WO2017217236A1 - Heat sink with circuit board and method for producing same - Google Patents

Heat sink with circuit board and method for producing same Download PDF

Info

Publication number
WO2017217236A1
WO2017217236A1 PCT/JP2017/020317 JP2017020317W WO2017217236A1 WO 2017217236 A1 WO2017217236 A1 WO 2017217236A1 JP 2017020317 W JP2017020317 W JP 2017020317W WO 2017217236 A1 WO2017217236 A1 WO 2017217236A1
Authority
WO
WIPO (PCT)
Prior art keywords
plate
circuit board
heat sink
low expansion
metal layer
Prior art date
Application number
PCT/JP2017/020317
Other languages
French (fr)
Japanese (ja)
Inventor
幹雄 大高
熊谷 正樹
Original Assignee
株式会社Uacj
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Uacj filed Critical 株式会社Uacj
Publication of WO2017217236A1 publication Critical patent/WO2017217236A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks

Definitions

  • the present invention relates to a heat sink with a circuit board and a manufacturing method thereof.
  • Power converters such as inverters and converters incorporate a heat sink with a circuit board having a circuit board in which metal plates are bonded to both surfaces of a ceramic plate and a heat sink bonded to one metal plate in the circuit board.
  • a heat sink with a circuit board having a circuit board in which metal plates are bonded to both surfaces of a ceramic plate and a heat sink bonded to one metal plate in the circuit board.
  • a semiconductor element constituting the power circuit is mounted by soldering.
  • the heat sink and the metal plate in this type of heat sink with a circuit board may be made of an aluminum material (including aluminum and an aluminum alloy; the same shall apply hereinafter) for the purpose of weight reduction.
  • the circuit board is bonded to the heat sink by the following method. First, an object to be processed is assembled by laminating a heat sink, a brazing material, and a circuit board in this order. Then, the workpiece is heated while pressing the circuit board toward the heat sink, and the brazing material is melted. Thereafter, by cooling the workpiece and solidifying the brazing material, the metal plate and the heat sink on the circuit board can be joined via the brazing material.
  • the thermal expansion coefficient of the ceramic plate in the circuit board is different from the thermal expansion coefficient of the aluminum material constituting the heat sink, a difference occurs in the thermal expansion amount between the ceramic plate and the heat sink due to heating during brazing.
  • the brazing material is solidified before the contraction of the ceramic plate and the heat sink is completed.
  • warpage and residual stress are generated in the ceramic plate.
  • the circuit board after brazing is restrained by the heat sink through the brazing material. Therefore, for example, when soldering the semiconductor element or when the temperature of the circuit board and the heat sink rises due to heat generation of the semiconductor element, a tensile stress is generated near the center of the ceramic plate and the ceramic plate is warped. And when these tensile stress and curvature are too large, there exists a possibility that a crack may generate
  • the present invention has been made in view of such a background, and an object of the present invention is to provide a heat sink with a circuit board capable of suppressing cracking of a ceramic plate over a long period of time and a method for manufacturing the same.
  • One aspect of the present invention includes a base portion having a flat plate shape, a heat sink body made of an aluminum material, A low expansion plate having a linear expansion coefficient lower than that of the heat sink body, and disposed on the base portion; An intermediate aluminum plate disposed on the low expansion plate; A circuit board disposed on the intermediate aluminum plate; A brazing material layer interposed between the base portion and the low expansion plate, between the low expansion plate and the intermediate aluminum plate, and between the intermediate aluminum plate and the circuit board; The circuit board is A back metal layer made of an aluminum material and laminated on the intermediate aluminum plate via the brazing material layer; A ceramic plate laminated on the back metal layer; A heat sink with a circuit board, comprising a circuit metal layer made of an aluminum material and laminated on the ceramic plate.
  • Another aspect of the present invention is a method of manufacturing a heat sink with a circuit board according to the above aspect, A lower wax foil placed on the base portion, the low expansion plate placed on the lower wax foil, an intermediate wax foil placed on the low expansion plate, and the intermediate wax The intermediate aluminum plate placed on the foil, the upper brazing foil placed on the intermediate aluminum plate, and the circuit board placed so that the upper brazing foil and the back metal layer are in contact with each other Assembling the workpiece having
  • the object to be processed is collectively brazed by heating the object to be processed while pressing the circuit board toward the base part.
  • the low expansion plate, the intermediate aluminum plate, the back metal layer, the ceramic plate, and the circuit metal layer are sequentially laminated on the base portion of the heat sink with a circuit board (hereinafter referred to as “heat sink”). Yes. That is, in the heat sink, the base portion made of aluminum material and the circuit metal layer are arranged on the outermost side in the laminated structure described above, and the low expansion coefficient is lower on the inner side than the aluminum material. A plate and the ceramic plate are arranged. An intermediate aluminum plate made of an aluminum material and a back metal layer are disposed between the low expansion plate and the ceramic plate.
  • the above-described components are arranged inside the outer frame portion and the workpiece is assembled, and then brazed together. Thereby, the said heat sink can be produced easily.
  • FIG. 2 is a cross-sectional view taken along line II-II in FIG. It is a partially expanded sectional view of the outer periphery edge vicinity of the low expansion board in the test body F2 of Example 6.
  • FIG. 2 is a cross-sectional view taken along line II-II in FIG. It is a partially expanded sectional view of the outer periphery edge vicinity of the low expansion board in the test body F2 of Example 6.
  • the heat sink body has a flat base portion. On one side of the base portion in the thickness direction, a low expansion plate is laminated via a brazing material layer. Further, a heat radiating fin such as a pin fin, a plate fin, or a corrugated fin, which is configured separately from the heat sink main body, may be attached to the other side in the thickness direction of the base portion. These heat radiation fins can also be formed integrally with the heat sink body.
  • the thickness of the base part is preferably 0.5 to 1.5 times the thickness of the circuit metal layer. In this way, by making the thickness of the circuit metal layer and the thickness of the base portion approximately the same, the warpage occurring in the ceramic plate and the warpage occurring in the low expansion plate can be more effectively offset. As a result, the warpage of the ceramic plate can be more effectively reduced.
  • the thickness of the base portion is more preferably 1.0 to 1.5 times the thickness of the circuit metal layer, and further preferably 1.0 to 1.2 times.
  • the heat sink main body may further have an outer frame portion standing from the outer peripheral edge of the base portion and disposed around the low expansion plate, the intermediate aluminum plate, and the circuit board.
  • the outer frame portion can easily suppress displacement of the low expansion plate, the intermediate aluminum plate, and the circuit board during brazing.
  • the molten wax can be held inside the outer frame portion during brazing. As a result, the above-described component parts can be brazed more reliably.
  • the height of the outer frame portion is preferably 0.9 to 1.1 times the height of the circuit metal layer.
  • brazing can be performed more easily when the heat sink is manufactured.
  • the workability in the work of mounting a semiconductor element or the like on the circuit board can be further improved.
  • the height of the outer frame portion and the height of the circuit metal layer are heights measured with reference to the back surface of the plate surface on which the low expansion plate is disposed in the base portion.
  • the height of the outer frame portion is less than 0.9 times the height of the circuit metal layer, the position of the circuit board or the like is likely to shift during brazing, and the solder flows out of the outer frame portion. , Etc. may occur.
  • the height of the outer frame portion exceeds 1.1 times the height of the circuit metal layer, there is a risk of increasing the mass of the heat sink body. In this case, in the work of mounting a semiconductor element or the like on the circuit board, workability may be reduced due to the presence of the outer frame portion.
  • the material of the heat sink body can be appropriately selected from known aluminum and aluminum alloys according to required mechanical properties, corrosion resistance, workability, and the like.
  • the heat sink body may be made of a 6000 series aluminum alloy.
  • the 6000 series aluminum alloy has a high creep strength. Therefore, in this case, creep deformation of the heat sink body can be further suppressed. As a result, a change in the shape of the heat sink can be suppressed more effectively, and as a result, the reliability of the heat sink can be further improved.
  • the low expansion plate is laminated on the base part and joined to the base part via a brazing material layer.
  • the thickness of the low expansion plate is preferably 0.4 to 3.5 times the thickness of the ceramic plate.
  • the thickness of the low expansion plate is more preferably 0.4 to 2.5 times the thickness of the ceramic plate, and further preferably 0.5 to 2.0 times.
  • the linear expansion coefficient of the low expansion plate and the ceramic plate is preferably 2 to 10 ppm / K.
  • the linear expansion coefficient of the low expansion plate is approximately the same as the linear expansion coefficient of the ceramic plate of the circuit board, the warpage generated in the ceramic plate and the warpage generated in the low expansion plate can be effectively offset. Can do.
  • the warpage of the ceramic plate can be effectively reduced and cracking of the ceramic plate can be suppressed over a long period of time.
  • the linear expansion coefficient of the low expansion plate and the ceramic plate is more preferably 2 to 9 ppm / K, and further preferably 3 to 8 ppm / K. preferable.
  • Examples of the material having a linear expansion coefficient in the specific range include metals such as tungsten (W), tungsten alloy, molybdenum (Mo), molybdenum alloy, and iron (Fe) -nickel (Ni) 36% alloy; alumina ( Ceramics such as Al 2 O 3 ), aluminum nitride (AlN), and silicon nitride (Si 3 N 4 ); laminated material in which a metal plate with a low linear expansion coefficient such as tungsten and molybdenum and a copper plate are laminated; diamond dispersed composite copper A composite material such as a material or a ceramic dispersed copper material can be employed.
  • metals such as tungsten (W), tungsten alloy, molybdenum (Mo), molybdenum alloy, and iron (Fe) -nickel (Ni) 36% alloy
  • alumina Ceramics such as Al 2 O 3 ), aluminum nitride (AlN), and silicon nitride (Si 3
  • the linear expansion coefficient of the low expansion plate is more preferably 0.5 to 2.5 times the linear expansion coefficient of the ceramic plate. In this case, stress and warpage generated in the ceramic plate during and after brazing can be more effectively offset. As a result, cracking of the ceramic plate can be suppressed over a longer period.
  • the linear expansion coefficient of the low expansion plate is more preferably 0.5 to 2.0 times, more preferably 0.7 to 2.0 times the linear expansion coefficient of the ceramic plate, A ratio of 0.75 to 1.5 times is particularly preferable.
  • the low expansion plate is preferably made of metal. Metals have higher toughness than ceramics. Therefore, the low expansion plate made of metal can easily follow the deformation of the heat sink body when the heat sink body is thermally expanded.
  • the shape of the low expansion plate is not particularly limited as long as it is a shape that can be arranged inside the outer frame portion.
  • the low expansion plate may have a square shape or a rectangular shape.
  • the corner portion in a plan view as viewed from the thickness direction of the low expansion plate, the corner portion can be rounded so that the corner portion at the outer peripheral edge of the low expansion plate has an arc shape.
  • stress concentration at the corners of the ceramic plate that occurs during and after brazing can be more effectively mitigated. As a result, cracking of the ceramic plate can be suppressed over a longer period.
  • the low expansion plate may have a lattice structure.
  • the low expansion plate can be further reduced in weight, and thus the heat sink can be further reduced in weight.
  • the intermediate aluminum plate is laminated on the low expansion plate via a brazing material layer.
  • the intermediate aluminum plate may be made of aluminum having a purity of 99.0 to 99.85%, for example.
  • the purity of the low expansion plate By setting the purity of the low expansion plate to 99.0% or more, the thermal conductivity of the intermediate aluminum plate can be further increased. As a result, the cooling performance of the heat sink can be further improved.
  • the purity of the low expansion plate becomes excessively high, the material cost increases. By setting the purity of the low expansion plate to 99.85% or less, an increase in material cost can be avoided.
  • the intermediate aluminum plate may be made of a 6000 series aluminum alloy.
  • the 6000 series aluminum alloy has a high creep strength. Therefore, in this case, creep deformation of the intermediate aluminum plate due to stress received from the ceramic substrate can be more effectively suppressed. As a result, a change in the shape of the heat sink can be suppressed more effectively, and as a result, the reliability of the heat sink can be further improved.
  • the circuit board On the intermediate aluminum plate, a circuit board is laminated via a brazing material layer.
  • the circuit board has a three-layer structure in which a circuit metal layer, a ceramic plate, and a back metal layer are sequentially laminated.
  • a plate material made of known aluminum or aluminum alloy can be employed as the circuit metal layer and the back surface metal layer.
  • the thickness of the circuit metal layer and the thickness of the back surface metal layer may be the same or different.
  • the thickness of the circuit metal layer and the thickness of the back metal layer are preferably in the range of 0.1 to 1.0 mm.
  • the thickness of the circuit metal layer and the thickness of the back surface metal layer are preferably 1.0 mm or less.
  • the ceramic plate is made of a ceramic material having a linear expansion coefficient of 2 to 10 ppm / K. Specifically, oxide ceramics such as alumina, and nitride ceramics such as aluminum nitride and silicon nitride can be employed as the material of the ceramic plate.
  • the outer peripheral edge of the intermediate aluminum plate extends outward from the outer peripheral edge of the back metal layer and protrudes toward the circuit board side, and the outer peripheral edge of the low expansion plate is the intermediate aluminum plate The outer peripheral edge may extend outward and may protrude toward the circuit board. In this case, the heat sink can be manufactured more easily.
  • the above-described components are prepared by a conventional method.
  • press punching processing or shear cutting processing may be performed on these base plates so as to have a predetermined dimension. While these processes have the advantages of high productivity and low processing costs, burrs are generated at the outer peripheral edges of the low expansion plate and the intermediate aluminum plate after processing. Such burrs may cause troubles in manufacturing or quality in subsequent processes. However, when processing for removing burrs is added, there is a possibility that advantages in terms of productivity and processing cost are impaired.
  • the outer peripheral edge of the intermediate aluminum plate extends outward from the outer peripheral edge of the back metal layer, and the outer peripheral edge of the low expansion plate is the outer peripheral edge of the intermediate aluminum plate.
  • middle aluminum board can be made to project to the circuit board side in the lamination direction of a base part and a circuit board, without contacting with the material laminated
  • the gap between the low expansion plate and the intermediate aluminum plate and the gap between the intermediate aluminum plate and the back metal layer can be reduced.
  • the effect of further improving the cooling performance can be expected.
  • the protrusion amount of the outer peripheral edge of the low expansion plate that is, the distance from the outer peripheral edge of the intermediate aluminum plate to the outer peripheral edge of the low expansion plate is 0.1 mm or more. I just need it.
  • the protrusion amount of the outer peripheral edge of the intermediate aluminum plate that is, the distance from the outer peripheral edge of the back metal layer to the outer peripheral edge of the intermediate aluminum plate may be 0.1 mm or more.
  • the upper limit of these protrusion amounts is not particularly limited, but it is preferable that the protrusion amount is 4.0 mm or less from the viewpoint of miniaturization of the heat sink.
  • the heat sink 1 of this example includes a heat sink body 2, a low expansion plate 3, an intermediate aluminum plate 4, and a circuit board 5.
  • the heat sink body 2 is made of an aluminum material, and has a base portion 21 that has a flat plate shape.
  • the low expansion plate 3 has a lower linear expansion coefficient than the heat sink main body 2 and is disposed on the base portion 21.
  • the intermediate aluminum plate 4 is disposed on the low expansion plate 3.
  • the circuit board 5 is disposed on the intermediate aluminum plate 4.
  • a brazing material layer (not shown) is interposed between the base portion 21 and the low expansion plate 3, between the low expansion plate 3 and the intermediate aluminum plate 4, and between the intermediate aluminum plate 4 and the circuit board 5.
  • the circuit board 5 is made of an aluminum material, and is made of a back metal layer 51 laminated on the intermediate aluminum plate 4 via a brazing material layer, a ceramic plate 52 laminated on the back metal layer 51, and an aluminum material, And a circuit metal layer 53 laminated on the ceramic plate 52.
  • the heat sink body 2 of the present example includes a base portion 21, an outer frame portion 22, and heat radiating fins 23.
  • the heat sink body 2 has a rectangular shape in a plan view when viewed from the thickness direction of the base portion 21.
  • the dimension in the vertical direction (long side direction) is 110 mm
  • the dimension in the horizontal direction (short side direction) is 90 mm
  • the thickness of the base part 21 of this example is 0.4 mm.
  • the heat sink body 2 of this example is made of JIS A3003 alloy.
  • the low expansion plate 3 is laminated on one plate surface 211 of the base portion 21 via a brazing material layer (not shown).
  • a large number of radiating fins 23 are provided upright on the other plate surface of the base portion 21, that is, the back surface 212 of the plate surface 211 on which the low expansion plate 3 is laminated.
  • the radiating fin 23 of this example has a cylindrical shape with a diameter of 1.5 mm and a height of 10 mm.
  • the radiation fin 23 is arrange
  • the outer frame portion 22 is erected on the outer peripheral edge portion 213 of the base portion 21, and is disposed around the low expansion plate 3, the intermediate aluminum plate 4, and the circuit board 5 as shown in FIGS. 1 and 2. Yes. Also, between these members and the outer frame portion 22, as shown in FIG. 2, between the base portion 21 and the low expansion plate 3 and between the low expansion plate 3 and the intermediate aluminum plate 4 during brazing. And the brazing material 11 which flowed out between the intermediate aluminum plate 4 and the back surface metal layer 51 is held.
  • the height H1 of the outer frame portion 22 with respect to the back surface 212 of the base portion 21 is 1.0 times the height H2 of the circuit metal layer 53.
  • the height H1 of the outer frame portion 22 and the height H2 of the circuit metal layer 53 in the heat sink 1 of this example are both 3.0 mm.
  • the low expansion plate 3 is laminated on the base portion 21 via a brazing material layer (not shown).
  • the low expansion plate 3 of this example is a nickel plate having a thickness of 0.64 mm.
  • the typical linear expansion coefficient of nickel is 13.3 ppm / K, which is lower than the typical linear expansion coefficient of aluminum material (23 to 24 ppm / K).
  • an intermediate aluminum plate 4 is laminated via a brazing material layer (not shown).
  • a back metal layer 51 of the circuit board 5 is laminated via a brazing material layer (not shown).
  • a 0.4 mm-thick back metal layer 51 made of an aluminum material, a 0.32 mm-thick ceramic plate 52 made of aluminum nitride, and a 0.4 mm-thick circuit metal layer 53 made of an aluminum material are sequentially formed. It has a stacked three-layer structure.
  • any one of JIS A3003 alloy plate, pure aluminum plate (purity 99.50%) and JIS A6063 alloy plate is used as intermediate aluminum plate 4, and three types of heat sinks 1 (test Body A1 to A3) were produced.
  • the test specimen was produced by the following method.
  • the A3003 alloy plate was forged and the radiating fins 23 were erected.
  • the plate surface opposite to the surface on which the heat radiating fins 23 were erected was cut to form a recess having a depth of 2.6 mm, and the heat sink body 2 was produced.
  • the low expansion plate 3 was produced by cutting a nickel plate having a thickness of 0.64 mm into the same dimensions as the back surface metal layer 51.
  • An intermediate aluminum plate 4 was produced by cutting an A3003 alloy plate, a pure aluminum plate and an A6063 alloy plate having a thickness of 0.82 mm into the same dimensions as the low expansion plate 3.
  • a commercially available product was used for the circuit board 5.
  • a 0.1 mm thick brazing foil made of an Al—Si (aluminum-silicon) alloy was cut into the same dimensions as the low expansion plate 3 to prepare an upper brazing foil, an intermediate brazing foil, and a lower brazing foil.
  • the lower brazing foil, the low expansion plate 3, the intermediate brazing foil, the intermediate aluminum plate 4, the upper brazing foil, and the circuit board 5 are placed on the base portion 21 in this order, and the workpiece Assembled.
  • a jig was attached to the object to be processed, and the object to be processed was heated to 600 ° C. in a nitrogen gas atmosphere in a state where the circuit board 5 was pressed to the base portion 21 side, and brazing was performed.
  • Specimens A1 to A3 were produced as described above.
  • test body R in which the circuit board 5 was directly brazed on the base portion 21 was produced.
  • the test body R has the same configuration as the test bodies A1 to A3 except that the low expansion plate 3 and the intermediate aluminum plate 4 are not provided.
  • test bodies A1 to A3 and test body R were evaluated for warpage of the circuit board 5 after brazing, warpage of the circuit board 5 during soldering, cooling performance and durability.
  • a water cooling jacket was attached to the side of the radiating fin 23 of each specimen, and a coolant was allowed to flow at a constant flow rate in the water cooling jacket. Then, a heating element was placed on the circuit metal layer 53 to generate heat with a constant output.
  • LLC Long-Life Coolant 50% was used as a refrigerant
  • coolant and the flow volume was 12 L / min. The heating value of the heating element was 800W.
  • a temperature cycle test was conducted by repeating 1000 cycles of a heating step of holding at 150 ° C. for 30 minutes and a cooling step of holding at ⁇ 50 ° C. for 30 minutes.
  • the amount of warpage of the circuit board 5 after the temperature cycle test was measured, and the change from the amount of warpage of the circuit board 5 before the temperature cycle test was calculated.
  • the change in the warpage amount by the temperature cycle test was as shown in Table 1.
  • specimens A1 to A3 having a laminated structure in which a layer made of an aluminum material and a layer made of a material having a lower linear expansion coefficient than the aluminum material are arranged symmetrically are brazed.
  • the amount of subsequent warping was small, and cracking of the ceramic plate 52 did not occur when heated to 270 ° C.
  • the test body A3 used the A6063 alloy plate with high material strength as the intermediate aluminum plate 4 the change in the amount of warpage after the temperature cycle test was small, and particularly excellent durability was exhibited.
  • the ceramic plate 52 was cracked when heated to 270 ° C.
  • Example 2 In this example, the material of the ceramic plate 52 is variously changed.
  • the same reference numerals as those used in the above-described embodiments represent the same constituent elements as those in the above-described embodiments unless otherwise specified.
  • specimens B1 to B10 were produced in the same manner as in Example 1 except that the configurations of the low expansion plate 3, the intermediate aluminum plate 4 and the ceramic plate 52 were changed as shown in Table 2.
  • Table 2 as the linear expansion coefficient of the low expansion plate 3, the magnification when the linear expansion coefficient of the ceramic plate 52 is set to 1 is described together with the value.
  • test bodies B1 to B10 employ molybdenum having a higher thermal conductivity than nickel as the low expansion plate 3, and therefore, compared to the test bodies A1 to A3 (see Table 1). Cooling performance improved.
  • the specimens B1 to B3 and B6 to B8 have a linear expansion coefficient of the low expansion plate 3 that is 0.7 to 2.0 times the linear expansion coefficient of the ceramic plate 52. Therefore, the amount of warping of the circuit board 5 during soldering can be reduced as compared with the specimens A1 (see Table 1), B4, and the like in which the linear expansion coefficient of the low expansion plate 3 is outside the above range.
  • Example 3 the thickness of the low expansion plate 3 is variously changed.
  • the height H1 of the outer frame portion 22 in the heat sink body 2 is changed to 3.5 mm, and the configurations of the low expansion plate 3, the intermediate aluminum plate 4 and the ceramic plate 52 are changed as shown in Table 4.
  • Table 4 as the thickness of the low expansion plate 3, along with the value, the magnification when the thickness of the ceramic plate 52 is set to 1 is described.
  • the thickness of the intermediate aluminum plate 4 is adjusted so that the height H2 of the circuit metal layer 53 is 3.5 mm.
  • test bodies C1 to C5 since the linear expansion coefficient of the low expansion plate 3 is 0.7 to 2.0 times the linear expansion coefficient of the ceramic plate 52, the amount of warping at the time of soldering is determined by the test bodies B1 to B10 ( (See Table 3).
  • the thickness of the low expansion plate 3 is 0.5 to 2.0 times the thickness of the ceramic plate 52. Therefore, these specimens were able to further reduce the amount of warping of the circuit board 5 than the specimen C3 or the like in which the thickness of the ceramic plate 52 was outside the above range.
  • Example 4 the thickness of the base portion 21 is variously changed.
  • Specimens D1 to D5 were produced in the same manner as in Example 1 except that the structure of the heat sink body 2 and the intermediate aluminum plate 4 was changed as shown in Table 6.
  • Table 6 as the thickness of the base portion 21, the value when the thickness of the circuit metal layer 53 is set to 1 is described together with the thickness.
  • the thickness of the intermediate aluminum plate 4 is adjusted so that the height H2 of the circuit metal layer 53 is 3.5 mm.
  • the linear expansion coefficient of the low expansion plate 3 is 0.7 to 2.0 times the linear expansion coefficient of the ceramic plate 52. 3)).
  • the thickness of the base portion 21 is 1.0 to 1.5 times the thickness of the circuit metal layer 53. Therefore, these test bodies were able to further reduce the amount of warping of the circuit board 5 than the test bodies D1 and the like in which the thickness of the base portion 21 was outside the above range.
  • Example 5 In this example, the height H2 of the circuit metal layer 53 is changed.
  • Specimens E1 to E2 were produced in the same manner as in Example 1 except that the structure of the heat sink body 2 and the intermediate aluminum plate 4 was changed as shown in Table 8. In Table 8, as the height H1 of the outer frame portion 22, the value and the magnification when the height H2 of the circuit metal layer 53 is set to 1 are described.
  • test bodies E1 to E2 were able to be brazed more easily because the height H1 of the outer frame portion 22 was 0.9 to 1.1 times the height H2 of the circuit metal layer 53.
  • Example 6 In this example, the influence of the burrs 31 and 41 of the low expansion plate 306 and the intermediate aluminum plate 406 is evaluated.
  • specimens F1 and F2 were produced as follows.
  • a plate of A6063 alloy is forged to radiate fins 23, and then a plate surface opposite to the surface where radiating fins 23 are erected is cut to form a recess having a depth of 2.6 mm.
  • the heat sink main body 2 was produced.
  • press punching is performed on a pure aluminum plate having a thickness of 0.82 mm to produce intermediate aluminum plates 4 and 406, and press-punching is performed on a molybdenum plate having a thickness of 1.0 mm to form low expansion plates 3 and 306.
  • the intermediate aluminum plate 4 and the low expansion plate 3 used for the specimen F1 were subjected to press punching so as to have the same dimensions as the back surface metal layer 51.
  • the press punching process was performed so that a dimension might become slightly larger than the back surface metal layer 51.
  • FIG. The low expansion plate 306 used for the test body F2 was subjected to press punching so that the size was slightly larger than that of the intermediate aluminum plate 406.
  • a commercially available product was used as the circuit board 5. Further, a 0.1 mm thick brazing foil made of an Al—Si (aluminum-silicon) alloy was cut into the same dimensions as the low expansion plates 3, 306 to prepare an upper brazing foil, an intermediate brazing foil, and a lower brazing foil. .
  • the lower brazing foil, the low expansion plate 3, the intermediate brazing foil, the intermediate aluminum plate 4, the upper brazing foil, and the circuit board 5 are placed in this order on the base portion 21, and the workpiece is assembled. It was.
  • the burrs 31 and 41 formed in the press punching process protrude toward the circuit board 5 side in the stacking direction of the base portion 21 and the circuit board 5. As a result, the workpiece was assembled.
  • the outer peripheral edge 411 of the intermediate aluminum plate 406 extends outward from the outer peripheral edge 511 of the back surface metal layer 51, and on the circuit board 5 side. It was protruding. Further, the outer peripheral edge 311 of the low expansion plate 306 extended outward from the outer peripheral edge 411 of the intermediate aluminum plate 406 and protruded toward the circuit board 5 side. More specifically, the outer peripheral edge 411 of the intermediate aluminum plate 406 extended 0.1 mm outward from the outer peripheral edge 511 of the back surface metal layer 51. Further, the outer peripheral edge 311 of the low expansion plate 306 extended outward by 0.1 mm from the outer peripheral edge 411 of the intermediate aluminum plate 406.
  • the linear expansion coefficient of the low expansion plate 3 is 0.7 to 2.0 times the linear expansion coefficient of the ceramic plate 52. was able to be suppressed to be equal to or higher than that of the test specimens B1 to B10 (see Table 3).
  • the test body F ⁇ b> 2 includes the base portion 21 and the circuit board without the burrs 31 and 41 of the low expansion plate 306 and the intermediate aluminum plate 406 being in contact with the material laminated thereon. 5 protrudes toward the circuit board 5 in the stacking direction. Therefore, compared with the test body F1, the gap between the low expansion plate 306 and the intermediate aluminum plate 406 and the gap between the intermediate aluminum plate 406 and the back surface metal layer 51 could be reduced. As a result of the above, it is considered that the specimen F2 was able to improve the cooling performance as compared with the specimen F1.

Abstract

Provided are: a heat sink (1) with a circuit board, which is able to be suppressed in cracking of a ceramic plate (52) for a long period of time; and a method for producing this heat sink (1) with a circuit board. This heat sink (1) comprises a heat sink main body (2), a low expansion plate (3), an intermediate aluminum plate (4) and a circuit board (5). The heat sink main body (2) has a base part (21) that is in the form of a flat plate. The low expansion plate (3), which has a lower linear expansion coefficient than the heat sink main body (2), the intermediate aluminum plate (4) and the circuit board (5) are laminated on the base part (21) with brazing filler material layers being respectively interposed therebetween. The circuit board (5) comprises: a backside metal layer (51) that is laminated on the intermediate aluminum plate (4) with a brazing filler material layer being interposed therebetween; a ceramic plate (52) that is laminated on the backside metal layer (51); and a circuit metal layer (53) that is laminated on the ceramic plate (52).

Description

回路基板付きヒートシンク及びその製造方法Heat sink with circuit board and manufacturing method thereof
 本発明は、回路基板付きヒートシンク及びその製造方法に関する。 The present invention relates to a heat sink with a circuit board and a manufacturing method thereof.
 インバータやコンバータ等の電力変換装置には、セラミックス板の両面に金属板が接合された回路基板と、回路基板における一方の金属板に接合されたヒートシンクとを有する回路基板付きヒートシンクが組み込まれている(例えば、特許文献1)。回路基板における他方の金属板には、電力回路を構成する半導体素子などがはんだ付により搭載されている。また、この種の回路基板付きヒートシンクにおけるヒートシンクや金属板は、軽量化を目的として、アルミニウム材(アルミニウム及びアルミニウム合金を含む。以下同様。)から構成されていることがある。 Power converters such as inverters and converters incorporate a heat sink with a circuit board having a circuit board in which metal plates are bonded to both surfaces of a ceramic plate and a heat sink bonded to one metal plate in the circuit board. (For example, patent document 1). On the other metal plate of the circuit board, a semiconductor element constituting the power circuit is mounted by soldering. In addition, the heat sink and the metal plate in this type of heat sink with a circuit board may be made of an aluminum material (including aluminum and an aluminum alloy; the same shall apply hereinafter) for the purpose of weight reduction.
 回路基板は、以下のような方法により、ヒートシンクに接合されている。まず、ヒートシンクと、ろう材と、回路基板とをこの順に積層して被処理物を組み立てる。そして、回路基板をヒートシンク側に押圧しながら被処理物を加熱し、ろう材を溶融させる。その後、被処理物を冷却してろう材を凝固させることにより、ろう材を介して回路基板における金属板とヒートシンクとを接合することができる。 The circuit board is bonded to the heat sink by the following method. First, an object to be processed is assembled by laminating a heat sink, a brazing material, and a circuit board in this order. Then, the workpiece is heated while pressing the circuit board toward the heat sink, and the brazing material is melted. Thereafter, by cooling the workpiece and solidifying the brazing material, the metal plate and the heat sink on the circuit board can be joined via the brazing material.
特開2015-153925号公報Japanese Patent Laying-Open No. 2015-153925
 しかし、回路基板におけるセラミックス板の熱膨張係数と、ヒートシンクを構成するアルミニウム材の熱膨張係数とは異なっているため、ろう付時の加熱によりセラミックス板とヒートシンクとの熱膨張量に差が生じる。このような状態で被処理物を冷却すると、セラミックス板やヒートシンクの収縮が完了する前にろう材が凝固する。その結果、ろう付が完了した後の回路基板付きヒートシンクにおいて、セラミックス板に反り及び残留応力が発生する。 However, since the thermal expansion coefficient of the ceramic plate in the circuit board is different from the thermal expansion coefficient of the aluminum material constituting the heat sink, a difference occurs in the thermal expansion amount between the ceramic plate and the heat sink due to heating during brazing. When the object to be processed is cooled in such a state, the brazing material is solidified before the contraction of the ceramic plate and the heat sink is completed. As a result, in the heat sink with a circuit board after brazing is completed, warpage and residual stress are generated in the ceramic plate.
 また、ろう付後の回路基板は、ろう材を介してヒートシンクに拘束されている。そのため、例えば半導体素子のはんだ付作業の際や、半導体素子の発熱等により回路基板及びヒートシンクの温度が上昇すると、セラミックス板の中心付近に引張応力が生じるとともに、セラミックス板に反りが生じる。そして、これらの引張応力や反りが過度に大きい場合には、セラミックス板に割れが発生するおそれがある。 Moreover, the circuit board after brazing is restrained by the heat sink through the brazing material. Therefore, for example, when soldering the semiconductor element or when the temperature of the circuit board and the heat sink rises due to heat generation of the semiconductor element, a tensile stress is generated near the center of the ceramic plate and the ceramic plate is warped. And when these tensile stress and curvature are too large, there exists a possibility that a crack may generate | occur | produce in a ceramic board.
 本発明は、かかる背景に鑑みてなされたものであり、長期間に亘ってセラミックス板の割れを抑制することができる回路基板付きヒートシンク及びその製造方法を提供しようとするものである。 The present invention has been made in view of such a background, and an object of the present invention is to provide a heat sink with a circuit board capable of suppressing cracking of a ceramic plate over a long period of time and a method for manufacturing the same.
 本発明の一態様は、平板状を呈するベース部を備え、アルミニウム材よりなるヒートシンク本体と、
 上記ヒートシンク本体よりも低い線膨張係数を有し、上記ベース部上に配置された低膨張板と、
 上記低膨張板上に配置された中間アルミニウム板と、
 上記中間アルミニウム板上に配置された回路基板と、
 上記ベース部と上記低膨張板との間、上記低膨張板と上記中間アルミニウム板との間及び上記中間アルミニウム板と上記回路基板との間に介在するろう材層とを有し、
 上記回路基板は、
 アルミニウム材からなり、上記ろう材層を介して上記中間アルミニウム板上に積層された裏面金属層と、
 上記裏面金属層上に積層されたセラミックス板と、
 アルミニウム材からなり、上記セラミックス板上に積層された回路金属層とを有する、回路基板付きヒートシンクにある。
One aspect of the present invention includes a base portion having a flat plate shape, a heat sink body made of an aluminum material,
A low expansion plate having a linear expansion coefficient lower than that of the heat sink body, and disposed on the base portion;
An intermediate aluminum plate disposed on the low expansion plate;
A circuit board disposed on the intermediate aluminum plate;
A brazing material layer interposed between the base portion and the low expansion plate, between the low expansion plate and the intermediate aluminum plate, and between the intermediate aluminum plate and the circuit board;
The circuit board is
A back metal layer made of an aluminum material and laminated on the intermediate aluminum plate via the brazing material layer;
A ceramic plate laminated on the back metal layer;
A heat sink with a circuit board, comprising a circuit metal layer made of an aluminum material and laminated on the ceramic plate.
 本発明の他の態様は、上記の態様の回路基板付きヒートシンクの製造方法であって、
 上記ベース部上に載置された下側ろう箔と、該下側ろう箔上に載置された上記低膨張板と、該低膨張板上に載置された中間ろう箔と、該中間ろう箔上に載置された上記中間アルミニウム板と、該中間アルミニウム板上に載置された上側ろう箔と、該上側ろう箔と上記裏面金属層とが当接するように載置された上記回路基板とを有する被処理物を組み立て、
 上記回路基板を上記ベース部側に押圧しつつ上記被処理物を加熱することにより、該被処理物のろう付を一括して行う、回路基板付きヒートシンクの製造方法にある。
Another aspect of the present invention is a method of manufacturing a heat sink with a circuit board according to the above aspect,
A lower wax foil placed on the base portion, the low expansion plate placed on the lower wax foil, an intermediate wax foil placed on the low expansion plate, and the intermediate wax The intermediate aluminum plate placed on the foil, the upper brazing foil placed on the intermediate aluminum plate, and the circuit board placed so that the upper brazing foil and the back metal layer are in contact with each other Assembling the workpiece having
In the method for manufacturing a heat sink with a circuit board, the object to be processed is collectively brazed by heating the object to be processed while pressing the circuit board toward the base part.
 上記回路基板付きヒートシンク(以下、「ヒートシンク」という。)における上記ベース部上には、上記低膨張板、上記中間アルミニウム板、上記裏面金属層、上記セラミックス板及び上記回路金属層が順次積層されている。即ち、上記ヒートシンクは、上述した積層構造における最も外側に、アルミニウム材からなる上記ベース部と上記回路金属層とが配置されており、その内側に、アルミニウム材よりも線膨張係数が低い上記低膨張板と上記セラミックス板とが配置されている。そして、上記低膨張板と上記セラミックス板との間には、アルミニウム材からなる中間アルミニウム板と裏面金属層とが配置されている。 The low expansion plate, the intermediate aluminum plate, the back metal layer, the ceramic plate, and the circuit metal layer are sequentially laminated on the base portion of the heat sink with a circuit board (hereinafter referred to as “heat sink”). Yes. That is, in the heat sink, the base portion made of aluminum material and the circuit metal layer are arranged on the outermost side in the laminated structure described above, and the low expansion coefficient is lower on the inner side than the aluminum material. A plate and the ceramic plate are arranged. An intermediate aluminum plate made of an aluminum material and a back metal layer are disposed between the low expansion plate and the ceramic plate.
 このように、アルミニウム材からなる層と、アルミニウム材よりも低い線膨張係数を有する材料からなる層とが対称的に配置された積層構造においては、ろう付時などに上記セラミックス板に生じる反りの向きが、上記低膨張板に生じる反りの向きとは反対方向となる。そして、両者の反りが相殺される結果、ろう付時の上記セラミックス板の反りを低減するとともに、ろう付後の温度変化によって生じる上記セラミックス板の反りを低減することができる。その結果、長期間に亘ってセラミックス板の割れを抑制することができる。 In this way, in a laminated structure in which a layer made of an aluminum material and a layer made of a material having a lower linear expansion coefficient than that of the aluminum material are arranged symmetrically, warping that occurs in the ceramic plate at the time of brazing, etc. The direction is the direction opposite to the direction of warpage occurring in the low expansion plate. As a result of canceling out the warpage of both, the warpage of the ceramic plate during brazing can be reduced, and the warpage of the ceramic plate caused by a temperature change after brazing can be reduced. As a result, cracking of the ceramic plate can be suppressed over a long period of time.
 また、上記の態様の製造方法においては、上述した構成部品を上記外枠部の内側に配置して上記被処理物を組み立てた後、一括してろう付を行う。これにより、上記ヒートシンクを容易に作製することができる。 Further, in the manufacturing method of the above aspect, the above-described components are arranged inside the outer frame portion and the workpiece is assembled, and then brazed together. Thereby, the said heat sink can be produced easily.
実施例における、回路基板付きヒートシンクの平面図である。It is a top view of the heat sink with a circuit board in an Example. 図1のII-II線矢視断面図である。FIG. 2 is a cross-sectional view taken along line II-II in FIG. 実施例6の試験体F2における、低膨張板の外周端縁近傍の一部拡大断面図である。It is a partially expanded sectional view of the outer periphery edge vicinity of the low expansion board in the test body F2 of Example 6. FIG.
 上記ヒートシンクにおいて、ヒートシンク本体は、平板状を呈するベース部を有している。ベース部の厚み方向における一方側には、ろう材層を介して低膨張板が積層されている。また、ベース部の厚み方向における他方側には、ヒートシンク本体とは別体に構成されたピンフィンやプレートフィン、コルゲートフィン等の放熱フィンが取り付けられていてもよい。これらの放熱フィンはヒートシンク本体と一体的に形成することもできる。 In the above heat sink, the heat sink body has a flat base portion. On one side of the base portion in the thickness direction, a low expansion plate is laminated via a brazing material layer. Further, a heat radiating fin such as a pin fin, a plate fin, or a corrugated fin, which is configured separately from the heat sink main body, may be attached to the other side in the thickness direction of the base portion. These heat radiation fins can also be formed integrally with the heat sink body.
 上記ベース部の厚みは、上記回路金属層の厚みの0.5~1.5倍であることが好ましい。このように、回路金属層の厚みとベース部の厚みとを同程度にすることにより、上記セラミックス板に生じる反りと、上記低膨張板に生じる反りとをより効果的に相殺することができる。その結果、上記セラミックス板の反りをより効果的に低減することができる。 The thickness of the base part is preferably 0.5 to 1.5 times the thickness of the circuit metal layer. In this way, by making the thickness of the circuit metal layer and the thickness of the base portion approximately the same, the warpage occurring in the ceramic plate and the warpage occurring in the low expansion plate can be more effectively offset. As a result, the warpage of the ceramic plate can be more effectively reduced.
 セラミックス板の反りをより効果的に低減するためには、ベース部の厚みを回路金属層の厚みに近付けることが好ましい。かかる観点からは、ベース部の厚みを回路金属層の厚みの1.0~1.5倍とすることがより好ましく、1.0~1.2倍とすることがさらに好ましい。 In order to more effectively reduce the warpage of the ceramic plate, it is preferable to bring the thickness of the base portion close to the thickness of the circuit metal layer. From this point of view, the thickness of the base portion is more preferably 1.0 to 1.5 times the thickness of the circuit metal layer, and further preferably 1.0 to 1.2 times.
 また、ヒートシンク本体は、さらに、ベース部の外周端縁から立設され、低膨張板、中間アルミニウム板及び回路基板の周囲に配置された外枠部を有していてもよい。外枠部は、ろう付において、上記低膨張板、上記中間アルミニウム板及び上記回路基板の位置ずれを容易に抑制することができる。また、ろう付の際に、溶融したろうを上記外枠部の内部に保持することができる。その結果、上述した構成部品のろう付をより確実に行うことができる。 Further, the heat sink main body may further have an outer frame portion standing from the outer peripheral edge of the base portion and disposed around the low expansion plate, the intermediate aluminum plate, and the circuit board. The outer frame portion can easily suppress displacement of the low expansion plate, the intermediate aluminum plate, and the circuit board during brazing. In addition, the molten wax can be held inside the outer frame portion during brazing. As a result, the above-described component parts can be brazed more reliably.
 上記外枠部の高さは、上記回路金属層の高さに対して0.9~1.1倍であることが好ましい。外枠部の高さを上記特定の範囲とすることにより、上記ヒートシンクを作製する際に、ろう付をより容易に行うことができる。また、回路基板上に半導体素子等を搭載する作業における作業性をより向上させることができる。ここで、外枠部の高さ及び回路金属層の高さは、ベース部における、低膨張板が配置された板面の裏面を基準として計測した高さとする。 The height of the outer frame portion is preferably 0.9 to 1.1 times the height of the circuit metal layer. By setting the height of the outer frame portion within the specific range, brazing can be performed more easily when the heat sink is manufactured. In addition, the workability in the work of mounting a semiconductor element or the like on the circuit board can be further improved. Here, the height of the outer frame portion and the height of the circuit metal layer are heights measured with reference to the back surface of the plate surface on which the low expansion plate is disposed in the base portion.
 外枠部の高さが回路金属層の高さに対して0.9倍未満の場合には、ろう付時に、回路基板等の位置がずれ易くなる、ろうが外枠部の外部に流出する、等の問題が起こるおそれがある。外枠部の高さが回路金属層の高さに対して1.1倍を超える場合には、ヒートシンク本体の質量増大を招くおそれがある。また、この場合には、回路基板上に半導体素子等を搭載する作業において、外枠部の存在により作業性が低下するおそれがある。 When the height of the outer frame portion is less than 0.9 times the height of the circuit metal layer, the position of the circuit board or the like is likely to shift during brazing, and the solder flows out of the outer frame portion. , Etc. may occur. When the height of the outer frame portion exceeds 1.1 times the height of the circuit metal layer, there is a risk of increasing the mass of the heat sink body. In this case, in the work of mounting a semiconductor element or the like on the circuit board, workability may be reduced due to the presence of the outer frame portion.
 ヒートシンク本体の材質は、要求される機械的特性や耐食性、加工性等に応じて公知のアルミニウム及びアルミニウム合金の中から適宜選択することができる。 The material of the heat sink body can be appropriately selected from known aluminum and aluminum alloys according to required mechanical properties, corrosion resistance, workability, and the like.
 例えば、ヒートシンク本体は、6000系アルミニウム合金から構成されていてもよい。6000系アルミニウム合金は高いクリープ強さを有している。そのため、この場合には、ヒートシンク本体のクリープ変形をより抑制することができる。その結果、上記ヒートシンクの形状の変化をより効果的に抑制することができ、ひいては上記ヒートシンクの信頼性をより向上させることができる。 For example, the heat sink body may be made of a 6000 series aluminum alloy. The 6000 series aluminum alloy has a high creep strength. Therefore, in this case, creep deformation of the heat sink body can be further suppressed. As a result, a change in the shape of the heat sink can be suppressed more effectively, and as a result, the reliability of the heat sink can be further improved.
 低膨張板は、ベース部上に積層されており、ろう材層を介してベース部と接合されている。低膨張板の厚みは、上記セラミックス板の厚みの0.4~3.5倍であることが好ましい。このように、セラミックス板の厚みと低膨張板の厚みとを同程度にすることにより、上記セラミックス板に生じる反りと、上記低膨張板に生じる反りとをより効果的に相殺することができる。その結果、上記セラミックス板の反りを効果的に低減することができる。 The low expansion plate is laminated on the base part and joined to the base part via a brazing material layer. The thickness of the low expansion plate is preferably 0.4 to 3.5 times the thickness of the ceramic plate. Thus, by making the thickness of the ceramic plate and the thickness of the low expansion plate approximately the same, it is possible to more effectively offset the warpage generated in the ceramic plate and the warp generated in the low expansion plate. As a result, the warp of the ceramic plate can be effectively reduced.
 セラミックス板の反りをより効果的に低減するためには、低膨張板の厚みをセラミックス板の厚みに近付けることが好ましい。かかる観点からは、低膨張板の厚みをセラミックス板の厚みの0.4~2.5倍とすることがより好ましく、0.5~2.0倍とすることがさらに好ましい。 In order to more effectively reduce the warpage of the ceramic plate, it is preferable to bring the thickness of the low expansion plate close to the thickness of the ceramic plate. From this viewpoint, the thickness of the low expansion plate is more preferably 0.4 to 2.5 times the thickness of the ceramic plate, and further preferably 0.5 to 2.0 times.
 低膨張板及びセラミックス板の線膨張係数は、2~10ppm/Kであることが好ましい。この場合には、低膨張板の線膨張係数が回路基板のセラミックス板の線膨張係数と同程度となるため、セラミックス板に生じる反りと、低膨張板に生じる反りとを効果的に相殺することができる。その結果、セラミックス板の反りを効果的に低減し、セラミックス板の割れを長期間に亘って抑制することができる。セラミックス板の割れをより長期間に亘って抑制する観点からは、低膨張板及びセラミックス板の線膨張係数を2~9ppm/Kとすることがより好ましく、3~8ppm/Kとすることがさらに好ましい。 The linear expansion coefficient of the low expansion plate and the ceramic plate is preferably 2 to 10 ppm / K. In this case, since the linear expansion coefficient of the low expansion plate is approximately the same as the linear expansion coefficient of the ceramic plate of the circuit board, the warpage generated in the ceramic plate and the warpage generated in the low expansion plate can be effectively offset. Can do. As a result, the warpage of the ceramic plate can be effectively reduced and cracking of the ceramic plate can be suppressed over a long period of time. From the viewpoint of suppressing cracking of the ceramic plate for a longer period, the linear expansion coefficient of the low expansion plate and the ceramic plate is more preferably 2 to 9 ppm / K, and further preferably 3 to 8 ppm / K. preferable.
 上記特定の範囲の線膨張係数を有する材料としては、例えば、タングステン(W)、タングステン合金、モリブデン(Mo)、モリブデン合金、鉄(Fe)-ニッケル(Ni)36%合金等の金属;アルミナ(Al23)、窒化アルミニウム(AlN)、窒化ケイ素(Si34)等のセラミックス;タングステンやモリブデン等の線膨張係数の低い金属板と銅板とが積層された積層材料;ダイヤモンド分散複合銅材料やセラミック分散銅材料等の複合材料を採用することができる。 Examples of the material having a linear expansion coefficient in the specific range include metals such as tungsten (W), tungsten alloy, molybdenum (Mo), molybdenum alloy, and iron (Fe) -nickel (Ni) 36% alloy; alumina ( Ceramics such as Al 2 O 3 ), aluminum nitride (AlN), and silicon nitride (Si 3 N 4 ); laminated material in which a metal plate with a low linear expansion coefficient such as tungsten and molybdenum and a copper plate are laminated; diamond dispersed composite copper A composite material such as a material or a ceramic dispersed copper material can be employed.
 また、上記低膨張板の線膨張係数は、上記セラミックス板の線膨張係数の0.5~2.5倍であることがさらに好ましい。この場合には、ろう付時及びろう付後にセラミックス板に生じる応力や反りをより効果的に相殺することができる。その結果、セラミックス板の割れをより長期間に亘って抑制することができる。 The linear expansion coefficient of the low expansion plate is more preferably 0.5 to 2.5 times the linear expansion coefficient of the ceramic plate. In this case, stress and warpage generated in the ceramic plate during and after brazing can be more effectively offset. As a result, cracking of the ceramic plate can be suppressed over a longer period.
 セラミックス板の反りをより効果的に低減するためには、低膨張板の線膨張係数をセラミックス板の線膨張係数に近付けることが好ましい。かかる観点からは、低膨張板の線膨張係数をセラミックス板の線膨張係数の0.5~2.0倍とすることがより好ましく、0.7~2.0倍とすることがさらに好ましく、0.75~1.5倍とすることが特に好ましい。 In order to more effectively reduce the warpage of the ceramic plate, it is preferable to bring the linear expansion coefficient of the low expansion plate closer to the linear expansion coefficient of the ceramic plate. From this point of view, the linear expansion coefficient of the low expansion plate is more preferably 0.5 to 2.0 times, more preferably 0.7 to 2.0 times the linear expansion coefficient of the ceramic plate, A ratio of 0.75 to 1.5 times is particularly preferable.
 低膨張板は、金属から構成されていることが好ましい。金属は、セラミックスに比べて高い靭性を有している。そのため、金属からなる低膨張板は、ヒートシンク本体が熱膨張した際に、ヒートシンク本体の変形に容易に追従することができる。 The low expansion plate is preferably made of metal. Metals have higher toughness than ceramics. Therefore, the low expansion plate made of metal can easily follow the deformation of the heat sink body when the heat sink body is thermally expanded.
 低膨張板の形状は、外枠部の内側に配置可能な形状であれば、特に限定されることはない。例えば、低膨張板は、正方形状あるいは長方形状を呈していてもよい。この場合、低膨張板の厚み方向から視た平面視において、低膨張板の外周端縁における角部が円弧状を呈するように、角部を丸めることもできる。この場合には、ろう付時及びろう付後に生じるセラミックス板の角部への応力集中をより効果的に緩和することができる。その結果、セラミックス板の割れをより長期間に亘って抑制することができる。 The shape of the low expansion plate is not particularly limited as long as it is a shape that can be arranged inside the outer frame portion. For example, the low expansion plate may have a square shape or a rectangular shape. In this case, in a plan view as viewed from the thickness direction of the low expansion plate, the corner portion can be rounded so that the corner portion at the outer peripheral edge of the low expansion plate has an arc shape. In this case, stress concentration at the corners of the ceramic plate that occurs during and after brazing can be more effectively mitigated. As a result, cracking of the ceramic plate can be suppressed over a longer period.
 また、低膨張板は、格子状の構造を有していてもよい。この場合には、低膨張板をより軽量化することができ、ひいては上記ヒートシンクをより軽量化することができる。 Further, the low expansion plate may have a lattice structure. In this case, the low expansion plate can be further reduced in weight, and thus the heat sink can be further reduced in weight.
 中間アルミニウム板は、ろう材層を介して低膨張板に積層されている。中間アルミニウム板は、例えば、純度99.0~99.85%のアルミニウムから構成されていてもよい。低膨張板の純度を99.0%以上とすることにより、中間アルミニウム板の熱伝導率をより高くすることができる。その結果、上記ヒートシンクの冷却性能をより向上させることができる。一方、低膨張板の純度が過度に高くなると、材料コストの増大を招く。低膨張板の純度を99.85%以下とすることにより、材料コストの増大を回避することができる。 The intermediate aluminum plate is laminated on the low expansion plate via a brazing material layer. The intermediate aluminum plate may be made of aluminum having a purity of 99.0 to 99.85%, for example. By setting the purity of the low expansion plate to 99.0% or more, the thermal conductivity of the intermediate aluminum plate can be further increased. As a result, the cooling performance of the heat sink can be further improved. On the other hand, when the purity of the low expansion plate becomes excessively high, the material cost increases. By setting the purity of the low expansion plate to 99.85% or less, an increase in material cost can be avoided.
 また、中間アルミニウム板は、6000系アルミニウム合金から構成されていてもよい。6000系アルミニウム合金は、高いクリープ強さを有している。そのため、この場合には、セラミックス基板から受ける応力による中間アルミニウム板のクリープ変形をより効果的に抑制することができる。その結果、上記ヒートシンクの形状の変化をより効果的に抑制することができ、ひいては上記ヒートシンクの信頼性をより向上させることができる。 Further, the intermediate aluminum plate may be made of a 6000 series aluminum alloy. The 6000 series aluminum alloy has a high creep strength. Therefore, in this case, creep deformation of the intermediate aluminum plate due to stress received from the ceramic substrate can be more effectively suppressed. As a result, a change in the shape of the heat sink can be suppressed more effectively, and as a result, the reliability of the heat sink can be further improved.
 中間アルミニウム板上には、ろう材層を介して回路基板が積層されている。回路基板は、回路金属層、セラミックス板及び裏面金属層が順次積層された3層構造を有している。回路金属層及び裏面金属層としては、公知のアルミニウムまたはアルミニウム合金から構成された板材を採用することができる。 On the intermediate aluminum plate, a circuit board is laminated via a brazing material layer. The circuit board has a three-layer structure in which a circuit metal layer, a ceramic plate, and a back metal layer are sequentially laminated. As the circuit metal layer and the back surface metal layer, a plate material made of known aluminum or aluminum alloy can be employed.
 回路金属層の厚みと裏面金属層の厚みとは、同一であってもよく、異なっていてもよい。回路金属層の厚み及び裏面金属層の厚みは、0.1~1.0mmの範囲内であることが好ましい。これらの厚みを0.1mm以上とすることにより、回路基板に搭載された発熱体の熱を効率よく拡散することができる。その結果、ヒートシンクの冷却性能をより向上させることができる。一方、これらの厚みが過度に厚い場合には、寸法精度の低下を招くおそれがある。寸法精度の低下を回避する観点から、回路金属層の厚み及び裏面金属層の厚みは1.0mm以下であることが好ましい。 The thickness of the circuit metal layer and the thickness of the back surface metal layer may be the same or different. The thickness of the circuit metal layer and the thickness of the back metal layer are preferably in the range of 0.1 to 1.0 mm. By setting these thicknesses to 0.1 mm or more, the heat of the heating element mounted on the circuit board can be efficiently diffused. As a result, the cooling performance of the heat sink can be further improved. On the other hand, when these thicknesses are excessively large, there is a risk of dimensional accuracy being lowered. From the viewpoint of avoiding a decrease in dimensional accuracy, the thickness of the circuit metal layer and the thickness of the back surface metal layer are preferably 1.0 mm or less.
 セラミックス板は、2~10ppm/Kの線膨張係数を有するセラミックス材料から構成されている。セラミックス板の材質としては、具体的には、アルミナ等の酸化物系セラミックスや、窒化アルミニウム、窒化ケイ素等の窒化物系セラミックスを採用することができる。 The ceramic plate is made of a ceramic material having a linear expansion coefficient of 2 to 10 ppm / K. Specifically, oxide ceramics such as alumina, and nitride ceramics such as aluminum nitride and silicon nitride can be employed as the material of the ceramic plate.
 上記中間アルミニウム板の外周端縁は、上記裏面金属層の外周端縁よりも外方に延出するとともに上記回路基板側に突出しており、上記低膨張板の外周端縁は、上記中間アルミニウム板の外周端縁よりも外方に延出するとともに上記回路基板側に突出していてもよい。この場合には、上記ヒートシンクをより容易に製造することができる。 The outer peripheral edge of the intermediate aluminum plate extends outward from the outer peripheral edge of the back metal layer and protrudes toward the circuit board side, and the outer peripheral edge of the low expansion plate is the intermediate aluminum plate The outer peripheral edge may extend outward and may protrude toward the circuit board. In this case, the heat sink can be manufactured more easily.
 即ち、上記ヒートシンクを製造するに当たっては、まず、上述した各構成部品を常法により準備する。ここで、低膨張板及び中間アルミニウム板の準備においては、これらの元板に、所定の寸法となるようにプレス打ち抜き加工を行う、あるいは、シャー切断加工を行うことがある。これらの加工は、生産性が高く、加工コストも低いという利点がある一方、加工後に低膨張板や中間アルミニウム板の外周端縁にバリが発生する。このようなバリは、その後の工程において製造上あるいは品質上のトラブルの原因となるおそれがある。しかし、バリを除去するための加工を追加すると、生産性や加工コストの面での利点が損なわれるおそれがある。 That is, in manufacturing the heat sink, first, the above-described components are prepared by a conventional method. Here, in preparing the low expansion plate and the intermediate aluminum plate, press punching processing or shear cutting processing may be performed on these base plates so as to have a predetermined dimension. While these processes have the advantages of high productivity and low processing costs, burrs are generated at the outer peripheral edges of the low expansion plate and the intermediate aluminum plate after processing. Such burrs may cause troubles in manufacturing or quality in subsequent processes. However, when processing for removing burrs is added, there is a possibility that advantages in terms of productivity and processing cost are impaired.
 これらの問題を回避するためには、中間アルミニウム板の外周端縁が裏面金属層の外周端縁よりも外方に延出し、かつ、低膨張板の外周端縁が中間アルミニウム板の外周端縁よりも外方に延出するように、低膨張板及び中間アルミニウム板を作製すればよい。これにより、低膨張板及び中間アルミニウム板のバリを、これらの上部に積層される材料と接触することなく、ベース部と回路基板との積層方向における回路基板側に突出させることができる。その結果、バリによる製造上あるいは品質上のトラブルを回避しつつ、プレス打ち抜き加工等による利点を得ることができる。 In order to avoid these problems, the outer peripheral edge of the intermediate aluminum plate extends outward from the outer peripheral edge of the back metal layer, and the outer peripheral edge of the low expansion plate is the outer peripheral edge of the intermediate aluminum plate. What is necessary is just to produce a low expansion board and an intermediate | middle aluminum board so that it may extend outside rather than. Thereby, the burr | flash of a low expansion board and an intermediate | middle aluminum board can be made to project to the circuit board side in the lamination direction of a base part and a circuit board, without contacting with the material laminated | stacked on these. As a result, it is possible to obtain an advantage of press punching or the like while avoiding problems in manufacturing or quality due to burrs.
 また、この場合には、低膨張板と中間アルミニウム板との隙間及び中間アルミニウム板と裏面金属層との隙間を小さくすることができる。その結果、冷却性能の更なる向上という効果も期待することができる。 In this case, the gap between the low expansion plate and the intermediate aluminum plate and the gap between the intermediate aluminum plate and the back metal layer can be reduced. As a result, the effect of further improving the cooling performance can be expected.
 上記の作用効果を十分に得るためには、低膨張板の外周端縁の突出量、即ち、中間アルミニウム板の外周端縁から低膨張板の外周端縁までの距離は、0.1mm以上であればよい。同様に、中間アルミニウム板の外周端縁の突出量、即ち、裏面金属層の外周端縁から中間アルミニウム板の外周端縁までの距離は、0.1mm以上であればよい。 In order to sufficiently obtain the above effect, the protrusion amount of the outer peripheral edge of the low expansion plate, that is, the distance from the outer peripheral edge of the intermediate aluminum plate to the outer peripheral edge of the low expansion plate is 0.1 mm or more. I just need it. Similarly, the protrusion amount of the outer peripheral edge of the intermediate aluminum plate, that is, the distance from the outer peripheral edge of the back metal layer to the outer peripheral edge of the intermediate aluminum plate may be 0.1 mm or more.
 これらの突出量の上限は特に限定されるものではないが、ヒートシンクの小型化の観点からは、突出量を4.0mm以下とすることが好ましい。 The upper limit of these protrusion amounts is not particularly limited, but it is preferable that the protrusion amount is 4.0 mm or less from the viewpoint of miniaturization of the heat sink.
 上記回路基板付きヒートシンクの実施例を、以下に説明する。なお、本発明の回路基板付きヒートシンク及びその製造方法の態様は以下の態様に限定されるものではなく、本発明の趣旨を損なわない範囲において適宜構成を変更することができる。 Examples of the heat sink with the circuit board will be described below. In addition, the aspect of the heat sink with a circuit board of this invention and its manufacturing method is not limited to the following aspects, A structure can be changed suitably in the range which does not impair the meaning of this invention.
(実施例1)
 本例のヒートシンク1は、図1及び図2に示すように、ヒートシンク本体2と、低膨張板3と、中間アルミニウム板4と、回路基板5とを有している。図2に示すように、ヒートシンク本体2は、アルミニウム材から構成されており、平板状を呈するベース部21を有している。低膨張板3は、ヒートシンク本体2よりも低い線膨張係数を有し、ベース部21上に配置されている。中間アルミニウム板4は、低膨張板3上に配置されている。回路基板5は、中間アルミニウム板4上に配置されている。
Example 1
As shown in FIGS. 1 and 2, the heat sink 1 of this example includes a heat sink body 2, a low expansion plate 3, an intermediate aluminum plate 4, and a circuit board 5. As shown in FIG. 2, the heat sink body 2 is made of an aluminum material, and has a base portion 21 that has a flat plate shape. The low expansion plate 3 has a lower linear expansion coefficient than the heat sink main body 2 and is disposed on the base portion 21. The intermediate aluminum plate 4 is disposed on the low expansion plate 3. The circuit board 5 is disposed on the intermediate aluminum plate 4.
 ベース部21と低膨張板3との間、低膨張板3と中間アルミニウム板4との間及び中間アルミニウム板4と回路基板5との間には、ろう材層(図示略)が介在している。回路基板5は、アルミニウム材からなり、ろう材層を介して中間アルミニウム板4上に積層された裏面金属層51と、裏面金属層51上に積層されたセラミックス板52と、アルミニウム材からなり、セラミックス板52上に積層された回路金属層53とを有している。 A brazing material layer (not shown) is interposed between the base portion 21 and the low expansion plate 3, between the low expansion plate 3 and the intermediate aluminum plate 4, and between the intermediate aluminum plate 4 and the circuit board 5. Yes. The circuit board 5 is made of an aluminum material, and is made of a back metal layer 51 laminated on the intermediate aluminum plate 4 via a brazing material layer, a ceramic plate 52 laminated on the back metal layer 51, and an aluminum material, And a circuit metal layer 53 laminated on the ceramic plate 52.
 図1及び図2に示すように、本例のヒートシンク本体2は、ベース部21と、外枠部22と、放熱フィン23とを有している。図1に示すように、ヒートシンク本体2は、ベース部21の厚み方向から視た平面視において、長方形状を呈している。本例のヒートシンク本体2における縦方向(長辺方向)の寸法は110mmであり、横方向(短辺方向)の寸法は90mmである。また、本例のベース部21の厚みは0.4mmである。また、本例のヒートシンク本体2は、JIS A3003合金から構成されている。 As shown in FIGS. 1 and 2, the heat sink body 2 of the present example includes a base portion 21, an outer frame portion 22, and heat radiating fins 23. As shown in FIG. 1, the heat sink body 2 has a rectangular shape in a plan view when viewed from the thickness direction of the base portion 21. In the heat sink main body 2 of this example, the dimension in the vertical direction (long side direction) is 110 mm, and the dimension in the horizontal direction (short side direction) is 90 mm. Moreover, the thickness of the base part 21 of this example is 0.4 mm. The heat sink body 2 of this example is made of JIS A3003 alloy.
 図2に示すように、ベース部21における一方の板面211上には、ろう材層(図示略)を介して低膨張板3が積層されている。また、ベース部21の他方の板面、即ち、低膨張板3が積層されている板面211の裏面212には、多数の放熱フィン23が立設されている。本例の放熱フィン23は、直径1.5mm、高さ10mmの円柱状を呈している。また、放熱フィン23は、ベース部21の厚み方向から視た平面視において、一辺75mmの正方形状の領域内に配置されている。 As shown in FIG. 2, the low expansion plate 3 is laminated on one plate surface 211 of the base portion 21 via a brazing material layer (not shown). In addition, a large number of radiating fins 23 are provided upright on the other plate surface of the base portion 21, that is, the back surface 212 of the plate surface 211 on which the low expansion plate 3 is laminated. The radiating fin 23 of this example has a cylindrical shape with a diameter of 1.5 mm and a height of 10 mm. Moreover, the radiation fin 23 is arrange | positioned in the square area | region of 75 mm in one side in the planar view seen from the thickness direction of the base part 21. FIG.
 外枠部22は、ベース部21の外周縁部213に立設されており、図1及び図2に示すように、低膨張板3、中間アルミニウム板4及び回路基板5の周囲に配置されている。また、これらの部材と外枠部22との間には、図2に示すように、ろう付時にベース部21と低膨張板3との間、低膨張板3と中間アルミニウム板4との間及び中間アルミニウム板4と裏面金属層51との間から流出したろう材11が保持されている。 The outer frame portion 22 is erected on the outer peripheral edge portion 213 of the base portion 21, and is disposed around the low expansion plate 3, the intermediate aluminum plate 4, and the circuit board 5 as shown in FIGS. 1 and 2. Yes. Also, between these members and the outer frame portion 22, as shown in FIG. 2, between the base portion 21 and the low expansion plate 3 and between the low expansion plate 3 and the intermediate aluminum plate 4 during brazing. And the brazing material 11 which flowed out between the intermediate aluminum plate 4 and the back surface metal layer 51 is held.
 本例においては、ベース部21の裏面212を基準としたときの外枠部22の高さH1は、回路金属層53の高さH2の1.0倍である。具体的には、本例のヒートシンク1における外枠部22の高さH1及び回路金属層53の高さH2は、いずれも3.0mmである。 In this example, the height H1 of the outer frame portion 22 with respect to the back surface 212 of the base portion 21 is 1.0 times the height H2 of the circuit metal layer 53. Specifically, the height H1 of the outer frame portion 22 and the height H2 of the circuit metal layer 53 in the heat sink 1 of this example are both 3.0 mm.
 図2に示すように、ベース部21上には、ろう材層(図示略)を介して低膨張板3が積層されている。本例の低膨張板3は、厚み0.64mmのニッケル板である。なお、ニッケルの典型的な線膨張係数は13.3ppm/Kであり、アルミニウム材の典型的な線膨張係数(23~24ppm/K)よりも低い線膨張係数を有する。 As shown in FIG. 2, the low expansion plate 3 is laminated on the base portion 21 via a brazing material layer (not shown). The low expansion plate 3 of this example is a nickel plate having a thickness of 0.64 mm. The typical linear expansion coefficient of nickel is 13.3 ppm / K, which is lower than the typical linear expansion coefficient of aluminum material (23 to 24 ppm / K).
 低膨張板3上には、ろう材層(図示略)を介して中間アルミニウム板4が積層されている。 On the low expansion plate 3, an intermediate aluminum plate 4 is laminated via a brazing material layer (not shown).
 中間アルミニウム板4上には、ろう材層(図示略)を介して、回路基板5の裏面金属層51が積層されている。本例の回路基板5は、アルミニウム材からなる厚み0.4mmの裏面金属層51、窒化アルミニウムからなる厚み0.32mmのセラミックス板52及びアルミニウム材からなる厚み0.4mmの回路金属層53が順次積層された3層構造を有している。 On the intermediate aluminum plate 4, a back metal layer 51 of the circuit board 5 is laminated via a brazing material layer (not shown). In the circuit board 5 of this example, a 0.4 mm-thick back metal layer 51 made of an aluminum material, a 0.32 mm-thick ceramic plate 52 made of aluminum nitride, and a 0.4 mm-thick circuit metal layer 53 made of an aluminum material are sequentially formed. It has a stacked three-layer structure.
 本例においては、表1に示すように、JIS A3003合金板、純アルミニウム板(純度99.50%)及びJIS A6063合金板のいずれかを中間アルミニウム板4として用い、3種のヒートシンク1(試験体A1~A3)を作製した。試験体の作製は、以下の方法により行った。 In this example, as shown in Table 1, any one of JIS A3003 alloy plate, pure aluminum plate (purity 99.50%) and JIS A6063 alloy plate is used as intermediate aluminum plate 4, and three types of heat sinks 1 (test Body A1 to A3) were produced. The test specimen was produced by the following method.
 まず、A3003合金の板材に鍛造加工を施して放熱フィン23を立設した。次いで、放熱フィン23を立設した面と反対側の板面に切削加工を施して深さ2.6mmの凹部を形成し、ヒートシンク本体2を作製した。また、厚み0.64mmのニッケル板を裏面金属層51と同じ寸法に切断することにより、低膨張板3を作製した。 First, the A3003 alloy plate was forged and the radiating fins 23 were erected. Next, the plate surface opposite to the surface on which the heat radiating fins 23 were erected was cut to form a recess having a depth of 2.6 mm, and the heat sink body 2 was produced. Moreover, the low expansion plate 3 was produced by cutting a nickel plate having a thickness of 0.64 mm into the same dimensions as the back surface metal layer 51.
 厚み0.82mmのA3003合金板、純アルミニウム板及びA6063合金板を低膨張板3と同じ寸法に切断することにより、中間アルミニウム板4を作製した。回路基板5には、市販品を採用した。また、Al-Si(アルミニウム-シリコン)系合金よりなる厚み0.1mmのろう箔を低膨張板3と同じ寸法に切断し、上側ろう箔、中間ろう箔及び下側ろう箔を準備した。 An intermediate aluminum plate 4 was produced by cutting an A3003 alloy plate, a pure aluminum plate and an A6063 alloy plate having a thickness of 0.82 mm into the same dimensions as the low expansion plate 3. A commercially available product was used for the circuit board 5. In addition, a 0.1 mm thick brazing foil made of an Al—Si (aluminum-silicon) alloy was cut into the same dimensions as the low expansion plate 3 to prepare an upper brazing foil, an intermediate brazing foil, and a lower brazing foil.
 これらの部材を準備した後、ベース部21上に、下側ろう箔、低膨張板3、中間ろう箔、中間アルミニウム板4、上側ろう箔及び回路基板5をこの順に載置し、被処理物を組み立てた。この被処理物に治具を取り付け、回路基板5をベース部21側に押圧した状態で窒素ガス雰囲気中で被処理物を600℃まで加熱し、ろう付を行った。以上により試験体A1~A3を作製した。 After preparing these members, the lower brazing foil, the low expansion plate 3, the intermediate brazing foil, the intermediate aluminum plate 4, the upper brazing foil, and the circuit board 5 are placed on the base portion 21 in this order, and the workpiece Assembled. A jig was attached to the object to be processed, and the object to be processed was heated to 600 ° C. in a nitrogen gas atmosphere in a state where the circuit board 5 was pressed to the base portion 21 side, and brazing was performed. Specimens A1 to A3 were produced as described above.
 また、本例においては、試験体A1~A3との比較のため、回路基板5がベース部21上に直接ろう付された試験体Rを作製した。試験体Rは、低膨張板3及び中間アルミニウム板4を有しない点以外は、試験体A1~A3と同一の構成を有している。 Further, in this example, for comparison with the test bodies A1 to A3, the test body R in which the circuit board 5 was directly brazed on the base portion 21 was produced. The test body R has the same configuration as the test bodies A1 to A3 except that the low expansion plate 3 and the intermediate aluminum plate 4 are not provided.
 これらの試験体A1~A3及び試験体Rについて、ろう付後の回路基板5の反り、はんだ付時の回路基板5の反り、冷却性能及び耐久性の評価を行った。 These test bodies A1 to A3 and test body R were evaluated for warpage of the circuit board 5 after brazing, warpage of the circuit board 5 during soldering, cooling performance and durability.
・ろう付後の回路基板5の反り
 ろう付後の試験体を治具から取り外した後、回路基板5の中央部と外周端部との高さの差を測定し、これを回路基板5の反り量とした。ろう付後の回路基板5は、ベース部21と回路基板5との積層方向における回路基板5側が凸となるように湾曲していた。ろう付後の回路基板5の反り量は、表1に示したとおりであった。
-Warping of the circuit board 5 after brazing After removing the test body after brazing from the jig, the difference in height between the central part and the outer peripheral end of the circuit board 5 is measured. The amount of warpage. The circuit board 5 after brazing was curved so that the circuit board 5 side in the stacking direction of the base portion 21 and the circuit board 5 was convex. The warping amount of the circuit board 5 after brazing was as shown in Table 1.
・はんだ付時の回路基板5の反り
 回路基板5へのはんだ付作業を想定し、試験体を270℃に加熱した状態での回路基板5の反り量を測定した。270℃に加熱された状態においては、回路基板5の反りの向きが加熱前とは逆向きとなり、ベース部21と回路基板5との積層方向におけるベース部21側が凸となるように湾曲していた。この状態での回路基板5の反り量は、表1に示したとおりであった。
-Warpage of the circuit board 5 at the time of soldering Assuming the soldering work to the circuit board 5, the amount of warpage of the circuit board 5 in a state where the test body was heated to 270 ° C was measured. In the state heated to 270 ° C., the direction of warping of the circuit board 5 is opposite to that before heating, and the base part 21 side in the stacking direction of the base part 21 and the circuit board 5 is curved to be convex. It was. The amount of warping of the circuit board 5 in this state was as shown in Table 1.
・冷却性能
 各試験体の放熱フィン23側に水冷ジャケットを取り付け、この水冷ジャケット内に一定の流量で冷媒を流した。そして、回路金属層53上に発熱体を載置し、一定の出力で熱を発生させた。なお、冷媒としてはLLC(Long-Life Coolant)50%を使用し、流量は12L/minとした。また、発熱体の発熱量は800Wとした。
-Cooling performance A water cooling jacket was attached to the side of the radiating fin 23 of each specimen, and a coolant was allowed to flow at a constant flow rate in the water cooling jacket. Then, a heating element was placed on the circuit metal layer 53 to generate heat with a constant output. In addition, LLC (Long-Life Coolant) 50% was used as a refrigerant | coolant, and the flow volume was 12 L / min. The heating value of the heating element was 800W.
 この状態を保持し、定常状態に到達したときの発熱体の温度を計測した。そして、試験体Rにおける発熱体の温度をTr(K)、試験体A1~A3における発熱体の温度をTs(K)とし、下記の式により、冷却性能の低下率R(%)を算出した。冷却性能の低下率Rは、表1に示した通りであった。
   R=(Ts-Tr)/Tr×100
This state was maintained, and the temperature of the heating element when the steady state was reached was measured. Then, assuming that the temperature of the heating element in the test body R is Tr (K) and the temperature of the heating element in the test bodies A1 to A3 is Ts (K), the rate of decrease in cooling performance R (%) is calculated by the following equation. . The reduction rate R of the cooling performance was as shown in Table 1.
R = (Ts−Tr) / Tr × 100
・耐久性
 温度サイクル試験機を用い、150℃に30分間保持する加熱ステップと、-50℃に30分間保持する冷却ステップとからなるサイクルを1000サイクル繰り返して温度サイクル試験を行った。温度サイクル試験後の回路基板5の反り量を測定し、温度サイクル試験前の回路基板5の反り量からの変化を算出した。温度サイクル試験による反り量の変化は表1に示した通りであった。
Durability Using a temperature cycle tester, a temperature cycle test was conducted by repeating 1000 cycles of a heating step of holding at 150 ° C. for 30 minutes and a cooling step of holding at −50 ° C. for 30 minutes. The amount of warpage of the circuit board 5 after the temperature cycle test was measured, and the change from the amount of warpage of the circuit board 5 before the temperature cycle test was calculated. The change in the warpage amount by the temperature cycle test was as shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1から理解できるように、アルミニウム材からなる層と、アルミニウム材よりも低い線膨張係数を有する材料からなる層とが対称的に配置された積層構造を有する試験体A1~A3は、ろう付後の反り量が小さく、270℃に加熱した際にセラミックス板52の割れは発生しなかった。また、試験体A3は、材料強度の高いA6063合金板を中間アルミニウム板4としたため、温度サイクル試験後の反り量の変化が小さく、特に優れた耐久性を示した。 As can be understood from Table 1, specimens A1 to A3 having a laminated structure in which a layer made of an aluminum material and a layer made of a material having a lower linear expansion coefficient than the aluminum material are arranged symmetrically are brazed. The amount of subsequent warping was small, and cracking of the ceramic plate 52 did not occur when heated to 270 ° C. Moreover, since the test body A3 used the A6063 alloy plate with high material strength as the intermediate aluminum plate 4, the change in the amount of warpage after the temperature cycle test was small, and particularly excellent durability was exhibited.
 一方、試験体Rは、低膨張板3を有していないため、270℃に加熱した際にセラミックス板52に割れが発生した。 On the other hand, since the test body R does not have the low expansion plate 3, the ceramic plate 52 was cracked when heated to 270 ° C.
(実施例2)
 本例は、セラミックス板52の材質を種々変更した例である。なお、本実施例以降において用いる符号のうち、既出の実施例において用いた符号と同一のものは、特に説明のない限り、既出の実施例における構成要素等と同様の構成要素等を表す。
(Example 2)
In this example, the material of the ceramic plate 52 is variously changed. Of the reference numerals used in and after the present embodiment, the same reference numerals as those used in the above-described embodiments represent the same constituent elements as those in the above-described embodiments unless otherwise specified.
 本例においては、低膨張板3、中間アルミニウム板4及びセラミックス板52の構成を表2に示すように変更した以外は実施例1と同様の方法により試験体B1~B10を作製した。なお、表2中には、低膨張板3の線膨張係数として、その値とともに、セラミックス板52の線膨張係数を1倍としたときの倍率を記載した。 In this example, specimens B1 to B10 were produced in the same manner as in Example 1 except that the configurations of the low expansion plate 3, the intermediate aluminum plate 4 and the ceramic plate 52 were changed as shown in Table 2. In Table 2, as the linear expansion coefficient of the low expansion plate 3, the magnification when the linear expansion coefficient of the ceramic plate 52 is set to 1 is described together with the value.
 そして、これらの試験体について、実施例1と同様の手順により評価を行った。評価結果は表3に示す通りであった。 Then, these specimens were evaluated by the same procedure as in Example 1. The evaluation results are as shown in Table 3.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表2及び表3から理解できるように、試験体B1~B10は、低膨張板3として、ニッケルに比べて熱伝導率の高いモリブデンを採用したため、試験体A1~A3(表1参照)に比べて冷却性能が向上した。 As can be understood from Tables 2 and 3, the test bodies B1 to B10 employ molybdenum having a higher thermal conductivity than nickel as the low expansion plate 3, and therefore, compared to the test bodies A1 to A3 (see Table 1). Cooling performance improved.
 また、これらの試験体のうち、試験体B1~B3及びB6~B8は、低膨張板3の線膨張係数がセラミックス板52の線膨張係数の0.7~2.0倍である。そのため、低膨張板3の線膨張係数が上記の範囲外である試験体A1(表1参照)やB4等に比べて、はんだ付時の回路基板5の反り量を低減することができた。 Of these specimens, the specimens B1 to B3 and B6 to B8 have a linear expansion coefficient of the low expansion plate 3 that is 0.7 to 2.0 times the linear expansion coefficient of the ceramic plate 52. Therefore, the amount of warping of the circuit board 5 during soldering can be reduced as compared with the specimens A1 (see Table 1), B4, and the like in which the linear expansion coefficient of the low expansion plate 3 is outside the above range.
(実施例3)
 本例は、低膨張板3の厚みを種々変更した例である。本例においては、ヒートシンク本体2における外枠部22の高さH1を3.5mmに変更し、低膨張板3、中間アルミニウム板4及びセラミックス板52の構成を表4に示すように変更した以外は、実施例1と同様の方法により試験体C1~C5を作製した。なお、表4中には、低膨張板3の厚みとして、その値とともに、セラミックス板52の厚みを1倍としたときの倍率を記載した。また、中間アルミニウム板4の厚みは、回路金属層53の高さH2が3.5mmとなるように調整されている。
(Example 3)
In this example, the thickness of the low expansion plate 3 is variously changed. In this example, the height H1 of the outer frame portion 22 in the heat sink body 2 is changed to 3.5 mm, and the configurations of the low expansion plate 3, the intermediate aluminum plate 4 and the ceramic plate 52 are changed as shown in Table 4. Prepared specimens C1 to C5 in the same manner as in Example 1. In Table 4, as the thickness of the low expansion plate 3, along with the value, the magnification when the thickness of the ceramic plate 52 is set to 1 is described. The thickness of the intermediate aluminum plate 4 is adjusted so that the height H2 of the circuit metal layer 53 is 3.5 mm.
 これらの試験体について、実施例1と同様の手順により評価を行った。評価結果は表5に示す通りであった。 These specimens were evaluated by the same procedure as in Example 1. The evaluation results are as shown in Table 5.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 試験体C1~C5は、低膨張板3の線膨張係数がセラミックス板52の線膨張係数の0.7~2.0倍であるため、はんだ付時の反り量を、試験体B1~B10(表3参照)と同等以上に抑制することができた。 In the test bodies C1 to C5, since the linear expansion coefficient of the low expansion plate 3 is 0.7 to 2.0 times the linear expansion coefficient of the ceramic plate 52, the amount of warping at the time of soldering is determined by the test bodies B1 to B10 ( (See Table 3).
 また、表4及び表5に示したように、試験体C1、C2及びC4は、低膨張板3の厚みがセラミックス板52の厚みの0.5~2.0倍である。そのため、これらの試験体は、セラミックス板52の厚みが上記の範囲外である試験体C3等よりもさらに回路基板5の反り量を低減することができた。 Further, as shown in Tables 4 and 5, in the test bodies C1, C2, and C4, the thickness of the low expansion plate 3 is 0.5 to 2.0 times the thickness of the ceramic plate 52. Therefore, these specimens were able to further reduce the amount of warping of the circuit board 5 than the specimen C3 or the like in which the thickness of the ceramic plate 52 was outside the above range.
(実施例4)
 本例は、ベース部21の厚みを種々変更した例である。本例においては、低膨張板3として厚み1.0mmのモリブデン板(線膨張係数5.0ppm/K)、セラミックス板52として厚み0.64mmの窒化アルミニウム板(線膨張係数4.5ppm/K)を採用し、ヒートシンク本体2及び中間アルミニウム板4の構成を表6に示すように変更した以外は、実施例1と同様の方法により試験体D1~D5を作製した。なお、表6中には、ベース部21の厚みとして、その値とともに、回路金属層53の厚みを1倍としたときの倍率を記載した。また、中間アルミニウム板4の厚みは、回路金属層53の高さH2が3.5mmとなるように調整されている。
Example 4
In this example, the thickness of the base portion 21 is variously changed. In this example, a molybdenum plate having a thickness of 1.0 mm (linear expansion coefficient 5.0 ppm / K) as the low expansion plate 3 and an aluminum nitride plate having a thickness of 0.64 mm (linear expansion coefficient 4.5 ppm / K) as the ceramic plate 52. Specimens D1 to D5 were produced in the same manner as in Example 1 except that the structure of the heat sink body 2 and the intermediate aluminum plate 4 was changed as shown in Table 6. In Table 6, as the thickness of the base portion 21, the value when the thickness of the circuit metal layer 53 is set to 1 is described together with the thickness. The thickness of the intermediate aluminum plate 4 is adjusted so that the height H2 of the circuit metal layer 53 is 3.5 mm.
 これらの試験体について、実施例1と同様の手順により評価を行った。評価結果は表7に示す通りであった。 These specimens were evaluated by the same procedure as in Example 1. The evaluation results are as shown in Table 7.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 試験体D1~D5は、低膨張板3の線膨張係数がセラミックス板52の線膨張係数の0.7~2.0倍であるため、はんだ付時の反り量を試験体B1~B10(表3参照)と同等以上に抑制することができた。 In the test bodies D1 to D5, the linear expansion coefficient of the low expansion plate 3 is 0.7 to 2.0 times the linear expansion coefficient of the ceramic plate 52. 3)).
 また、表6及び表7に示したように、試験体D2~D4は、ベース部21の厚みが回路金属層53の厚みの1.0~1.5倍である。そのため、これらの試験体は、ベース部21の厚みが上記の範囲外である試験体D1等よりもさらに回路基板5の反り量を低減することができた。 Also, as shown in Tables 6 and 7, in the test bodies D2 to D4, the thickness of the base portion 21 is 1.0 to 1.5 times the thickness of the circuit metal layer 53. Therefore, these test bodies were able to further reduce the amount of warping of the circuit board 5 than the test bodies D1 and the like in which the thickness of the base portion 21 was outside the above range.
(実施例5)
 本例は、回路金属層53の高さH2を変更した例である。本例においては、低膨張板3として厚み1.0mmのモリブデン板(線膨張係数5.0ppm/K)、セラミックス板52として厚み0.64mmの窒化アルミニウム板(線膨張係数4.5ppm/K)を採用し、ヒートシンク本体2及び中間アルミニウム板4の構成を表8に示すように変更した以外は、実施例1と同様の方法により試験体E1~E2を作製した。なお、表8中には、外枠部22の高さH1として、その値とともに、回路金属層53の高さH2を1倍としたときの倍率を記載した。
(Example 5)
In this example, the height H2 of the circuit metal layer 53 is changed. In this example, a molybdenum plate having a thickness of 1.0 mm (linear expansion coefficient 5.0 ppm / K) as the low expansion plate 3 and an aluminum nitride plate having a thickness of 0.64 mm (linear expansion coefficient 4.5 ppm / K) as the ceramic plate 52. Specimens E1 to E2 were produced in the same manner as in Example 1 except that the structure of the heat sink body 2 and the intermediate aluminum plate 4 was changed as shown in Table 8. In Table 8, as the height H1 of the outer frame portion 22, the value and the magnification when the height H2 of the circuit metal layer 53 is set to 1 are described.
 これらの試験体について、実施例1と同様の手順により評価を行った。評価結果は表9に示す通りであった。 These specimens were evaluated by the same procedure as in Example 1. The evaluation results are as shown in Table 9.
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
 試験体E1~E2は、外枠部22の高さH1が回路金属層53の高さH2の0.9~1.1倍であったため、ろう付をより容易に行うことができた。 The test bodies E1 to E2 were able to be brazed more easily because the height H1 of the outer frame portion 22 was 0.9 to 1.1 times the height H2 of the circuit metal layer 53.
(実施例6)
 本例は、低膨張板306及び中間アルミニウム板406のバリ31、41の影響を評価した例である。本例においては、以下のようにして試験体F1及びF2を作製した。
(Example 6)
In this example, the influence of the burrs 31 and 41 of the low expansion plate 306 and the intermediate aluminum plate 406 is evaluated. In this example, specimens F1 and F2 were produced as follows.
 まず、A6063合金の板材に鍛造加工を施して放熱フィン23を立設し、次いで、放熱フィン23を立設した面と反対側の板面に切削加工を施して深さ2.6mmの凹部を形成することにより、ヒートシンク本体2を作製した。次に、厚み0.82mmの純アルミニウム板にプレス打ち抜き加工を施して中間アルミニウム板4、406を作製するとともに、厚み1.0mmのモリブデン板にプレス打ち抜き加工を施して低膨張板3、306を作製した。 First, a plate of A6063 alloy is forged to radiate fins 23, and then a plate surface opposite to the surface where radiating fins 23 are erected is cut to form a recess having a depth of 2.6 mm. By forming, the heat sink main body 2 was produced. Next, press punching is performed on a pure aluminum plate having a thickness of 0.82 mm to produce intermediate aluminum plates 4 and 406, and press-punching is performed on a molybdenum plate having a thickness of 1.0 mm to form low expansion plates 3 and 306. Produced.
 このとき、試験体F1に用いる中間アルミニウム板4及び低膨張板3については、裏面金属層51と同じ寸法となるようにプレス打ち抜き加工を行った。一方、試験体F2に用いる中間アルミニウム板406については、裏面金属層51よりもわずかに寸法が大きくなるようにプレス打ち抜き加工を行った。また、試験体F2に用いる低膨張板306については、中間アルミニウム板406よりもわずかに寸法が大きくなるようにプレス打ち抜き加工を行った。 At this time, the intermediate aluminum plate 4 and the low expansion plate 3 used for the specimen F1 were subjected to press punching so as to have the same dimensions as the back surface metal layer 51. On the other hand, about the intermediate | middle aluminum plate 406 used for the test body F2, the press punching process was performed so that a dimension might become slightly larger than the back surface metal layer 51. FIG. The low expansion plate 306 used for the test body F2 was subjected to press punching so that the size was slightly larger than that of the intermediate aluminum plate 406.
 回路基板5としては、市販品を採用した。また、Al-Si(アルミニウム-シリコン)系合金よりなる厚み0.1mmのろう箔を低膨張板3、306と同じ寸法に切断し、上側ろう箔、中間ろう箔及び下側ろう箔を準備した。 A commercially available product was used as the circuit board 5. Further, a 0.1 mm thick brazing foil made of an Al—Si (aluminum-silicon) alloy was cut into the same dimensions as the low expansion plates 3, 306 to prepare an upper brazing foil, an intermediate brazing foil, and a lower brazing foil. .
 試験体F1については、ベース部21上に、下側ろう箔、低膨張板3、中間ろう箔、中間アルミニウム板4、上側ろう箔及び回路基板5をこの順に載置し、被処理物を組み立てた。一方、試験体F2については、図3に示すように、プレス打ち抜き加工の際に形成されたバリ31、41が、ベース部21と回路基板5との積層方向における回路基板5側に突出するようにして被処理物を組み立てた。 For the test body F1, the lower brazing foil, the low expansion plate 3, the intermediate brazing foil, the intermediate aluminum plate 4, the upper brazing foil, and the circuit board 5 are placed in this order on the base portion 21, and the workpiece is assembled. It was. On the other hand, for the test body F2, as shown in FIG. 3, the burrs 31 and 41 formed in the press punching process protrude toward the circuit board 5 side in the stacking direction of the base portion 21 and the circuit board 5. As a result, the workpiece was assembled.
 その後、実施例1と同様の方法によりろう付を行い、試験体F1及びF2を作製した。 Thereafter, brazing was performed in the same manner as in Example 1 to prepare specimens F1 and F2.
 ろう付後の試験体F2は、図3に示すように、中間アルミニウム板406の外周端縁411が、裏面金属層51の外周端縁511よりも外方に延出するとともに回路基板5側に突出していた。また、低膨張板306の外周端縁311が、中間アルミニウム板406の外周端縁411よりも外方に延出するとともに回路基板5側に突出していた。より具体的には、中間アルミニウム板406の外周端縁411は、裏面金属層51の外周端縁511よりも0.1mm外方に延出していた。また、低膨張板306の外周端縁311は、中間アルミニウム板406の外周端縁411よりも0.1mm外方に延出していた。 In the specimen F2 after brazing, as shown in FIG. 3, the outer peripheral edge 411 of the intermediate aluminum plate 406 extends outward from the outer peripheral edge 511 of the back surface metal layer 51, and on the circuit board 5 side. It was protruding. Further, the outer peripheral edge 311 of the low expansion plate 306 extended outward from the outer peripheral edge 411 of the intermediate aluminum plate 406 and protruded toward the circuit board 5 side. More specifically, the outer peripheral edge 411 of the intermediate aluminum plate 406 extended 0.1 mm outward from the outer peripheral edge 511 of the back surface metal layer 51. Further, the outer peripheral edge 311 of the low expansion plate 306 extended outward by 0.1 mm from the outer peripheral edge 411 of the intermediate aluminum plate 406.
 以上により得られた試験体F1及びF2を用い、実施例1と同様の方法により評価を行った。評価結果は、表10に示した通りであった。 Evaluation was performed in the same manner as in Example 1 using the specimens F1 and F2 obtained as described above. The evaluation results were as shown in Table 10.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 表10に示したように、試験体F1及びF2は、低膨張板3の線膨張係数がセラミックス板52の線膨張係数の0.7~2.0倍であるため、はんだ付時の反り量を、試験体B1~B10(表3参照)と同等以上に抑制することができた。さらに、試験体F2は、図3に示すように、低膨張板306及び中間アルミニウム板406のバリ31、41が、これらの上部に積層される材料と接触することなく、ベース部21と回路基板5との積層方向における回路基板5側に突出している。そのため、試験体F1に比べて、低膨張板306と中間アルミニウム板406との隙間及び中間アルミニウム板406と裏面金属層51との隙間を小さくすることができた。以上の結果、試験体F2は、試験体F1に比べて冷却性能を向上させることができたと考えられる。 As shown in Table 10, in the test bodies F1 and F2, the linear expansion coefficient of the low expansion plate 3 is 0.7 to 2.0 times the linear expansion coefficient of the ceramic plate 52. Was able to be suppressed to be equal to or higher than that of the test specimens B1 to B10 (see Table 3). Further, as shown in FIG. 3, the test body F <b> 2 includes the base portion 21 and the circuit board without the burrs 31 and 41 of the low expansion plate 306 and the intermediate aluminum plate 406 being in contact with the material laminated thereon. 5 protrudes toward the circuit board 5 in the stacking direction. Therefore, compared with the test body F1, the gap between the low expansion plate 306 and the intermediate aluminum plate 406 and the gap between the intermediate aluminum plate 406 and the back surface metal layer 51 could be reduced. As a result of the above, it is considered that the specimen F2 was able to improve the cooling performance as compared with the specimen F1.

Claims (10)

  1.  平板状を呈するベース部を備え、アルミニウム材よりなるヒートシンク本体と、
     上記ヒートシンク本体よりも低い線膨張係数を有し、上記ベース部上に配置された低膨張板と、
     上記低膨張板上に配置された中間アルミニウム板と、
     上記中間アルミニウム板上に配置された回路基板と、
     上記ベース部と上記低膨張板との間、上記低膨張板と上記中間アルミニウム板との間及び上記中間アルミニウム板と上記回路基板との間に介在するろう材層とを有し、
     上記回路基板は、
     アルミニウム材からなり、上記ろう材層を介して上記中間アルミニウム板上に積層された裏面金属層と、
     上記裏面金属層上に積層されたセラミックス板と、
     アルミニウム材からなり、上記セラミックス板上に積層された回路金属層とを有する、回路基板付きヒートシンク。
    A heat sink body made of an aluminum material, including a base portion having a flat plate shape,
    A low expansion plate having a linear expansion coefficient lower than that of the heat sink body, and disposed on the base portion;
    An intermediate aluminum plate disposed on the low expansion plate;
    A circuit board disposed on the intermediate aluminum plate;
    A brazing material layer interposed between the base portion and the low expansion plate, between the low expansion plate and the intermediate aluminum plate, and between the intermediate aluminum plate and the circuit board;
    The circuit board is
    A back metal layer made of an aluminum material and laminated on the intermediate aluminum plate via the brazing material layer;
    A ceramic plate laminated on the back metal layer;
    A heat sink with a circuit board, comprising a circuit metal layer made of an aluminum material and laminated on the ceramic plate.
  2.  上記中間アルミニウム板は、純度99.0~99.85%のアルミニウムから構成されている、請求項1に記載の回路基板付きヒートシンク。 2. The heat sink with a circuit board according to claim 1, wherein the intermediate aluminum plate is made of aluminum having a purity of 99.0 to 99.85%.
  3.  上記中間アルミニウム板は、6000系アルミニウム合金から構成されている、請求項1に記載の回路基板付きヒートシンク。 2. The heat sink with a circuit board according to claim 1, wherein the intermediate aluminum plate is made of a 6000 series aluminum alloy.
  4.  上記低膨張板の厚みは、上記セラミックス板の厚みの0.4~3.5倍である、請求項1~3のいずれか1項に記載の回路基板付きヒートシンク。 The heat sink with a circuit board according to any one of claims 1 to 3, wherein the thickness of the low expansion plate is 0.4 to 3.5 times the thickness of the ceramic plate.
  5.  上記低膨張板の線膨張係数は、上記セラミックス板の線膨張係数の0.5~2.5倍である、請求項1~4のいずれか1項に記載の回路基板付きヒートシンク。 The heat sink with a circuit board according to any one of claims 1 to 4, wherein a linear expansion coefficient of the low expansion plate is 0.5 to 2.5 times a linear expansion coefficient of the ceramic plate.
  6.  上記ベース部の厚みは、上記回路金属層の厚みの0.5~1.5倍である、請求項1~5のいずれか1項に記載の回路基板付きヒートシンク。 The heat sink with a circuit board according to any one of claims 1 to 5, wherein the thickness of the base portion is 0.5 to 1.5 times the thickness of the circuit metal layer.
  7.  上記ヒートシンク本体は、6000系アルミニウム合金から構成されている、請求項1~6のいずれか1項に記載の回路基板付きヒートシンク。 The circuit board heat sink according to any one of claims 1 to 6, wherein the heat sink body is made of a 6000 series aluminum alloy.
  8.  上記ヒートシンク本体は、上記ベース部の外周端縁から立設され、上記低膨張板、上記中間アルミニウム板及び上記回路基板の周囲に配置された外枠部をさらに有しており、上記ベース部における上記低膨張板が配置された板面の裏面を基準としたときに、上記外枠部の高さは、上記回路金属層の高さに対して0.9~1.1倍である、請求項1~7のいずれか1項に記載の回路基板付きヒートシンク。 The heat sink body further includes an outer frame portion that is erected from an outer peripheral edge of the base portion and is arranged around the low expansion plate, the intermediate aluminum plate, and the circuit board. The height of the outer frame portion is 0.9 to 1.1 times the height of the circuit metal layer when the back surface of the plate surface on which the low expansion plate is disposed is used as a reference. Item 8. The heat sink with a circuit board according to any one of Items 1 to 7.
  9.  上記中間アルミニウム板の外周端縁は、上記裏面金属層の外周端縁よりも外方に延出するとともに上記回路基板側に突出しており、上記低膨張板の外周端縁は、上記中間アルミニウム板の外周端縁よりも外方に延出しているとともに上記回路基板側に突出している、請求項1~8のいずれか1項に記載の回路基板付きヒートシンク。 The outer peripheral edge of the intermediate aluminum plate extends outward from the outer peripheral edge of the back metal layer and protrudes toward the circuit board side, and the outer peripheral edge of the low expansion plate is the intermediate aluminum plate The heat sink with a circuit board according to any one of claims 1 to 8, wherein the heat sink extends outward from an outer peripheral edge of the circuit board and protrudes toward the circuit board.
  10.  請求項1~9のいずれか1項に記載の回路基板付きヒートシンクの製造方法であって、
     上記ベース部上に載置された下側ろう箔と、該下側ろう箔上に載置された上記低膨張板と、該低膨張板上に載置された中間ろう箔と、該中間ろう箔上に載置された上記中間アルミニウム板と、該中間アルミニウム板上に載置された上側ろう箔と、該上側ろう箔と上記裏面金属層とが当接するように載置された上記回路基板とを有する被処理物を組み立て、
     上記回路基板を上記ベース部側に押圧しつつ上記被処理物を加熱することにより、該被処理物のろう付を一括して行う、回路基板付きヒートシンクの製造方法。
    A method for manufacturing a heat sink with a circuit board according to any one of claims 1 to 9,
    A lower wax foil placed on the base portion, the low expansion plate placed on the lower wax foil, an intermediate wax foil placed on the low expansion plate, and the intermediate wax The intermediate aluminum plate placed on the foil, the upper brazing foil placed on the intermediate aluminum plate, and the circuit board placed so that the upper brazing foil and the back metal layer are in contact with each other Assembling the workpiece having
    A method of manufacturing a heat sink with a circuit board, wherein the object to be processed is heated in a lump by heating the object to be processed while pressing the circuit board toward the base part.
PCT/JP2017/020317 2016-06-16 2017-05-31 Heat sink with circuit board and method for producing same WO2017217236A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-119666 2016-06-16
JP2016119666A JP2017224748A (en) 2016-06-16 2016-06-16 Heat sink with circuit board and method for manufacturing the same

Publications (1)

Publication Number Publication Date
WO2017217236A1 true WO2017217236A1 (en) 2017-12-21

Family

ID=60663619

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/020317 WO2017217236A1 (en) 2016-06-16 2017-05-31 Heat sink with circuit board and method for producing same

Country Status (2)

Country Link
JP (1) JP2017224748A (en)
WO (1) WO2017217236A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020178031A (en) * 2019-04-18 2020-10-29 昭和電工株式会社 Heat dissipation device and manufacturing method thereof
JP7170614B2 (en) 2019-09-18 2022-11-14 株式会社東芝 semiconductor equipment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001148451A (en) * 1999-03-24 2001-05-29 Mitsubishi Materials Corp Power module board
JP2004235387A (en) * 2003-01-30 2004-08-19 Sumitomo Metal Electronics Devices Inc Substrate for power module
JP2010093225A (en) * 2008-03-17 2010-04-22 Mitsubishi Materials Corp Substrate for power module with heat sink and method for manufacturing the same, power module with heat sink, and substrate for power module
JP2012146864A (en) * 2011-01-13 2012-08-02 Toyota Industries Corp Double-sided substrate, semiconductor device, and manufacturing method of the same
JP2013225686A (en) * 2013-06-13 2013-10-31 Dowa Metaltech Kk Method of manufacturing metal-ceramic junction substrate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001148451A (en) * 1999-03-24 2001-05-29 Mitsubishi Materials Corp Power module board
JP2004235387A (en) * 2003-01-30 2004-08-19 Sumitomo Metal Electronics Devices Inc Substrate for power module
JP2010093225A (en) * 2008-03-17 2010-04-22 Mitsubishi Materials Corp Substrate for power module with heat sink and method for manufacturing the same, power module with heat sink, and substrate for power module
JP2012146864A (en) * 2011-01-13 2012-08-02 Toyota Industries Corp Double-sided substrate, semiconductor device, and manufacturing method of the same
JP2013225686A (en) * 2013-06-13 2013-10-31 Dowa Metaltech Kk Method of manufacturing metal-ceramic junction substrate

Also Published As

Publication number Publication date
JP2017224748A (en) 2017-12-21

Similar Documents

Publication Publication Date Title
JP6488917B2 (en) Power module substrate with heat sink and power module
CN110383468B (en) Substrate with radiating fin for power module
JP6307832B2 (en) Power module board, power module board with heat sink, power module with heat sink
US9786577B2 (en) Power module substrate, heat-sink-attached power-module substrate, and heat-sink-attached power module
JP4524716B2 (en) Power module substrate with heat sink and method for manufacturing the same, power module with heat sink, and substrate for power module
US20170053852A1 (en) Power-module substrate unit and power module
JP6435945B2 (en) Power module board with heat sink
EP3166140A1 (en) Substrate unit for power modules, and power module
JP6011552B2 (en) Power module substrate with heat sink and manufacturing method thereof
JP5966512B2 (en) Manufacturing method of power module substrate with heat sink
WO2017217236A1 (en) Heat sink with circuit board and method for producing same
JP2016072563A (en) Manufacturing method of substrate for power module with heat sink
WO2019189329A1 (en) Insulated circuit board with heat sink
JP2018133350A (en) Heat sink with circuit board and manufacturing method thereof
JP5786569B2 (en) Power module substrate manufacturing method
JP5987418B2 (en) Manufacturing method of power module substrate with heat sink
JP5914968B2 (en) Power module substrate with heat sink and manufacturing method thereof
JP6020256B2 (en) Manufacturing method of power module substrate with heat sink
JP2018056275A (en) Circuit board-attached heat sink and method for manufacturing the same
JP6638284B2 (en) Substrate for power module with heat sink and power module
JP2017183533A (en) Heat sink with circuit board and manufacturing method therefor
JP6264822B2 (en) Power module substrate with heat sink and manufacturing method thereof
JP2018046106A (en) Copper/titanium/aluminum conjugate, insulation circuit board, insulation circuit board with heat sink, power module, led module, and electro-thermal module
JP6118583B2 (en) Insulating substrate
JP2019140198A (en) Heat sink with circuit board

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17813138

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17813138

Country of ref document: EP

Kind code of ref document: A1