition timing. The operation instructing unit 85 energizes the ignition coil 32 based on the final ignition timing calculated by the final ignition timing calculating unit 94 to operate the spark plug 31.
 本実施形態の空冷式エンジンユニット11は、吸気圧センサを備えていない。そのため、ECU80は、標高の変化などによる大気圧の変化を把握しない。しかし、ノッキング制御領域においてノッキング制御を行うことにより、大気圧が変化しても点火時期をできるだけMBTに近づけることができる。したがって、燃費と出力を高めることができる。 The air-cooled engine unit 11 of this embodiment does not include an intake pressure sensor. Therefore, the ECU 80 does not grasp changes in atmospheric pressure due to changes in altitude. However, by performing knocking control in the knocking control region, it is possible to make the ignition timing as close to MBT as possible even when the atmospheric pressure changes. Therefore, fuel consumption and output can be increased.
 アイドル停止制御部83は、空冷式エンジンユニット11の運転時に所定のアイドル停止条件が満たされると、空冷式エンジンユニット11の運転を停止させる。アイドル停止制御部83による制御によって、空冷式エンジンユニット11の運転が自動停止された状態を、アイドル停止状態とする。所定のアイドル停止条件が満たされると、アイドル停止制御部83は、作動指示部85に以下の指令を行う。その指令とは、点火プラグ31の点火動作を停止させると共に、インジェクタ42からの燃料供給を停止させる指令である。それによって、空冷式エンジンユニット11の運転を停止させる。 The idle stop control unit 83 stops the operation of the air-cooled engine unit 11 when a predetermined idle stop condition is satisfied during the operation of the air-cooled engine unit 11. A state in which the operation of the air-cooled engine unit 11 is automatically stopped by the control by the idle stop control unit 83 is set as an idle stop state. When a predetermined idle stop condition is satisfied, the idle stop control unit 83 gives the following command to the operation instruction unit 85. The command is a command for stopping the ignition operation of the spark plug 31 and stopping the fuel supply from the injector 42. Thereby, the operation of the air-cooled engine unit 11 is stopped.
 本実施形態のアイドル停止条件は、次の条件A1~A6の全てが所定時間継続することである。所定時間は、たとえば3秒間である。
A1:スロットル開度が所定のアイドル開度域(例えば0.3°未満)。
A2:車速が所定値(たとえば3km/h)以下。
A3:エンジン回転速度が所定のアイドル回転速度域(たとえば2000rpm以下)。
A4:エンジン温度が所定値(たとえば60℃)以上。
A5:バッテリの残量が所定値以上。
A6:酸素フィードバックバイバス弁学習を行っていない。
The idle stop condition of this embodiment is that all of the following conditions A1 to A6 continue for a predetermined time. The predetermined time is, for example, 3 seconds.
A1: The throttle opening is a predetermined idle opening range (for example, less than 0.3 °).
A2: The vehicle speed is a predetermined value (for example, 3 km / h) or less.
A3: The engine rotation speed is in a predetermined idle rotation speed range (for example, 2000 rpm or less).
A4: The engine temperature is equal to or higher than a predetermined value (for example, 60 ° C.).
A5: The remaining battery level is equal to or greater than a predetermined value.
A6: The oxygen feedback bypass valve learning is not performed.
 アイドル停止状態において、ECU80は表示装置14のインジケータを点灯させる。これにより、ライダーはアイドル停止状態であることを知ることができる。また、アイドル停止状態において、ピストン28は、下死点またはその近傍で停止する。ECU80は、アイドル停止状態のときに、インジェクタ42から燃料を噴射させる。 In the idle stop state, the ECU 80 turns on the indicator of the display device 14. Thereby, the rider can know that it is in an idle stop state. Further, in the idle stop state, the piston 28 stops at or near the bottom dead center. The ECU 80 injects fuel from the injector 42 in the idle stop state.
 再始動制御部84は、アイドル停止状態のときに、所定の再始動条件が満たされると空冷式エンジンユニット11の運転を再始動させる。本実施形態の再始動条件は、スロットル開度が所定の開度以上となったことである。したがって、ライダーがアクセルグリップ(図示せず)を操作することによって、空冷式エンジンユニット11の運転を再始動させることができる。 The restart control unit 84 restarts the operation of the air-cooled engine unit 11 when a predetermined restart condition is satisfied in the idle stop state. The restart condition of the present embodiment is that the throttle opening is equal to or greater than a predetermined opening. Therefore, the rider can restart the operation of the air-cooled engine unit 11 by operating an accelerator grip (not shown).
 再始動制御部84は、所定の再始動条件が満たされると、作動指示部85に対してスタータモータ27を作動させる指令を行う。これにより、スタータモータ27が作動される。さらに、再始動制御部84は、所定の再始動条件が満たされると、燃料供給量制御部81と点火時期制御部82による制御を開始させる。これにより、インジェクタ42から燃料が噴射され、かつ、点火プラグ31の火花放電が行われて、空冷式エンジンユニット11の運転が再始動する。より詳細には、点火時期制御部82は、スタータモータ27が作動してから最初の圧縮上死点のときに、アイドル停止状態において燃焼室30に供給された燃料に点火させるように、点火時期を制御する。これにより、空冷式エンジンユニット11の運転を迅速に再始動させることができる。さらに、再始動時のスタータモータ27の騒音を抑えることができる。 The restart control unit 84 instructs the operation instruction unit 85 to operate the starter motor 27 when a predetermined restart condition is satisfied. Thereby, the starter motor 27 is operated. Furthermore, the restart control unit 84 starts control by the fuel supply amount control unit 81 and the ignition timing control unit 82 when a predetermined restart condition is satisfied. Thereby, fuel is injected from the injector 42 and spark discharge of the spark plug 31 is performed, and the operation of the air-cooled engine unit 11 is restarted. More specifically, the ignition timing control unit 82 ignites the fuel supplied to the combustion chamber 30 in the idling stop state at the first compression top dead center after the starter motor 27 is operated. To control. Thereby, the operation of the air-cooled engine unit 11 can be restarted quickly. Furthermore, the noise of the starter motor 27 at the time of restart can be suppressed.
 アイドル停止状態では、スロットル開度はほぼ全閉開度である。そのため、アイドル停止状態から再始動させるときのスロットル開度とエンジン回転速度は、ノッキング制御領域には含まれない。そのため、再始動時に点火時期の制御が複雑にならなくて済む。 In the idle stop state, the throttle opening is almost fully closed. Therefore, the throttle opening and the engine speed when restarting from the idle stop state are not included in the knocking control region. Therefore, the ignition timing control does not have to be complicated at the time of restart.
 上述したように、本実施形態のエンジン本体20の圧縮比は10以上である。表1は、圧縮比11の空冷式エンジンと圧縮比9.5の空冷式エンジンの排ガスの温度の一例を示している。表1中の排気温度は、エンジン本体から排出された時点の排ガスの温度を示している。表1から明らかなように、圧縮比が高いほど排ガスの温度は低くなる。圧縮比が高いほど、熱効率が高いためである。 As described above, the compression ratio of the engine body 20 of the present embodiment is 10 or more. Table 1 shows an example of exhaust gas temperatures of an air-cooled engine having a compression ratio of 11 and an air-cooled engine having a compression ratio of 9.5. The exhaust temperature in Table 1 indicates the temperature of the exhaust gas at the time when it is discharged from the engine body. As is apparent from Table 1, the higher the compression ratio, the lower the temperature of the exhaust gas. This is because the higher the compression ratio, the higher the thermal efficiency.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 本実施形態では、所定のアイドル停止条件を満たしたとき、空冷式エンジンユニット11の運転が停止する。アイドル運転状態では、エンジン回転速度が低いため、排ガスの温度が低くなる。ここで、通常の運転状態からアイドル運転状態に移行した後、アイドル運転状態が継続された場合を仮定する。この場合、温度が低下した排ガスが触媒53を通過することで、触媒53の温度が低下する。上述したように、空冷式エンジンでは、そもそも排ガスの温度が低い。よって、アイドル運転状態では、排ガスの温度がかなり低くなる。そのため、アイドル時には、触媒53の温度が不活性状態となる温度まで低下してしまう恐れがある。しかし、本実施形態では、所定のアイドル停止条件を満たした場合には、空冷式エンジンユニット11の運転が停止するため、温度が低下した排ガスが触媒53を通過するのを防止できる。それにより、触媒53の温度を高温で維持して、触媒53の活性状態を維持することができる。 In the present embodiment, the operation of the air-cooled engine unit 11 is stopped when a predetermined idle stop condition is satisfied. In the idle operation state, the engine speed is low, so the temperature of the exhaust gas is low. Here, it is assumed that the idle operation state is continued after shifting from the normal operation state to the idle operation state. In this case, the temperature of the catalyst 53 decreases as the exhaust gas whose temperature has decreased passes through the catalyst 53. As described above, in the air-cooled engine, the temperature of the exhaust gas is low in the first place. Therefore, in the idle operation state, the temperature of the exhaust gas becomes considerably low. Therefore, at the time of idling, the temperature of the catalyst 53 may be lowered to a temperature at which it becomes inactive. However, in the present embodiment, when the predetermined idle stop condition is satisfied, the operation of the air-cooled engine unit 11 is stopped, so that the exhaust gas whose temperature has decreased can be prevented from passing through the catalyst 53. Thereby, the temperature of the catalyst 53 can be maintained at a high temperature, and the active state of the catalyst 53 can be maintained.
 以下の表2には、アイドル運転を停止させた場合と停止させない場合について、排ガスの温度と触媒の温度を比較した結果の一例を示している。表2中の実施例は、アイドル運転状態を停止してから20秒後の結果を示している。実施例では、通常の運転状態からアイドル運転状態に移行した後、アイドル運転状態を停止している。また、表2中の比較例は、通常の運転状態からアイドル運転に移行した時点から20秒後の結果を示している。表2中の第1温度は、排気通路部のエンジン本体の近傍の排ガスの温度を示している。表2中の第2温度は、排気通路部の触媒よりも上流で且つ触媒の近傍の排ガスの温度を示している。表2から明らかなように、アイドル運転状態を停止させることで、アイドル運転状態を継続する場合に比べて、触媒の温度を高温に維持することができる。 Table 2 below shows an example of the result of comparing the exhaust gas temperature and the catalyst temperature when the idle operation is stopped and when it is not stopped. The Example in Table 2 shows the result 20 seconds after the idle operation state is stopped. In the embodiment, after shifting from the normal operation state to the idle operation state, the idle operation state is stopped. Moreover, the comparative example in Table 2 shows the result 20 seconds after the transition from the normal operation state to the idle operation. The first temperature in Table 2 indicates the temperature of the exhaust gas in the vicinity of the engine body in the exhaust passage portion. The second temperature in Table 2 indicates the temperature of the exhaust gas upstream of the catalyst in the exhaust passage portion and in the vicinity of the catalyst. As is apparent from Table 2, the temperature of the catalyst can be maintained at a higher temperature by stopping the idle operation state than when continuing the idle operation state.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 本実施形態の空冷式エンジンユニット11は、以下の特徴を有する。
 排気通路部51の排気ポート34から触媒53までの経路長D3は、排気通路部51の触媒53から大気放出口64aまでの経路長D1より短い。つまり、触媒53は、エンジン本体20の近くに配置されている。それにより、触媒53の活性化に要する時間を短縮化することができる。
 一般的に、空冷式エンジンは、水冷式エンジンに比べて、エンジン本体20の温度が高くなりやすい。しかしながら、本実施形態の空冷式エンジンユニット11は、従来の空冷式エンジンユニットと比較して、エンジン本体20の圧縮比が10以上と高い。圧縮比が高いことにより、燃焼室30から排出される排ガスの温度を下げることができる。そのため、エンジン本体20の近くに触媒53を配置しても、触媒53に流入する排ガスの温度を低減できる。したがって、エンジン本体20の近くに触媒53を配置しても、触媒53の過熱による劣化を抑えることができる。
The air-cooled engine unit 11 of the present embodiment has the following characteristics.
A path length D3 from the exhaust port 34 of the exhaust passage portion 51 to the catalyst 53 is shorter than a path length D1 from the catalyst 53 of the exhaust passage portion 51 to the atmospheric discharge port 64a. That is, the catalyst 53 is disposed near the engine body 20. Thereby, the time required for the activation of the catalyst 53 can be shortened.
In general, an air-cooled engine tends to have a higher temperature of the engine body 20 than a water-cooled engine. However, the air-cooled engine unit 11 of the present embodiment has a higher compression ratio of the engine body 20 of 10 or more than the conventional air-cooled engine unit. Due to the high compression ratio, the temperature of the exhaust gas discharged from the combustion chamber 30 can be lowered. Therefore, even if the catalyst 53 is arranged near the engine body 20, the temperature of the exhaust gas flowing into the catalyst 53 can be reduced. Therefore, even if the catalyst 53 is disposed near the engine body 20, deterioration due to overheating of the catalyst 53 can be suppressed.
 アイドル停止制御部83は、空冷式エンジンユニット11の運転中に所定のアイドル停止条件が満たされると、空冷式エンジンユニット11の運転を自動的に停止させる。再始動制御部84は、アイドル停止制御部83により空冷式エンジンユニット11の運転が停止された状態で、所定の再始動条件が満たされると、空冷式エンジンユニット11の運転を再始動させる。つまり、アイドル時に所定のアイドル停止条件を満たすと、運転が自動的に停止される。そして、その後、所定の再始動条件を満たせば運転が再始動される。
 アイドル時には、燃焼室30から排出される排ガスの温度が低くなる。本実施形態の空冷式エンジンユニット11は圧縮比が高い。そのため、アイドル時に、燃焼室30から排出される排ガスの温度はさらに低くなる。しかし、本実施形態の空冷式エンジンユニット11はアイドルストップを行うため、アイドル状態が長時間継続することを防止できる。それにより、触媒53の温度が活性温度よりも低下することを防止できる。その結果、排気浄化性能を向上できる。
The idle stop control unit 83 automatically stops the operation of the air-cooled engine unit 11 when a predetermined idle stop condition is satisfied during the operation of the air-cooled engine unit 11. The restart control unit 84 restarts the operation of the air-cooled engine unit 11 when a predetermined restart condition is satisfied in a state where the operation of the air-cooled engine unit 11 is stopped by the idle stop control unit 83. That is, if a predetermined idle stop condition is satisfied during idling, the operation is automatically stopped. Thereafter, the operation is restarted if a predetermined restart condition is satisfied.
During idling, the temperature of the exhaust gas discharged from the combustion chamber 30 decreases. The air-cooled engine unit 11 of this embodiment has a high compression ratio. Therefore, the temperature of the exhaust gas discharged from the combustion chamber 30 is further lowered during idling. However, since the air-cooled engine unit 11 of the present embodiment performs idle stop, it can prevent the idle state from continuing for a long time. Thereby, it can prevent that the temperature of the catalyst 53 falls below active temperature. As a result, exhaust purification performance can be improved.
 ECU80は、ノッキングセンサ72の信号に基づいて、燃焼室30内の燃料に点火する点火プラグ31の点火時期を制御する。具体的には、ノッキングを検知した場合には点火時期を遅角させる。これにより、大きなノッキングが発生するのを防止できる。
 エンジン本体20の圧縮比が高いと、エンジン本体20のノッキングが生じやすい。しかし、本実施形態の空冷式エンジンユニット11は、ノッキングセンサ72を備えており、ノッキングが起きたときに点火時期を遅角させる。そのため、ノッキングの予防のために点火時期を余分に遅角させなくてもよい。つまり、点火時期の遅角を減らすことができる。それにより、燃焼室30から排出される排ガスの温度を低下させることができる。このように、点火時期の遅角を抑制しつつ、排ガスの温度を低下させることができる。その結果、トルクを確保しつつ、触媒53の過熱による劣化を抑制できる。
The ECU 80 controls the ignition timing of the spark plug 31 that ignites the fuel in the combustion chamber 30 based on the signal from the knocking sensor 72. Specifically, when knocking is detected, the ignition timing is retarded. Thereby, it is possible to prevent large knocking from occurring.
If the compression ratio of the engine body 20 is high, the engine body 20 is likely to knock. However, the air-cooled engine unit 11 of the present embodiment includes the knocking sensor 72 and retards the ignition timing when knocking occurs. Therefore, it is not necessary to retard the ignition timing excessively to prevent knocking. That is, the retard of the ignition timing can be reduced. Thereby, the temperature of the exhaust gas discharged from the combustion chamber 30 can be lowered. Thus, the temperature of the exhaust gas can be lowered while suppressing the retard of the ignition timing. As a result, deterioration due to overheating of the catalyst 53 can be suppressed while securing torque.
 ECU80は、酸素センサ75の信号に基づいてインジェクタ42の燃料供給量を制御する。エンジン本体20の圧縮比が高いと、排ガスの温度が低くなる。そのため、排気通路部51に設けた酸素センサ75の温度も低下する。仮に、酸素センサ75の温度が低くなり過ぎると酸素センサ75が不活性状態となる。それにより、酸素センサ75の検出精度が低下する。しかし、本実施形態の酸素センサ75は、エンジン本体20の近くに配置された触媒53よりも上流に配置される。つまり、酸素センサ75は、触媒53よりもさらにエンジン本体20の近くに配置される。そのため、酸素センサ75に接触する排ガスの温度を高めることができる。つまり、酸素センサ75の温度の低下を抑制できる。よって、酸素センサ75の活性状態を維持できる。その結果、燃料供給量の制御の精度を維持できる。 The ECU 80 controls the fuel supply amount of the injector 42 based on the signal from the oxygen sensor 75. If the compression ratio of the engine body 20 is high, the temperature of the exhaust gas will be low. Therefore, the temperature of the oxygen sensor 75 provided in the exhaust passage portion 51 also decreases. If the temperature of the oxygen sensor 75 becomes too low, the oxygen sensor 75 becomes inactive. Thereby, the detection accuracy of the oxygen sensor 75 decreases. However, the oxygen sensor 75 of the present embodiment is arranged upstream of the catalyst 53 arranged near the engine body 20. That is, the oxygen sensor 75 is arranged closer to the engine body 20 than the catalyst 53. Therefore, the temperature of the exhaust gas that contacts the oxygen sensor 75 can be increased. That is, a decrease in the temperature of the oxygen sensor 75 can be suppressed. Therefore, the active state of the oxygen sensor 75 can be maintained. As a result, the accuracy of control of the fuel supply amount can be maintained.
 吸気通路部41のスロットル弁45から吸気ポート33までの経路長D2は、吸気通路部41の大気吸入口41cからスロットル弁45までの経路長D1より短い。つまり、スロットル弁45は燃焼室30に近い位置に配置されている。そのため、スロットル弁45の開度の変化に対して、燃焼室30に吸入される空気量の変化の遅れを少なくできる。ECU80は、スロットル開度センサ74の信号に基づいて、インジェクタ42の燃料供給量の制御と点火プラグ31の点火時期の制御を行う。そのため、スロットル弁45の開度の変化に対して、燃料供給と点火時期の制御の遅れを少なくできる。上述したように、スロットル弁45の開度の変化に対して、燃焼室30に吸入される空気量の変化の遅れは少ない。したがって、スロットル弁45の開度が変化した場合に、燃料供給量と点火時期の変更と、燃焼室に吸入される空気量の変化との時間差を少なくできる。そのため、燃料供給量と点火時期の制御の精度を向上できる。
 また、点火時期の制御の精度が向上したことにより、以下の効果も得られる。即ち、たとえノッキングセンサ72を設けなくても、ノッキングを予防するための点火時期の余分な遅角を低減できる。それにより、点火時期の遅角を抑制しつつ、排ガスの温度を低下させることができる。その結果、トルクを確保しつつ、燃焼室近接配置触媒の過熱による劣化を抑制できる。
The path length D2 from the throttle valve 45 to the intake port 33 in the intake passage 41 is shorter than the path length D1 from the air intake port 41c of the intake passage 41 to the throttle valve 45. That is, the throttle valve 45 is disposed at a position close to the combustion chamber 30. Therefore, the delay in the change in the amount of air taken into the combustion chamber 30 with respect to the change in the opening degree of the throttle valve 45 can be reduced. The ECU 80 controls the fuel supply amount of the injector 42 and the ignition timing of the spark plug 31 based on the signal from the throttle opening sensor 74. Therefore, it is possible to reduce the delay in controlling the fuel supply and the ignition timing with respect to the change in the opening degree of the throttle valve 45. As described above, the delay in the change in the amount of air taken into the combustion chamber 30 is small with respect to the change in the opening degree of the throttle valve 45. Therefore, when the opening degree of the throttle valve 45 changes, the time difference between the change in the fuel supply amount and the ignition timing and the change in the air amount taken into the combustion chamber can be reduced. Therefore, the accuracy of control of the fuel supply amount and the ignition timing can be improved.
In addition, the following effects can be obtained by improving the accuracy of ignition timing control. That is, even if the knocking sensor 72 is not provided, it is possible to reduce the excessive retard of the ignition timing for preventing knocking. Thereby, the temperature of the exhaust gas can be lowered while suppressing the retard of the ignition timing. As a result, deterioration due to overheating of the catalyst adjacent to the combustion chamber can be suppressed while securing torque.
 空冷式エンジンユニット11は、吸気通路部41の内部圧力を検出する吸気圧センサを有しない。さらに、空冷式エンジンユニット11は、吸気通路部41内の温度を検出する吸気温センサを有しない。そのため、燃料供給量と点火時期の制御に、吸気圧および吸気温を使用しない。したがって、燃料供給量と点火時期の制御をよりシンプルにできる。 The air-cooled engine unit 11 does not have an intake pressure sensor that detects the internal pressure of the intake passage portion 41. Further, the air-cooled engine unit 11 does not have an intake air temperature sensor that detects the temperature in the intake passage portion 41. Therefore, the intake pressure and the intake temperature are not used for controlling the fuel supply amount and the ignition timing. Therefore, the control of the fuel supply amount and the ignition timing can be simplified.
 以上、本発明の好適な実施の形態について説明したが、本発明は上記実施形態に限られるものではなく、特許請求の範囲に記載した限りにおいて様々な変更が可能である。また、後述する変更例は適宜組み合わせて実施することができる。なお、本明細書において「好ましい」という用語は非排他的なものであって、「好ましいがこれに限定されるものではない」ということを意味するものである。 The preferred embodiments of the present invention have been described above. However, the present invention is not limited to the above-described embodiments, and various modifications can be made as long as they are described in the claims. Moreover, the example of a change mentioned later can be implemented in combination as appropriate. In the present specification, the term “preferred” is non-exclusive, and means “preferably but not limited to”.
 最終燃料供給量算出部87は、酸素センサ補正部90およびエンジン温度センサ補正部92以外にも、燃料供給量を補正する補正部を有していてもよい。例えば、最終燃料供給量算出部87は、加減速時の過渡特性に応じて燃料供給量を補正する補正部を有していてもよい。 The final fuel supply amount calculation unit 87 may include a correction unit that corrects the fuel supply amount in addition to the oxygen sensor correction unit 90 and the engine temperature sensor correction unit 92. For example, the final fuel supply amount calculation unit 87 may include a correction unit that corrects the fuel supply amount according to the transient characteristics during acceleration / deceleration.
 最終点火時期算出部94は、ノッキングセンサ補正部96およびエンジン温度センサ補正部97以外にも、点火時期を補正する補正部を有していてもよい。また、最終点火時期算出部94は、エンジン温度センサ補正部97を有していなくてもよい。 The final ignition timing calculation unit 94 may include a correction unit that corrects the ignition timing in addition to the knocking sensor correction unit 96 and the engine temperature sensor correction unit 97. Further, the final ignition timing calculation unit 94 may not include the engine temperature sensor correction unit 97.
 上記実施形態では、アイドル時に所定のアイドル停止条件が満たされると、空冷式エンジンユニット11の運転が停止される。しかし、アイドル時に空冷式エンジンユニット11の運転を停止させなくてもよい。つまり、ECU80は、アイドル停止制御部83と再始動制御部84を有しなくてもよい。 In the above embodiment, the operation of the air-cooled engine unit 11 is stopped when a predetermined idle stop condition is satisfied during idling. However, it is not necessary to stop the operation of the air-cooled engine unit 11 during idling. That is, the ECU 80 does not have to include the idle stop control unit 83 and the restart control unit 84.
 上記実施形態では、触媒53はエンジン本体の下方に配置されているが、触媒53の配置位置はこれに限定されるものではない。触媒53の配置位置は、経路長D3が経路長D4より短くなるような位置であればよい。触媒53は、エンジン本体20の前方に配置されていてもよい。 In the above embodiment, the catalyst 53 is disposed below the engine body, but the position of the catalyst 53 is not limited to this. The arrangement position of the catalyst 53 may be a position where the path length D3 is shorter than the path length D4. The catalyst 53 may be disposed in front of the engine body 20.
 また、排気通路部51内に、複数の触媒が配置されていてもよい。この場合、複数の触媒のうち、排気経路において、燃焼室30から排出された排ガスを最も浄化する触媒が、本発明の燃焼室近接配置触媒に相当する。つまり、燃焼室近接配置触媒は、排ガスを浄化する寄与度が最も高い。他の触媒は、燃焼室近接配置触媒の上流または下流に配置される。 Further, a plurality of catalysts may be arranged in the exhaust passage portion 51. In this case, among the plurality of catalysts, the catalyst that most purifies the exhaust gas discharged from the combustion chamber 30 in the exhaust path corresponds to the combustion chamber adjacently arranged catalyst of the present invention. That is, the combustion chamber adjacently arranged catalyst has the highest contribution to purify the exhaust gas. The other catalyst is disposed upstream or downstream of the combustion chamber adjacently disposed catalyst.
 複数の触媒のそれぞれの浄化の寄与度は、以下の方法で測定できる。
 ここでは、触媒の数が2つの場合を例に挙げて説明する。2つの触媒のうち、上流に配置される触媒をフロント触媒と称し、下流に配置される触媒をリア触媒と称する。まず、変更例のエンジンユニットを運転して、暖機状態のときに大気放出口64aから排出された排ガスに含まれる有害物質の濃度を測定する。排ガスの測定方法は、欧州規制に従った測定方法とする。暖機状態では、2つの触媒は活性化状態であって、浄化性能を十分に発揮できる。
The degree of contribution of purification of each of the plurality of catalysts can be measured by the following method.
Here, a case where the number of catalysts is two will be described as an example. Of the two catalysts, the catalyst disposed upstream is referred to as a front catalyst, and the catalyst disposed downstream is referred to as a rear catalyst. First, the engine unit of the modified example is operated, and the concentration of harmful substances contained in the exhaust gas discharged from the atmospheric discharge port 64a in the warm-up state is measured. The exhaust gas measurement method shall be in accordance with European regulations. In the warm-up state, the two catalysts are in an activated state and can sufficiently exhibit purification performance.
 次に、試験用のエンジンユニットのリア触媒を取り外して、その代わりにリア触媒の担体のみを配置する。この状態のエンジンユニットを、測定用エンジンユニットAとする。測定用エンジンユニットAを運転して、暖機状態のときに大気放出口64aから排出された排ガスに含まれる有害物質の濃度を測定する。 Next, remove the rear catalyst of the test engine unit, and place only the rear catalyst carrier instead. The engine unit in this state is referred to as a measurement engine unit A. The measurement engine unit A is operated to measure the concentration of harmful substances contained in the exhaust gas discharged from the atmospheric discharge port 64a in the warm-up state.
 次に、測定用エンジンユニットAのフロント触媒を取り外して、その代わりにフロント触媒の担体のみを配置する。この状態のエンジンユニットを、測定用エンジンユニットBとする。測定用エンジンユニットBを運転して、暖機状態のときに大気放出口64aから排出された排ガスに含まれる有害物質の濃度を測定する。 Next, the front catalyst of the measurement engine unit A is removed, and only the front catalyst carrier is arranged instead. The engine unit in this state is referred to as a measurement engine unit B. The measurement engine unit B is operated to measure the concentration of harmful substances contained in the exhaust gas discharged from the atmospheric discharge port 64a in the warm-up state.
 測定用エンジンユニットAは、フロント触媒を有し、リア触媒を有しない。測定用エンジンユニットBは、フロント触媒とリア触媒を有しない。そのため、測定用エンジンユニットAの測定結果と、測定用エンジンユニットBの測定結果の差から、フロント触媒の浄化の寄与度が算出される。また、測定用エンジンユニットAの測定結果と、変更例のエンジンユニットの測定結果の差から、リア触媒の浄化の寄与度が算出される。 The measurement engine unit A has a front catalyst and does not have a rear catalyst. The measurement engine unit B does not have a front catalyst and a rear catalyst. Therefore, the degree of contribution of the purification of the front catalyst is calculated from the difference between the measurement result of the measurement engine unit A and the measurement result of the measurement engine unit B. Further, the contribution of the purification of the rear catalyst is calculated from the difference between the measurement result of the measurement engine unit A and the measurement result of the engine unit of the modified example.
 上記実施形態では、インジェクタ42は、吸気通路部41内に燃料を噴射するように配置されているが、燃焼室30内に燃料を噴射するように配置されていてもよい。インジェクタ42は、エンジン本体20に配置されてもよい。 In the above embodiment, the injector 42 is disposed so as to inject fuel into the intake passage portion 41, but may be disposed so as to inject fuel into the combustion chamber 30. The injector 42 may be disposed in the engine body 20.
 上記実施形態では、インジェクタ42が本発明の燃料供給装置に相当する。しかし、本発明の燃料供給装置は、インジェクタに限らない。本発明の燃料供給装置は、燃焼室内に燃料を供給する装置であればよい。本発明の燃料供給装置は、例えば、負圧により燃焼室に燃料を供給するキャブレターであってもよい。 In the above embodiment, the injector 42 corresponds to the fuel supply device of the present invention. However, the fuel supply device of the present invention is not limited to an injector. The fuel supply device of the present invention may be a device that supplies fuel into the combustion chamber. The fuel supply device of the present invention may be, for example, a carburetor that supplies fuel to the combustion chamber by negative pressure.
 上記実施形態では、バイパス吸気通路部41bには、開度が手動で変更可能なバイバス弁46が配置されている。しかし、バイパス弁46の代わりに、ECU80によって開度を制御できるバルブを配置してもよい。 In the above embodiment, a bypass valve 46 whose opening degree can be manually changed is arranged in the bypass intake passage 41b. However, instead of the bypass valve 46, a valve whose opening degree can be controlled by the ECU 80 may be arranged.
 空冷式エンジンユニット11は、吸気通路部41の内部圧力を検出する吸気圧センサを有していてもよい。この場合、燃料供給量の制御または/および点火時期の制御に、吸気圧センサの信号を用いてもよい。 The air-cooled engine unit 11 may have an intake pressure sensor that detects the internal pressure of the intake passage portion 41. In this case, a signal from the intake pressure sensor may be used for controlling the fuel supply amount and / or controlling the ignition timing.
 空冷式エンジンユニット11は、吸気通路部41内の空気の温度を検出する吸気温センサを有していてもよい。この場合、燃料供給量の制御または/および点火時期の制御に、吸気温センサの信号を用いてもよい。 The air-cooled engine unit 11 may have an intake air temperature sensor that detects the temperature of air in the intake passage portion 41. In this case, a signal from the intake air temperature sensor may be used for controlling the fuel supply amount and / or controlling the ignition timing.
 空冷式エンジンユニット11は、ノッキングセンサ72を備えていなくてもよい。 The air-cooled engine unit 11 may not include the knocking sensor 72.
 上記実施形態の空冷式エンジンユニット11は、自然空冷式のエンジンユニットである。しかし、本発明の空冷式エンジンユニットは、強制空冷式のエンジンユニットであってもよい。強制空冷式のエンジンユニットは、シュラウドとファンを備える。シュラウドは、エンジン本体の少なくとも一部を覆うように配置される。ファンの駆動により、シュラウド内に空気が導入される。 The air-cooled engine unit 11 of the above embodiment is a natural air-cooled engine unit. However, the air-cooled engine unit of the present invention may be a forced air-cooled engine unit. The forced air cooling engine unit includes a shroud and a fan. The shroud is disposed so as to cover at least a part of the engine body. Air is introduced into the shroud by driving the fan.
 上記実施形態のエンジンユニット11は、単気筒エンジンユニットであるが、本発明の空冷式エンジンユニットは、複数の燃焼室を有する多気筒エンジンユニットでもよい。この場合、複数の燃焼室30の数より、大気吸入口41cの数が少なくても良い。つまり、1つの燃焼室30に対して形成される吸気通路部41の一部は、別の燃焼室30に対して形成される吸気通路部41の一部を兼ねていてもよい。大気吸入口41cの数は1つであってもよい。また、複数の燃焼室30の数より、大気放出口64aの数が少なくても良い。つまり、1つの燃焼室30に対して形成される排気通路部51の一部は、別の燃焼室30に対して形成される排気通路部51の一部を兼用していてもよい。大気放出口64aの数は1つであってもよい。また、燃焼室30の数が4以上の奇数の場合、大気放出口64aは左右に1つずつ配置されてもよい。 The engine unit 11 of the above embodiment is a single cylinder engine unit, but the air-cooled engine unit of the present invention may be a multi-cylinder engine unit having a plurality of combustion chambers. In this case, the number of the air intake ports 41c may be smaller than the number of the plurality of combustion chambers 30. That is, a portion of the intake passage portion 41 formed for one combustion chamber 30 may also serve as a portion of the intake passage portion 41 formed for another combustion chamber 30. The number of atmospheric inlets 41c may be one. Further, the number of atmospheric discharge ports 64a may be smaller than the number of the plurality of combustion chambers 30. That is, a part of the exhaust passage portion 51 formed for one combustion chamber 30 may also serve as a part of the exhaust passage portion 51 formed for another combustion chamber 30. The number of atmospheric discharge ports 64a may be one. Further, when the number of combustion chambers 30 is an odd number of 4 or more, the atmospheric discharge ports 64a may be arranged one by one on the left and right.
 本発明の燃焼室は、主燃焼室と、主燃焼室につながる副燃焼室とを有する構成であってもよい。この場合、主燃焼室と副燃焼室とによって、1つの燃焼室が形成される。 The combustion chamber of the present invention may have a configuration having a main combustion chamber and a sub-combustion chamber connected to the main combustion chamber. In this case, one combustion chamber is formed by the main combustion chamber and the sub-combustion chamber.
 上記実施形態は、スポーツタイプの自動二輪車に本発明の空冷式エンジンユニットを適用した一例である。しかし、本発明の空冷式エンジンユニットの適用対象はスポーツタイプの自動二輪車に限定されない。本発明の空冷式エンジンユニットは、スポーツタイプ以外の自動二輪車に適用してもよい。例えば、スクータタイプの自動二輪車に、本発明のエンジンユニットを適用してもよい。また、本発明の空冷式エンジンユニットは、自動二輪車以外のリーン車両に適用してもよい。リーン車両とは、右旋回時に車両の右方に傾斜し、左旋回時に車両の左方に傾斜する車体フレームを有する車両である。また、本発明の空冷式エンジンユニットは、自動二輪車以外の鞍乗型車両に適用してもよい。なお、鞍乗型車両とは、乗員が鞍にまたがるような状態で乗車する車両全般を指している。鞍乗型車両には、自動二輪車、三輪車、四輪バギー(ATV:All Terrain Vehicle(全地形型車両))、水上バイク、スノーモービル等が含まれる。 The above embodiment is an example in which the air-cooled engine unit of the present invention is applied to a sports type motorcycle. However, the application target of the air-cooled engine unit of the present invention is not limited to a sports type motorcycle. The air-cooled engine unit of the present invention may be applied to a motorcycle other than the sport type. For example, the engine unit of the present invention may be applied to a scooter type motorcycle. The air-cooled engine unit of the present invention may be applied to a lean vehicle other than a motorcycle. A lean vehicle is a vehicle having a vehicle body frame that leans to the right of the vehicle when turning right and leans to the left of the vehicle when turning left. The air-cooled engine unit of the present invention may be applied to a straddle-type vehicle other than a motorcycle. Note that the saddle riding type vehicle refers to all vehicles that ride in a state in which an occupant straddles a saddle. The saddle riding type vehicle includes a motorcycle, a tricycle, a four-wheel buggy (ATV: All Terrain Vehicle), a water bike, a snowmobile, and the like.
 本明細書において、吸気通路部41の任意の部位の経路長とは、この部位の内側に形成される経路の長さのことである。排気通路部51の任意の部位の経路長についても同様の定義である。本明細書において、経路長は、経路の真ん中のラインの経路長を言う。マフラー54の膨張室(60a、60b、60c)の経路長は、膨張室の流入口の真ん中から膨張室の流出口の真ん中を最短で結んだ経路の長さを意味する。本明細書において、触媒53の上流端とは、触媒53において燃焼室30からの経路長が最も短くなる端を意味する。触媒53の下流端とは、触媒53において燃焼室30からの経路長が最も長くなる端を意味する。触媒53以外の要素の上流端および下流端についても同様の定義が適用される。 In this specification, the route length of an arbitrary portion of the intake passage portion 41 is the length of a route formed inside this portion. The same is true for the path length of any part of the exhaust passage portion 51. In this specification, the path length refers to the path length of the middle line of the path. The path length of the expansion chambers (60a, 60b, 60c) of the muffler 54 means the length of the path connecting the center of the expansion chamber inlet to the center of the expansion chamber outlet at the shortest distance. In this specification, the upstream end of the catalyst 53 means an end where the path length from the combustion chamber 30 in the catalyst 53 is the shortest. The downstream end of the catalyst 53 means an end where the path length from the combustion chamber 30 in the catalyst 53 is the longest. Similar definitions apply to upstream and downstream ends of elements other than the catalyst 53.
 11 空冷式エンジンユニット
 20 エンジン本体
 25 フィン部(放熱部)
 30 燃焼室
 31 点火プラグ(点火装置)
 32 点火コイル(点火装置)
 33 吸気ポート
 34 排気ポート
 41 吸気通路部
 41c 大気吸入口
 42 インジェクタ(燃料供給装置)
 45 スロットル弁(燃焼室近接配置スロットル弁)
 51 排気通路部
 53 触媒(燃焼室近接配置触媒)
 64a 大気放出口
 71 エンジン回転速度センサ
 72 ノッキングセンサ
 73 エンジン温度センサ
 74 スロットル開度センサ(燃焼室近接配置スロットル開度センサ)
 75 酸素センサ
 80 ECU(制御装置)
 81 燃料供給量制御部
 82 点火時期制御部
 83 アイドル停止制御部
 84 再始動制御部
 85 作動指示部
11 Air-cooled engine unit 20 Engine body 25 Fin part (heat dissipation part)
30 Combustion chamber 31 Spark plug (ignition device)
32 Ignition coil (ignition device)
33 Intake Port 34 Exhaust Port 41 Intake Passage 41c Air Intake Port 42 Injector (Fuel Supply Device)
45 Throttle valve (throttle valve close to combustion chamber)
51 Exhaust passage part 53 Catalyst (Combustion chamber proximity catalyst)
64a Atmospheric discharge port 71 Engine rotation speed sensor 72 Knocking sensor 73 Engine temperature sensor 74 Throttle opening sensor (throttle opening sensor arranged close to combustion chamber)
75 Oxygen sensor 80 ECU (control device)
81 Fuel supply amount control unit 82 Ignition timing control unit 83 Idle stop control unit 84 Restart control unit 85 Operation instruction unit

Claims (6)

  1.  圧縮比が10以上であって、少なくとも1つの燃焼室を形成するエンジン本体と、
     前記エンジン本体で発生した熱を前記エンジン本体の表面から放熱させる放熱部と、
     前記燃焼室に形成された排気ポートと大気に排ガスを放出する大気放出口とをつなぎ、その内部を、前記排気ポートから前記大気放出口に向かって排ガスが流れる排気通路部と、
     前記排気通路部内に配置された燃焼室近接配置触媒とを備え、
     前記排気通路部の前記排気ポートから前記燃焼室近接配置触媒の上流端までの経路長が、前記排気通路部の前記燃焼室近接配置触媒の下流端から前記大気放出口までの経路長より短いことを特徴とする空冷式エンジンユニット。
    An engine body having a compression ratio of 10 or more and forming at least one combustion chamber;
    A heat radiating part for radiating heat generated in the engine body from the surface of the engine body;
    Connecting an exhaust port formed in the combustion chamber and an atmospheric discharge port for discharging exhaust gas to the atmosphere, and an exhaust passage portion through which exhaust gas flows from the exhaust port toward the atmospheric discharge port;
    A combustion chamber adjacently disposed catalyst disposed in the exhaust passage portion,
    The path length from the exhaust port of the exhaust passage portion to the upstream end of the catalyst disposed close to the combustion chamber is shorter than the path length from the downstream end of the catalyst disposed close to the combustion chamber of the exhaust passage portion to the atmospheric discharge port. An air-cooled engine unit characterized by
  2.  前記空冷式エンジンユニットの動作を制御する制御装置を備え、
     前記制御装置は、
     前記空冷式エンジンユニットの運転中に所定のアイドル停止条件が満たされると、前記空冷式エンジンユニットの運転を自動的に停止させるアイドル停止制御部と、
     前記アイドル停止制御部により前記空冷式エンジンユニットの運転が停止された状態で、所定の再始動条件が満たされると、前記空冷式エンジンユニットの運転を再始動させる再始動制御部とを含むことを特徴とする請求項1に記載の空冷式エンジンユニット。
    A control device for controlling the operation of the air-cooled engine unit;
    The controller is
    An idle stop controller that automatically stops the operation of the air-cooled engine unit when a predetermined idle stop condition is satisfied during the operation of the air-cooled engine unit;
    A restart control unit that restarts the operation of the air-cooled engine unit when a predetermined restart condition is satisfied in a state where the operation of the air-cooled engine unit is stopped by the idle stop control unit. The air-cooled engine unit according to claim 1.
  3.  前記エンジン本体に発生するノッキングを検出するノッキングセンサと、
     前記燃焼室内の燃料に点火する点火装置と、
     前記ノッキングセンサの信号に基づいて前記点火装置の点火時期を制御する制御装置とを備えることを特徴とする請求項1または2に記載の空冷式エンジンユニット。
    A knocking sensor for detecting knocking generated in the engine body;
    An ignition device for igniting fuel in the combustion chamber;
    The air-cooled engine unit according to claim 1, further comprising a control device that controls an ignition timing of the ignition device based on a signal of the knocking sensor.
  4.  前記排気通路部の前記燃焼室近接配置触媒よりも排ガスの流れ方向の上流の位置に配置され、前記排気通路部内の排ガスの酸素濃度を検出する酸素センサと、
     前記燃焼室内に燃料を供給する燃料供給装置と、
     前記酸素センサの信号に基づいて前記燃料供給装置の燃料供給量を制御する制御装置とを備えることを特徴とする請求項1~3のいずれかに記載の空冷式エンジンユニット。
    An oxygen sensor which is disposed at a position upstream of the combustion chamber adjacently arranged catalyst in the exhaust passage portion in the flow direction of the exhaust gas and detects the oxygen concentration of the exhaust gas in the exhaust passage portion;
    A fuel supply device for supplying fuel into the combustion chamber;
    The air-cooled engine unit according to any one of claims 1 to 3, further comprising a control device that controls a fuel supply amount of the fuel supply device based on a signal of the oxygen sensor.
  5.  前記燃焼室に形成された吸気ポートと大気から空気を吸入する大気吸入口とをつなぎ、その内部を、前記大気吸入口から前記吸気ポートに向かって空気が流れる吸気通路部と、
     前記燃焼室内の燃料に点火する点火装置と、
     前記燃焼室内に燃料を供給する燃料供給装置と、
     前記吸気通路部に設けられる燃焼室近接配置スロットル弁であって、前記吸気通路部の前記大気吸入口から前記燃焼室近接配置スロットル弁までの経路長が、前記吸気通路部の前記燃焼室近接配置スロットル弁から前記吸気ポートまでの経路長より長くなる位置に配置された前記燃焼室近接配置スロットル弁と、
     前記燃焼室近接配置スロットル弁の開度を検出する燃焼室近接配置スロットル開度センサと、
     エンジン回転速度を検出するエンジン回転速度センサと、
     前記燃焼室近接配置スロットル開度センサの信号と前記エンジン回転速度センサの信号に基づいて、前記燃料供給装置の燃料供給量の制御と前記点火装置の点火時期の制御を行う制御装置とを備えることを特徴とする請求項1~4のいずれかに記載の空冷式エンジンユニット。
    Connecting an intake port formed in the combustion chamber and an air intake port for sucking air from the atmosphere, and an intake passage portion through which air flows from the air intake port toward the intake port;
    An ignition device for igniting fuel in the combustion chamber;
    A fuel supply device for supplying fuel into the combustion chamber;
    A combustion chamber adjacently arranged throttle valve provided in the intake passage portion, wherein a path length from the atmospheric intake port of the intake passage portion to the combustion chamber adjacently arranged throttle valve is set to be close to the combustion chamber of the intake passage portion. The throttle valve close to the combustion chamber disposed at a position longer than the path length from the throttle valve to the intake port;
    A combustion chamber proximity arrangement throttle opening sensor for detecting an opening degree of the combustion chamber proximity arrangement throttle valve;
    An engine speed sensor for detecting the engine speed;
    A control device for controlling a fuel supply amount of the fuel supply device and an ignition timing of the ignition device based on a signal of the throttle opening sensor disposed adjacent to the combustion chamber and a signal of the engine speed sensor; The air-cooled engine unit according to any one of claims 1 to 4.
  6.  前記燃焼室に形成された吸気ポートと大気から空気を吸入する大気吸入口とをつなぎ、その内部を、前記大気吸入口から前記吸気ポートに向かって空気が流れる吸気通路部を備え、
     前記吸気通路部に設けられて前記吸気通路部の内部圧力を検出する吸気圧センサ、および、前記吸気通路部に設けられて前記吸気通路部内の温度を検出する吸気温センサを有しないことを特徴とする請求項1~5のいずれかに記載の空冷式エンジンユニット。
    Connecting an intake port formed in the combustion chamber and an air intake port for sucking air from the atmosphere, and having an intake passage portion through which air flows from the air intake port toward the intake port;
    An intake pressure sensor that is provided in the intake passage portion and detects an internal pressure of the intake passage portion, and an intake air temperature sensor that is provided in the intake passage portion and detects a temperature in the intake passage portion is not provided. The air-cooled engine unit according to any one of claims 1 to 5.
PCT/JP2015/084619 2014-12-22 2015-12-10 Air-cooled engine unit WO2016104160A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
BR112017013422-5A BR112017013422B1 (en) 2014-12-22 2015-12-10 AIR-COOLED ENGINE UNIT
ES15872729T ES2791149T3 (en) 2014-12-22 2015-12-10 Air-cooled motor unit
EP15872729.7A EP3239505B1 (en) 2014-12-22 2015-12-10 Air-cooled engine unit
TW104143218A TWI568923B (en) 2014-12-22 2015-12-22 Air-cooled engine unit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014258916 2014-12-22
JP2014-258916 2014-12-22

Publications (1)

Publication Number Publication Date
WO2016104160A1 true WO2016104160A1 (en) 2016-06-30

Family

ID=56150190

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/084619 WO2016104160A1 (en) 2014-12-22 2015-12-10 Air-cooled engine unit

Country Status (5)

Country Link
EP (1) EP3239505B1 (en)
BR (1) BR112017013422B1 (en)
ES (1) ES2791149T3 (en)
TW (1) TWI568923B (en)
WO (1) WO2016104160A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019230224A1 (en) * 2018-05-30 2019-12-05 本田技研工業株式会社 Engine control apparatus

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020202219A1 (en) 2019-04-04 2020-10-08 Tvs Motor Company Limited A discharge system and multi wheeled vehicle thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003074378A (en) * 2001-08-31 2003-03-12 Keihin Corp Intake air quantity control device for engine
JP2006152806A (en) * 2004-11-25 2006-06-15 Aisan Ind Co Ltd Exhaust pipe structure of motorcycle
JP2007187004A (en) * 2006-01-11 2007-07-26 Honda Motor Co Ltd Internal combustion engine
JP2012072718A (en) * 2010-09-29 2012-04-12 Mitsubishi Electric Corp Knock control device of internal combustion engine
JP2013083243A (en) * 2011-09-29 2013-05-09 Honda Motor Co Ltd Motorcycle

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5881554A (en) * 1998-03-23 1999-03-16 Ford Global Technologies, Inc. Integrated manifold, muffler, and catalyst device
US6138454A (en) * 1998-12-18 2000-10-31 Daimlerchrysler Corporation Selective catalyst reduction wit pox reactor for engine exhaust aftertreatment
JP2001173504A (en) * 1999-12-17 2001-06-26 Honda Motor Co Ltd Estimating device for catalyst temperature
JP2004116310A (en) * 2002-09-24 2004-04-15 Hitachi Ltd Control system for internal combustion engine
DE102004024685A1 (en) * 2004-05-19 2005-12-15 Emitec Gesellschaft Für Emissionstechnologie Mbh Catalyst carrier body for a close-coupled catalytic converter
JP4538380B2 (en) * 2004-12-28 2010-09-08 本田技研工業株式会社 Motorcycle exhaust system
JP4468861B2 (en) * 2005-01-24 2010-05-26 本田技研工業株式会社 Vehicle exhaust system
JP2006291929A (en) * 2005-04-14 2006-10-26 Yamaha Motor Co Ltd Engine with exhaust emission control function
JP4693733B2 (en) * 2006-05-31 2011-06-01 本田技研工業株式会社 Catalyst arrangement structure for motorcycles
JP2008144612A (en) * 2006-12-06 2008-06-26 Yamaha Motor Co Ltd Exhaust emission control device for internal combustion engine
BRPI0812314A2 (en) * 2007-05-30 2014-11-25 Yamaha Motor Co Ltd EXHAUST DEVICE AND MOUNT TYPE VEHICLE
JP4600431B2 (en) * 2007-05-30 2010-12-15 トヨタ自動車株式会社 Internal combustion engine knock determination device
ES2333476T3 (en) * 2007-07-06 2010-02-22 YAMAHA MOTOR RESEARCH & DEVELOPMENT EUROPE S.R.L. (YMRE) APPLIANCE FOR PURIFYING EXHAUST GASES FOR A MOTOR VEHICLE AND MOTOR VEHICLE.
JP4785204B2 (en) * 2007-12-17 2011-10-05 本田技研工業株式会社 Engine ignition control device
TWM336340U (en) * 2008-02-01 2008-07-11 Sentec E & Amp E Co Ltd Catalytic converter
US8141351B2 (en) * 2008-04-25 2012-03-27 Cummins Filtration Ip, Inc. Pre-catalyst for preventing face-plugging on an inlet face of an aftertreatment device and method of the same
TW201107588A (en) * 2009-08-18 2011-03-01 Kwang Yang Motor Co Cylinder head of engine
JP5290919B2 (en) * 2009-09-18 2013-09-18 株式会社ケーヒン Electronic control device for vehicle
TW201115014A (en) * 2009-10-16 2011-05-01 Kwang Yang Motor Co Motorcycle exhaust pipe having plurality of catalyst converters
FR2966197B1 (en) * 2010-10-18 2014-08-15 Faurecia Sys Echappement EXHAUST LINE FOR MOTOR VEHICLE.
TWI434776B (en) * 2010-10-21 2014-04-21 Kwang Yang Motor Co Electronic controller with idling control function and its idle control method
US8661788B2 (en) * 2010-12-29 2014-03-04 GM Global Technology Operations LLC Exhaust aftertreatment systems that include an ammonia-SCR catalyst promoted with an oxygen storage material
TWI444534B (en) * 2011-03-29 2014-07-11 Yamaha Motor Co Ltd Engine, and with its vehicles and ships
JP2013044238A (en) * 2011-08-22 2013-03-04 Toyota Industries Corp Exhaust emission control device
TW201408863A (en) * 2012-08-20 2014-03-01 Sanyang Industry Co Ltd Secondary air supply system and method
TWM447924U (en) * 2012-09-12 2013-03-01 Sai Ke Ai Luo Technology Co Ltd Adjustable exhaust pipe

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003074378A (en) * 2001-08-31 2003-03-12 Keihin Corp Intake air quantity control device for engine
JP2006152806A (en) * 2004-11-25 2006-06-15 Aisan Ind Co Ltd Exhaust pipe structure of motorcycle
JP2007187004A (en) * 2006-01-11 2007-07-26 Honda Motor Co Ltd Internal combustion engine
JP2012072718A (en) * 2010-09-29 2012-04-12 Mitsubishi Electric Corp Knock control device of internal combustion engine
JP2013083243A (en) * 2011-09-29 2013-05-09 Honda Motor Co Ltd Motorcycle

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3239505A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019230224A1 (en) * 2018-05-30 2019-12-05 本田技研工業株式会社 Engine control apparatus
JPWO2019230224A1 (en) * 2018-05-30 2021-06-10 本田技研工業株式会社 Engine control unit
JP6997867B2 (en) 2018-05-30 2022-01-18 本田技研工業株式会社 Engine control unit

Also Published As

Publication number Publication date
BR112017013422A2 (en) 2018-01-09
EP3239505A4 (en) 2018-01-03
ES2791149T3 (en) 2020-11-03
TW201625841A (en) 2016-07-16
BR112017013422B1 (en) 2022-10-11
TWI568923B (en) 2017-02-01
EP3239505A1 (en) 2017-11-01
EP3239505B1 (en) 2020-04-08

Similar Documents

Publication Publication Date Title
EP3805534B1 (en) Straddled vehicle
WO2013105226A1 (en) Control device for internal combustion engine
JP2006152955A (en) Misfire detection device for multi-cylinder engine
WO2016002958A1 (en) Saddle-type vehicle
WO2016104160A1 (en) Air-cooled engine unit
WO2016121262A1 (en) Engine unit
WO2016002953A1 (en) Saddle-driven vehicle
WO2016104158A1 (en) Engine unit
JP4835589B2 (en) Ignition control system for internal combustion engine
WO2016002954A1 (en) Saddle-driven vehicle
JP2018155218A (en) Saddle-riding type vehicle
JP2008115804A (en) Control device for internal combustion engine
TWI595153B (en) Saddle riding type vehicle
WO2021215388A1 (en) Straddled vehicle
WO2021181599A1 (en) Saddle-riding-type vehicle
JP2011017306A (en) Vehicle control apparatus
WO2021205549A1 (en) Saddle-ride type vehicle
JP2009127573A (en) Control device for internal combustion engine
JP2009103086A (en) Operation control device of two-cycle engine
JP2009299669A (en) Control device for internal combustion engine
JP2013209894A (en) Device for controlling engine using mixed fuel
JP2007127128A (en) Control unit for internal combustion engine
JP2008240642A (en) Control device of internal combustion engine
JP2005090386A (en) Fuel injection controller

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15872729

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017013422

Country of ref document: BR

REEP Request for entry into the european phase

Ref document number: 2015872729

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 112017013422

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20170621

NENP Non-entry into the national phase

Ref country code: JP