WO2016101872A1 - Battery cooling plate assembly and method for preparing the same, battery module, battery package and electric vehicle - Google Patents

Battery cooling plate assembly and method for preparing the same, battery module, battery package and electric vehicle Download PDF

Info

Publication number
WO2016101872A1
WO2016101872A1 PCT/CN2015/098291 CN2015098291W WO2016101872A1 WO 2016101872 A1 WO2016101872 A1 WO 2016101872A1 CN 2015098291 W CN2015098291 W CN 2015098291W WO 2016101872 A1 WO2016101872 A1 WO 2016101872A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling plate
battery
passage
molding portion
plate assembly
Prior art date
Application number
PCT/CN2015/098291
Other languages
French (fr)
Inventor
Weixin Zheng
Jianhua Zhu
Xi Shen
Luxia Jiang
Zhipei LU
Yan Zhu
Original Assignee
Byd Company Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Byd Company Limited filed Critical Byd Company Limited
Publication of WO2016101872A1 publication Critical patent/WO2016101872A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6567Liquids
    • H01M10/6568Liquids characterised by flow circuits, e.g. loops, located externally to the cells or cell casings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to a battery cooling plate and a method preparing the same, a battery module, a battery package and an electric vehicle, and more particularly relates to a cooling plate assembly, a method preparing the same, a cooling plate assembly obtained by the method, a battery module, a battery package including the battery module, and an electric vehicle including the battery package.
  • a battery cooling plate is a necessary component of a battery module, which has a passage for the flow of a coolant, thus to achieve cooling of the battery module.
  • the current battery cooling plate is usually manufactured by stamping to mold an upper cooling plate formed with a passage, then welding with a lower cooling plate.
  • a new stamping die is needed, thus may increase manufacturing cost of the battery cooling plate.
  • the battery cooling plate may subject to a high temperature during the process of welding, thus may be easy to appear a deformation, which may affect the application.
  • a welding seam formed by prior welding methods shows some deficiencies of the connection and sealing strength.
  • a new battery cooling plate with a higher connection and sealing strength needs to be provided.
  • the present disclosure aims to solve at least one of the above problems to some extent.
  • a battery cooling plate assembly and a method of preparing the same, a battery module, a battery package and an electric vehicle are provided by the present disclosure.
  • a battery cooling plate assembly includes: a lower cooling plate, an upper cooling plate, having a passage molding portion, and a coolant passage defined between the lower cooling plate and passage molding portion of the upper cooling plate; in which the passage molding portion of the upper cooling plate has an edge connected with the lower cooling plate via electromagnetic pulse welding.
  • the lower cooling plate and the upper cooling plate are made of different metals.
  • a surface of the edge of the passage molding portion of the upper cooling plate contacted to the lower cooling plate has no transition layer thereon.
  • a portion of the edge of the passage molding portion of the upper cooling plate contacted to the lower cooling plate has a width of about 1 mm to about 20 mm.
  • the portion of the edge of the passage molding portion of the upper cooling plate contacted to the lower cooling plate has a width of about 8 mm to about 15 mm.
  • a connection strength between the edge of the passage molding portion of the upper cooling plate and the lower cooling plate is about 100 MPa to about 800 MPa.
  • connection strength between the edge of the passage molding portion of the upper cooling plate and the lower cooling plate is about 400 MPa to about 600 MPa.
  • a sealing strength between the edge of the passage molding portion of the upper cooling plate and the lower cooling plate is about 0.01 MPa to about 0.2 MPa.
  • the sealing strength between the edge of the passage molding portion of the upper cooling plate and the lower cooling plate is about 0.01 MPa to about 0.06 MPa.
  • the upper cooling plate is made of a high specific heat metal
  • the lower cooling plate is made of a light metal
  • the upper cooling plate is made of at least one material selected from a group consisting of copper, copper alloy, and steel.
  • the lower cooling plate is made of at least one material selected from a group consisting of aluminum, aluminum alloy, and magnesium alloy.
  • the coolant passage has a width of about 3 mm to about 30 mm, and a height of about 0.3 mm to about 2 mm.
  • the coolant passage is substantially of a straight shape or a bent shape.
  • a method for preparing a battery cooling plate assembly includes: providing a first cooling plate and an second cooling plate disposed in parallel to and spaced apart from each other, and connecting the second cooling plate with the first cooling plate via electromagnetic pulse welding with forming a passage molding portion on the second cooling plate and obtaining an connection between the first cooling plate and the second cooling plate; in which a coolant passage is defined between the first cooling plate and the second cooling plate via the electromagnetic pulse welding.
  • connection parts are obtained via the electromagnetic pulse welding, and the coolant passage is defined between adjacent two atomic connection parts; the coolant passage has a width of about 3 mm to about 30 mm.
  • the coolant passage has a height of about 0.3 mm to about 2 mm.
  • the two connection parts are parallel to each other.
  • the electromagnetic pulse welding is performed under a welding energy of about 16 KJ to about 64 KJ.
  • a battery cooling plate assembly obtained by a method according to embodiments of the present disclosure is also provided.
  • a battery module including a plurality of battery cooling plate assemblies is also provided, in which the battery cooling plate assembly is the cooling plate assembly mentioned above.
  • a battery package including a plurality of battery modules is also provided, in which in which the battery module is the battery module mentioned above.
  • An electric vehicle including a plurality of battery packages is also provided, in which the battery package is the battery package mentioned above.
  • the battery cooling plate assembly may show a high strength, a good heat dissipation and a light weight when using a high specific heat metal, such as copper, and a lightweight metal, together with a better connection strength and sealing performance.
  • a high specific heat metal such as copper, and a lightweight metal
  • the coolant passage may be formed at the same time by electromagnetic pulse welding, which may cancel the step of stamping, thus may decrease manufacturing cost of the battery cooling plate assembly.
  • Fig. 1 is a schematic view of a first cooling plate and a second cooling plate before electromagnetic pulse welding according to an embodiment of the present disclosure
  • Fig. 2 is a schematic view of a first cooling plate and a second cooling plate after electromagnetic pulse welding or a battery cooling plate assembly according to an embodiment of the present disclosure
  • Fig. 3 is a schematic view of a battery cooling plate assembly according to an embodiment of the present disclosure
  • Fig. 4 is a top view of a coolant passage according to a first embodiment of the present disclosure
  • Fig. 5 is a top view of a coolant passage according to a second embodiment of the present disclosure.
  • Fig. 6 is a top view of a coolant passage according to a third embodiment of the present disclosure.
  • Fig. 7 is a metallography image of a connection formed by electromagnetic pulse welding according to an embodiment of the present disclosure
  • Fig. 8 is a metallography image of a connection formed by laser welding.
  • Fig. 9 is a metallography image of a broken connection formed by laser welding.
  • Lower cooling plate 10 upper cooling plate 20, first cooling plate 1, second cooling plate 2, passage 3, welding seam 4, original part 5 and deformed part 6.
  • first and second are used herein for purposes of description and are not intended to indicate or imply relative importance or significance or to imply the number of indicated technical features.
  • the feature defined with “first” and “second” may include one or more of this feature.
  • “a plurality of” means at least two, e.g. two, three and so on, unless specified otherwise.
  • the terms “mounted, ” “supported, ” “connected, ” and “coupled” and variations thereof are used broadly and encompass such as mechanical or electrical mountings, connections and couplings, also can be inner mountings, connections and couplings of two components, and further can be direct and indirect mountings, connections, and couplings, which can be understood by those skilled in the art according to the detail embodiment of the present disclosure.
  • the battery cooling plate assembly includes: a lower cooling plate 10, an upper cooling plate 20 with a passage molding portion, and a coolant passage 3 defined between the passage molding portion of the upper cooling plate 20 and the lower cooling plate 10; and the passage molding portion of the upper cooling plate 20 has an edge connected with the lower cooling plate 10 via electromagnetic pulse welding.
  • the upper cooling plate 20 is connected with the lower cooling plate 10 at the welding seam 4 via the edge of the passage molding portion thereof.
  • the upper cooling plate 20 is derived from a second cooling plate 2, in other words, the second cooling plate 2 is used to prepare the cooling plate module plate assembly. That means, the second cooling plate 2 just refers to a flat metal board, while the upper cooling plate refers to a metal board formed with a passage molding portion.
  • the second cooling plate 2 may be deformed at welding place to obtain an upper cooling plate 20 having a passage molding portion, in which the passage molding portion includes an original part 5 and a deformed part 6.
  • the coolant passage 3 is defined between the lower cooling plate and the passage molding portion of the upper cooling plate, in other words, the coolant passage is defined between the original part 5, the deformed part 6 and the first cooling plate 1.
  • the upper cooling plate may be made of a high specific heat metal, which may provide a good heat dissipation for the battery cooling plate assembly.
  • the lower cooling plate may be made of a lightweight metal, which may decrease the weight of the cooling plate assembly. It’s not so easy to achieve welding between different metals through conventional methods, and one of the cooling plates must be preformed with a passage before welding, which increases manufacturing processes. But according to the present disclosure, with the method of electromagnetic pulse welding, two different metals may be connected with each other easily and a coolant passage may be formed at one of cooling plates (i.e. the upper cooling plate) at the same time, then the process of stamping to preform a coolant passage may be cancelled. Meanwhile, electromagnetic pulse welding is a non-molten welding method, thus there is no heat affected zone existed which is unlike conventional welding method.
  • electromagnetic pulse welding is a non-molten welding method.
  • the lower cooling plate and the upper cooling plate are made of different metals.
  • a surface of the edge of the passage molding portion of the upper cooling plate contacted to the lower cooling plate has no transition layer thereon.
  • the term “transition layer” refers to a structure formed by a molten welding method, particularly refers to a recrystallization structure after melting of two different metals which are configured to manufacture a cover and a shell of a battery respectively; or the term “transition layer” refers to a structure formed by a brazing method, particularly refers to a brazing layer formed between a cover and a shell of a battery by the method of brazing.
  • the passage molding portion of the upper cooling plate has an edge connected with the lower cooling plate in an atomic connection manner.
  • a welding seam 4 formed by the method of electromagnetic pulse welding according to the present disclosure has a metallography image as shown in Fig. 7. As can be seen in a marked rectangular frame of Fig. 7, the edge of the passage molding portion of the upper cooling plate is contacted to the lower cooling plate with no transition layer, which means there is no alloy or other composite formed between the upper cooling plate and the lower cooling plate.
  • a portion of the edge of the passage molding portion of the upper cooling plate contacted to the lower cooling plate has a width of about 1 mm to about 20 mm.
  • the welding seam 4 has a width of about 1 mm to about 20 mm, as can be seen in Fig. 2.
  • the portion of the edge of the passage molding portion of the upper cooling plate contacted to the lower cooling plate has a width of about 8 mm to about 15 mm.
  • the welding seam 4 has a width of about 8 mm to about 15 mm, as can be seen in Fig. 2.
  • a connection strength between the edge of the passage molding portion of the upper cooling plate and the lower cooling plate is about 100 MPa to about 800 MPa. In some embodiments, the connection strength between the edge of the passage molding portion of the upper cooling plate and the lower cooling plate is about 400 MPa to about 600 MPa.
  • a sealing strength between the edge of the passage molding portion of the upper cooling plate and the lower cooling plate is about 0.01 MPa to about 0.2 MPa. In some embodiments, the sealing strength between the edge of the passage molding portion of the upper cooling plate and the lower cooling plate is about 0.01 MPa to about 0.06 MPa.
  • the upper cooling plate is made of a high specific heat metal
  • the lower cooling plate is made of a lightweight metal.
  • the upper cooling plate is made of at least one material selected from a group consisting of copper, copper alloy, and steel.
  • the lower cooling plate is made of at least one material selected from a group consisting of aluminum, aluminum alloy, and magnesium alloy.
  • the coolant passage has a width marked as “W” , and has a height marked as “t” , which can be seen in Fig. 2.
  • the coolant passage has the width of about 3 mm to about 30 mm, and the height of about 0.3 mm to about 2 mm.
  • the shape of the coolant passage may be designed according to the requirements of the battery cooling plate.
  • the coolant passage is substantially of a straight shape or a bent shape.
  • the coolant passage may be of a U shape, as shown in Fig. 4.
  • the coolant passage may be of a W shape, as shown in Fig. 5.
  • the coolant passage may be of an F shape, as shown in Fig. 6.
  • the method includes: providing a first cooling plate and an second cooling plate disposed in parallel to and spaced apart from each other, and connecting the second cooling plate with the first cooling plate via electromagnetic pulse welding with forming a passage molding portion on the second cooling plate and obtaining an connection between the first cooling plate and the second cooling plate; in which a coolant passage is defined between the first cooling plate and the passage molding portion of the second cooling plate.
  • a coolant passage is defined between the first cooling plate and the passage molding portion of the second cooling plate.
  • at least two atomic connection parts are obtained via the electromagnetic pulse welding, and the coolant passage is defined between adjacent two atomic connection parts.
  • the coolant passage has a width of about 3 mm to about 30 mm.
  • the coolant passage has a height of about 0.3 mm to about 2 mm.
  • the second cooling plate has a spacing apart from the first cooling plate of about 0.3 mm to about 2 mm.
  • the two atomic connection parts are parallel to each other, thus a coolant passage defined between the adjacent two atomic connection parts may have a regular shape.
  • the electromagnetic pulse welding is performed under a welding energy of about 16 KJ to about 64 KJ.
  • the battery cooling plate assembly obtained by a method according to embodiments of the present disclosure is also provided.
  • the battery module including a plurality of battery cooling plates is also provided, in which the battery cooling plate is the cooling plate assembly mentioned above.
  • the plurality of battery cooling plate is mounted to the battery module for heat dissipation.
  • the battery cooling plate may be mounted between the single cells, or mounted on an outer surface of the battery module.
  • the battery package including a plurality of battery modules is also provided, in which in which the battery module is the battery module mentioned above.
  • the electric vehicle including a plurality of battery packages is also provided, in which the battery package is the battery package mentioned above.
  • a first cooling plate made of aluminum alloy and a second cooling plate made of copper was placed in parallel to and spaced apart from each other with a spacing of 2 mm. Then electromagnetic pulse welding was carried out on the second cooling plate via a welding device PS48-16/25, purchased from PST Company, under a welding energy of 16KJ.
  • a battery cooling plate assembly was obtained, as shown in Figs. 2 and 3, in which a portion of the edge of the passage molding portion of the upper cooling plate contacted to the lower cooling plate had a width of 8 mm, i.e. the width of the welding seam was 8 mm, the width of the passage was 15 mm, the height of the passage was 2 mm, and the shape of the passage was shown in Fig. 4.
  • a surface of the edge of the passage molding portion of the upper cooling plate contacted to the lower cooling plate had no transition layer thereon, i.e. there was no alloy or other composite formed between the upper cooling plate and the lower cooling plate.
  • a first cooling plate made of aluminum and a second cooling plate made of copper alloy was placed in parallel to and spaced apart from each other with a spacing of 1.5 mm. Then electromagnetic pulse welding was carried out on the second cooling plate via a welding device PS48-16/25, purchased from PST Company, under a welding energy of 20KJ.
  • a battery cooling plate assembly was obtained, as shown in Figs. 2, in which a portion of the edge of the passage molding portion of the upper cooling plate contacted to the lower cooling plate had a width of 10 mm, i.e. the width of the welding seam was 10 mm, the width of the passage was 20 mm, the height of the passage was 1.5 mm, and the shape of the passage was shown in Fig. 5.
  • a surface of the edge of the passage molding portion of the upper cooling plate contacted to the lower cooling plate had no transition layer thereon, i.e. there was no alloy or other composite formed between the upper cooling plate and the lower cooling plate.
  • a first cooling plate made of magnesium alloy and a second cooling plate made of steel was placed in parallel to and spaced apart from each other with a spacing of 1.5 mm. Then electromagnetic pulse welding was carried out on the second cooling plate via a welding device PS48-16/25, purchased from PST Company, under a welding energy of 32 KJ.
  • a battery cooling plate assembly was obtained, as shown in Fig. 2, in which a portion of the edge of the passage molding portion of the upper cooling plate contacted to the lower cooling plate had a width of 15 mm, i.e. the width of the welding seam was 15 mm, the width of the passage was 20 mm, the height of the passage was 1.5 mm, and the shape of the passage was shown in Fig. 6.
  • a surface of the edge of the passage molding portion of the upper cooling plate contacted to the lower cooling plate had no transition layer, i.e. there was no alloy or other composite formed between the upper cooling plate and the lower cooling plate.
  • a second cooling plate made of copper was stamped to be performed with a passage, and the shape of the passage was shown in Fig. 4. Then a first cooling plate made of copper and the second cooling plate was placed in parallel, in which a spacing between the first cooling plate and the second cooling plate was 0 mm. Laser welding was carried out on the second cooling plate via a welding device DISC8002, purchased from Trumpf Company, under a welding power of 8 KW and a welding speed of 80 mm/s.
  • a battery cooling plate assembly was obtained, as shown in Figs. 2 and 3, in which the upper cooling plate was contacted to the lower cooling plate with a width of 1.5 mm, i.e. the width of the welding seam was 1.5 mm, the width of the passage was 20 mm, the height of the passage was 1.5 mm, and the shape of the passage was shown in Fig. 4.
  • the welding seam was tested with a metallurgical microscope, and the metallography image was shown in Fig. 8.
  • the upper cooling plate was contacted to the lower cooling plate with a transition layer, i.e. there was a new alloy phase formed between the upper cooling plate and the lower cooling plate, or there was a transition layer formed between the upper cooling plate and the lower cooling plate, which was shown in a marked circular frame of Fig. 8.
  • connection strength test After connection strength test, the welding seam was also tested with a metallurgical microscope, and the metallography image was shown in Fig. 9. As shown in Fig. 9, the connection formed by laser welding between the upper cooling plate and the lower cooling plate was broken, i.e. the transition layer was broken.
  • connection strength of the battery cooling plate assembly samples obtained above was measured by a tensile testing device GP-TS2000M purchased from Gopoint Technical Testing Company.
  • the sealing strength of the battery cooling plate assembly samples obtained above was measured by a sealing testing device purchased from BYD Limited Company.
  • the weight of the battery cooling plate assembly according to the present disclosure was lighter than COMPARATIVE EMBODIMENT 1, and the structure of the battery cooling plate assembly was very simple. And, the battery cooling plate assembly had a better connection strength and a better sealing strength. Meanwhile, there was no need to preform a passage on the cooling plate before the step of welding.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)
  • Battery Mounting, Suspending (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Abstract

A battery cooling plate assembly includes: a lower cooling plate, an upper cooling plate, having a passage molding portion, and a coolant passage defined between the lower cooling plate and the passage molding portion of the upper cooling plate; wherein the passage molding portion of the upper cooling plate has an edge connected with the lower cooling plate via electromagnetic pulse welding. The coolant passage may be formed at the same time by electromagnetic pulse welding, which may cancel the step of stamping, thus may decrease manufacturing cost of the battery cooling plate assembly.

Description

BATTERY COOLING PLATE ASSEMBLY AND METHOED FOR PREPARING THE SAMEE, BATTERY MODULE, BATTERY PACKAGE AND ELECTRIC VEHICLE
CROSS-REFERENCE TO RELATED APPLICATION
The present application claims priority to and benefits of Chinese Patent Application No. 201410811906.1, filed with the State Intellectual Property Office (SIPO) of the People's Republic of China on December 23, 2014, the entire content of which is hereby incorporated by reference. 
FIELD
The present disclosure relates to a battery cooling plate and a method preparing the same, a battery module, a battery package and an electric vehicle, and more particularly relates to a cooling plate assembly, a method preparing the same, a cooling plate assembly obtained by the method, a battery module, a battery package including the battery module, and an electric vehicle including the battery package.
BACKGROUND
A battery cooling plate is a necessary component of a battery module, which has a passage for the flow of a coolant, thus to achieve cooling of the battery module.
The current battery cooling plate is usually manufactured by stamping to mold an upper cooling plate formed with a passage, then welding with a lower cooling plate. When the passage has a different design, a new stamping die is needed, thus may increase manufacturing cost of the battery cooling plate.
In addition, the battery cooling plate may subject to a high temperature during the process of welding, thus may be easy to appear a deformation, which may affect the application. And, a welding seam formed by prior welding methods shows some deficiencies of the connection and sealing strength. Thus, a new battery cooling plate with a higher connection and sealing strength needs to be provided.
SUMMARY
The present disclosure aims to solve at least one of the above problems to some extent.
Accordingly, a battery cooling plate assembly and a method of preparing the same, a battery  module, a battery package and an electric vehicle are provided by the present disclosure.
A battery cooling plate assembly according to embodiments of the present disclosure includes: a lower cooling plate, an upper cooling plate, having a passage molding portion, and a coolant passage defined between the lower cooling plate and passage molding portion of the upper cooling plate; in which the passage molding portion of the upper cooling plate has an edge connected with the lower cooling plate via electromagnetic pulse welding.
In some embodiments, the lower cooling plate and the upper cooling plate are made of different metals.
In some embodiments, a surface of the edge of the passage molding portion of the upper cooling plate contacted to the lower cooling plate has no transition layer thereon.
In some embodiments, a portion of the edge of the passage molding portion of the upper cooling plate contacted to the lower cooling plate has a width of about 1 mm to about 20 mm.
In some embodiments, the portion of the edge of the passage molding portion of the upper cooling plate contacted to the lower cooling plate has a width of about 8 mm to about 15 mm.
In some embodiments, a connection strength between the edge of the passage molding portion of the upper cooling plate and the lower cooling plate is about 100 MPa to about 800 MPa.
In some embodiments, the connection strength between the edge of the passage molding portion of the upper cooling plate and the lower cooling plate is about 400 MPa to about 600 MPa.
In some embodiments, a sealing strength between the edge of the passage molding portion of the upper cooling plate and the lower cooling plate is about 0.01 MPa to about 0.2 MPa.
In some embodiments, the sealing strength between the edge of the passage molding portion of the upper cooling plate and the lower cooling plate is about 0.01 MPa to about 0.06 MPa.
In some embodiments, the upper cooling plate is made of a high specific heat metal, and the lower cooling plate is made of a light metal.
In some embodiments, the upper cooling plate is made of at least one material selected from a group consisting of copper, copper alloy, and steel.
In some embodiments, the lower cooling plate is made of at least one material selected from a group consisting of aluminum, aluminum alloy, and magnesium alloy.
In some embodiments, the coolant passage has a width of about 3 mm to about 30 mm, and a height of about 0.3 mm to about 2 mm.
In some embodiments, the coolant passage is substantially of a straight shape or a bent shape.
A method for preparing a battery cooling plate assembly according to embodiments of the present disclosure includes: providing a first cooling plate and an second cooling plate disposed in parallel to and spaced apart from each other, and connecting the second cooling plate with the first cooling plate via electromagnetic pulse welding with forming a passage molding portion on the second cooling plate and obtaining an connection between the first cooling plate and the second cooling plate; in which a coolant passage is defined between the first cooling plate and the second cooling plate via the electromagnetic pulse welding.
In some embodiments, at least two connection parts are obtained via the electromagnetic pulse welding, and the coolant passage is defined between adjacent two atomic connection parts; the coolant passage has a width of about 3 mm to about 30 mm.
In some embodiments, the coolant passage has a height of about 0.3 mm to about 2 mm.
In some embodiments, the two connection parts are parallel to each other.
In some embodiments, the electromagnetic pulse welding is performed under a welding energy of about 16 KJ to about 64 KJ.
A battery cooling plate assembly obtained by a method according to embodiments of the present disclosure is also provided.
A battery module including a plurality of battery cooling plate assemblies is also provided, in which the battery cooling plate assembly is the cooling plate assembly mentioned above.
A battery package including a plurality of battery modules is also provided, in which in which the battery module is the battery module mentioned above.
An electric vehicle, including a plurality of battery packages is also provided, in which the battery package is the battery package mentioned above.
According to embodiments of the present disclosure, by providing a structure in which the passage molding portion of the upper cooling plate has an edge connected with the lower cooling plate via electromagnetic pulse welding, the battery cooling plate assembly may show a high strength, a good heat dissipation and a light weight when using a high specific heat metal, such as copper, and a lightweight metal, together with a better connection strength and sealing performance. With the method according to embodiments of the present disclosure, when connecting the upper cooling plate and the lower cooling plate, the coolant passage may be formed at the same time by electromagnetic pulse welding, which may cancel the step of stamping, thus may decrease manufacturing cost of the battery cooling plate assembly.
Additional aspects and advantages of embodiments of present disclosure will be given in part in the following descriptions, become apparent in part from the following descriptions, or be learned from the practice of the embodiments of the present disclosure.
BRIEF DESCRIPTION OF THE DRAWINGS
These and other aspects and advantages of embodiments of the present disclosure will become apparent and more readily appreciated from the following descriptions made with reference to the accompanying drawings, in which:
Fig. 1 is a schematic view of a first cooling plate and a second cooling plate before electromagnetic pulse welding according to an embodiment of the present disclosure;
Fig. 2 is a schematic view of a first cooling plate and a second cooling plate after electromagnetic pulse welding or a battery cooling plate assembly according to an embodiment of the present disclosure;
Fig. 3 is a schematic view of a battery cooling plate assembly according to an embodiment of the present disclosure;
Fig. 4 is a top view of a coolant passage according to a first embodiment of the present disclosure;
Fig. 5 is a top view of a coolant passage according to a second embodiment of the present disclosure;
Fig. 6 is a top view of a coolant passage according to a third embodiment of the present disclosure;
Fig. 7 is a metallography image of a connection formed by electromagnetic pulse welding according to an embodiment of the present disclosure;
Fig. 8 is a metallography image of a connection formed by laser welding; and
Fig. 9 is a metallography image of a broken connection formed by laser welding.
Reference numerals
Lower cooling plate 10, upper cooling plate 20, first cooling plate 1, second cooling plate 2, passage 3, welding seam 4, original part 5 and deformed part 6.
DETAILED DESCRIPTION
Reference will be made in detail to embodiments of the present disclosure, where the same or similar elements and the elements having the same or similar functions are denoted by like reference numerals throughout the descriptions. The embodiments described herein with reference to drawings are explanatory, illustrative, and used to generally understand the present disclosure. The embodiments shall not be construed to limit the present disclosure.
In the specification, it is to be understood that terms such as “length, ” “width, ” “thickness, ” “upper, ” “lower, ” “front, ” “rear, ” “left, ” “right, ” “vertical, ” “horizontal, ” “top, ” “bottom, ” “inner, ” and “outer” should be construed to refer to the orientation as then described or as shown in the drawings under discussion. These relative terms are for convenience of description and do not require that the present disclosure be constructed or operated in a particular orientation, thus shall not be construed to limit the present disclosure. In addition, terms such as “first” and “second” are used herein for purposes of description and are not intended to indicate or imply relative importance or significance or to imply the number of indicated technical features. Thus, the feature defined with “first” and “second” may include one or more of this feature. In the description of the present disclosure, “a plurality of” means at least two, e.g. two, three and so on, unless specified otherwise.
In the description of the present disclosure, it should be understood that, unless specified or limited otherwise, the terms “mounted, ” “supported, ” “connected, ” and “coupled” and variations thereof are used broadly and encompass such as mechanical or electrical mountings, connections and couplings, also can be inner mountings, connections and couplings of two components, and further can be direct and indirect mountings, connections, and couplings, which can be understood by those skilled in the art according to the detail embodiment of the present disclosure.
A battery cooling plate assembly according to embodiments of the present disclosure will be described with reference to drawings.
As shown in Fig. 2 or 3, the battery cooling plate assembly according to embodiments of the present disclosure includes: a lower cooling plate 10, an upper cooling plate 20 with a passage molding portion, and a coolant passage 3 defined between the passage molding portion of the upper cooling plate 20 and the lower cooling plate 10; and the passage molding portion of the upper cooling plate 20 has an edge connected with the lower cooling plate 10 via electromagnetic pulse welding.
In some embodiments, as shown in Fig. 2 or 3, the upper cooling plate 20 is connected with  the lower cooling plate 10 at the welding seam 4 via the edge of the passage molding portion thereof. The upper cooling plate 20 is derived from a second cooling plate 2, in other words, the second cooling plate 2 is used to prepare the cooling plate module plate assembly. That means, the second cooling plate 2 just refers to a flat metal board, while the upper cooling plate refers to a metal board formed with a passage molding portion. In some embodiments according to the preseng disclosure, after electromagnetic pulse welding, the second cooling plate 2 may be deformed at welding place to obtain an upper cooling plate 20 having a passage molding portion, in which the passage molding portion includes an original part 5 and a deformed part 6. Then the coolant passage 3 is defined between the lower cooling plate and the passage molding portion of the upper cooling plate, in other words, the coolant passage is defined between the original part 5, the deformed part 6 and the first cooling plate 1.
In some embodiments, the upper cooling plate may be made of a high specific heat metal, which may provide a good heat dissipation for the battery cooling plate assembly. And, the lower cooling plate may be made of a lightweight metal, which may decrease the weight of the cooling plate assembly. It’s not so easy to achieve welding between different metals through conventional methods, and one of the cooling plates must be preformed with a passage before welding, which increases manufacturing processes. But according to the present disclosure, with the method of electromagnetic pulse welding, two different metals may be connected with each other easily and a coolant passage may be formed at one of cooling plates (i.e. the upper cooling plate) at the same time, then the process of stamping to preform a coolant passage may be cancelled. Meanwhile, electromagnetic pulse welding is a non-molten welding method, thus there is no heat affected zone existed which is unlike conventional welding method.
According to the present disclosure, electromagnetic pulse welding is a non-molten welding method. In some embodiments, the lower cooling plate and the upper cooling plate are made of different metals. And, a surface of the edge of the passage molding portion of the upper cooling plate contacted to the lower cooling plate has no transition layer thereon. In the description of the present disclosure, it should be understood that, unless specified or limited otherwise, the term “transition layer” refers to a structure formed by a molten welding method, particularly refers to a recrystallization structure after melting of two different metals which are configured to manufacture a cover and a shell of a battery respectively; or the term “transition layer” refers to a structure formed by a brazing method, particularly refers to a brazing layer formed between a  cover and a shell of a battery by the method of brazing. Through the welding method according the present disclosure, i.e. through the electromagnetic pulse welding, the passage molding portion of the upper cooling plate has an edge connected with the lower cooling plate in an atomic connection manner.
welding seam 4 formed by the method of electromagnetic pulse welding according to the present disclosure has a metallography image as shown in Fig. 7. As can be seen in a marked rectangular frame of Fig. 7, the edge of the passage molding portion of the upper cooling plate is contacted to the lower cooling plate with no transition layer, which means there is no alloy or other composite formed between the upper cooling plate and the lower cooling plate.
In some embodiments, a portion of the edge of the passage molding portion of the upper cooling plate contacted to the lower cooling plate has a width of about 1 mm to about 20 mm. In other word, the welding seam 4 has a width of about 1 mm to about 20 mm, as can be seen in Fig. 2. In some embodiments, the portion of the edge of the passage molding portion of the upper cooling plate contacted to the lower cooling plate has a width of about 8 mm to about 15 mm. In other word, the welding seam 4 has a width of about 8 mm to about 15 mm, as can be seen in Fig. 2.
In some embodiments, a connection strength between the edge of the passage molding portion of the upper cooling plate and the lower cooling plate is about 100 MPa to about 800 MPa. In some embodiments, the connection strength between the edge of the passage molding portion of the upper cooling plate and the lower cooling plate is about 400 MPa to about 600 MPa.
In some embodiments, a sealing strength between the edge of the passage molding portion of the upper cooling plate and the lower cooling plate is about 0.01 MPa to about 0.2 MPa. In some embodiments, the sealing strength between the edge of the passage molding portion of the upper cooling plate and the lower cooling plate is about 0.01 MPa to about 0.06 MPa.
In some embodiments, the upper cooling plate is made of a high specific heat metal, and the lower cooling plate is made of a lightweight metal. For example, the upper cooling plate is made of at least one material selected from a group consisting of copper, copper alloy, and steel. The lower cooling plate is made of at least one material selected from a group consisting of aluminum, aluminum alloy, and magnesium alloy.
According to the present disclosure, the coolant passage has a width marked as “W” , and has a height marked as “t” , which can be seen in Fig. 2. In some embodiments, the coolant passage has  the width of about 3 mm to about 30 mm, and the height of about 0.3 mm to about 2 mm.
In some embodiments, the shape of the coolant passage may be designed according to the requirements of the battery cooling plate. In some embodiments, the coolant passage is substantially of a straight shape or a bent shape. In one embodiment, the coolant passage may be of a U shape, as shown in Fig. 4. In a second embodiment, the coolant passage may be of a W shape, as shown in Fig. 5. In a third embodiment, the coolant passage may be of an F shape, as shown in Fig. 6.
A method for preparing a battery cooling plate assembly according to embodiments of the present disclosure will be described below.
The method includes: providing a first cooling plate and an second cooling plate disposed in parallel to and spaced apart from each other, and connecting the second cooling plate with the first cooling plate via electromagnetic pulse welding with forming a passage molding portion on the second cooling plate and obtaining an connection between the first cooling plate and the second cooling plate; in which a coolant passage is defined between the first cooling plate and the passage molding portion of the second cooling plate. In some embodiments, at least two atomic connection parts are obtained via the electromagnetic pulse welding, and the coolant passage is defined between adjacent two atomic connection parts. In some embodiments, the coolant passage has a width of about 3 mm to about 30 mm.
In some embodiments, the coolant passage has a height of about 0.3 mm to about 2 mm. In other word, the second cooling plate has a spacing apart from the first cooling plate of about 0.3 mm to about 2 mm.
In some embodiments, the two atomic connection parts are parallel to each other, thus a coolant passage defined between the adjacent two atomic connection parts may have a regular shape.
In some embodiments, the electromagnetic pulse welding is performed under a welding energy of about 16 KJ to about 64 KJ.
The battery cooling plate assembly obtained by a method according to embodiments of the present disclosure is also provided.
The battery module including a plurality of battery cooling plates is also provided, in which the battery cooling plate is the cooling plate assembly mentioned above.
According to the present disclosure, the plurality of battery cooling plate is mounted to the  battery module for heat dissipation. In some embodiments, the battery cooling plate may be mounted between the single cells, or mounted on an outer surface of the battery module.
The battery package including a plurality of battery modules is also provided, in which in which the battery module is the battery module mentioned above.
The electric vehicle, including a plurality of battery packages is also provided, in which the battery package is the battery package mentioned above.
Hereinafter, the present disclosure will be described in details with reference to the following embodiments.
EMBODIMENT 1
A first cooling plate made of aluminum alloy and a second cooling plate made of copper was placed in parallel to and spaced apart from each other with a spacing of 2 mm. Then electromagnetic pulse welding was carried out on the second cooling plate via a welding device PS48-16/25, purchased from PST Company, under a welding energy of 16KJ. A battery cooling plate assembly was obtained, as shown in Figs. 2 and 3, in which a portion of the edge of the passage molding portion of the upper cooling plate contacted to the lower cooling plate had a width of 8 mm, i.e. the width of the welding seam was 8 mm, the width of the passage was 15 mm, the height of the passage was 2 mm, and the shape of the passage was shown in Fig. 4.
The welding seam was tested with a metallurgical microscope, and the metallography image was shown in Fig. 7. As shown in Fig. 7, a surface of the edge of the passage molding portion of the upper cooling plate contacted to the lower cooling plate had no transition layer thereon, i.e. there was no alloy or other composite formed between the upper cooling plate and the lower cooling plate.
EMBODIMENT 2
A first cooling plate made of aluminum and a second cooling plate made of copper alloy was placed in parallel to and spaced apart from each other with a spacing of 1.5 mm. Then electromagnetic pulse welding was carried out on the second cooling plate via a welding device PS48-16/25, purchased from PST Company, under a welding energy of 20KJ. A battery cooling plate assembly was obtained, as shown in Figs. 2, in which a portion of the edge of the passage molding portion of the upper cooling plate contacted to the lower cooling plate had a width of 10 mm, i.e. the width of the welding seam was 10 mm, the width of the passage was 20 mm, the height of the passage was 1.5 mm, and the shape of the passage was shown in Fig. 5.
The welding seam was tested with a metallurgical microscope, and the metallography image was shown in Fig. 7. As shown in Fig. 7, a surface of the edge of the passage molding portion of the upper cooling plate contacted to the lower cooling plate had no transition layer thereon, i.e. there was no alloy or other composite formed between the upper cooling plate and the lower cooling plate.
EMBODIMENT 3
A first cooling plate made of magnesium alloy and a second cooling plate made of steel was placed in parallel to and spaced apart from each other with a spacing of 1.5 mm. Then electromagnetic pulse welding was carried out on the second cooling plate via a welding device PS48-16/25, purchased from PST Company, under a welding energy of 32 KJ. A battery cooling plate assembly was obtained, as shown in Fig. 2, in which a portion of the edge of the passage molding portion of the upper cooling plate contacted to the lower cooling plate had a width of 15 mm, i.e. the width of the welding seam was 15 mm, the width of the passage was 20 mm, the height of the passage was 1.5 mm, and the shape of the passage was shown in Fig. 6.
The welding seam was tested with a metallurgical microscope, and the metallography image was shown in Fig. 7. As shown in Fig. 7, a surface of the edge of the passage molding portion of the upper cooling plate contacted to the lower cooling plate had no transition layer, i.e. there was no alloy or other composite formed between the upper cooling plate and the lower cooling plate.
COMPARATIVE EMBODIMENT 1
A second cooling plate made of copper was stamped to be performed with a passage, and the shape of the passage was shown in Fig. 4. Then a first cooling plate made of copper and the second cooling plate was placed in parallel, in which a spacing between the first cooling plate and the second cooling plate was 0 mm. Laser welding was carried out on the second cooling plate via a welding device DISC8002, purchased from Trumpf Company, under a welding power of 8 KW and a welding speed of 80 mm/s. A battery cooling plate assembly was obtained, as shown in Figs. 2 and 3, in which the upper cooling plate was contacted to the lower cooling plate with a width of 1.5 mm, i.e. the width of the welding seam was 1.5 mm, the width of the passage was 20 mm, the height of the passage was 1.5 mm, and the shape of the passage was shown in Fig. 4.
The welding seam was tested with a metallurgical microscope, and the metallography image was shown in Fig. 8. As shown in Fig. 8, the upper cooling plate was contacted to the lower cooling plate with a transition layer, i.e. there was a new alloy phase formed between the upper  cooling plate and the lower cooling plate, or there was a transition layer formed between the upper cooling plate and the lower cooling plate, which was shown in a marked circular frame of Fig. 8.
After connection strength test, the welding seam was also tested with a metallurgical microscope, and the metallography image was shown in Fig. 9. As shown in Fig. 9, the connection formed by laser welding between the upper cooling plate and the lower cooling plate was broken, i.e. the transition layer was broken.
Tests
(1) Connection Strength Test
The connection strength of the battery cooling plate assembly samples obtained above was measured by a tensile testing device GP-TS2000M purchased from Gopoint Technical Testing Company.
(2) Sealing Strength Test
The sealing strength of the battery cooling plate assembly samples obtained above was measured by a sealing testing device purchased from BYD Limited Company.
(3) Weight Test
The weight of the battery cooling plate assembly samples obtained above was tested.
The results were shown in Table 1.
Table 1
Figure PCTCN2015098291-appb-000001
As can be seen from Table 1, the weight of the battery cooling plate assembly according to the present disclosure was lighter than COMPARATIVE EMBODIMENT 1, and the structure of the battery cooling plate assembly was very simple. And, the battery cooling plate assembly had a better connection strength and a better sealing strength. Meanwhile, there was no need to preform a passage on the cooling plate before the step of welding.
Reference throughout this specification to “one embodiment” , “some embodiments, ” “an  embodiment” , “aspecific example, ” or “some examples, ” means that a particular feature, structure, material, or characteristic described in connection with the embodiment or example is included in at least one embodiment or example of the present disclosure. Thus, the appearances of the phrases in various places throughout this specification are not necessarily referring to the same embodiment or example of the present disclosure. Furthermore, the particular features, structures, materials, or characteristics may be combined in any suitable manner in one or more embodiments or examples.
Although explanatory embodiments have been shown and described, it would be appreciated that the above embodiments are explanatory and cannot be construed to limit the present disclosure, and changes, alternatives, and modifications can be made in the embodiments without departing from scope of the present disclosure by those skilled in the art.

Claims (23)

  1. A battery cooling plate assembly, comprising:
    a lower cooling plate,
    an upper cooling plate having a passage molding portion, and
    a coolant passage defined between the lower cooling plate and the passage molding portion of the upper cooling plate;
    wherein the passage molding portion of the upper cooling plate has an edge connected with the lower cooling plate via electromagnetic pulse welding.
  2. The battery cooling plate assembly according to claim 1, wherein the lower cooling plate and the upper cooling plate are made of different metals.
  3. The battery cooling plate assembly according to claim 1 or 2, wherein a surface of the edge of the passage molding portion of the upper cooling plate contacted to the lower cooling plate has no transition layer thereon.
  4. The battery cooling plate assembly according to any one of claims 1 to 3, wherein a portion of the edge of the passage molding portion of the upper cooling plate contacted to the lower cooling plate has a width of about 1 mm to about 20 mm.
  5. The battery cooling plate assembly according to claim 4, wherein the portion of the edge of the passage molding portion of the upper cooling plate contacted to the lower cooling plate has a width of about 8 mm to about 15 mm.
  6. The battery cooling plate assembly according to any one of claims 1 to 5, wherein a connection strength between the edge of the passage molding portion of the upper cooling plate and the lower cooling plate is about 100 MPa to about 800 MPa.
  7. The battery cooling plate assembly according to claim 6, wherein the connection strength between the edge of the passage molding portion of the upper cooling plate and the lower cooling  plate is about 400 MPa to about 600 MPa.
  8. The battery cooling plate assembly according to any one of claims 1 to 7, wherein a sealing strength between the edge of the passage molding portion of the upper cooling plate and the lower cooling plate is about 0.01 MPa to about 0.2 MPa.
  9. The battery cooling plate assembly according to claim 8, wherein the sealing strength between the edge of the passage molding portion of the upper cooling plate and the lower cooling plate is about 0.01 MPa to about 0.06 MPa.
  10. The battery cooling plate assembly according to any one of claims 1 to 9, wherein the upper cooling plate is made of a high specific heat metal, and the lower cooling plate is made of a lightweight metal.
  11. The battery cooling plate assembly according to claim 10, wherein the upper cooling plate is made of at least one material selected from a group consisting of copper, copper alloy, and steel.
  12. The battery cooling plate assembly according to claim 10 or 11, wherein the lower cooling plate is made of at least one material selected from a group consisting of aluminum, aluminum alloy, and magnesium alloy.
  13. The battery cooling plate assembly according to any one of claims 1 to 12, wherein the coolant passage has a width of about 3 mm to about 30 mm, and a height of about 0.3 mm to about 2 mm.
  14. The battery cooling plate assembly according to any one of claims 1 to 12, wherein the coolant passage is substantially of a straight shape or a bent shape.
  15. A method for preparing a battery cooling plate assembly, comprising:
    providing a first cooling plate and a second cooling plate disposed in parallel to and spaced apart from each other, and
    connecting the second cooling plate with the first cooling plate via electromagnetic pulse welding with forming a passage molding portion on the second cooling plate and obtaining an connection between the first cooling plate and the second cooling plate;
    wherein a coolant passage is defined between the first cooling plate and the passage molding portion of the second cooling plate.
  16. The method according to claim 15, wherein at least two connection parts are obtained via the electromagnetic pulse welding, and the coolant passage is defined between adjacent two connection parts; the coolant passage has a width of about 3 mm to about 30 mm.
  17. The method according to claim 15 or 16, wherein the coolant passage has a height of about 0.3 mm to about 2 mm.
  18. The method according to claim 16, wherein the two connection parts are parallel to each other.
  19. The method according to any one of claims 15 to 18, wherein the electromagnetic pulse welding is performed under a welding energy of about 16 KJ to about 64 KJ.
  20. A battery cooling plate assembly obtained by a method according to any one of claims 15 to 19.
  21. A battery module, comprising a plurality of battery cooling plate assemblies,
    wherein the battery cooling plate assembly is a cooling plate assembly according to any one of claims 1-14 and 20.
  22. A battery package, comprising a plurality of battery modules,
    wherein the battery module is a battery module according to claim 21.
  23. An electric vehicle, comprising a plurality of battery packages,
    wherein the battery package is a battery package according to claim 22.
PCT/CN2015/098291 2014-12-23 2015-12-22 Battery cooling plate assembly and method for preparing the same, battery module, battery package and electric vehicle WO2016101872A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410811906.1 2014-12-23
CN201410811906.1A CN105789728B (en) 2014-12-23 2014-12-23 Battery liquid cooling plate, preparation method thereof, battery module, battery pack and electric automobile

Publications (1)

Publication Number Publication Date
WO2016101872A1 true WO2016101872A1 (en) 2016-06-30

Family

ID=56149279

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/098291 WO2016101872A1 (en) 2014-12-23 2015-12-22 Battery cooling plate assembly and method for preparing the same, battery module, battery package and electric vehicle

Country Status (2)

Country Link
CN (1) CN105789728B (en)
WO (1) WO2016101872A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019006483A1 (en) * 2017-06-13 2019-01-10 Miba Frictec Gmbh Rechargeable battery
AT16081U1 (en) * 2017-07-03 2019-01-15 Miba Frictec Gmbh accumulator
CN110462876A (en) * 2017-09-26 2019-11-15 株式会社Lg化学 Using the battery module enclosure and its manufacturing method of electromagnetic pulse combination technology
CN112262495A (en) * 2018-06-12 2021-01-22 米巴电动汽车有限公司 Electric storage device
US11444342B2 (en) 2017-07-03 2022-09-13 Miba Emobility Gmbh Storage battery comprising a cooling device connected to the bus bar
WO2023057837A1 (en) * 2021-10-05 2023-04-13 3M Innovative Properties Company Cooling plate assembly, method of making the same, and curable composition
JP2023534352A (en) * 2021-06-22 2023-08-09 エルジー エナジー ソリューション リミテッド Battery modules and battery packs containing the same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107394310B (en) * 2017-08-01 2019-09-03 天津市捷威动力工业有限公司 Power battery cooling structure and system
CN107994292A (en) * 2017-11-27 2018-05-04 常州常发制冷科技有限公司 Bottom cold plate for automobile batteries heat dissipation
DE102020113425B3 (en) * 2020-05-18 2021-11-18 Benteler Automobiltechnik Gmbh Temperature control device for battery modules
CN111889875A (en) * 2020-08-04 2020-11-06 索格菲(苏州)汽车部件有限公司 Processing technology of battery cooling plate
CN115548504A (en) * 2021-06-30 2022-12-30 比亚迪股份有限公司 Battery cold plate and battery system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101065210A (en) * 2004-11-24 2007-10-31 达纳公司 Method for performing a magnetic pulse welding operation to secure first and second metallic components with a preheating step for softening a first part of the first member
CN201570564U (en) * 2009-08-13 2010-09-01 肇庆理士电源技术有限公司 Cooling plate of power battery and power battery
CN102623771A (en) * 2012-04-26 2012-08-01 重庆长安汽车股份有限公司 Battery cooling plate structure
CN203071191U (en) * 2012-10-25 2013-07-17 重庆长安汽车股份有限公司 Battery cooling plate
WO2013139905A1 (en) * 2012-03-23 2013-09-26 Valeo Klimasysteme Gmbh Cooling device for a vehicle battery, and vehicle battery with cooling device

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1073478C (en) * 1995-12-20 2001-10-24 普尔萨焊接有限公司 Electromagnetic joining or welding of metal objects
IL163974A0 (en) * 2003-09-10 2005-12-18 Dana Corp Method for monitoring the performance of a magnetic pulse forming or welding process
CN101905375A (en) * 2010-07-29 2010-12-08 哈尔滨工业大学 Magnetic pulse connecting method and joint structure for thin-wall metal pipelines
CN202127585U (en) * 2011-07-26 2012-01-25 中国北方车辆研究所 Water cooling plate with water channel type cover plate structure
CN103094135A (en) * 2011-11-01 2013-05-08 柯全 Encapsulation method for flip chip
CN102563998A (en) * 2011-12-26 2012-07-11 联合汽车电子有限公司 Flat water-cooling heat radiation device
CN103296330A (en) * 2012-03-01 2013-09-11 杭州三花研究院有限公司 Power supply cooling unit
CN103367830B (en) * 2012-05-17 2016-01-20 奇鋐科技股份有限公司 Be applied to the cooled plate unit of battery pack
US9500304B2 (en) * 2012-08-07 2016-11-22 Ford Global Technologies, Llc Assembly including parts made of dissimilar metals and the method of manufacturing the assembly
DE102013207884A1 (en) * 2013-04-30 2014-10-30 Robert Bosch Gmbh Method for producing a collector for a commutation device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101065210A (en) * 2004-11-24 2007-10-31 达纳公司 Method for performing a magnetic pulse welding operation to secure first and second metallic components with a preheating step for softening a first part of the first member
CN201570564U (en) * 2009-08-13 2010-09-01 肇庆理士电源技术有限公司 Cooling plate of power battery and power battery
WO2013139905A1 (en) * 2012-03-23 2013-09-26 Valeo Klimasysteme Gmbh Cooling device for a vehicle battery, and vehicle battery with cooling device
CN102623771A (en) * 2012-04-26 2012-08-01 重庆长安汽车股份有限公司 Battery cooling plate structure
CN203071191U (en) * 2012-10-25 2013-07-17 重庆长安汽车股份有限公司 Battery cooling plate

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
S.D.KORE ET AL.: "Electromagnetic impact welding of aluminum to stainless steel sheets.", JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, vol. 208, no. 1-3, 31 December 2008 (2008-12-31), pages 486 - 493, XP025469054, DOI: doi:10.1016/j.jmatprotec.2008.01.039 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019006483A1 (en) * 2017-06-13 2019-01-10 Miba Frictec Gmbh Rechargeable battery
AT16081U1 (en) * 2017-07-03 2019-01-15 Miba Frictec Gmbh accumulator
US11444342B2 (en) 2017-07-03 2022-09-13 Miba Emobility Gmbh Storage battery comprising a cooling device connected to the bus bar
CN110462876A (en) * 2017-09-26 2019-11-15 株式会社Lg化学 Using the battery module enclosure and its manufacturing method of electromagnetic pulse combination technology
CN110462876B (en) * 2017-09-26 2022-03-22 株式会社Lg化学 Battery module housing using electromagnetic pulse combination technology and manufacturing method thereof
CN112262495A (en) * 2018-06-12 2021-01-22 米巴电动汽车有限公司 Electric storage device
US11735784B2 (en) 2018-06-12 2023-08-22 Audi Aktiengesellschaft Rechargeable battery
JP2023534352A (en) * 2021-06-22 2023-08-09 エルジー エナジー ソリューション リミテッド Battery modules and battery packs containing the same
WO2023057837A1 (en) * 2021-10-05 2023-04-13 3M Innovative Properties Company Cooling plate assembly, method of making the same, and curable composition

Also Published As

Publication number Publication date
CN105789728B (en) 2020-07-10
CN105789728A (en) 2016-07-20

Similar Documents

Publication Publication Date Title
WO2016101872A1 (en) Battery cooling plate assembly and method for preparing the same, battery module, battery package and electric vehicle
WO2016101880A1 (en) Battery connection sheet and method for preparing the same, battery connection assembly, battery module, battery package and electric vehicle
CN106410319A (en) Integrated liquid-cooling device of battery tray
CN107022698A (en) A kind of high heat conduction pack alloy and preparation method thereof
US9885097B2 (en) Aluminum alloy sheet for battery case use excellent in formability, heat dissipation, and weldability
CN103028838B (en) Welding tool and method for electromagnetic plastic friction stir welding
CN104089262B (en) Heat radiator
JP6034765B2 (en) Aluminum alloy plate for electrical connection parts and method for producing the same
CN106947887B (en) A kind of high-temperature titanium alloy composition design and multiway forging technique
CN106319236A (en) Preparation method of Ti2AlNb alloy material
CN100595945C (en) Battery cap aluminum alloy plate
CN102280419A (en) Radiating plate for large-scale electronic equipment and manufacturing method of radiating plate
CN105483455B (en) A kind of Al Sc Zr Er aluminum alloy high-strength height leads the Technology for Heating Processing of state
CN102628132A (en) Magnesium lithium alloy low-temperature superplastic material and preparation technology thereof
US11581596B2 (en) Cooling block for a battery module and a manufacturing method thereof
CN104626675B (en) The preparation of high strength anti-corrosion compound aluminium foil material and processing method
CN103981408A (en) High-strength weldable Al-Zn-Mg-Mn-Sc alloy and preparation method thereof
WO2017033603A1 (en) Method for manufacturing heat dissipating substrate
CN107234186A (en) A kind of lightweight clamper of drop stamping blank
CN208955069U (en) Battery alclad cabinet and lightweight soft-package battery packet
JP2019160852A (en) Manufacturing method of heat sink
CN213447223U (en) High-rigidity platform for heat treatment of large thin-wall light alloy castings
CN105695803A (en) Aluminum alloy plate for rectangle-shaped battery housing
WO2017217236A1 (en) Heat sink with circuit board and method for producing same
CN205376596U (en) Battery frame tray with water -cooling board

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15871940

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15871940

Country of ref document: EP

Kind code of ref document: A1