WO2016002953A1 - Saddle-driven vehicle - Google Patents

Saddle-driven vehicle Download PDF

Info

Publication number
WO2016002953A1
WO2016002953A1 PCT/JP2015/069352 JP2015069352W WO2016002953A1 WO 2016002953 A1 WO2016002953 A1 WO 2016002953A1 JP 2015069352 W JP2015069352 W JP 2015069352W WO 2016002953 A1 WO2016002953 A1 WO 2016002953A1
Authority
WO
WIPO (PCT)
Prior art keywords
combustion chamber
catalyst
single combustion
main catalyst
engine
Prior art date
Application number
PCT/JP2015/069352
Other languages
French (fr)
Japanese (ja)
Inventor
昌登 西垣
裕次 荒木
一裕 石澤
誠 脇村
Original Assignee
ヤマハ発動機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヤマハ発動機株式会社 filed Critical ヤマハ発動機株式会社
Priority to TW104121884A priority Critical patent/TW201612407A/en
Publication of WO2016002953A1 publication Critical patent/WO2016002953A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62JCYCLE SADDLES OR SEATS; AUXILIARY DEVICES OR ACCESSORIES SPECIALLY ADAPTED TO CYCLES AND NOT OTHERWISE PROVIDED FOR, e.g. ARTICLE CARRIERS OR CYCLE PROTECTORS
    • B62J17/00Weather guards for riders; Fairings or stream-lining parts not otherwise provided for
    • B62J17/02Weather guards for riders; Fairings or stream-lining parts not otherwise provided for shielding only the rider's front
    • B62J17/06Leg guards
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62MRIDER PROPULSION OF WHEELED VEHICLES OR SLEDGES; POWERED PROPULSION OF SLEDGES OR SINGLE-TRACK CYCLES; TRANSMISSIONS SPECIALLY ADAPTED FOR SUCH VEHICLES
    • B62M7/00Motorcycles characterised by position of motor or engine
    • B62M7/02Motorcycles characterised by position of motor or engine with engine between front and rear wheels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N13/00Exhaust or silencing apparatus characterised by constructional features ; Exhaust or silencing apparatus, or parts thereof, having pertinent characteristics not provided for in, or of interest apart from, groups F01N1/00 - F01N5/00, F01N9/00, F01N11/00
    • F01N13/08Other arrangements or adaptations of exhaust conduits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/24Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by constructional aspects of converting apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M69/00Low-pressure fuel-injection apparatus ; Apparatus with both continuous and intermittent injection; Apparatus injecting different types of fuel
    • F02M69/04Injectors peculiar thereto
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Definitions

  • the present invention relates to a saddle riding type vehicle.
  • the catalyst is very hot compared to the engine body. Therefore, if the catalyst is arranged upstream of the silencer, it is necessary to take measures against heat damage to the catalyst.
  • the saddle-ride type vehicle of Patent Document 1 needs to secure a vertical distance between the ground and the single-cylinder four-stroke engine unit. Therefore, for example, when a heat insulating member is provided between the engine main body and the catalyst, the engine main body needs to be arranged further upward. Therefore, there is a problem that the saddle riding type vehicle is enlarged in the vertical direction.
  • An object of the present invention is to provide a straddle-type vehicle that can improve the purification performance of exhaust gas by a catalyst, suppress an increase in the size of the vehicle in the vertical direction, and reduce the influence of the heat of the catalyst. is there.
  • the saddle riding type vehicle of Patent Document 1 includes an engine body having a crankcase portion and a horizontal cylinder portion extending in the front-rear direction from the crankcase portion.
  • the saddle riding type vehicle of Patent Literature 1 includes a catalyst below the engine body of a single cylinder four-stroke engine unit. Therefore, the hot air from the catalyst rises along the periphery of the engine body.
  • the saddle riding type vehicle of Patent Document 1 includes a vehicle body cover above the engine body so as to cover at least a part of the upper surface of the engine body. Therefore, the heat that has risen from the engine body and the catalyst tends to be trapped in the space covered by the vehicle body cover above the engine body.
  • the inventors of the present application paid attention to the shape of the space covered by the vehicle body cover above the engine body during research and development.
  • the distance between the front part and the engine body is formed larger than the distance between the center part or the rear part and the engine body. .
  • the front portion of the space covered by the vehicle body cover above the engine body is open to the front of the vehicle. Therefore, by utilizing the shape of the space covered by the vehicle body cover above the engine body of the saddle riding type vehicle, the arrangement of the intake system parts or the fuel supply system parts can be devised so that hot air rises from the catalyst.
  • a straddle-type vehicle is a straddle-type vehicle on which a single-cylinder four-stroke engine unit is mounted, and the single-cylinder four-stroke engine unit is a part of which is defined by an inner surface of a cylinder hole.
  • An engine main body having a horizontal cylinder portion provided so that a center line of the cylinder hole extends in the front-rear direction of the saddle riding type vehicle; and at least a part of the engine main body is disposed above the engine main body.
  • the exhaust gas flowing in from the downstream end of the exhaust pipe for the single combustion chamber is caused to flow to the discharge port, and the silencer for the single combustion chamber for reducing the sound generated by the exhaust gas is disposed in the exhaust pipe for the single combustion chamber.
  • the main catalyst is provided in the single combustion chamber intake passage portion or the single combustion chamber cylinder intake passage portion, and in front of the rear end of the single combustion chamber intake passage portion in the front-rear direction.
  • a fuel injection device for injecting fuel into the air sucked from the upstream end of the intake passage portion for the single combustion chamber, covering at least a part of the upper surface of the engine body, and of the straddle-type vehicle A single combustion chamber intake passage, comprising: a vehicle body cover including an engine cover portion formed such that both ends in the left-right direction are positioned below the center in the left-right direction, and an opening is formed in a front portion thereof; The portion is at least partially disposed between the engine cover portion and the upper surface of the engine body, and in the front-rear direction, a rear end thereof is disposed behind the opening of the vehicle body cover, The single combustion chamber exhaust pipe is disposed at least partially behind the opening of the vehicle body cover in the front-rear direction, and the fuel injection device is configured to be a single-cylinder four-stroke engine unit. When the robot and the vehicle body cover are viewed from the front, at least a part of the vehicle body cover is disposed at a position where it can be seen in the opening of the vehicle body cover
  • the single-cylinder four-stroke engine unit mounted on the saddle riding type vehicle of the present invention includes an engine body, a single combustion chamber intake passage, a single combustion chamber exhaust pipe, and a single combustion.
  • a chamber silencer, a single combustion chamber main catalyst, and a fuel injection device are provided.
  • the engine body has a horizontal cylinder portion. In the horizontal cylinder portion, one combustion chamber, a single combustion chamber cylinder intake passage portion, and a single combustion chamber cylinder exhaust passage portion are formed. A part of the combustion chamber is defined by the inner surface of the cylinder hole.
  • air supplied to one combustion chamber flows. The exhaust gas discharged from one combustion chamber flows through the cylinder exhaust passage for the single combustion chamber.
  • the single combustion chamber intake passage portion is connected to the upstream end of the single combustion chamber cylinder intake passage portion of the engine body.
  • the single combustion chamber exhaust pipe is connected to the downstream end of the single combustion chamber cylinder exhaust passage portion of the engine body.
  • the single combustion chamber silencer has an outlet facing the atmosphere.
  • the single combustion chamber silencer is connected to the single combustion chamber exhaust pipe and flows the exhaust gas flowing in from the downstream end of the single combustion chamber exhaust pipe to the discharge port.
  • the single combustion chamber silencer reduces the noise produced by the exhaust gas.
  • the main catalyst for the single combustion chamber is disposed in the exhaust pipe for the single combustion chamber.
  • the main catalyst for a single combustion chamber purifies the exhaust gas discharged from one combustion chamber most in the exhaust path from one combustion chamber to the discharge port.
  • the fuel injection device injects fuel into the air sucked from the upstream end of the single combustion chamber intake passage portion.
  • the fuel injection device is provided in a single combustion chamber intake passage portion or a single combustion chamber cylinder intake passage portion.
  • the horizontal cylinder portion is provided such that the center line of the cylinder hole extends in the front-rear direction of the saddle riding type vehicle. Accordingly, at least a portion of the single combustion chamber intake passage portion is disposed above the engine body. Further, at least a part of the single combustion chamber exhaust pipe is disposed below the engine body. At least a part of the single combustion chamber main catalyst is disposed below the engine body. Therefore, the hot air from the main catalyst for the single combustion chamber rises to the upper part of the engine body through the periphery of the engine body.
  • At least a part of the upper surface of the engine body is covered with the engine cover part of the vehicle body cover. Further, the engine cover portion disposed above the engine body is formed such that both end portions in the left-right direction are located below the center in the left-right direction. Further, at least a part of the single combustion chamber exhaust pipe is disposed behind the front opening of the vehicle body cover. Therefore, the heat that has risen from the main catalyst for the single combustion chamber and the engine body is likely to go into the space covered by the vehicle body cover above the engine body.
  • the rear end of the intake passage for the single combustion chamber is arranged behind the opening of the vehicle body cover. At least a portion of the single combustion chamber intake passage portion is disposed between the engine cover portion and the upper surface of the engine body. That is, at least a part of the single combustion chamber intake passage portion is disposed in a space covered by the vehicle body cover above the engine body. As described above, in the space covered by the vehicle body cover above the engine main body, the heat that has risen from the main catalyst for the single combustion chamber and the engine main body tends to be generated.
  • the body cover of the straddle-type vehicle of the present invention has an opening formed at the front thereof. Therefore, the front part of the space covered with the vehicle body cover above the engine body is open to the front of the vehicle. For this reason, the heat generated in the space covered by the vehicle body cover above the engine body easily escapes forward. That is, the temperature at the front of the space is relatively low.
  • the fuel injection device for a saddle-ride type vehicle according to the present invention is disposed in front of the rear end of the intake passage portion for a single combustion chamber. That is, the fuel injection device is disposed at a position close to the opening of the vehicle body cover.
  • the single-cylinder four-stroke engine unit and the vehicle body cover are viewed from the front, at least a part of the fuel injection device is visible in the opening of the vehicle body cover. Therefore, even if heat is generated in the space covered by the vehicle body cover above the engine body, the influence of heat on the fuel injection device can be suppressed. That is, even if hot air rises from the single combustion chamber main catalyst, the influence of heat on the fuel injection device can be suppressed. Therefore, even if the single combustion chamber main catalyst is enlarged in order to improve the purification performance of the single combustion chamber main catalyst, the influence of the heat of the single combustion chamber main catalyst can be suppressed.
  • the influence of the heat of the single combustion chamber main catalyst on the fuel injection device can be suppressed. Therefore, it is possible to simplify the structure for heat insulation so that the heat of the single combustion chamber main catalyst does not affect the surroundings. Therefore, even if the single combustion chamber main catalyst is enlarged in order to improve the purification performance of the single combustion chamber main catalyst, the vehicle can be prevented from being enlarged in the vertical direction.
  • the straddle-type vehicle according to the present invention can suppress the increase in the size of the vehicle in the vertical direction while reducing the exhaust gas purification performance of the catalyst, and can reduce the influence of the heat of the catalyst.
  • a part of the fuel injection device is disposed in front of the single combustion chamber intake passage portion.
  • the fuel injection device is arranged at a position closer to the front opening of the vehicle body cover. Therefore, even if hot air rises from the single combustion chamber main catalyst, the influence of heat on the fuel injection device can be further suppressed. Therefore, even if the single combustion chamber main catalyst is enlarged in order to improve the purification performance of the single combustion chamber main catalyst, the influence of the heat of the single combustion chamber main catalyst can be further suppressed.
  • the vehicle body cover has a maximum vertical separation distance between a front end of the engine cover portion and an upper surface of the engine body so that a center or a rear end in the front-rear direction of the engine cover portion and the engine It is preferable to be formed so as to be larger than the maximum vertical separation distance from the upper surface of the main body.
  • the vertical distance between the front end of the engine cover portion and the upper surface of the engine body is larger than the vertical distance between the center or the rear end of the engine cover portion and the upper surface of the engine body. Therefore, the front part of the space covered by the vehicle body cover above the engine body has a longer vertical length than the center or rear part in the front-rear direction of the space. For this reason, the heat generated in the space covered by the vehicle body cover above the engine body is more likely to escape forward. That is, the temperature of the front part of the space can be further reduced. Therefore, the influence of heat on the fuel injection device can be further suppressed. Therefore, even if the single combustion chamber main catalyst is enlarged in order to improve the purification performance of the single combustion chamber main catalyst, the influence of the heat of the single combustion chamber main catalyst can be further suppressed.
  • the engine cover portion covers at least a part of a left surface or a right surface of the engine body.
  • the straddle-type vehicle of the present invention includes a head pipe and a vehicle body frame having a main frame extending rearward and downward from the head pipe, and the vehicle body cover covers at least a part of the main frame from above.
  • the engine body is disposed below the main frame and is supported by the main frame so as not to swing.
  • the exhaust pipe for the single combustion chamber is connected to a catalyst arrangement passage section where the main catalyst for the single combustion chamber is arranged, and an upstream end of the catalyst arrangement passage section.
  • the cross-sectional area perpendicular to the exhaust gas flow direction of the catalyst disposition passage part is larger than the cross-sectional area of the upstream passage part perpendicular to the exhaust gas flow direction. Larger is preferred.
  • the single combustion chamber exhaust pipe has the catalyst arrangement passage portion in which the single combustion chamber main catalyst is arranged. Further, an area of a cross section orthogonal to the flow direction of the exhaust gas in the catalyst arrangement passage portion is assumed to be Sa.
  • the area Sa is larger than the area of the cross section orthogonal to the flow direction of at least a part of the upstream passage portion. Therefore, the exhaust gas purification performance by the catalyst can be improved as compared with the case where the area Sa is smaller than or equal to the area of the cross section orthogonal to the flow direction of the exhaust gas in the upstream passage portion.
  • the engine body has a crankcase portion including a crankshaft extending in a left-right direction of the straddle-type vehicle, and at least a part of the single combustion chamber main catalyst includes the It is preferable that the saddle type vehicle is positioned in front of the center line of the crankshaft in the front-rear direction.
  • the single combustion chamber main catalyst is disposed at a position relatively close to the combustion chamber. Therefore, it can suppress that temperature falls before the exhaust gas discharged
  • the engine body includes a crankcase portion including a crankshaft extending in a left-right direction of the saddle riding type vehicle, and the single body is seen from the left side. It is preferable that at least a part of the combustion chamber main catalyst is positioned forward of the straight line perpendicular to the center line of the cylinder hole and perpendicular to the center line of the crankshaft in the front-rear direction.
  • a straight line perpendicular to the center line of the cylinder hole and perpendicular to the center line of the crankshaft is a straight line L.
  • the center line of the cylinder hole passes through the center line of the crankshaft.
  • the center line of the cylinder hole extends in the front-rear direction. Therefore, the straight line L extends downward from the crankshaft.
  • At least a part of the single combustion chamber main catalyst is located in front of the straight line L when viewed from the left-right direction. Therefore, the main catalyst for a single combustion chamber is disposed at a position close to the combustion chamber. Therefore, it can suppress that temperature falls before the exhaust gas discharged
  • the single catalyst for the single combustion chamber has a path length from the single combustion chamber to the upstream end of the single catalyst for the single combustion chamber. It is preferable to be disposed at a position that is shorter than the path length from the downstream end to the discharge port.
  • the path length from one combustion chamber to the upstream end of the single catalyst for the single combustion chamber is shorter than the path length from the downstream end of the main catalyst for the single combustion chamber to the discharge port. Therefore, the main catalyst for a single combustion chamber is disposed at a position close to the combustion chamber. Therefore, it can suppress that temperature falls before the exhaust gas discharged
  • the single catalyst for the single combustion chamber has a path length from the single combustion chamber to the upstream end of the single catalyst for the single combustion chamber. It is preferable to arrange at a position shorter than the path length from the downstream end to the downstream end of the single combustion chamber exhaust pipe.
  • the path length from one combustion chamber to the upstream end of the single combustion chamber main catalyst is the path length from the downstream end of the single combustion chamber main catalyst to the downstream end of the single combustion chamber exhaust pipe. Shorter than the length. Therefore, the main catalyst for a single combustion chamber is disposed at a position close to the combustion chamber. Therefore, it can suppress that temperature falls before the exhaust gas discharged
  • the exhaust pipe for the single combustion chamber has at least a part upstream of the main combustion catalyst for the single combustion chamber in the flow direction of the exhaust gas so as to cover the inner pipe and the inner pipe. It is preferable that it is composed of a multiple tube with one outer tube.
  • At least a part of the exhaust pipe for the single combustion chamber upstream of the main catalyst for the single combustion chamber is configured by multiple tubes.
  • Multiple tubes have a high thermal insulation effect. Therefore, it can suppress that temperature falls before the exhaust gas discharged
  • the single combustion chamber exhaust pipe has a catalyst arrangement passage portion in which the single combustion chamber main catalyst is arranged, and the single cylinder four-stroke engine unit includes the catalyst It is preferable to provide a catalyst protector that covers at least a part of the outer surface of the arrangement passage portion.
  • the single combustion chamber exhaust pipe has the catalyst arrangement passage portion in which the single combustion chamber main catalyst is arranged. At least a part of the outer surface of the catalyst arrangement passage portion is covered with a catalyst protector. Therefore, a decrease in the temperature of the single combustion chamber main catalyst can be suppressed. Therefore, the exhaust gas purification performance of the single combustion chamber main catalyst can be further improved.
  • the single cylinder four-stroke engine unit has a flow of exhaust gas more than the single combustion chamber main catalyst in the single combustion chamber cylinder passage or the single combustion chamber exhaust pipe. It is preferable to provide an upstream sub catalyst for a single combustion chamber that is provided upstream in the direction and purifies exhaust gas.
  • the straddle-type vehicle according to any one of claims 1 to 12.
  • the single cylinder four-stroke engine unit includes the upstream sub catalyst for the single combustion chamber upstream of the main catalyst for the single combustion chamber. Therefore, in addition to the single combustion chamber main catalyst, the exhaust gas is purified by the single combustion chamber upstream sub-catalyst. Therefore, the exhaust gas purification performance by the catalyst can be further improved.
  • the single combustion chamber main catalyst and the single combustion chamber upstream sub-catalyst can be reduced in size as compared with the case where only the single combustion chamber main catalyst is provided while maintaining the exhaust gas purification performance of the catalyst.
  • the upstream sub catalyst for the single combustion chamber can be raised to the activation temperature at an early stage. Therefore, the exhaust gas purification performance by the catalyst can be improved while suppressing an increase in the size of the vehicle in the vertical direction.
  • the single cylinder four-stroke engine unit is configured such that the single combustion chamber cylinder passage portion, the single combustion chamber exhaust pipe, or the single combustion chamber silencer has the single unit. It is preferable to include a downstream sub catalyst for a single combustion chamber that is provided downstream of the combustion chamber main catalyst in the exhaust gas flow direction and purifies the exhaust gas.
  • the single cylinder four-stroke engine unit includes the single combustion chamber upstream sub-catalyst downstream of the single combustion chamber main catalyst. Therefore, in addition to the single combustion chamber main catalyst, the exhaust gas is purified by the single combustion chamber downstream sub-catalyst. Therefore, the exhaust gas purification performance by the catalyst can be further improved.
  • the single combustion chamber main catalyst and the single combustion chamber downstream sub-catalyst can be reduced in size as compared with the case where only the single combustion chamber main catalyst is provided while maintaining the exhaust gas purification performance of the catalyst. Thereby, at the time of engine starting, the main catalyst for single combustion chambers can be raised to the activation temperature at an early stage.
  • the exhaust gas purification performance by the catalyst can be improved while suppressing an increase in the size of the vehicle in the vertical direction.
  • released from the main catalyst for single combustion chambers can be reduced by size reduction of the main catalyst for single combustion chambers.
  • the single combustion chamber downstream sub-catalyst can be disposed at a position away from the fuel injection device in the front-rear direction. Therefore, the influence of heat on the fuel injection device can be further suppressed.
  • the present invention it is possible to suppress the increase in size of the vehicle in the vertical direction while reducing the exhaust gas purification performance by the catalyst, and to reduce the influence of the heat of the catalyst.
  • FIG. 1 is a side view of a motorcycle according to an embodiment of the present invention.
  • FIG. 2 is a side view of the motorcycle of FIG. 1 with a vehicle body cover and the like removed.
  • FIG. 3 is a bottom view of FIG. 2.
  • FIG. 2 is a control block diagram of the motorcycle of FIG. 1.
  • FIG. 2 is a schematic diagram showing an engine body and an exhaust system of the motorcycle shown in FIG. 1.
  • FIG. 2 is a front view of a single cylinder four-stroke engine unit and a vehicle body cover of the motorcycle of FIG. 1.
  • FIG. 2 is a drawing in which a front view of a vehicle body cover is combined with a cross-sectional view taken along line AA in FIG. 1.
  • FIG. 3 is a partially enlarged view of FIG. 2.
  • FIG. 2 is a partially enlarged view of FIG. 2.
  • FIG. 6 is a partially enlarged view of a side view of a motorcycle according to another embodiment of the present invention.
  • FIG. 6 is a schematic diagram showing an engine body and an exhaust system of a motorcycle according to another embodiment of the present invention.
  • FIG. 6 is a partial cross-sectional view of an exhaust pipe applied to a motorcycle according to another embodiment of the present invention.
  • FIG. 6 is a partially enlarged view of a side view of a motorcycle according to another embodiment of the present invention.
  • front, rear, left, and right mean front, rear, left, and right, respectively, as viewed from a motorcycle occupant. However, it is assumed that the motorcycle is placed on a horizontal ground.
  • Reference numerals F, Re, L, and R attached to the drawings represent front, rear, left, and right, respectively.
  • FIG. 1 is a side view of the motorcycle according to the present embodiment.
  • FIG. 2 is a side view of the motorcycle according to the present embodiment with the vehicle body cover and the like removed.
  • FIG. 3 is a bottom view of the motorcycle according to the present embodiment with the vehicle body cover and the like removed.
  • FIG. 5 is a schematic diagram showing an engine and an exhaust system of the motorcycle according to the present embodiment.
  • FIG. 8 is a partially enlarged view of FIG.
  • the saddle riding type vehicle of the present embodiment is a so-called underbone type motorcycle 1.
  • the motorcycle 1 includes a body frame 2.
  • the vehicle body frame 2 includes a head pipe 3, a main frame 4, and a seat rail 5.
  • the main frame 4 extends rearward and downward from the head pipe 3.
  • the seat rail 5 extends rearward and upward from the middle part of the main frame 4.
  • a steering shaft is rotatably inserted into the head pipe 3.
  • a handle 7 (see FIG. 1) is provided on the upper portion of the steering shaft.
  • a display device (not shown) is disposed in the vicinity of the handle 7. The display device displays vehicle speed, engine speed, various warnings, and the like.
  • a pair of left and right front forks 6 are supported at the bottom of the steering shaft.
  • An axle 8 a is fixed to the lower end portion of the front fork 6.
  • a front wheel 8 is rotatably attached to the axle 8a.
  • a fender 10 is provided above and behind the front wheel 8.
  • a seat 9 (see FIG. 1) is supported on the seat rail 5.
  • the seat rail 5 is connected to upper ends of a pair of left and right rear cushion units 13.
  • the lower end portion of the rear cushion unit 13 is supported by the rear portions of the pair of left and right rear arms 14.
  • the front portion of the rear arm 14 is connected to the vehicle body frame 2 via a pivot shaft 14a.
  • the rear arm 14 can swing up and down around the pivot shaft 14a.
  • a rear wheel 15 is supported at the rear portion of the rear arm 14.
  • an engine body 20 is disposed below the main frame 4.
  • the engine body 20 is supported by the body frame 2.
  • the engine body 20 is supported by the main frame 4 so as not to swing.
  • the upper part of the engine body 20 is fixed to the bracket 4a provided on the main frame 4 by bolts 4b.
  • an upper front portion of a crankcase portion 21 (to be described later) of the engine body 20 is fixed to the bracket 4a.
  • the rear portion of the engine body 20 is also fixed to another bracket provided on the vehicle body frame 2.
  • An air cleaner 32 is disposed below the main frame 4 and above the engine body 20.
  • the motorcycle 1 has a vehicle body cover 11 that covers the vehicle body frame 2 and the like.
  • the vehicle body cover 11 includes a main cover 11b and a front cover 11a.
  • the front cover 11 a is disposed in front of the head pipe 3.
  • the main cover 11 b is disposed behind the head pipe 3.
  • the main cover 11b covers the main frame 4 from above.
  • the main cover 11b covers the seat rail 5 from above.
  • the main cover 11b and the front cover 11a cover the left and right sides of the front portion of the engine body 20.
  • the front cover 11 a covers the left and right sides of the air cleaner 32.
  • An opening 17 is formed in the front portion of the vehicle body cover 11.
  • the opening 17 is formed in the front cover 11a.
  • the opening 17 is formed in an inverted U shape when viewed from the front.
  • FIG. 6 is a front view of the single-cylinder four-stroke engine unit and the vehicle body cover of the motorcycle.
  • the maximum width in the left-right direction of the opening 17 is larger than the width in the left-right direction of the front wheel 8. Further, the maximum width in the left-right direction of the opening 17 is larger than the width in the left-right direction of the fender 10.
  • the upper end of the opening 17 is located above the front wheel 8.
  • the upper end of the opening 17 is located above the engine body 20.
  • the lower end of the opening 17 is substantially the same height as the lower end of the engine body 20. As shown in FIG. 1, most (part) of the engine body 20 is located behind the opening 17. Most of the air cleaner 32 is located behind the opening 17.
  • the vehicle body cover 11 includes an engine cover portion 16.
  • the engine cover portion 16 covers at least a part of the upper surface of the engine body 20.
  • the engine cover portion 16 is formed such that both end portions in the left-right direction are located below the center portion 16a in the left-right direction.
  • the cross section orthogonal to the front-rear direction of the engine cover portion 16 is formed in an inverted U shape.
  • 7 is a drawing in which the front view of the vehicle body cover 11 is combined with the cross-sectional view taken along the line AA in FIG.
  • the engine cover portion 16 is formed symmetrically.
  • the center 16 a in the left-right direction of the engine cover part 16 forms the upper end of the engine cover part 16.
  • the engine cover portion 16 covers a part of the left side and the right side of the engine body 20. More specifically, the engine cover portion 16 covers a part of a left surface and a right surface of a cylinder portion 22 described later of the engine body 20.
  • the maximum vertical distance between the front end of the engine cover portion 16 and the upper surface of the engine body 20 is D1.
  • the distance D ⁇ b> 1 is a vertical distance between the front end of the center 16 a in the left-right direction of the engine cover 16 and the upper surface of the engine body 20.
  • the maximum vertical separation distance between the center of the engine cover portion 16 in the front-rear direction and the upper surface of the engine body 20 is defined as D2.
  • the distance D ⁇ b> 2 is a vertical distance between the center in the front-rear direction of the center 16 a in the left-right direction of the engine cover 16 and the upper surface of the engine body 20.
  • a maximum distance in the vertical direction between the rear end of the engine cover portion 16 and the upper surface of the engine body 20 is defined as D3.
  • the distance D ⁇ b> 1 is a vertical distance between the front end of the center 16 a in the left-right direction of the engine cover portion 16 and the upper surface of the engine body 20.
  • the distance D1 is larger than the distance D2.
  • the distance D1 is larger than the distance D3.
  • the upper end (the center 16a in the left-right direction) of the engine cover portion 16 extends rearward and downward as a whole.
  • the body cover 11 has a lower portion between the seat 9 and the head pipe 3.
  • the main frame 4 has a lower portion between the seat 9 and the head pipe 3.
  • the underbone type motorcycle 1 has a recess 12 formed behind the head pipe 3, ahead of the seat 9 and above the main frame 4 when viewed from the left-right direction of the vehicle.
  • the recess 12 makes it easier for the occupant to straddle the vehicle body.
  • the motorcycle 1 has a single-cylinder four-stroke engine unit 19.
  • the single-cylinder four-stroke engine unit 19 includes an engine body 20, an air cleaner 32, an intake passage 33 (single combustion chamber intake passage), an exhaust pipe 34, a silencer 35, and a main catalyst 39 (single A combustion chamber main catalyst) and an upstream oxygen detection member 37.
  • the main catalyst 39 is disposed in the exhaust pipe 34.
  • the main catalyst 39 purifies the exhaust gas flowing through the exhaust pipe 34.
  • the upstream oxygen detection member 37 is disposed upstream of the main catalyst 39 in the exhaust pipe 34.
  • the upstream oxygen detection member 37 detects the oxygen concentration in the exhaust gas flowing through the exhaust pipe 34.
  • the engine body 20 is a single-cylinder four-stroke engine. As shown in FIGS. 2 and 3, the engine main body 20 includes a crankcase portion 21 and a cylinder portion 22. The cylinder part 22 extends forward from the crankcase part 21.
  • the crankcase portion 21 includes a crankcase body 23, a crankshaft 27 accommodated in the crankcase body 23, a transmission mechanism, and the like.
  • the center line Cr1 of the crankshaft 27 is referred to as a crankshaft line Cr1.
  • the crank axis Cr1 extends in the left-right direction.
  • Lubricating oil is stored in the crankcase body 23. Such oil is conveyed by an oil pump (not shown) and circulates in the engine body 20.
  • the cylinder part 22 has a cylinder body 24, a cylinder head 25, a head cover 26, and components housed therein. As shown in FIG. 2, the cylinder body 24 is connected to the front portion of the crankcase body 23. The cylinder head 25 is connected to the front part of the cylinder body 24. The head cover 26 is connected to the front part of the cylinder head 25.
  • a cylinder hole 24 a is formed in the cylinder body 24.
  • a piston 28 is accommodated in the cylinder hole 24a so as to be able to reciprocate.
  • the piston 28 is connected to the crankshaft 27 via a connecting rod 28a.
  • the center line Cy1 of the cylinder hole 24a is referred to as a cylinder axis Cy1.
  • the engine body 20 is arranged such that the cylinder axis Cy ⁇ b> 1 extends in the front-rear direction (horizontal direction). More specifically, the direction of the cylinder axis Cy1 from the crankcase portion 21 toward the cylinder portion 22 is front-upward.
  • the inclination angle ⁇ 1 see FIG.
  • the cylinder axis Cy1 with respect to the horizontal direction is not less than 0 degrees and not more than 45 degrees.
  • the cylinder axis Cy ⁇ b> 1 passes through the center of the motorcycle 1 in the left-right direction. Note that the center in the left-right direction of the motorcycle 1 is a straight line position passing through the center in the left-right direction of the front wheel 8 and the center in the left-right direction of the rear wheel 15 when viewed from above and below.
  • the cylinder axis Cy1 may be shifted from the center in the left-right direction of the motorcycle 1 to the right or left.
  • one combustion chamber 29 is formed inside the cylinder portion 22.
  • the combustion chamber 29 is formed by the inner surface of the cylinder hole 24 a of the cylinder body 24, the cylinder head 25, and the piston 28. That is, a part of the combustion chamber 29 is partitioned by the inner surface of the cylinder hole 24a.
  • a tip end portion of a spark plug (not shown) is arranged in the combustion chamber 29.
  • the spark plug ignites a mixed gas of fuel and air in the combustion chamber 29.
  • the combustion chamber 29 is located in front of the crank axis Cr1. This is paraphrased as follows. A straight line passing through the crank axis Cr1 and extending in parallel with the vertical direction is defined as L1. When viewed from the left-right direction, the combustion chamber 29 is disposed in front of the straight line L1.
  • the cylinder head 25 is formed with a cylinder intake passage portion 30 (a single combustion chamber cylinder intake passage portion) and a cylinder exhaust passage portion 31 (a single combustion chamber cylinder exhaust passage portion). ing.
  • the “passage part” is a structure that forms a space (path) through which gas or the like passes.
  • an intake port 30 a and an exhaust port 31 a are formed in a wall portion that forms the combustion chamber 29.
  • the cylinder intake passage portion 30 extends from the intake port 30 a to an intake port formed on the outer surface (upper surface) of the cylinder head 25.
  • the cylinder exhaust passage 31 extends from the exhaust port 31 a to a discharge port formed on the outer surface (lower surface) of the cylinder head 25. Air supplied to the combustion chamber 29 passes through the cylinder intake passage portion 30. The exhaust gas discharged from the combustion chamber 29 passes through the cylinder exhaust passage portion 31.
  • the cylinder intake passage 30 is provided with an intake valve V1.
  • An exhaust valve V ⁇ b> 2 is disposed in the cylinder exhaust passage portion 31.
  • the intake valve V ⁇ b> 1 and the exhaust valve V ⁇ b> 2 are operated by a valve operating mechanism (not shown) that is linked to the crankshaft 27.
  • the intake port 30a is opened and closed by the movement of the intake valve V1.
  • the exhaust port 31a is opened and closed by the movement of the exhaust valve V2.
  • An intake passage 33 is connected to the upstream end (suction port) of the cylinder intake passage 30.
  • An exhaust pipe 34 is connected to the downstream end (discharge port) of the cylinder exhaust passage portion 31.
  • the path length of the cylinder exhaust passage portion 31 is a1.
  • the intake system of the motorcycle 1 of the present embodiment will be described.
  • the upstream means the upstream in the flow direction of the air supplied to the combustion chamber 29.
  • downstream means downstream in the flow direction of the air supplied to the combustion chamber 29.
  • the downstream end of the intake passage portion 33 is connected to the upstream end of the cylinder intake passage portion 30.
  • the upstream end of the intake passage portion 33 is connected to the air cleaner 32.
  • the intake passage portion 33 extends from the upper surface of the cylinder portion 22 as follows.
  • the intake passage portion 33 extends upward from the upper surface of the cylinder portion 22 and then bends and extends upward. After that, it bends and extends upward.
  • the intake passage portion 33 is disposed above the engine body 20. Further, at least a part of the intake passage portion 33 is disposed above the upper surface of the engine body 20.
  • the intake passage portion 33 is disposed between the engine cover portion 16 and the upper surface of the engine body 20. As shown in FIG. 8, let L3 be a straight line that passes through the rearmost end of the intake passage portion 33 and extends in parallel with the vertical direction. The straight line L3 is located behind the opening 17. That is, the rearmost end of the intake passage portion 33 is disposed behind the opening 17 of the vehicle body cover 11.
  • the intake passage 33 is provided with an injector 48 (fuel injection device).
  • the injector 48 injects fuel in the cylinder intake passage portion 30. That is, the injector 48 injects fuel into the air sucked from the upstream end of the intake passage portion 33.
  • the injector 48 may be configured to inject fuel in the intake passage portion 33.
  • the injector 48 is provided in the front portion of the intake passage portion 33. A part of the injector 48 is disposed in front of the intake passage portion 33. The injector 48 is disposed in front of the straight line L3. That is, the injector 48 is disposed in front of the rear end of the intake passage portion 33.
  • a straight line that passes through the foremost end of the main catalyst 39 and extends in parallel with the vertical direction is L4.
  • the injector 48 is disposed in front of the straight line L4. That is, the injector 48 is disposed in front of the main catalyst 39.
  • the injector 48 is disposed behind the opening 17 of the vehicle body cover 11. In addition, at least a portion of the injector 48 is disposed below the air cleaner 32.
  • a throttle body 50 is provided in the middle of the intake passage portion 33.
  • a throttle valve 51 is built in the throttle body 50. That is, the throttle valve 51 is disposed in the intake passage portion 33. The amount of air supplied to the engine body 20 is adjusted by changing the opening of the throttle valve 51.
  • the air cleaner 32 is disposed above the front part of the cylinder part 22 (engine body 20).
  • the intake passage portion 33 is connected to the rear portion of the air cleaner 32.
  • the air cleaner 32 purifies the air supplied to the engine body 20.
  • the air purified by passing through the air cleaner 32 is supplied to the engine body 20 through the intake passage portion 33.
  • upstream means upstream in the flow direction of exhaust gas.
  • downstream means downstream in the flow direction of the exhaust gas.
  • the path direction is the direction in which exhaust gas flows.
  • the single cylinder four-stroke engine unit 19 includes the engine body 20, the exhaust pipe 34, the silencer 35, the main catalyst 39, and the upstream oxygen detection member 37.
  • the silencer 35 has a discharge port 35e facing the atmosphere.
  • a path from the combustion chamber 29 to the discharge port 35e is an exhaust path 41 (see FIG. 5).
  • the exhaust path 41 is formed by the cylinder exhaust passage portion 31, the exhaust pipe 34, and the silencer 35.
  • the exhaust path 41 is a space through which exhaust gas passes.
  • the upstream end portion of the exhaust pipe 34 is connected to the cylinder exhaust passage portion 31.
  • the downstream end of the exhaust pipe 34 is connected to a silencer 35.
  • a catalyst unit 38 is provided in the middle of the exhaust pipe 34.
  • a portion of the exhaust pipe 34 upstream from the catalyst unit 38 is referred to as an upstream exhaust pipe 34a.
  • a portion of the exhaust pipe 34 downstream from the catalyst unit 38 is referred to as a downstream exhaust pipe 34b.
  • the exhaust pipe 34 and the intake passage portion 33 are drawn in a straight line for simplification, but the exhaust pipe 34 and the intake passage portion 33 are not in a straight line.
  • the exhaust pipe 34 is provided in the right part of the motorcycle 1. As shown in FIG. 2, a part of the exhaust pipe 34 is disposed below the engine body 20 when viewed from the left-right direction. Specifically, a portion including the upstream end of the exhaust pipe 34 is disposed below the engine body 20 when viewed from the left-right direction. A straight line passing through the lowermost end of the engine body 20 and extending in parallel with the front-rear direction is denoted as L5. A part of the exhaust pipe 34 is disposed below the straight line L5. That is, a part of the exhaust pipe 34 is disposed below the lower surface of the engine body 20. The exhaust pipe 34 is disposed behind the opening 17 of the vehicle body cover 11. As shown in FIG. 2, a part of the exhaust pipe 34 is positioned below the crank axis Cr1.
  • the exhaust pipe 34 has two bent portions. Of the two bent portions, the upstream bent portion is simply referred to as an upstream bent portion. Of the two bent portions, the downstream bent portion is simply referred to as a downstream bent portion. As shown in FIG. 2, the upstream bent portion changes the flow direction of the exhaust gas from the direction extending in the vertical direction to the direction extending in the front-rear direction when viewed from the left-right direction. More specifically, the bent portion changes the flow direction of the exhaust gas from downward to rearward as viewed from the left-right direction. Further, as shown in FIG. 3, the upstream bent portion changes the flow direction of the exhaust gas when viewed from below. As shown in FIG.
  • the downstream bent portion changes the flow direction of the exhaust gas from the rear upward direction to the rear direction as viewed from the left-right direction. Moreover, as shown in FIG. 3, the downstream bent portion changes the flow direction of the exhaust gas from the rear right direction to the rear direction as viewed from below. A portion slightly downstream from the downstream bent portion is positioned below the crank axis Cr1. The main catalyst 39 is disposed between the two bent portions.
  • the silencer 35 is connected to the exhaust pipe 34.
  • the silencer 35 is configured to suppress pulsating waves of exhaust gas. Thereby, the silencer 35 can reduce the volume of the sound (exhaust sound) generated by the exhaust gas.
  • a plurality of expansion chambers and a plurality of pipes communicating the expansion chambers are provided in the silencer 35.
  • the downstream end of the exhaust pipe 34 is disposed in the expansion chamber of the silencer 35.
  • a discharge port 35e facing the atmosphere is provided at the downstream end of the silencer 35. As shown in FIG. 5, the path length of the exhaust path from the downstream end of the exhaust pipe 34 to the discharge port 35e is defined as e1.
  • the path length of the expansion chamber in the silencer 35 is the length of the path connecting the center of the expansion chamber inlet to the center of the expansion chamber outlet at the shortest distance.
  • the exhaust gas that has passed through the silencer 35 is discharged to the atmosphere from the discharge port 35e. As shown in FIG. 2, the discharge port 35e is located behind the crank axis Cr1.
  • the main catalyst 39 is disposed in the exhaust pipe 34.
  • the catalyst unit 38 includes a cylindrical casing 40 and a main catalyst 39.
  • the upstream end of the casing 40 is connected to the upstream exhaust pipe 34a.
  • the downstream end of the casing 40 is connected to the downstream exhaust pipe 34b.
  • the casing 40 constitutes a part of the exhaust pipe 34.
  • the main catalyst 39 is fixed inside the casing 40.
  • the exhaust gas is purified by passing through the main catalyst 39. All exhaust gas discharged from the exhaust port 31 a of the combustion chamber 29 passes through the main catalyst 39.
  • the main catalyst 39 purifies the exhaust gas discharged from the combustion chamber 29 most in the exhaust path 41.
  • the main catalyst 39 is a so-called three-way catalyst.
  • the three-way catalyst is removed by oxidizing or reducing three substances of hydrocarbon, carbon monoxide, and nitrogen oxide contained in the exhaust gas.
  • the three-way catalyst is one type of redox catalyst.
  • the main catalyst 39 has a base material and a catalytic material attached to the surface of the base material.
  • the catalytic material has a support and a noble metal.
  • the carrier is provided between the noble metal and the substrate.
  • the carrier carries a noble metal. This noble metal purifies the exhaust gas. Examples of the noble metal include platinum, palladium, and rhodium that remove hydrocarbons, carbon monoxide, and nitrogen oxides, respectively.
  • the main catalyst 39 has a porous structure.
  • the porous structure refers to a structure in which a hole is formed in a cross section perpendicular to the path direction of the exhaust path 41.
  • An example of the porous structure is a honeycomb structure.
  • the main catalyst 39 has a plurality of holes sufficiently narrower than the path width of the upstream exhaust pipe 34a.
  • the main catalyst 39 may be a metal base catalyst or a ceramic base catalyst.
  • the metal base catalyst is a catalyst whose base is made of metal.
  • the ceramic base catalyst is a catalyst whose base is made of ceramic.
  • the base material of the metal base catalyst is formed, for example, by alternately stacking and winding metal corrugated plates and metal flat plates.
  • the base material of the ceramic base catalyst is, for example, a honeycomb structure.
  • the length of the main catalyst 39 in the path direction is c1.
  • the maximum width in the direction perpendicular to the path direction of the main catalyst 39 is w1.
  • the length c1 of the main catalyst 39 is longer than the maximum width w1 of the main catalyst 39.
  • the cross-sectional shape orthogonal to the path direction of the main catalyst 39 is, for example, a circular shape.
  • the cross-sectional shape may be a shape in which the horizontal length is longer than the vertical length.
  • the casing 40 includes a catalyst arrangement passage portion 40b, an upstream passage portion 40a, and a downstream passage portion 40c.
  • the main catalyst 39 is arranged in the catalyst arrangement passage portion 40b.
  • the upstream end and the downstream end of the catalyst arrangement passage portion 40 b are at the same positions as the upstream end and the downstream end of the main catalyst 39, respectively.
  • the area of the cross section perpendicular to the path direction of the catalyst arrangement passage portion 40b is substantially constant in the path direction.
  • the upstream passage portion 40a is connected to the upstream end of the catalyst arrangement passage portion 40b.
  • the downstream passage portion 40c is connected to the upstream end of the catalyst arrangement passage portion 40b.
  • the upstream passage portion 40a is at least partially tapered.
  • the tapered portion has an inner diameter that increases toward the downstream.
  • the downstream passage portion 40c is at least partially tapered.
  • the tapered portion has an inner diameter that decreases toward the downstream.
  • the area of the cross section orthogonal to the path direction of the catalyst arrangement passage portion 40b is S1.
  • the area of the cross section orthogonal to the route direction of at least a part of the upstream passage portion 40a is smaller than the area S1.
  • at least a part of the upstream passage portion 40a includes the upstream end of the upstream passage portion 40a.
  • the area of the cross section perpendicular to the path direction of at least a part of the downstream passage portion 40c is smaller than the area S1.
  • at least a part of the downstream passage portion 40c includes the downstream end of the downstream passage portion 40c.
  • the main catalyst 39 is disposed below the engine body 20 when viewed from the left-right direction. Further, as shown in FIG. 2, a part of the main catalyst 39 is located below the straight line L5. That is, a part of the main catalyst 39 is disposed below the lower surface of the engine body 20. As shown in FIG. 3, the main catalyst 39 does not overlap the engine body 20 when viewed from below. Note that the main catalyst 39 may overlap the engine body 20 as viewed from below.
  • the main catalyst 39 is disposed in front of the crank axis Cr1. That is, the main catalyst 39 is disposed in front of the straight line L1 when viewed from the left-right direction. As described above, the straight line L1 is a straight line that passes through the crank axis Cr1 and extends parallel to the vertical direction. Of course, the upstream end of the main catalyst 39 is also arranged in front of the crank axis Cr1. Further, the main catalyst 39 is located in front (downward) of the cylinder axis Cy1 when viewed from the left-right direction.
  • L2 be a straight line that is orthogonal to the cylinder axis Cy1 and orthogonal to the crank axis Cr1.
  • the main catalyst 39 is located in front of the straight line L2.
  • the path length from the upstream end of the exhaust pipe 34 to the upstream end of the main catalyst 39 is b1.
  • the path length b ⁇ b> 1 is the path length of the passage portion including the upstream exhaust pipe 34 a and the upstream passage portion 40 a of the catalyst unit 38.
  • the path length b1 is the path length from the downstream end of the cylinder exhaust passage portion 31 to the upstream end of the main catalyst 39.
  • the path length from the downstream end of the main catalyst 39 to the downstream end of the exhaust pipe 34 is defined as d1.
  • the path length d1 is the path length of the passage portion including the downstream passage portion 40c and the downstream exhaust pipe 34b of the catalyst unit 38.
  • the path length from the combustion chamber 29 to the upstream end of the main catalyst 39 is a1 + b1.
  • the path length from the downstream end of the main catalyst 39 to the discharge port 35e is d1 + e1.
  • the main catalyst 39 is disposed at a position where the path length a1 + b1 is shorter than the path length d1 + e1.
  • the main catalyst 39 is disposed at a position where the path length a1 + b1 is shorter than the path length d1. Further, the main catalyst 39 is disposed at a position where the path length b1 is shorter than the path length d1.
  • the upstream oxygen detection member 37 is disposed in the exhaust pipe 34.
  • the upstream oxygen detection member 37 is disposed upstream of the main catalyst 39.
  • the upstream oxygen detection member 37 is a sensor that detects the concentration of oxygen contained in the exhaust gas.
  • the upstream oxygen detection member 37 may be an oxygen sensor that detects whether the oxygen concentration is higher or lower than a predetermined value. Further, the upstream oxygen detection member 37 may be a sensor (for example, an A / F sensor: Air Fuel ratio sensor) that outputs a detection signal representing the oxygen concentration in a plurality of steps or linearly.
  • the upstream oxygen detection member 37 has one end (detection unit) disposed in the exhaust pipe 34 and the other end disposed outside the exhaust pipe 34. The detection unit of the upstream oxygen detection member 37 can detect the oxygen concentration when it is heated to a high temperature and activated. The detection result of the upstream oxygen detection member 37 is output to the electronic control unit 45.
  • FIG. 4 is a control block diagram of the motorcycle according to the present embodiment.
  • the single-cylinder four-stroke engine unit 19 includes an engine speed sensor 46a, a throttle opening sensor 46b (throttle position sensor), an engine temperature sensor 46c, an intake pressure sensor 46d, and an intake temperature sensor 46e.
  • the engine rotation speed sensor 46a detects the rotation speed of the crankshaft 27, that is, the engine rotation speed.
  • the throttle opening sensor 46b detects the opening of the throttle valve 51 (hereinafter referred to as the throttle opening) by detecting the position of the throttle valve 51.
  • the engine temperature sensor 46c detects the temperature of the engine body.
  • the intake pressure sensor 46d detects the pressure (intake pressure) in the intake passage portion 33.
  • the intake air temperature sensor 46e detects the temperature of air in the intake passage portion 33 (intake air temperature).
  • the single-cylinder four-stroke engine unit 19 includes an electronic control unit (ECU: Electronic Control Unit) 45 that controls the engine body 20.
  • the electronic control unit 45 is connected to various sensors such as an engine speed sensor 46a, an engine temperature sensor 46c, a throttle opening sensor 46b, an intake pressure sensor 46d, an intake air temperature sensor 46e, and a vehicle speed sensor.
  • the electronic control unit 45 is connected to an ignition coil 47, an injector 48, a fuel pump 49, a display device (not shown), and the like.
  • the electronic control unit 45 includes a control unit 45a and an operation instruction unit 45b.
  • the operation instructing unit 45b includes an ignition drive circuit 45c, an injector drive circuit 45d, and a pump drive circuit 45e.
  • the ignition drive circuit 45c, the injector drive circuit 45d, and the pump drive circuit 45e drive the ignition coil 47, the injector 48, and the fuel pump 49, respectively, in response to a signal from the control unit 45a.
  • the fuel pump 49 is connected to the injector 48 via a fuel hose.
  • fuel in a fuel tank (not shown) is pumped to the injector 48.
  • the control unit 45a is, for example, a microcomputer.
  • the controller 45a controls the ignition drive circuit 45c, the injector drive circuit 45d, and the pump drive circuit 45e based on the signal from the upstream oxygen detection member 37, the signal from the engine rotation speed sensor 46a, and the like.
  • the controller 45a controls the ignition timing by controlling the ignition drive circuit 45c.
  • the controller 45a controls the fuel injection amount by controlling the injector drive circuit 45d and the pump drive circuit 45e.
  • the air-fuel ratio of the air-fuel mixture in the combustion chamber 29 is preferably the stoichiometric air-fuel ratio (stoichiometry).
  • the controller 45a increases or decreases the fuel injection amount as necessary.
  • the controller 45a calculates the basic fuel injection amount based on signals from the engine speed sensor 46a, the throttle opening sensor 46b, the engine temperature sensor 46c, and the intake pressure sensor 46d. Specifically, the intake air amount is calculated using a map in which the intake air amount is associated with the throttle opening and the engine rotational speed, and a map in which the intake air amount is associated with the intake pressure and the engine rotational speed. Ask. Then, based on the intake air amount obtained from the map, the basic fuel injection amount that can achieve the target air-fuel ratio is determined. When the throttle opening is small, a map in which the intake air amount is associated with the intake pressure and the engine speed is used. On the other hand, when the throttle opening is large, a map in which the intake air amount is associated with the throttle opening and the engine speed is used.
  • control unit 45a calculates a feedback correction value for correcting the basic fuel injection amount based on the signal from the upstream oxygen detection member 37. Specifically, first, based on the signal from the upstream oxygen detection member 37, it is determined whether the air-fuel mixture is lean or rich. Note that rich means that the fuel is excessive with respect to the stoichiometric air-fuel ratio. Lean means a state where air is excessive with respect to the stoichiometric air-fuel ratio. When determining that the air-fuel mixture is lean, the control unit 45a calculates a feedback correction value so that the next fuel injection amount increases. On the other hand, when determining that the air-fuel mixture is rich, the control unit 45a obtains a feedback correction value so that the next fuel injection amount is reduced.
  • control unit 45a calculates a correction value for correcting the basic fuel injection amount based on the engine temperature, the outside air temperature, the outside air pressure, and the like. Furthermore, the control unit 45a calculates a correction value according to the transient characteristics during acceleration and deceleration.
  • the control unit 45a calculates the fuel injection amount based on the basic fuel injection amount and a correction value such as a feedback correction value. Based on the fuel injection amount thus determined, the fuel pump 49 and the injector 48 are driven. Thus, the electronic control unit 45 processes the signal of the upstream oxygen detection member 37. The electronic control unit 45 performs combustion control based on the signal from the upstream oxygen detection member 37.
  • the configuration of the motorcycle 1 according to this embodiment has been described above.
  • the motorcycle 1 of the present embodiment has the following characteristics.
  • the cylinder portion 22 (horizontal cylinder portion) is provided so that the cylinder axis Cy1 extends in the front-rear direction of the motorcycle 1. Accordingly, at least a part of the intake passage portion 33 is disposed above the engine body 20. Further, at least a part of the exhaust pipe 34 is disposed below the engine body 20. At least a part of the main catalyst 39 is disposed below the engine body 20. Therefore, the hot air from the main catalyst 39 rises to the upper part of the engine body 20 through the periphery of the engine body 20.
  • At least a part of the upper surface of the engine body 20 is covered by the engine cover portion 16 of the vehicle body cover 11. Further, the engine cover portion 16 disposed above the engine body 20 is formed such that both end portions in the left-right direction are located below the center 16a in the left-right direction. Further, at least a part of the exhaust pipe 34 is disposed behind the opening 17 at the front portion of the vehicle body cover 11. Therefore, the heat that has risen from the main catalyst 39 and the engine main body 20 tends to go into the space covered by the vehicle body cover 11 above the engine main body 20.
  • the rearmost end of the intake passage portion 33 is disposed behind the opening 17 of the vehicle body cover 11. At least a part of the intake passage portion 33 is disposed between the engine cover portion 16 and the upper surface of the engine body 20. That is, at least a part of the intake passage portion 33 is disposed in a space covered by the vehicle body cover 11 above the engine body 20. As described above, in the space covered by the vehicle body cover 11 above the engine body 20, the heat that has risen from the main catalyst 39 and the engine body 20 is likely to be generated. However, the vehicle body cover 11 has an opening 17 formed at the front thereof. Therefore, the front part of the space covered with the vehicle body cover 11 above the engine body 20 is open to the front of the vehicle.
  • the injector 48 is disposed in front of the rear end of the intake passage portion 33. That is, the injector 48 is disposed at a position close to the opening 17 of the vehicle body cover 11. Further, when the single-cylinder four-stroke engine unit and the vehicle body cover 11 are viewed from the front, at least a part of the injector 48 is visible in the opening 17 of the vehicle body cover 11. Therefore, even if heat is generated in the space covered by the vehicle body cover 11 above the engine body 20, the influence of heat on the injector 48 can be suppressed.
  • the influence of the heat of the main catalyst 39 on the injector 48 can be suppressed. Therefore, it is possible to simplify the structure for heat insulation so that the heat of the main catalyst 39 does not affect the surroundings. Therefore, even if the main catalyst 39 is enlarged in order to improve the purification performance by the main catalyst 39, the vehicle can be prevented from being enlarged in the vertical direction.
  • the motorcycle 1 according to the present invention can improve the exhaust gas purification performance of the catalyst, suppress the increase in size of the vehicle in the vertical direction, and reduce the influence of the heat of the catalyst.
  • a part of the injector 48 is disposed in front of the intake passage portion 33. Thereby, the injector 48 is disposed at a position closer to the opening 17 at the front portion of the vehicle body cover 11. Therefore, even if hot air rises from the main catalyst 39, the influence of heat on the injector 48 can be further suppressed. Therefore, even if the main catalyst 39 is enlarged to improve the purification performance of the main catalyst 39, the influence of the heat of the main catalyst 39 can be further suppressed.
  • the engine cover portion 16 covers at least a part of the left side or the right side of the engine body 20. Therefore, heat is more likely to be generated in the space above the engine body 20.
  • at least a part of the air cleaner 32 is disposed between the engine body 20 and the engine cover portion 16. Therefore, the air cleaner 32 blocks the heat in the space above the engine body 20 from escaping forward. Therefore, heat is easily generated by the space covered by the vehicle body cover 11 above the engine body 20. In spite of such a situation, the influence of heat on the injector 48 can be reduced by devising the arrangement position of the injector 48 as described above.
  • the engine cover portion is formed such that the distance D1 is larger than the distance D2 or the distance D3.
  • the distance D1 is a vertical distance between the center of the engine cover portion 16 in the front-rear direction and the upper surface of the engine body 20.
  • the distance D ⁇ b> 2 is a vertical distance between the center of the engine cover portion 16 in the front-rear direction and the upper surface of the engine body 20.
  • the distance D3 is a vertical distance between the rear end of the engine cover portion 16 and the upper surface of the engine body 20. Accordingly, the front portion of the space covered by the vehicle body cover 11 above the engine body 20 has a longer vertical length than the center or the rear portion in the front-rear direction of the space.
  • the heat generated in the space covered by the vehicle body cover 11 above the engine body 20 is more likely to escape forward. That is, the temperature of the front part of the space can be further reduced. Therefore, the influence of heat on the injector 48 can be further suppressed. Therefore, even if the main catalyst 39 is enlarged to improve the purification performance of the main catalyst 39, the influence of the heat of the main catalyst 39 can be further suppressed.
  • the injector 48 is disposed in front of the main catalyst 39. Therefore, the injector 48 is not easily affected by the heat rising from the main catalyst 39.
  • the cross-sectional area S1 of the catalyst arrangement passage part 40b is larger than at least a part of the cross-sectional area of the upstream passage part 40a. Therefore, compared with the case where the cross-sectional area S1 is smaller than or equal to the area of the cross section perpendicular to the flow direction of the exhaust gas in the upstream passage portion 40a, the exhaust gas purification performance by the catalyst can be improved.
  • At least a part of the main catalyst 39 is disposed in front of the motorcycle 1 in the front-rear direction of the motorcycle 1 from the crank axis Cr1. Therefore, the main catalyst 39 is arranged at a position relatively close to the combustion chamber 29. Therefore, it is possible to suppress the temperature from dropping before the exhaust gas discharged from the combustion chamber 29 flows into the main catalyst 39. That is, a decrease in the temperature of the exhaust gas flowing into the main catalyst 39 can be suppressed. Therefore, the exhaust gas purification performance of the main catalyst 39 can be further improved.
  • the straight line L2 is a straight line that is orthogonal to the cylinder axis Cy1 and orthogonal to the crank axis Cr1.
  • the cylinder axis Cy1 extends in the front-rear direction. Therefore, the straight line L2 extends downward from the crank axis Cr1. Therefore, the main catalyst 39 is disposed at a position close to the combustion chamber 29. Therefore, it is possible to suppress the temperature from dropping before the exhaust gas discharged from the combustion chamber 29 flows into the main catalyst 39. That is, a decrease in the temperature of the exhaust gas flowing into the main catalyst 39 can be suppressed. Therefore, the exhaust gas purification performance of the main catalyst 39 can be further improved.
  • the path length (a1 + b1) from one combustion chamber 29 to the upstream end of the main catalyst 39 is shorter than the path length (d1 + e1) from the downstream end of the main catalyst 39 to the discharge port 35e. Therefore, the main catalyst 39 is disposed at a position close to the combustion chamber 29. Therefore, it is possible to suppress the temperature from dropping before the exhaust gas discharged from the combustion chamber 29 flows into the main catalyst 39. That is, a decrease in the temperature of the exhaust gas flowing into the main catalyst 39 can be suppressed. Therefore, the exhaust gas purification performance of the main catalyst 39 can be further improved.
  • the path length (a1 + b1) from one combustion chamber 29 to the upstream end of the main catalyst 39 is shorter than the path length (d1) from the downstream end of the main catalyst 39 to the downstream end of the exhaust pipe 34. Therefore, the main catalyst 39 is disposed at a position closer to the combustion chamber 29. Therefore, it is possible to further suppress “a decrease in temperature before the exhaust gas discharged from the combustion chamber 29 flows into the main catalyst 39. That is, a decrease in the temperature of the exhaust gas flowing into the main catalyst 39 can be further suppressed.
  • the exhaust gas purification performance of the main catalyst 39 can be further improved.
  • the shape of the vehicle body cover 11 is not limited to the shape of the above embodiment.
  • the shape of the engine cover part 16 is not limited to the shape of the said embodiment.
  • the engine cover unit 16 may not cover the right side and the left side of the engine body 20.
  • the engine cover portion 16 may cover the entire right surface and the entire left surface of the engine body 20.
  • the arrangement position of the injector 48 is not limited to the position of the above embodiment. However, the injector 48 is disposed in front of the rear end of the intake passage portion 33. Furthermore, when the single-cylinder four-stroke engine unit 19 and the vehicle body cover 11 are viewed from the front, at least a part of the injector 48 is disposed at a position that can be seen in the opening 17 of the vehicle body cover 11.
  • the injector 48 is provided in the intake passage portion 33.
  • the injector 48 may be provided in the cylinder intake passage portion 30 of the cylinder portion 22. Further, the injector 48 may be arranged to inject fuel into the combustion chamber 29.
  • the injector 48 is disposed in front of the main catalyst 39. However, a part of the injector 48 may be disposed in front of the main catalyst 39. Further, the injector 48 may not be disposed in front of the main catalyst 39.
  • FIG. 9 is an example in which a part of the injector 48 is disposed in front of the main catalyst 39.
  • a straight line L14 shown in FIG. 9 is a straight line that passes through the foremost end of the main catalyst 39 and extends in parallel with the vertical direction. A portion of the injector 48 is disposed in front of the straight line L14. Further, the inclination angle ⁇ 2 of the cylinder axis Cy2 shown in FIG. 9 is larger than the inclination angle ⁇ 1 of the cylinder axis Cy1 of the above embodiment.
  • the shapes of the exhaust pipe 34 and the intake passage portion 33 in the above embodiment are not limited to the shapes in the above embodiment.
  • the internal structure of the silencer 35 is not limited to the structure shown in the schematic diagram of FIG.
  • the intake passage portion 33 is disposed between the engine cover portion 16 and the upper surface of the engine body 20. However, at least a part of the intake passage portion 33 may be disposed between the engine cover portion 16 and the upper surface of the engine body 20.
  • a part of the exhaust pipe 34 is located below the crank axis Cr1.
  • a part of the exhaust pipe may be located above the crank axis Cr1.
  • the exhaust pipe 34 is disposed behind the opening 17 of the vehicle body cover 11. However, at least a part of the exhaust pipe 34 may be disposed behind the opening 17 of the vehicle body cover 11.
  • the exhaust pipe 34 is partially disposed below the lower surface of the engine body 20. However, at least a part of the exhaust pipe 34 may be disposed below the lower surface of the engine body 20.
  • the main catalyst 39 and the silencer 35 are arranged on the right side of the center of the motorcycle 1 in the left-right direction.
  • the main catalyst and the silencer may be arranged on the left side of the motorcycle in the left-right direction center.
  • the arrangement position of the main catalyst 39 is not limited to the position of the above embodiment. However, the main catalyst 39 is disposed in the exhaust pipe 34. Further, at least a part of the main catalyst 39 is disposed below the engine body 20. Hereinafter, a specific example of changing the arrangement position of the main catalyst will be described.
  • a part of the main catalyst 39 is disposed below the lower surface of the engine body 20.
  • at least a part of the main catalyst 39 may be disposed below the lower surface of the engine body 20.
  • the main catalyst 39 is entirely disposed in front of the crank axis Cr1. However, at least a part of the main catalyst may be disposed in front of the crank axis Cr1. Further, at least a part of the main catalyst may be arranged behind the crank axis Cr1.
  • the main catalyst 39 of the above embodiment is disposed in front of the straight line L2 as viewed from the left-right direction. However, at least a part of the main catalyst may be disposed in front of the straight line L2 when viewed from the left-right direction. Further, when viewed from the left-right direction, at least a part of the main catalyst may be disposed behind the straight line L2.
  • the main catalyst 39 of the above embodiment is disposed at a position where the path length a1 + b1 is shorter than the path length d1 + e1.
  • the main catalyst 39 may be disposed at a position where the path length a1 + b1 is longer than the path length d1 + e1.
  • the path length a1 + b1 is a path length from the combustion chamber 29 to the upstream end of the main catalyst 39.
  • the path length d1 + e1 is a path length from the downstream end of the main catalyst 39 to the discharge port 35e.
  • the main catalyst 39 of the above embodiment is disposed at a position where the path length a1 + b1 is shorter than the path length d1. However, the main catalyst 39 may be disposed at a position where the path length a1 + b1 is longer than the path length d1.
  • the path length a1 + b1 is a path length from the combustion chamber 29 to the upstream end of the main catalyst 39.
  • the path length d ⁇ b> 1 is a path length from the downstream end of the main catalyst 39 to the downstream end of the exhaust pipe 34.
  • the main catalyst 39 of the above embodiment is disposed at a position where the path length b1 is shorter than the path length d1. However, the main catalyst 39 may be disposed at a position where the path length b1 is longer than the path length d1.
  • the path length b1 is a path length from the upstream end of the exhaust pipe 34 to the upstream end of the main catalyst 39.
  • the path length d ⁇ b> 1 is a path length from the downstream end of the main catalyst 39 to the downstream end of the exhaust pipe 34.
  • the number of catalysts provided in the single cylinder four-stroke engine unit of the above embodiment is one.
  • the number of catalysts provided in the single-cylinder four-stroke engine unit of the present invention may be plural.
  • the catalyst that most purifies the exhaust gas discharged from the combustion chamber in the exhaust path corresponds to the main catalyst for a single combustion chamber of the present invention.
  • this one catalyst is the main catalyst for a single combustion chamber of the present invention.
  • At least one upstream sub catalyst may be provided upstream of the main catalyst.
  • the upstream sub-catalyst 200 may be provided in the exhaust pipe.
  • the upstream sub catalyst may be provided in the cylinder exhaust passage portion 31.
  • the upstream sub-catalyst 200 may be composed only of the catalyst substance attached to the inner wall of the exhaust pipe 34.
  • the base material to which the catalytic material of the upstream sub-catalyst 200 is attached is the inner wall of the exhaust pipe 34.
  • the upstream sub-catalyst 200 may have a base material disposed inside the exhaust pipe 34.
  • the upstream sub-catalyst 200 includes a base material and a catalyst material.
  • the base material of the upstream sub-catalyst 200 has a plate shape, for example.
  • the shape of the cross section orthogonal to the path direction of the plate-like substrate may be S-shaped, circular, or C-shaped.
  • the upstream sub-catalyst 200 may have a porous structure.
  • the main catalyst 39 purifies the exhaust gas discharged from the combustion chamber 29 in the exhaust passage 41 more than the upstream sub catalyst 200.
  • the upstream sub-catalyst 200 has a lower contribution to purify the exhaust gas than the main catalyst 39.
  • the respective contributions of purification of the main catalyst 39 and the upstream sub-catalyst 200 can be measured by the following method.
  • a catalyst disposed upstream is referred to as a front catalyst
  • a catalyst disposed downstream is referred to as a rear catalyst. That is, the upstream sub catalyst 200 is a front catalyst, and the main catalyst 39 is a rear catalyst.
  • an engine unit having a front catalyst and a rear catalyst is referred to as a modified engine unit.
  • the engine unit of the modified example is operated, and the concentration of harmful substances contained in the exhaust gas discharged from the discharge port 35e in the warm-up state is measured.
  • the exhaust gas measurement method shall be in accordance with European regulations.
  • the main catalyst 39 and the upstream sub-catalyst 200 are activated at a high temperature. Therefore, the main catalyst 39 and the upstream sub-catalyst 200 can sufficiently exhibit purification performance when in the warm-up state.
  • the engine unit in this state is referred to as a measurement engine unit A.
  • emitted from the discharge port 35e at the time of a warm-up state is measured.
  • the front catalyst of this measurement engine unit A is removed, and only the base material of the front catalyst is arranged instead.
  • the engine unit in this state is referred to as a measurement engine unit B.
  • emitted from the discharge port 35e at the time of a warm-up state is measured.
  • the upstream sub-catalyst 200 front catalyst
  • the exhaust pipe 34 corresponds to the base material.
  • the arrangement of only the base material of the upstream sub-catalyst 200 in place of the upstream sub-catalyst 200 is to prevent the catalyst material from adhering to the inner wall of the exhaust pipe 34.
  • the measurement engine unit A has a front catalyst and does not have a rear catalyst.
  • the measurement engine unit B does not have a front catalyst and a rear catalyst. Therefore, the degree of contribution of the purification of the front catalyst (upstream sub-catalyst 200) is calculated from the difference between the measurement result of the measurement engine unit A and the measurement result of the measurement engine unit B. Further, the contribution of the purification of the rear catalyst (main catalyst 39) is calculated from the difference between the measurement result of the measurement engine unit A and the measurement result of the engine unit of the modified example.
  • the purification capacity of the upstream sub-catalyst 200 may be smaller or larger than the purification capacity of the main catalyst 39.
  • the purification capacity of the upstream sub catalyst 200 is smaller than the purification capacity of the main catalyst 39.
  • the exhaust gas purification rate when only the upstream sub catalyst 200 is provided is the purification of exhaust gas when only the main catalyst 39 is provided. That is less than the rate.
  • the upstream sub catalyst upstream of the main catalyst 39 By providing the upstream sub catalyst upstream of the main catalyst 39, the following effects can be obtained.
  • the exhaust gas is purified by the upstream sub catalyst in addition to the main catalyst 39. Therefore, the exhaust gas purification performance by the catalyst can be further improved.
  • the main catalyst 39 and the upstream sub-catalyst can be reduced in size as compared with the case where only the main catalyst 39 is provided while maintaining the exhaust gas purification performance by the catalyst. Thereby, the upstream sub-catalyst can be raised to the activation temperature at an early stage when the engine is started. Therefore, the exhaust gas purification performance by the catalyst can be improved while suppressing an increase in the size of the vehicle in the vertical direction.
  • At least one downstream sub-catalyst may be provided downstream of the main catalyst.
  • the downstream subcatalyst may or may not have a porous structure.
  • a specific example in the case of not having a porous structure is the same as that of the upstream sub-catalyst 200.
  • the downstream sub-catalyst 400 may be provided in the exhaust pipe 34.
  • the downstream sub-catalyst may be provided in the silencer 35.
  • the downstream sub-catalyst may be provided downstream from the downstream end of the exhaust pipe 34.
  • the upstream sub catalyst 200 may be provided upstream of the main catalyst.
  • the downstream sub catalyst downstream of the main catalyst 39 By providing the downstream sub catalyst downstream of the main catalyst 39, the following effects can be obtained.
  • the exhaust gas is purified by the downstream sub catalyst in addition to the main catalyst 39. Therefore, the exhaust gas purification performance by the catalyst can be further improved.
  • the main catalyst 39 and the downstream sub-catalyst can be reduced in size as compared with the case where only the main catalyst 39 is provided while maintaining the exhaust gas purification performance by the catalyst. Thereby, the main catalyst 39 can be raised to the activation temperature at an early stage when the engine is started. Therefore, the exhaust gas purification performance by the catalyst can be improved while suppressing an increase in the size of the vehicle in the vertical direction.
  • the heat released from the main catalyst 39 can be reduced by downsizing the main catalyst 39.
  • the downstream sub-catalyst can be disposed at a position away from the injector 48 in the front-rear direction. Therefore, the influence of heat on the injector 48 can be further suppressed.
  • the main catalyst When the downstream sub-catalyst is provided downstream of the main catalyst, the main catalyst most purifies the exhaust gas discharged from the combustion chamber in the exhaust path.
  • the degree of contribution of purification of each of the main catalyst and the downstream sub-catalyst can be measured by the measurement method described in the modification in which the upstream sub-catalyst is provided.
  • the “front catalyst” is the main catalyst
  • the “rear catalyst” is the “downstream sub-catalyst”.
  • the purification capacity of the downstream sub-catalyst may be smaller or larger than the purification capacity of the main catalyst. That is, the exhaust gas purification rate when only the downstream sub-catalyst is provided may be smaller or larger than the exhaust gas purification rate when only the main catalyst is provided.
  • the main catalyst deteriorates faster than the downstream sub-catalyst. Therefore, when the cumulative travel distance becomes long, the magnitude relationship between the contributions of purification of the main catalyst and the downstream sub-catalyst may be reversed.
  • the main catalyst for a single combustion chamber of the present invention purifies the exhaust gas discharged from the combustion chamber most in the exhaust path. This is a state before the reverse phenomenon as described above occurs. That is, the cumulative travel distance has not reached a predetermined distance (for example, 1000 km).
  • the main catalyst 39 is a three-way catalyst.
  • the main catalyst for a single combustion chamber of the present invention may not be a three-way catalyst.
  • the main catalyst for the single combustion chamber may be a catalyst that removes any one or two of hydrocarbon, carbon monoxide, and nitrogen oxide.
  • the main catalyst for the single combustion chamber may not be a redox catalyst.
  • the main catalyst may be an oxidation catalyst or a reduction catalyst that removes harmful substances only by either oxidation or reduction.
  • An example of a reduction catalyst is a catalyst that removes nitrogen oxides by a reduction reaction. This modification may be applied to the upstream sub-catalyst and the downstream sub-catalyst.
  • the length c1 of the main catalyst 39 in the path direction is larger than the maximum width w1.
  • the length in the path direction may be shorter than the maximum width in the direction perpendicular to the path direction.
  • the main catalyst for a single combustion chamber of the present invention is configured to purify the exhaust gas most in the exhaust path.
  • the exhaust path here is a path from the combustion chamber to the discharge port facing the atmosphere.
  • the main catalyst for a single combustion chamber of the present invention may have a configuration in which a plurality of pieces of catalyst are arranged close to each other. Each piece has a substrate and a catalytic material.
  • proximity means a state in which the distance between pieces is shorter than the length of each piece in the path direction.
  • the composition of the multi-piece substrate may be one type or plural types.
  • the precious metal of the catalyst material of the multi-piece catalyst may be one kind or plural kinds.
  • the composition of the support of the catalyst substance may be one type or a plurality of types. This modification may be applied to the upstream sub-catalyst and the downstream sub-catalyst.
  • the arrangement position of the upstream oxygen detection member 37 is not limited to the position of the above embodiment. However, the upstream oxygen detection member 37 is disposed upstream of the main catalyst 39.
  • the upstream oxygen detection member may be disposed in the cylinder exhaust passage portion 31 of the cylinder portion 22.
  • the number of upstream oxygen detection members provided upstream of the main catalyst 39 may be two or more.
  • the upstream oxygen detection member 37 is preferably provided upstream of the upstream sub-catalyst 200.
  • the upstream oxygen detection member 37 may be provided downstream from the upstream sub-catalyst 200.
  • two upstream oxygen detection members 37 ⁇ / b> A and 37 ⁇ / b> B may be provided upstream and downstream of the upstream sub-catalyst 200.
  • At least one downstream oxygen detection member may be provided downstream of the main catalyst.
  • the specific configuration of the downstream oxygen detection member is the same as that of the upstream oxygen detection member 37 of the above embodiment.
  • the downstream oxygen detection member 437 may be provided in the exhaust pipe.
  • the downstream oxygen detection member may be provided in the silencer 35.
  • the downstream oxygen detection member may be provided so as to detect exhaust gas downstream from the downstream end of the exhaust pipe 34.
  • the downstream oxygen detection member may be provided in the cylinder exhaust passage portion.
  • the downstream oxygen detection member 437 may be disposed at any of the following two positions.
  • the downstream oxygen detection member 437 may be provided downstream of the main catalyst 39 and upstream of the downstream sub-catalyst 400.
  • the downstream oxygen detection member 437 may be provided downstream of the downstream sub-catalyst 400.
  • downstream oxygen detection members may be provided upstream and downstream of the downstream sub-catalyst 400, respectively.
  • the electronic control unit processes the signal of the downstream oxygen detection member.
  • the electronic control unit may determine the purification capacity of the main catalyst based on the signal from the downstream oxygen detection member.
  • the electronic control unit may determine the purification capacity of the main catalyst based on signals from the upstream oxygen detection member and the downstream oxygen detection member.
  • the electronic control unit may perform combustion control based on signals from the upstream oxygen detection member and the downstream oxygen detection member.
  • the fuel injection amount is controlled so that the mixed gas repeats rich and lean for a certain period (several seconds).
  • the delay of the change of the signal of the downstream oxygen detection member with respect to the change of the fuel injection amount is detected.
  • a signal is sent from the electronic control unit to the display device.
  • a warning light (not shown) of the display device is turned on. Thereby, it is possible to prompt the passenger to replace the main catalyst.
  • the deterioration of the main catalyst can be detected by using the signal of the downstream oxygen detection member disposed downstream of the main catalyst. For this reason, it is possible to notify before the deterioration of the main catalyst reaches a predetermined level, and to promote the replacement of the main catalyst. Thereby, the initial performance regarding exhaust gas purification of the saddle riding type vehicle can be maintained for a longer period.
  • the purification capability of the main catalyst may be determined by comparing the change in the signal of the upstream oxygen detection member and the change in the signal of the downstream oxygen detection member.
  • the degree of deterioration of the main catalyst can be detected with higher accuracy. Therefore, the replacement of the main catalyst for the single combustion chamber can be promoted at a more appropriate timing as compared with the case where the deterioration of the main catalyst is determined using only the signal of the downstream oxygen detection member. Therefore, it is possible to use one main catalyst for a longer period while maintaining the initial performance related to the exhaust gas purification performance of the vehicle.
  • the basic fuel injection amount is corrected based on the signal from the upstream oxygen detection member 37 and fuel is injected from the injector 48.
  • the exhaust gas generated by the combustion of the fuel is detected by the downstream oxygen detection member.
  • the fuel injection amount is corrected based on the signal from the downstream oxygen detection member.
  • the actual purification status by the main catalyst can be grasped by using the signals of the two oxygen detection members arranged upstream and downstream of the main catalyst. Therefore, when the fuel control is performed based on the signals of the two oxygen detection members, the accuracy of the fuel control can be improved. Further, the upstream oxygen detection member can stably detect the oxygen concentration in the exhaust gas. Therefore, the accuracy of fuel control can be further improved. Thereby, since the progress of the deterioration of the main catalyst can be delayed, the initial performance regarding the exhaust purification of the saddle riding type vehicle can be maintained for a longer period.
  • the ignition timing and the fuel injection amount are controlled based on the signal from the upstream oxygen detection member 37.
  • the control process based on the signal from the upstream oxygen detection member 37 is not particularly limited, and may be only one of the ignition timing and the fuel injection amount. Further, the control process based on the signal from the upstream oxygen detection member 37 may include a control process other than the above.
  • the upstream oxygen detection member may incorporate a heater.
  • the detection part of the upstream oxygen detection member can detect the oxygen concentration when it is heated to a high temperature and activated. Therefore, if the upstream oxygen detection member has a built-in heater, the start of oxygen detection can be accelerated by heating the detection unit with the heater simultaneously with the start of operation.
  • this modification may be applied to the downstream oxygen detection member.
  • At least a part of the exhaust pipe upstream from the main catalyst may be composed of multiple pipes.
  • the multiple tube has an inner tube and at least one outer tube covering the inner tube.
  • FIG. 11 shows an example in which at least a part of the exhaust pipe 534 upstream of the main catalyst is configured with a double pipe 500.
  • at least a part of the exhaust pipe 534 upstream of the main catalyst may be constituted by a double pipe.
  • the double tube 500 includes an inner tube 501 and an outer tube 502 that covers the inner tube 501.
  • the inner tube 501 and the outer tube 502 are in contact with each other only at both ends.
  • the inner tube and the outer tube of the multiple tube may be in contact with each other at both ends.
  • the inner tube and the outer tube may be in contact with each other at the bent portion.
  • the contact area is preferably smaller than the non-contact area.
  • the inner tube and the outer tube may be in contact with each other.
  • the upstream oxygen detection member is preferably arranged in the middle of the multiple pipe or downstream of the multiple pipe. Multiple tubes have a high thermal insulation effect. Therefore, it is possible to suppress the temperature from dropping before the exhaust gas discharged from the combustion chamber 29 flows into the main catalyst 39. That is, a decrease in the temperature of the exhaust gas flowing into the main catalyst 39 can be suppressed. Therefore, the exhaust gas purification performance of the main catalyst 39 can be further improved.
  • At least a part of the outer surface of the catalyst arrangement passage portion 40b may be covered with a catalyst protector 600.
  • the catalyst protector 600 is formed in a substantially cylindrical shape.
  • the catalyst protector 600 By providing the catalyst protector 600, the catalyst arrangement passage portion 40b and the main catalyst 39 can be protected. Furthermore, by providing the catalyst protector 600, a decrease in the temperature of the main catalyst 39 can be suppressed. Therefore, the exhaust gas purification performance of the main catalyst 39 can be further improved.
  • the single-cylinder four-stroke engine unit of the present invention may include a secondary air supply mechanism that supplies air to the exhaust path.
  • a known configuration is adopted as a specific configuration of the secondary air supply mechanism.
  • the secondary air supply mechanism may be configured to forcibly supply air to the exhaust path using an air pump. Further, the secondary air supply mechanism may be configured to draw air into the exhaust path by the negative pressure of the exhaust path.
  • the secondary air supply mechanism includes a reed valve that opens and closes in response to pressure pulsation caused by exhaust gas.
  • the upstream oxygen detection member may be disposed upstream or downstream of the position where air flows.
  • only one exhaust port 31 a is provided for one combustion chamber 29.
  • a plurality of exhaust ports may be provided for one combustion chamber.
  • the exhaust paths extending from the plurality of exhaust ports gather upstream from the main catalyst.
  • the exhaust paths extending from the plurality of exhaust ports are preferably gathered at the cylinder portion.
  • the combustion chamber of the present invention may have a configuration having a main combustion chamber and a sub-combustion chamber connected to the main combustion chamber.
  • one combustion chamber is formed by the main combustion chamber and the sub-combustion chamber.
  • crankcase body 23 and the cylinder body 24 are separate bodies. However, the crankcase body and the cylinder body may be integrally formed. In the above embodiment, the cylinder body 24, the cylinder head 25, and the head cover 26 are separate bodies. However, any two or three of the cylinder body, the cylinder head, and the head cover may be integrally formed.
  • a motorcycle is exemplified as the saddle riding type vehicle including the single cylinder four-stroke engine unit.
  • the straddle-type vehicle of the present invention may be any straddle-type vehicle as long as it is a straddle-type vehicle that moves with the power of the single-cylinder four-stroke engine unit.
  • the saddle riding type vehicle of the present invention may be a scooter type motorcycle.
  • the straddle-type vehicle of the present invention may be a straddle-type vehicle other than a motorcycle.
  • Saddle-type vehicles refer to all vehicles that ride in a state in which an occupant straddles a saddle.
  • the saddle riding type vehicle includes a motorcycle, a tricycle, a four-wheel buggy (ATV: All Terrain Vehicle), a water bike, a snowmobile, and the like.
  • ATV All Terrain Vehicle
  • the upstream end of the main catalyst means the end of the main catalyst that has the shortest path length from the combustion chamber.
  • the downstream end of the main catalyst means the end where the path length from the combustion chamber is the longest in the main catalyst. Similar definitions apply to upstream and downstream ends of elements other than the main catalyst.
  • the passage means a wall body or the like that surrounds the route to form the route, and the route means a space through which the object passes.
  • the exhaust passage portion means a wall body that surrounds the exhaust path and forms the exhaust path.
  • the exhaust path means a space through which exhaust passes.
  • the length of the exhaust path refers to the length of the line in the middle of the exhaust path.
  • the path length of the expansion chamber of the silencer means the length of the path connecting the middle of the inlet of the expansion chamber to the middle of the outlet of the expansion chamber in the shortest distance.
  • the route direction means the direction of the route passing through the middle of the exhaust route and the direction in which the exhaust gas flows.
  • the expression of the area of a cross section perpendicular to the path direction of the passage portion is used.
  • path part is used.
  • the area of the cross section of the passage portion here may be the area of the inner peripheral surface of the passage portion or the area of the outer peripheral surface of the passage portion.
  • a member or a straight line extends in the A direction does not indicate only a case where the member or the straight line is arranged in parallel with the A direction.
  • the member or straight line extending in the A direction includes the case where the member or straight line is inclined within a range of ⁇ 45 ° with respect to the A direction.
  • the A direction does not indicate a specific direction.
  • the A direction can be replaced with a horizontal direction or a front-rear direction.
  • the crankcase body 23 in the present specification corresponds to the crankcase portion 18 in the specification of the basic application of the present application.
  • the cylinder body 24 in the present specification corresponds to the cylinder portion 24 in the specification of the basic application described above.
  • the engine body 20 in the present specification corresponds to the engine 20 in the specification of the basic application described above.
  • the cylinder exhaust passage portion 31 of the present specification corresponds to a passage portion that forms the exhaust gas passage P2 in the specification of the basic application described above.
  • the present invention is any implementation including equivalent elements, modifications, deletions, combinations (eg, combinations of features across various embodiments), improvements, and / or changes that may be recognized by one of ordinary skill in the art based on the disclosure herein. It includes forms. Claim limitations should be construed broadly based on the terms used in the claims. Claim limitations should not be limited to the embodiments described herein or in the process of this application. Such an embodiment should be construed as non-exclusive. For example, in the present specification, the terms “preferably” and “good” are non-exclusive, and “preferably but not limited to” or “good but not limited thereto”. It means "not.”

Abstract

Provided is a saddle-driven vehicle capable of increasing the purification performance of exhaust gas by a catalyst, suppressing an increase in the size of the vehicle in the vertical direction thereof, and reducing the effect caused by the heat of a catalyst. An opening (17) is formed in the front section of a chassis cover (11). The chassis cover (11) covers at least part of the upper surface of an engine body (20), and includes an engine cover section (16) formed in a manner such that both end sections thereof in the left-right direction are positioned below the center section thereof in the left-right direction. At least part of an intake channel section (33) is positioned between the engine cover section (16) and the upper surface of the engine body (20). A fuel injection device (48) is positioned to the front of the rearmost end of the intake channel section (33). When viewing the engine unit (19) and the chassis cover (11) from the front, at least part of the fuel injection device (48) is positioned in a location which is visible inside the opening (17).

Description

鞍乗型車両Saddle riding vehicle
 本発明は、鞍乗型車両に関する。 The present invention relates to a saddle riding type vehicle.
 従来、単気筒4ストロークエンジンユニットが搭載された鞍乗型車両がある。そして、触媒を排気通路の消音器より上流に配置する構造が提案されている(例えば、特許文献1)。特許文献1の提案によれば、高温の排ガスを触媒に流入できる。触媒は、高温になると活性が高まる。そのため、触媒による排ガスの浄化性能を向上することができる。 Conventionally, there is a straddle-type vehicle equipped with a single cylinder four-stroke engine unit. And the structure which arrange | positions a catalyst upstream from the silencer of an exhaust passage is proposed (for example, patent document 1). According to the proposal of Patent Document 1, high-temperature exhaust gas can flow into the catalyst. The activity of the catalyst increases at higher temperatures. Therefore, the exhaust gas purification performance by the catalyst can be improved.
特開2006-207571号公報JP 2006-207571 A
 しかしながら、触媒はエンジン本体と比べても非常に高温になる。そのため、触媒を消音器より上流に配置すると、触媒の熱害対策が必要になる。一方で、特許文献1の鞍乗型車両は、地面と単気筒4ストロークエンジンユニットとの上下方向の距離を確保する必要がある。従って、例えば、エンジン本体と触媒の間に断熱部材を設けると、エンジン本体をより上方に配置する必要がある。そのため、鞍乗型車両が上下方向に大型化するという問題がある。 However, the catalyst is very hot compared to the engine body. Therefore, if the catalyst is arranged upstream of the silencer, it is necessary to take measures against heat damage to the catalyst. On the other hand, the saddle-ride type vehicle of Patent Document 1 needs to secure a vertical distance between the ground and the single-cylinder four-stroke engine unit. Therefore, for example, when a heat insulating member is provided between the engine main body and the catalyst, the engine main body needs to be arranged further upward. Therefore, there is a problem that the saddle riding type vehicle is enlarged in the vertical direction.
 本発明の目的は、触媒による排ガスの浄化性能を高めつつ、車両の上下方向の大型化を抑制して、且つ、触媒の熱による影響を低減することができる鞍乗型車両を提供することである。 An object of the present invention is to provide a straddle-type vehicle that can improve the purification performance of exhaust gas by a catalyst, suppress an increase in the size of the vehicle in the vertical direction, and reduce the influence of the heat of the catalyst. is there.
 上記特許文献1の提案を詳細に検討してみた。特許文献1の鞍乗型車両は、クランクケース部およびそのクランクケース部から前後方向に伸びる水平シリンダ部を有するエンジン本体を備えている。特許文献1の鞍乗型車両は、単気筒4ストロークエンジンユニットのエンジン本体の下方に触媒を備えている。そのため、触媒からの熱気がエンジン本体の周囲を伝って上昇する。また、特許文献1の鞍乗型車両は、エンジン本体の上面の少なくとも一部を覆うように、エンジン本体の上方に車体カバーを備えている。そのため、エンジン本体の上方の車体カバーに覆われた空間に、エンジン本体及び触媒から上昇した熱が籠もりやすい。しかも、特許文献1の鞍乗型車両のような車両では、吸気管と燃料噴射装置が、水平シリンダ部の上方に配置されることが多い。そのため、水平シリンダ部を有する特許文献1のような鞍乗型車両では、吸気系の部品または燃料供給系の部品がこの熱が籠った空間に配置されることになる。そして、燃料供給系部品が高温になると、エンジンの性能が変化してしまうおそれがある。 The above proposal of Patent Document 1 was examined in detail. The saddle riding type vehicle of Patent Document 1 includes an engine body having a crankcase portion and a horizontal cylinder portion extending in the front-rear direction from the crankcase portion. The saddle riding type vehicle of Patent Literature 1 includes a catalyst below the engine body of a single cylinder four-stroke engine unit. Therefore, the hot air from the catalyst rises along the periphery of the engine body. Further, the saddle riding type vehicle of Patent Document 1 includes a vehicle body cover above the engine body so as to cover at least a part of the upper surface of the engine body. Therefore, the heat that has risen from the engine body and the catalyst tends to be trapped in the space covered by the vehicle body cover above the engine body. Moreover, in a vehicle such as the saddle riding type vehicle of Patent Document 1, the intake pipe and the fuel injection device are often arranged above the horizontal cylinder portion. Therefore, in a saddle-ride type vehicle such as Patent Document 1 having a horizontal cylinder portion, intake system components or fuel supply system components are arranged in a space where the heat is generated. And if the fuel supply system components become high temperature, the performance of the engine may change.
 本願発明者らは、研究開発する中で、エンジン本体の上方の車体カバーに覆われた空間の形状に着目した。特許文献1のような鞍乗型車両のエンジン本体の上方の車体カバーに覆われた空間では、前部とエンジン本体の間隔のほうが中央部または後部とエンジン本体との間隔より大きく形成されている。しかも、エンジン本体の上方の車体カバーに覆われた空間の前部は、車両の前方に開放されている。そこで、鞍乗型車両のエンジン本体の上方の車体カバーに覆われた空間の形状を利用して、吸気系部品または燃料供給系部品の配置を工夫することで、触媒から熱気が上昇しても、吸気系部品または燃料供給系部品への熱の影響を抑制できることを思いついた。また、鞍乗型車両のエンジン本体の上方の車体カバーに覆われた空間の形状を利用して、吸気系部品または燃料供給系部品の配置を工夫することで、触媒の熱が周囲に影響を及ぼさないように断熱する構造を簡素化できることに気がついた。さらに、触媒による浄化性能を向上すべく触媒を大型化しても、触媒の熱による影響を抑制できることを見出した。 The inventors of the present application paid attention to the shape of the space covered by the vehicle body cover above the engine body during research and development. In the space covered by the vehicle body cover above the engine body of the saddle riding type vehicle as in Patent Document 1, the distance between the front part and the engine body is formed larger than the distance between the center part or the rear part and the engine body. . Moreover, the front portion of the space covered by the vehicle body cover above the engine body is open to the front of the vehicle. Therefore, by utilizing the shape of the space covered by the vehicle body cover above the engine body of the saddle riding type vehicle, the arrangement of the intake system parts or the fuel supply system parts can be devised so that hot air rises from the catalyst. I came up with the idea that the effects of heat on the intake system components or fuel supply system components can be reduced. In addition, by utilizing the shape of the space covered by the vehicle body cover above the engine body of the saddle riding type vehicle, the heat of the catalyst affects the surroundings by devising the arrangement of intake system components or fuel supply system components. I noticed that the heat insulation structure can be simplified so as not to reach. Furthermore, it has been found that even if the catalyst is enlarged in order to improve the purification performance by the catalyst, the influence of the heat of the catalyst can be suppressed.
 本発明の鞍乗型車両は、単気筒4ストロークエンジンユニットが搭載された鞍乗型車両であって、前記単気筒4ストロークエンジンユニットは、その一部がシリンダ孔の内面によって区画される1つの燃焼室、前記1つの燃焼室に供給される空気が流れる単一燃焼室用シリンダ吸気通路部および前記1つの燃焼室から排出される排ガスが流れる単一燃焼室用シリンダ排気通路部が形成され、前記シリンダ孔の中心線が前記鞍乗型車両の前後方向に延びるように設けられた水平シリンダ部を有するエンジン本体と、少なくとも一部が前記エンジン本体より上方に配置され、前記エンジン本体の前記単一燃焼室用シリンダ吸気通路部の上流端に接続される単一燃焼室用吸気通路部と、少なくとも一部が前記エンジン本体より下方に配置され、前記エンジン本体の前記単一燃焼室用シリンダ排気通路部の下流端に接続される単一燃焼室用排気管と、大気に面する放出口を有し、前記単一燃焼室用排気管に接続されて前記単一燃焼室用排気管の下流端から流入した排ガスを前記放出口まで流し、排ガスにより生じる音を低減する単一燃焼室用消音器と、前記単一燃焼室用排気管内に配置され、少なくとも一部が前記エンジン本体より下方に配置されており、前記1つの燃焼室から前記放出口までの排気経路において、前記1つの燃焼室から排出された排ガスを最も浄化する単一燃焼室用メイン触媒と、前記単一燃焼室用吸気通路部または前記単一燃焼室用シリンダ吸気通路部に設けられており、前記前後方向において、前記単一燃焼室用吸気通路部の最後端より前方に配置されており、前記単一燃焼室用吸気通路部の上流端から吸入された空気に燃料を噴射する燃料噴射装置と、を有し、前記エンジン本体の上面の少なくとも一部を覆い、且つ、前記鞍乗型車両の左右方向の両端部が前記左右方向の中央より下方に位置するように形成されたエンジンカバー部を含み、その前部に開口部が形成された車体カバーを備え、前記単一燃焼室用吸気通路部は、少なくとも一部が前記エンジンカバー部と前記エンジン本体の上面との間に配置されており、前記前後方向において、その最後端が前記車体カバーの前記開口部より後方に配置されており、前記単一燃焼室用排気管は、前記前後方向において、少なくとも一部が前記車体カバーの前記開口部より後方に配置されており、前記燃料噴射装置は、前記単気筒4ストロークエンジンユニットと前記車体カバーを前方から見たときに、少なくとも一部が前記車体カバーの前記開口部の中に見える位置に配置されていることを特徴とする。 A straddle-type vehicle according to the present invention is a straddle-type vehicle on which a single-cylinder four-stroke engine unit is mounted, and the single-cylinder four-stroke engine unit is a part of which is defined by an inner surface of a cylinder hole. A combustion chamber, a single combustion chamber cylinder intake passage portion through which air supplied to the one combustion chamber flows, and a single combustion chamber cylinder exhaust passage portion through which exhaust gas discharged from the one combustion chamber flows; An engine main body having a horizontal cylinder portion provided so that a center line of the cylinder hole extends in the front-rear direction of the saddle riding type vehicle; and at least a part of the engine main body is disposed above the engine main body. A single combustion chamber intake passage portion connected to the upstream end of the single combustion chamber cylinder intake passage portion, and at least a part of the intake passage portion is disposed below the engine body, and the front A single combustion chamber exhaust pipe connected to the downstream end of the single combustion chamber cylinder exhaust passage portion of the engine body, and a discharge port facing the atmosphere, and connected to the single combustion chamber exhaust pipe The exhaust gas flowing in from the downstream end of the exhaust pipe for the single combustion chamber is caused to flow to the discharge port, and the silencer for the single combustion chamber for reducing the sound generated by the exhaust gas is disposed in the exhaust pipe for the single combustion chamber. , For a single combustion chamber that is at least partially disposed below the engine body and most purifies the exhaust gas discharged from the one combustion chamber in the exhaust path from the one combustion chamber to the discharge port. The main catalyst is provided in the single combustion chamber intake passage portion or the single combustion chamber cylinder intake passage portion, and in front of the rear end of the single combustion chamber intake passage portion in the front-rear direction. Placed and before A fuel injection device for injecting fuel into the air sucked from the upstream end of the intake passage portion for the single combustion chamber, covering at least a part of the upper surface of the engine body, and of the straddle-type vehicle A single combustion chamber intake passage, comprising: a vehicle body cover including an engine cover portion formed such that both ends in the left-right direction are positioned below the center in the left-right direction, and an opening is formed in a front portion thereof; The portion is at least partially disposed between the engine cover portion and the upper surface of the engine body, and in the front-rear direction, a rear end thereof is disposed behind the opening of the vehicle body cover, The single combustion chamber exhaust pipe is disposed at least partially behind the opening of the vehicle body cover in the front-rear direction, and the fuel injection device is configured to be a single-cylinder four-stroke engine unit. When the robot and the vehicle body cover are viewed from the front, at least a part of the vehicle body cover is disposed at a position where it can be seen in the opening of the vehicle body cover.
 この構成によると、本発明の鞍乗型車両に搭載される単気筒4ストロークエンジンユニットは、エンジン本体と、単一燃焼室用吸気通路部と、単一燃焼室用排気管と、単一燃焼室用消音器と、単一燃焼室用メイン触媒と、燃料噴射装置とを備える。エンジン本体は水平シリンダ部を有する。水平シリンダ部には、1つの燃焼室と、単一燃焼室用シリンダ吸気通路部と、単一燃焼室用シリンダ排気通路部が形成されている。燃焼室の一部は、シリンダ孔の内面によって区画されている。単一燃焼室用シリンダ吸気通路部は、1つの燃焼室に供給される空気が流れる。単一燃焼室用シリンダ排気通路部は、1つの燃焼室から排出される排ガスが流れる。単一燃焼室用吸気通路部は、エンジン本体の単一燃焼室用シリンダ吸気通路部の上流端に接続される。単一燃焼室用排気管は、エンジン本体の単一燃焼室用シリンダ排気通路部の下流端に接続される。単一燃焼室用消音器は、大気に面する放出口を有する。単一燃焼室用消音器は、単一燃焼室用排気管に接続されて単一燃焼室用排気管の下流端から流入した排ガスを放出口まで流す。単一燃焼室用消音器は、排ガスにより生じる音を低減する。単一燃焼室用メイン触媒は、単一燃焼室用排気管内に配置される。単一燃焼室用メイン触媒は、1つの燃焼室から放出口までの排気経路において、1つの燃焼室から排出された排ガスを最も浄化する。燃料噴射装置は、単一燃焼室用吸気通路部の上流端から吸入された空気に燃料を噴射する。燃料噴射装置は、単一燃焼室用吸気通路部または単一燃焼室用シリンダ吸気通路部に設けられている。水平シリンダ部は、シリンダ孔の中心線が鞍乗型車両の前後方向に延びるように設けられている。したがって、単一燃焼室用吸気通路部の少なくとも一部は、エンジン本体より上方に配置される。また、単一燃焼室用排気管の少なくとも一部は、エンジン本体より下方に配置される。単一燃焼室用メイン触媒の少なくとも一部は、エンジン本体より下方に配置される。そのため、単一燃焼室用メイン触媒からの熱気は、エンジン本体の周囲を伝ってエンジン本体の上方まで上昇する。 According to this configuration, the single-cylinder four-stroke engine unit mounted on the saddle riding type vehicle of the present invention includes an engine body, a single combustion chamber intake passage, a single combustion chamber exhaust pipe, and a single combustion. A chamber silencer, a single combustion chamber main catalyst, and a fuel injection device are provided. The engine body has a horizontal cylinder portion. In the horizontal cylinder portion, one combustion chamber, a single combustion chamber cylinder intake passage portion, and a single combustion chamber cylinder exhaust passage portion are formed. A part of the combustion chamber is defined by the inner surface of the cylinder hole. In the single combustion chamber cylinder intake passage portion, air supplied to one combustion chamber flows. The exhaust gas discharged from one combustion chamber flows through the cylinder exhaust passage for the single combustion chamber. The single combustion chamber intake passage portion is connected to the upstream end of the single combustion chamber cylinder intake passage portion of the engine body. The single combustion chamber exhaust pipe is connected to the downstream end of the single combustion chamber cylinder exhaust passage portion of the engine body. The single combustion chamber silencer has an outlet facing the atmosphere. The single combustion chamber silencer is connected to the single combustion chamber exhaust pipe and flows the exhaust gas flowing in from the downstream end of the single combustion chamber exhaust pipe to the discharge port. The single combustion chamber silencer reduces the noise produced by the exhaust gas. The main catalyst for the single combustion chamber is disposed in the exhaust pipe for the single combustion chamber. The main catalyst for a single combustion chamber purifies the exhaust gas discharged from one combustion chamber most in the exhaust path from one combustion chamber to the discharge port. The fuel injection device injects fuel into the air sucked from the upstream end of the single combustion chamber intake passage portion. The fuel injection device is provided in a single combustion chamber intake passage portion or a single combustion chamber cylinder intake passage portion. The horizontal cylinder portion is provided such that the center line of the cylinder hole extends in the front-rear direction of the saddle riding type vehicle. Accordingly, at least a portion of the single combustion chamber intake passage portion is disposed above the engine body. Further, at least a part of the single combustion chamber exhaust pipe is disposed below the engine body. At least a part of the single combustion chamber main catalyst is disposed below the engine body. Therefore, the hot air from the main catalyst for the single combustion chamber rises to the upper part of the engine body through the periphery of the engine body.
 エンジン本体の上面の少なくとも一部は、車体カバーのエンジンカバー部によって覆われている。さらに、エンジン本体の上方に配置されるエンジンカバー部は、左右方向の両端部が左右方向の中央より下方に位置するように形成されている。また、単一燃焼室用排気管の少なくとも一部は、車体カバーの前部の開口部より後方に配置されている。そのため、単一燃焼室用メイン触媒およびエンジン本体から上昇した熱は、エンジン本体の上方の車体カバーに覆われた空間に籠りやすい。 At least a part of the upper surface of the engine body is covered with the engine cover part of the vehicle body cover. Further, the engine cover portion disposed above the engine body is formed such that both end portions in the left-right direction are located below the center in the left-right direction. Further, at least a part of the single combustion chamber exhaust pipe is disposed behind the front opening of the vehicle body cover. Therefore, the heat that has risen from the main catalyst for the single combustion chamber and the engine body is likely to go into the space covered by the vehicle body cover above the engine body.
 また、単一燃焼室用吸気通路部の最後端は、車体カバーの開口部より後方に配置されている。単一燃焼室用吸気通路部の少なくとも一部は、エンジンカバー部とエンジン本体の上面との間に配置されている。つまり、単一燃焼室用吸気通路部の少なくとも一部は、エンジン本体の上方の車体カバーに覆われた空間に配置されている。上述したように、エンジン本体の上方の車体カバーに覆われた空間には、単一燃焼室用メイン触媒およびエンジン本体から上昇した熱が籠りやすい。 Also, the rear end of the intake passage for the single combustion chamber is arranged behind the opening of the vehicle body cover. At least a portion of the single combustion chamber intake passage portion is disposed between the engine cover portion and the upper surface of the engine body. That is, at least a part of the single combustion chamber intake passage portion is disposed in a space covered by the vehicle body cover above the engine body. As described above, in the space covered by the vehicle body cover above the engine main body, the heat that has risen from the main catalyst for the single combustion chamber and the engine main body tends to be generated.
 しかし、本発明の鞍乗型車両の車体カバーは、その前部に開口部が形成されている。したがって、エンジン本体の上方の車体カバーに覆われた空間の前部は、車両の前方に開放されている。そのため、エンジン本体の上方の車体カバーに覆われた空間に籠った熱は、前方に逃げやすい。つまり、当該空間の前部の温度は比較的低い。本発明の鞍乗型車両の燃料噴射装置は、単一燃焼室用吸気通路部の最後端より前方に配置されている。つまり、燃料噴射装置は車体カバーの開口部に近い位置に配置されている。さらに、単気筒4ストロークエンジンユニットと車体カバーを前方から見たときに、燃料噴射装置の少なくとも一部は、車体カバーの開口部の中に見えている。そのため、エンジン本体の上方の車体カバーに覆われた空間に熱が籠っていても、燃料噴射装置への熱の影響を抑制できる。つまり、単一燃焼室用メイン触媒から熱気が上昇しても、燃料噴射装置への熱の影響を抑制できる。したがって、単一燃焼室用メイン触媒による浄化性能を向上すべく単一燃焼室用メイン触媒を大型化しても、単一燃焼室用メイン触媒の熱による影響を抑制できる。 However, the body cover of the straddle-type vehicle of the present invention has an opening formed at the front thereof. Therefore, the front part of the space covered with the vehicle body cover above the engine body is open to the front of the vehicle. For this reason, the heat generated in the space covered by the vehicle body cover above the engine body easily escapes forward. That is, the temperature at the front of the space is relatively low. The fuel injection device for a saddle-ride type vehicle according to the present invention is disposed in front of the rear end of the intake passage portion for a single combustion chamber. That is, the fuel injection device is disposed at a position close to the opening of the vehicle body cover. Furthermore, when the single-cylinder four-stroke engine unit and the vehicle body cover are viewed from the front, at least a part of the fuel injection device is visible in the opening of the vehicle body cover. Therefore, even if heat is generated in the space covered by the vehicle body cover above the engine body, the influence of heat on the fuel injection device can be suppressed. That is, even if hot air rises from the single combustion chamber main catalyst, the influence of heat on the fuel injection device can be suppressed. Therefore, even if the single combustion chamber main catalyst is enlarged in order to improve the purification performance of the single combustion chamber main catalyst, the influence of the heat of the single combustion chamber main catalyst can be suppressed.
 このように、燃料噴射装置の配置位置を工夫することで、燃料噴射装置に対する単一燃焼室用メイン触媒の熱の影響を抑制できる。そのため、単一燃焼室用メイン触媒の熱が周囲に影響を及ぼさないように断熱する構造を簡素化できる。そのため、単一燃焼室用メイン触媒による浄化性能を向上すべく単一燃焼室用メイン触媒を大型化しても、車両の上下方向の大型化を抑制できる。 Thus, by devising the arrangement position of the fuel injection device, the influence of the heat of the single combustion chamber main catalyst on the fuel injection device can be suppressed. Therefore, it is possible to simplify the structure for heat insulation so that the heat of the single combustion chamber main catalyst does not affect the surroundings. Therefore, even if the single combustion chamber main catalyst is enlarged in order to improve the purification performance of the single combustion chamber main catalyst, the vehicle can be prevented from being enlarged in the vertical direction.
 以上のように、本発明の鞍乗型車両は、触媒による排ガスの浄化性能を高めつつ、車両の上下方向の大型化を抑制して、且つ、触媒の熱による影響を低減することができる。 As described above, the straddle-type vehicle according to the present invention can suppress the increase in the size of the vehicle in the vertical direction while reducing the exhaust gas purification performance of the catalyst, and can reduce the influence of the heat of the catalyst.
 本発明の鞍乗型車両において、前記燃料噴射装置は、一部が前記単一燃焼室用吸気通路部の前方に配置されることが好ましい。 In the straddle-type vehicle of the present invention, it is preferable that a part of the fuel injection device is disposed in front of the single combustion chamber intake passage portion.
 この構成により、燃料噴射装置は、車体カバーの前部の開口部にさらに近い位置に配置される。そのため、単一燃焼室用メイン触媒から熱気が上昇しても、燃料噴射装置への熱の影響をより抑制できる。したがって、単一燃焼室用メイン触媒による浄化性能を向上すべく単一燃焼室用メイン触媒を大型化しても、単一燃焼室用メイン触媒の熱による影響をより抑制できる。 With this configuration, the fuel injection device is arranged at a position closer to the front opening of the vehicle body cover. Therefore, even if hot air rises from the single combustion chamber main catalyst, the influence of heat on the fuel injection device can be further suppressed. Therefore, even if the single combustion chamber main catalyst is enlarged in order to improve the purification performance of the single combustion chamber main catalyst, the influence of the heat of the single combustion chamber main catalyst can be further suppressed.
 本発明の鞍乗型車両において、前記車体カバーは、前記エンジンカバー部の前端と前記エンジン本体の上面との上下方向の最大離間距離が、前記エンジンカバー部の前後方向中央または後端と前記エンジン本体の上面との上下方向の最大離間距離より大きくなるように形成されていることが好ましい。 In the saddle riding type vehicle according to the present invention, the vehicle body cover has a maximum vertical separation distance between a front end of the engine cover portion and an upper surface of the engine body so that a center or a rear end in the front-rear direction of the engine cover portion and the engine It is preferable to be formed so as to be larger than the maximum vertical separation distance from the upper surface of the main body.
 この構成によると、エンジンカバー部の前端とエンジン本体の上面との上下方向の離間距離が、エンジンカバー部の前後方向中央または後端とエンジン本体の上面との上下方向の離間距離より大きい。したがって、エンジン本体の上方の車体カバーに覆われた空間の前部は、当該空間の前後方向中央または後部よりも上下方向長さが長い。そのため、エンジン本体の上方の車体カバーに覆われた空間に籠った熱は、前方により逃げやすい。つまり、当該空間の前部の温度をより低減できる。そのため、燃料噴射装置への熱の影響をより抑制できる。したがって、単一燃焼室用メイン触媒による浄化性能を向上すべく単一燃焼室用メイン触媒を大型化しても、単一燃焼室用メイン触媒の熱による影響をより抑制できる。 According to this configuration, the vertical distance between the front end of the engine cover portion and the upper surface of the engine body is larger than the vertical distance between the center or the rear end of the engine cover portion and the upper surface of the engine body. Therefore, the front part of the space covered by the vehicle body cover above the engine body has a longer vertical length than the center or rear part in the front-rear direction of the space. For this reason, the heat generated in the space covered by the vehicle body cover above the engine body is more likely to escape forward. That is, the temperature of the front part of the space can be further reduced. Therefore, the influence of heat on the fuel injection device can be further suppressed. Therefore, even if the single combustion chamber main catalyst is enlarged in order to improve the purification performance of the single combustion chamber main catalyst, the influence of the heat of the single combustion chamber main catalyst can be further suppressed.
 本発明の鞍乗型車両において、前記エンジンカバー部は、前記エンジン本体の左面または右面の少なくとも一部を覆うことが好ましい。 In the saddle riding type vehicle according to the present invention, it is preferable that the engine cover portion covers at least a part of a left surface or a right surface of the engine body.
 本発明の鞍乗型車両は、ヘッドパイプ、および、前記ヘッドパイプから後下向きに延びるメインフレームを有する車体フレームを備え、前記車体カバーは、前記メインフレームの少なくとも一部を上方から覆っており、前記エンジン本体は、前記メインフレームの下方に配置されて、前記メインフレームに揺動不能に支持されることが好ましい。 The straddle-type vehicle of the present invention includes a head pipe and a vehicle body frame having a main frame extending rearward and downward from the head pipe, and the vehicle body cover covers at least a part of the main frame from above. Preferably, the engine body is disposed below the main frame and is supported by the main frame so as not to swing.
 本発明の鞍乗型車両において、前記単一燃焼室用排気管は、前記単一燃焼室用メイン触媒が配置される触媒配置通路部と、前記触媒配置通路部の上流端に接続される上流通路部とを有しており、前記触媒配置通路部の排ガスの流れ方向に直交する断面の面積は、前記上流通路部の少なくとも一部の排ガスの流れ方向に直交する断面の面積よりも大きいことが好ましい。 In the saddle riding type vehicle according to the present invention, the exhaust pipe for the single combustion chamber is connected to a catalyst arrangement passage section where the main catalyst for the single combustion chamber is arranged, and an upstream end of the catalyst arrangement passage section. The cross-sectional area perpendicular to the exhaust gas flow direction of the catalyst disposition passage part is larger than the cross-sectional area of the upstream passage part perpendicular to the exhaust gas flow direction. Larger is preferred.
 この構成によると、単一燃焼室用排気管は、単一燃焼室用メイン触媒が配置される触媒配置通路部を有している。また、触媒配置通路部の排ガスの流れ方向に直交する断面の面積を仮にSaとする。面積Saは、上流通路部の少なくとも一部の排ガスの流れ方向に直交する断面の面積よりも大きい。したがって、面積Saが、上流通路部の排ガスの流れ方向に直交する断面の面積より小さい場合又は同じ場合と比較して、触媒による排ガスの浄化性能の向上を図ることができる。 According to this configuration, the single combustion chamber exhaust pipe has the catalyst arrangement passage portion in which the single combustion chamber main catalyst is arranged. Further, an area of a cross section orthogonal to the flow direction of the exhaust gas in the catalyst arrangement passage portion is assumed to be Sa. The area Sa is larger than the area of the cross section orthogonal to the flow direction of at least a part of the upstream passage portion. Therefore, the exhaust gas purification performance by the catalyst can be improved as compared with the case where the area Sa is smaller than or equal to the area of the cross section orthogonal to the flow direction of the exhaust gas in the upstream passage portion.
 本発明の鞍乗型車両において、前記エンジン本体は、前記鞍乗型車両の左右方向に延びるクランク軸を含むクランクケース部を有し、前記単一燃焼室用メイン触媒の少なくとも一部は、前記クランク軸の中心線よりも前記鞍乗型車両の前後方向の前方に位置することが好ましい。 In the straddle-type vehicle of the present invention, the engine body has a crankcase portion including a crankshaft extending in a left-right direction of the straddle-type vehicle, and at least a part of the single combustion chamber main catalyst includes the It is preferable that the saddle type vehicle is positioned in front of the center line of the crankshaft in the front-rear direction.
 この構成によると、単一燃焼室用メイン触媒の少なくとも一部は、クランク軸の中心線より鞍乗型車両の前後方向の前方に配置されている。そのため、単一燃焼室用メイン触媒は、燃焼室に比較的近い位置に配置される。よって、燃焼室から排出された排ガスが単一燃焼室用メイン触媒に流入するまでに温度が低下するのを抑制できる。つまり、単一燃焼室用メイン触媒に流入する排ガスの温度の低下を抑制できる。そのため、単一燃焼室用メイン触媒による排ガスの浄化性能をより向上できる。 According to this configuration, at least a part of the main catalyst for the single combustion chamber is disposed in front of the saddle riding type vehicle from the center line of the crankshaft. Therefore, the single combustion chamber main catalyst is disposed at a position relatively close to the combustion chamber. Therefore, it can suppress that temperature falls before the exhaust gas discharged | emitted from the combustion chamber flows in into the main catalyst for single combustion chambers. That is, a decrease in the temperature of the exhaust gas flowing into the single combustion chamber main catalyst can be suppressed. Therefore, the exhaust gas purification performance of the single combustion chamber main catalyst can be further improved.
 本発明の鞍乗型車両において、前記エンジン本体は、前記鞍乗型車両の左右方向に延びるクランク軸を含むクランクケース部を有し、前記鞍乗型車両を左右方向から見て、前記単一燃焼室用メイン触媒の少なくとも一部が、前記シリンダ孔の中心線に直交し且つ前記クランク軸の中心線に直交する直線の、前記前後方向の前方に位置することが好ましい。 In the saddle riding type vehicle according to the present invention, the engine body includes a crankcase portion including a crankshaft extending in a left-right direction of the saddle riding type vehicle, and the single body is seen from the left side. It is preferable that at least a part of the combustion chamber main catalyst is positioned forward of the straight line perpendicular to the center line of the cylinder hole and perpendicular to the center line of the crankshaft in the front-rear direction.
 シリンダ孔の中心線に直交し且つクランク軸の中心線に直交する直線を、仮に直線Lとする。シリンダ孔の中心線は、クランク軸の中心線を通る。シリンダ孔の中心線は前後方向に延びている。そのため、直線Lは、クランク軸から下方に延びる。左右方向から見て、単一燃焼室用メイン触媒の少なくとも一部は、直線Lの前方に位置する。したがって、単一燃焼室用メイン触媒は、燃焼室に近い位置に配置される。よって、燃焼室から排出された排ガスが単一燃焼室用メイン触媒に流入するまでに温度が低下するのを抑制できる。つまり、単一燃焼室用メイン触媒に流入する排ガスの温度の低下を抑制できる。そのため、単一燃焼室用メイン触媒による排ガスの浄化性能をより向上できる。 Suppose that a straight line perpendicular to the center line of the cylinder hole and perpendicular to the center line of the crankshaft is a straight line L. The center line of the cylinder hole passes through the center line of the crankshaft. The center line of the cylinder hole extends in the front-rear direction. Therefore, the straight line L extends downward from the crankshaft. At least a part of the single combustion chamber main catalyst is located in front of the straight line L when viewed from the left-right direction. Therefore, the main catalyst for a single combustion chamber is disposed at a position close to the combustion chamber. Therefore, it can suppress that temperature falls before the exhaust gas discharged | emitted from the combustion chamber flows in into the main catalyst for single combustion chambers. That is, a decrease in the temperature of the exhaust gas flowing into the single combustion chamber main catalyst can be suppressed. Therefore, the exhaust gas purification performance of the single combustion chamber main catalyst can be further improved.
 本発明の鞍乗型車両において、前記単一燃焼室用メイン触媒は、前記1つの燃焼室から前記単一燃焼室用メイン触媒の上流端までの経路長が、前記単一燃焼室用メイン触媒の下流端から前記放出口までの経路長よりも短くなる位置に配置されることが好ましい。 In the saddle riding type vehicle according to the present invention, the single catalyst for the single combustion chamber has a path length from the single combustion chamber to the upstream end of the single catalyst for the single combustion chamber. It is preferable to be disposed at a position that is shorter than the path length from the downstream end to the discharge port.
 この構成によると、1つの燃焼室から単一燃焼室用メイン触媒の上流端までの経路長は、単一燃焼室用メイン触媒の下流端から放出口までの経路長よりも短い。したがって、単一燃焼室用メイン触媒は、燃焼室に近い位置に配置される。よって、燃焼室から排出された排ガスが単一燃焼室用メイン触媒に流入するまでに温度が低下するのを抑制できる。つまり、単一燃焼室用メイン触媒に流入する排ガスの温度の低下を抑制できる。そのため、単一燃焼室用メイン触媒による排ガスの浄化性能をより向上できる。 According to this configuration, the path length from one combustion chamber to the upstream end of the single catalyst for the single combustion chamber is shorter than the path length from the downstream end of the main catalyst for the single combustion chamber to the discharge port. Therefore, the main catalyst for a single combustion chamber is disposed at a position close to the combustion chamber. Therefore, it can suppress that temperature falls before the exhaust gas discharged | emitted from the combustion chamber flows in into the main catalyst for single combustion chambers. That is, a decrease in the temperature of the exhaust gas flowing into the single combustion chamber main catalyst can be suppressed. Therefore, the exhaust gas purification performance of the single combustion chamber main catalyst can be further improved.
 本発明の鞍乗型車両において、前記単一燃焼室用メイン触媒は、前記1つの燃焼室から前記単一燃焼室用メイン触媒の上流端までの経路長が、前記単一燃焼室用メイン触媒の下流端から前記単一燃焼室用排気管の下流端までの経路長よりも短くなる位置に配置されることが好ましい。 In the saddle riding type vehicle according to the present invention, the single catalyst for the single combustion chamber has a path length from the single combustion chamber to the upstream end of the single catalyst for the single combustion chamber. It is preferable to arrange at a position shorter than the path length from the downstream end to the downstream end of the single combustion chamber exhaust pipe.
 この構成によると、1つの燃焼室から単一燃焼室用メイン触媒の上流端までの経路長は、単一燃焼室用メイン触媒の下流端から単一燃焼室用排気管の下流端までの経路長よりも短い。したがって、単一燃焼室用メイン触媒は、燃焼室に近い位置に配置される。よって、燃焼室から排出された排ガスが単一燃焼室用メイン触媒に流入するまでに温度が低下するのを抑制できる。つまり、単一燃焼室用メイン触媒に流入する排ガスの温度の低下を抑制できる。そのため、単一燃焼室用メイン触媒による排ガスの浄化性能をより向上できる。 According to this configuration, the path length from one combustion chamber to the upstream end of the single combustion chamber main catalyst is the path length from the downstream end of the single combustion chamber main catalyst to the downstream end of the single combustion chamber exhaust pipe. Shorter than the length. Therefore, the main catalyst for a single combustion chamber is disposed at a position close to the combustion chamber. Therefore, it can suppress that temperature falls before the exhaust gas discharged | emitted from the combustion chamber flows in into the main catalyst for single combustion chambers. That is, a decrease in the temperature of the exhaust gas flowing into the single combustion chamber main catalyst can be suppressed. Therefore, the exhaust gas purification performance of the single combustion chamber main catalyst can be further improved.
 本発明の鞍乗型車両において、前記単一燃焼室用排気管は、前記単一燃焼室用メイン触媒よりも排ガスの流れ方向の上流の少なくとも一部が、内管と前記内管を覆う少なくとも1つの外管を備えた多重管で構成されることが好ましい。 In the straddle-type vehicle of the present invention, the exhaust pipe for the single combustion chamber has at least a part upstream of the main combustion catalyst for the single combustion chamber in the flow direction of the exhaust gas so as to cover the inner pipe and the inner pipe. It is preferable that it is composed of a multiple tube with one outer tube.
 この構成によると、単一燃焼室用排気管は、単一燃焼室用メイン触媒よりも上流の少なくとも一部が多重管で構成されている。多重管は保温効果が高い。したがって、燃焼室から排出された排ガスが単一燃焼室用メイン触媒に流入するまでに温度が低下するのを抑制できる。つまり、単一燃焼室用メイン触媒に流入する排ガスの温度の低下を抑制できる。そのため、単一燃焼室用メイン触媒による排ガスの浄化性能をより向上できる。 According to this configuration, at least a part of the exhaust pipe for the single combustion chamber upstream of the main catalyst for the single combustion chamber is configured by multiple tubes. Multiple tubes have a high thermal insulation effect. Therefore, it can suppress that temperature falls before the exhaust gas discharged | emitted from the combustion chamber flows in into the main catalyst for single combustion chambers. That is, a decrease in the temperature of the exhaust gas flowing into the single combustion chamber main catalyst can be suppressed. Therefore, the exhaust gas purification performance of the single combustion chamber main catalyst can be further improved.
 本発明の鞍乗型車両において、前記単一燃焼室用排気管は、前記単一燃焼室用メイン触媒が配置される触媒配置通路部を有し、前記単気筒4ストロークエンジンユニットは、前記触媒配置通路部の外面の少なくとも一部を覆う触媒プロテクターを備えることが好ましい。 In the straddle-type vehicle of the present invention, the single combustion chamber exhaust pipe has a catalyst arrangement passage portion in which the single combustion chamber main catalyst is arranged, and the single cylinder four-stroke engine unit includes the catalyst It is preferable to provide a catalyst protector that covers at least a part of the outer surface of the arrangement passage portion.
 この構成によると、単一燃焼室用排気管は、単一燃焼室用メイン触媒が配置される触媒配置通路部を有する。触媒配置通路部の外面の少なくとも一部は、触媒プロテクターで覆われる。よって、単一燃焼室用メイン触媒の温度の低下を抑制できる。そのため、単一燃焼室用メイン触媒による排ガスの浄化性能をより向上できる。 According to this configuration, the single combustion chamber exhaust pipe has the catalyst arrangement passage portion in which the single combustion chamber main catalyst is arranged. At least a part of the outer surface of the catalyst arrangement passage portion is covered with a catalyst protector. Therefore, a decrease in the temperature of the single combustion chamber main catalyst can be suppressed. Therefore, the exhaust gas purification performance of the single combustion chamber main catalyst can be further improved.
 本発明の鞍乗型車両において、前記単気筒4ストロークエンジンユニットは、前記単一燃焼室用シリンダ通路部内または前記単一燃焼室用排気管内において前記単一燃焼室用メイン触媒よりも排ガスの流れ方向の上流に設けられ、排ガスを浄化する単一燃焼室用上流サブ触媒を備えることが好ましい。請求項1~12のいずれか1項に記載の鞍乗型車両。 In the straddle-type vehicle of the present invention, the single cylinder four-stroke engine unit has a flow of exhaust gas more than the single combustion chamber main catalyst in the single combustion chamber cylinder passage or the single combustion chamber exhaust pipe. It is preferable to provide an upstream sub catalyst for a single combustion chamber that is provided upstream in the direction and purifies exhaust gas. The straddle-type vehicle according to any one of claims 1 to 12.
 この構成によると、単気筒4ストロークエンジンユニットは、単一燃焼室用メイン触媒よりも上流に、単一燃焼室用上流サブ触媒を備える。そのため、排ガスは、単一燃焼室用メイン触媒に加えて、単一燃焼室用上流サブ触媒で浄化される。したがって、触媒による排ガスの浄化性能をより向上させることができる。また、触媒による排ガスの浄化性能を維持しつつ、単一燃焼室用メイン触媒だけを設ける場合に比べて、単一燃焼室用メイン触媒と単一燃焼室用上流サブ触媒をそれぞれ小型化できる。それにより、エンジン始動時に、単一燃焼室用上流サブ触媒を早期に活性化温度まで上昇させることができる。したがって、車両の上下方向の大型化を抑制しつつ、触媒による排ガスの浄化性能を向上できる。 According to this configuration, the single cylinder four-stroke engine unit includes the upstream sub catalyst for the single combustion chamber upstream of the main catalyst for the single combustion chamber. Therefore, in addition to the single combustion chamber main catalyst, the exhaust gas is purified by the single combustion chamber upstream sub-catalyst. Therefore, the exhaust gas purification performance by the catalyst can be further improved. In addition, the single combustion chamber main catalyst and the single combustion chamber upstream sub-catalyst can be reduced in size as compared with the case where only the single combustion chamber main catalyst is provided while maintaining the exhaust gas purification performance of the catalyst. Thereby, at the time of engine start, the upstream sub catalyst for the single combustion chamber can be raised to the activation temperature at an early stage. Therefore, the exhaust gas purification performance by the catalyst can be improved while suppressing an increase in the size of the vehicle in the vertical direction.
 本発明の鞍乗型車両において、前記単気筒4ストロークエンジンユニットは、前記単一燃焼室用シリンダ通路部、前記単一燃焼室用排気管内または前記単一燃焼室用消音器内において前記単一燃焼室用メイン触媒よりも排ガスの流れ方向の下流に設けられ、排ガスを浄化する単一燃焼室用下流サブ触媒を備えることが好ましい。 In the straddle-type vehicle according to the present invention, the single cylinder four-stroke engine unit is configured such that the single combustion chamber cylinder passage portion, the single combustion chamber exhaust pipe, or the single combustion chamber silencer has the single unit. It is preferable to include a downstream sub catalyst for a single combustion chamber that is provided downstream of the combustion chamber main catalyst in the exhaust gas flow direction and purifies the exhaust gas.
 この構成によると、単気筒4ストロークエンジンユニットは、単一燃焼室用メイン触媒よりも下流に、単一燃焼室用上流サブ触媒を備える。そのため、排ガスは、単一燃焼室用メイン触媒に加えて、単一燃焼室用下流サブ触媒で浄化される。したがって、触媒による排ガスの浄化性能をより向上させることができる。また、触媒による排ガスの浄化性能を維持しつつ、単一燃焼室用メイン触媒だけを設ける場合に比べて、単一燃焼室用メイン触媒と単一燃焼室用下流サブ触媒をそれぞれ小型化できる。それにより、エンジン始動時に、単一燃焼室用メイン触媒を早期に活性化温度まで上昇させることができる。したがって、車両の上下方向の大型化を抑制しつつ、触媒による排ガスの浄化性能を向上できる。
 また、単一燃焼室用メイン触媒の小型化により、単一燃焼室用メイン触媒から放出される熱を低減できる。単一燃焼室用下流サブ触媒は、前後方向において、燃料噴射装置から離れた位置に配置できる。そのため、燃料噴射装置への熱の影響をより抑制できる。
According to this configuration, the single cylinder four-stroke engine unit includes the single combustion chamber upstream sub-catalyst downstream of the single combustion chamber main catalyst. Therefore, in addition to the single combustion chamber main catalyst, the exhaust gas is purified by the single combustion chamber downstream sub-catalyst. Therefore, the exhaust gas purification performance by the catalyst can be further improved. In addition, the single combustion chamber main catalyst and the single combustion chamber downstream sub-catalyst can be reduced in size as compared with the case where only the single combustion chamber main catalyst is provided while maintaining the exhaust gas purification performance of the catalyst. Thereby, at the time of engine starting, the main catalyst for single combustion chambers can be raised to the activation temperature at an early stage. Therefore, the exhaust gas purification performance by the catalyst can be improved while suppressing an increase in the size of the vehicle in the vertical direction.
Moreover, the heat | fever discharge | released from the main catalyst for single combustion chambers can be reduced by size reduction of the main catalyst for single combustion chambers. The single combustion chamber downstream sub-catalyst can be disposed at a position away from the fuel injection device in the front-rear direction. Therefore, the influence of heat on the fuel injection device can be further suppressed.
 本発明によれば、触媒による排ガスの浄化性能を高めつつ、車両の上下方向の大型化を抑制して、且つ、触媒の熱による影響を低減することができる。 According to the present invention, it is possible to suppress the increase in size of the vehicle in the vertical direction while reducing the exhaust gas purification performance by the catalyst, and to reduce the influence of the heat of the catalyst.
本発明の本実施形態の自動二輪車の側面図である。1 is a side view of a motorcycle according to an embodiment of the present invention. 図1の自動二輪車から車体カバー等を外した状態の側面図である。FIG. 2 is a side view of the motorcycle of FIG. 1 with a vehicle body cover and the like removed. 図2の底面図である。FIG. 3 is a bottom view of FIG. 2. 図1の自動二輪車の制御ブロック図である。FIG. 2 is a control block diagram of the motorcycle of FIG. 1. 図1の自動二輪車のエンジン本体と排気系を示す模式図である。FIG. 2 is a schematic diagram showing an engine body and an exhaust system of the motorcycle shown in FIG. 1. 図1の自動二輪車の単気筒4ストロークエンジンユニットと車体カバーの正面図である。FIG. 2 is a front view of a single cylinder four-stroke engine unit and a vehicle body cover of the motorcycle of FIG. 1. 図1のA-A線の断面図に、車体カバーの正面図を合わせた図面である。FIG. 2 is a drawing in which a front view of a vehicle body cover is combined with a cross-sectional view taken along line AA in FIG. 1. 図2の部分拡大図である。FIG. 3 is a partially enlarged view of FIG. 2. 本発明の他の実施形態の自動二輪車の側面図の部分拡大図である。FIG. 6 is a partially enlarged view of a side view of a motorcycle according to another embodiment of the present invention. 本発明の他の実施形態の自動二輪車のエンジン本体と排気系を示す模式図である。FIG. 6 is a schematic diagram showing an engine body and an exhaust system of a motorcycle according to another embodiment of the present invention. 本発明の他の実施形態の自動二輪車に適用される排気管の部分断面図である。FIG. 6 is a partial cross-sectional view of an exhaust pipe applied to a motorcycle according to another embodiment of the present invention. 本発明の他の実施形態の自動二輪車の側面図の部分拡大図である。FIG. 6 is a partially enlarged view of a side view of a motorcycle according to another embodiment of the present invention.
 以下、本発明の実施の形態について、図面を参照して詳細に説明する。本発明の鞍乗型車両を自動二輪車に適用した例について説明する。以下の説明において、前、後、左、右は、それぞれ自動二輪車の乗員から見た前、後、左、右を意味するものとする。但し、自動二輪車は、水平な地面に配置されたものとする。各図面に付した符号F、Re、L、Rは、それぞれ前、後、左、右を表す。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. An example in which the saddle riding type vehicle of the present invention is applied to a motorcycle will be described. In the following description, front, rear, left, and right mean front, rear, left, and right, respectively, as viewed from a motorcycle occupant. However, it is assumed that the motorcycle is placed on a horizontal ground. Reference numerals F, Re, L, and R attached to the drawings represent front, rear, left, and right, respectively.
 [全体構成]
 図1は、本実施形態の自動二輪車の側面図である。図2は、本実施形態の自動二輪車の車体カバー等を外した状態の側面図である。図3は、本実施形態の自動二輪車の車体カバー等を外した状態の底面図である。図5は、本実施形態の自動二輪車のエンジンと排気系を示す模式図である。図8は、図2の部分拡大図である。
[overall structure]
FIG. 1 is a side view of the motorcycle according to the present embodiment. FIG. 2 is a side view of the motorcycle according to the present embodiment with the vehicle body cover and the like removed. FIG. 3 is a bottom view of the motorcycle according to the present embodiment with the vehicle body cover and the like removed. FIG. 5 is a schematic diagram showing an engine and an exhaust system of the motorcycle according to the present embodiment. FIG. 8 is a partially enlarged view of FIG.
 本実施形態の鞍乗型車両は、いわゆるアンダーボーン型の自動二輪車1である。図2に示すように、自動二輪車1は、車体フレーム2を備えている。車体フレーム2は、ヘッドパイプ3と、メインフレーム4と、シートレール5とを備えている。メインフレーム4は、ヘッドパイプ3から後下向きに延びている。シートレール5は、メインフレーム4の中途部から後上向きに延びている。 The saddle riding type vehicle of the present embodiment is a so-called underbone type motorcycle 1. As shown in FIG. 2, the motorcycle 1 includes a body frame 2. The vehicle body frame 2 includes a head pipe 3, a main frame 4, and a seat rail 5. The main frame 4 extends rearward and downward from the head pipe 3. The seat rail 5 extends rearward and upward from the middle part of the main frame 4.
 ヘッドパイプ3にはステアリングシャフトが回転可能に挿入されている。ステアリングシャフトの上部には、ハンドル7(図1を参照)が設けられている。ハンドル7の近傍には、表示装置(図示せず)が配置されている。表示装置には、車速、エンジン回転速度、各種の警告などが表示される。 A steering shaft is rotatably inserted into the head pipe 3. A handle 7 (see FIG. 1) is provided on the upper portion of the steering shaft. A display device (not shown) is disposed in the vicinity of the handle 7. The display device displays vehicle speed, engine speed, various warnings, and the like.
 ステアリングシャフトの下部には、左右一対のフロントフォーク6が支持されている。フロントフォーク6の下端部には、車軸8aが固定されている。この車軸8aには、前輪8が回転可能に取り付けられている。前輪8の上方および後方にはフェンダ10が設けられている。 A pair of left and right front forks 6 are supported at the bottom of the steering shaft. An axle 8 a is fixed to the lower end portion of the front fork 6. A front wheel 8 is rotatably attached to the axle 8a. A fender 10 is provided above and behind the front wheel 8.
 シートレール5には、シート9(図1を参照)が支持されている。図2に示すように、シートレール5には、左右一対のリアクッションユニット13の上端部が連結されている。リアクッションユニット13の下端部は、左右一対のリアアーム14の後部に支持されている。リアアーム14の前部は、ピボット軸14aを介して車体フレーム2に連結されている。リアアーム14は、ピボット軸14aを中心として上下に揺動可能である。リアアーム14の後部には、後輪15が支持されている。 A seat 9 (see FIG. 1) is supported on the seat rail 5. As shown in FIG. 2, the seat rail 5 is connected to upper ends of a pair of left and right rear cushion units 13. The lower end portion of the rear cushion unit 13 is supported by the rear portions of the pair of left and right rear arms 14. The front portion of the rear arm 14 is connected to the vehicle body frame 2 via a pivot shaft 14a. The rear arm 14 can swing up and down around the pivot shaft 14a. A rear wheel 15 is supported at the rear portion of the rear arm 14.
 図2に示すように、メインフレーム4の下方には、エンジン本体20が配置されている。エンジン本体20は、車体フレーム2に支持されている。エンジン本体20は、メインフレーム4に揺動不能に支持されている。具体的には、メインフレーム4に設けられたブラケット4aに対して、エンジン本体20の上部が、ボルト4bによって固定されている。つより詳細には、エンジン本体20の後述するクランクケース部21の上前部がブラケット4aに固定されている。また、エンジン本体20の後部も、車体フレーム2に設けられた他のブラケットに固定されている。メインフレーム4の下方で且つエンジン本体20の上方には、エアクリーナ32が配置されている。 As shown in FIG. 2, an engine body 20 is disposed below the main frame 4. The engine body 20 is supported by the body frame 2. The engine body 20 is supported by the main frame 4 so as not to swing. Specifically, the upper part of the engine body 20 is fixed to the bracket 4a provided on the main frame 4 by bolts 4b. More specifically, an upper front portion of a crankcase portion 21 (to be described later) of the engine body 20 is fixed to the bracket 4a. The rear portion of the engine body 20 is also fixed to another bracket provided on the vehicle body frame 2. An air cleaner 32 is disposed below the main frame 4 and above the engine body 20.
 図1に示すように、自動二輪車1は、車体フレーム2等を覆う車体カバー11を有する。車体カバー11は、メインカバー11bと、フロントカバー11aとを有する。フロントカバー11aは、ヘッドパイプ3の前方に配置される。メインカバー11bは、ヘッドパイプ3の後方に配置される。メインカバー11bは、メインフレーム4を上方から覆っている。メインカバー11bは、シートレール5を上方から覆っている。メインカバー11bとフロントカバー11aは、エンジン本体20の前部の左方および右方を覆っている。フロントカバー11aは、エアクリーナ32の左方および右方を覆っている。 As shown in FIG. 1, the motorcycle 1 has a vehicle body cover 11 that covers the vehicle body frame 2 and the like. The vehicle body cover 11 includes a main cover 11b and a front cover 11a. The front cover 11 a is disposed in front of the head pipe 3. The main cover 11 b is disposed behind the head pipe 3. The main cover 11b covers the main frame 4 from above. The main cover 11b covers the seat rail 5 from above. The main cover 11b and the front cover 11a cover the left and right sides of the front portion of the engine body 20. The front cover 11 a covers the left and right sides of the air cleaner 32.
 車体カバー11の前部には開口部17が形成されている。開口部17は、フロントカバー11aに形成されている。図6に示すように、開口部17は、前方から見て逆U字状に形成されている。なお、図6は、自動二輪車の単気筒4ストロークエンジンユニットと車体カバーの正面図である。開口部17の左右方向の最大幅は、前輪8の左右方向幅よりも大きい。また、開口部17の左右方向の最大幅は、フェンダ10の左右方向幅よりも大きい。また、開口部17の上端は、前輪8より上方に位置する。開口部17の上端は、エンジン本体20より上方に位置する。開口部17の下端は、エンジン本体20の下端とほぼ同じ高さである。図1に示すように、エンジン本体20の大部分(一部)は、開口部17より後方に位置している。エアクリーナ32の大部分は、開口部17より後方に位置している。 An opening 17 is formed in the front portion of the vehicle body cover 11. The opening 17 is formed in the front cover 11a. As shown in FIG. 6, the opening 17 is formed in an inverted U shape when viewed from the front. FIG. 6 is a front view of the single-cylinder four-stroke engine unit and the vehicle body cover of the motorcycle. The maximum width in the left-right direction of the opening 17 is larger than the width in the left-right direction of the front wheel 8. Further, the maximum width in the left-right direction of the opening 17 is larger than the width in the left-right direction of the fender 10. Further, the upper end of the opening 17 is located above the front wheel 8. The upper end of the opening 17 is located above the engine body 20. The lower end of the opening 17 is substantially the same height as the lower end of the engine body 20. As shown in FIG. 1, most (part) of the engine body 20 is located behind the opening 17. Most of the air cleaner 32 is located behind the opening 17.
 図1に示すように、車体カバー11はエンジンカバー部16を含む。エンジンカバー部16は、エンジン本体20の上面の少なくとも一部を覆う。エンジンカバー部16は、左右方向の両端部が左右方向の中央部16aより下方に位置するように形成されている。 As shown in FIG. 1, the vehicle body cover 11 includes an engine cover portion 16. The engine cover portion 16 covers at least a part of the upper surface of the engine body 20. The engine cover portion 16 is formed such that both end portions in the left-right direction are located below the center portion 16a in the left-right direction.
 図7に示すように、エンジンカバー部16の前後方向に直交する断面は、逆U字状に形成されている。なお、図7は、図1のA-A線の断面図に、車体カバー11の正面図を合わせた図面である。エンジンカバー部16は左右対称に形成されている。エンジンカバー部16の左右方向中央16aは、エンジンカバー部16の上端を形成している。また、エンジンカバー部16は、エンジン本体20の左面および右面の一部を覆っている。より詳細には、エンジンカバー部16は、エンジン本体20の後述するシリンダ部22の左面および右面の一部を覆っている。 As shown in FIG. 7, the cross section orthogonal to the front-rear direction of the engine cover portion 16 is formed in an inverted U shape. 7 is a drawing in which the front view of the vehicle body cover 11 is combined with the cross-sectional view taken along the line AA in FIG. The engine cover portion 16 is formed symmetrically. The center 16 a in the left-right direction of the engine cover part 16 forms the upper end of the engine cover part 16. Further, the engine cover portion 16 covers a part of the left side and the right side of the engine body 20. More specifically, the engine cover portion 16 covers a part of a left surface and a right surface of a cylinder portion 22 described later of the engine body 20.
 図1に示すように、エンジンカバー部16の前端とエンジン本体20の上面との上下方向の最大離間距離をD1とする。距離D1は、エンジンカバー部16の左右方向中央16aの前端とエンジン本体20の上面との上下方向の離間距離である。エンジンカバー部16の前後方向中央とエンジン本体20の上面との上下方向の最大離間距離をD2とする。距離D2は、エンジンカバー部16の左右方向中央16aの前後方向中央とエンジン本体20の上面との上下方向の離間距離である。エンジンカバー部16の後端とエンジン本体20の上面との上下方向の最大離間距離をD3とする。距離D1は、エンジンカバー部16の左右方向中央16aの前端とエンジン本体20の上面との上下方向の離間距離である。距離D1は、距離D2よりも大きい。距離D1は、距離D3よりも大きい。エンジンカバー部16の上端(左右方向中央16a)は、全体として後下向きに延びている。 As shown in FIG. 1, the maximum vertical distance between the front end of the engine cover portion 16 and the upper surface of the engine body 20 is D1. The distance D <b> 1 is a vertical distance between the front end of the center 16 a in the left-right direction of the engine cover 16 and the upper surface of the engine body 20. The maximum vertical separation distance between the center of the engine cover portion 16 in the front-rear direction and the upper surface of the engine body 20 is defined as D2. The distance D <b> 2 is a vertical distance between the center in the front-rear direction of the center 16 a in the left-right direction of the engine cover 16 and the upper surface of the engine body 20. A maximum distance in the vertical direction between the rear end of the engine cover portion 16 and the upper surface of the engine body 20 is defined as D3. The distance D <b> 1 is a vertical distance between the front end of the center 16 a in the left-right direction of the engine cover portion 16 and the upper surface of the engine body 20. The distance D1 is larger than the distance D2. The distance D1 is larger than the distance D3. The upper end (the center 16a in the left-right direction) of the engine cover portion 16 extends rearward and downward as a whole.
 図1に示すように、車体カバー11は、シート9とヘッドパイプ3との間の部分が低くなっている。また、図2に示すように、メインフレーム4は、シート9とヘッドパイプ3との間の部分が低くなっている。これにより、アンダーボーン型の自動二輪車1は、車両左右方向から見て、ヘッドパイプ3の後方かつシート9の前方かつメインフレーム4の上方に、凹部12が形成されている。この凹部12によって、乗員は車体を跨ぎやすくなっている。 As shown in FIG. 1, the body cover 11 has a lower portion between the seat 9 and the head pipe 3. Further, as shown in FIG. 2, the main frame 4 has a lower portion between the seat 9 and the head pipe 3. As a result, the underbone type motorcycle 1 has a recess 12 formed behind the head pipe 3, ahead of the seat 9 and above the main frame 4 when viewed from the left-right direction of the vehicle. The recess 12 makes it easier for the occupant to straddle the vehicle body.
 自動二輪車1は、単気筒4ストロークエンジンユニット19を有している。単気筒4ストロークエンジンユニット19は、エンジン本体20と、エアクリーナ32と、吸気通路部33(単一燃焼室用吸気通路部)と、排気管34と、消音器35と、メイン触媒39(単一燃焼室用メイン触媒)と、上流酸素検出部材37とを備えている。詳細は後述するが、メイン触媒39は、排気管34内に配置されている。メイン触媒39は、排気管34を流れる排ガスを浄化する。上流酸素検出部材37は、排気管34のメイン触媒39より上流に配置されている。上流酸素検出部材37は、排気管34を流れる排ガス中の酸素濃度を検出する。 The motorcycle 1 has a single-cylinder four-stroke engine unit 19. The single-cylinder four-stroke engine unit 19 includes an engine body 20, an air cleaner 32, an intake passage 33 (single combustion chamber intake passage), an exhaust pipe 34, a silencer 35, and a main catalyst 39 (single A combustion chamber main catalyst) and an upstream oxygen detection member 37. Although details will be described later, the main catalyst 39 is disposed in the exhaust pipe 34. The main catalyst 39 purifies the exhaust gas flowing through the exhaust pipe 34. The upstream oxygen detection member 37 is disposed upstream of the main catalyst 39 in the exhaust pipe 34. The upstream oxygen detection member 37 detects the oxygen concentration in the exhaust gas flowing through the exhaust pipe 34.
 エンジン本体20は、単気筒の4ストロークエンジンである。図2および図3に示すように、エンジン本体20は、クランクケース部21と、シリンダ部22とを備えている。シリンダ部22は、クランクケース部21から前方に延びている。 The engine body 20 is a single-cylinder four-stroke engine. As shown in FIGS. 2 and 3, the engine main body 20 includes a crankcase portion 21 and a cylinder portion 22. The cylinder part 22 extends forward from the crankcase part 21.
 クランクケース部21は、クランクケース本体23と、クランクケース本体23に収容されたクランク軸27および変速機構等を有する。以下、クランク軸27の中心線Cr1を、クランク軸線Cr1と称する。クランク軸線Cr1は、左右方向に延びている。クランクケース本体23内には潤滑用のオイルが貯蔵されている。かかるオイルはオイルポンプ(図示せず)によって搬送され、エンジン本体20内を循環している。 The crankcase portion 21 includes a crankcase body 23, a crankshaft 27 accommodated in the crankcase body 23, a transmission mechanism, and the like. Hereinafter, the center line Cr1 of the crankshaft 27 is referred to as a crankshaft line Cr1. The crank axis Cr1 extends in the left-right direction. Lubricating oil is stored in the crankcase body 23. Such oil is conveyed by an oil pump (not shown) and circulates in the engine body 20.
 シリンダ部22は、シリンダボディ24と、シリンダヘッド25と、ヘッドカバー26と、これらの内部に収容された部品とを有する。図2に示すように、シリンダボディ24は、クランクケース本体23の前部に接続されている。シリンダヘッド25は、シリンダボディ24の前部に接続されている。ヘッドカバー26は、シリンダヘッド25の前部に接続されている。 The cylinder part 22 has a cylinder body 24, a cylinder head 25, a head cover 26, and components housed therein. As shown in FIG. 2, the cylinder body 24 is connected to the front portion of the crankcase body 23. The cylinder head 25 is connected to the front part of the cylinder body 24. The head cover 26 is connected to the front part of the cylinder head 25.
 図5に示すように、シリンダボディ24には、シリンダ孔24aが形成されている。シリンダ孔24a内には、ピストン28が往復移動可能に収容されている。ピストン28はコンロッド28aを介してクランク軸27に連結されている。以下、シリンダ孔24aの中心線Cy1を、シリンダ軸線Cy1と称する。図2に示すように、エンジン本体20は、シリンダ軸線Cy1が、前後方向(水平方向)に延びるように配置されている。より詳細には、シリンダ軸線Cy1のクランクケース部21からシリンダ部22に向かう方向は、前上向きである。シリンダ軸線Cy1の水平方向に対する傾斜角度θ1(図8を参照)は、0度以上45度以下である。シリンダ軸線Cy1は、自動二輪車1の左右方向中央を通っている。なお、自動二輪車1の左右方向中央とは、上下方向から見て、前輪8の左右方向中央と後輪15の左右方向中央を通る直線の位置である。なお、シリンダ軸線Cy1は、自動二輪車1の左右方向中央から右方または左方にずれていてもよい。 As shown in FIG. 5, a cylinder hole 24 a is formed in the cylinder body 24. A piston 28 is accommodated in the cylinder hole 24a so as to be able to reciprocate. The piston 28 is connected to the crankshaft 27 via a connecting rod 28a. Hereinafter, the center line Cy1 of the cylinder hole 24a is referred to as a cylinder axis Cy1. As shown in FIG. 2, the engine body 20 is arranged such that the cylinder axis Cy <b> 1 extends in the front-rear direction (horizontal direction). More specifically, the direction of the cylinder axis Cy1 from the crankcase portion 21 toward the cylinder portion 22 is front-upward. The inclination angle θ1 (see FIG. 8) of the cylinder axis Cy1 with respect to the horizontal direction is not less than 0 degrees and not more than 45 degrees. The cylinder axis Cy <b> 1 passes through the center of the motorcycle 1 in the left-right direction. Note that the center in the left-right direction of the motorcycle 1 is a straight line position passing through the center in the left-right direction of the front wheel 8 and the center in the left-right direction of the rear wheel 15 when viewed from above and below. The cylinder axis Cy1 may be shifted from the center in the left-right direction of the motorcycle 1 to the right or left.
 図5に示すように、シリンダ部22の内部には、1つの燃焼室29が形成されている。燃焼室29は、シリンダボディ24のシリンダ孔24aの内面と、シリンダヘッド25と、ピストン28とによって形成されている。つまり、燃焼室29の一部は、シリンダ孔24aの内面によって区画されている。燃焼室29には、点火プラグ(図示せず)の先端部が配置されている。点火プラグは、燃焼室29内で燃料と空気との混合ガスに点火する。図2に示すように、燃焼室29は、クランク軸線Cr1よりも前方に位置する。これは、以下のように言い換えられる。クランク軸線Cr1を通り、上下方向と平行に延びる直線をL1とする。左右方向から見て、燃焼室29は直線L1の前方に配置されている。 As shown in FIG. 5, one combustion chamber 29 is formed inside the cylinder portion 22. The combustion chamber 29 is formed by the inner surface of the cylinder hole 24 a of the cylinder body 24, the cylinder head 25, and the piston 28. That is, a part of the combustion chamber 29 is partitioned by the inner surface of the cylinder hole 24a. In the combustion chamber 29, a tip end portion of a spark plug (not shown) is arranged. The spark plug ignites a mixed gas of fuel and air in the combustion chamber 29. As shown in FIG. 2, the combustion chamber 29 is located in front of the crank axis Cr1. This is paraphrased as follows. A straight line passing through the crank axis Cr1 and extending in parallel with the vertical direction is defined as L1. When viewed from the left-right direction, the combustion chamber 29 is disposed in front of the straight line L1.
 図5に示すように、シリンダヘッド25には、シリンダ吸気通路部30(単一燃焼室用シリンダ吸気通路部)と、シリンダ排気通路部31(単一燃焼室用シリンダ排気通路部)が形成されている。本明細書において、「通路部」とは、ガスなどが通過する空間(経路)を形成する構造物のことである。シリンダヘッド25において、燃焼室29を形成する壁部には、吸気ポート30aおよび排気ポート31aが形成されている。シリンダ吸気通路部30は、吸気ポート30aからシリンダヘッド25の外面(上面)に形成された吸入口まで延びている。シリンダ排気通路部31は、排気ポート31aからシリンダヘッド25の外面(下面)に形成された排出口まで延びている。燃焼室29に供給される空気は、シリンダ吸気通路部30内を通過する。燃焼室29から排出される排ガスは、シリンダ排気通路部31を通過する。 As shown in FIG. 5, the cylinder head 25 is formed with a cylinder intake passage portion 30 (a single combustion chamber cylinder intake passage portion) and a cylinder exhaust passage portion 31 (a single combustion chamber cylinder exhaust passage portion). ing. In the present specification, the “passage part” is a structure that forms a space (path) through which gas or the like passes. In the cylinder head 25, an intake port 30 a and an exhaust port 31 a are formed in a wall portion that forms the combustion chamber 29. The cylinder intake passage portion 30 extends from the intake port 30 a to an intake port formed on the outer surface (upper surface) of the cylinder head 25. The cylinder exhaust passage 31 extends from the exhaust port 31 a to a discharge port formed on the outer surface (lower surface) of the cylinder head 25. Air supplied to the combustion chamber 29 passes through the cylinder intake passage portion 30. The exhaust gas discharged from the combustion chamber 29 passes through the cylinder exhaust passage portion 31.
 シリンダ吸気通路部30には吸気弁V1が配置されている。シリンダ排気通路部31には排気弁V2が配置されている。吸気弁V1および排気弁V2は、クランク軸27と連動する動弁機構(図示せず)によって作動する。吸気ポート30aは、吸気弁V1の運動により開閉される。排気ポート31aは、排気弁V2の運動により開閉される。シリンダ吸気通路部30の上流端(吸入口)には吸気通路部33が接続されている。シリンダ排気通路部31の下流端(排出口)には排気管34が接続されている。シリンダ排気通路部31の経路長をa1とする。 The cylinder intake passage 30 is provided with an intake valve V1. An exhaust valve V <b> 2 is disposed in the cylinder exhaust passage portion 31. The intake valve V <b> 1 and the exhaust valve V <b> 2 are operated by a valve operating mechanism (not shown) that is linked to the crankshaft 27. The intake port 30a is opened and closed by the movement of the intake valve V1. The exhaust port 31a is opened and closed by the movement of the exhaust valve V2. An intake passage 33 is connected to the upstream end (suction port) of the cylinder intake passage 30. An exhaust pipe 34 is connected to the downstream end (discharge port) of the cylinder exhaust passage portion 31. The path length of the cylinder exhaust passage portion 31 is a1.
 [吸気系の構成]
 以下、本実施形態の自動二輪車1の吸気系について説明する。本明細書の吸気系の説明において、上流とは、燃焼室29に供給される空気の流れ方向の上流のことである。また、下流とは、燃焼室29に供給される空気の流れ方向の下流のことである。
[Configuration of intake system]
Hereinafter, the intake system of the motorcycle 1 of the present embodiment will be described. In the description of the intake system in the present specification, the upstream means the upstream in the flow direction of the air supplied to the combustion chamber 29. Further, “downstream” means downstream in the flow direction of the air supplied to the combustion chamber 29.
 吸気通路部33の下流端は、シリンダ吸気通路部30の上流端に接続されている。吸気通路部33の上流端は、エアクリーナ32に接続されている。図6に示すように、前方から見て、吸気通路部33は、シリンダ部22の上面から以下のように延びている。吸気通路部33は、シリンダ部22の上面から上向きに延びた後、屈曲して右上向きに延びている。その後さらに屈曲して上向きに延びている。また、図8に示すように、吸気通路部33は、エンジン本体20の上方に配置されている。また、吸気通路部33の少なくとも一部は、エンジン本体20の上面より上方に配置されている。 The downstream end of the intake passage portion 33 is connected to the upstream end of the cylinder intake passage portion 30. The upstream end of the intake passage portion 33 is connected to the air cleaner 32. As shown in FIG. 6, when viewed from the front, the intake passage portion 33 extends from the upper surface of the cylinder portion 22 as follows. The intake passage portion 33 extends upward from the upper surface of the cylinder portion 22 and then bends and extends upward. After that, it bends and extends upward. In addition, as shown in FIG. 8, the intake passage portion 33 is disposed above the engine body 20. Further, at least a part of the intake passage portion 33 is disposed above the upper surface of the engine body 20.
 吸気通路部33は、エンジンカバー部16とエンジン本体20の上面との間に配置されている。図8に示すように、吸気通路部33の最後端を通り、上下方向と平行に延びる直線をL3とする。直線L3は、開口部17より後方に位置する。つまり、吸気通路部33の最後端は、車体カバー11の開口部17より後方に配置されている。 The intake passage portion 33 is disposed between the engine cover portion 16 and the upper surface of the engine body 20. As shown in FIG. 8, let L3 be a straight line that passes through the rearmost end of the intake passage portion 33 and extends in parallel with the vertical direction. The straight line L3 is located behind the opening 17. That is, the rearmost end of the intake passage portion 33 is disposed behind the opening 17 of the vehicle body cover 11.
 図9に示すように、吸気通路部33には、インジェクタ48(燃料噴射装置)が設けられている。インジェクタ48は、シリンダ吸気通路部30内で燃料を噴射する。つまり、インジェクタ48は、吸気通路部33の上流端から吸入された空気に燃料を噴射する。なお、インジェクタ48は、吸気通路部33内で燃料を噴射するように構成されていてもよい。 As shown in FIG. 9, the intake passage 33 is provided with an injector 48 (fuel injection device). The injector 48 injects fuel in the cylinder intake passage portion 30. That is, the injector 48 injects fuel into the air sucked from the upstream end of the intake passage portion 33. The injector 48 may be configured to inject fuel in the intake passage portion 33.
 インジェクタ48は、吸気通路部33の前部に設けられている。インジェクタ48の一部は、吸気通路部33の前方に配置されている。インジェクタ48は、直線L3より前方に配置されている。つまり、インジェクタ48は、吸気通路部33の最後端より前方に配置されている。 The injector 48 is provided in the front portion of the intake passage portion 33. A part of the injector 48 is disposed in front of the intake passage portion 33. The injector 48 is disposed in front of the straight line L3. That is, the injector 48 is disposed in front of the rear end of the intake passage portion 33.
 図2および図8に示すように、メイン触媒39の最前端を通り、上下方向と平行に延びる直線をL4とする。インジェクタ48は、直線L4より前方に配置されている。つまり、インジェクタ48は、メイン触媒39より前方に配置されている。インジェクタ48は、車体カバー11の開口部17より後方に配置されている。また、インジェクタ48の少なくとも一部は、エアクリーナ32の下方に配置されている。 As shown in FIGS. 2 and 8, a straight line that passes through the foremost end of the main catalyst 39 and extends in parallel with the vertical direction is L4. The injector 48 is disposed in front of the straight line L4. That is, the injector 48 is disposed in front of the main catalyst 39. The injector 48 is disposed behind the opening 17 of the vehicle body cover 11. In addition, at least a portion of the injector 48 is disposed below the air cleaner 32.
 図6に示すように、単気筒4ストロークエンジンユニット19と車体カバー11を前方から見たときに、インジェクタ48の一部は、車体カバー11の開口部17の中に見える。つまり、前方から見たときに、車体カバー11と単気筒4ストロークエンジンユニット19によって、インジェクタ48全体が隠れていない。前方から見て、インジェクタ48の一部(下部)は、シリンダ部22(エンジン本体20)によって隠れている。 As shown in FIG. 6, when the single-cylinder four-stroke engine unit 19 and the vehicle body cover 11 are viewed from the front, a part of the injector 48 is visible in the opening 17 of the vehicle body cover 11. That is, the entire injector 48 is not hidden by the vehicle body cover 11 and the single cylinder four-stroke engine unit 19 when viewed from the front. When viewed from the front, a part (lower part) of the injector 48 is hidden by the cylinder part 22 (engine body 20).
 吸気通路部33の途中には、スロットルボディ50が設けられている。スロットルボディ50には、スロットルバルブ51が内蔵されている。つまり、スロットルバルブ51は、吸気通路部33内に配置されている。スロットルバルブ51の開度が変更されることにより、エンジン本体20に供給される空気量が調整される。 A throttle body 50 is provided in the middle of the intake passage portion 33. A throttle valve 51 is built in the throttle body 50. That is, the throttle valve 51 is disposed in the intake passage portion 33. The amount of air supplied to the engine body 20 is adjusted by changing the opening of the throttle valve 51.
 エアクリーナ32は、シリンダ部22(エンジン本体20)の前部の上方に配置されている。吸気通路部33はエアクリーナ32の後部に接続されている。エアクリーナ32は、エンジン本体20に供給される空気を浄化する。エアクリーナ32を通過することによって浄化された空気が、吸気通路部33を通じてエンジン本体20に供給される。 The air cleaner 32 is disposed above the front part of the cylinder part 22 (engine body 20). The intake passage portion 33 is connected to the rear portion of the air cleaner 32. The air cleaner 32 purifies the air supplied to the engine body 20. The air purified by passing through the air cleaner 32 is supplied to the engine body 20 through the intake passage portion 33.
 [排気系の構成]
 以下、本実施形態の自動二輪車1の排気系について説明する。本明細書の排気系の説明において、上流とは、排ガスの流れ方向の上流のことである。また、下流とは、排ガスの流れ方向の下流のことである。また、本明細書の排気系の説明において、経路方向とは、排ガスの流れる方向のことである。
[Exhaust system configuration]
Hereinafter, the exhaust system of the motorcycle 1 of the present embodiment will be described. In the description of the exhaust system in the present specification, upstream means upstream in the flow direction of exhaust gas. Further, the downstream means downstream in the flow direction of the exhaust gas. In the description of the exhaust system of the present specification, the path direction is the direction in which exhaust gas flows.
 上述したように、単気筒4ストロークエンジンユニット19は、エンジン本体20と、排気管34と、消音器35と、メイン触媒39と、上流酸素検出部材37とを備えている。消音器35は、大気に面する放出口35eを有する。燃焼室29から放出口35eに至る経路を、排気経路41(図5を参照)とする。排気経路41は、シリンダ排気通路部31と排気管34と消音器35とによって形成される。排気経路41は、排ガスが通過する空間である。 As described above, the single cylinder four-stroke engine unit 19 includes the engine body 20, the exhaust pipe 34, the silencer 35, the main catalyst 39, and the upstream oxygen detection member 37. The silencer 35 has a discharge port 35e facing the atmosphere. A path from the combustion chamber 29 to the discharge port 35e is an exhaust path 41 (see FIG. 5). The exhaust path 41 is formed by the cylinder exhaust passage portion 31, the exhaust pipe 34, and the silencer 35. The exhaust path 41 is a space through which exhaust gas passes.
 図5に示すように、排気管34の上流端部は、シリンダ排気通路部31に接続される。排気管34の下流端部は、消音器35に接続される。排気管34の途中には、触媒ユニット38が設けられている。排気管34の触媒ユニット38より上流の部分を、上流排気管34aとする。排気管34の触媒ユニット38より下流の部分を下流排気管34bとする。なお、図5では、簡略化のために排気管34および吸気通路部33を一直線状に描いているが、排気管34および吸気通路部33は一直線状ではない。 As shown in FIG. 5, the upstream end portion of the exhaust pipe 34 is connected to the cylinder exhaust passage portion 31. The downstream end of the exhaust pipe 34 is connected to a silencer 35. A catalyst unit 38 is provided in the middle of the exhaust pipe 34. A portion of the exhaust pipe 34 upstream from the catalyst unit 38 is referred to as an upstream exhaust pipe 34a. A portion of the exhaust pipe 34 downstream from the catalyst unit 38 is referred to as a downstream exhaust pipe 34b. In FIG. 5, the exhaust pipe 34 and the intake passage portion 33 are drawn in a straight line for simplification, but the exhaust pipe 34 and the intake passage portion 33 are not in a straight line.
 図3に示すように、排気管34は、自動二輪車1の右部に設けられている。図2に示すように、左右方向から見て、排気管34の一部は、エンジン本体20の下方に配置されている。具体的には、左右方向から見て、排気管34の上流端を含む一部分が、エンジン本体20の下方に配置されている。エンジン本体20の最下端を通り、前後方向と平行に延びる直線をL5とする。排気管34の一部は、直線L5より下方に配置されている。つまり、排気管34の一部は、エンジン本体20の下面より下方に配置されている。排気管34は、車体カバー11の開口部17より後方に配置されている。図2に示すように、排気管34の一部は、クランク軸線Cr1の下方に位置する。 As shown in FIG. 3, the exhaust pipe 34 is provided in the right part of the motorcycle 1. As shown in FIG. 2, a part of the exhaust pipe 34 is disposed below the engine body 20 when viewed from the left-right direction. Specifically, a portion including the upstream end of the exhaust pipe 34 is disposed below the engine body 20 when viewed from the left-right direction. A straight line passing through the lowermost end of the engine body 20 and extending in parallel with the front-rear direction is denoted as L5. A part of the exhaust pipe 34 is disposed below the straight line L5. That is, a part of the exhaust pipe 34 is disposed below the lower surface of the engine body 20. The exhaust pipe 34 is disposed behind the opening 17 of the vehicle body cover 11. As shown in FIG. 2, a part of the exhaust pipe 34 is positioned below the crank axis Cr1.
 排気管34は、2つの屈曲部を有する。2つの屈曲部のうち上流の屈曲部を、単に、上流の屈曲部という。2つの屈曲部のうち下流の屈曲部を、単に、下流の屈曲部という。図2に示すように、上流の屈曲部は、左右方向から見て、排ガスの流れ方向を、上下方向に延びる方向から前後方向に延びる方向に変化させる。より具体的には、屈曲部は、左右方向から見て、排ガスの流れ方向を、下向きから後上向きに変化させる。また、図3に示すように、上流の屈曲部は、下方から見て、排ガスの流れ方向を変化させる。図2に示すように、下流の屈曲部は、左右方向から見て、排ガスの流れ方向を、後上向きから後向きに変化させる。また、図3に示すように、下流の屈曲部は、下方から見て、排ガスの流れ方向を、後右向きから後向きに変化させる。下流の屈曲部より若干下流の部分が、クランク軸線Cr1の下方に位置する。メイン触媒39は2つの屈曲部の間に配置されている。 The exhaust pipe 34 has two bent portions. Of the two bent portions, the upstream bent portion is simply referred to as an upstream bent portion. Of the two bent portions, the downstream bent portion is simply referred to as a downstream bent portion. As shown in FIG. 2, the upstream bent portion changes the flow direction of the exhaust gas from the direction extending in the vertical direction to the direction extending in the front-rear direction when viewed from the left-right direction. More specifically, the bent portion changes the flow direction of the exhaust gas from downward to rearward as viewed from the left-right direction. Further, as shown in FIG. 3, the upstream bent portion changes the flow direction of the exhaust gas when viewed from below. As shown in FIG. 2, the downstream bent portion changes the flow direction of the exhaust gas from the rear upward direction to the rear direction as viewed from the left-right direction. Moreover, as shown in FIG. 3, the downstream bent portion changes the flow direction of the exhaust gas from the rear right direction to the rear direction as viewed from below. A portion slightly downstream from the downstream bent portion is positioned below the crank axis Cr1. The main catalyst 39 is disposed between the two bent portions.
 消音器35には、排気管34の下流端から排出された排ガスが流入する。消音器35は、排気管34に接続されている。消音器35は、排ガスの脈動波を抑制するように構成されている。それにより、消音器35は、排ガスによって生じる音(排気音)の音量を低減できる。消音器35内には、複数の膨張室と、膨張室同士を連通する複数のパイプが設けられている。排気管34の下流端部は、消音器35の膨張室内に配置されている。消音器35の下流端には、大気に面する放出口35eが設けられている。図5に示すように、排気管34の下流端から放出口35eに至る排気経路の経路長をe1とする。なお、消音器35内の膨張室の経路長は、膨張室の流入口の真ん中から膨張室の流出口の真ん中を最短で結んだ経路の長さである。消音器35を通過した排ガスは、放出口35eから大気へ放出される。図2に示すように、放出口35eは、クランク軸線Cr1よりも後方に位置する。 The exhaust gas discharged from the downstream end of the exhaust pipe 34 flows into the silencer 35. The silencer 35 is connected to the exhaust pipe 34. The silencer 35 is configured to suppress pulsating waves of exhaust gas. Thereby, the silencer 35 can reduce the volume of the sound (exhaust sound) generated by the exhaust gas. In the silencer 35, a plurality of expansion chambers and a plurality of pipes communicating the expansion chambers are provided. The downstream end of the exhaust pipe 34 is disposed in the expansion chamber of the silencer 35. At the downstream end of the silencer 35, a discharge port 35e facing the atmosphere is provided. As shown in FIG. 5, the path length of the exhaust path from the downstream end of the exhaust pipe 34 to the discharge port 35e is defined as e1. The path length of the expansion chamber in the silencer 35 is the length of the path connecting the center of the expansion chamber inlet to the center of the expansion chamber outlet at the shortest distance. The exhaust gas that has passed through the silencer 35 is discharged to the atmosphere from the discharge port 35e. As shown in FIG. 2, the discharge port 35e is located behind the crank axis Cr1.
 メイン触媒39は、排気管34内に配置されている。触媒ユニット38は、筒状のケーシング40と、メイン触媒39とを有する。ケーシング40の上流端は、上流排気管34aに接続されている。ケーシング40の下流端は、下流排気管34bに接続されている。ケーシング40は、排気管34の一部を構成する。メイン触媒39は、ケーシング40の内部に固定されている。排ガスは、メイン触媒39を通過することで浄化される。メイン触媒39には、燃焼室29の排気ポート31aから排出された全ての排ガスが通過する。メイン触媒39は、排気経路41において、燃焼室29から排出された排ガスを最も浄化する。 The main catalyst 39 is disposed in the exhaust pipe 34. The catalyst unit 38 includes a cylindrical casing 40 and a main catalyst 39. The upstream end of the casing 40 is connected to the upstream exhaust pipe 34a. The downstream end of the casing 40 is connected to the downstream exhaust pipe 34b. The casing 40 constitutes a part of the exhaust pipe 34. The main catalyst 39 is fixed inside the casing 40. The exhaust gas is purified by passing through the main catalyst 39. All exhaust gas discharged from the exhaust port 31 a of the combustion chamber 29 passes through the main catalyst 39. The main catalyst 39 purifies the exhaust gas discharged from the combustion chamber 29 most in the exhaust path 41.
 メイン触媒39は、いわゆる三元触媒である。三元触媒とは、排ガスに含まれる炭化水素、一酸化炭素、および窒素酸化物の3物質を酸化または還元することで除去する。三元触媒は、酸化還元触媒の1種である。メイン触媒39は、基材と、この基材の表面に付着された触媒物質とを有する。触媒物質は、担体と貴金属を有する。担体は、貴金属と基材の間に設けられる。担体は貴金属を担持する。この貴金属が、排ガスを浄化する。貴金属としては、例えば、炭化水素、一酸化炭素、および窒素酸化物をそれぞれ除去する、プラチナ、パラジウム、ロジウムなどが挙げられる。 The main catalyst 39 is a so-called three-way catalyst. The three-way catalyst is removed by oxidizing or reducing three substances of hydrocarbon, carbon monoxide, and nitrogen oxide contained in the exhaust gas. The three-way catalyst is one type of redox catalyst. The main catalyst 39 has a base material and a catalytic material attached to the surface of the base material. The catalytic material has a support and a noble metal. The carrier is provided between the noble metal and the substrate. The carrier carries a noble metal. This noble metal purifies the exhaust gas. Examples of the noble metal include platinum, palladium, and rhodium that remove hydrocarbons, carbon monoxide, and nitrogen oxides, respectively.
 メイン触媒39は、多孔構造を有している。多孔構造とは、排気経路41の経路方向に垂直な断面に多孔が形成されている構造を言う。多孔構造の一例は、ハニカム構造である。メイン触媒39には、上流排気管34aの経路幅より十分に細い複数の孔が形成されている。 The main catalyst 39 has a porous structure. The porous structure refers to a structure in which a hole is formed in a cross section perpendicular to the path direction of the exhaust path 41. An example of the porous structure is a honeycomb structure. The main catalyst 39 has a plurality of holes sufficiently narrower than the path width of the upstream exhaust pipe 34a.
 メイン触媒39は、メタル基材触媒であっても、セラミック基材触媒であってもよい。メタル基材触媒とは、基材が金属製の触媒である。セラミック基材触媒とは、基材がセラミック製の触媒である。メタル基材触媒の基材は、例えば、金属製の波板と金属製の平板を交互に重ねて巻回することで形成される。セラミック基材触媒の基材は、例えば、ハニカム構造体である。 The main catalyst 39 may be a metal base catalyst or a ceramic base catalyst. The metal base catalyst is a catalyst whose base is made of metal. The ceramic base catalyst is a catalyst whose base is made of ceramic. The base material of the metal base catalyst is formed, for example, by alternately stacking and winding metal corrugated plates and metal flat plates. The base material of the ceramic base catalyst is, for example, a honeycomb structure.
 図5に示すように、メイン触媒39の経路方向の長さをc1とする。メイン触媒39の経路方向に垂直な方向の最大幅をw1とする。メイン触媒39の長さc1は、メイン触媒39の最大幅w1より長い。メイン触媒39の経路方向に直交する断面形状は、例えば円形状である。断面形状は、上下方向長さよりも左右方向長さが長い形状であってもよい。 As shown in FIG. 5, the length of the main catalyst 39 in the path direction is c1. The maximum width in the direction perpendicular to the path direction of the main catalyst 39 is w1. The length c1 of the main catalyst 39 is longer than the maximum width w1 of the main catalyst 39. The cross-sectional shape orthogonal to the path direction of the main catalyst 39 is, for example, a circular shape. The cross-sectional shape may be a shape in which the horizontal length is longer than the vertical length.
 図5に示すように、ケーシング40は、触媒配置通路部40bと、上流通路部40aと、下流通路部40cとを有する。触媒配置通路部40bには、メイン触媒39が配置される。経路方向において、触媒配置通路部40bの上流端および下流端は、メイン触媒39の上流端および下流端とそれぞれ同じ位置である。触媒配置通路部40bの経路方向に直交する断面の面積は、経路方向においてほぼ一定である。上流通路部40aは、触媒配置通路部40bの上流端に接続されている。下流通路部40cは、触媒配置通路部40bの上流端に接続されている。 As shown in FIG. 5, the casing 40 includes a catalyst arrangement passage portion 40b, an upstream passage portion 40a, and a downstream passage portion 40c. The main catalyst 39 is arranged in the catalyst arrangement passage portion 40b. In the path direction, the upstream end and the downstream end of the catalyst arrangement passage portion 40 b are at the same positions as the upstream end and the downstream end of the main catalyst 39, respectively. The area of the cross section perpendicular to the path direction of the catalyst arrangement passage portion 40b is substantially constant in the path direction. The upstream passage portion 40a is connected to the upstream end of the catalyst arrangement passage portion 40b. The downstream passage portion 40c is connected to the upstream end of the catalyst arrangement passage portion 40b.
 上流通路部40aは、少なくとも一部が、テーパー状に形成されている。このテーパー部は、下流に向かって内径が大きくなっている。下流通路部40cは、少なくとも一部が、テーパー状に形成されている。このテーパー部は、下流に向かって内径が小さくなっている。触媒配置通路部40bの経路方向に直交する断面の面積をS1とする。上流通路部40aの少なくとも一部の経路方向に直交する断面の面積は面積S1よりも小さい。ここでの上流通路部40aの少なくとも一部には、上流通路部40aの上流端が含まれる。下流通路部40cの少なくとも一部の経路方向に直交する断面の面積は面積S1よりも小さい。ここでの下流通路部40cの少なくとも一部には、下流通路部40cの下流端が含まれる。 The upstream passage portion 40a is at least partially tapered. The tapered portion has an inner diameter that increases toward the downstream. The downstream passage portion 40c is at least partially tapered. The tapered portion has an inner diameter that decreases toward the downstream. The area of the cross section orthogonal to the path direction of the catalyst arrangement passage portion 40b is S1. The area of the cross section orthogonal to the route direction of at least a part of the upstream passage portion 40a is smaller than the area S1. Here, at least a part of the upstream passage portion 40a includes the upstream end of the upstream passage portion 40a. The area of the cross section perpendicular to the path direction of at least a part of the downstream passage portion 40c is smaller than the area S1. Here, at least a part of the downstream passage portion 40c includes the downstream end of the downstream passage portion 40c.
 図2および図8に示すように、左右方向から見て、メイン触媒39は、エンジン本体20の下方に配置されている。また、図2に示すように、メイン触媒39の一部は、直線L5より下方に位置する。つまり、メイン触媒39の一部は、エンジン本体20の下面より下方に配置されている。また、図3に示すように、下方から見て、メイン触媒39は、エンジン本体20と重なっていない。なお、下方から見て、メイン触媒39は、エンジン本体20と重なっていてもよい。 As shown in FIGS. 2 and 8, the main catalyst 39 is disposed below the engine body 20 when viewed from the left-right direction. Further, as shown in FIG. 2, a part of the main catalyst 39 is located below the straight line L5. That is, a part of the main catalyst 39 is disposed below the lower surface of the engine body 20. As shown in FIG. 3, the main catalyst 39 does not overlap the engine body 20 when viewed from below. Note that the main catalyst 39 may overlap the engine body 20 as viewed from below.
 図2および図3に示すように、メイン触媒39は、クランク軸線Cr1よりも前方に配置されている。つまり、左右方向から見て、メイン触媒39は、直線L1の前方に配置されている。上述したように、直線L1は、クランク軸線Cr1を通り、上下方向と平行に延びる直線である。当然ながら、メイン触媒39の上流端も、クランク軸線Cr1よりも前方に配置されている。また、左右方向から見て、メイン触媒39は、シリンダ軸線Cy1の前方(下方)に位置する。 2 and 3, the main catalyst 39 is disposed in front of the crank axis Cr1. That is, the main catalyst 39 is disposed in front of the straight line L1 when viewed from the left-right direction. As described above, the straight line L1 is a straight line that passes through the crank axis Cr1 and extends parallel to the vertical direction. Of course, the upstream end of the main catalyst 39 is also arranged in front of the crank axis Cr1. Further, the main catalyst 39 is located in front (downward) of the cylinder axis Cy1 when viewed from the left-right direction.
 図2に示すように、シリンダ軸線Cy1に直交し且つクランク軸線Cr1に直交する直線をL2とする。左右方向から見て、メイン触媒39は、直線L2の前方に位置する。 As shown in FIG. 2, let L2 be a straight line that is orthogonal to the cylinder axis Cy1 and orthogonal to the crank axis Cr1. When viewed from the left-right direction, the main catalyst 39 is located in front of the straight line L2.
 図5に示すように、排気管34の上流端からメイン触媒39の上流端までの経路長をb1とする。経路長b1は、上流排気管34aと触媒ユニット38の上流通路部40aからなる通路部の経路長である。言い換えると、経路長b1は、シリンダ排気通路部31の下流端からメイン触媒39の上流端までの経路長である。また、メイン触媒39の下流端から排気管34の下流端までの経路長をd1とする。経路長d1は、触媒ユニット38の下流通路部40cと下流排気管34bからなる通路部の経路長である。燃焼室29からメイン触媒39の上流端までの経路長は、a1+b1である。メイン触媒39の下流端から放出口35eまでの経路長は、d1+e1である。 As shown in FIG. 5, the path length from the upstream end of the exhaust pipe 34 to the upstream end of the main catalyst 39 is b1. The path length b <b> 1 is the path length of the passage portion including the upstream exhaust pipe 34 a and the upstream passage portion 40 a of the catalyst unit 38. In other words, the path length b1 is the path length from the downstream end of the cylinder exhaust passage portion 31 to the upstream end of the main catalyst 39. The path length from the downstream end of the main catalyst 39 to the downstream end of the exhaust pipe 34 is defined as d1. The path length d1 is the path length of the passage portion including the downstream passage portion 40c and the downstream exhaust pipe 34b of the catalyst unit 38. The path length from the combustion chamber 29 to the upstream end of the main catalyst 39 is a1 + b1. The path length from the downstream end of the main catalyst 39 to the discharge port 35e is d1 + e1.
 メイン触媒39は、経路長a1+b1が、経路長d1+e1よりも短くなる位置に配置される。また、メイン触媒39は、経路長a1+b1が、経路長d1よりも短くなる位置に配置される。さらに、メイン触媒39は、経路長b1が、経路長d1よりも短くなる位置に配置される。 The main catalyst 39 is disposed at a position where the path length a1 + b1 is shorter than the path length d1 + e1. The main catalyst 39 is disposed at a position where the path length a1 + b1 is shorter than the path length d1. Further, the main catalyst 39 is disposed at a position where the path length b1 is shorter than the path length d1.
 上流酸素検出部材37は、排気管34に配置されている。上流酸素検出部材37は、メイン触媒39よりも上流に配置される。上流酸素検出部材37は、排ガスに含まれる酸素濃度を検出するセンサである。上流酸素検出部材37は、酸素濃度が所定値より高いか低いかを検出する酸素センサであってもよい。また、上流酸素検出部材37は、酸素濃度を複数段階またはリニアに表わす検出信号を出力するセンサ(例えばA/Fセンサ: Air Fuel ratio sensor)であってもよい。上流酸素検出部材37は、一端部(検出部)が排気管34内に配置され、他端部が排気管34の外に配置される。上流酸素検出部材37の検出部は、高温に加熱されて活性化状態となったときに、酸素濃度を検出できる。上流酸素検出部材37の検出結果は、電子制御ユニット45に出力される。 The upstream oxygen detection member 37 is disposed in the exhaust pipe 34. The upstream oxygen detection member 37 is disposed upstream of the main catalyst 39. The upstream oxygen detection member 37 is a sensor that detects the concentration of oxygen contained in the exhaust gas. The upstream oxygen detection member 37 may be an oxygen sensor that detects whether the oxygen concentration is higher or lower than a predetermined value. Further, the upstream oxygen detection member 37 may be a sensor (for example, an A / F sensor: Air Fuel ratio sensor) that outputs a detection signal representing the oxygen concentration in a plurality of steps or linearly. The upstream oxygen detection member 37 has one end (detection unit) disposed in the exhaust pipe 34 and the other end disposed outside the exhaust pipe 34. The detection unit of the upstream oxygen detection member 37 can detect the oxygen concentration when it is heated to a high temperature and activated. The detection result of the upstream oxygen detection member 37 is output to the electronic control unit 45.
 次に、単気筒4ストロークエンジンユニット19の制御について説明する。図4は、本実施形態の自動二輪車の制御ブロック図である。 Next, control of the single cylinder four-stroke engine unit 19 will be described. FIG. 4 is a control block diagram of the motorcycle according to the present embodiment.
 単気筒4ストロークエンジンユニット19は、図4に示すように、エンジン回転速度センサ46a、スロットル開度センサ46b(スロットルポジションセンサ)、エンジン温度センサ46c、吸気圧センサ46d、吸気温センサ46eを有する。エンジン回転速度センサ46aは、クランク軸27の回転速度、即ち、エンジン回転速度を検出する。スロットル開度センサ46bは、スロットルバルブ51の位置を検出することにより、スロットルバルブ51の開度(以下、スロットル開度という)を検出する。エンジン温度センサ46cは、エンジン本体の温度を検出する。吸気圧センサ46dは、吸気通路部33内の圧力(吸気圧)を検出する。吸気温センサ46eは、吸気通路部33内の空気の温度(吸気温)を検出する。 As shown in FIG. 4, the single-cylinder four-stroke engine unit 19 includes an engine speed sensor 46a, a throttle opening sensor 46b (throttle position sensor), an engine temperature sensor 46c, an intake pressure sensor 46d, and an intake temperature sensor 46e. The engine rotation speed sensor 46a detects the rotation speed of the crankshaft 27, that is, the engine rotation speed. The throttle opening sensor 46b detects the opening of the throttle valve 51 (hereinafter referred to as the throttle opening) by detecting the position of the throttle valve 51. The engine temperature sensor 46c detects the temperature of the engine body. The intake pressure sensor 46d detects the pressure (intake pressure) in the intake passage portion 33. The intake air temperature sensor 46e detects the temperature of air in the intake passage portion 33 (intake air temperature).
 単気筒4ストロークエンジンユニット19は、エンジン本体20の制御を行う電子制御ユニット(ECU:Electronic Control Unit)45を備えている。電子制御ユニット45は、エンジン回転速度センサ46a、エンジン温度センサ46c、スロットル開度センサ46b、吸気圧センサ46d、吸気温センサ46e、車速センサ等の各種センサと接続されている。また、電子制御ユニット45は、イグニッションコイル47、インジェクタ48、燃料ポンプ49、表示装置(図示せず)等と接続されている。電子制御ユニット45は、制御部45aと、作動指示部45bとを有する。作動指示部45bは、イグニッション駆動回路45cと、インジェクタ駆動回路45dと、ポンプ駆動回路45eとを備えている。 The single-cylinder four-stroke engine unit 19 includes an electronic control unit (ECU: Electronic Control Unit) 45 that controls the engine body 20. The electronic control unit 45 is connected to various sensors such as an engine speed sensor 46a, an engine temperature sensor 46c, a throttle opening sensor 46b, an intake pressure sensor 46d, an intake air temperature sensor 46e, and a vehicle speed sensor. The electronic control unit 45 is connected to an ignition coil 47, an injector 48, a fuel pump 49, a display device (not shown), and the like. The electronic control unit 45 includes a control unit 45a and an operation instruction unit 45b. The operation instructing unit 45b includes an ignition drive circuit 45c, an injector drive circuit 45d, and a pump drive circuit 45e.
 イグニッション駆動回路45c、インジェクタ駆動回路45d、および、ポンプ駆動回路45eは、制御部45aからの信号を受けて、イグニッションコイル47、インジェクタ48、燃料ポンプ49をそれぞれ駆動する。イグニッションコイル47が駆動されると、点火プラグで火花放電が生じて混合ガスが点火される。燃料ポンプ49は、燃料ホースを介してインジェクタ48に接続されている。燃料ポンプ49が駆動されると、燃料タンク(図示せず)内の燃料がインジェクタ48へ圧送される。 The ignition drive circuit 45c, the injector drive circuit 45d, and the pump drive circuit 45e drive the ignition coil 47, the injector 48, and the fuel pump 49, respectively, in response to a signal from the control unit 45a. When the ignition coil 47 is driven, a spark discharge is generated at the spark plug, and the mixed gas is ignited. The fuel pump 49 is connected to the injector 48 via a fuel hose. When the fuel pump 49 is driven, fuel in a fuel tank (not shown) is pumped to the injector 48.
 制御部45aは、例えばマイクロコンピュータである。制御部45aは、上流酸素検出部材37の信号、エンジン回転速度センサ46a等の信号に基づいて、イグニッション駆動回路45c、インジェクタ駆動回路45d、および、ポンプ駆動回路45eを制御する。制御部45aは、イグニッション駆動回路45cを制御することで、点火のタイミングを制御する。制御部45aは、インジェクタ駆動回路45dおよびポンプ駆動回路45eを制御することで、燃料噴射量を制御する。 The control unit 45a is, for example, a microcomputer. The controller 45a controls the ignition drive circuit 45c, the injector drive circuit 45d, and the pump drive circuit 45e based on the signal from the upstream oxygen detection member 37, the signal from the engine rotation speed sensor 46a, and the like. The controller 45a controls the ignition timing by controlling the ignition drive circuit 45c. The controller 45a controls the fuel injection amount by controlling the injector drive circuit 45d and the pump drive circuit 45e.
 燃焼効率と、メイン触媒39の浄化効率を高めるには、燃焼室29内の混合気の空燃比は、理論空燃比(ストイキオメトリ)であることが好ましい。制御部45aは、必要に応じて、燃料噴射量を増減させる。 In order to increase the combustion efficiency and the purification efficiency of the main catalyst 39, the air-fuel ratio of the air-fuel mixture in the combustion chamber 29 is preferably the stoichiometric air-fuel ratio (stoichiometry). The controller 45a increases or decreases the fuel injection amount as necessary.
 以下、制御部45aによる燃料噴射量の制御(燃焼制御)の一例について説明する。
 制御部45aは、まず、エンジン回転速度センサ46a、スロットル開度センサ46b、エンジン温度センサ46c、吸気圧センサ46dの信号に基づいて、基本燃料噴射量を算出する。具体的には、スロットル開度およびエンジン回転速度に対して吸入空気量を対応付けたマップと、吸気圧およびエンジン回転速度に対して吸入空気量を対応付けたマップを用いて、吸入空気量を求める。そして、マップから求められた吸入空気量に基づいて、目標空燃比を達成できる基本燃料噴射量を決定する。スロットル開度が小さい場合には、吸気圧およびエンジン回転速度に対して吸入空気量を対応付けたマップを使用する。一方、スロットル開度が大きい場合には、スロットル開度およびエンジン回転速度に対して吸入空気量を対応付けたマップを使用する。
Hereinafter, an example of fuel injection amount control (combustion control) by the controller 45a will be described.
First, the controller 45a calculates the basic fuel injection amount based on signals from the engine speed sensor 46a, the throttle opening sensor 46b, the engine temperature sensor 46c, and the intake pressure sensor 46d. Specifically, the intake air amount is calculated using a map in which the intake air amount is associated with the throttle opening and the engine rotational speed, and a map in which the intake air amount is associated with the intake pressure and the engine rotational speed. Ask. Then, based on the intake air amount obtained from the map, the basic fuel injection amount that can achieve the target air-fuel ratio is determined. When the throttle opening is small, a map in which the intake air amount is associated with the intake pressure and the engine speed is used. On the other hand, when the throttle opening is large, a map in which the intake air amount is associated with the throttle opening and the engine speed is used.
 また、制御部45aは、上流酸素検出部材37の信号に基づいて、基本燃料噴射量を補正するためのフィードバック補正値を算出する。具体的には、まず、上流酸素検出部材37の信号に基づいて、混合気がリーンであるかリッチであるかを判定する。なお、リッチとは、理論空燃比に対して燃料が過剰な状態をいう。リーンとは、理論空燃比に対して空気が過剰な状態をいう。制御部45aは、混合気がリーンであると判定すると、次回の燃料噴射量が増えるようにフィードバック補正値を算出する。一方、制御部45aは、混合気がリッチであると判定すると、次回の燃料噴射量が減るようにフィードバック補正値を求める。 Further, the control unit 45a calculates a feedback correction value for correcting the basic fuel injection amount based on the signal from the upstream oxygen detection member 37. Specifically, first, based on the signal from the upstream oxygen detection member 37, it is determined whether the air-fuel mixture is lean or rich. Note that rich means that the fuel is excessive with respect to the stoichiometric air-fuel ratio. Lean means a state where air is excessive with respect to the stoichiometric air-fuel ratio. When determining that the air-fuel mixture is lean, the control unit 45a calculates a feedback correction value so that the next fuel injection amount increases. On the other hand, when determining that the air-fuel mixture is rich, the control unit 45a obtains a feedback correction value so that the next fuel injection amount is reduced.
 また、制御部45aは、エンジン温度、外気温度、外気圧等に基づいて、基本燃料噴射量を補正するための補正値を算出する。さらに、制御部45aは、加速及び減速時の過渡特性に応じた補正値を算出する。 Further, the control unit 45a calculates a correction value for correcting the basic fuel injection amount based on the engine temperature, the outside air temperature, the outside air pressure, and the like. Furthermore, the control unit 45a calculates a correction value according to the transient characteristics during acceleration and deceleration.
 制御部45aは、基本燃料噴射量と、フィードバック補正値などの補正値に基づいて、燃料噴射量を算出する。こうして求められた燃料噴射量に基づいて、燃料ポンプ49およびインジェクタ48が駆動される。このように、電子制御ユニット45は、上流酸素検出部材37の信号を処理する。また、電子制御ユニット45は、上流酸素検出部材37の信号に基づいて、燃焼制御を行う。 The control unit 45a calculates the fuel injection amount based on the basic fuel injection amount and a correction value such as a feedback correction value. Based on the fuel injection amount thus determined, the fuel pump 49 and the injector 48 are driven. Thus, the electronic control unit 45 processes the signal of the upstream oxygen detection member 37. The electronic control unit 45 performs combustion control based on the signal from the upstream oxygen detection member 37.
 以上、本実施形態の自動二輪車1の構成について説明した。本実施形態の自動二輪車1は以下の特徴を有する。 The configuration of the motorcycle 1 according to this embodiment has been described above. The motorcycle 1 of the present embodiment has the following characteristics.
 シリンダ部22(水平シリンダ部)は、シリンダ軸線Cy1が自動二輪車1の前後方向に延びるように設けられている。したがって、吸気通路部33の少なくとも一部は、エンジン本体20より上方に配置される。また、排気管34の少なくとも一部は、エンジン本体20より下方に配置される。メイン触媒39の少なくとも一部は、エンジン本体20より下方に配置される。そのため、メイン触媒39からの熱気は、エンジン本体20の周囲を伝ってエンジン本体20の上方まで上昇する。 The cylinder portion 22 (horizontal cylinder portion) is provided so that the cylinder axis Cy1 extends in the front-rear direction of the motorcycle 1. Accordingly, at least a part of the intake passage portion 33 is disposed above the engine body 20. Further, at least a part of the exhaust pipe 34 is disposed below the engine body 20. At least a part of the main catalyst 39 is disposed below the engine body 20. Therefore, the hot air from the main catalyst 39 rises to the upper part of the engine body 20 through the periphery of the engine body 20.
 エンジン本体20の上面の少なくとも一部は、車体カバー11のエンジンカバー部16によって覆われている。さらに、エンジン本体20の上方に配置されるエンジンカバー部16は、左右方向の両端部が左右方向中央16aより下方に位置するように形成されている。また、排気管34の少なくとも一部は、車体カバー11の前部の開口部17より後方に配置されている。そのため、メイン触媒39およびエンジン本体20から上昇した熱は、エンジン本体20の上方の車体カバー11に覆われた空間に籠りやすい。 At least a part of the upper surface of the engine body 20 is covered by the engine cover portion 16 of the vehicle body cover 11. Further, the engine cover portion 16 disposed above the engine body 20 is formed such that both end portions in the left-right direction are located below the center 16a in the left-right direction. Further, at least a part of the exhaust pipe 34 is disposed behind the opening 17 at the front portion of the vehicle body cover 11. Therefore, the heat that has risen from the main catalyst 39 and the engine main body 20 tends to go into the space covered by the vehicle body cover 11 above the engine main body 20.
 また、吸気通路部33の最後端は、車体カバー11の開口部17より後方に配置されている。吸気通路部33の少なくとも一部は、エンジンカバー部16とエンジン本体20の上面との間に配置されている。つまり、吸気通路部33の少なくとも一部は、エンジン本体20の上方の車体カバー11に覆われた空間に配置されている。上述したように、エンジン本体20の上方の車体カバー11に覆われた空間には、メイン触媒39およびエンジン本体20から上昇した熱が籠りやすい。しかし、車体カバー11は、その前部に開口部17が形成されている。したがって、エンジン本体20の上方の車体カバー11に覆われた空間の前部は、車両の前方に開放されている。そのため、エンジン本体20の上方の車体カバー11に覆われた空間に籠った熱は、前方に逃げやすい。つまり、当該空間の前部の温度は比較的低い。インジェクタ48は、吸気通路部33の最後端より前方に配置されている。つまり、インジェクタ48は車体カバー11の開口部17に近い位置に配置されている。さらに、単気筒4ストロークエンジンユニットと車体カバー11を前方から見たときに、インジェクタ48の少なくとも一部は、車体カバー11の開口部17の中に見えている。そのため、エンジン本体20の上方の車体カバー11に覆われた空間に熱が籠っていても、インジェクタ48への熱の影響を抑制できる。つまり、メイン触媒39から熱気が上昇しても、インジェクタ48への熱の影響を抑制できる。したがって、メイン触媒39による浄化性能を向上すべくメイン触媒39を大型化しても、メイン触媒39の熱による影響を抑制できる。 In addition, the rearmost end of the intake passage portion 33 is disposed behind the opening 17 of the vehicle body cover 11. At least a part of the intake passage portion 33 is disposed between the engine cover portion 16 and the upper surface of the engine body 20. That is, at least a part of the intake passage portion 33 is disposed in a space covered by the vehicle body cover 11 above the engine body 20. As described above, in the space covered by the vehicle body cover 11 above the engine body 20, the heat that has risen from the main catalyst 39 and the engine body 20 is likely to be generated. However, the vehicle body cover 11 has an opening 17 formed at the front thereof. Therefore, the front part of the space covered with the vehicle body cover 11 above the engine body 20 is open to the front of the vehicle. For this reason, the heat generated in the space covered by the vehicle body cover 11 above the engine body 20 tends to escape forward. That is, the temperature at the front of the space is relatively low. The injector 48 is disposed in front of the rear end of the intake passage portion 33. That is, the injector 48 is disposed at a position close to the opening 17 of the vehicle body cover 11. Further, when the single-cylinder four-stroke engine unit and the vehicle body cover 11 are viewed from the front, at least a part of the injector 48 is visible in the opening 17 of the vehicle body cover 11. Therefore, even if heat is generated in the space covered by the vehicle body cover 11 above the engine body 20, the influence of heat on the injector 48 can be suppressed. That is, even if hot air rises from the main catalyst 39, the influence of heat on the injector 48 can be suppressed. Therefore, even if the main catalyst 39 is enlarged to improve the purification performance of the main catalyst 39, the influence of the heat of the main catalyst 39 can be suppressed.
 このように、インジェクタ48の配置位置を工夫することで、インジェクタ48に対するメイン触媒39の熱の影響を抑制できる。そのため、メイン触媒39の熱が周囲に影響を及ぼさないように断熱する構造を簡素化できる。そのため、メイン触媒39による浄化性能を向上すべくメイン触媒39を大型化しても、車両の上下方向の大型化を抑制できる。 Thus, by devising the arrangement position of the injector 48, the influence of the heat of the main catalyst 39 on the injector 48 can be suppressed. Therefore, it is possible to simplify the structure for heat insulation so that the heat of the main catalyst 39 does not affect the surroundings. Therefore, even if the main catalyst 39 is enlarged in order to improve the purification performance by the main catalyst 39, the vehicle can be prevented from being enlarged in the vertical direction.
 以上のように、本発明の自動二輪車1は、触媒による排ガスの浄化性能を高めつつ、車両の上下方向の大型化を抑制して、且つ、触媒の熱による影響を低減することができる。 As described above, the motorcycle 1 according to the present invention can improve the exhaust gas purification performance of the catalyst, suppress the increase in size of the vehicle in the vertical direction, and reduce the influence of the heat of the catalyst.
 インジェクタ48の一部は吸気通路部33の前方に配置される。それにより、インジェクタ48は、車体カバー11の前部の開口部17にさらに近い位置に配置される。そのため、メイン触媒39から熱気が上昇しても、インジェクタ48への熱の影響をより抑制できる。したがって、メイン触媒39による浄化性能を向上すべくメイン触媒39を大型化しても、メイン触媒39の熱による影響をより抑制できる。 A part of the injector 48 is disposed in front of the intake passage portion 33. Thereby, the injector 48 is disposed at a position closer to the opening 17 at the front portion of the vehicle body cover 11. Therefore, even if hot air rises from the main catalyst 39, the influence of heat on the injector 48 can be further suppressed. Therefore, even if the main catalyst 39 is enlarged to improve the purification performance of the main catalyst 39, the influence of the heat of the main catalyst 39 can be further suppressed.
 また、エンジンカバー部16は、エンジン本体20の左面または右面の少なくとも一部を覆っている。そのため、エンジン本体20の上方の空間に熱がより籠りやすい。さらに、エアクリーナ32は、少なくとも一部がエンジン本体20とエンジンカバー部16との間に配置されている。したがって、エアクリーナ32は、エンジン本体20の上方の空間の熱が前方に逃げるのを遮っている。よって、エンジン本体20の上方の車体カバー11に覆われた空間により熱が籠りやすくなっている。このような状況にも関わらず、上述したようにインジェクタ48の配置位置を工夫したことで、インジェクタ48への熱の影響を低減できる。 Further, the engine cover portion 16 covers at least a part of the left side or the right side of the engine body 20. Therefore, heat is more likely to be generated in the space above the engine body 20. Further, at least a part of the air cleaner 32 is disposed between the engine body 20 and the engine cover portion 16. Therefore, the air cleaner 32 blocks the heat in the space above the engine body 20 from escaping forward. Therefore, heat is easily generated by the space covered by the vehicle body cover 11 above the engine body 20. In spite of such a situation, the influence of heat on the injector 48 can be reduced by devising the arrangement position of the injector 48 as described above.
 エンジンカバー部は、距離D1が距離D2または距離D3よりも大きく形成されている。なお、距離D1は、エンジンカバー部16の前後方向中央とエンジン本体20の上面との上下方向の離間距離である。距離D2は、エンジンカバー部16の前後方向中央とエンジン本体20の上面との上下方向の離間距離である。距離D3は、エンジンカバー部16の後端とエンジン本体20の上面との上下方向の離間距離である。したがって、エンジン本体20の上方の車体カバー11に覆われた空間の前部は、当該空間の前後方向中央または後部よりも上下方向長さが長い。そのため、エンジン本体20の上方の車体カバー11に覆われた空間に籠った熱は、前方により逃げやすい。つまり、当該空間の前部の温度をより低減できる。そのため、インジェクタ48への熱の影響をより抑制できる。したがって、メイン触媒39による浄化性能を向上すべくメイン触媒39を大型化しても、メイン触媒39の熱による影響をより抑制できる。 The engine cover portion is formed such that the distance D1 is larger than the distance D2 or the distance D3. The distance D1 is a vertical distance between the center of the engine cover portion 16 in the front-rear direction and the upper surface of the engine body 20. The distance D <b> 2 is a vertical distance between the center of the engine cover portion 16 in the front-rear direction and the upper surface of the engine body 20. The distance D3 is a vertical distance between the rear end of the engine cover portion 16 and the upper surface of the engine body 20. Accordingly, the front portion of the space covered by the vehicle body cover 11 above the engine body 20 has a longer vertical length than the center or the rear portion in the front-rear direction of the space. For this reason, the heat generated in the space covered by the vehicle body cover 11 above the engine body 20 is more likely to escape forward. That is, the temperature of the front part of the space can be further reduced. Therefore, the influence of heat on the injector 48 can be further suppressed. Therefore, even if the main catalyst 39 is enlarged to improve the purification performance of the main catalyst 39, the influence of the heat of the main catalyst 39 can be further suppressed.
 また、インジェクタ48の少なくとも一部は、メイン触媒39より前方に配置されている。よって、インジェクタ48は、メイン触媒39から上昇した熱の影響を受けにくい。 Further, at least a part of the injector 48 is disposed in front of the main catalyst 39. Therefore, the injector 48 is not easily affected by the heat rising from the main catalyst 39.
 触媒配置通路部40bの断面積S1は、上流通路部40aの少なくとも一部の断面積よりも大きい。したがって、断面積S1が、上流通路部40aの排ガスの流れ方向に直交する断面の面積より小さい場合又は同じ場合と比較して、触媒による排ガスの浄化性能の向上を図ることができる。 The cross-sectional area S1 of the catalyst arrangement passage part 40b is larger than at least a part of the cross-sectional area of the upstream passage part 40a. Therefore, compared with the case where the cross-sectional area S1 is smaller than or equal to the area of the cross section perpendicular to the flow direction of the exhaust gas in the upstream passage portion 40a, the exhaust gas purification performance by the catalyst can be improved.
 メイン触媒39の少なくとも一部は、クランク軸線Cr1より自動二輪車1の前後方向の前方に配置されている。そのため、メイン触媒39は、燃焼室29に比較的近い位置に配置される。よって、燃焼室29から排出された排ガスがメイン触媒39に流入するまでに温度が低下するのを抑制できる。つまり、メイン触媒39に流入する排ガスの温度の低下を抑制できる。そのため、メイン触媒39による排ガスの浄化性能をより向上できる。 At least a part of the main catalyst 39 is disposed in front of the motorcycle 1 in the front-rear direction of the motorcycle 1 from the crank axis Cr1. Therefore, the main catalyst 39 is arranged at a position relatively close to the combustion chamber 29. Therefore, it is possible to suppress the temperature from dropping before the exhaust gas discharged from the combustion chamber 29 flows into the main catalyst 39. That is, a decrease in the temperature of the exhaust gas flowing into the main catalyst 39 can be suppressed. Therefore, the exhaust gas purification performance of the main catalyst 39 can be further improved.
 左右方向から見て、メイン触媒39の少なくとも一部は、直線L2の前方に位置する。直線L2は、シリンダ軸線Cy1に直交し且つクランク軸線Cr1に直交する直線である。シリンダ軸線Cy1は、前後方向に延びる。そのため、直線L2は、クランク軸線Cr1から下方に延びる。したがって、メイン触媒39は、燃焼室29に近い位置に配置される。よって、燃焼室29から排出された排ガスがメイン触媒39に流入するまでに温度が低下するのを抑制できる。つまり、メイン触媒39に流入する排ガスの温度の低下を抑制できる。そのため、メイン触媒39による排ガスの浄化性能をより向上できる。 When viewed from the left-right direction, at least a part of the main catalyst 39 is located in front of the straight line L2. The straight line L2 is a straight line that is orthogonal to the cylinder axis Cy1 and orthogonal to the crank axis Cr1. The cylinder axis Cy1 extends in the front-rear direction. Therefore, the straight line L2 extends downward from the crank axis Cr1. Therefore, the main catalyst 39 is disposed at a position close to the combustion chamber 29. Therefore, it is possible to suppress the temperature from dropping before the exhaust gas discharged from the combustion chamber 29 flows into the main catalyst 39. That is, a decrease in the temperature of the exhaust gas flowing into the main catalyst 39 can be suppressed. Therefore, the exhaust gas purification performance of the main catalyst 39 can be further improved.
 1つの燃焼室29からメイン触媒39の上流端までの経路長(a1+b1)は、メイン触媒39の下流端から放出口35eまでの経路長(d1+e1)よりも短い。したがって、メイン触媒39は、燃焼室29に近い位置に配置される。よって、燃焼室29から排出された排ガスがメイン触媒39に流入するまでに温度が低下するのを抑制できる。つまり、メイン触媒39に流入する排ガスの温度の低下を抑制できる。そのため、メイン触媒39による排ガスの浄化性能をより向上できる。 The path length (a1 + b1) from one combustion chamber 29 to the upstream end of the main catalyst 39 is shorter than the path length (d1 + e1) from the downstream end of the main catalyst 39 to the discharge port 35e. Therefore, the main catalyst 39 is disposed at a position close to the combustion chamber 29. Therefore, it is possible to suppress the temperature from dropping before the exhaust gas discharged from the combustion chamber 29 flows into the main catalyst 39. That is, a decrease in the temperature of the exhaust gas flowing into the main catalyst 39 can be suppressed. Therefore, the exhaust gas purification performance of the main catalyst 39 can be further improved.
 1つの燃焼室29からメイン触媒39の上流端までの経路長(a1+b1)は、メイン触媒39の下流端から排気管34の下流端までの経路長(d1)よりも短い。したがって、メイン触媒39は、燃焼室29により近い位置に配置される。よって、燃焼室29から排出された排ガスがメイン触媒39に流入するまでに温度が低下するのをより「抑制できる。つまり、メイン触媒39に流入する排ガスの温度の低下をより抑制できる。そのため、メイン触媒39による排ガスの浄化性能をより一層向上できる。 The path length (a1 + b1) from one combustion chamber 29 to the upstream end of the main catalyst 39 is shorter than the path length (d1) from the downstream end of the main catalyst 39 to the downstream end of the exhaust pipe 34. Therefore, the main catalyst 39 is disposed at a position closer to the combustion chamber 29. Therefore, it is possible to further suppress “a decrease in temperature before the exhaust gas discharged from the combustion chamber 29 flows into the main catalyst 39. That is, a decrease in the temperature of the exhaust gas flowing into the main catalyst 39 can be further suppressed. The exhaust gas purification performance of the main catalyst 39 can be further improved.
 以上、本発明の好適な実施の形態について説明したが、本発明は上記実施形態に限られるものではなく、特許請求の範囲に記載した限りにおいて様々な変更が可能である。また、後述する変更例は適宜組み合わせて実施することができる。 The preferred embodiments of the present invention have been described above. However, the present invention is not limited to the above-described embodiments, and various modifications can be made as long as they are described in the claims. Moreover, the example of a change mentioned later can be implemented in combination as appropriate.
 車体カバー11の形状は、上記実施形態の形状に限定されない。また、エンジンカバー部16の形状も、上記実施形態の形状に限定されない。例えば、エンジンカバー部16は、エンジン本体20の右面と左面を覆っていなくてもよい。また、エンジンカバー部16は、エンジン本体20の右面全体と左面全体を覆っていてもよい。 The shape of the vehicle body cover 11 is not limited to the shape of the above embodiment. Moreover, the shape of the engine cover part 16 is not limited to the shape of the said embodiment. For example, the engine cover unit 16 may not cover the right side and the left side of the engine body 20. The engine cover portion 16 may cover the entire right surface and the entire left surface of the engine body 20.
 インジェクタ48の配置位置は、上記実施形態の位置に限定されない。但し、インジェクタ48は、吸気通路部33の最後端より前方に配置される。さらに、単気筒4ストロークエンジンユニット19と車体カバー11を前方から見たときに、インジェクタ48の少なくとも一部は、車体カバー11の開口部17の中に見える位置に配置される。 The arrangement position of the injector 48 is not limited to the position of the above embodiment. However, the injector 48 is disposed in front of the rear end of the intake passage portion 33. Furthermore, when the single-cylinder four-stroke engine unit 19 and the vehicle body cover 11 are viewed from the front, at least a part of the injector 48 is disposed at a position that can be seen in the opening 17 of the vehicle body cover 11.
 上記実施形態において、インジェクタ48は、吸気通路部33に設けられている。しかし、インジェクタ48は、シリンダ部22のシリンダ吸気通路部30に設けられていてもよい。また、インジェクタ48は、燃焼室29内に燃料を噴射するように配置されていてもよい。 In the above embodiment, the injector 48 is provided in the intake passage portion 33. However, the injector 48 may be provided in the cylinder intake passage portion 30 of the cylinder portion 22. Further, the injector 48 may be arranged to inject fuel into the combustion chamber 29.
 上記実施形態において、インジェクタ48は、メイン触媒39より前方に配置されている。しかし、インジェクタ48の一部がメイン触媒39より前方に配置されてもよい。また、インジェクタ48は、メイン触媒39より前方に配置されていなくてもよい。図9は、インジェクタ48の一部が、メイン触媒39の前方に配置されている一例である。図9に示す直線L14は、メイン触媒39の最前端を通り、上下方向と平行に延びる直線である。インジェクタ48はその一部が直線L14より前方に配置されている。また、図9に示すシリンダ軸線Cy2の傾斜角度θ2は、上記実施形態のシリンダ軸線Cy1の傾斜角度θ1よりも大きい。 In the above embodiment, the injector 48 is disposed in front of the main catalyst 39. However, a part of the injector 48 may be disposed in front of the main catalyst 39. Further, the injector 48 may not be disposed in front of the main catalyst 39. FIG. 9 is an example in which a part of the injector 48 is disposed in front of the main catalyst 39. A straight line L14 shown in FIG. 9 is a straight line that passes through the foremost end of the main catalyst 39 and extends in parallel with the vertical direction. A portion of the injector 48 is disposed in front of the straight line L14. Further, the inclination angle θ2 of the cylinder axis Cy2 shown in FIG. 9 is larger than the inclination angle θ1 of the cylinder axis Cy1 of the above embodiment.
 上記実施形態の排気管34および吸気通路部33の形状は、上記実施形態の形状に限定されない。また、消音器35の内部構造は、図5の模式図に示す構造に限定されない。 The shapes of the exhaust pipe 34 and the intake passage portion 33 in the above embodiment are not limited to the shapes in the above embodiment. Moreover, the internal structure of the silencer 35 is not limited to the structure shown in the schematic diagram of FIG.
 上記実施形態において、吸気通路部33は、エンジンカバー部16とエンジン本体20の上面との間に配置されている。しかし、吸気通路部33は、少なくとも一部が、エンジンカバー部16とエンジン本体20の上面との間に配置されていればよい。 In the above embodiment, the intake passage portion 33 is disposed between the engine cover portion 16 and the upper surface of the engine body 20. However, at least a part of the intake passage portion 33 may be disposed between the engine cover portion 16 and the upper surface of the engine body 20.
 上記実施形態において、排気管34は、その一部が、クランク軸線Cr1の下方に位置している。しかし、排気管(単一燃焼室用排気通路管)は、その一部が、クランク軸線Cr1の上方に位置していてもよい。 In the above embodiment, a part of the exhaust pipe 34 is located below the crank axis Cr1. However, a part of the exhaust pipe (single combustion chamber exhaust passage pipe) may be located above the crank axis Cr1.
 上記実施形態において、排気管34は、車体カバー11の開口部17より後方に配置されている。しかし、排気管34は、少なくとも一部が車体カバー11の開口部17より後方に配置されていればよい。 In the above embodiment, the exhaust pipe 34 is disposed behind the opening 17 of the vehicle body cover 11. However, at least a part of the exhaust pipe 34 may be disposed behind the opening 17 of the vehicle body cover 11.
 上記実施形態において、排気管34は、一部がエンジン本体20の下面より下方に配置されている。しかし、排気管34は、少なくとも一部がエンジン本体20の下面より下方に配置されていればよい。 In the above embodiment, the exhaust pipe 34 is partially disposed below the lower surface of the engine body 20. However, at least a part of the exhaust pipe 34 may be disposed below the lower surface of the engine body 20.
 上記実施形態において、メイン触媒39及び消音器35は、自動二輪車1の左右方向中央より右方に配置されている。しかし、メイン触媒及び消音器は、自動二輪車の左右方向中央より左方に配置されていてもよい。 In the above embodiment, the main catalyst 39 and the silencer 35 are arranged on the right side of the center of the motorcycle 1 in the left-right direction. However, the main catalyst and the silencer may be arranged on the left side of the motorcycle in the left-right direction center.
 メイン触媒39の配置位置は、上記実施形態の位置に限定されない。但し、メイン触媒39は排気管34に配置される。また、メイン触媒39の少なくとも一部は、エンジン本体20より下方に配置される。以下、メイン触媒の配置位置の具体的な変更例を説明する。 The arrangement position of the main catalyst 39 is not limited to the position of the above embodiment. However, the main catalyst 39 is disposed in the exhaust pipe 34. Further, at least a part of the main catalyst 39 is disposed below the engine body 20. Hereinafter, a specific example of changing the arrangement position of the main catalyst will be described.
 上記実施形態において、メイン触媒39は、一部がエンジン本体20の下面より下方に配置されている。しかし、メイン触媒39は、少なくとも一部がエンジン本体20の下面より下方に配置されていればよい。 In the above embodiment, a part of the main catalyst 39 is disposed below the lower surface of the engine body 20. However, at least a part of the main catalyst 39 may be disposed below the lower surface of the engine body 20.
 上記実施形態において、メイン触媒39は、全体が、クランク軸線Cr1よりも前方に配置されている。しかし、メイン触媒は、少なくとも一部が、クランク軸線Cr1よりも前方に配置されていてもよい。また、メイン触媒は、少なくとも一部が、クランク軸線Cr1より後方に配置されていてもよい。 In the above embodiment, the main catalyst 39 is entirely disposed in front of the crank axis Cr1. However, at least a part of the main catalyst may be disposed in front of the crank axis Cr1. Further, at least a part of the main catalyst may be arranged behind the crank axis Cr1.
 上記実施形態のメイン触媒39は、左右方向から見て、全体が直線L2の前方に配置されている。しかし、左右方向から見て、メイン触媒の少なくとも一部が、直線L2の前方に配置されていてもよい。また、左右方向から見て、メイン触媒の少なくとも一部が、直線L2の後方に配置されていてもよい。 The main catalyst 39 of the above embodiment is disposed in front of the straight line L2 as viewed from the left-right direction. However, at least a part of the main catalyst may be disposed in front of the straight line L2 when viewed from the left-right direction. Further, when viewed from the left-right direction, at least a part of the main catalyst may be disposed behind the straight line L2.
 上記実施形態のメイン触媒39は、経路長a1+b1が、経路長d1+e1よりも短くなる位置に配置される。しかし、メイン触媒39は、経路長a1+b1が、経路長d1+e1よりも長くなる位置に配置されてもよい。なお、経路長a1+b1は、燃焼室29からメイン触媒39の上流端までの経路長である。経路長d1+e1は、メイン触媒39の下流端から放出口35eまでの経路長である。 The main catalyst 39 of the above embodiment is disposed at a position where the path length a1 + b1 is shorter than the path length d1 + e1. However, the main catalyst 39 may be disposed at a position where the path length a1 + b1 is longer than the path length d1 + e1. The path length a1 + b1 is a path length from the combustion chamber 29 to the upstream end of the main catalyst 39. The path length d1 + e1 is a path length from the downstream end of the main catalyst 39 to the discharge port 35e.
 上記実施形態のメイン触媒39は、経路長a1+b1が、経路長d1よりも短くなる位置に配置される。しかし、メイン触媒39は、経路長a1+b1が、経路長d1よりも長くなる位置に配置されてもよい。なお、経路長a1+b1は、燃焼室29からメイン触媒39の上流端までの経路長である。経路長d1は、メイン触媒39の下流端から排気管34の下流端までの経路長である。 The main catalyst 39 of the above embodiment is disposed at a position where the path length a1 + b1 is shorter than the path length d1. However, the main catalyst 39 may be disposed at a position where the path length a1 + b1 is longer than the path length d1. The path length a1 + b1 is a path length from the combustion chamber 29 to the upstream end of the main catalyst 39. The path length d <b> 1 is a path length from the downstream end of the main catalyst 39 to the downstream end of the exhaust pipe 34.
 上記実施形態のメイン触媒39は、経路長b1が、経路長d1よりも短くなる位置に配置される。しかし、メイン触媒39は、経路長b1が、経路長d1よりも長くなる位置に配置されてもよい。なお、経路長b1は、排気管34の上流端からメイン触媒39の上流端までの経路長である。経路長d1は、メイン触媒39の下流端から排気管34の下流端までの経路長である。 The main catalyst 39 of the above embodiment is disposed at a position where the path length b1 is shorter than the path length d1. However, the main catalyst 39 may be disposed at a position where the path length b1 is longer than the path length d1. The path length b1 is a path length from the upstream end of the exhaust pipe 34 to the upstream end of the main catalyst 39. The path length d <b> 1 is a path length from the downstream end of the main catalyst 39 to the downstream end of the exhaust pipe 34.
 上記実施形態の単気筒4ストロークエンジンユニットに設けられる触媒の数は1つである。しかし、本発明の単気筒4ストロークエンジンユニットに設けられる触媒の数は複数であってもよい。触媒が複数の場合には、排気経路において、燃焼室から排出された排ガスを最も浄化する触媒が、本発明の単一燃焼室用メイン触媒に相当する。触媒が1つの場合は、この1つの触媒が、本発明の単一燃焼室用メイン触媒である。 The number of catalysts provided in the single cylinder four-stroke engine unit of the above embodiment is one. However, the number of catalysts provided in the single-cylinder four-stroke engine unit of the present invention may be plural. When there are a plurality of catalysts, the catalyst that most purifies the exhaust gas discharged from the combustion chamber in the exhaust path corresponds to the main catalyst for a single combustion chamber of the present invention. When there is one catalyst, this one catalyst is the main catalyst for a single combustion chamber of the present invention.
 メイン触媒の上流に、少なくとも1つの上流サブ触媒(単一燃焼室用上流サブ触媒)が設けられていてもよい。例えば図10(a)、図10(b)、および図10(c)に示すように、上流サブ触媒200は、排気管34に設けられていてもよい。また、上流サブ触媒は、シリンダ排気通路部31に設けられてもよい。 At least one upstream sub catalyst (upstream sub catalyst for a single combustion chamber) may be provided upstream of the main catalyst. For example, as shown in FIG. 10A, FIG. 10B, and FIG. 10C, the upstream sub-catalyst 200 may be provided in the exhaust pipe. Further, the upstream sub catalyst may be provided in the cylinder exhaust passage portion 31.
 上流サブ触媒200は、排気管34の内壁に付着された触媒物質だけで構成されていてもよい。この場合、上流サブ触媒200の触媒物質が付着される基材は、排気管34の内壁である。また、上流サブ触媒200は、排気管34の内側に配置される基材を有していてもよい。この場合、上流サブ触媒200は、基材と触媒物質で構成される。上流サブ触媒200の基材は、例えば、板状である。板状の基材の経路方向に直交する断面の形状は、S字状であっても、円形状であっても、C字状であってもよい。また、上流サブ触媒200は、多孔構造であってもよい。 The upstream sub-catalyst 200 may be composed only of the catalyst substance attached to the inner wall of the exhaust pipe 34. In this case, the base material to which the catalytic material of the upstream sub-catalyst 200 is attached is the inner wall of the exhaust pipe 34. Further, the upstream sub-catalyst 200 may have a base material disposed inside the exhaust pipe 34. In this case, the upstream sub-catalyst 200 includes a base material and a catalyst material. The base material of the upstream sub-catalyst 200 has a plate shape, for example. The shape of the cross section orthogonal to the path direction of the plate-like substrate may be S-shaped, circular, or C-shaped. Further, the upstream sub-catalyst 200 may have a porous structure.
 メイン触媒39は、排気経路41において、燃焼室29から排出された排ガスを上流サブ触媒200よりも浄化する。言い換えると、上流サブ触媒200は、メイン触媒39に比べて、排ガスを浄化する寄与度が低い。メイン触媒39と上流サブ触媒200のそれぞれの浄化の寄与度は、以下の方法で測定できる。測定方法の設明において、メイン触媒39と上流サブ触媒200のうち、上流に配置される触媒をフロント触媒と称し、下流に配置される触媒をリア触媒と称する。つまり、上流サブ触媒200がフロント触媒であって、メイン触媒39がリア触媒である。また、以下の説明において、フロント触媒とリア触媒を有するエンジンユニットを変形例のエンジンユニットと称する。 The main catalyst 39 purifies the exhaust gas discharged from the combustion chamber 29 in the exhaust passage 41 more than the upstream sub catalyst 200. In other words, the upstream sub-catalyst 200 has a lower contribution to purify the exhaust gas than the main catalyst 39. The respective contributions of purification of the main catalyst 39 and the upstream sub-catalyst 200 can be measured by the following method. In the description of the measurement method, among the main catalyst 39 and the upstream sub-catalyst 200, a catalyst disposed upstream is referred to as a front catalyst, and a catalyst disposed downstream is referred to as a rear catalyst. That is, the upstream sub catalyst 200 is a front catalyst, and the main catalyst 39 is a rear catalyst. In the following description, an engine unit having a front catalyst and a rear catalyst is referred to as a modified engine unit.
 変形例のエンジンユニットを運転して、暖機状態のときに放出口35eから排出された排ガスに含まれる有害物質の濃度を測定する。排ガスの測定方法は、欧州規制に従った測定方法とする。暖機状態では、メイン触媒39と上流サブ触媒200は、高温となって活性化される。そのため、メイン触媒39と上流サブ触媒200は、暖機状態のときに、浄化性能を十分に発揮できる。 The engine unit of the modified example is operated, and the concentration of harmful substances contained in the exhaust gas discharged from the discharge port 35e in the warm-up state is measured. The exhaust gas measurement method shall be in accordance with European regulations. In the warm-up state, the main catalyst 39 and the upstream sub-catalyst 200 are activated at a high temperature. Therefore, the main catalyst 39 and the upstream sub-catalyst 200 can sufficiently exhibit purification performance when in the warm-up state.
 次に、試験で用いたエンジンユニットのリア触媒を取り外して、その代わりにリア触媒の基材のみを配置する。この状態のエンジンユニットを、測定用エンジンユニットAとする。そして、同様に、暖機状態のときに放出口35eから排出された排ガスに含まれる有害物質の濃度を測定する。 Next, remove the rear catalyst of the engine unit used in the test, and place only the base material of the rear catalyst instead. The engine unit in this state is referred to as a measurement engine unit A. And similarly, the density | concentration of the harmful | toxic substance contained in the waste gas discharged | emitted from the discharge port 35e at the time of a warm-up state is measured.
 また、この測定用エンジンユニットAのフロント触媒を取り外して、その代わりにフロント触媒の基材のみを配置する。この状態のエンジンユニットを、測定用エンジンユニットBとする。そして、同様に、暖機状態のときに放出口35eから排出された排ガスに含まれる有害物質の濃度を測定する。なお、上流サブ触媒200(フロント触媒)が排気管34の内壁に触媒物質を直接付着させた構成の場合、排気管34が基材に相当する。このような上流サブ触媒200の代わりに、上流サブ触媒200の基材のみを配置するとは、排気管34の内壁に触媒物質を付着させないことである。 Also, the front catalyst of this measurement engine unit A is removed, and only the base material of the front catalyst is arranged instead. The engine unit in this state is referred to as a measurement engine unit B. And similarly, the density | concentration of the harmful | toxic substance contained in the waste gas discharged | emitted from the discharge port 35e at the time of a warm-up state is measured. When the upstream sub-catalyst 200 (front catalyst) has a configuration in which a catalytic material is directly attached to the inner wall of the exhaust pipe 34, the exhaust pipe 34 corresponds to the base material. The arrangement of only the base material of the upstream sub-catalyst 200 in place of the upstream sub-catalyst 200 is to prevent the catalyst material from adhering to the inner wall of the exhaust pipe 34.
 測定用エンジンユニットAは、フロント触媒を有し、リア触媒を有しない。測定用エンジンユニットBは、フロント触媒とリア触媒を有しない。そのため、測定用エンジンユニットAの測定結果と、測定用エンジンユニットBの測定結果の差から、フロント触媒(上流サブ触媒200)の浄化の寄与度が算出される。また、測定用エンジンユニットAの測定結果と、変形例のエンジンユニットの測定結果の差から、リア触媒(メイン触媒39)の浄化の寄与度が算出される。 The measurement engine unit A has a front catalyst and does not have a rear catalyst. The measurement engine unit B does not have a front catalyst and a rear catalyst. Therefore, the degree of contribution of the purification of the front catalyst (upstream sub-catalyst 200) is calculated from the difference between the measurement result of the measurement engine unit A and the measurement result of the measurement engine unit B. Further, the contribution of the purification of the rear catalyst (main catalyst 39) is calculated from the difference between the measurement result of the measurement engine unit A and the measurement result of the engine unit of the modified example.
 上流サブ触媒200の浄化能力は、メイン触媒39の浄化能力より小さくても大きくてもよい。なお、上流サブ触媒200の浄化能力が、メイン触媒39の浄化能力より小さいとは、上流サブ触媒200だけを設けた場合の排ガスの浄化率が、メイン触媒39だけを設けた場合の排ガスの浄化率より小さいことをいう。 The purification capacity of the upstream sub-catalyst 200 may be smaller or larger than the purification capacity of the main catalyst 39. The purification capacity of the upstream sub catalyst 200 is smaller than the purification capacity of the main catalyst 39. The exhaust gas purification rate when only the upstream sub catalyst 200 is provided is the purification of exhaust gas when only the main catalyst 39 is provided. That is less than the rate.
 メイン触媒39の上流に上流サブ触媒を設けることにより、以下の効果が得られる。排ガスは、メイン触媒39に加えて、上流サブ触媒で浄化される。したがって、触媒による排ガスの浄化性能をより向上させることができる。また、触媒による排ガスの浄化性能を維持しつつ、メイン触媒39だけを設ける場合に比べて、メイン触媒39と上流サブ触媒をそれぞれ小型化できる。それにより、エンジン始動時に、上流サブ触媒を早期に活性化温度まで上昇させることができる。したがって、車両の上下方向の大型化を抑制しつつ、触媒による排ガスの浄化性能を向上できる。 By providing the upstream sub catalyst upstream of the main catalyst 39, the following effects can be obtained. The exhaust gas is purified by the upstream sub catalyst in addition to the main catalyst 39. Therefore, the exhaust gas purification performance by the catalyst can be further improved. In addition, the main catalyst 39 and the upstream sub-catalyst can be reduced in size as compared with the case where only the main catalyst 39 is provided while maintaining the exhaust gas purification performance by the catalyst. Thereby, the upstream sub-catalyst can be raised to the activation temperature at an early stage when the engine is started. Therefore, the exhaust gas purification performance by the catalyst can be improved while suppressing an increase in the size of the vehicle in the vertical direction.
 メイン触媒の下流に、少なくとも1つの下流サブ触媒(単一燃焼室用下流サブ触媒)が設けられていてもよい。下流サブ触媒は、多孔構造であってもなくてもよい。多孔構造でない場合の具体例は上流サブ触媒200と同じである。例えば図10(d)および図10(e)に示すように、下流サブ触媒400は、排気管34に設けられていてもよい。また、下流サブ触媒は、消音器35内に設けられてもよい。下流サブ触媒は、排気管34の下流端より下流に設けられてもよい。また、下流サブ触媒を設ける場合、メイン触媒の上流に上流サブ触媒200を設けてもよい。 At least one downstream sub-catalyst (downstream sub-catalyst for a single combustion chamber) may be provided downstream of the main catalyst. The downstream subcatalyst may or may not have a porous structure. A specific example in the case of not having a porous structure is the same as that of the upstream sub-catalyst 200. For example, as shown in FIGS. 10 (d) and 10 (e), the downstream sub-catalyst 400 may be provided in the exhaust pipe 34. Further, the downstream sub-catalyst may be provided in the silencer 35. The downstream sub-catalyst may be provided downstream from the downstream end of the exhaust pipe 34. Further, when the downstream sub catalyst is provided, the upstream sub catalyst 200 may be provided upstream of the main catalyst.
 メイン触媒39の下流に下流サブ触媒を設けることにより、以下の効果が得られる。排ガスは、メイン触媒39に加えて、下流サブ触媒で浄化される。したがって、触媒による排ガスの浄化性能をより向上させることができる。また、触媒による排ガスの浄化性能を維持しつつ、メイン触媒39だけを設ける場合に比べて、メイン触媒39と下流サブ触媒をそれぞれ小型化できる。それにより、エンジン始動時に、メイン触媒39を早期に活性化温度まで上昇させることができる。したがって、車両の上下方向の大型化を抑制しつつ、触媒による排ガスの浄化性能を向上できる。
 また、メイン触媒39の小型化により、メイン触媒39から放出される熱を低減できる。下流サブ触媒は、前後方向において、インジェクタ48から離れた位置に配置できる。そのため、インジェクタ48への熱の影響をより抑制できる。
By providing the downstream sub catalyst downstream of the main catalyst 39, the following effects can be obtained. The exhaust gas is purified by the downstream sub catalyst in addition to the main catalyst 39. Therefore, the exhaust gas purification performance by the catalyst can be further improved. Further, the main catalyst 39 and the downstream sub-catalyst can be reduced in size as compared with the case where only the main catalyst 39 is provided while maintaining the exhaust gas purification performance by the catalyst. Thereby, the main catalyst 39 can be raised to the activation temperature at an early stage when the engine is started. Therefore, the exhaust gas purification performance by the catalyst can be improved while suppressing an increase in the size of the vehicle in the vertical direction.
Further, the heat released from the main catalyst 39 can be reduced by downsizing the main catalyst 39. The downstream sub-catalyst can be disposed at a position away from the injector 48 in the front-rear direction. Therefore, the influence of heat on the injector 48 can be further suppressed.
 メイン触媒の下流に下流サブ触媒が設けられる場合、メイン触媒は、排気経路において、燃焼室から排出された排ガスを最も浄化する。メイン触媒と下流サブ触媒のそれぞれの浄化の寄与度は、上流サブ触媒を設ける変形例で述べた測定方法で測定できる。上述の測定方法における「フロント触媒」をメイン触媒とし、「リア触媒」を「下流サブ触媒」とする。 When the downstream sub-catalyst is provided downstream of the main catalyst, the main catalyst most purifies the exhaust gas discharged from the combustion chamber in the exhaust path. The degree of contribution of purification of each of the main catalyst and the downstream sub-catalyst can be measured by the measurement method described in the modification in which the upstream sub-catalyst is provided. In the above measurement method, the “front catalyst” is the main catalyst, and the “rear catalyst” is the “downstream sub-catalyst”.
 メイン触媒の下流に下流サブ触媒が設けられる場合、下流サブ触媒の浄化能力は、メイン触媒の浄化能力より小さくても大きくてもよい。つまり、下流サブ触媒だけを設けた場合の排ガスの浄化率は、メイン触媒だけを設けた場合の排ガスの浄化率より小さくても大きくてもよい。 When the downstream sub-catalyst is provided downstream of the main catalyst, the purification capacity of the downstream sub-catalyst may be smaller or larger than the purification capacity of the main catalyst. That is, the exhaust gas purification rate when only the downstream sub-catalyst is provided may be smaller or larger than the exhaust gas purification rate when only the main catalyst is provided.
 メイン触媒の下流に下流サブ触媒が設けられる場合、メイン触媒は下流サブ触媒よりも劣化の進行が速い。そのため、累積走行距離が長くなると、メイン触媒と下流サブ触媒の浄化の寄与度の大小関係が逆転する場合がある。本発明の単一燃焼室用メイン触媒は、排気経路において、燃焼室から排出された排ガスを最も浄化する。これは、上述したような逆転現象が生じる前の状態のことである。つまり、累積走行距離が所定距離(例えば1000km)に到達していない状態のことである。 When the downstream sub-catalyst is provided downstream of the main catalyst, the main catalyst deteriorates faster than the downstream sub-catalyst. Therefore, when the cumulative travel distance becomes long, the magnitude relationship between the contributions of purification of the main catalyst and the downstream sub-catalyst may be reversed. The main catalyst for a single combustion chamber of the present invention purifies the exhaust gas discharged from the combustion chamber most in the exhaust path. This is a state before the reverse phenomenon as described above occurs. That is, the cumulative travel distance has not reached a predetermined distance (for example, 1000 km).
 上記実施形態において、メイン触媒39は、三元触媒である。しかし、本発明の単一燃焼室用メイン触媒は、三元触媒でなくてもよい。単一燃焼室用メイン触媒は、炭化水素、一酸化炭素、および窒素酸化物のいずれか1つまたは2つを除去する触媒であってもよい。また、単一燃焼室用メイン触媒は、酸化還元触媒でなくてもよい。メイン触媒は、酸化または還元のいずれか一方だけで有害物質を除去する酸化触媒または還元触媒であってもよい。還元触媒の一例として、窒素酸化物を還元反応によって除去する触媒がある。この変形例は、上流サブ触媒および下流サブ触媒に適用してもよい。 In the above embodiment, the main catalyst 39 is a three-way catalyst. However, the main catalyst for a single combustion chamber of the present invention may not be a three-way catalyst. The main catalyst for the single combustion chamber may be a catalyst that removes any one or two of hydrocarbon, carbon monoxide, and nitrogen oxide. Further, the main catalyst for the single combustion chamber may not be a redox catalyst. The main catalyst may be an oxidation catalyst or a reduction catalyst that removes harmful substances only by either oxidation or reduction. An example of a reduction catalyst is a catalyst that removes nitrogen oxides by a reduction reaction. This modification may be applied to the upstream sub-catalyst and the downstream sub-catalyst.
 上記実施形態において、メイン触媒39は、経路方向の長さc1が、最大幅w1よりも大きい。しかし、本発明の単一燃焼室用メイン触媒は、経路方向の長さが、経路方向に垂直な方向の最大幅より短くてもよい。但し、本発明の単一燃焼室用メイン触媒は、排気経路において、排ガスを最も浄化するように構成される。ここでの排気経路とは、燃焼室から、大気に面する放出口に至る経路である。 In the above embodiment, the length c1 of the main catalyst 39 in the path direction is larger than the maximum width w1. However, in the main catalyst for a single combustion chamber of the present invention, the length in the path direction may be shorter than the maximum width in the direction perpendicular to the path direction. However, the main catalyst for a single combustion chamber of the present invention is configured to purify the exhaust gas most in the exhaust path. The exhaust path here is a path from the combustion chamber to the discharge port facing the atmosphere.
 本発明の単一燃焼室用メイン触媒は、複数ピースの触媒が近接して配置された構成としてもよい。各ピースは、基材と触媒物質を有する。ここで、近接とは、各ピースの経路方向の長さよりも、ピース同士の離間距離が短い状態のことである。複数ピースの基材の組成は、一種類でも、複数種類でもよい。複数ピースの触媒の触媒物質の貴金属は、一種類でも、複数種類でもよい。触媒物質の担体の組成は、一種類でも、複数種類でもよい。この変形例は、上流サブ触媒および下流サブ触媒に適用してもよい。 The main catalyst for a single combustion chamber of the present invention may have a configuration in which a plurality of pieces of catalyst are arranged close to each other. Each piece has a substrate and a catalytic material. Here, proximity means a state in which the distance between pieces is shorter than the length of each piece in the path direction. The composition of the multi-piece substrate may be one type or plural types. The precious metal of the catalyst material of the multi-piece catalyst may be one kind or plural kinds. The composition of the support of the catalyst substance may be one type or a plurality of types. This modification may be applied to the upstream sub-catalyst and the downstream sub-catalyst.
 上流酸素検出部材37の配置位置は、上記実施形態の位置に限定されない。但し、上流酸素検出部材37は、メイン触媒39より上流に配置される。上流酸素検出部材は、シリンダ部22のシリンダ排気通路部31に配置されてもよい。また、メイン触媒39の上流に設けられる上流酸素検出部材の数は、2つ以上であってもよい。 The arrangement position of the upstream oxygen detection member 37 is not limited to the position of the above embodiment. However, the upstream oxygen detection member 37 is disposed upstream of the main catalyst 39. The upstream oxygen detection member may be disposed in the cylinder exhaust passage portion 31 of the cylinder portion 22. The number of upstream oxygen detection members provided upstream of the main catalyst 39 may be two or more.
 メイン触媒39の上流に上流サブ触媒200を設けた場合、例えば図10(b)に示すように、上流酸素検出部材37は、上流サブ触媒200より上流に設けることが好ましい。また、例えば図10(a)に示すように、上流酸素検出部材37は、上流サブ触媒200より下流に設けられてもよい。また、例えば図10(c)に示すように、上流サブ触媒200の上流と下流に2つの上流酸素検出部材37A、37Bを設けてもよい。 When the upstream sub-catalyst 200 is provided upstream of the main catalyst 39, for example, as shown in FIG. 10B, the upstream oxygen detection member 37 is preferably provided upstream of the upstream sub-catalyst 200. For example, as shown in FIG. 10A, the upstream oxygen detection member 37 may be provided downstream from the upstream sub-catalyst 200. For example, as shown in FIG. 10C, two upstream oxygen detection members 37 </ b> A and 37 </ b> B may be provided upstream and downstream of the upstream sub-catalyst 200.
 メイン触媒の下流に、少なくとも1つの下流酸素検出部材が設けられていてもよい。下流酸素検出部材の具体的な構成は、上記実施形態の上流酸素検出部材37と同様である。例えば図10(a)、図10(b)、図10(d)、図10(e)に示すように、下流酸素検出部材437は、排気管34に設けられていてもよい。また、下流酸素検出部材は、消音器35に設けられていてもよい。下流酸素検出部材は、排気管34の下流端より下流の排ガスを検出対象とするように設けられていてもよい。また、メイン触媒がシリンダ排気通路部に設けられる場合、下流酸素検出部材はシリンダ排気通路部に設けられてもよい。 At least one downstream oxygen detection member may be provided downstream of the main catalyst. The specific configuration of the downstream oxygen detection member is the same as that of the upstream oxygen detection member 37 of the above embodiment. For example, as shown in FIG. 10A, FIG. 10B, FIG. 10D, and FIG. 10E, the downstream oxygen detection member 437 may be provided in the exhaust pipe. Further, the downstream oxygen detection member may be provided in the silencer 35. The downstream oxygen detection member may be provided so as to detect exhaust gas downstream from the downstream end of the exhaust pipe 34. Further, when the main catalyst is provided in the cylinder exhaust passage portion, the downstream oxygen detection member may be provided in the cylinder exhaust passage portion.
 メイン触媒39の下流に下流サブ触媒400を設けた場合、下流酸素検出部材437の配置位置は、以下の2つの位置のいずれであってもよい。例えば図10(d)に示すように、下流酸素検出部材437は、メイン触媒39より下流で下流サブ触媒400より上流に設けられてもよい。また、例えば図10(e)に示すように、下流酸素検出部材437は、下流サブ触媒400より下流に設けられてもよい。また、下流サブ触媒400の上流と下流にそれぞれ下流酸素検出部材を設けてもよい。 When the downstream sub-catalyst 400 is provided downstream of the main catalyst 39, the downstream oxygen detection member 437 may be disposed at any of the following two positions. For example, as shown in FIG. 10D, the downstream oxygen detection member 437 may be provided downstream of the main catalyst 39 and upstream of the downstream sub-catalyst 400. For example, as shown in FIG. 10E, the downstream oxygen detection member 437 may be provided downstream of the downstream sub-catalyst 400. Further, downstream oxygen detection members may be provided upstream and downstream of the downstream sub-catalyst 400, respectively.
 メイン触媒より下流に下流酸素検出部材が設けられる場合、電子制御ユニットは、下流酸素検出部材の信号を処理する。電子制御ユニットは、下流酸素検出部材の信号に基づいて、メイン触媒の浄化能力を判定してもよい。また、電子制御ユニットは、上流酸素検出部材と下流酸素検出部材の信号に基づいて、メイン触媒の浄化能力を判定してもよい。また、電子制御ユニットは、上流酸素検出部材と下流酸素検出部材の信号に基づいて、燃焼制御を行ってもよい。 When the downstream oxygen detection member is provided downstream from the main catalyst, the electronic control unit processes the signal of the downstream oxygen detection member. The electronic control unit may determine the purification capacity of the main catalyst based on the signal from the downstream oxygen detection member. The electronic control unit may determine the purification capacity of the main catalyst based on signals from the upstream oxygen detection member and the downstream oxygen detection member. The electronic control unit may perform combustion control based on signals from the upstream oxygen detection member and the downstream oxygen detection member.
 下流酸素検出部材の信号に基づいてメイン触媒の浄化能力を判定する具体的な方法の一例を説明する。まず、一定期間(数秒間)、混合ガスがリッチとリーンを繰り返すように燃料噴射量を制御する。そして、燃料噴射量の変化に対する、下流酸素検出部材の信号の変化の遅れを検出する。下流酸素検出部材の信号の変化の遅れが大きい場合に、メイン触媒の浄化能力が所定のレベルより低下したと判定する。この場合、電子制御ユニットから表示装置に信号が送られる。そして、表示装置の警告灯(図示せず)が点灯される。これにより、乗員にメイン触媒の交換を促すことができる。 An example of a specific method for determining the purification capacity of the main catalyst based on the signal from the downstream oxygen detection member will be described. First, the fuel injection amount is controlled so that the mixed gas repeats rich and lean for a certain period (several seconds). And the delay of the change of the signal of the downstream oxygen detection member with respect to the change of the fuel injection amount is detected. When the delay of the signal change of the downstream oxygen detection member is large, it is determined that the purification capacity of the main catalyst has decreased from a predetermined level. In this case, a signal is sent from the electronic control unit to the display device. Then, a warning light (not shown) of the display device is turned on. Thereby, it is possible to prompt the passenger to replace the main catalyst.
 このように、メイン触媒の下流に配置された下流酸素検出部材の信号を用いることで、メイン触媒の劣化を検知できる。そのため、メイン触媒の劣化が所定のレベルに達する前に報知して、メイン触媒の交換を促すことができる。それにより、鞍乗型車両の排気浄化に関する初期性能をより長期間維持することができる。 Thus, the deterioration of the main catalyst can be detected by using the signal of the downstream oxygen detection member disposed downstream of the main catalyst. For this reason, it is possible to notify before the deterioration of the main catalyst reaches a predetermined level, and to promote the replacement of the main catalyst. Thereby, the initial performance regarding exhaust gas purification of the saddle riding type vehicle can be maintained for a longer period.
 上流酸素検出部材と下流酸素検出部材の信号に基づいてメイン触媒の浄化能力を判定する具体的な方法の一例を説明する。例えば、上流酸素検出部材の信号の変化と下流酸素検出部材の信号の変化を比較して、メイン触媒の浄化能力を判定してもよい。メイン触媒の上流と下流に配置された2つの酸素検出部材の信号を使うことで、メイン触媒の劣化の程度をより精度よく検出できる。そのため、下流酸素検出部材の信号だけを使ってメイン触媒の劣化を判定する場合に比べて、より適切なタイミングで単一燃焼室用メイン触媒の交換を促すことができる。よって、車両の排気浄化性能に関する初期性能を維持しつつ、1つのメイン触媒をより長期間使用することが可能となる。 An example of a specific method for determining the purification capacity of the main catalyst based on signals from the upstream oxygen detection member and the downstream oxygen detection member will be described. For example, the purification capability of the main catalyst may be determined by comparing the change in the signal of the upstream oxygen detection member and the change in the signal of the downstream oxygen detection member. By using the signals of the two oxygen detection members arranged upstream and downstream of the main catalyst, the degree of deterioration of the main catalyst can be detected with higher accuracy. Therefore, the replacement of the main catalyst for the single combustion chamber can be promoted at a more appropriate timing as compared with the case where the deterioration of the main catalyst is determined using only the signal of the downstream oxygen detection member. Therefore, it is possible to use one main catalyst for a longer period while maintaining the initial performance related to the exhaust gas purification performance of the vehicle.
 上流酸素検出部材と下流酸素検出部材の信号に基づいて燃焼制御を行う具体的な方法の一例を説明する。まず、上記実施形態と同様に、上流酸素検出部材37の信号に基づいて基本燃料噴射量を補正して、インジェクタ48から燃料を噴射させる。この燃料の燃焼によって発生する排ガスを下流酸素検出部材で検知する。そして、下流酸素検出部材の信号に基づいて燃料噴射量を補正する。これにより、目標空燃比に対する混合ガスの空燃比のずれをより低減できる。 An example of a specific method for performing combustion control based on signals from the upstream oxygen detection member and the downstream oxygen detection member will be described. First, as in the above embodiment, the basic fuel injection amount is corrected based on the signal from the upstream oxygen detection member 37 and fuel is injected from the injector 48. The exhaust gas generated by the combustion of the fuel is detected by the downstream oxygen detection member. Then, the fuel injection amount is corrected based on the signal from the downstream oxygen detection member. Thereby, the deviation of the air-fuel ratio of the mixed gas with respect to the target air-fuel ratio can be further reduced.
 メイン触媒の上流と下流に配置された2つの酸素検出部材の信号を用いることで、メイン触媒による実際の浄化の状況を把握できる。そのため、2つの酸素検出部材の信号に基づいて、燃料制御を行った場合には、燃料制御の精度を向上できる。また、上流酸素検出部材は、排ガス中の酸素濃度を安定的に検出できる。したがって、燃料制御の精度をより一層向上できる。それにより、メイン触媒の劣化の進行を遅らせることができるため、鞍乗型車両の排気浄化に関する初期性能をより長期間維持することができる。 The actual purification status by the main catalyst can be grasped by using the signals of the two oxygen detection members arranged upstream and downstream of the main catalyst. Therefore, when the fuel control is performed based on the signals of the two oxygen detection members, the accuracy of the fuel control can be improved. Further, the upstream oxygen detection member can stably detect the oxygen concentration in the exhaust gas. Therefore, the accuracy of fuel control can be further improved. Thereby, since the progress of the deterioration of the main catalyst can be delayed, the initial performance regarding the exhaust purification of the saddle riding type vehicle can be maintained for a longer period.
 上記実施形態では、上流酸素検出部材37の信号に基づいて、点火タイミングおよび燃料噴射量を制御する。しかし、上流酸素検出部材37の信号に基づく制御処理は、特に制限されるものではなく、点火タイミングおよび燃料噴射量のうちの一方のみであってもよい。また、上流酸素検出部材37の信号に基づく制御処理は、上記以外の制御処理を含んでいてもよい。 In the above embodiment, the ignition timing and the fuel injection amount are controlled based on the signal from the upstream oxygen detection member 37. However, the control process based on the signal from the upstream oxygen detection member 37 is not particularly limited, and may be only one of the ignition timing and the fuel injection amount. Further, the control process based on the signal from the upstream oxygen detection member 37 may include a control process other than the above.
 上流酸素検出部材は、ヒータを内蔵していてもよい。上流酸素検出部材の検出部は、高温に加熱されて活性化状態となったときに、酸素濃度を検知できる。そのため、上流酸素検出部材がヒータを内蔵していると、運転開始と同時にヒータにより検出部を加熱することで、酸素検出の開始を早めることができる。メイン触媒より下流に下流酸素検出部材を設ける場合、下流酸素検出部材にこの変形例を適用してもよい。 The upstream oxygen detection member may incorporate a heater. The detection part of the upstream oxygen detection member can detect the oxygen concentration when it is heated to a high temperature and activated. Therefore, if the upstream oxygen detection member has a built-in heater, the start of oxygen detection can be accelerated by heating the detection unit with the heater simultaneously with the start of operation. When the downstream oxygen detection member is provided downstream from the main catalyst, this modification may be applied to the downstream oxygen detection member.
 排気管のメイン触媒より上流の少なくとも一部は、多重管で構成されていてもよい。多重管は、内管と、内管を覆う少なくとも1つの外管とを有する。図11は、排気管534のメイン触媒より上流の少なくとも一部が、二重管500で構成された一例を示す。例えば図11に示すように、排気管534のメイン触媒より上流の少なくとも一部は、二重管で構成されていてもよい。二重管500は、内管501と、内管501を覆う外管502とを含む。図11では、内管501と外管502は、両端部のみ互いに接触している。多重管の内管と外管は、両端部以外の部分で接触していてもよい。例えば、屈曲部において、内管と外管が接触していてもよい。接触している面積は、接触していない面積より小さいことが好ましい。また、内管と外管は全体的に接触していてもよい。排気管が多重管を有する場合、上流酸素検出部材は多重管の途中もしくは多重管より下流に配置することが好ましい。多重管は保温効果が高い。したがって、燃焼室29から排出された排ガスがメイン触媒39に流入するまでに温度が低下するのを抑制できる。つまり、メイン触媒39に流入する排ガスの温度の低下を抑制できる。そのため、メイン触媒39による排ガスの浄化性能をより向上できる。 At least a part of the exhaust pipe upstream from the main catalyst may be composed of multiple pipes. The multiple tube has an inner tube and at least one outer tube covering the inner tube. FIG. 11 shows an example in which at least a part of the exhaust pipe 534 upstream of the main catalyst is configured with a double pipe 500. For example, as shown in FIG. 11, at least a part of the exhaust pipe 534 upstream of the main catalyst may be constituted by a double pipe. The double tube 500 includes an inner tube 501 and an outer tube 502 that covers the inner tube 501. In FIG. 11, the inner tube 501 and the outer tube 502 are in contact with each other only at both ends. The inner tube and the outer tube of the multiple tube may be in contact with each other at both ends. For example, the inner tube and the outer tube may be in contact with each other at the bent portion. The contact area is preferably smaller than the non-contact area. Further, the inner tube and the outer tube may be in contact with each other. When the exhaust pipe has a multiple pipe, the upstream oxygen detection member is preferably arranged in the middle of the multiple pipe or downstream of the multiple pipe. Multiple tubes have a high thermal insulation effect. Therefore, it is possible to suppress the temperature from dropping before the exhaust gas discharged from the combustion chamber 29 flows into the main catalyst 39. That is, a decrease in the temperature of the exhaust gas flowing into the main catalyst 39 can be suppressed. Therefore, the exhaust gas purification performance of the main catalyst 39 can be further improved.
 例えば図12に示すように、触媒配置通路部40bの外面の少なくとも一部は、触媒プロテクター600で覆われていてもよい。触媒プロテクター600は、略円筒状に形成されている。触媒プロテクター600を設けることで、触媒配置通路部40bおよびメイン触媒39を保護できる。さらに、触媒プロテクター600を設けることで、メイン触媒39の温度の低下を抑制できる。そのため、メイン触媒39による排ガスの浄化性能をより向上できる。 For example, as shown in FIG. 12, at least a part of the outer surface of the catalyst arrangement passage portion 40b may be covered with a catalyst protector 600. The catalyst protector 600 is formed in a substantially cylindrical shape. By providing the catalyst protector 600, the catalyst arrangement passage portion 40b and the main catalyst 39 can be protected. Furthermore, by providing the catalyst protector 600, a decrease in the temperature of the main catalyst 39 can be suppressed. Therefore, the exhaust gas purification performance of the main catalyst 39 can be further improved.
 上記実施形態において、エンジン駆動時に排気経路41を流れるガスは、燃焼室29から排出された排ガスだけである。しかし、本発明の単気筒4ストロークエンジンユニットは、排気経路に空気を供給する二次空気供給機構を備えていてもよい。二次空気供給機構の具体的な構成は、公知の構成が採用される。二次空気供給機構は、エアポンプによって強制的に排気経路に空気を供給する構成であってもよい。また、二次空気供給機構は、排気経路の負圧によって空気を排気経路に引き込む構成であってもよい。この場合、二次空気供給機構は、排ガスによる圧力脈動に応じて開閉するリード弁を備える。二次空気供給機構を設ける場合、上流酸素検出部材の配置位置は、空気が流入する位置よりも上流に設けても下流に設けてもよい。 In the above embodiment, the gas flowing through the exhaust passage 41 when the engine is driven is only the exhaust gas discharged from the combustion chamber 29. However, the single-cylinder four-stroke engine unit of the present invention may include a secondary air supply mechanism that supplies air to the exhaust path. A known configuration is adopted as a specific configuration of the secondary air supply mechanism. The secondary air supply mechanism may be configured to forcibly supply air to the exhaust path using an air pump. Further, the secondary air supply mechanism may be configured to draw air into the exhaust path by the negative pressure of the exhaust path. In this case, the secondary air supply mechanism includes a reed valve that opens and closes in response to pressure pulsation caused by exhaust gas. When the secondary air supply mechanism is provided, the upstream oxygen detection member may be disposed upstream or downstream of the position where air flows.
 上記実施形態において、1つの燃焼室29に対して、排気ポート31aは1つだけ設けられている。しかし、1つの燃焼室に対して複数の排気ポートが設けられていてもよい。例えば、可変バルブ機構を備える場合がこの変形例に該当する。ただし、複数の排気ポートから延びる排気経路は、メイン触媒よりも上流で集合する。複数の排気ポートから延びる排気経路は、シリンダ部において集合することが好ましい。 In the above embodiment, only one exhaust port 31 a is provided for one combustion chamber 29. However, a plurality of exhaust ports may be provided for one combustion chamber. For example, the case where a variable valve mechanism is provided corresponds to this modification. However, the exhaust paths extending from the plurality of exhaust ports gather upstream from the main catalyst. The exhaust paths extending from the plurality of exhaust ports are preferably gathered at the cylinder portion.
 本発明の燃焼室は、主燃焼室と、主燃焼室につながる副燃焼室とを有する構成であってもよい。この場合、主燃焼室と副燃焼室とによって、1つの燃焼室が形成される。 The combustion chamber of the present invention may have a configuration having a main combustion chamber and a sub-combustion chamber connected to the main combustion chamber. In this case, one combustion chamber is formed by the main combustion chamber and the sub-combustion chamber.
 上記実施形態において、クランクケース本体23と、シリンダボディ24とは、別体である。しかし、クランクケース本体とシリンダボディとは、一体成形されていてもよい。また、上記実施形態において、シリンダボディ24と、シリンダヘッド25と、ヘッドカバー26とは、別体である。しかし、シリンダボディと、シリンダヘッドと、ヘッドカバーのいずれか2つまたは3つが一体成形されていてもよい。 In the above embodiment, the crankcase body 23 and the cylinder body 24 are separate bodies. However, the crankcase body and the cylinder body may be integrally formed. In the above embodiment, the cylinder body 24, the cylinder head 25, and the head cover 26 are separate bodies. However, any two or three of the cylinder body, the cylinder head, and the head cover may be integrally formed.
 上記実施形態では、単気筒4ストロークエンジンユニットを備えた鞍乗型車両として、自動二輪車を例示した。しかし、本発明の鞍乗型車両は、単気筒4ストロークエンジンユニットの動力で移動する鞍乗型車両であれば、どのような鞍乗型車両であってもよい。本発明の鞍乗型車両は、スクーター型の自動二輪車であってもよい。また、本発明の鞍乗型車両は、自動二輪車以外の鞍乗型車両であってもよい。鞍乗型車両とは、乗員が鞍にまたがるような状態で乗車する車両全般を指す。鞍乗型車両には、自動二輪車、三輪車、四輪バギー(ATV:All Terrain Vehicle(全地形型車両))、水上バイク、スノーモービル等が含まれる。 In the above embodiment, a motorcycle is exemplified as the saddle riding type vehicle including the single cylinder four-stroke engine unit. However, the straddle-type vehicle of the present invention may be any straddle-type vehicle as long as it is a straddle-type vehicle that moves with the power of the single-cylinder four-stroke engine unit. The saddle riding type vehicle of the present invention may be a scooter type motorcycle. The straddle-type vehicle of the present invention may be a straddle-type vehicle other than a motorcycle. Saddle-type vehicles refer to all vehicles that ride in a state in which an occupant straddles a saddle. The saddle riding type vehicle includes a motorcycle, a tricycle, a four-wheel buggy (ATV: All Terrain Vehicle), a water bike, a snowmobile, and the like.
 本明細書および本発明において、メイン触媒の上流端とは、メイン触媒において燃焼室からの経路長が最も短くなる端を意味する。メイン触媒の下流端とは、メイン触媒において燃焼室からの経路長が最も長くなる端を意味する。メイン触媒以外の要素の上流端および下流端についても同様の定義が適用される。 In the present specification and the present invention, the upstream end of the main catalyst means the end of the main catalyst that has the shortest path length from the combustion chamber. The downstream end of the main catalyst means the end where the path length from the combustion chamber is the longest in the main catalyst. Similar definitions apply to upstream and downstream ends of elements other than the main catalyst.
 本明細書および本発明において、通路部とは、経路を囲んで経路を形成する壁体等を意味し、経路とは対象が通過する空間を意味する。排気通路部とは、排気経路を囲んで排気経路を形成する壁体等を意味する。なお、排気経路とは、排気が通過する空間を意味する。 In the present specification and the present invention, the passage means a wall body or the like that surrounds the route to form the route, and the route means a space through which the object passes. The exhaust passage portion means a wall body that surrounds the exhaust path and forms the exhaust path. The exhaust path means a space through which exhaust passes.
 本明細書および本発明において、排気経路の経路長とは、排気経路の真ん中のラインの経路長を言う。また、消音器の膨張室の経路長は、膨張室の流入口の真ん中から膨張室の流出口の真ん中を最短で結んだ経路の長さを意味する。 In the present specification and the present invention, the length of the exhaust path refers to the length of the line in the middle of the exhaust path. Further, the path length of the expansion chamber of the silencer means the length of the path connecting the middle of the inlet of the expansion chamber to the middle of the outlet of the expansion chamber in the shortest distance.
 本明細書において、経路方向とは、排気経路の真ん中を通る経路の方向で、且つ、排ガスが流れる方向を意味する。 In this specification, the route direction means the direction of the route passing through the middle of the exhaust route and the direction in which the exhaust gas flows.
 本明細書において、通路部の経路方向に直交する断面の面積という表現が用いられている。また、本明細書および本発明において、通路部の排ガスの流れる方向に直交する断面の面積という表現が用いられている。ここでの通路部の断面の面積は、通路部の内周面の面積であってもよく、通路部の外周面の面積であってもよい。 In this specification, the expression of the area of a cross section perpendicular to the path direction of the passage portion is used. Moreover, in this specification and this invention, the expression of the area of the cross section orthogonal to the direction through which the waste gas flows of a channel | path part is used. The area of the cross section of the passage portion here may be the area of the inner peripheral surface of the passage portion or the area of the outer peripheral surface of the passage portion.
 また、本明細書および本発明において、部材または直線がA方向に延びるとは、部材または直線がA方向と平行に配置されている場合だけを示すのではない。部材または直線がA方向に延びるとは、部材または直線が、A方向に対して±45°の範囲で傾斜している場合を含む。なお、A方向は、特定の方向を指すものではない。A方向を、水平方向や前後方向に置き換えることができる。 Further, in the present specification and the present invention, the term “a member or a straight line extends in the A direction” does not indicate only a case where the member or the straight line is arranged in parallel with the A direction. The member or straight line extending in the A direction includes the case where the member or straight line is inclined within a range of ± 45 ° with respect to the A direction. The A direction does not indicate a specific direction. The A direction can be replaced with a horizontal direction or a front-rear direction.
 本明細書のクランクケース本体23は、本願の基礎出願の明細書中のクランクケース部18に相当する。本明細書のシリンダボディ24は、上述の基礎出願の明細書中のシリンダ部24に相当する。本明細書のエンジン本体20は、上述の基礎出願の明細書中のエンジン20に相当する。本明細書のシリンダ排気通路部31は、上述の基礎出願の明細書中の排ガスの通路P2を形成する通路部に相当する。 The crankcase body 23 in the present specification corresponds to the crankcase portion 18 in the specification of the basic application of the present application. The cylinder body 24 in the present specification corresponds to the cylinder portion 24 in the specification of the basic application described above. The engine body 20 in the present specification corresponds to the engine 20 in the specification of the basic application described above. The cylinder exhaust passage portion 31 of the present specification corresponds to a passage portion that forms the exhaust gas passage P2 in the specification of the basic application described above.
本発明は、本明細書の開示に基づいて当業者によって認識され得る、均等な要素、修正、削除、組み合わせ(例えば、各種実施形態に跨る特徴の組み合わせ)、改良および/または変更を含むあらゆる実施形態をも包含する。クレームの限定事項はそのクレームで用いられた用語に基づいて広く解釈されるべきである。クレームの限定事項は、本明細書あるいは本願のプロセキューション中に記載された実施形態に限定されるべきではない。そのような実施形態は非排他的であると解釈されるべきである。例えば、本明細書において、「好ましくは」や「よい」という用語は非排他的なものであって、「好ましいがこれに限定されるものではない」や「よいがこれに限定されるものではない」ということを意味するものである。 The present invention is any implementation including equivalent elements, modifications, deletions, combinations (eg, combinations of features across various embodiments), improvements, and / or changes that may be recognized by one of ordinary skill in the art based on the disclosure herein. It includes forms. Claim limitations should be construed broadly based on the terms used in the claims. Claim limitations should not be limited to the embodiments described herein or in the process of this application. Such an embodiment should be construed as non-exclusive. For example, in the present specification, the terms “preferably” and “good” are non-exclusive, and “preferably but not limited to” or “good but not limited thereto”. It means "not."
 1 自動二輪車(鞍乗型車両)
 2 車体フレーム
 3 ヘッドパイプ
 4 メインフレーム
 11 車体カバー
 16 エンジンカバー部
 17 開口部
 19 単気筒4ストロークエンジンユニット
 20 エンジン本体
 21 クランクケース部
 22 シリンダ部
 24a シリンダ孔
 27 クランク軸
 28 ピストン
 29 燃焼室
 30 シリンダ吸気通路部(単一燃焼室用シリンダ吸気通路部)
 31 シリンダ排気通路部(単一燃焼室用シリンダ排気通路部)
 34 排気管(単一燃焼室用シリンダ排気管)
 35 消音器(単一燃焼室用シリンダ消音器)
 35e 放出口
 38 触媒ユニット
 39 メイン触媒(単一燃焼室用メイン触媒)
 40a 上流通路部
 40b 触媒配置通路部
 40c 下流通路部
 41 排気経路
 48 インジェクタ(燃料噴射装置)
 200 上流サブ触媒(単一燃焼室用上流サブ触媒)
 400 下流サブ触媒(単一燃焼室用下流サブ触媒)
 500 二重管
 501 内管
 502 外管
 600 触媒プロテクター
 Cr1 クランク軸線(クランク軸の中心線)
 Cy1 シリンダ軸線(シリンダ孔の中心線)
 L2 クランク軸線とシリンダ軸線に直交する直線
1 Motorcycle (saddle-ride type vehicle)
DESCRIPTION OF SYMBOLS 2 Body frame 3 Head pipe 4 Main frame 11 Body cover 16 Engine cover part 17 Opening part 19 Single cylinder 4 stroke engine unit 20 Engine main body 21 Crankcase part 22 Cylinder part 24a Cylinder hole 27 Crankshaft 28 Piston 29 Combustion chamber 30 Cylinder intake Passage (Cylinder intake passage for single combustion chamber)
31 Cylinder exhaust passage (cylinder exhaust passage for single combustion chamber)
34 Exhaust pipe (Cylinder exhaust pipe for single combustion chamber)
35 Silencer (Cylinder silencer for single combustion chamber)
35e Discharge port 38 Catalyst unit 39 Main catalyst (Main catalyst for single combustion chamber)
40a Upstream passage part 40b Catalyst arrangement passage part 40c Downstream passage part 41 Exhaust path 48 Injector (fuel injection device)
200 Upstream sub-catalyst (upstream sub-catalyst for single combustion chamber)
400 Downstream sub-catalyst (downstream sub-catalyst for single combustion chamber)
500 Double pipe 501 Inner pipe 502 Outer pipe 600 Catalyst protector Cr1 Crank axis (centerline of crankshaft)
Cy1 Cylinder axis (Cylinder hole center line)
L2 Straight line perpendicular to the crank axis and cylinder axis

Claims (14)

  1.  単気筒4ストロークエンジンユニットが搭載された鞍乗型車両であって、
     前記単気筒4ストロークエンジンユニットは、
     その一部がシリンダ孔の内面によって区画される1つの燃焼室、前記1つの燃焼室に供給される空気が流れる単一燃焼室用シリンダ吸気通路部および前記1つの燃焼室から排出される排ガスが流れる単一燃焼室用シリンダ排気通路部が形成され、前記シリンダ孔の中心線が前記鞍乗型車両の前後方向に延びるように設けられた水平シリンダ部を有するエンジン本体と、
     少なくとも一部が前記エンジン本体より上方に配置され、前記エンジン本体の前記単一燃焼室用シリンダ吸気通路部の上流端に接続される単一燃焼室用吸気通路部と、
     少なくとも一部が前記エンジン本体より下方に配置され、前記エンジン本体の前記単一燃焼室用シリンダ排気通路部の下流端に接続される単一燃焼室用排気管と、
     大気に面する放出口を有し、前記単一燃焼室用排気管に接続されて前記単一燃焼室用排気管の下流端から流入した排ガスを前記放出口まで流し、排ガスにより生じる音を低減する単一燃焼室用消音器と、
     前記単一燃焼室用排気管内に配置され、少なくとも一部が前記エンジン本体より下方に配置されており、前記1つの燃焼室から前記放出口までの排気経路において、前記1つの燃焼室から排出された排ガスを最も浄化する単一燃焼室用メイン触媒と、
     前記単一燃焼室用吸気通路部または前記単一燃焼室用シリンダ吸気通路部に設けられており、前記前後方向において、前記単一燃焼室用吸気通路部の最後端より前方に配置されており、前記単一燃焼室用吸気通路部の上流端から吸入された空気に燃料を噴射する燃料噴射装置と、
     を有し、
     前記エンジン本体の上面の少なくとも一部を覆い、且つ、前記鞍乗型車両の左右方向の両端部が前記左右方向の中央より下方に位置するように形成されたエンジンカバー部を含み、その前部に開口部が形成された車体カバーを備え、
     前記単一燃焼室用吸気通路部は、少なくとも一部が前記エンジンカバー部と前記エンジン本体の上面との間に配置されており、前記前後方向において、その最後端が前記車体カバーの前記開口部より後方に配置されており、
     前記単一燃焼室用排気管は、前記前後方向において、少なくとも一部が前記車体カバーの前記開口部より後方に配置されており、
     前記燃料噴射装置は、前記単気筒4ストロークエンジンユニットと前記車体カバーを前方から見たときに、少なくとも一部が前記車体カバーの前記開口部の中に見える位置に配置されていることを特徴とする鞍乗型車両。
    A straddle-type vehicle equipped with a single-cylinder four-stroke engine unit,
    The single-cylinder four-stroke engine unit is
    One combustion chamber, a part of which is defined by the inner surface of the cylinder hole, a single combustion chamber cylinder intake passage through which air supplied to the one combustion chamber flows, and exhaust gas discharged from the one combustion chamber An engine main body having a horizontal cylinder portion formed so that a flowing cylinder exhaust passage portion for a single combustion chamber is formed, and a center line of the cylinder hole extends in a front-rear direction of the saddle riding type vehicle;
    A single combustion chamber intake passage portion that is disposed at least partially above the engine body and connected to an upstream end of the single combustion chamber cylinder intake passage portion of the engine body;
    An exhaust pipe for a single combustion chamber disposed at least partially below the engine body and connected to a downstream end of the cylinder exhaust passage for the single combustion chamber of the engine body;
    A discharge port facing the atmosphere is connected to the exhaust pipe for the single combustion chamber, and the exhaust gas flowing in from the downstream end of the exhaust pipe for the single combustion chamber flows to the discharge port to reduce the sound generated by the exhaust gas. A single combustion chamber silencer,
    Arranged in the exhaust pipe for the single combustion chamber, at least a part is disposed below the engine body, and is discharged from the one combustion chamber in an exhaust path from the one combustion chamber to the discharge port. The main catalyst for the single combustion chamber that most purifies the exhaust gas,
    It is provided in the single combustion chamber intake passage portion or the single combustion chamber cylinder intake passage portion, and is disposed in front of the rear end of the single combustion chamber intake passage portion in the front-rear direction. A fuel injection device for injecting fuel into the air sucked from the upstream end of the intake passage portion for the single combustion chamber;
    Have
    An engine cover portion that covers at least a part of the upper surface of the engine body and is formed so that both left and right end portions of the saddle-ride type vehicle are positioned below the center in the left and right direction; A vehicle body cover with an opening formed in the
    The single combustion chamber intake passage portion is at least partially disposed between the engine cover portion and the upper surface of the engine body, and the rearmost end thereof is the opening of the vehicle body cover in the front-rear direction. It is arranged at the rear,
    The single combustion chamber exhaust pipe is at least partially disposed behind the opening of the vehicle body cover in the front-rear direction,
    The fuel injection device is disposed at a position where at least a part of the fuel injection device can be seen in the opening of the vehicle body cover when the single cylinder four-stroke engine unit and the vehicle body cover are viewed from the front. A straddle-type vehicle.
  2.  前記燃料噴射装置は、一部が前記単一燃焼室用吸気通路部の前方に配置されることを特徴とする請求項1に記載の鞍乗型車両。 The straddle-type vehicle according to claim 1, wherein a part of the fuel injection device is disposed in front of the intake passage portion for the single combustion chamber.
  3.  前記車体カバーは、前記エンジンカバー部の前端と前記エンジン本体の上面との上下方向の最大離間距離が、前記エンジンカバー部の前後方向中央または後端と前記エンジン本体の上面との上下方向の最大離間距離より大きくなるように形成されていることを特徴とする請求項1または2に記載の鞍乗型車両。 The vehicle body cover has a maximum vertical distance between the front end of the engine cover portion and the upper surface of the engine body in the vertical direction between the center or rear end of the engine cover portion and the upper surface of the engine body. The straddle-type vehicle according to claim 1 or 2, wherein the straddle-type vehicle is formed to be larger than a separation distance.
  4.  前記エンジンカバー部は、前記エンジン本体の左面または右面の少なくとも一部を覆うことを特徴とする請求項1~3のいずれか1項に記載の鞍乗型車両。 The straddle-type vehicle according to any one of claims 1 to 3, wherein the engine cover portion covers at least a part of a left surface or a right surface of the engine body.
  5.  ヘッドパイプ、および、前記ヘッドパイプから後下向きに延びるメインフレームを有する車体フレームを備え、
     前記車体カバーは、前記メインフレームの少なくとも一部を上方から覆っており、
     前記エンジン本体は、前記メインフレームの下方に配置されて、前記メインフレームに揺動不能に支持されることを特徴とする請求項1~4のいずれか1項に記載の鞍乗型車両。
    A vehicle body frame having a head pipe and a main frame extending rearward and downward from the head pipe;
    The vehicle body cover covers at least a part of the main frame from above,
    The straddle-type vehicle according to any one of claims 1 to 4, wherein the engine body is disposed below the main frame and is supported by the main frame so as not to swing.
  6.  前記単一燃焼室用排気管は、前記単一燃焼室用メイン触媒が配置される触媒配置通路部と、前記触媒配置通路部の上流端に接続される上流通路部とを有しており、
     前記触媒配置通路部の排ガスの流れ方向に直交する断面の面積は、前記上流通路部の少なくとも一部の排ガスの流れ方向に直交する断面の面積よりも大きいことを特徴とする請求項1~5のいずれか1項に記載の鞍乗型車両。
    The single combustion chamber exhaust pipe has a catalyst arrangement passage portion in which the single catalyst for the single combustion chamber is arranged, and an upstream passage portion connected to an upstream end of the catalyst arrangement passage portion. ,
    The area of the cross section perpendicular to the flow direction of the exhaust gas in the catalyst arrangement passage portion is larger than the area of the cross section perpendicular to the flow direction of the exhaust gas in at least a part of the upstream passage portion. The straddle-type vehicle according to any one of 5.
  7.  前記エンジン本体は、前記鞍乗型車両の左右方向に延びるクランク軸を含むクランクケース部を有し、
     前記単一燃焼室用メイン触媒の少なくとも一部は、前記クランク軸の中心線よりも前記鞍乗型車両の前後方向の前方に位置することを特徴とする請求項1~6のいずれか1項に記載の鞍乗型車両。
    The engine body has a crankcase portion including a crankshaft extending in the left-right direction of the saddle riding type vehicle,
    The at least part of the single combustion chamber main catalyst is located in front of the saddle type vehicle in the front-rear direction with respect to the center line of the crankshaft. The saddle riding type vehicle described in 1.
  8.  前記エンジン本体は、前記鞍乗型車両の左右方向に延びるクランク軸を含むクランクケース部を有し、
     前記鞍乗型車両を左右方向から見て、前記単一燃焼室用メイン触媒の少なくとも一部が、前記シリンダ孔の中心線に直交し且つ前記クランク軸の中心線に直交する直線の、前記前後方向の前方に位置することを特徴とする請求項1~7のいずれか1項に記載の鞍乗型車両。
    The engine body has a crankcase portion including a crankshaft extending in the left-right direction of the saddle riding type vehicle,
    When the straddle-type vehicle is viewed from the left-right direction, at least a part of the single combustion chamber main catalyst is a straight line perpendicular to the center line of the cylinder hole and perpendicular to the center line of the crankshaft. The straddle-type vehicle according to any one of claims 1 to 7, wherein the straddle-type vehicle is located in front of the direction.
  9.  前記単一燃焼室用メイン触媒は、前記1つの燃焼室から前記単一燃焼室用メイン触媒の上流端までの経路長が、前記単一燃焼室用メイン触媒の下流端から前記放出口までの経路長よりも短くなる位置に配置されることを特徴とする請求項1~8のいずれか1項に記載の鞍乗型車両。 The single combustion chamber main catalyst has a path length from the one combustion chamber to the upstream end of the single combustion chamber main catalyst from the downstream end of the single combustion chamber main catalyst to the discharge port. The straddle-type vehicle according to any one of claims 1 to 8, wherein the straddle-type vehicle is disposed at a position shorter than a route length.
  10.  前記単一燃焼室用メイン触媒は、前記1つの燃焼室から前記単一燃焼室用メイン触媒の上流端までの経路長が、前記単一燃焼室用メイン触媒の下流端から前記単一燃焼室用排気管の下流端までの経路長よりも短くなる位置に配置されることを特徴とする請求項1~9のいずれか1項に記載の鞍乗型車両。 The single combustion chamber main catalyst has a path length from the one combustion chamber to the upstream end of the single combustion chamber main catalyst, so that the single combustion chamber main catalyst for the single combustion chamber extends from the downstream end of the single combustion chamber main catalyst. The straddle-type vehicle according to any one of claims 1 to 9, wherein the straddle-type vehicle is disposed at a position shorter than a path length to a downstream end of the exhaust pipe for use.
  11.  前記単一燃焼室用排気管は、前記単一燃焼室用メイン触媒よりも排ガスの流れ方向の上流の少なくとも一部が、内管と前記内管を覆う少なくとも1つの外管を備えた多重管で構成されることを特徴とする請求項1~10のいずれか1項に記載の鞍乗型車両。 The single combustion chamber exhaust pipe is a multiple pipe in which at least part of the exhaust gas flow direction upstream of the single combustion chamber main catalyst includes an inner pipe and at least one outer pipe covering the inner pipe. The straddle-type vehicle according to any one of claims 1 to 10, wherein the straddle-type vehicle is configured as follows.
  12.  前記単一燃焼室用排気管は、前記単一燃焼室用メイン触媒が配置される触媒配置通路部を有し、
     前記単気筒4ストロークエンジンユニットは、
     前記触媒配置通路部の外面の少なくとも一部を覆う触媒プロテクターを備えることを特徴とする請求項1~11のいずれか1項に記載の鞍乗型車両。
    The single combustion chamber exhaust pipe has a catalyst arrangement passage portion in which the single combustion chamber main catalyst is arranged,
    The single-cylinder four-stroke engine unit is
    The straddle-type vehicle according to any one of claims 1 to 11, further comprising a catalyst protector that covers at least a part of an outer surface of the catalyst arrangement passage portion.
  13.  前記単気筒4ストロークエンジンユニットは、前記単一燃焼室用シリンダ通路部内または前記単一燃焼室用排気管内において前記単一燃焼室用メイン触媒よりも排ガスの流れ方向の上流に設けられ、排ガスを浄化する単一燃焼室用上流サブ触媒を備えることを特徴とする請求項1~12のいずれか1項に記載の鞍乗型車両。 The single-cylinder four-stroke engine unit is provided upstream of the single combustion chamber main catalyst in the flow direction of exhaust gas in the single combustion chamber cylinder passage or in the single combustion chamber exhaust pipe. The straddle-type vehicle according to any one of claims 1 to 12, further comprising an upstream sub-catalyst for a single combustion chamber to be purified.
  14.  前記単気筒4ストロークエンジンユニットは、前記単一燃焼室用シリンダ通路部、前記単一燃焼室用排気管内または前記単一燃焼室用消音器内において前記単一燃焼室用メイン触媒よりも排ガスの流れ方向の下流に設けられ、排ガスを浄化する単一燃焼室用下流サブ触媒を備えることを特徴とする請求項1~13のいずれか1項に記載の鞍乗型車両。 The single-cylinder four-stroke engine unit is configured to emit more exhaust gas than the single combustion chamber main catalyst in the single combustion chamber cylinder passage, the single combustion chamber exhaust pipe, or the single combustion chamber silencer. The straddle-type vehicle according to any one of claims 1 to 13, further comprising a downstream sub-catalyst for a single combustion chamber that is provided downstream in a flow direction and purifies exhaust gas.
PCT/JP2015/069352 2014-07-04 2015-07-03 Saddle-driven vehicle WO2016002953A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW104121884A TW201612407A (en) 2014-07-04 2015-07-06 Saddle-driven vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-138383 2014-07-04
JP2014138383A JP2017149166A (en) 2014-07-04 2014-07-04 Saddle-riding type vehicle

Publications (1)

Publication Number Publication Date
WO2016002953A1 true WO2016002953A1 (en) 2016-01-07

Family

ID=55019478

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/069352 WO2016002953A1 (en) 2014-07-04 2015-07-03 Saddle-driven vehicle

Country Status (3)

Country Link
JP (1) JP2017149166A (en)
TW (1) TW201612407A (en)
WO (1) WO2016002953A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113646513A (en) * 2019-03-25 2021-11-12 Tvs电机股份有限公司 Motor vehicle comprising a combustion engine and an exhaust system

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3922835B1 (en) * 2019-02-04 2023-04-26 Yamaha Hatsudoki Kabushiki Kaisha Straddled vehicle

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08232650A (en) * 1996-02-22 1996-09-10 Honda Motor Co Ltd Emission control device for engine
JP2004301019A (en) * 2003-03-31 2004-10-28 Denso Corp Catalytic converter system
JP2006057565A (en) * 2004-08-23 2006-03-02 Yamaha Motor Co Ltd Vehicle
JP2007187004A (en) * 2006-01-11 2007-07-26 Honda Motor Co Ltd Internal combustion engine
JP2008208819A (en) * 2007-02-28 2008-09-11 Honda Motor Co Ltd Internal combustion engine provided with variable intake device
JP2009133320A (en) * 2004-03-30 2009-06-18 Yamaha Motor Co Ltd Saddle-straddling type vehicle
JP2011052605A (en) * 2009-09-02 2011-03-17 Yamaha Motor Co Ltd Exhaust system, saddle type vehicle having the same, and method of manufacturing and mounting exhaust pipe
JP2013173498A (en) * 2012-02-27 2013-09-05 Honda Motor Co Ltd Small vehicle

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08232650A (en) * 1996-02-22 1996-09-10 Honda Motor Co Ltd Emission control device for engine
JP2004301019A (en) * 2003-03-31 2004-10-28 Denso Corp Catalytic converter system
JP2009133320A (en) * 2004-03-30 2009-06-18 Yamaha Motor Co Ltd Saddle-straddling type vehicle
JP2006057565A (en) * 2004-08-23 2006-03-02 Yamaha Motor Co Ltd Vehicle
JP2007187004A (en) * 2006-01-11 2007-07-26 Honda Motor Co Ltd Internal combustion engine
JP2008208819A (en) * 2007-02-28 2008-09-11 Honda Motor Co Ltd Internal combustion engine provided with variable intake device
JP2011052605A (en) * 2009-09-02 2011-03-17 Yamaha Motor Co Ltd Exhaust system, saddle type vehicle having the same, and method of manufacturing and mounting exhaust pipe
JP2013173498A (en) * 2012-02-27 2013-09-05 Honda Motor Co Ltd Small vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113646513A (en) * 2019-03-25 2021-11-12 Tvs电机股份有限公司 Motor vehicle comprising a combustion engine and an exhaust system

Also Published As

Publication number Publication date
JP2017149166A (en) 2017-08-31
TW201612407A (en) 2016-04-01

Similar Documents

Publication Publication Date Title
JP6348180B2 (en) Vehicle and V-type multi-cylinder 4-stroke engine unit
EP3239485B1 (en) Straddled vehicle
TWI611098B (en) Vehicle and single cylinder four-stroke engine unit
WO2016002956A1 (en) Vehicle and v-type multi-cylinder four-stroke engine unit
WO2016002952A1 (en) Saddle-driven vehicle and single-cylinder 4-stroke engine unit
WO2016002958A1 (en) Saddle-type vehicle
TWI700429B (en) Straddle type vehicle and single-cylinder four-stroke engine unit
WO2016002953A1 (en) Saddle-driven vehicle
WO2016002954A1 (en) Saddle-driven vehicle
WO2016002957A1 (en) Saddle-driven vehicle and single-cylinder 4-stroke engine unit
WO2016002951A1 (en) Vehicle and single-cylinder 4-stroke engine unit
JP2018155218A (en) Saddle-riding type vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15814197

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15814197

Country of ref document: EP

Kind code of ref document: A1