WO2016103382A1 - コンバインドサイクルプラント - Google Patents

コンバインドサイクルプラント Download PDF

Info

Publication number
WO2016103382A1
WO2016103382A1 PCT/JP2014/084253 JP2014084253W WO2016103382A1 WO 2016103382 A1 WO2016103382 A1 WO 2016103382A1 JP 2014084253 W JP2014084253 W JP 2014084253W WO 2016103382 A1 WO2016103382 A1 WO 2016103382A1
Authority
WO
WIPO (PCT)
Prior art keywords
steam
heat recovery
turbine
recovery boiler
exhaust heat
Prior art date
Application number
PCT/JP2014/084253
Other languages
English (en)
French (fr)
Inventor
小林 雅博
英樹 永尾
Original Assignee
三菱重工コンプレッサ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工コンプレッサ株式会社 filed Critical 三菱重工コンプレッサ株式会社
Priority to JP2016565743A priority Critical patent/JP6439948B2/ja
Priority to US15/538,444 priority patent/US10774691B2/en
Priority to PCT/JP2014/084253 priority patent/WO2016103382A1/ja
Publication of WO2016103382A1 publication Critical patent/WO2016103382A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/103Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle with afterburner in exhaust boiler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/02Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled
    • F01K23/06Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle
    • F01K23/10Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle
    • F01K23/106Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engine cycles being thermally coupled combustion heat from one cycle heating the fluid in another cycle with exhaust fluid of one cycle heating the fluid in another cycle with water evaporated or preheated at different pressures in exhaust boiler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02CGAS-TURBINE PLANTS; AIR INTAKES FOR JET-PROPULSION PLANTS; CONTROLLING FUEL SUPPLY IN AIR-BREATHING JET-PROPULSION PLANTS
    • F02C6/00Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use
    • F02C6/18Plural gas-turbine plants; Combinations of gas-turbine plants with other apparatus; Adaptations of gas-turbine plants for special use using the waste heat of gas-turbine plants outside the plants themselves, e.g. gas-turbine power heat plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K13/00General layout or general methods of operation of complete plants
    • F01K13/006Auxiliaries or details not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K23/00Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids
    • F01K23/12Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engines being mechanically coupled
    • F01K23/16Plants characterised by more than one engine delivering power external to the plant, the engines being driven by different fluids the engines being mechanically coupled all the engines being turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]

Definitions

  • the present invention relates to a combined cycle plant having a gas turbine unit including a gas turbine and a steam turbine unit including a steam turbine and an exhaust heat recovery boiler.
  • a gas turbine unit air compressed using an air compressor is sent to a combustor and heated together with fuel supplied to the combustor, and in the turbine, high-temperature and high-pressure gas generated in the combustor is expanded. The power of the first generator connected to the turbine is generated. At this time, high-temperature (for example, 600 ° C.) exhaust gas is discharged from the gas turbine unit.
  • high-temperature for example, 600 ° C.
  • the exhaust gas is used to generate steam in the exhaust heat recovery boiler and supply the steam to the steam turbine, thereby generating power for the second generator connected to the steam turbine.
  • the steam is discharged from the steam turbine.
  • the steam discharged from the steam turbine is guided to the heat exchange section of the condenser, where it is cooled and condensed by cooling water such as seawater, and is led to the water supply system to the exhaust heat recovery boiler as condensate. It is burned.
  • a first compressor is used instead of the first generator, and a plant (factory) is used instead of the second generator. May be used.
  • the second compressor driven by the steam turbine is often used in different steps in a series of processes of the plant. If even one unit cannot drive the second compressor, Cannot operate (plant shuts down). Therefore, when a plurality of second compressors compress process gas in different processes in a series of processes, when the exhaust heat recovery boiler stops due to a failure, the exhaust gas recovery boiler compresses the process gas with the compressor that has failed. It becomes difficult.
  • the present invention can suppress a production stoppage of a product in a plant connected to the compressor by operating the compressor connected to the steam turbine even when the exhaust heat recovery boiler fails. Provide combined cycle plant.
  • the combined cycle plant uses a gas turbine, a first compressor driven by power obtained by the gas turbine, and high-temperature exhaust gas discharged from the gas turbine to supply water.
  • a gas turbine unit including an exhaust heat recovery boiler to be steamed, a steam turbine to which the steam is supplied, and a second compression that is driven by power obtained by the steam turbine and contributes to the compression of process gas in the factory
  • a plurality of turbine apparatuses each including a steam turbine unit including a compressor, a steam supply line connected to the exhaust heat recovery boiler and the steam turbine, and supplying the steam to the steam turbine, and the plurality of turbine apparatuses
  • one of the exhaust heat recovery boilers constituting the plurality of gas turbine units fails, and steam is generated in the steam turbine of the turbine apparatus including the failed exhaust heat recovery boiler. Even if it becomes impossible to supply the steam, a part of the steam supplied from the exhaust heat recovery boiler that has not failed is supplied to the steam turbine of the turbine device including the failed exhaust heat recovery boiler via the connection line. Is possible. As a result, it becomes possible to drive the evaporation turbine of the turbine apparatus including the failed exhaust heat recovery boiler to obtain power, so that the second compressor connected to the evaporation turbine can be operated.
  • the second compressor when the second compressor is used for compressing the process gas in a series of processes in the factory, other apparatuses in the factory (apparatus including manufacturing apparatus and processing apparatus) are continuously used (operated). Therefore, the production stoppage of the factory can be suppressed.
  • the exhaust heat recovery boiler is supplied with the high-temperature exhaust gas, and supplies the steam supplied through the evaporator and the drum and the high-temperature exhaust gas.
  • the second superheater is supplied with the exhaust gas and the steam supplied from the first superheater, exchanges heat between the exhaust gas and the steam, and leads the steam after the heat exchange into the steam supply line. You may have.
  • the exhaust heat recovery boiler is normal, provided in the steam supply line located between the connection position with the connection line and the exhaust heat recovery boiler.
  • a detection unit that acquires data for determining whether or not the engine is operating, and when the numerical value of the data falls below a preset threshold value, the data is supplied to the auxiliary combustion devices constituting the plurality of turbine devices And a control device that controls to increase the amount of fuel.
  • control device performs an operation of the exhaust heat recovery boiler connected to the steam supply line in which the numerical value of the data is lower than a preset threshold value. It may be stopped.
  • the detection unit detects a temperature in the steam supply line located on the outlet side of the exhaust heat recovery boiler, and the exhaust heat recovery A flow rate detector for detecting the flow rate of the steam flowing in the steam supply line located on the outlet side of the boiler, and a pressure detector for detecting the pressure in the steam supply line located on the outlet side of the exhaust heat recovery boiler Among these, you may comprise at least 1 type.
  • the detection unit determines whether or not the exhaust heat recovery boiler is operating normally. Data for determination can be acquired.
  • the compressor connected to the steam turbine can be operated even when the exhaust heat recovery boiler fails.
  • FIG. 1 is a diagram schematically showing a schematic configuration of a combined cycle plant according to an embodiment of the present invention.
  • A is an exhaust heat recovery boiler and a region surrounding the exhaust heat recovery boiler (hereinafter referred to as “region A”)
  • B is inflow air (hereinafter referred to as “inflow air B”)
  • C is a manufacturing apparatus, a processing apparatus, and the like.
  • factory C including the device is shown.
  • FIG. 1 only two turbine devices 11 are illustrated for the sake of space.
  • a combined cycle plant 10 includes a plurality of turbine apparatuses 11 (two turbine apparatuses 11 in the case of the present embodiment), a connection line 12, a temperature detection unit 13A, A pressure detection unit 13B, a flow rate detection unit 13C, and a control device 14 are included.
  • the turbine device 11 includes a gas turbine unit 15, a steam supply line 16, and a steam turbine unit 17.
  • the gas turbine unit 15 includes a gas turbine 21, a first compressor 22, an exhaust gas supply line 23, a fuel supply source 24, a first fuel supply line 25, automatic valves 27 and 29, a second A fuel supply line 28, an exhaust heat recovery boiler 32, a water supply source 34, a water supply line 35, a first exhaust line 36, an exhaust switching valve 37 (three-way valve), and a second exhaust line 38 Have.
  • the gas turbine 21 is connected to the first compressor 22 in a state where power can be supplied to the first compressor 22.
  • the gas turbine 21 is configured to include, for example, a compressor, a combustor, a turbine, and the like that are not illustrated.
  • a turbine (not shown) is connected to one end of the exhaust gas supply line 23.
  • the gas turbine 21 compresses the inflow air B with a compressor (not shown), injects fuel into the compressed high-pressure air in a combustor (not shown), and burns it. Then, the air made into the high temperature high pressure rotates a turbine (not shown), and takes out motive power as a rotational force. At this time, exhaust gas is discharged from a turbine (not shown).
  • a combustor (not shown) is connected to the other end of the first fuel supply line 25. Fuel is supplied to the combustor (not shown) from the fuel supply source 24 via the first fuel supply line 25.
  • the first compressor 22 is connected to the gas turbine 21.
  • the first compressor 22 is a compressor that is driven by power obtained from the gas turbine 21.
  • the other end of the exhaust gas supply line 23 is connected to an exhaust gas switching valve 37 (three-way valve).
  • the exhaust gas switching valve 37 is a valve for switching the flow of exhaust gas in two directions (in other words, switching to two lines).
  • One line connected to the exhaust gas switching valve 37 is connected to the exhaust heat recovery boiler 32 (specifically, a first superheater 45 described later).
  • a second exhaust line 38 is connected as the other line.
  • the exhaust gas supply line 23 is a line for supplying exhaust gas discharged from a turbine (not shown) constituting the gas turbine 21 to the first superheater 45 constituting the exhaust heat recovery boiler 32.
  • the fuel supply source 24 is connected to one end of the first fuel supply line 25 and one end of the second fuel supply line 28.
  • the fuel supply source 24 supplies fuel to a combustor (not shown) constituting the gas turbine 21 via the first fuel supply line 25 and exhaust heat via the second fuel supply line 28.
  • Fuel is supplied to the recovery boiler 32.
  • the other end of the second fuel supply line 25 is connected to a later-described auxiliary combustion device 46 constituting the exhaust heat recovery boiler 32.
  • the automatic valve 27 is provided in the first fuel supply line 25.
  • the automatic valve 27 is a valve for adjusting the flow rate of the fuel supplied to the gas turbine 21.
  • the automatic valve 29 is provided in the second fuel supply line 28.
  • the automatic valve 29 is a valve for adjusting the flow rate of fuel supplied to the auxiliary combustion device 46 constituting the exhaust heat recovery boiler 32.
  • the exhaust gas switching valve 37 is a valve for switching the flow of exhaust gas.
  • the automatic valves 27 and 29 and the exhaust gas switching valve 37 are electrically connected to the control device 14.
  • the opening degree of the automatic valves 27 and 29 is automatically adjusted by the control device 14.
  • the exhaust switching valve 37 has its exhaust direction automatically adjusted by the control device 14.
  • the automatic valves 27 and 29 are electrically connected to the control device 14, and the opening degree is automatically adjusted by the control device 14.
  • FIG. 2 is an enlarged view of a portion surrounded by a region A in FIG. 1 and is a diagram for explaining an internal configuration of the exhaust heat recovery boiler. 2, the same components as those in the structure shown in FIG.
  • D is high-temperature exhaust gas (hereinafter referred to as “exhaust gas D”) discharged from the gas turbine 21
  • E is fuel supplied to the auxiliary combustion device 46 (hereinafter referred to as “fuel E”)
  • F is exhaust heat.
  • Steam generated by the recovery boiler 32 hereinafter referred to as “steam F”) and G respectively indicate water (hereinafter referred to as “water G”) supplied to an economizer 51 (to be described later) constituting the exhaust heat recovery boiler 32.
  • I indicates the moving direction of the exhaust gas D (hereinafter referred to as “I direction”)
  • J indicates the moving direction of the water G
  • K indicates the moving direction of the steam (in other words, the evaporated water G). ing.
  • the exhaust heat recovery boiler 32 includes a first superheater 45, an auxiliary combustion device 46, a second superheater 47, an evaporator 48, a drum 49, and an economizer 51.
  • the first superheater 45 is connected to the other end of the exhaust gas supply line 23.
  • High temperature (for example, about 500 ° C.) exhaust gas D is supplied from the gas turbine 21 to the first superheater 45 via the exhaust gas supply line 23.
  • Steam that is water G evaporated by the evaporator 48 is supplied to the first superheater 45 through the drum 49.
  • the first superheater 45 supplies the heated steam to the second superheater 47 by exchanging heat between the exhaust gas D and the steam supplied from the drum 49. By this heat exchange, the temperature of the exhaust gas D is lower than the temperature when it is supplied from the gas turbine 21 (for example, it is reduced to a temperature of about 350 ° C.).
  • a heat exchanger can be used as the first superheater 45.
  • the auxiliary combustion device 46 is connected in a state where the exhaust gas D derived from the first superheater 45 can be introduced, and the exhaust gas D derived from the auxiliary combustion device 46 can be supplied to the second superheater 47.
  • the second superheater 47 is connected.
  • Fuel E for driving the auxiliary combustion device 46 is supplied to the auxiliary combustion device 46 via the second fuel supply line 28.
  • the fuel E may be the same as the fuel supplied to the gas turbine 21. Thereby, since only one fuel supply source 24 needs to be provided, the configuration of the gas turbine unit 15 can be simplified.
  • the auxiliary combustion device 46 is a device for heating the exhaust gas D whose temperature has decreased.
  • the exhaust gas D that has been heated to a high temperature (for example, 800 ° C.) by being heated by the auxiliary combustion device 46 is supplied to the second superheater 47.
  • a duct burner can be used as the auxiliary combustion device 46 configured as described above.
  • the second superheater 47 is connected to one end of a first portion 55 described later that constitutes the steam supply line 16.
  • the second superheater 47 is supplied with the exhaust gas D that has been brought to a high temperature (for example, about 800 ° C.) by the auxiliary combustion device 46.
  • the 2nd superheater 47 is set as the structure (structure which has sufficient heat resistance) which can endure the exhaust gas D made into the said high temperature.
  • the second superheater 47 heat exchange is performed between the exhaust gas D heated to high temperature by the auxiliary combustion device 46 and the steam supplied from the first superheater 45. As a result, the temperature of the steam rises and the temperature of the exhaust gas D falls.
  • the steam F derived from the second superheater 47 is guided to the steam supply line 16 (specifically, the first portion 55). Further, the exhaust gas D derived from the second superheater 47 is supplied to the evaporator 48.
  • the auxiliary combustion device 46 described above is disposed between the first superheater 45 and the second superheater 47 as viewed from the moving direction (I direction) of the exhaust gas D.
  • the auxiliary combustion device 46 is provided in the exhaust gas supply line 23 located in the front stage of the first superheater 45, the high temperature exhaust gas D supplied from the gas turbine 21 is further heated by the auxiliary combustion device 46.
  • the first superheater 45 needs to have a structure having sufficient heat resistance like the second superheater 47. However, if this is done, the material cost of the first superheater 45 and the like will increase, so the cost of the exhaust heat recovery boiler 32 will increase.
  • the auxiliary combustion device 46 when the auxiliary combustion device 46 is provided in the exhaust gas supply line 23 located in the front stage of the first superheater 45, the exhaust gas D which is led out from the first superheater 45 and whose temperature is lowered is directly supplied to the second superheater 47. Therefore, in the second superheater 47, it is difficult to perform sufficient heat exchange. As described above, it is preferable that the auxiliary combustion device 46 be disposed between the first superheater 45 and the second superheater 47 when viewed from the moving direction (I direction) of the exhaust gas D.
  • the evaporator 48 is connected to the economizer 51 in a state where the water G (heated water G) derived from the economizer 51 can be introduced, and the exhaust gas D derived from the evaporator 48 can be supplied to the economizer 51. Connected to the economizer 51. The evaporator 48 evaporates the heated water G supplied from the economizer 51. At this time, the water G is evaporated using the heat of the exhaust gas D. The evaporator 48 supplies the water G evaporated to the drum 49. The evaporated water G contains water G and steam that have not evaporated. Further, the evaporator 48 supplies the exhaust gas D having a lowered temperature to the economizer 51 by generating steam.
  • the drum 49 is connected to the first superheater 45 in a state where steam can be supplied to the first superheater 45.
  • the drum 49 separates the non-evaporated water G and the steam contained in the evaporated water G supplied from the evaporator 48.
  • the steam separated by the drum 49 is supplied to the first superheater 45.
  • the economizer 51 is connected to the other end of the water supply line 35 connected to the water supply source 34. Water G is supplied from the water supply source 34 to the economizer 51 through the water supply line 35. In the economizer 51, the water G is heated using the exhaust gas D supplied from the evaporator 48. The water G heated by the economizer 51 is supplied to the evaporator 48. The economizer 51 is connected to one end of the first exhaust line 36. The exhaust gas D used in the economizer 51 is exhausted to the outside of the exhaust heat recovery boiler 32 via the first exhaust line 36.
  • the exhaust heat recovery boiler 32 is supplied with the high-temperature exhaust gas D, and the evaporator 48 and the first superheater for exchanging heat between the steam supplied via the drum 49 and the high-temperature exhaust gas D.
  • an auxiliary combustion device 46 for heating the exhaust gas D supplied from the first superheater 45 and having a temperature lower than that of the high temperature exhaust gas D using the fuel E, an exhaust gas D heated by the auxiliary combustion device 46, and
  • the second superheater 47 is supplied with the steam supplied from the first superheater 45, exchanges heat between the exhaust gas D and the steam, and leads the steam after the heat exchange into the steam supply line 16.
  • a failure occurs in a steam turbine 61 (a steam turbine described later) that constitutes a turbine device (in this case, the turbine device 11 or the turbine device 12) including the failed exhaust heat recovery boiler 32 via a connection line 12 described later.
  • a part of the steam F generated by the waste heat recovery boiler 32 that has not been used can be supplied.
  • the water supply source 34 is connected to one end of a water supply line 35 and is connected to a condenser 63 described later in a state where water can be recovered from the condenser 63 described later.
  • the water supply source 34 supplies water G necessary for generating steam to the economizer 51 via the water supply line 35. Further, the water supply source 34 reuses the water collected from the condenser 63 as the water G.
  • the first exhaust line 36 is a line for exhausting the exhaust gas D used in the economizer 51 to the outside of the exhaust heat recovery boiler 32.
  • the steam supply line 16 has a first portion 55 and a second portion 56. One end of the first portion 55 is connected to the second superheater 47, and the other end is connected to the connecting line 12. The first portion 55 introduces the steam F led out from the second superheater 47 into the connection line 12.
  • connection line 12 located in the vicinity of the connection position (connection position) of the first portion 55, and the other end of the second portion 56 constitutes the turbine device 11, which will be described later. Connected with. Steam F is introduced into the second portion 56 via the connection line 12. The steam F introduced into the second portion 56 is supplied to the steam turbine 61 constituting the turbine device 11.
  • the steam supply line 16 which comprises the some turbine apparatus 11 is connected with the same connection line 12 in a different position. Therefore, the steam F derived from the gas turbine units 15 of the plurality of turbine apparatuses 11 is supplied to the connection line 12.
  • the steam turbine unit 17 includes a steam turbine 61, a second compressor 62, and a condenser 63.
  • the steam turbine 61 generates power by rotating blades (not shown) constituting the steam turbine 61 by the steam F supplied via the connection line 12 and the second portion 56.
  • the steam turbine 61 is connected to the second compressor 62 in a state where the generated power can be supplied to the second compressor 62.
  • the second compressor 62 is a compressor that supplies process gas to an apparatus in the factory C (specifically, for example, an apparatus that includes a manufacturing apparatus that manufactures a product, a processing apparatus that processes the process gas, or the like). Use. That is, the second compressor 62 is a compressor that contributes to the compression of process gas in the factory. As described above, the second compressor 62 is provided, and the process gas is supplied to the apparatus in the factory C by using the second compressor 62, thereby processing the apparatus (manufacturing apparatus and process gas) in the factory C. Apparatus (including a processing apparatus or the like) that can be used (operated) can be prevented, and production stoppage of products in the factory C can be suppressed.
  • an apparatus in the factory C specifically, for example, an apparatus that includes a manufacturing apparatus that manufactures a product, a processing apparatus that processes the process gas, or the like.
  • the condenser 63 is connected to the steam turbine 61 and the water supply source 34.
  • the condenser 63 collects the steam F used when the steam turbine 61 generates power and turns it into water G.
  • the condenser 63 reuses the water G by returning the water G to the water supply source 34.
  • connection line 12 is disposed between the steam supply lines 16 constituting the plurality of turbine apparatuses 11 and is disposed so as to connect the plurality of steam supply lines 16.
  • the connection line 12 has a function of collecting the steam F supplied from each exhaust heat recovery boiler 32 constituting the plurality of turbine apparatuses 11 and supplying the steam F to each steam turbine 61 constituting the plurality of turbine apparatuses 11.
  • connection line 12 that connects the plurality of steam supply lines 16
  • one of the exhaust heat recovery boilers 32 provided in the plurality of gas turbine units 15 fails, and the failed exhaust heat is lost.
  • the steam F cannot be supplied to the steam turbine 61 connected to the recovery boiler 32
  • a part of the steam F supplied from the exhaust heat recovery boiler 32 that has not failed has failed via the connection line 12.
  • the temperature detection unit 13A, the pressure detection unit 13B, and the flow rate detection unit 13C are provided with the first portion 55 (in other words, the connection position with the connection line 12 and the exhaust heat recovery boiler 32) located in the vicinity of the exhaust heat recovery boiler 32. In the steam supply line 16) located between the two.
  • the temperature detection unit 13A, the pressure detection unit 13B, and the flow rate detection unit 13C are detection units that acquire data for determining whether or not the exhaust heat recovery boiler 32 is operating normally.
  • the temperature detector 13 ⁇ / b> A is a detector that detects the temperature in the steam supply line 55 (in other words, in the first portion 55) located on the outlet side of the exhaust heat recovery boiler 32. During the operation of the exhaust heat recovery boiler 32, the temperature detection unit 13 ⁇ / b> A continuously transmits data regarding the detected temperature to the control device 14. For example, a thermocouple can be used as the temperature detection unit 13A.
  • the pressure detector 13B is a detector that detects the pressure in the steam supply line 55 (in other words, in the first portion 55) located on the outlet side of the exhaust heat recovery boiler 32. During the operation of the exhaust heat recovery boiler 32, the pressure detection unit 13B continuously transmits data regarding the detected pressure to the control device 14.
  • a pressure sensor or a pressure gauge can be used as the pressure detection unit 13B.
  • the flow rate detector 13 ⁇ / b> C is a detector that detects the flow rate of the steam F flowing in the steam supply line 55 (in other words, in the first portion 55) located on the outlet side of the exhaust heat recovery boiler 32.
  • the flow rate detection unit 13 ⁇ / b> C continuously transmits data regarding the detected flow rate of the steam F to the control device 14.
  • a flow meter specifically, for example, a digital vortex flow meter
  • the flow rate detection unit 13C can be used as the flow rate detection unit 13C.
  • the exhaust heat recovery boiler 32 is operating normally by providing the detection unit including the temperature detection unit 13A, the pressure detection unit 13B, and the flow rate detection unit 13C described above in the first portion 55. Data for determining whether or not can be obtained.
  • FIG. 1 as a detection unit that acquires data for determining whether or not the exhaust heat recovery boiler 32 is operating normally, three detection units, a temperature detection unit 13A, a pressure detection unit 13B, and Although the case where the flow rate detection unit 13C is provided has been described as an example, the detection unit may be configured by at least one of the temperature detection unit 13A, the pressure detection unit 13B, and the flow rate detection unit 13C. .
  • the detection unit is one of the temperature detection unit 13A, the pressure detection unit 13B, and the flow rate detection unit 13C, or the temperature detection unit 13A, the pressure detection unit 13B, and the flow rate detection unit 13C. You may comprise with two detection parts. Also in these cases, the detection unit can acquire data for determining whether or not the exhaust heat recovery boiler 32 is operating normally.
  • the control device 14 includes a storage unit 66 and a control unit 67.
  • the storage unit 66 includes a program for controlling the combined cycle plant 10, a lower limit temperature threshold that is a threshold related to the temperature of the steam F in the first portion 55, and a lower limit that is a threshold related to the pressure in the first portion 55.
  • a program for comparing with the numerical values of the data detected by the detection unit 13B and the flow rate detection unit 13C is stored.
  • the control unit 67 performs overall control of the combined cycle plant 10 based on a program stored in the storage unit 66. Further, the control unit 67 determines whether or not the data detected by the temperature detection unit 13A, the pressure detection unit 13B, and the flow rate detection unit 13C is below the above-described thresholds, and the three detection units detect the data. When the numerical value of at least one of the data falls below the preset threshold value, the operation of the exhaust heat recovery boiler 32 is determined to be abnormal (failure), and the exhaust heat recovery boiler 32 in which an abnormality has occurred is determined. Stop.
  • control unit 67 closes the automatic valve 29 constituting the turbine device 11 having the exhaust heat recovery boiler 32 in which an abnormality has occurred, and switches the exhaust switching valve 37 to the second exhaust line 38.
  • the exhaust heat recovery boiler 32 in which an abnormality has occurred in other words, the failed exhaust heat recovery boiler 32
  • the safety of the worker can be ensured by stopping the exhaust heat recovery boiler 32 in which an abnormality has occurred. Further, the failed exhaust heat recovery boiler 32 can be inspected and repaired.
  • the controller 67 increases the opening degree of the automatic valve 29 of the turbine apparatus 11 having the exhaust heat recovery boiler 32 in which the abnormality of the exhaust heat recovery boiler 32 has not occurred.
  • the automatic valve 29 is controlled.
  • FIG. 3 is a flowchart showing processing performed by the control device when an abnormality (failure) occurs in some of the exhaust heat recovery boilers among some of the exhaust heat recovery boilers.
  • STEP 3 in STEP1, the operation of the combined cycle plant 10 shown in FIG. 1 is started.
  • STEP 2 the state of steam (specifically, the first portion 55) derived from the plurality of exhaust heat recovery boilers 32 by the detection units (temperature detection unit 13A, pressure detection unit 13B, and flow rate detection unit 13C).
  • the detection units temperature detection unit 13A, pressure detection unit 13B, and flow rate detection unit 13C.
  • the flow rate of the steam F led to the first portion 55), and transmitted to the detected data control device.
  • StepEP 3 If it is determined in STEP 3 that there is an exhaust heat recovery boiler 32 in which an abnormality has occurred (determined as Yes), the process proceeds to STEP 4. In STEP 3, if it is determined that there is no exhaust heat recovery boiler 32 in which an abnormality has occurred (determined No), the process proceeds to STEP 5, the operation of the combined cycle plant 10 is continued, and the process proceeds to STEP 2. Return.
  • control device 14 stops the abnormal (failed) exhaust heat recovery boiler 32 and increases the supply of fuel to other exhaust heat recovery boilers 32 in which no abnormality has occurred.
  • one of the exhaust heat recovery boilers 32 constituting the plurality of gas turbine units 15 fails, and the steam turbine connected to the failed exhaust heat recovery boiler 32. Even when the steam F can no longer be supplied to 61, a part of the steam F supplied from the non-failed exhaust heat recovery boiler 32 is connected to the failed exhaust heat recovery boiler 32 via the connection line 12.
  • the steam turbine 61 can be supplied. As a result, power can be obtained by driving the evaporation turbine 61 that constitutes the turbine apparatus 11 including the failed exhaust heat recovery boiler 32, so that the second compressor 62 connected to the evaporation turbine 61 is removed. It can be operated.
  • the second compressor 62 for compressing the process gas in a series of processes in the factory C (plant), other apparatuses in the factory C (including manufacturing apparatuses and processing apparatuses) are continued. Since it can be used (operated), production stop of the factory C can be suppressed.
  • At least one of the three data acquired by the temperature detection unit 13A, the pressure detection unit 13B, and the flow rate detection unit 13C has a preset threshold value.
  • the present invention is limited to this. Not.
  • the exhaust heat recovery boiler 32 determined to be abnormal when the numerical values of the two data acquired by the two detection units fall below the preset threshold values.
  • the operation may be stopped, and the fuel E supplied to the auxiliary combustion device 46 of the normal exhaust heat recovery boiler 32 may be increased.
  • the operation of the exhaust heat recovery boiler 32 determined to be abnormal is stopped when the numerical value of data acquired by one detection unit falls below each preset threshold value.
  • the fuel E supplied to the auxiliary combustion device 46 of the normal exhaust heat recovery boiler 32 may be increased.
  • connection line 12 is provided so as to connect the steam supply lines 16 of the two turbine apparatuses 11
  • the turbine connected to the connection line 12 is described.
  • the number of the apparatuses 11 should just be plural (two or more), and is not limited to the number (two) of the turbine apparatuses 11 shown in FIG.
  • connection line 12 If possible, more turbine devices 11 may be connected to the connection line 12. As a result, the steam F to be generated by the exhaust heat recovery boiler 32 in which an abnormality has occurred can be sufficiently supplemented by the normal exhaust heat recovery boiler 32 supplied with a large amount of fuel E.
  • the case where the abnormality (failure) of the exhaust heat recovery boiler 32 is determined by monitoring the state of the steam F derived from the exhaust heat recovery boiler 32 has been described as an example.
  • the level of water in the drum 49 constituting the exhaust heat recovery boiler 32 is monitored by a water level sensor or the like, and an abnormality (failure) of the exhaust heat recovery boiler 32 is determined based on data on the water level detected by the water level sensor. Also good.
  • an automatic valve (not shown) electrically connected to the control device 14 is provided in each of the second portions 56 provided in the plurality of turbine apparatuses 11, and an abnormality (failure) occurs in the exhaust heat recovery boiler 32.
  • the amount of steam F supplied to each steam turbine 61 may be made equal by controlling a plurality of automatic valves (not shown).
  • a pressure gauge (not shown) electrically connected to the control device 14 is provided at the discharge port of the compressor, and the plurality of pressure gauges May be controlled so that the pressures indicated by are equal.
  • the combined cycle plant of the present invention is applicable to a combined cycle plant having a gas turbine unit including a gas turbine and a steam turbine unit including a steam turbine and an exhaust heat recovery boiler.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Control Of Turbines (AREA)

Abstract

ガスタービン(21)、第1の圧縮機(22)、及び排熱回収ボイラ(32)を含むガスタービンユニット(15)と、蒸気タービン(61)、及び蒸気タービン(61)により得られた動力により駆動され、工場(C)内でのプロセスガスの圧縮に寄与する第2の圧縮機(62)を含む蒸気タービンユニット(17)と、排熱回収ボイラ(32)から導出された蒸気を蒸気タービン(61)に供給する蒸気供給ライン(16)と、をそれぞれ備えた複数のタービン装置(11)と、複数のタービン装置(11)を構成する蒸気供給ライン(16)間に配置され、複数の蒸気供給ライン(16)を連結する連結ライン(12)と、を有する。

Description

コンバインドサイクルプラント
 本発明は、ガスタービンを含むガスタービンユニットと、蒸気タービン及び排熱回収ボイラを含む蒸気タービンユニットと、を有するコンバインドサイクルプラントに関する。
 従来、圧縮機、燃焼器、タービンを含むガスタービンを備えたガスタービンユニットと、蒸気タービン及び排熱回収ボイラ(HRSG)を備えた蒸気タービンユニットと、を含むコンバインドサイクルプラントが用いられている(例えば、特許文献1参照。)。
 ガスタービンユニットでは、空気圧縮機を用いて圧縮した空気を燃焼器に送り、燃焼器に供給された燃料と一緒に加熱し、タービンにおいて、燃焼器で生成された高温高圧ガスを膨張させることで、タービンと接続された第1の発電機の動力を生み出す。このとき、ガスタービンユニットからは、高温(例えば、600℃)の排気ガスが排出される。
 蒸気タービンユニットでは、上記排気ガスを利用して、排熱回収ボイラで蒸気を生成し、その蒸気を蒸気タービンに供給することにより、蒸気タービンと接続された第2の発電機の動力を生み出すとともに、蒸気タービンから蒸気を排出する。
 蒸気タービンから排出された蒸気は、復水器の熱交換部に導かれ、該熱交換部において海水等の冷却水で冷却されて凝縮され、復水として排熱回収ボイラへの給水系統に導かれる。
特開平11-117712号公報
 ところで、特許文献1に開示されたガスタービンコンバインドプラント(コンバインドサイクルプラント)において、第1の発電機に替えて、第1の圧縮機を用い、第2の発電機に替えて、プラント(工場)と接続された圧縮機を用いる場合がある。
 この場合、蒸気タービンで駆動される第2の圧縮機は、プラントの一連のプロセスにおいて、それぞれ異なる工程で使用されることが多く、一台でも第2の圧縮機が駆動できないと、該プラントが運転できなくなる(プラントが停止する)。
 したがって、一連のプロセスにおいて複数の第2の圧縮機がそれぞれ異なるプロセスでプロセスガスを圧縮する場合、故障により排熱回収ボイラが停止すると、排熱回収ボイラが故障した圧縮機によりプロセスガスを圧縮することが困難となる。これにより、工場内の他の装置(製造装置や処理装置等を含む装置)も動作できなくなるため、プラントでの製品の生産ができなくなるという問題があった。
 この問題は、第1及び第2の発電機を用いた場合と比較して、非常に大きな問題となる。
 そこで、本発明は、排熱回収ボイラが故障した場合でも蒸気タービンと接続された圧縮機を動作させることで、該圧縮機と接続されたプラントでの製品の生産停止を抑制することの可能なコンバインドサイクルプラントを提供する。
 本発明の第1の態様に係るコンバインドサイクルプラントは、ガスタービン、該ガスタービンにより得られた動力により駆動する第1の圧縮機、及び該ガスタービンから排出される高温の排ガスを用いて水を蒸気にする排熱回収ボイラを含むガスタービンユニットと、前記蒸気が供給される蒸気タービン、及び該蒸気タービンにより得られた動力により駆動され、工場内のプロセスガスの圧縮に寄与する第2の圧縮機を含む蒸気タービンユニットと、前記排熱回収ボイラ及び前記蒸気タービンと接続され、前記蒸気を前記蒸気タービンに供給する蒸気供給ラインと、をそれぞれ備えた複数のタービン装置と、前記複数のタービン装置を構成する前記蒸気供給ライン間に配置され、複数の前記蒸気供給ラインを連結する連結ラインと、を有する。
 このような構成とされたコンバインドサイクルプラントは、複数のガスタービンユニットを構成する排熱回収ボイラのうち、どれかが故障して、故障した排熱回収ボイラを含んだタービン装置の蒸気タービンに蒸気を供給できなくなった場合でも、故障していない排熱回収ボイラから供給される蒸気の一部を、連結ラインを介して、故障した排熱回収ボイラを含んだタービン装置の蒸気タービンに供給することが可能となる。
 これにより、故障した排熱回収ボイラを含んだタービン装置の蒸発タービンを駆動させて動力を得ることが可能となるので、該蒸発タービンと接続された第2の圧縮機を動作させることができる。
 したがって、工場内の一連のプロセスでのプロセスガスの圧縮に第2の圧縮機を用いる場合、工場内の他の装置(製造装置や処理装置等を含む装置)を継続使用する(動作させる)ことが可能となるので、工場の生産停止を抑制することができる。
 また、本発明の第2の態様に係るコンバインドサイクルプラントにおいて、前記排熱回収ボイラは、前記高温の排ガスが供給され、蒸発器、及びドラムを介して供給された蒸気と該高温の排ガスとを熱交換させる第1の過熱器と、燃料を用いて、前記第1の過熱器から供給され、前記高温の排ガスよりも温度が低下した前記排ガスを加熱する助燃装置と、前記助燃装置により加熱された排ガス、及び前記第1の過熱器から供給された蒸気が供給され、該排ガスと該蒸気とを熱交換させ、熱交換後の該蒸気を前記蒸気供給ライン内に導出する第2の過熱器と、を有してもよい。
 このような構成とすることで、複数の排熱回収ボイラのうち、いずれかの排熱回収ボイラが故障した際、故障していない排熱回収ボイラの助燃装置に供給する燃料を増加させて、故障していない排熱回収ボイラから多くの蒸気を発生させることが可能となる。
 これにより、故障した排熱回収ボイラを含んだタービン装置を構成する蒸気タービンに、故障していない排熱回収ボイラで生成された蒸気の一部を供給することができる。
 また、本発明の第4の態様に係るコンバインドサイクルプラントにおいて、前記連結ラインとの連結位置と前記排熱回収ボイラとの間に位置する前記蒸気供給ラインに設けられ、前記排熱回収ボイラが正常に動作しているか否かを判定するためのデータを取得する検出部と、前記データの数値が予め設定した閾値よりも下回った際、前記複数のタービン装置を構成する前記助燃装置に供給する前記燃料の量を増加させるように制御する制御装置と、を有してもよい。
 このような検出部及び制御装置を有することで、複数の排熱回収ボイラのうち、いずれかの排熱回収ボイラが故障した際、故障していない排熱回収ボイラの助燃装置に供給する燃料を増加させる制御を行うことが可能となる。
 これにより、故障していない排熱回収ボイラから多くの蒸気を発生させて、故障した排熱回収ボイラから生成されるべき蒸気を他の排熱回収ボイラで補うことができる。
 また、本発明の第5の態様に係るコンバインドサイクルプラントにおいて、前記制御装置は、前記データの数値が予め設定した閾値よりも下回った前記蒸気供給ラインと接続された前記排熱回収ボイラの動作を停止させてもよい。
 これにより、故障した排熱回収ボイラの他の部分が故障することを抑制可能となる。また、故障した排熱回収ボイラを停止させることで、作業者の安全を確保することができる。また、故障した排熱回収ボイラを点検・修理することができる。
 また、本発明の第6の態様に係るコンバインドサイクルプラントにおいて、前記検出部は、前記排熱回収ボイラの導出側に位置する前記蒸気供給ライン内の温度を検出する温度検出部、前記排熱回収ボイラの導出側に位置する前記蒸気供給ライン内を流れる前記蒸気の流量を検出する流量検出部、及び前記排熱回収ボイラの導出側に位置する前記蒸気供給ライン内の圧力を検出する圧力検出部のうち、少なくとも1種で構成してもよい。
 このように、温度検出部、流量検出部、及び圧力検出部のうち、少なくとも1種で検出部を構成することで、該検出部により、排熱回収ボイラが正常に動作しているか否かを判定するためのデータを取得することができる。
 本発明によれば、排熱回収ボイラが故障した場合でも蒸気タービンと接続された圧縮機を動作させることができる。
本発明の実施の形態に係るコンバインドサイクルプラントの概略構成を模式的に示す図である。 図1の領域Aで囲まれた部分を拡大した図であり、排熱回収ボイラの内部構成を説明するための図である。 複数の排熱回収ボイラのうち、一部の排熱回収ボイラに異常(故障)が発生した際に制御装置が行う処理を示すフローチャートである。
〔実施の形態〕
 図1は、本発明の実施の形態に係るコンバインドサイクルプラントの概略構成を模式的に示す図である。
 図1において、Aは排熱回収ボイラ及びその周囲を囲む領域(以下、「領域A」という)、Bは流入空気(以下、「流入空気B」という)、Cは製造装置や処理装置等の装置を含む工場(以下、「工場C」という)をそれぞれ示している。なお、図1では、紙面の都合上、2つのタービン装置11のみを図示する。
 図1を参照するに、本実施の形態のコンバインドサイクルプラント10は、複数のタービン装置11(本実施の形態の場合、2つのタービン装置11)と、連結ライン12と、温度検出部13Aと、圧力検出部13Bと、流量検出部13Cと、制御装置14と、を有する。
 タービン装置11は、ガスタービンユニット15と、蒸気供給ライン16と、蒸気タービンユニット17と、を有する。
 ガスタービンユニット15は、ガスタービン21と、第1の圧縮機22と、排ガス供給ライン23と、燃料供給源24と、第1の燃料供給ライン25と、自動弁27,29と、第2の燃料供給ライン28と、排熱回収ボイラ32と、水供給源34と、水供給ライン35と、第1の排気ライン36と、排気切換え弁37(三方弁)と、第2の排気ライン38と、を有する。
 ガスタービン21は、動力を第1の圧縮機22に供給可能な状態で、第1の圧縮機22と接続されている。ガスタービン21は、例えば、図示してはいない圧縮機、燃焼器、タービン等を有した構成とされている。タービン(図示せず)は、排ガス供給ライン23の一端と接続されている。
 上記構成の場合、ガスタービン21は、流入空気Bを圧縮機(図示せず)で圧縮し、燃焼器(図示せず)において、圧縮された高圧の空気に燃料を噴射させて、燃焼させ、その後、高温高圧とされた空気がタービン(図示せず)を回転させることで、動力を回転力として取り出す。このとき、タービン(図示せず)から排ガスが排出される。
 燃焼器(図示せず)は、第1の燃料供給ライン25の他端と接続されている。燃焼器(図示せず)には、第1の燃料供給ライン25を介して、燃料供給源24から燃料が供給される。
 第1の圧縮機22は、ガスタービン21と接続されている。第1の圧縮機22は、ガスタービン21から得られた動力により駆動される圧縮機である。
 排ガス供給ライン23の他端は、排気切換え弁37(三方弁)と接続されている。排気切換え弁37は、排気の流れを2方向に切り替える(言い換えれば、2つのラインに切り替える)ための弁である。
 排気切換え弁37と接続された一方のラインは、排熱回収ボイラ32(具体的には、後述する第1の過熱器45)と接続されている。また、他方のラインとして、第2の排気ライン38が接続されている。排ガス供給ライン23は、ガスタービン21を構成するタービン(図示せず)から排出された排ガスを、排熱回収ボイラ32を構成する第1の過熱器45に供給するためのラインである。
 燃料供給源24は、第1の燃料供給ライン25の一端、及び第2の燃料供給ライン28の一端と接続されている。燃料供給源24は、第1の燃料供給ライン25を介して、ガスタービン21を構成する燃焼器(図示せず)に燃料を供給するとともに、第2の燃料供給ライン28を介して、排熱回収ボイラ32に燃料を供給する。第2の燃料供給ライン25の他端は、排熱回収ボイラ32を構成する後述する助燃装置46と接続されている。
 自動弁27は、第1の燃料供給ライン25に設けられている。自動弁27は、ガスタービン21に供給する燃料の流量を調節するための弁である。
 自動弁29は、第2の燃料供給ライン28に設けられている。自動弁29は、排熱回収ボイラ32を構成する助燃装置46に供給する燃料の流量を調節するための弁である。
 排気切換え弁37は、排気ガスの流れを切り替えるための弁である。
 自動弁27,29、及び排気切換え弁37は、制御装置14と電気的に接続されている。自動弁27,29は、制御装置14により、その開度が自動で調整される。排気切換え弁37は、制御装置14により、その排気方向が自動で調節される。
 自動弁27,29は、制御装置14と電気的に接続されており、制御装置14により、その開度が自動で調節される。
 図2は、図1の領域Aで囲まれた部分を拡大した図であり、排熱回収ボイラの内部構成を説明するための図である。図2において、図1に示す構造体と同一構成部分には、同一符号を付す。
 図2において、Dはガスタービン21から排出された高温の排ガス(以下、「排ガスD」という)、Eは助燃装置46に供給される燃料(以下、「燃料E」という)、Fは排熱回収ボイラ32により生成された蒸気(以下、「蒸気F」という)、Gは排熱回収ボイラ32を構成する後述するエコノマイザ51に供給される水(以下、「水G」という)をそれぞれ示している。
 また、図2において、Iは排ガスDの移動方向(以下、「I方向」という)、Jは水Gの移動方向、Kは蒸気(言い換えれば、蒸発させられた水G)の移動方向を示している。
 次に、図1及び図2を参照して、排熱回収ボイラ32について説明する。
 排熱回収ボイラ32は、第1の過熱器45と、助燃装置46と、第2の過熱器47と、蒸発器48と、ドラム49と、エコノマイザ51と、を有する。
 第1の過熱器45は、排ガス供給ライン23の他端と接続されている。第1の過熱器45には、排ガス供給ライン23を介して、ガスタービン21から高温(例えば、500℃程度)の排ガスDが供給される。
 第1の過熱器45には、ドラム49を介して、蒸発器48により蒸発させられた水Gである蒸気が供給される。
 第1の過熱器45は、排ガスDとドラム49から供給された蒸気とを熱交換させることで、加熱した蒸気を第2の過熱器47に供給する。この熱交換により、排ガスDの温度は、ガスタービン21から供給されたときの温度よりも低下する(例えば、350℃程度の温度まで低下する)。
 上記第1の過熱器45としては、例えば、熱交換器を用いることができる。
 助燃装置46は、第1の過熱器45から導出された排ガスDを導入可能な状態で接続されるとともに、助燃装置46から導出された排ガスDを第2の過熱器47に供給可能な状態で第2の過熱器47と接続されている。
 助燃装置46には、第2の燃料供給ライン28を介して、助燃装置46を駆動させるための燃料Eが供給される。この燃料Eは、ガスタービン21に供給する燃料と同じものを用いるとよい。これにより、1つの燃料供給源24のみを設ければよいため、ガスタービンユニット15の構成を簡略化することができる。
 助燃装置46は、温度が低下した排ガスDを加熱するための装置である。助燃装置46に加熱されることで、高温(例えば、800℃)とされた排ガスDは、第2の過熱器47に供給される。
 上記構成とされた助燃装置46としては、例えば、ダクトバーナーを用いることができる。
 第2の過熱器47は、蒸気供給ライン16を構成する後述する第1の部分55の一端と接続されている。
 第2の過熱器47は、助燃装置46により高温(例えば、800℃程度)とされた排ガスDが供給される。このため、第2の過熱器47は、上記高温とされた排ガスDに耐えうるような構造(十分な耐熱性を有する構造)とされている。
 第2の過熱器47では、助燃装置46により高温とされた排ガスDと第1の過熱器45から供給された蒸気とを熱交換させる。これにより、蒸気の温度が上昇するとともに、排ガスDの温度が低下する。
 第2の過熱器47から導出された蒸気Fは、蒸気供給ライン16(具体的には、第1の部分55)に導出される。また、第2の過熱器47から導出された排ガスDは、蒸発器48に供給される。
 ここで、排ガスDの移動方向(I方向)からみて、上述した助燃装置46を、第1の過熱器45と第2の過熱器47との間に配置させた理由について説明する。
 例えば、第1の過熱器45の前段に位置する排ガス供給ライン23に助燃装置46を設けた場合、助燃装置46により、ガスタービン21から供給される高温の排ガスDがさらに加熱されてしまうため、第1の過熱器45を第2の過熱器47のように十分な耐熱性を有する構造にする必要がある。
 しかし、これを行うと、第1の過熱器45の材料費等が上昇するため、排熱回収ボイラ32のコストが増加してしまう。
 また、第1の過熱器45の前段に位置する排ガス供給ライン23に助燃装置46を設けると、第1の過熱器45から導出され、温度が低下した排ガスDがそのまま第2の過熱器47に導入されてしまうため、第2の過熱器47において、十分な熱交換を行うことが困難となる。
 以上、説明したような理由により、排ガスDの移動方向(I方向)からみて、助燃装置46は、第1の過熱器45と第2の過熱器47との間に配置させることが好ましい。
 蒸発器48は、エコノマイザ51から導出された水G(加熱された水G)を導入可能な状態でエコノマイザ51と接続されるとともに、蒸発器48から導出した排ガスDをエコノマイザ51に供給可能な状態でエコノマイザ51と接続されている。
 蒸発器48は、エコノマイザ51から供給され、かつ加熱された水Gを蒸発させる。このとき、排ガスDの熱を利用して、水Gを蒸発させる。蒸発器48は、ドラム49に蒸発させた水Gを供給する。この蒸発させた水Gには、蒸発していない水Gと蒸気とが含まれている。
 また、蒸発器48は、エコノマイザ51に、蒸気を生成することで、温度が低下した排ガスDを供給する。
 ドラム49は、第1の過熱器45に蒸気を供給可能な状態で第1の過熱器45と接続されている。ドラム49は、蒸発器48から供給された蒸発させた水Gに含まれる蒸発していない水Gと蒸気とを分離する。ドラム49により分離された蒸気は、第1の過熱器45に供給される。
 エコノマイザ51は、水供給源34と接続された水供給ライン35の他端と接続されている。エコノマイザ51には、水供給ライン35を介して、水供給源34から水Gが供給される。
 エコノマイザ51では、蒸発器48から供給された排ガスDを用いて、水Gを加熱する。エコノマイザ51により加熱された水Gは、蒸発器48に供給される。
 また、エコノマイザ51は、第1の排気ライン36の一端と接続されている。エコノマイザ51で使用された排ガスDは、第1の排気ライン36を介して、排熱回収ボイラ32の外部に排気される。
 上記説明したように、排熱回収ボイラ32は、高温の排ガスDが供給され、蒸発器48、及びドラム49を介して供給された蒸気と高温の排ガスDとを熱交換させる第1の過熱器45と、第1の過熱器45から供給され、高温の排ガスDよりも温度が低下した排ガスDを、燃料Eを用いて加熱する助燃装置46と、助燃装置46により加熱された排ガスD、及び第1の過熱器45から供給された蒸気が供給され、排ガスDと蒸気とを熱交換させ、熱交換後の蒸気を蒸気供給ライン16内に導出する第2の過熱器47と、を有する。
 このような構成とすることで、タービン装置11を構成する排熱回収ボイラ32(複数の排熱回収ボイラ)のうち、いずれかの排熱回収ボイラ32が故障した際、故障していない排熱回収ボイラ32の助燃装置46に供給する燃料Eを増加させて、故障していない排熱回収ボイラ32から多くの蒸気を発生させることが可能となる。
 これにより、後述する連結ライン12を介して、故障した排熱回収ボイラ32を含むタービン装置(この場合、タービン装置11またはタービン装置12)を構成する蒸気タービン61(後述する蒸気タービン)に、故障していない排熱回収ボイラ32で生成された蒸気Fの一部を供給することができる。
 水供給源34は、水供給ライン35の一端と接続されるとともに、後述する復水器63から水を回収可能な状態で後述する復水器63と接続されている。
 水供給源34は、水供給ライン35を介して、エコノマイザ51に蒸気を生成する際に必要な水Gを供給する。また、水供給源34は、復水器63から回収した水を水Gとして再利用する。
 第1の排気ライン36は、エコノマイザ51で使用された排ガスDを排熱回収ボイラ32の外部に排気するためのラインである。
 蒸気供給ライン16は、第1の部分55と、第2の部分56と、を有する。第1の部分55は、その一端が第2の過熱器47と接続されており、他端が連結ライン12と接続されている。第1の部分55は、第2の過熱器47から導出された蒸気Fを連結ライン12に導入させる。
 第2の部分56は、その一端が第1の部分55の接続位置(連結位置)の近傍に位置する連結ライン12と接続されており、他端がタービン装置11を構成する後述する蒸気タービン61と接続されている。
 第2の部分56には、連結ライン12を介して、蒸気Fが導入される。第2の部分56に導入された蒸気Fは、タービン装置11を構成する蒸気タービン61に供給される。
 なお、複数のタービン装置11を構成する蒸気供給ライン16は、異なる位置において、同一の連結ライン12と接続されている。したがって、連結ライン12には、複数のタービン装置11のガスタービンユニット15から導出された蒸気Fが供給される。
 蒸気タービンユニット17は、蒸気タービン61と、第2の圧縮機62と、復水器63と、を有する。蒸気タービン61は、連結ライン12及び第2の部分56を介して供給される蒸気Fにより、蒸気タービン61を構成する羽根(図示せず)を回転させることで、動力を生み出す。
 蒸気タービン61は、生み出した動力を第2の圧縮機62に供給可能な状態で、第2の圧縮機62と接続されている。
 第2の圧縮機62としては、工場C内の装置(具体的には、例えば、製品を製造する製造装置やプロセスガスを処理する処理装置等を含む装置)にプロセスガスを供給する圧縮機を用いる。つまり、第2の圧縮機62は、工場内のプロセスガスの圧縮に寄与する圧縮機である。
 このように、第2の圧縮機62を設け、第2の圧縮機62を用いて、工場C内の装置にプロセスガスを供給することで、工場C内の装置(製造装置やプロセスガスを処理する処理装置等の含む装置)を使用する(動作させる)ことが可能となるので、工場Cの製品の生産停止を抑制することができる。
 復水器63は、蒸気タービン61及び水供給源34と接続されている。復水器63は、蒸気タービン61が動力を生み出す際に使用した蒸気Fを回収し、水Gにする。復水器63は、水Gを水供給源34に戻すことで、水Gを再利用する。
 連結ライン12は、複数のタービン装置11を構成する蒸気供給ライン16間に配置され、複数の蒸気供給ライン16を連結するように配置されている。
 連結ライン12は、複数のタービン装置11を構成する各排熱回収ボイラ32から供給された蒸気Fを一度まとめて、複数のタービン装置11を構成する各蒸気タービン61に供給する機能を有する。
 このように、複数の蒸気供給ライン16を連結する連結ライン12を設けることで、複数のガスタービンユニット15に設けられた排熱回収ボイラ32のうち、どちらかが故障して、故障した排熱回収ボイラ32と接続された蒸気タービン61に蒸気Fを供給できなくなった場合でも、故障していない排熱回収ボイラ32から供給される蒸気Fの一部を、連結ライン12を介して、故障した排熱回収ボイラ32を含んだタービン装置11の蒸気タービン61に供給することが可能となる。
 これにより、故障した排熱回収ボイラ32を含んだタービン装置11の蒸発タービン61を駆動させて動力を得ることが可能となるので、第2の圧縮機62を動作させることができる。
 温度検出部13A、圧力検出部13B、及び流量検出部13Cは、排熱回収ボイラ32の近傍に位置する第1の部分55(言い換えれば、連結ライン12との連結位置と排熱回収ボイラ32との間に位置する蒸気供給ライン16)に設けられている。
 温度検出部13A、圧力検出部13B、及び流量検出部13Cは、排熱回収ボイラ32が正常に動作しているか否かを判定するためのデータを取得する検出部である。
 温度検出部13Aは、排熱回収ボイラ32の導出側に位置する蒸気供給ライン55内(言い換えれば、第1の部分55内)の温度を検出する検出部である。
 排熱回収ボイラ32の動作時において、温度検出部13Aは、検出した温度に関するデータを連続的に制御装置14に送信する。温度検出部13Aとしては、例えば、熱電対を用いることができる。
 圧力検出部13Bは、排熱回収ボイラ32の導出側に位置する蒸気供給ライン55内(言い換えれば、第1の部分55内)の圧力を検出する検出部である。
 排熱回収ボイラ32の動作時において、圧力検出部13Bは、検出した圧力に関するデータを連続的に制御装置14に送信する。圧力検出部13Bとしては、例えば、圧力センサや圧力計等を用いることができる。
 流量検出部13Cは、排熱回収ボイラ32の導出側に位置する蒸気供給ライン55内(言い換えれば、第1の部分55内)を流れる蒸気Fの流量を検出する検出部である。
 排熱回収ボイラ32の動作時において、流量検出部13Cは、検出した蒸気Fの流量に関するデータを連続的に制御装置14に送信する。流量検出部13Cとしては、例えば、流量計(具体的には、例えば、デジタル渦流量計)を用いることができる。
 上記説明した温度検出部13A、圧力検出部13B、及び流量検出部13Cよりなる検出部を第1の部分55に設けることで、該検出部により、排熱回収ボイラ32が正常に動作しているか否かを判定するためのデータを取得することができる。
 なお、図1では、排熱回収ボイラ32が正常に動作しているか否かを判定するためのデータを取得する検出部として、3つの検出部である温度検出部13A、圧力検出部13B、及び流量検出部13Cを設けた場合を例に挙げて説明したが、上記検出部は、温度検出部13A、圧力検出部13B、及び流量検出部13Cのうち、少なくとも1種で構成されていればよい。
 つまり、上記検出部は、温度検出部13A、圧力検出部13B、及び流量検出部13Cのうちの1つの検出部、或いは、温度検出部13A、圧力検出部13B、及び流量検出部13Cのうちの2つの検出部で構成してもよい。
 これらの場合も上記検出部により、排熱回収ボイラ32が正常に動作しているか否かを判定するためのデータを取得することができる。
 制御装置14は、記憶部66と、制御部67と、を有する。記憶部66には、コンバインドサイクルプラント10の制御を行うためのプログラムや、第1の部分55における蒸気Fの温度に関する閾値である下限温度閾値、第1の部分55内における圧力に関する閾値である下限圧力閾値、第1の部分55における蒸気Fの流量に関する閾値である下限流量閾値、上述した各閾値(予め設定された下限温度閾値、下限圧力閾値、及び下限流量閾値)と温度検出部13A、圧力検出部13B、及び流量検出部13Cが検出するデータの数値との比較を行うプログラム等が格納されている。
 制御部67は、記憶部66に格納されたプログラムに基づいて、コンバインドサイクルプラント10の制御全般を行う。
 また、制御部67は、温度検出部13A、圧力検出部13B、及び流量検出部13Cが検出するデータが、上述した各閾値を下回ったか否かの判定を行い、上記3つの検出部が検出したデータのうち、少なくとも1つのデータの数値が、予め設定された上記閾値を下回った際には、排熱回収ボイラ32の動作が異常(故障)と判定し、異常が発生した排熱回収ボイラ32を停止させる。
 具体的には、制御部67は、異常が発生した排熱回収ボイラ32を有するタービン装置11を構成する自動弁29を閉じて、かつ、排気切換え弁37を第2の排気ライン38に切り替えて排気ガスを排熱回収ボイラ32に導入させないことで、異常が発生した排熱回収ボイラ32(言い換えれば、故障した排熱回収ボイラ32)を停止させる。
 このように、異常が発生した排熱回収ボイラ32を停止させることで、作業者の安全を確保することができる。また、故障した排熱回収ボイラ32を点検・修理することができる。
 また、制御部67は、排熱回収ボイラ32の異常が発生した際、排熱回収ボイラ32の異常が発生していない排熱回収ボイラ32を有するタービン装置11の自動弁29の開度が大きくなるように、自動弁29を制御する。
 このような制御を行うことで、異常が発生していない排熱回収ボイラ32に、より多くの燃料Eが供給されるため、該排熱回収ボイラ32の処理能力を向上させることが可能となる。
 これにより、異常が発生していない排熱回収ボイラ32から多くの蒸気Fを発生させて、故障した排熱回収ボイラ32から生成されるべき蒸気Fを、異常が発生していない排熱回収ボイラ32で補うことができる。
 図3は、複数の排熱回収ボイラのうち、一部の排熱回収ボイラに異常(故障)が発生した際に制御装置が行う処理を示すフローチャートである。
 ここで、図1及び図3を参照して、複数の排熱回収ボイラ32のうち、一部の排熱回収ボイラ32に異常(故障)が発生した際に制御装置14が行う処理について説明する。
 図3において、STEP1では、図1に示すコンバインドサイクルプラント10の運転が開始される。
 次いで、STEP2では、検出部(温度検出部13A、圧力検出部13B、及び流量検出部13C)による複数の排熱回収ボイラ32から導出される蒸気の状態(具体的には、第1の部分55内の温度、第1の部分55内の圧力、第1の部分55に導出された蒸気Fの流量)の検出し、検出したデータ制御装置に送信する。
 次いで、STEP3では、制御装置14により、検出部が取得するデータの数値が予め設定した閾値(具体的には、上述した下限温度閾値、下限圧力閾値、及び下限流量閾値)を下回ったかどうかの判定が行われる。つまり、異常が発生した排熱回収ボイラ32があったか否かの判定が行われる。
 STEP3において、異常が発生した排熱回収ボイラ32があったと判定(Yesと判定)されると、処理は、STEP4へと進む。
 また、STEP3において、異常が発生した排熱回収ボイラ32が無いと判定(Noと判定)されると処理は、STEP5へと進み、コンバインドサイクルプラント10の運転が継続され、処理は、STEP2へと戻る。
 STEP4では、制御装置14により、異常(故障)した排熱回収ボイラ32を停止させ、異常が発生していない他の排熱回収ボイラ32への燃料の供給を増加させる。
 本実施の形態のコンバインドサイクルプラント10によれば、複数のガスタービンユニット15を構成する排熱回収ボイラ32のうち、どれかが故障して、故障した排熱回収ボイラ32と接続された蒸気タービン61に蒸気Fを供給できなくなった場合でも、故障していない排熱回収ボイラ32から供給される蒸気Fの一部を、連結ライン12を介して、故障した排熱回収ボイラ32と接続された蒸気タービン61に供給することが可能となる。
 これにより、故障した排熱回収ボイラ32を含むタービン装置11を構成する蒸発タービン61を駆動させて動力を得ることが可能となるので、該蒸発タービン61と接続された第2の圧縮機62を動作させることができる。
 したがって、工場C(プラント)内の一連のプロセスでのプロセスガスの圧縮に第2の圧縮機62を用いることで、工場C内の他の装置(製造装置や処理装置等を含む装置)を継続使用する(動作させる)ことが可能となるので、工場Cの生産停止を抑制することができる。
 以上、本発明の実施の形態について図面を参照して詳述したが、本実施の形態における各構成及びこれらの組み合わせ等は一例であり、本発明の趣旨から逸脱しない範囲内で、構成の付加、省略、置換、およびその他の変更が可能である。 また、本発明は、上述した実施の形態によって限定されることはなく、クレームの範囲によってのみ限定される。
 例えば、本実施の形態では、一例として、温度検出部13A、圧力検出部13B、及び流量検出部13Cが取得する3つのデータのうち、少なくとも1つのデータの数値が、予め設定された上記閾値を下回った際に、排熱回収ボイラ32の動作が異常(故障)と判定し、異常が発生した排熱回収ボイラ32を停止させる場合を例に挙げて説明したが、本発明は、これに限定されない。
 例えば、種類の異なる2つの検出部を設ける場合には、2つの検出部が取得する2つのデータの数値が予め設定した各閾値を下回った際に、異常と判定された排熱回収ボイラ32の動作を停止させ、正常な排熱回収ボイラ32の助燃装置46に供給する燃料Eを増加させてもよい。
 また、例えば、1つの検出部を設ける場合には、1つの検出部が取得するデータの数値が予め設定した各閾値を下回った際に、異常と判定された排熱回収ボイラ32の動作を停止させ、正常な排熱回収ボイラ32の助燃装置46に供給する燃料Eを増加させてもよい。
 また、本実施の形態では、一例として、2つのタービン装置11の蒸気供給ライン16間を繋ぐように、連結ライン12を設けた場合を例に挙げて説明したが、連結ライン12と接続させるタービン装置11の数は、複数(2つ以上)であればよく、図1に示すタービン装置11の数(2つ)に限定されない。
 また、可能であれば、より多くのタービン装置11を連結ライン12と接続させるとよい。これにより、異常が発生した排熱回収ボイラ32が生成すべき蒸気Fを、燃料Eが多めに供給された正常な排熱回収ボイラ32で十分に補うことができる。
 本実施の形態では、排熱回収ボイラ32から導出される蒸気Fの状態をモニターすることで、排熱回収ボイラ32の異常(故障)を判定した場合を例に挙げて説明したが、例えば、排熱回収ボイラ32を構成するドラム49内の水のレベルを水位センサ等で監視し、該水位センサが検出する水位に関するデータに基づいて、排熱回収ボイラ32の異常(故障)を判定してもよい。
 また、複数のタービン装置11に設けられた第2の部分56に、制御装置14と電気的に接続された自動弁(図示せず)をそれぞれ設け、排熱回収ボイラ32に異常(故障)が発生した際、複数の該自動弁(図示せず)を制御することで、各蒸気タービン61に供給される蒸気Fの量を等しくしてもよい。
 さらに、複数の第2の圧縮機62が圧縮機の場合には、該圧縮機の吐出口に、制御装置14と電気的に接続された圧力計(図示せず)を設け、複数の圧力計が示す圧力が等しくなるように、制御してもよい。
 本発明のコンバインドサイクルプラントは、ガスタービンを含むガスタービンユニットと、蒸気タービン及び排熱回収ボイラを含む蒸気タービンユニットと、を有するコンバインドサイクルプラントに適用可能である。
 10  コンバインドサイクルプラント
 11  タービン装置
 12  連結ライン
 13A 温度検出部
 13B 圧力検出部
 13C 流量検出部
 14  制御装置
 15  ガスタービンユニット
 16  蒸気供給ライン
 17  蒸気タービンユニット
 21  ガスタービン
 22  第1の圧縮機
 23  排ガス供給ライン
 24  燃料供給源
 25  第1の燃料供給ライン
 27、29  自動弁
 28  第2の燃料供給ライン
 32  排熱回収ボイラ
 34  水供給源
 35  水供給ライン
 36  第1の排気ライン
 37 排気切換え弁
 38 第2の排気ライン
 45  第1の過熱器
 46  助燃装置
 47  第2の過熱器
 48  蒸発器
 49  ドラム
 51  エコノマイザ
 55  第1の部分
 56  第2の部分
 61  蒸気タービン
 62  第2の圧縮機
 63  復水器
 66  記憶部
 67  演算部
 A   領域
 B   流入空気
 C   工場
 D   排ガス
 E   燃料
 F   蒸気
 G   水

Claims (5)

  1.  ガスタービン、該ガスタービンにより得られた動力により駆動する第1の圧縮機、及び該ガスタービンから排出される高温の排ガスを用いて水を蒸気にする排熱回収ボイラを含むガスタービンユニットと、
     前記蒸気が供給される蒸気タービン、及び該蒸気タービンにより得られた動力により駆動され、工場内でのプロセスガスの圧縮に寄与する第2の圧縮機を含む蒸気タービンユニットと、
     前記排熱回収ボイラ及び前記蒸気タービンと接続され、前記蒸気を前記蒸気タービンに供給する蒸気供給ラインと、
    をそれぞれ備えた複数のタービン装置と、
     前記複数のタービン装置を構成する前記蒸気供給ライン間に配置され、複数の前記蒸気供給ラインを連結する連結ラインと、
     を有することを特徴とするコンバインドサイクルプラント。
  2.  前記排熱回収ボイラは、前記高温の排ガスが供給され、蒸発器、及びドラムを介して供給された蒸気と該高温の排ガスとを熱交換させる第1の過熱器と、
     燃料を用いて、前記第1の過熱器から供給され、前記高温の排ガスよりも温度が低下した前記排ガスを加熱する助燃装置と、
     前記助燃装置により加熱された排ガス、及び前記第1の過熱器から供給された蒸気が供給され、該排ガスと該蒸気とを熱交換させ、熱交換後の該蒸気を前記蒸気供給ライン内に導出する第2の過熱器と、
     を有することを特徴とする請求項1記載のコンバインドサイクルプラント。
  3.  前記連結ラインとの連結位置と前記排熱回収ボイラとの間に位置する前記蒸気供給ラインに設けられ、前記排熱回収ボイラが正常に動作しているか否かを判定するためのデータを取得する検出部と、
     前記データの数値が予め設定した閾値よりも下回った際、前記複数のタービン装置を構成する前記助燃装置に供給する前記燃料の量を増加させるように制御する制御装置と、
     を有することを特徴とする請求項2記載のコンバインドサイクルプラント。
  4.  前記制御装置は、前記データの数値が予め設定した閾値よりも下回った前記蒸気供給ラインと接続された前記排熱回収ボイラの動作を停止させることを特徴とする請求項3記載のコンバインドサイクルプラント。
  5.  前記検出部は、前記排熱回収ボイラの導出側に位置する前記蒸気供給ライン内の温度を検出する温度検出部、前記排熱回収ボイラの導出側に位置する前記蒸気供給ライン内を流れる前記蒸気の流量を検出する流量検出部、及び前記排熱回収ボイラの導出側に位置する前記蒸気供給ライン内の圧力を検出する圧力検出部のうち、少なくとも1種で構成されていることを特徴とする請求項3または4記載のコンバインドサイクルプラント。
PCT/JP2014/084253 2014-12-25 2014-12-25 コンバインドサイクルプラント WO2016103382A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016565743A JP6439948B2 (ja) 2014-12-25 2014-12-25 コンバインドサイクルプラント
US15/538,444 US10774691B2 (en) 2014-12-25 2014-12-25 Combined cycle power plants with a steam connection line
PCT/JP2014/084253 WO2016103382A1 (ja) 2014-12-25 2014-12-25 コンバインドサイクルプラント

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/084253 WO2016103382A1 (ja) 2014-12-25 2014-12-25 コンバインドサイクルプラント

Publications (1)

Publication Number Publication Date
WO2016103382A1 true WO2016103382A1 (ja) 2016-06-30

Family

ID=56149479

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/084253 WO2016103382A1 (ja) 2014-12-25 2014-12-25 コンバインドサイクルプラント

Country Status (3)

Country Link
US (1) US10774691B2 (ja)
JP (1) JP6439948B2 (ja)
WO (1) WO2016103382A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101873446B1 (ko) * 2017-03-23 2018-07-02 삼성중공업 주식회사 가외성을 가지는 액화천연가스의 발전모듈

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
MX2018002550A (es) 2015-09-01 2018-08-15 8 Rivers Capital Llc Sistemas y metodos para la produccion de energia usando ciclos de co2 anidados.
US10458364B2 (en) * 2015-09-23 2019-10-29 Rolls-Royce Corporation Propulsion system using supercritical CO2 power transfer
JP7088812B2 (ja) * 2018-11-12 2022-06-21 三菱重工業株式会社 コンバインドサイクルプラント、その制御装置、及びその運転方法
JP7190373B2 (ja) * 2019-03-07 2022-12-15 三菱重工業株式会社 ガスタービン排熱回収プラント
US11661866B2 (en) 2020-01-30 2023-05-30 Mitsubishi Power Americas, Inc. Hydrogen and oxygen supplemental firing for combined cycle facility

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63117107A (ja) * 1986-11-05 1988-05-21 Hitachi Ltd 補助蒸気装置
JPH02195101A (ja) * 1989-01-24 1990-08-01 Babcock Hitachi Kk 補助蒸気供給装置
JPH04124413A (ja) * 1990-09-13 1992-04-24 Mitsubishi Heavy Ind Ltd ガバナ入口圧力制御方法
JPH1054212A (ja) * 1996-08-14 1998-02-24 Hitachi Ltd ガスタービン発電設備のNOx低減用蒸気供給システム
JP2004169625A (ja) * 2002-11-20 2004-06-17 Toshiba Corp コージェネレーションプラントおよびその起動方法
JP2006046087A (ja) * 2004-07-30 2006-02-16 Toshiba Corp 造水コンバインドサイクル発電プラントおよびその運転方法
JP2007255389A (ja) * 2006-03-24 2007-10-04 Chugoku Electric Power Co Inc:The 補助蒸気供給装置
JP2013015146A (ja) * 2008-05-15 2013-01-24 Hitachi Ltd 2軸ガスタービン

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3955358A (en) * 1974-08-08 1976-05-11 Westinghouse Electric Corporation Combined cycle electric power plant and a heat recovery steam generator with improved fluid level control therefor
US3953966A (en) * 1974-08-08 1976-05-04 Westinghouse Electric Corporation Combined cycle electric power plant having a control system which enables dry steam generator operation during gas turbine operation
US4270357A (en) * 1979-10-10 1981-06-02 General Electric Company Turbine control
JP3774487B2 (ja) * 1995-03-07 2006-05-17 株式会社東芝 コンバインドサイクル発電プラント
JPH11117712A (ja) 1997-10-21 1999-04-27 Mitsubishi Heavy Ind Ltd ガスタービンコンバインドプラント
US7107774B2 (en) * 2003-08-12 2006-09-19 Washington Group International, Inc. Method and apparatus for combined cycle power plant operation
EP2119891B1 (en) 2008-05-15 2023-09-13 Mitsubishi Heavy Industries, Ltd. Control of working fluid flow of a two-shaft gas turbine
US8359868B2 (en) 2008-09-11 2013-01-29 General Electric Company Low BTU fuel flow ratio duct burner for heating and heat recovery systems
US20100305768A1 (en) * 2009-06-01 2010-12-02 General Electric Company Control for improved thermal performance of a steam turbine at partial load
JP5665621B2 (ja) * 2011-03-25 2015-02-04 株式会社東芝 排熱回収ボイラおよび発電プラント

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63117107A (ja) * 1986-11-05 1988-05-21 Hitachi Ltd 補助蒸気装置
JPH02195101A (ja) * 1989-01-24 1990-08-01 Babcock Hitachi Kk 補助蒸気供給装置
JPH04124413A (ja) * 1990-09-13 1992-04-24 Mitsubishi Heavy Ind Ltd ガバナ入口圧力制御方法
JPH1054212A (ja) * 1996-08-14 1998-02-24 Hitachi Ltd ガスタービン発電設備のNOx低減用蒸気供給システム
JP2004169625A (ja) * 2002-11-20 2004-06-17 Toshiba Corp コージェネレーションプラントおよびその起動方法
JP2006046087A (ja) * 2004-07-30 2006-02-16 Toshiba Corp 造水コンバインドサイクル発電プラントおよびその運転方法
JP2007255389A (ja) * 2006-03-24 2007-10-04 Chugoku Electric Power Co Inc:The 補助蒸気供給装置
JP2013015146A (ja) * 2008-05-15 2013-01-24 Hitachi Ltd 2軸ガスタービン

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101873446B1 (ko) * 2017-03-23 2018-07-02 삼성중공업 주식회사 가외성을 가지는 액화천연가스의 발전모듈

Also Published As

Publication number Publication date
US20170350279A1 (en) 2017-12-07
JPWO2016103382A1 (ja) 2017-09-21
US10774691B2 (en) 2020-09-15
JP6439948B2 (ja) 2018-12-19

Similar Documents

Publication Publication Date Title
JP6439948B2 (ja) コンバインドサイクルプラント
US20100242430A1 (en) Combined cycle power plant including a heat recovery steam generator
US8726625B2 (en) Combined cycle power plant
US6578352B2 (en) Combined cycle power plant
JP5665621B2 (ja) 排熱回収ボイラおよび発電プラント
US20150159561A1 (en) Method of controlling purge flow in a gas turbomachine and a turbomachine control system
KR102126427B1 (ko) 고압 펌프 고장 예지 방법 및 시스템
JP4373420B2 (ja) コンバインド発電プラントおよびクローズド空気冷却ガスタービンシステム
JP4509815B2 (ja) 抽気背圧蒸気タービン設備およびその運転方法
WO2016125300A1 (ja) 蒸気タービンプラント、これを備えているコンバインドサイクルプラント、及び蒸気タービンプラントの運転方法
KR101898775B1 (ko) 보일러 수냉벽 튜브의 고장 진단 장치 및 방법
US8984892B2 (en) Combined cycle power plant including a heat recovery steam generator
JP4488631B2 (ja) コンバインドサイクル発電設備およびその運転方法
US20190338703A1 (en) Method for operating a combined cycle power plant
EP2664749A1 (en) Combined Cycle Power Plant Including a Heat Recovery Steam Generator
US20170107862A1 (en) Device for expanding steam and method to control such a device
JP6347551B2 (ja) 廃熱ボイラ
WO2020031716A1 (ja) コンバインドサイクル発電プラント
JP2016065486A (ja) コンバインドサイクル発電設備
KR101644547B1 (ko) 보조발전부를 포함하는 발전플랜트
EP3287613B1 (en) Apparatus for preventing windage loss of steam turbines
JP2005146876A (ja) コンバインドサイクル発電プラントおよびその起動方法
JP6415219B2 (ja) ボイラ、コンバインドサイクルプラント並びにボイラの運転方法
KR101603426B1 (ko) 발전소 터빈의 물 유입 보호 방법
JP5164560B2 (ja) 低圧給水加熱器の漏洩検査方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14908989

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016565743

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15538444

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14908989

Country of ref document: EP

Kind code of ref document: A1