WO2016099226A1 - Novel porcine epidemic diarrhea virus and use thereof - Google Patents

Novel porcine epidemic diarrhea virus and use thereof Download PDF

Info

Publication number
WO2016099226A1
WO2016099226A1 PCT/KR2015/014029 KR2015014029W WO2016099226A1 WO 2016099226 A1 WO2016099226 A1 WO 2016099226A1 KR 2015014029 W KR2015014029 W KR 2015014029W WO 2016099226 A1 WO2016099226 A1 WO 2016099226A1
Authority
WO
WIPO (PCT)
Prior art keywords
seq
virus
isolate
protein
pedv
Prior art date
Application number
PCT/KR2015/014029
Other languages
French (fr)
Korean (ko)
Inventor
이창희
Original Assignee
경북대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경북대학교 산학협력단 filed Critical 경북대학교 산학협력단
Publication of WO2016099226A1 publication Critical patent/WO2016099226A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K35/00Medicinal preparations containing materials or reaction products thereof with undetermined constitution
    • A61K35/66Microorganisms or materials therefrom
    • A61K35/76Viruses; Subviral particles; Bacteriophages
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N7/00Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses

Definitions

  • the present invention relates to a novel Porcine Epidemic Diarrhea Virus (PEDV) Korean isolate.
  • PEDV Porcine Epidemic Diarrhea Virus
  • the present invention relates to a porcine epidemic diarrhea (PED) vaccine composition
  • PED porcine epidemic diarrhea
  • the present invention also relates to a pharmaceutical composition for preventing or treating porcine epidemic diarrhea (PED) comprising the virus, the culture of the virus or an antigen thereof as an active ingredient.
  • PED porcine epidemic diarrhea
  • the present invention also relates to a composition for diagnosing porcine epidemic diarrhea (PED) comprising the virus, the culture of the virus or its antigen, or an agent capable of detecting the same as an active ingredient.
  • PED porcine epidemic diarrhea
  • the present invention also relates to a pharmaceutical composition for preventing or treating Porcine Epidemic Diarrhea (PED), comprising the virus growth inhibitor.
  • PED Porcine Epidemic Diarrhea
  • Porcine epidemic diarrhea virus causes acute enterocolitis and watery diarrhea in piglets, especially in young piglets, with a 100% mortality rate.
  • PED virus (PEDV), a pathogenic inducer of PED, was identified as the corona virus in 1978, and belongs to the genus Nidovirales, Coronaviridae, and Alphacoronavirus (Lai et al., 2007; Pensaert and de Bouck, 1978; Saif et al., 2012).
  • PEDV is an enveloped virus that contains about 28 kb of single-stranded positive sense RNA genome with a 5 'cap and a 3' poly A tail (Pensaert and de Bouck, 1978; Saif et al., 2012).
  • Spike proteins are the major envelope glycoproteins of virions, which interact with cellular receptors to mediate viral entry and neutralization of antibodies in natural hosts (Jackwood et al. , 2001; Lai et al., 2007; Lee et al., 2010).
  • PEDV S glycoprotein is a viral gene that determines the genetic relevance of isolates of PEDV, or is suitable for diagnostic assay development and vaccine development (Chen et al., 2014; Gerber et al., 2014; Lee et. al., 2010; Lee and Lee, 2014; Oh et al., 2014).
  • PED occurred every year and caused huge economic losses to the Korean pig industry by early 2010.
  • FMD foot-and-mouth disease
  • the inventor of the present invention isolated the PED virus field strain currently in the country for the first time in the swine flu diarrhea-positive fecal specimens, and confirmed the in vitro characteristics, including the culture method for this field strain, viral gene analysis and in vivo pathogenic characteristics The present invention has been completed.
  • one aspect of the present invention is to provide a novel Porcine Epidemic Diarrhea Virus (PEDV) Korean isolate.
  • PEDV Porcine Epidemic Diarrhea Virus
  • an aspect of the present invention is to provide a Porcine Epidemic Diarrhea (PED) vaccine composition
  • PED Porcine Epidemic Diarrhea
  • an aspect of the present invention is to provide a pharmaceutical composition for preventing or treating swine epidemic diarrhea (PED) comprising the virus, the culture of the virus or an antigen thereof as an active ingredient.
  • PED swine epidemic diarrhea
  • Another aspect of the present invention is to provide a composition for diagnosing Porcine Epidemic Diarrhea (PED) comprising the virus, the culture of the virus or an antigen thereof as an active ingredient.
  • PED Porcine Epidemic Diarrhea
  • Another aspect of the present invention is to provide a pharmaceutical composition for preventing or treating Porcine Epidemic Diarrhea (PED), comprising the virus growth inhibitor.
  • PED Porcine Epidemic Diarrhea
  • One aspect of the invention provides a novel Porcine Epidemic Diarrhea Virus (PEDV) Korean isolate.
  • PEDV Porcine Epidemic Diarrhea Virus
  • the present inventors classified the PED virus which was first prevalent in 2014 from porcine diarrhea-positive feces and obtained the mutated virus induced by such PEDV and subculture, and identified in vitro characteristics and in vivo pathogenic characteristics and sequence thereof. It was.
  • the present invention provides a swine epidemic diarrhea virus (PEDV) Korean isolate comprising the amino acid sequence of SEQ ID NO: 1 or an amino acid sequence having a homology of 98% or more and comprising a spike protein having an equivalent immunogenicity. to provide.
  • PEDV swine epidemic diarrhea virus
  • Porcine epidemic diarrhea virus belongs to the family of coronaviridae (coronaviridae) has a single stranded RNA genome (genome) of about 28Kb in length, the three major constituent proteins spike protein (180-220KDa) ) And membrane protein or envelope protein (27-32 KDa) and nucleocapsid protein (55-58 KDa) (Shenyang 2007). It has a structure similar to that of the same species SARS coronavirus and is cultured in African green monkey kidney cells with trypsin added (Kim 2003; Stadler 2003; Vol. 2009).
  • Spike protein is a major constituent protein of PEDV, and has a biologically important function of recognizing target cells and fusing viruses and cellular membranes (Chang 2002).
  • Porcine Epidemic Diarrhea Virus (PEDV) Korean isolates of the present invention may comprise an amino acid sequence of SEQ ID NO: 1, or may comprise an amino acid sequence exhibiting at least 98% homology with the amino acid sequence.
  • the isolate has an amino acid sequence of SEQ ID NO: 1 and preferably 98%, 98,5%, 99%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8% or 99.9% It may include an amino acid showing homology of.
  • the amino acid sequence showing 98% or more homology with the amino acid sequence of SEQ ID NO: 1 preferably shows an immunogenicity equivalent to or corresponding to the amino acid sequence of SEQ ID NO: 1.
  • the amino acid sequence having at least 98% homology may be an amino acid sequence selected from the group consisting of SEQ ID Nos: 8, 15, 22, 28, 34, and 40.
  • the isolate is preferably an ORF (open reading frame) 1a / 1b of SEQ ID NO: 2, ORF 3 of SEQ ID NO: 3, envelope protein of SEQ ID NO: 4, membrane protein of SEQ ID NO: 5 (membrane protein) And, and may further comprise one or more amino acid sequence selected from the group consisting of the nucleocapsid protein of SEQ ID NO: 6 or an amino acid sequence having at least 98% homology thereto. More preferably, the separation strain may be composed of the amino acid sequence of SEQ ID NO. Most preferably, the isolate may be one deposited with accession number KCTC12736BP.
  • the present inventors deposited the KNU-141112 virus, a domestic isolate of the swine epidemic diarrhea virus, at the Korea Biotechnology Research Institute Microbial Resource Center, located in Ueun-dong, Yuseong-gu, Daejeon, Korea on December 18, 2014. KCTC12736BP was given.
  • the isolate is a spike protein of SEQ ID NO: 8, ORF (open reading frame) 1a / 1b of SEQ ID NO: 9, ORF 3 of SEQ ID NO: 10, envelope protein of SEQ ID NO: 11, membrane protein of SEQ ID NO: 12 (membrane protein), and at least one amino acid sequence selected from the group consisting of a nucleocapsid protein of SEQ ID NO: 13, preferably the isolate is composed of the amino acid sequence of SEQ ID NO: 14 Can be.
  • the isolate is a spike protein of SEQ ID NO: 15, ORF (open reading frame) 1a / 1b of SEQ ID NO: 16, ORF 3 of SEQ ID NO: 17, envelope protein of SEQ ID NO: 18, membrane protein of SEQ ID NO: 19 (membrane protein), and one or more amino acid sequences selected from the group consisting of the nucleocapsid protein of SEQ ID NO: 20, preferably, the isolate consists of the amino acid sequence of SEQ ID NO: 21 Can be.
  • the isolate is a spike protein of SEQ ID NO: 22, ORF 3 of SEQ ID NO: 23, envelope protein of SEQ ID NO: 24, membrane protein of SEQ ID NO: 25, and neurocapside protein of SEQ ID NO: 26 (nucleocapsid protein) may include one or more amino acid sequences selected from the group consisting of, preferably, the isolate may include the amino acid sequence of SEQ ID NO: 27.
  • the isolate is a spike protein of SEQ ID NO: 28, ORF 3 of SEQ ID NO: 29, envelope protein of SEQ ID NO: 30, membrane protein of SEQ ID NO: 31, neurocapside protein of SEQ ID NO: 32 (nucleocapsid protein) may include one or more amino acid sequences selected from the group consisting of, preferably, the isolate may comprise the amino acid sequence of SEQ ID NO: 33.
  • the isolate has a spike protein of SEQ ID NO: 34, ORF 3 of SEQ ID NO: 35, an envelope protein of SEQ ID NO: 36, a membrane protein of SEQ ID NO: 37, and a neurocapside protein of SEQ ID NO: 38 (nucleocapsid protein) may include one or more amino acid sequences selected from the group consisting of, preferably, the isolate may include the amino acid sequence of SEQ ID NO: 39.
  • the isolate is a spike protein of SEQ ID NO: 40, ORF 3 of SEQ ID NO: 41, envelope protein of SEQ ID NO: 42, membrane protein of SEQ ID NO: 43, and neurocapside protein of SEQ ID NO: 44 (nucleocapsid protein) may include one or more amino acid sequences selected from the group consisting of, preferably, the isolate may include amino acids of SEQ ID NO: 45.
  • KNU-141112-feces spike protein One KNU-141112-P3spike protein 22 KNU-141112-feces ORF1a / 1b 2 KNU-141112-P3ORF3 23 KNU-141112-feces ORF3 3 KNU-141112-P3envelope protein 24 KNU-141112-feces envelope protein 4 KNU-141112-P3membrane protein 25 KNU-141112-feces membrane protein 5 KNU-141112-P3nucleocapsid protein 26 KNU-141112-feces nucleocapsid protein 6 KNU-141112-P3complete cds 27 KNU-141112-feces complete genome 7 KNU-141112-P4 spike protein 28 KNU-141112-p5 spike protein 8 KNU-141112-P4 ORF3 29 KNU-141112- p5 ORF1a / 1b 9 KNU-141112-P4 envelope protein 30 KNU-141112- p5 ORF
  • an aspect of the present invention provides a Porcine Epidemic Diarrhea (PED) vaccine composition
  • PED Porcine Epidemic Diarrhea
  • the term “vaccine” refers to a biological agent containing an antigen that immunizes a living body, and refers to an immunogen or antigenic substance that immunizes the living body by injection or oral administration to a human or animal to prevent infection. .
  • In vivo immunization is largely divided into autoimmunity, in which immunity is automatically obtained after infection by pathogens, and passive immunity obtained by an externally injected vaccine. While autoimmunity is characterized by a long period of generation of antibodies related to immunity and continuous immunity, passive immunization with vaccines acts immediately to treat infectious diseases, but has a disadvantage of poor sustainability.
  • the term "immunogen” or "antigenic substance” is composed of a peptide derived from the virus, a polypeptide, a lactic acid bacterium expressing the polypeptide, a protein, a lactic acid bacterium expressing the protein, an oligonucleotide, a polynucleotide, and a recombinant virus. It may be any one selected from the group.
  • the antigenic material may be in the form of an inactivated whole or partial viral preparation, or in the form of an antigen molecule obtained by conventional protein purification, genetic engineering techniques or chemical synthesis.
  • the content of the antigen may be 1 to 10% by weight relative to the total weight of the vaccine composition, preferably 5% by weight or less.
  • Vaccine compositions according to the invention are stabilizers, emulsifiers, aluminum hydroxide, aluminum phosphate, pH adjusters, surfactants, liposomes, iscom adjuvants, synthetic glycopeptides, extenders, carboxypolymethylenes, bacterial cell walls, derivatives of bacterial cell walls, Bacterial vaccine, animal poxvirus protein, subviral particle adjuvant, cholera toxin, N, N-dioctadecyl-N ', N'-bis (2-hydroxyethyl) -propanediamine, monophosphoryl lipid A, dimethyldioctadecyl-ammonium bromide and mixtures thereof may be further contained in at least one second adjuvant.
  • the vaccine composition of the present invention may comprise a veterinary acceptable carrier.
  • a veterinary acceptable carrier includes any and all solvents, dispersion media, coatings, adjuvant, stabilizers, diluents, preservatives, antibacterial and antifungal agents, isotonic agents, adsorptive delay agents and the like.
  • Carriers, excipients, and diluents that may be included in the composition for vaccines include lactose, dextrose, sucrose, sorbitol, mannitol, xylitol, maltitol, starch, glycerin, starch, acacia rubber, alginate, gelatin, calcium phosphate, calcium silicate, Cellulose, methyl cellulose, microcrystalline cellulose, polyvinyl pyrrolidone, water, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate and mineral oil.
  • the vaccine composition of the present invention can be used in the form of oral dosage forms, such as powders, granules, tablets, capsules, suspensions, emulsions, syrups, aerosols, and sterile injectable solutions, respectively, according to conventional methods.
  • oral dosage forms such as powders, granules, tablets, capsules, suspensions, emulsions, syrups, aerosols, and sterile injectable solutions, respectively, according to conventional methods.
  • diluents or excipients such as fillers, extenders, binders, wetting agents, disintegrating agents, surfactants, etc. which are commonly used can be prepared.
  • Solid preparations for oral administration include tablets, pills, powders, granules, capsules, and the like, and such solid preparations include at least one excipient such as starch, calcium carbonate, shoe, etc., in the lecithin-like emulsifier.
  • Sucrose or lactose, gelatin and the like can be mixed and prepared.
  • lubricants such as magnesium styrate talc may also be used.
  • a liquid preparation for oral administration suspending agents, liquid solutions, emulsions, syrups, etc. may be used, and various excipients, such as wetting agents, sweeteners, fragrances, and preservatives, in addition to commonly used simple diluents such as water and liquid paraffin Can be.
  • Formulations for parenteral administration include sterile aqueous solutions, non-aqueous solutions, suspensions, emulsions, lyophilized preparations.
  • the non-aqueous preparation and suspending agent propylene glycol, polyethylene glycol, vegetable oils such as olive oil, injectable esters such as ethyl oleate and the like can be used.
  • the vaccine can be injected into a subject in various forms.
  • injection can be performed by any one method selected from the group consisting of subcutaneous injection, intramuscular injection, subcutaneous injection, intraperitoneal injection, nasal administration, oral administration, transdermal administration and oral administration.
  • the term "injection” or “administration” may vary depending on the age, sex, and weight of the subject to be administered, and the dose of the vaccine also depends on the route of administration, the degree of disease, sex, weight, age, and the like.
  • the immunoadjuvant for the vaccine of the present invention can be used together when administering vaccines by parenteral, mucosal (oral and nasal) and transdermal routes.
  • Vaccine compositions of the present invention may include one or more adjuvants and the like to improve or enhance an immune response.
  • Suitable auxiliaries include compositions consisting of mineral oils or vegetable oils such as peptides, aluminum hydroxides, aluminum phosphates, aluminum oxides and Marcol 52 and one or more emulsifiers or surface actives such as lysolececitin, polyvalent cations, polyvalent anions and the like.
  • the vaccine composition of the present invention may further comprise one or more immunostimulants, preferably cholera toxin (CT), aluminum hydroxide, carbopol, mineral oil or Biodegradable Oil may be included.
  • immunostimulants preferably cholera toxin (CT), aluminum hydroxide, carbopol, mineral oil or Biodegradable Oil may be included.
  • immunosenser in the present invention generally refers to any substance that increases the humoral and / or cellular immune response to the antigen.
  • Traditional vaccines consist of unprocessed preparations of dead pathogenic microorganisms, while impurities associated with cultures of pathogenic microorganisms can act as an adjuvant to enhance the immune response, but homogeneous preparations of purified protein subunits can be used as antigens for vaccination.
  • the immunity triggered by such antigens is insufficient, requiring the addition of some foreign substance as an adjuvant.
  • an adjuvant smaller doses of antigen may be required to stimulate an immune response, thereby reducing the cost of vaccine production.
  • These adjuvants are classified according to their raw materials (minerals, bacteria, plants) and components (emulsion suspensions). Commercially available adjuvants include aluminum hydroxide, carbopol, mineral oil (mineral oil) or biodegradable oil.
  • the vaccine may be live or dead vaccine.
  • Live vaccine or live vaccine means a virus that shows the absence or reduction of clinical symptoms of the disease when administered to an animal by weakening the pathogenicity of a bacterium or virus, and the attenuated strain of the present invention is a method known in the art, for example, The virus can be isolated through passage of the virus.
  • Bacillus vaccine or deadly poisoned vaccine is inactivated pathogenicity without losing immunogenicity by heating bacteria or virus (56 ⁇ 60 °C, 30 ⁇ 60 minutes) or chemicals such as formalin or phenol. Inactivation of the virus may be by methods known in the art.
  • the present invention provides a pharmaceutical composition for preventing or treating swine epidemic diarrhea (PED) comprising the virus, the culture of the virus or an antigen thereof as an active ingredient.
  • PED swine epidemic diarrhea
  • prevention refers to any action that inhibits or delays the PEDV infection by administration of the virus, a culture of the virus, or a composition containing the antigen as an active ingredient.
  • treatment refers to any action in which the symptoms of infection of PEDV are improved or benefited by administration of the culture of the virus or a composition containing the antigen as an active ingredient.
  • the pharmaceutical composition can be used, for example, as a feed additive.
  • the feed of the present invention may be properly configured by those skilled in the art in various forms of composition known in the art as long as the feed additive according to the present invention as an active ingredient, preferably 20% protein, fat, ether extract 4.5 %, Fat, acid hydrolysis 5.4%, crude fiber 4.7%, ash 6%, calcium 0.80% and phosphate 0.62%.
  • an aspect of the present invention provides a composition for diagnosing swine epidemic diarrhea (Porcine Epidemic Diarrhea, PED) comprising the virus, the culture of the virus or an antigen or an agent capable of detecting the same as an active ingredient.
  • swine epidemic diarrhea Pane Epidemic Diarrhea, PED
  • the virus, the culture of the virus or the agent capable of detecting the antigen thereof may preferably be an antibody specific for the virus, the culture of the virus or the antigen thereof.
  • the term "antibody” is a substance produced by the stimulation of the antigen in the immune system, also called immunoglobulin, and specifically binds to a specific antigen, floating the lymph and blood, causing an antigen-antibody reaction. While antibodies exhibit specificity for specific antigens, immunoglobulins include both antibodies and antibody like substances lacking antigen specificity. The latter polypeptide is produced at low levels, for example in the lymphatic system, and at elevated levels by myeloma. In the present invention, the PEDV itself, the spike protein, or may be an epitope included therein.
  • the antibody may be a monoclonal or polyclonal antibody.
  • an aspect of the present invention provides a pharmaceutical composition for preventing or treating Porcine Epidemic Diarrhea (PED), comprising the virus growth inhibitor.
  • PED Porcine Epidemic Diarrhea
  • Inhibitors of growth of the virus include: siRNA (small interference RNA), shRNA (short hairpin RNA), miRNA (microRNA), ribozyme, DNAzyme, peptide nucleic acids against the virus, the culture of the virus or antigens thereof. ), Antisense oligonucleotides, antibodies, aptamers, natural extracts, chemicals, and the like. Preferably it may be an antibody.
  • isolated PED virus outdoor strain currently in the first in Korea in the swine-like diarrhea-positive fecal specimen the outdoor strain shows the pathogenicity of the typical PEDV, based on this, can be applied to a variety of vaccine compositions, therapeutics, diagnostics, etc. It is expected to be.
  • Figure 1 shows the cytopathology and IFA results of KNU-141112 PEDV isolate infected with Vero cells.
  • Vero cells were gastric-infected or infected with PEDV KNU-141112-P5 and KNU-141112-P10 isolates.
  • PEDV-specific CPE was observed daily and photographed using an inverted microscope at a magnification of 200 ⁇ at 24 hpi (first panel).
  • infected cells were fixed at 24 hpi, incubated with Mab for N protein, and incubated with Alexa green-conjugated goat anti-mouse secondary antibody (second panel). Cells were then counterstained with DAPI (third panel) and identified by fluorescence spectroscopy at 200 ⁇ magnification.
  • Figure 2 shows the growth kinetics of KNU-141112 in Vero cells.
  • Virus titers at selected passages Vero cells were infected with PEDV KNU-141112 recovered from the indicated passage numbers. At 24 or 48 hpi, viral supernatants were collected and virus titers were determined.
  • FIG. 1 shows the proliferation curve of KNU-141112. Vero cells were independently infected with PEDV KNU-141112-P10, -P20, and -P30. At the indicated time points after infection, the culture supernatants were recovered and virus titers were determined. TCID 50 (50% tissue culture infectious dose) was calculated. Results are expressed as mean values in three wells, with error bars representing standard deviation.
  • Fig. 3 shows the titers of virus neutralizing antibodies in the serum of guinea pigs inoculated with PEDV KNU-141112 isolates.
  • Guinea pigs were immunized twice with subcutaneous administration of inactivated KNU-141112-P10. Blood samples were collected before immunization and two weeks after the second immunization, virus neutralization assays were performed using homologous (KNU-141112; original) and heterologous (SM98-1; rhombus) viruses.
  • Neutralizing antibody titers of each of the infected animals were plotted in log 2 values. Values are presented as the average of two independent experiments, with error bars representing standard deviations.
  • Figure 4 shows the microscopic and macroscopic observations of the intestine of the lower limbs inoculated with KNU-141112 in Korean PEDV strain.
  • the small intestine at 2 DPI of infected pigs shows a thin, transparent barrier and an expanded stomach filled with curds.
  • Figure 5 shows the phylogenetic analysis results based on the nucleotide sequence of the spike gene (A) and the full-length genome of the PEDV strain. Tentative similar sites and complete genome sequences of spike proteins of TGEV were included as outgroups within each panel. Multi-sequencing alignments were performed using the ClustalX program, and phylogenetic trees were prepared using the neighbor-joining method with the aligned nucleotide sequences. The number of branches represents a bootstrap value of at least 50% of 1000 replicates. The name, country, and year of isolation, GeneBank accession number, and genogroups and subgroups are shown. PEDV isolates identified in the present invention are shown in a circle. Scale bar means nucleotide substitution at each position.
  • Vero cells ATCC CCL-81 were incubated in ⁇ -MEM containing 5% FBS (Invitrogen) and antibiotic-antimycotic solutions (100 ⁇ ; Invitrogen) and maintained at 37 ° C. in a 5% CO 2 incubator. Seven small intestinal crushes and 50 stool samples positively identified by RT-PCR using the i- TGE / PED Detection Kit (iNtRON Biotechnology, Seongnam, South Korea) were selected for virus isolation experiments. Small intestine mills were prepared as a 10% (wt / vol) suspension in PBS by running MagNA Lyser (Roche Diagnostics, Mannheim, Germany) three times at 7,000 rpm for 15 seconds.
  • MagNA Lyser Roche Diagnostics, Mannheim, Germany
  • Fecal samples were diluted with 10% (wt / vol) suspension in PBS. The suspension was then stirred and centrifuged with 4,500 ⁇ g (Hanil Centrifuge FLETA5, Incheon, South Korea) for 10 minutes. Supernatants were filtered through a 0.22- ⁇ m syringe filter (Millipore, Billerica, Mass.) And stored at ⁇ 80 ° C. until used as inoculum of virus isolates.
  • Virus isolates of PEDV were applied to Vero cells. Specifically, confluent Vero cells grown in 6-well plates were washed with PBS and seeded with 400 ⁇ l sample containing 10 ⁇ g / ml trypsin (USB, Cleveland, OH). After incubation at 37 ° C. for 1 hour, 2 ml of virus growth medium [antibiotic-antifungal solution, 0.3% TPB (Sigma, St. Louis, MO), 0.02% yeast extract (Difco, Detroit, MI), 10 mM HEPES ( Invitrogen), and ⁇ -MEM supplemented with 5 ⁇ g / ml trypsin. Inoculated cells were maintained at 37 ° C.
  • tissue culture dishes 100 millimeter diameter tissue culture dishes were used for multiple passages of separation.
  • PEDV N protein-specific monoclonal antibody was obtained from ChoogAng Vaccine Laboratory (CAVAC; Daejeon, South Korea).
  • KNU-141112 virus stock of each passage was infected with Vero cells as described above. Culture supernatants were collected after 24 or 48 hours postinfection (hpi) when 70% CPE was generally exerted. For growth cohort experiments, supernatants were collected from virus infected cells of each selected passage at different time points (6, 12, 24, 36, and 48 hpi) and stored at -80 ° C.
  • Virus titers were measured three times per dilution using a 10-fold dilution of the sample on a 96-well plate, which measures the amount of virus required to form 50% CPE of infected Vero cells, Reed-Muench Calculated as TCID 50 per ml using the method (Reed and Muench, 1938). PEDV titers were also determined by plaque assay, Vero cells, and plaque-forming units (PFU) per ml.
  • PFU plaque-forming units
  • Vero cells grown on microscope coverslides placed on 6-well tissue culture places were infected or infected with PEDV at 0.1 multiplicity of infection (MOI).
  • Virus-infected cells were then propagated up to 24 hpi, fixed at room temperature for 4 minutes with 4% paraformaldehyde and permeabilized for 10 minutes at room temperature with 0.2% Triton 1 X-100 in PBS. Cells were blocked with 1% BSA in PBS for 30 minutes at room temperature and then incubated with N-specific Mab for 2 hours.
  • Virus RNA was extracted using i- TGE / PED Detection Kit from virus isolates or fecal cells prepared as described above. Quantitative real-time RT-PCR was performed using One Step SYBR PrimeScript RT-PCR Kit (TaKaRa, Otsu, Japan). The reaction was performed using a Thermal Cycler Dice Real Time System (TaKaRa), and the results were analyzed using the system described in Sagong and Lee, 2011.
  • Six guinea pigs were immunized subcutaneously with 0.5 ml of binary ethylenimine (BEI) -inactivated KNU-141112-P10 virus in the presence of Freund's complete adjuvant (Sigma), followed by a two week interval. And boosted once with an emulsion of freshly prepared inactivated virus and Freund's complete adjuvant.
  • Two gastric-inoculated guinea pigs were dosed and boosted with cell culture medium in the presence of each adjuvant. Pre-immune serum was collected before the start of immunization and antiserum was collected 2 weeks after the last boost.
  • PEDV-specific neutralizing antibodies in serum samples collected from all groups of guinea pigs was determined by serum neutralization experiments using PEDV isolate KNU-141112 or vaccine SM98-1 in 96-well microtiter plates. . Specifically, Vero cells were grown for 1 day in 2 ⁇ 10 4 / well in 96-well tissue culture plates. KNU-141112-P10 virus stock was diluted with serum free ⁇ -MEM to 200 TCID in 50 ⁇ l volume. Subsequently, the diluted virus was mixed with 50 ⁇ l of 2-fold step diluent of individually inactivated serum in 96-well plates. The mixture was inoculated into Vero cells and incubated at 37 ° C. for 1 hour.
  • the mixture was removed and the cells washed with PBS five times and kept in virus growth medium at 37 ° C. in a 5% CO 2 incubator for two days.
  • PEDV strain SM98-1 propagated in the presence of trypsin was diluted with serum-free ⁇ -MEM to make 200 PFU in 50 ⁇ l volume.
  • the virus diluted as described above in a 96-well plate was then mixed with each serum and incubated at 37 ° C. for 1 hour.
  • about 1 ⁇ 10 4 Vero cells in 100 ⁇ l of ⁇ -MEM containing 5% FBS were added to each well and the mixture was maintained in a CO 2 incubator at 37 ° C. for 3 days.
  • Neutralization titers are calculated as the reciprocal of the highest serum dilution that inhibits virus specific CPE in all duplicate wells.
  • one pig of the PEDV-vaccinated group was orally administered with a 1 ml dose of 10 3 TCID50 / ml KNU-141112-P10 virus.
  • Two pigs were bred in the same room and exposed to the virus by direct contact with the inoculated pigs.
  • Gastric-vaccinated pigs were administered with cell culture medium in placebo.
  • Tissue fixed and embedded in paraffin was cut to 5-8 ⁇ m thick on a microtome (Leica), suspended in a water bath at 40 ° C. containing distilled water, and then moved onto a glass slide. Tissues were deparaffinized in xylene for 5 minutes and washed with decreasing concentrations of ethanol at 100%, 95%, 90%, 80%, and 70% for 3 minutes respectively. Deparaffinized intestinal tissue sections were stained with hematoxylin and eosin (sigma) and subjected to immunostaining assay using PEDV N-specific Mab.
  • Tissue sections embedded in paraffin were deparaffinized, treated with 0.01 M citrate buffer (pH 6.0), placed in a microwave for 5 minutes, cooled at room temperature for 20 minutes, and incubated with 0.3% hydrogen peroxide in DW for 20 minutes. Endogenous peroxidase was blocked. After washing three times with PBS, sections were blocked with normal horse serum (VECTASTAIN ABC Kit; Vector Laboratories, Burlingame, Calif.) And incubated with N-specific Mab for 1 hour at room temperature.
  • VECTASTAIN ABC Kit Vector Laboratories, Burlingame, Calif.
  • the sample was reacted with the equine anti-mouse secondary antibody (VECTASTAIN ABC Kit) for 45 minutes at room temperature, incubated with the avidin-biotin peroxidase complex (VECTASTAIN ABC Kit) for 45 minutes, and DAB substrate Kit (Vector Laboratories). ) Expression.
  • the slides were then counterstained with hematoxylin, dried, washed with xylene, then mounted on a microscope glass slide in the mounting buffer and tissue staining visualized under a microscope.
  • RNA from fecal and P5 and P10 isolates was extracted using the RNeasy Mini Kit (Qiagen, Hilden, Germany) and used as a template for amplifying cDNA fragments.
  • the 5 'and 3' ends of the feces and genomes of the isolates of P5 and P10 were determined using rapid amplification of cDNA end (RACE).
  • KNU-141112-P3, KNU-141112-P4, KNU-141112-P20, and KNU-141112-P30 was determined by the Sanger method, and shown in FIG.
  • the accession number was deposited in the GenBank database.
  • Sequence alignments and phylogenetic analyzes were performed independently on 42 fully sequenced S gene sequences and 25 complete genomes of PEDV isolates. Multi-sequence alignments were generated using the ClustalX 2.0 program (Thompson et al., 1997) and the percentage of nucleotide sequence divergences was measured with the same software.
  • Openings were constructed from aligned nucleotide or amino acid sequences using a neighbor-joining method, followed by bootstrap analysis using replicates, whereby each internal node of the phylogenetic tree ( The percent confidence value on the internal node) was determined. All phylogenetic drawings were generated using Mega 4.0 software (Tamura et al., 2007).
  • PEDV PEDV on Vero cells from a PCR-positive clinical sample containing 50 feces and 7 intestinal mills.
  • one PEDV isolate named KNU-141112 was successfully isolated from feces of naturally infected pigs from a farm located in Gyeongsangbuk-do, which was obtained around September 29, 2014.
  • the present inventors deposited the KNU-141112 virus, a domestic isolate of the swine epidemic diarrhea virus, at the Korea Biotechnology Research Institute microbial resource center located in Eeun-dong, Yuseong-gu, Daejeon, Korea on December 18, 2014. Accession number KCTC12736BP was assigned.
  • KNU-141112 virus exhibited clear CPE, typical of PEDV infection, from passage 3 (P3) to cell fusion, syncytium and detachment in infected Vero cells.
  • the level of viral genome in selected passages was measured by real-time RT-PCR and the mean cycle threshold (Ct) value was determined to be 16.7 in the range of 15.3 (P10) to 18.7 (P5).
  • Ct mean cycle threshold
  • Infectious titers up to P5 of the isolate were determined in the range of 10 5.1 to 10 6.1 TCID 50 / ml, and in subsequent passages were determined to be about 10 7 TCID 50 / ml. From pass 10 the peak virus titer reached 10 7.8 TCID 50 / ml (corresponding to 10 7.5 PFU / ml) (FIG. 2A).
  • Antisera of guinea pigs before preimmune (pre-immune) guinea pigs were collected and tested for neutralization activity against final boost and isolated KNU-141112 or vaccine strains 2 weeks after the last boost.
  • guinea pig antiserum was very effective in suppressing KNU-141112 infection and had an average neutralizing antibody (NA) titer of 1: 112.
  • NA neutralizing antibody
  • relatively low dilution of antiserum completely protected Vero cells from SM98-1 infection, with an average NA titer of 1:37.
  • serologous or unimmunized sera exhibit neutralizing activity for each week.
  • the full-length genome of KOR / KNU-1305 / 2013 PEDV was used as an initial reference for each NGS read, and individual complete genome sequences were successfully obtained by collection of each NGS read.
  • the 5 'and 3' ends of this genome were sequenced with RACE. All three genomes were 28,038 nucleotides in length except for the 3'poly (A) tail, 292-nt 5 'UTR, 20345-nt ORF1a / 1b (nt 293-12601 for 1a, and nt 12601 for 1b).
  • KNU-141112-P5 shows one different nt at position 21756, which results in a change in one amino acid (aa) in the S protein (Lhe to Phe).
  • KNU-141112-P10 obtained two additional nt changes of 21448 and 24492, resulting in two aa mutations on the S protein.
  • KNU-141112-feces, -P5, and -P10 were completely identical to those determined by NGS.
  • One nt change in the S-gene of KNU-141112-P5 occurred from passage 3 (KNU-141112-P3).
  • KNU-141112-P10 KNU-141112-P20 was able to detect two independent mutations at positions 24869 and 25656, which were amino acids of ORF3 (Tyr in Asp) and E (Ser in Pro), respectively. Causing a change, which was maintained up to passage 30.
  • KNU-141112 isolates (feces, 4 P5, and P10) exhibited 8 to 46 nt differences at the genome level with domestic reexpressed virus strains KOR-KNU-1305 and US strain, IN17846 and MN, resulting in the highest nucleotide homology. (99.9%).
  • All three viruses were genetically isolated from the Korean vaccine strains SM98-1 and DR-13, and the original CV777 strain, and exhibited relatively low nucleotide homology in the range of 96.3% to 96.8%.
  • PEDV viruses passaged to all circular feces and up to 30 passages were all recently classified as subgroup 2b, similar to domestic field isolates, and clustered closest to the emerging US strains in adjacent lineages of the same subgroupso. Subsequent phylogenetic analysis using the S1 moiety showed the same grouping structure as the S gene-based phylogenetic tree.

Abstract

The present invention relates to a novel porcine epidemic diarrhea virus (PEDV) Korean isolate. The present invention relates to a porcine epidemic diarrhea (PED) vaccine composition containing, as an active ingredient, the virus, a culture of the virus, or an antigen therefor. In addition, the present invention relates to a pharmaceutical composition for preventing or treating porcine epidemic diarrhea (PED), containing, as an active ingredient, the virus, a culture of the virus, or an antigen therefor. In addition, the present invention relates to a composition for diagnosing porcine epidemic diarrhea (PED), containing, as an active ingredient, the virus, a culture of the virus, an antigen therefor, or an agent capable of detecting the virus. In addition, the present invention relates to a pharmaceutical composition for preventing or treating porcine epidemic diarrhea (PED), containing an inhibitor of growth of the virus.

Description

신규한 돼지 유행성설사 바이러스 및 그의 이용Novel swine epidemic virus and its use
본 발명은 신규한 돼지 유행성 설사병 바이러스 (Porcine Epidemic Diarrhea Virus, PEDV) 대한민국 분리주에 관한 것이다. The present invention relates to a novel Porcine Epidemic Diarrhea Virus (PEDV) Korean isolate.
본 발명은 상기 바이러스, 상기 바이러스의 배양물 또는 이의 항원을 유효성분으로 포함하는 돼지 유행성 설사병 (Porcine Epidemic Diarrhea, PED) 백신 조성물에 관한 것이다. The present invention relates to a porcine epidemic diarrhea (PED) vaccine composition comprising the virus, the culture of the virus or an antigen thereof as an active ingredient.
또한, 본 발명은 상기 바이러스, 상기 바이러스의 배양물 또는 이의 항원을 유효성분으로 포함하는 돼지 유행성 설사병 (Porcine Epidemic Diarrhea, PED) 예방 또는 치료용 약학적 조성물에 관한 것이다. The present invention also relates to a pharmaceutical composition for preventing or treating porcine epidemic diarrhea (PED) comprising the virus, the culture of the virus or an antigen thereof as an active ingredient.
또한, 본 발명은 상기 바이러스, 상기 바이러스의 배양물 또는 이의 항원, 또는 이를 검출할 수 있는 제제를 유효성분으로 포함하는 돼지 유행성 설사병 (Porcine Epidemic Diarrhea, PED) 진단용 조성물에 관한 것이다. The present invention also relates to a composition for diagnosing porcine epidemic diarrhea (PED) comprising the virus, the culture of the virus or its antigen, or an agent capable of detecting the same as an active ingredient.
또한, 본 발명은 상기 바이러스 생장 억제제를 포함하는, 돼지 유행성 설사병 (Porcine Epidemic Diarrhea, PED) 예방 또는 치료용 약학적 조성물에 관한 것이다. The present invention also relates to a pharmaceutical composition for preventing or treating Porcine Epidemic Diarrhea (PED), comprising the virus growth inhibitor.
돼지유행성 설사 바이러스(porcine epidemic diarrhea virus; PED virus)는 자돈에서 급성 장염과 수양성 설사를 유발하며 특히 어린 자돈에 있어서는 폐사율이 100%에 달하는 돼지 바이러스성 원인체이다.Porcine epidemic diarrhea virus (PED virus) causes acute enterocolitis and watery diarrhea in piglets, especially in young piglets, with a 100% mortality rate.
이 질환은 1971년 영국에서 최초로 보고되었으며, 유럽의 양돈국에 빠르게 퍼져나갔다. 1990년대, PED는 유럽에서는 희귀해졌으며, 성체 돼지에서 이유후 설사에 관련이 높아졌다. PED는 1982에 아시아세서 보곡되었으며, 그 후 아시아 양돈산업에 큰 경제적 손해를 야기하였다 (Chen et al., 2008; Kweon et al., 1993; Li et al., 2012; Puranaveja et al., 2009; Takahashi et al., 1983).The disease was first reported in the United Kingdom in 1971 and quickly spread to pig farms in Europe. In the 1990s, PEDs became rare in Europe and were associated with weaning diarrhea in adult pigs. PED was circulated in Asia in 1982 and subsequently caused significant economic losses to the Asian pig industry (Chen et al., 2008; Kweon et al., 1993; Li et al., 2012; Puranaveja et al., 2009; Takahashi et al., 1983).
2013년 5월, PED가 미국에 창궐하였으며, 캐나다 및 맥시코로 전세계적으로 퍼졌으며, 이에 의하여 신생돈의 대량 사멸 및 거대한 경제적 우려를 야기하였다 (Mole, 2013; Stevenson et al., 2013 Vlasova et al., 2014).In May 2013, the PED outbreaked in the United States and spread worldwide in Canada and Mexico, causing massive killing of new pigs and huge economic concerns (Mole, 2013; Stevenson et al., 2013 Vlasova et al. ., 2014).
PED의 병원성 유발물인 PED 바이러스 (PEDV)는 1978년도에 코로나 바이러스로 확인되었으며, Nidovirales 목, Coronaviridae 과, Alphacoronavirus 속에 해당한다 (Lai et al., 2007; Pensaert and de Bouck, 1978; Saif et al., 2012). PED virus (PEDV), a pathogenic inducer of PED, was identified as the corona virus in 1978, and belongs to the genus Nidovirales, Coronaviridae, and Alphacoronavirus (Lai et al., 2007; Pensaert and de Bouck, 1978; Saif et al., 2012).
PEDV는 5' 캡과 3' 폴리 A tail을 가지는 약 28 kb의 단일-가닥 포지티브 센스 RNA 게놈을 포함하고 있는 외막 (enveloped) 바이러스이다 (Pensaert and de Bouck, 1978; Saif et al., 2012). 스파이크 (S, spike) 단백질은 비리온 (virion)의 주요 외피 당단백질로, 바이러스의 진입 및 자연숙주에서의 항체의 중화를 매개하기 위하여, 세포 수용체와 상호작용하는 역할을 수행한다 (Jackwood et al., 2001; Lai et al., 2007; Lee et al., 2010). 이에 따라, PEDV S 당단백질은 PEDV의 분리주의 유전적 관련성을 결정하고나, 진단 어세이 개발 및 백신의 개발에 적합한 바이러스 유전자이다 (Chen et al., 2014; Gerber et al., 2014; Lee et al., 2010; Lee and Lee, 2014; Oh et al., 2014).PEDV is an enveloped virus that contains about 28 kb of single-stranded positive sense RNA genome with a 5 'cap and a 3' poly A tail (Pensaert and de Bouck, 1978; Saif et al., 2012). Spike proteins are the major envelope glycoproteins of virions, which interact with cellular receptors to mediate viral entry and neutralization of antibodies in natural hosts (Jackwood et al. , 2001; Lai et al., 2007; Lee et al., 2010). Accordingly, PEDV S glycoprotein is a viral gene that determines the genetic relevance of isolates of PEDV, or is suitable for diagnostic assay development and vaccine development (Chen et al., 2014; Gerber et al., 2014; Lee et. al., 2010; Lee and Lee, 2014; Oh et al., 2014).
한국에서 PED의 유행성을 확인한 것은 1992년이다 (Kweon et al., 1993).The epidemic of PED was confirmed in Korea in 1992 (Kweon et al., 1993).
그러나, 후향성 연구결과, PEDV는 이미 1987년 초반에 존재하였다는 것을 알수 있었다 (Park and Lee, 1997).However, retrospective studies showed that PEDV already existed in early 1987 (Park and Lee, 1997).
PED는 매해 발생하였으며, 2010년 초까지 한국 양돈산업에 막대한 경제적 손실을 야기하였다. 2010 내지 2011 기간 동안, FMD (foot-and-mouth disease)가 수회 발생한 후, 한국에서의 PEDV의 감염은 산발적이었다. PED occurred every year and caused huge economic losses to the Korean pig industry by early 2010. During the period 2010-2011, after several occurrences of foot-and-mouth disease (FMD), infection of PEDV in Korea was sporadic.
그러나, 2013년 11월을 시작으로, PED의 유행이 한국에서 다시 나타났으며, 40%이상의 양돈 농가를 휩쓸었다 (Lee and Lee, 2014; Lee et al., 2014a,b). PED에 대한 생균 또는 사균 바이러스가 한국에 시판되었으나, 지속적인 PED의 유행은 이러한 백신의 낮은 효율을 나타낸다. 이러한 결과는 백신과 야외주간의 S 단백질의 유전적 및 항원적 차이점에서 발생한다 (Lee et al., 2010; Oh et al., 2014; Lee and Lee, 2014). 이에 따라서, 효과적인 백신의 부재는 PED를 조절할 수 있는 다음 세대의 백신의 개발을 필요로 한다. However, starting in November 2013, the PED epidemic reappeared in Korea and swept over 40% of hog farmers (Lee and Lee, 2014; Lee et al., 2014a, b). Although live or dead bacteria against PEDs are commercially available in Korea, the ongoing prevalence of PEDs indicates the low efficiency of such vaccines. These results arise from genetic and antigenic differences in the S protein between vaccine and field week (Lee et al., 2010; Oh et al., 2014; Lee and Lee, 2014). Accordingly, the absence of effective vaccines requires the development of the next generation of vaccines that can control PED.
세포 배양물에서의 PEDV의 동정은 PED 예방을 위한 백신 또는 PEDV의 연구에 매우 필수적이다. 그러나, PEDV의 동정은 매우 어려우며, 동정된 바이러스여도 수회의 세포 계대배양에서 그 감염성을 유지하는 것은 불가능하였다 (Chen et al., 2014). 현재까지, 한국형 PEDV가 20계대까지 배양하였다는 것은 2차례 보고뿐이었으며, 이는 야외 PEDV와 유전적으로 상이한 것이었다 (Kweon et al., 1999; Song et al., 2003). Identification of PEDV in cell culture is essential for the study of vaccines or PEDV for PED prevention. However, the identification of PEDV is very difficult, and even the identified virus was unable to maintain its infectivity in several cell passages (Chen et al., 2014). To date, only two reports of Korean PEDV cultured up to 20 passages were genetically different from outdoor PEDV (Kweon et al., 1999; Song et al., 2003).
따라서 현재 유행하고 있는 야외주를 이용한 차세대 백신 개발이 시급한 상황이다. 하지만 실험실적으로 야외주 PED 바이러스 분리 및 배양이 어려워 야외주를 이용한 백신 개발에 난항을 겪고 있다. Therefore, it is urgent to develop a next generation vaccine using the current outdoor wine. However, it is difficult to isolate and cultivate outdoor strain PED virus in laboratory, and it is difficult to develop vaccine using field strain.
이에 본 발명의 발명자는 돼지유행성 설사 양성 분변 가검물에서 국내 최초로 현재 유행하고 있는 PED 바이러스 야외주를 분리하였고 이 야외주에 대한 배양 방법을 포함한 in vitro 특성, 바이러스 유전자 분석 및 in vivo 병원성 특성을 확인함으로써, 본 발명을 완성하게 되었다.Therefore, the inventor of the present invention isolated the PED virus field strain currently in the country for the first time in the swine flu diarrhea-positive fecal specimens, and confirmed the in vitro characteristics, including the culture method for this field strain, viral gene analysis and in vivo pathogenic characteristics The present invention has been completed.
이에 따라, 본 발명의 일 양상은 신규한 돼지 유행성 설사병 바이러스 (Porcine Epidemic Diarrhea Virus, PEDV) 대한민국 분리주를 제공하는 것이다. Accordingly, one aspect of the present invention is to provide a novel Porcine Epidemic Diarrhea Virus (PEDV) Korean isolate.
또한, 본 발명의 일 양상은 상기 바이러스, 상기 바이러스의 배양물 또는 이의 항원을 유효성분으로 포함하는 돼지 유행성 설사병 (Porcine Epidemic Diarrhea, PED) 백신 조성물을 제공하는 것이다. In addition, an aspect of the present invention is to provide a Porcine Epidemic Diarrhea (PED) vaccine composition comprising the virus, the culture of the virus or an antigen thereof as an active ingredient.
또한, 본 발명의 일 양상은 상기 바이러스, 상기 바이러스의 배양물 또는 이의 항원을 유효성분으로 포함하는 돼지 유행성 설사병 (Porcine Epidemic Diarrhea, PED) 예방 또는 치료용 약학적 조성물을 제공하는 것이다. In addition, an aspect of the present invention is to provide a pharmaceutical composition for preventing or treating swine epidemic diarrhea (PED) comprising the virus, the culture of the virus or an antigen thereof as an active ingredient.
또한, 본 발명의 다른 양상은 상기 바이러스, 상기 바이러스의 배양물 또는 이의 항원을 유효성분으로 포함하는 돼지 유행성 설사병 (Porcine Epidemic Diarrhea, PED) 진단용 조성물을 제공하는 것이다. In addition, another aspect of the present invention is to provide a composition for diagnosing Porcine Epidemic Diarrhea (PED) comprising the virus, the culture of the virus or an antigen thereof as an active ingredient.
또한, 본 발명의 다른 양상은 상기 바이러스 생장 억제제를 포함하는, 돼지 유행성 설사병 (Porcine Epidemic Diarrhea, PED) 예방 또는 치료용 약학적 조성물을 제공하는 것이다. Another aspect of the present invention is to provide a pharmaceutical composition for preventing or treating Porcine Epidemic Diarrhea (PED), comprising the virus growth inhibitor.
본 발명의 일 양상은 신규한 돼지 유행성 설사병 바이러스 (Porcine Epidemic Diarrhea Virus, PEDV) 대한민국 분리주를 제공한다.One aspect of the invention provides a novel Porcine Epidemic Diarrhea Virus (PEDV) Korean isolate.
이하 본 발명을 상세히 설명한다. Hereinafter, the present invention will be described in detail.
본 발명자는 돼지유행성 설사병 양성 분변으로부터 국내 최초로 2014년 유행하는 PED 바이러스를 분류하고, 이러한 PEDV 및 계대배양으로 유도된 변이된 바이러스를 수득하였으며, 이에 대한 in vitro 특성 및 in vivo 병원성 특성 및 서열을 특정하였다. The present inventors classified the PED virus which was first prevalent in 2014 from porcine diarrhea-positive feces and obtained the mutated virus induced by such PEDV and subculture, and identified in vitro characteristics and in vivo pathogenic characteristics and sequence thereof. It was.
이에 따라 본 발명은 서열번호 1의 아미노산 서열 또는 이와 98% 이상의 상동성을 가지는 아미노산 서열로 이루어지며 동등한 면역원성을 가지는 스파이크 단백질을 포함하는 돼지 유행성 설사병 바이러스 (Porcine Epidemic Diarrhea Virus, PEDV) 대한민국 분리주를 제공한다. Accordingly, the present invention provides a swine epidemic diarrhea virus (PEDV) Korean isolate comprising the amino acid sequence of SEQ ID NO: 1 or an amino acid sequence having a homology of 98% or more and comprising a spike protein having an equivalent immunogenicity. to provide.
본 발명에서 용어, "PEDV(porcine epidemic diarrhea virus)"는 코로나바이러스과(coronaviridae)에 속하며 단일 가닥 RNA를 게놈(genome)으로 가지며 길이는 약 28Kb이고, 3개의 주요 구성 단백질인 spike 단백질(180-220KDa)과 막단백질 또는 외피 단백질 (27-32KDa) 그리고 뉴클레오캡시드 단백질(55-58KDa)을 암호화 하고 있다(Shenyang 2007). 이는 같은 종인 SARS 코로나바이러스와 유사한 구조를 가지며 트립신이 첨가된 아프리카 녹색원숭이 신장세포(Vero cell)에서 배양된다(Kim 2003; Stadler 2003; 권 2009).As used herein, the term "porcine epidemic diarrhea virus" (PEDV) belongs to the family of coronaviridae (coronaviridae) has a single stranded RNA genome (genome) of about 28Kb in length, the three major constituent proteins spike protein (180-220KDa) ) And membrane protein or envelope protein (27-32 KDa) and nucleocapsid protein (55-58 KDa) (Shenyang 2007). It has a structure similar to that of the same species SARS coronavirus and is cultured in African green monkey kidney cells with trypsin added (Kim 2003; Stadler 2003; Vol. 2009).
본 발명에서 용어, "Spike 단백질"은 PEDV의 주요 구성 단백질로서, 목표 세포를 인식하고 바이러스와 세포막 (cellular membrane)를 융합시키는 생물학적으로 중요한 기능을 가지고 있다(Chang 2002). As used herein, the term "Spike protein" is a major constituent protein of PEDV, and has a biologically important function of recognizing target cells and fusing viruses and cellular membranes (Chang 2002).
본 발명의 돼지 유행성 설사병 바이러스 (Porcine Epidemic Diarrhea Virus, PEDV) 대한민국 분리주는 서열번호 1의 아미노산 서열을 포함하거나, 상기 아미노산 서열과 98% 이상의 상동성을 나타내는 아미노산 서열을 포함할 수 있다. 상기 분리주는 서열번호 1의 아미노산 서열과 바람직하게는 98%, 98,5%, 99%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8% 또는 99.9%의 상동성을 나타내는 아미노산을 포함할 수 있다. 또한, 서열번호 1의 아미노산 서열과 98% 이상의 상동성을 나타내는 아미노산 서열은 서열번호 1의 아미노산 서열과 동등 또는 상응하는 면역원성을 나타내는 것이 바람직하다. Porcine Epidemic Diarrhea Virus (PEDV) Korean isolates of the present invention may comprise an amino acid sequence of SEQ ID NO: 1, or may comprise an amino acid sequence exhibiting at least 98% homology with the amino acid sequence. The isolate has an amino acid sequence of SEQ ID NO: 1 and preferably 98%, 98,5%, 99%, 99.1%, 99.2%, 99.3%, 99.4%, 99.5%, 99.6%, 99.7%, 99.8% or 99.9% It may include an amino acid showing homology of. In addition, the amino acid sequence showing 98% or more homology with the amino acid sequence of SEQ ID NO: 1 preferably shows an immunogenicity equivalent to or corresponding to the amino acid sequence of SEQ ID NO: 1.
상기 98% 이상의 상동성을 가지는 아미노산 서열은 서열번호 8, 15, 22, 28, 34, 및 40으로 이루어진 군으로부터 선택된 아미노산 서열일 수 있다. The amino acid sequence having at least 98% homology may be an amino acid sequence selected from the group consisting of SEQ ID NOs: 8, 15, 22, 28, 34, and 40.
또한, 상기 분리주는 바람직하게는 서열번호 2의 ORF (open reading frame) 1a/1b, 서열번호 3의 ORF 3, 서열번호 4의 외피 단백질 (envelope protein), 서열번호 5의 막단백질 (membrane protein), 및 서열번호 6의 뉴로캡사이드 단백질 (nucleocapsid protein)으로 이루어진 군으로부터 1종 이상 선택된 아미노산 서열 또는 이와 98% 이상의 상동성을 가지는 아미노산 서열을 더 포함하는 것 일 수 있다. 더욱 바람직하게 상기 분리주는 서열번호 7의 아미노산 서열로 이루어진 것일 수 있다. 가장 바람직하게, 상기 분리주는 수탁번호 KCTC12736BP로 수탁된 것일 수 있다. 본 발명자는 신규한 돼지 유행성설사 바이러스 국내 분리주인 KNU-141112 바이러스를 2014년 12월 18일자로 대한민국 대전시 유성구 어은동에 위치한 한국생명공학연구원 미생물자원센터에 기탁하여, 2014년 12월 18일자로 기탁번호 KCTC12736BP를 부여받았다. In addition, the isolate is preferably an ORF (open reading frame) 1a / 1b of SEQ ID NO: 2, ORF 3 of SEQ ID NO: 3, envelope protein of SEQ ID NO: 4, membrane protein of SEQ ID NO: 5 (membrane protein) And, and may further comprise one or more amino acid sequence selected from the group consisting of the nucleocapsid protein of SEQ ID NO: 6 or an amino acid sequence having at least 98% homology thereto. More preferably, the separation strain may be composed of the amino acid sequence of SEQ ID NO. Most preferably, the isolate may be one deposited with accession number KCTC12736BP. The present inventors deposited the KNU-141112 virus, a domestic isolate of the swine epidemic diarrhea virus, at the Korea Biotechnology Research Institute Microbial Resource Center, located in Ueun-dong, Yuseong-gu, Daejeon, Korea on December 18, 2014. KCTC12736BP was given.
또한, 상기 분리주는 서열번호 8의 스파이크 단백질, 서열번호 9의 ORF (open reading frame) 1a/1b, 서열번호 10의 ORF 3, 서열번호 11의 외피 단백질 (envelope protein), 서열번호 12의 막단백질 (membrane protein), 및 서열번호 13의 뉴로캡사이드 단백질 (nucleocapsid protein)으로 이루어진 군으로부터 1종 이상 선택된 아미노산 서열을 포함하는 것일 수 있으며, 바람직하게는 상기 분리주는 서열번호 14의 아미노산 서열로 이루어진 것일 수 있다.In addition, the isolate is a spike protein of SEQ ID NO: 8, ORF (open reading frame) 1a / 1b of SEQ ID NO: 9, ORF 3 of SEQ ID NO: 10, envelope protein of SEQ ID NO: 11, membrane protein of SEQ ID NO: 12 (membrane protein), and at least one amino acid sequence selected from the group consisting of a nucleocapsid protein of SEQ ID NO: 13, preferably the isolate is composed of the amino acid sequence of SEQ ID NO: 14 Can be.
또한, 상기 분리주는 서열번호 15의 스파이크 단백질, 서열번호 16의 ORF (open reading frame) 1a/1b, 서열번호 17의 ORF 3, 서열번호 18의 외피 단백질 (envelope protein), 서열번호 19의 막단백질 (membrane protein), 및 서열번호 20의 뉴로캡사이드 단백질 (nucleocapsid protein)으로 이루어진 군으로부터 1종 이상 선택된 아미노산 서열을 포함하는 것일 수 있으며, 바람직하게는 상기 분리주는 서열번호 21의 아미노산 서열로 이루어진 것일 수 있다.In addition, the isolate is a spike protein of SEQ ID NO: 15, ORF (open reading frame) 1a / 1b of SEQ ID NO: 16, ORF 3 of SEQ ID NO: 17, envelope protein of SEQ ID NO: 18, membrane protein of SEQ ID NO: 19 (membrane protein), and one or more amino acid sequences selected from the group consisting of the nucleocapsid protein of SEQ ID NO: 20, preferably, the isolate consists of the amino acid sequence of SEQ ID NO: 21 Can be.
또한, 상기 분리주는 서열번호 22의 스파이크 단백질, 서열번호 23의 ORF 3, 서열번호 24의 외피 단백질 (envelope protein), 서열번호 25의 막단백질 (membrane protein), 및 서열번호 26의 뉴로캡사이드 단백질 (nucleocapsid protein)으로 이루어진 군으로부터 1종 이상 선택된 아미노산 서열을 포함하는 것일 수 있으며, 바람직하게 상기 분리주는 서열번호 27의 아미노산 서열을 포함하는 것일 수 있다.In addition, the isolate is a spike protein of SEQ ID NO: 22, ORF 3 of SEQ ID NO: 23, envelope protein of SEQ ID NO: 24, membrane protein of SEQ ID NO: 25, and neurocapside protein of SEQ ID NO: 26 (nucleocapsid protein) may include one or more amino acid sequences selected from the group consisting of, preferably, the isolate may include the amino acid sequence of SEQ ID NO: 27.
또한, 상기 분리주는 서열번호 28의 스파이크 단백질, 서열번호 29의 ORF 3, 서열번호 30의 외피 단백질 (envelope protein), 서열번호 31의 막단백질 (membrane protein), 및 서열번호 32의 뉴로캡사이드 단백질 (nucleocapsid protein)으로 이루어진 군으로부터 1종 이상 선택된 아미노산 서열을 포함하는 것일 수 있으며, 바람직하게는 상기 분리주는 상기 분리주는 서열번호 33의 아미노산 서열을 포함하는 것일 수 있다.In addition, the isolate is a spike protein of SEQ ID NO: 28, ORF 3 of SEQ ID NO: 29, envelope protein of SEQ ID NO: 30, membrane protein of SEQ ID NO: 31, neurocapside protein of SEQ ID NO: 32 (nucleocapsid protein) may include one or more amino acid sequences selected from the group consisting of, preferably, the isolate may comprise the amino acid sequence of SEQ ID NO: 33.
또한, 상기 분리주는 서열번호 34의 스파이크 단백질, 서열번호 35의 ORF 3, 서열번호 36의 외피 단백질 (envelope protein), 서열번호 37의 막단백질 (membrane protein), 및 서열번호 38의 뉴로캡사이드 단백질 (nucleocapsid protein)으로 이루어진 군으로부터 1종 이상 선택된 아미노산 서열을 포함하는 것일 수 있으며, 바람직하게 상기 분리주는 서열번호 39의 아미노산 서열을 포함하는 것일 수 있다. In addition, the isolate has a spike protein of SEQ ID NO: 34, ORF 3 of SEQ ID NO: 35, an envelope protein of SEQ ID NO: 36, a membrane protein of SEQ ID NO: 37, and a neurocapside protein of SEQ ID NO: 38 (nucleocapsid protein) may include one or more amino acid sequences selected from the group consisting of, preferably, the isolate may include the amino acid sequence of SEQ ID NO: 39.
또한, 상기 분리주는 서열번호 40의 스파이크 단백질, 서열번호 41의 ORF 3, 서열번호 42의 외피 단백질 (envelope protein), 서열번호 43의 막단백질 (membrane protein), 및 서열번호 44의 뉴로캡사이드 단백질 (nucleocapsid protein)으로 이루어진 군으로부터 1종 이상 선택된 아미노산 서열을 포함하는 것일 수 있으며, 바람직하게는 상기 분리주는 서열번호 45의 아미노산을 포함하는 것일 수 있다. In addition, the isolate is a spike protein of SEQ ID NO: 40, ORF 3 of SEQ ID NO: 41, envelope protein of SEQ ID NO: 42, membrane protein of SEQ ID NO: 43, and neurocapside protein of SEQ ID NO: 44 (nucleocapsid protein) may include one or more amino acid sequences selected from the group consisting of, preferably, the isolate may include amino acids of SEQ ID NO: 45.
상기 서열번호의 정보는 하기 표1과 같다. The sequence number information is shown in Table 1 below.
아미노산 명칭Amino acid name 서열번호 SEQ ID NO: 아미노산 명칭Amino acid name 서열번호 SEQ ID NO:
KNU-141112-feces spike proteinKNU-141112-feces spike protein 1One KNU-141112-P3spike protein KNU-141112-P3spike protein 2222
KNU-141112-feces ORF1a/1bKNU-141112-feces ORF1a / 1b 22 KNU-141112-P3ORF3KNU-141112-P3ORF3 2323
KNU-141112-feces ORF3KNU-141112-feces ORF3 33 KNU-141112-P3envelope proteinKNU-141112-P3envelope protein 2424
KNU-141112-feces envelope proteinKNU-141112-feces envelope protein 44 KNU-141112-P3membrane proteinKNU-141112-P3membrane protein 2525
KNU-141112-feces membrane proteinKNU-141112-feces membrane protein 55 KNU-141112-P3nucleocapsid proteinKNU-141112-P3nucleocapsid protein 2626
KNU-141112-feces nucleocapsid proteinKNU-141112-feces nucleocapsid protein 66 KNU-141112-P3complete cdsKNU-141112-P3complete cds 2727
KNU-141112-feces complete genomeKNU-141112-feces complete genome 77 KNU-141112-P4 spike protein KNU-141112-P4 spike protein 2828
KNU-141112-p5 spike proteinKNU-141112-p5 spike protein 88 KNU-141112-P4 ORF3KNU-141112-P4 ORF3 2929
KNU-141112- p5 ORF1a/1bKNU-141112- p5 ORF1a / 1b 99 KNU-141112-P4 envelope proteinKNU-141112-P4 envelope protein 3030
KNU-141112- p5 ORF3KNU-141112- p5 ORF3 1010 KNU-141112-P4 membrane proteinKNU-141112-P4 membrane protein 3131
KNU-141112- p5 envelope proteinKNU-141112- p5 envelope protein 1111 KNU-141112-P4 nucleocapsid proteinKNU-141112-P4 nucleocapsid protein 3232
KNU-141112- p5 membrane proteinKNU-141112- p5 membrane protein 1212 KNU-141112-P4 complete cdsKNU-141112-P4 complete cds 3333
KNU-141112- p5 nucleocapsid proteinKNU-141112- p5 nucleocapsid protein 1313 KNU-141112-P20 spike protein KNU-141112-P20 spike protein 3434
KNU-141112- p5 complete genomeKNU-141112- p5 complete genome 1414 KNU-141112-P20 ORF3KNU-141112-P20 ORF3 3535
KNU-141112-p10 spike proteinKNU-141112-p10 spike protein 1515 KNU-141112-P20 envelope proteinKNU-141112-P20 envelope protein 3636
KNU-141112- p10 ORF1a/1bKNU-141112- p10 ORF1a / 1b 1616 KNU-141112-P20 membrane proteinKNU-141112-P20 membrane protein 3737
KNU-141112- p10 ORF3KNU-141112- p10 ORF3 1717 KNU-141112-P20 nucleocapsid proteinKNU-141112-P20 nucleocapsid protein 3838
KNU-141112- p10 envelope proteinKNU-141112- p10 envelope protein 1818 KNU-141112-P20 complete cdsKNU-141112-P20 complete cds 3939
KNU-141112- p10 membrane proteinKNU-141112- p10 membrane protein 1919 KNU-141112-P30 spike protein KNU-141112-P30 spike protein 4040
KNU-141112- p10 nucleocapsid proteinKNU-141112- p10 nucleocapsid protein 2020 KNU-141112-P30 ORF3KNU-141112-P30 ORF3 4141
KNU-141112- p10 complete genomeKNU-141112- p10 complete genome 2121 KNU-141112-P30 envelope proteinKNU-141112-P30 envelope protein 4242
KNU-141112-P30 membrane proteinKNU-141112-P30 membrane protein 4343
KNU-141112-P30 nucleocapsid proteinKNU-141112-P30 nucleocapsid protein 4444
KNU-141112-P30 complete cdsKNU-141112-P30 complete cds 4545
또한, 본 발명의 일 양상은 상기 바이러스, 상기 바이러스의 배양물 또는 이의 항원을 유효성분으로 포함하는 돼지 유행성 설사병 (Porcine Epidemic Diarrhea, PED) 백신 조성물을 제공한다. In addition, an aspect of the present invention provides a Porcine Epidemic Diarrhea (PED) vaccine composition comprising the virus, the culture of the virus or an antigen thereof as an active ingredient.
본 발명에서 용어, “백신”은 생체에 면역을 주는 항원을 함유한 생물학적인 제제로서, 감염증의 예방을 위하여 사람이나 동물에 주사하거나 경구 투여함으로써 생체에 면역이 생기게 하는 면역원 또는 항원성 물질을 말한다. 생체 내 면역은 병원균의 감염 후에 생체 내 면역력이 자동으로 얻어지는 자동면역과 외부에서 주입한 백신에 의하여 얻어지는 수동 면역으로 크게 나누어진다. 자동면역이 면역에 관계하는 항체의 생성 기간이 길고 지속적인 면역력의 특징이 있는 반면, 백신에 의한 수동 면역은 감염증 치료에 즉시 작용하나 지속력이 떨어지는 단점이 있다.As used herein, the term “vaccine” refers to a biological agent containing an antigen that immunizes a living body, and refers to an immunogen or antigenic substance that immunizes the living body by injection or oral administration to a human or animal to prevent infection. . In vivo immunization is largely divided into autoimmunity, in which immunity is automatically obtained after infection by pathogens, and passive immunity obtained by an externally injected vaccine. While autoimmunity is characterized by a long period of generation of antibodies related to immunity and continuous immunity, passive immunization with vaccines acts immediately to treat infectious diseases, but has a disadvantage of poor sustainability.
본 발명에서 용어, “면역원” 또는 “항원성 물질”은 상기 바이러스 유래의 펩티드, 폴리펩티드, 상기 폴리펩티드를 발현하는 유산균, 단백질, 상기 단백질을 발현하는 유산균, 올리고뉴클레오티드, 폴리뉴클레오티드, 및 재조합 바이러스로 구성된 군에서 선택된 어느 하나일 수 있다. 구체적인 예를 들면, 상기 항원 물질은 불활성화된 전체 또는 부분 바이러스 제제 형태, 또는 통상적인 단백질 정제, 유전 공학 기법 또는 화학 합성에 의해 수득되는 항원 분자 형태일 수 있다.As used herein, the term "immunogen" or "antigenic substance" is composed of a peptide derived from the virus, a polypeptide, a lactic acid bacterium expressing the polypeptide, a protein, a lactic acid bacterium expressing the protein, an oligonucleotide, a polynucleotide, and a recombinant virus. It may be any one selected from the group. In specific examples, the antigenic material may be in the form of an inactivated whole or partial viral preparation, or in the form of an antigen molecule obtained by conventional protein purification, genetic engineering techniques or chemical synthesis.
상기 항원의 함량은 백신 조성물 총 중량에 대해서 1 내지 10 중량%일 수 있으며, 바람직하게는 5% 중량이내 일 수 있다.The content of the antigen may be 1 to 10% by weight relative to the total weight of the vaccine composition, preferably 5% by weight or less.
본 발명에 따른 백신 조성물은 안정제, 유화제, 수산화알루미늄, 인산알루미늄, pH 조정제, 계면활성제, 리포솜, 이스콤(iscom) 보조제, 합성 글리코펩티드, 증량제, 카복시폴리메틸렌, 세균 세포벽, 세균 세포벽의 유도체, 세균백신, 동물 폭스바이러스 단백질, 서브바이랄(subviral) 입자 보조제, 콜레라 독소, N, N-디옥타데실-N',N'-비스(2-하이드록시에틸)-프로판디아민, 모노포스포릴 지질 A, 디메틸디옥타데실-암모늄 브로마이드 및 이의 혼합물로 구성된 군에서 선택된 어느 하나 이상의 제 2 보조제를 추가로 함유하는 것을 특징으로 할 수 있다.Vaccine compositions according to the invention are stabilizers, emulsifiers, aluminum hydroxide, aluminum phosphate, pH adjusters, surfactants, liposomes, iscom adjuvants, synthetic glycopeptides, extenders, carboxypolymethylenes, bacterial cell walls, derivatives of bacterial cell walls, Bacterial vaccine, animal poxvirus protein, subviral particle adjuvant, cholera toxin, N, N-dioctadecyl-N ', N'-bis (2-hydroxyethyl) -propanediamine, monophosphoryl lipid A, dimethyldioctadecyl-ammonium bromide and mixtures thereof may be further contained in at least one second adjuvant.
또한, 본 발명의 백신 조성물은 수의학적으로 허용 가능한 담체를 포함할 수 있다. 본 발명에서 용어, "수의학적으로 허용 가능한 담체"란 임의의 및 모든 용매, 분산 매질, 코팅제, 항원보강제, 안정제, 희석제, 보존제, 항균제 및 항진균제, 등장성 작용제, 흡착지연제 등을 포함한다. 백신용 조성물에 포함될 수 있는 담체, 부형제, 희석제로는 락토즈, 덱스트로스, 슈크로스, 솔비톨, 만니톨, 자일리톨, 말티톨, 전분, 글리세린, 전분, 아카시아 고무, 알지네이트, 젤라틴, 칼슘포스페이트, 칼슘실리케이트, 셀룰로즈, 메틸 셀룰로즈, 미정질 셀룰로즈, 폴리비닐 피롤리돈, 물, 메틸히드록시벤조에이트, 프로필히드록시벤조에이트, 탈크, 마그네슘 스테아레이트 및 광물유를 들 수 있다.In addition, the vaccine composition of the present invention may comprise a veterinary acceptable carrier. As used herein, the term "veterinarily acceptable carrier" includes any and all solvents, dispersion media, coatings, adjuvant, stabilizers, diluents, preservatives, antibacterial and antifungal agents, isotonic agents, adsorptive delay agents and the like. Carriers, excipients, and diluents that may be included in the composition for vaccines include lactose, dextrose, sucrose, sorbitol, mannitol, xylitol, maltitol, starch, glycerin, starch, acacia rubber, alginate, gelatin, calcium phosphate, calcium silicate, Cellulose, methyl cellulose, microcrystalline cellulose, polyvinyl pyrrolidone, water, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate and mineral oil.
또한, 본 발명의 백신용 조성물은 각각 통상의 방법에 따라 산제, 과립제, 정제, 캡슐제, 현탁액, 에멀젼, 시럽, 에어로졸 등의 경구형 제형 및 멸균 주사용액의 형태로 제형화하여 사용될 수 있다. 제제화할 경우에는 보통 사용되는 충진제, 증량제, 결합제, 습윤제, 붕해제, 계면활성제 등의 희석제 또는 부형제를 사용하여 조제할 수 있다. 경구투여를 위한 고형제제에는 정제, 환제, 산제, 과립제, 캡슐제 등이 포함되며, 이러 한 고형제제는 상기 레시틴 유사 유화제에 적어도 하나 이상의 부형제 예를 들면, 전분, 칼슘카보네이트 (calcium carbonate), 슈크로스(sucrose) 또는 락토오스(lactose), 젤라틴 등을 섞어 조제할 수 있다. 또한 단순한 부형제 이외에 마그네슘 스티레이트 탈크 같은 윤활제들도 사용할 수 있다. 경구투여를 위한 액상제제로는 현탁제, 내용액제, 유제, 시럽제 등을 사용할 수 있으며, 흔히 사용되는 단순 희석제인 물, 리퀴드 파라핀 이외에 여러가지 부형제, 예를 들면 습윤제, 감미제, 방향제, 보존제 등이 포함될 수 있다. 비경구투여를 위한 제제에는 멸균된 수용액, 비수용성제, 현탁제, 유제, 동결건조제제가 포함된다. 비수용성제제, 현탁제로는 프로필렌글리콜(propylene glycol), 폴리에틸렌 글리콜, 올리브 오일과 같은 식물성 기름, 에틸올레이트와 같은 주사 가능한 에스테르 등이 사용될 수 있다.In addition, the vaccine composition of the present invention can be used in the form of oral dosage forms, such as powders, granules, tablets, capsules, suspensions, emulsions, syrups, aerosols, and sterile injectable solutions, respectively, according to conventional methods. When formulated, diluents or excipients such as fillers, extenders, binders, wetting agents, disintegrating agents, surfactants, etc. which are commonly used can be prepared. Solid preparations for oral administration include tablets, pills, powders, granules, capsules, and the like, and such solid preparations include at least one excipient such as starch, calcium carbonate, shoe, etc., in the lecithin-like emulsifier. Sucrose or lactose, gelatin and the like can be mixed and prepared. In addition to simple excipients, lubricants such as magnesium styrate talc may also be used. As a liquid preparation for oral administration, suspending agents, liquid solutions, emulsions, syrups, etc. may be used, and various excipients, such as wetting agents, sweeteners, fragrances, and preservatives, in addition to commonly used simple diluents such as water and liquid paraffin Can be. Formulations for parenteral administration include sterile aqueous solutions, non-aqueous solutions, suspensions, emulsions, lyophilized preparations. As the non-aqueous preparation and suspending agent, propylene glycol, polyethylene glycol, vegetable oils such as olive oil, injectable esters such as ethyl oleate and the like can be used.
상기 상기 백신은 다양한 형태로 개체에 주입될 수 있다. "주입"은 피하주사, 근육내 주사, 피하내 주사, 복막내 주사, 비강투여, 구강투여, 경피투여 및 경구투여로 구성된 군에서 선택된 어느 하나의 방법으로 수행될 수 있다. The vaccine can be injected into a subject in various forms. "Injection" can be performed by any one method selected from the group consisting of subcutaneous injection, intramuscular injection, subcutaneous injection, intraperitoneal injection, nasal administration, oral administration, transdermal administration and oral administration.
또한, 본 발명에서 용어, "주사" 또는 "투여"는 투여대상의 나이, 성별, 체중 등에 따라 투여량이 달라질 수 있고, 투여경로, 질병의 정도, 성별, 체중, 나이 등에 따라서도 백신의 투여량이 본 발명의 백신용 면역증강제는 비경구, 점막(경구 및 비강 등) 및 경피성 경로에 의한 백신 투여시 함께 사용할 수 있다.In the present invention, the term "injection" or "administration" may vary depending on the age, sex, and weight of the subject to be administered, and the dose of the vaccine also depends on the route of administration, the degree of disease, sex, weight, age, and the like. The immunoadjuvant for the vaccine of the present invention can be used together when administering vaccines by parenteral, mucosal (oral and nasal) and transdermal routes.
본 발명의 백신조성물은 면역반응을 개선 또는 강화시키기 위하여 하나 이상의 보조제 등을 포함할 수 있다. 적절한 보조제에는 펩티드, 알루미늄 하이드록시드, 알루미늄 포스페이트, 알루미늄 옥시드 및 Marcol 52 같은 미네랄 오일 또는 식물성 오일 및 하나 이상의 유화제로 구성된 조성물 또는 리졸세시틴, 다가 양이온, 다가 음이온 같은 표면 활성물질 등이 포함된다.Vaccine compositions of the present invention may include one or more adjuvants and the like to improve or enhance an immune response. Suitable auxiliaries include compositions consisting of mineral oils or vegetable oils such as peptides, aluminum hydroxides, aluminum phosphates, aluminum oxides and Marcol 52 and one or more emulsifiers or surface actives such as lysolececitin, polyvalent cations, polyvalent anions and the like. .
본 발명의 백신 조성물은 1종 이상의 면역증강제를 추가로 포함할 수 있고, 바람직하게는 콜레라 톡신(CT; cholera toxin), 알루미늄하이드록사이드, 카보폴(carbopol), 광물성 오일 또는 생분해성(Biodegradable) 오일을 포함할 수 있다.The vaccine composition of the present invention may further comprise one or more immunostimulants, preferably cholera toxin (CT), aluminum hydroxide, carbopol, mineral oil or Biodegradable Oil may be included.
본 발명에서의 용어 "면역증강제"란, 일반적으로 항원에 대한 체액 및/또는 세포 면역 반응을 증가시키는 임의의 물질을 지칭한다. 전통적인 백신들은 죽은 병원성 미생물의 비가공 제제로 구성되어, 병원성 미생물의 배양액과 관련된 불순물들은 면역 반응을 향상시키기 위한 면역증강제로서 작용할 수 있으나, 정제된 단백질 서브유닛의 균질 제제를 백신접종을 위한 항원으로서 사용하는 경우, 상기와 같은 항원에 의해 발동된 면역성은 불충분하여 면역증강제로서 일부 외래물질의 첨가가 필요해 진다. 면역증강제를 사용함으로써 면역 반응을 자극하는 데 보다 적은 용량의 항원이 요구될 수 있으며, 이에 의해 백신 생산 비용이 절감될 수 있다. 이러한 면역증강제는 그 원료(미네랄, 세균, 식물)와 성분(유제현탁액)에 따라 분류된다. 상업적으로 이용되는 면역증강제는 알루미늄하이드록사이드, 카보폴(carbopol), 광물성 오일(미네랄오일) 또는 생분해성(Biodegradable) 오일등이 있다.The term “immune enhancer” in the present invention generally refers to any substance that increases the humoral and / or cellular immune response to the antigen. Traditional vaccines consist of unprocessed preparations of dead pathogenic microorganisms, while impurities associated with cultures of pathogenic microorganisms can act as an adjuvant to enhance the immune response, but homogeneous preparations of purified protein subunits can be used as antigens for vaccination. In use, the immunity triggered by such antigens is insufficient, requiring the addition of some foreign substance as an adjuvant. By using an adjuvant, smaller doses of antigen may be required to stimulate an immune response, thereby reducing the cost of vaccine production. These adjuvants are classified according to their raw materials (minerals, bacteria, plants) and components (emulsion suspensions). Commercially available adjuvants include aluminum hydroxide, carbopol, mineral oil (mineral oil) or biodegradable oil.
또한, 상기 백신은 생균백신 또는 사균백신일 수 있다. In addition, the vaccine may be live or dead vaccine.
생균백신 또는 생백신은 세균이나 바이러스를 병원성을 약하게 하여 동물에 투여되었을 때 질병의 임상적 증상이 없거나 감소되었음을 나타내는 바이러스를 의미하는 것으로, 본 발명의 약독화주는 당업계에 알려져 있는 방법, 예를 들어, 바이러스의 계대배양을 통해 분리될 수 있다.Live vaccine or live vaccine means a virus that shows the absence or reduction of clinical symptoms of the disease when administered to an animal by weakening the pathogenicity of a bacterium or virus, and the attenuated strain of the present invention is a method known in the art, for example, The virus can be isolated through passage of the virus.
사균백신 또는 사독 백신은 세균이나 바이러스를 가열(56~60℃, 30~60분) 또는 포르말린이나 페놀 등의 화학약품에 의해서 면역원성을 잃지 않고 병원성을 불활성으로 한 것이다. 바이러스의 불활화는 당업계에 알려진 방법에 의할 수 있다. Bacillus vaccine or deadly poisoned vaccine is inactivated pathogenicity without losing immunogenicity by heating bacteria or virus (56 ~ 60 ℃, 30 ~ 60 minutes) or chemicals such as formalin or phenol. Inactivation of the virus may be by methods known in the art.
또한 본 발명의 일 양상은, 상기 바이러스, 상기 바이러스의 배양물 또는 이의 항원을 유효성분으로 포함하는 돼지 유행성 설사병 (Porcine Epidemic Diarrhea, PED) 예방 또는 치료용 약학적 조성물을 제공한다. In another aspect, the present invention provides a pharmaceutical composition for preventing or treating swine epidemic diarrhea (PED) comprising the virus, the culture of the virus or an antigen thereof as an active ingredient.
본 발명에서 용어, “예방”은 본 바이러스, 상기 바이러스의 배양물 또는 이의 항원을 유효성분으로 하는 조성물의 투여로 상기 PEDV 감염을 억제 또는 지연시키는 모든 행위를 말한다.As used herein, the term "prevention" refers to any action that inhibits or delays the PEDV infection by administration of the virus, a culture of the virus, or a composition containing the antigen as an active ingredient.
본 발명에서 용어, “치료”는 상기 바이러스의 배양물 또는 이의 항원을 유효성분으로 하는 조성물의 투여로 상기 PEDV의 감염 증상이 호전되거나 이롭게 되는 모든 행위를 말한다.In the present invention, the term "treatment" refers to any action in which the symptoms of infection of PEDV are improved or benefited by administration of the culture of the virus or a composition containing the antigen as an active ingredient.
상기 약학적 조성물은 예를 들면 사료 첨가제로 이용될 수 있다. The pharmaceutical composition can be used, for example, as a feed additive.
본 발명의 사료는 본 발명에 따른 사료 첨가제를 유효성분으로 포함하는 한 당업계에 공지된 다양한 형태의 조성비로 당업자에 의해 적절하게 구성될 수 있으며, 바람직하게는 단백질 20%, 지방, 에테르 추출물 4.5%, 지방, 산 가수분해 5.4%, 조섬유질 4.7%, 회분 6%, 칼슘 0.80% 및 인산염 0.62%를 포함할 수 있다. The feed of the present invention may be properly configured by those skilled in the art in various forms of composition known in the art as long as the feed additive according to the present invention as an active ingredient, preferably 20% protein, fat, ether extract 4.5 %, Fat, acid hydrolysis 5.4%, crude fiber 4.7%, ash 6%, calcium 0.80% and phosphate 0.62%.
또한 본 발명의 일 양상은 상기 바이러스, 상기 바이러스의 배양물 또는 이의 항원 또는 이를 검출할 수 있는 제제를 유효성분으로 포함하는 돼지 유행성 설사병 (Porcine Epidemic Diarrhea, PED) 진단용 조성물을 제공한다. In addition, an aspect of the present invention provides a composition for diagnosing swine epidemic diarrhea (Porcine Epidemic Diarrhea, PED) comprising the virus, the culture of the virus or an antigen or an agent capable of detecting the same as an active ingredient.
상기 바이러스, 상기 바이러스의 배양물 또는 이의 항원을 검출할 수 있는 제제는 바람직하게는 상기 바이러스, 상기 바이러스의 배양물 또는 이의 항원에 특이적인 항체일 수 있다. The virus, the culture of the virus or the agent capable of detecting the antigen thereof may preferably be an antibody specific for the virus, the culture of the virus or the antigen thereof.
본 발명에서 용어, “항체”는 면역계 내에서 항원의 자극에 의하여 만들어지는 물질로서, 면역글로불린이라고도 하며, 특정한 항원과 특이적으로 결합하여 림프와 혈액을 떠돌며 항원항체반응을 일으킨다. 항체가 특이적 항원에 대한 특이성을 나타내는 반면에, 면역글로불린은 항체, 및 항원 특이성이 결여된 항체 유사 물질모두를 포함한다. 후자의 폴리펩티드는 예컨대 림프계에서는 낮은 수준으로 생산되며 골수종에 의해서 증가된 수준으로 생산된다. 본 발명에서는 상기 PEDV 자체, spike 단백질, 또는 이에 포함된 에피토프일 수 있다. In the present invention, the term "antibody" is a substance produced by the stimulation of the antigen in the immune system, also called immunoglobulin, and specifically binds to a specific antigen, floating the lymph and blood, causing an antigen-antibody reaction. While antibodies exhibit specificity for specific antigens, immunoglobulins include both antibodies and antibody like substances lacking antigen specificity. The latter polypeptide is produced at low levels, for example in the lymphatic system, and at elevated levels by myeloma. In the present invention, the PEDV itself, the spike protein, or may be an epitope included therein.
상기 항체는 모노클로날 또는 폴리클로날 항체일 수 있다.The antibody may be a monoclonal or polyclonal antibody.
또한, 본 발명의 일 양상은 상기 바이러스 생장 억제제를 포함하는, 돼지 유행성 설사병 (Porcine Epidemic Diarrhea, PED) 예방 또는 치료용 약학적 조성물을 제공한다. In addition, an aspect of the present invention provides a pharmaceutical composition for preventing or treating Porcine Epidemic Diarrhea (PED), comprising the virus growth inhibitor.
상기 바이러스의 생장 억제제는 바이러스, 상기 바이러스의 배양물 또는 이의 항원에 대한 siRNA(small interference RNA), shRNA(short hairpin RNA), miRNA(microRNA), 리보자임(ribozyme), DNAzyme, PNA(peptide nucleic acids), 안티센스 올리고뉴클레오타이드, 항체, 앱타머, 천연 추출물 및 화학물질 등일 수 있다. 바람직하게는 항체일 수 있다. Inhibitors of growth of the virus include: siRNA (small interference RNA), shRNA (short hairpin RNA), miRNA (microRNA), ribozyme, DNAzyme, peptide nucleic acids against the virus, the culture of the virus or antigens thereof. ), Antisense oligonucleotides, antibodies, aptamers, natural extracts, chemicals, and the like. Preferably it may be an antibody.
본 발명에서는 돼지유행성 설사 양성 분변 가검물에서 국내 최초로 현재 유행하고 있는 PED 바이러스 야외주를 분리하였으며, 야외주는 전형적 PEDV의 병원성을 나타내는 바, 이를 바탕으로, 백신 조성물, 치료제, 진단제 등 다양하게 적용될 수 있을 것으로 기대된다.In the present invention, isolated PED virus outdoor strain currently in the first in Korea in the swine-like diarrhea-positive fecal specimen, the outdoor strain shows the pathogenicity of the typical PEDV, based on this, can be applied to a variety of vaccine compositions, therapeutics, diagnostics, etc. It is expected to be.
도 1. Vero 세포에 감염시킨 PEDV 분리주 KNU-141112의 세포병리학 및 IFA 결과를 나타낸 도이다. Vero 세포는 위-감염되거나, PEDV KNU-141112-P5 및 KNU-141112-P10 분리주로 감염되었다. PEDV-특이적 CPE를 매일 관찰하였으며, 24 hpi시에 200x의 배율에서 도립현미경을 이용하여 촬영하였다 (제1 패널). 면역염색을 위하여, 감염된 세포를 24 hpi시에 고정하고, N 단백질에 대한 Mab와 함께 인큐베이션 하고, Alexa green-접합된 염소 항-마우스 이차 항체로 인큐베이션하였다 (제2 패널). 뒤이어 세포를 DAPI로 대비염색하였으며 (제3 패널), 200x 배율에서 형광변미경으로 확인하였다.Figure 1 shows the cytopathology and IFA results of KNU-141112 PEDV isolate infected with Vero cells. Vero cells were gastric-infected or infected with PEDV KNU-141112-P5 and KNU-141112-P10 isolates. PEDV-specific CPE was observed daily and photographed using an inverted microscope at a magnification of 200 × at 24 hpi (first panel). For immunostaining, infected cells were fixed at 24 hpi, incubated with Mab for N protein, and incubated with Alexa green-conjugated goat anti-mouse secondary antibody (second panel). Cells were then counterstained with DAPI (third panel) and identified by fluorescence spectroscopy at 200 × magnification.
도 2. Vero 세포에서의 KNU-141112의 성장동역학을 나타낸 도이다.Figure 2 shows the growth kinetics of KNU-141112 in Vero cells.
(A) 선택된 패시지에서의 바이러스 역가. Vero 세포를 명시한 패시지 번호에서 회수한 PEDV KNU-141112로 감염시켰다. 24 또는 48 hpi에서, 바이러스 상층액을 수집하고, 바이러스 역가를 결정하였다.(A) Virus titers at selected passages. Vero cells were infected with PEDV KNU-141112 recovered from the indicated passage numbers. At 24 or 48 hpi, viral supernatants were collected and virus titers were determined.
(B) KNU-141112 주의 1단계 증식곡선을 나타낸 도이다. Vero 세포를 PEDV KNU-141112-P10, -P20, 및 -P30로 독립적으로 감염시켰다. 감염 후 명시된 시점에서, 배양 상층액을 회수하고, 바이러스 역가를 결정하였다. TCID50 (50% tissue culture infectious dose)를 계산하였다. 결과를 3개의 웰에서의 평균값으로 나타내었으며, 에러바는 표준편차를 의미한다. (B) Figure 1 shows the proliferation curve of KNU-141112. Vero cells were independently infected with PEDV KNU-141112-P10, -P20, and -P30. At the indicated time points after infection, the culture supernatants were recovered and virus titers were determined. TCID 50 (50% tissue culture infectious dose) was calculated. Results are expressed as mean values in three wells, with error bars representing standard deviation.
도 3. PEDV KNU-141112 분리주로 접종된 기니피그의 혈청 내의 바이러스중화항체 역가를 나타낸 도이다. 기니피그를 불활화된 KNU-141112-P10의 피하 투여로 2회 면역조치하였다. 혈액 샘플을 면역조치 전 수집하고, 2차 면역조치 2주 후, 동종 (KNU-141112; 원) 및 이종 (SM98-1; 마름모) 바이러스를 이용하여 바이러스 중화 어세이를 수행하였다. 감염된 동물 각각의 중화 항체 역가를 log2값으로 점으로 표시하였다. 값은 2회의 3개의 독립된 실험의 평균으로 나타내며, 에러바는 표준편차를 의미한다.Fig. 3 shows the titers of virus neutralizing antibodies in the serum of guinea pigs inoculated with PEDV KNU-141112 isolates. Guinea pigs were immunized twice with subcutaneous administration of inactivated KNU-141112-P10. Blood samples were collected before immunization and two weeks after the second immunization, virus neutralization assays were performed using homologous (KNU-141112; original) and heterologous (SM98-1; rhombus) viruses. Neutralizing antibody titers of each of the infected animals were plotted in log 2 values. Values are presented as the average of two independent experiments, with error bars representing standard deviations.
도 4. 한국 PEDV주 KNU-141112를 접종한 되지의 장의 미시적 및 거시적 관찰결과를 나타낸 도이다. (A) 감염된 돼지의 2 DPI에서의 소장은 얇고, 투명한 장벽을 나타내며, 응유로 가득찬 팽창된 위를 나타낸다. Figure 4 shows the microscopic and macroscopic observations of the intestine of the lower limbs inoculated with KNU-141112 in Korean PEDV strain. (A) The small intestine at 2 DPI of infected pigs shows a thin, transparent barrier and an expanded stomach filled with curds.
(B 및 C) KNU-141112-접종된 돼지의 3DPI에서의 헤마톡실린 및 에오신 염색된 공장 (jejunum) (각각 100x 및 200x 배율). (B and C) Hematoxylin and eosin stained jejunum in 3DPI of KNU-141112-inoculated pigs (100 × and 200 × magnifications, respectively).
(D) 3 DPI의 돼지로부터 분리된 공장 조직 조작의 IHC 분석 (100x 배율).(D) IHC analysis (100 × magnification) of factory tissue manipulation isolated from pigs at 3 DPI.
(E 및 F) KNU-141112로 접종한 돼지의 3 또는 4 DPI에서의 소장 절편의 면역형광 염색 결과. 절편은 DAPI로 대비염색하였으며, 400x 배율로 형광 현미경을 이용하여 확인하였다.(E and F) Immunofluorescence staining of small intestine sections at 3 or 4 DPI of pigs inoculated with KNU-141112. Sections were counterstained with DAPI and confirmed by fluorescence microscopy at 400 × magnification.
도 5. PEDV주의 스파이크 유전자 (A) 및 전장 게놈의 뉴클레오티드 서열을 기반으로 한 계통발생 분석결과를 나타낸 도이다. TGEV의 스파이크 단백질의 잠정적 유사 부위 및 완전 게놈 서열을 각 패널 내 outgroup으로 포함시켰다. 다중-시퀀싱 얼라인먼트를 ClustalX 프로그램을 이용하여 수행하였으며, 얼라인된 뉴클레오티드 서열로 인접-결합 방법 (neighbor-joining method)을 이용하여 계통수를 제조하였다. 각 가지의 수는 1000 replicate의 50% 이상의 부트스트랩 (bootstrap)값을 나타낸다. 바이러스주의 명칭, 국가, 및 분리년도, GeneBank accession number, 및 genogroups 및 subgroups를 나타내었다. 본 발명에서 규명한 PEDV 분리주는 원형으로 표시하였다. 스케일바는 각 위치당 뉴클레오티드 치환을 의미한다. Figure 5 shows the phylogenetic analysis results based on the nucleotide sequence of the spike gene (A) and the full-length genome of the PEDV strain. Tentative similar sites and complete genome sequences of spike proteins of TGEV were included as outgroups within each panel. Multi-sequencing alignments were performed using the ClustalX program, and phylogenetic trees were prepared using the neighbor-joining method with the aligned nucleotide sequences. The number of branches represents a bootstrap value of at least 50% of 1000 replicates. The name, country, and year of isolation, GeneBank accession number, and genogroups and subgroups are shown. PEDV isolates identified in the present invention are shown in a circle. Scale bar means nucleotide substitution at each position.
이하 본 발명을 실시예를 통하여 보다 상세하게 설명한다. 그러나, 이들 실시예는 본 발명을 예시적으로 설명하기 위한 것으로 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다. Hereinafter, the present invention will be described in more detail with reference to Examples. However, these examples are for illustrative purposes only and the scope of the present invention is not limited to these examples.
실시예Example 1. 시료 및 방법 1. Samples and Methods
1.1. 세포, 임상 샘플, 바이러스 및 항체1.1. Cells, Clinical Samples, Viruses and Antibodies
Vero 세포 (ATCC CCL-81)를 5% FBS (Invitrogen) 및 antibiotic-antimycotic solutions (100x; Invitrogen) 를 포함하는 α- MEM에서 배양하고, 5% CO2 인큐베이터에서 37 ℃에서 유지시켰다. i-TGE/PED Detection Kit (iNtRON Biotechnology, Seongnam, South Korea)를 이용한 RT-PCR에 의하여 양성으로 확인된 7개의 소장 분쇄물 및 50개의 대변 표본을를 바이러스 분리 실험을 위하여 선별하였다. 소장 분쇄물을 MagNA Lyser (Roche Diagnostics, Mannheim, Germany)를 3회 15초간 7,000 rpm 속도로 실시하여 PBS 내 10% (wt/vol) 현탁액으로 준비하였다. 분변 샘플은 PBS 내에 10% (wt/vol) 현탁액으로 희석하였다. 뒤이어 현탁액을 교반하고, 10분간 4,500xg (Hanil Centrifuge FLETA5, Incheon, South Korea)로 원심분리하였다. 상청액을 0.22-μm 주사기 필터 (Millipore, Billerica, MA)를 통하여 필터링 하고, 바이러스 분리주의 접종원으로서 사용하기 전까지 -80℃에서 보관하였다. Vero cells (ATCC CCL-81) were incubated in α-MEM containing 5% FBS (Invitrogen) and antibiotic-antimycotic solutions (100 ×; Invitrogen) and maintained at 37 ° C. in a 5% CO 2 incubator. Seven small intestinal crushes and 50 stool samples positively identified by RT-PCR using the i- TGE / PED Detection Kit (iNtRON Biotechnology, Seongnam, South Korea) were selected for virus isolation experiments. Small intestine mills were prepared as a 10% (wt / vol) suspension in PBS by running MagNA Lyser (Roche Diagnostics, Mannheim, Germany) three times at 7,000 rpm for 15 seconds. Fecal samples were diluted with 10% (wt / vol) suspension in PBS. The suspension was then stirred and centrifuged with 4,500 × g (Hanil Centrifuge FLETA5, Incheon, South Korea) for 10 minutes. Supernatants were filtered through a 0.22-μm syringe filter (Millipore, Billerica, Mass.) And stored at −80 ° C. until used as inoculum of virus isolates.
PEDV의 바이러스 분리주를 Vero 세포로 적용하였다. 구체적으로, 6-웰 플레이트에서 생장시킨 컨플루언트 Vero 세포를 PBS로 세척하고, 10 ㎍/ml의 트립신 (USB, Cleveland, OH)을 포함하는 400 ㎕의 샘플로 접종하였다. 1시간동안 37℃에서 인큐베이션 한 후, 2ml의 바이러스 생장 배지 [항생-항진균 용액, 0.3% TPB (Sigma, St. Louis, MO), 0.02% 효모추출물(Difco, Detroit, MI), 10 mM HEPES (Invitrogen), 및 5 μg/ml의 트립신이 보충된 α- MEM]를 첨가하였다. 접종된 세포는 5% CO2 하에서 37 ℃에서 유지시켰으며, CPE (cytopathic effects)를 매일 관찰하였다. 70% CPE가 나타났을 때, 접종된 세포를 3회 동결 융해하였다. 뒤이어 배양 상층액을 수집하고 400xg에서 10분간 원심분리하였다. 정제된 상층액을 부분표본화 (aliquoted)하고, 사용되기 전까지 “P1 (passage 1)”으로서 -80℃에서 보관하였다. Virus isolates of PEDV were applied to Vero cells. Specifically, confluent Vero cells grown in 6-well plates were washed with PBS and seeded with 400 μl sample containing 10 μg / ml trypsin (USB, Cleveland, OH). After incubation at 37 ° C. for 1 hour, 2 ml of virus growth medium [antibiotic-antifungal solution, 0.3% TPB (Sigma, St. Louis, MO), 0.02% yeast extract (Difco, Detroit, MI), 10 mM HEPES ( Invitrogen), and α-MEM supplemented with 5 μg / ml trypsin. Inoculated cells were maintained at 37 ° C. under 5% CO 2 and CPE (cytopathic effects) were observed daily. When 70% CPE appeared, the inoculated cells were thawed three times. The culture supernatant was then collected and centrifuged at 400 × g for 10 minutes. Purified supernatants were aliquoted and stored at −80 ° C. as “P1 (passage 1)” until used.
100 밀리미터 직경의 조직 배양 디쉬를 분리의 다수의 패시지에 사용하였다. 100 millimeter diameter tissue culture dishes were used for multiple passages of separation.
7일 간 접종한 세포가 CPE를 보이지 않는 경우, 플레이트를 3회 동결 및 융해하고, 원심분리를 이용하여 상층액을 회수하고, 다음 패시지를 위하여 신선한 Vero 세포에 접종하였다. 6회 블라인드 패시지 후에 CPE 및 RT-PCR의 결과가 음성인 경우, 바이러스 분리주가 음성인 것으로 간주하였다. PEDV N 단백질-특이적 단클론 항체 (MAb)를 ChoogAng Vaccine Laboratory (CAVAC; Daejeon, South Korea)로부터 수득하였다. If the cells inoculated for 7 days did not show CPE, the plate was frozen and thawed three times, the supernatant was recovered using centrifugation, and seeded into fresh Vero cells for the next passage. If the results of CPE and RT-PCR were negative after six blind passages, the virus isolate was considered negative. PEDV N protein-specific monoclonal antibody (MAb) was obtained from ChoogAng Vaccine Laboratory (CAVAC; Daejeon, South Korea).
1.2 바이러스 1.2 Virus 역가Titer 측정 (Virus titration) Virus titration
트립신 존재하에서 상기 기술한 바와 같이 각 패시지의 KNU-141112 바이러스 스톡을 Vero 세포에 감염시켰다. 70% CPE가 일반적으로 발휘되는 때, 24 또는 48시간 후감염 (postinfection (hpi)) 후 배양 상층액을 수집하였다. 성장 동역 실험을 위하여, 상이한 시점 (6, 12, 24, 36, 및 48 hpi)에서 각 선택된 패시지의 바이러스로 감염된 세포로부터 상층액을 수집하고 - 80℃에서 보관하였다. In the presence of trypsin, KNU-141112 virus stock of each passage was infected with Vero cells as described above. Culture supernatants were collected after 24 or 48 hours postinfection (hpi) when 70% CPE was generally exerted. For growth cohort experiments, supernatants were collected from virus infected cells of each selected passage at different time points (6, 12, 24, 36, and 48 hpi) and stored at -80 ° C.
바이러스 역가는 96-웰 플레이트 상에서 샘플의 10 배 단계 희석물을 이용하여 희석물 당 3차례씩 측정하였으며, 이는 감염된 Vero 세포의 50% CPE를 형성하는데 요구되는 바이러스의 양을 측정하며, Reed-Muench 방법 (Reed and Muench, 1938)를 이용하여 ml당 TCID50 로 계산하였다. 또한 PEDV 역가를 플라크 어세이로, Vero 세포를 이용하여 결정하였으며, ml당 PFU (plaque-forming unit)으로 결정하였다. Virus titers were measured three times per dilution using a 10-fold dilution of the sample on a 96-well plate, which measures the amount of virus required to form 50% CPE of infected Vero cells, Reed-Muench Calculated as TCID 50 per ml using the method (Reed and Muench, 1938). PEDV titers were also determined by plaque assay, Vero cells, and plaque-forming units (PFU) per ml.
1.3 1.3 면역형광Immunofluorescence 어세이Assay ( ( IFAIFA , , ImmunofluorescenceImmunofluorescence assay) assay)
6-웰 조직 배양 플레이스 상에 위치한 현미경 커버슬라이드 상에서 생장한 Vero 세포를 0.1 MOI (multiplicity of infection)에서 PEDV로 위감염 또는 감염시켰다. 뒤이어 바이러스-감염된 세포를 24 hpi까지 번식시키고, 4% 파라포름알데히드로 10분간 실온에서 고정하고, PBS 내 0.2% Triton 1 X-100으로 실온에서 10분간 삼투화 (permeabilized)하였다. 세포를 PBS 중 1% BSA로 30분간 실온에서 블로킹한 뒤, 2시간동안 N-특이적 Mab와 함께 인큐베이션하였다. PBS로 5회 세척후, 세포를 1시간동안 RT에서 Alexa Fluor 488 (Invitrogen)와 접합된 염소 항-마우스 이차 항체와 인큐베이션하고, 뒤이어, DAPI (4?,6-diamidino-2-phenylindole, Sigma)로 대비염색하였다. 커버슬라이드를 마운팅 버퍼 (mounting buffer) 내 현미경 글라스 슬라이드 상으로 마운팅하고, 세포 염색을 형광 Leica DM IL LED 현미경 (Leica, Wetzlar, Germany)을 이용하여 시각화하였다. Vero cells grown on microscope coverslides placed on 6-well tissue culture places were infected or infected with PEDV at 0.1 multiplicity of infection (MOI). Virus-infected cells were then propagated up to 24 hpi, fixed at room temperature for 4 minutes with 4% paraformaldehyde and permeabilized for 10 minutes at room temperature with 0.2% Triton 1 X-100 in PBS. Cells were blocked with 1% BSA in PBS for 30 minutes at room temperature and then incubated with N-specific Mab for 2 hours. After 5 washes with PBS, cells were incubated with goat anti-mouse secondary antibody conjugated with Alexa Fluor 488 (Invitrogen) for 1 hour at RT followed by DAPI (4?, 6-diamidino-2-phenylindole, Sigma). Counterstained. Cover slides were mounted onto microscope glass slides in mounting buffer and cell staining was visualized using a fluorescent Leica DM IL LED microscope (Leica, Wetzlar, Germany).
1.4. 정량적 실시간 RT-1.4. Quantitative Real-Time RT- PCRPCR
상기 기술된 바와 같이 준비된 바이러스 분리주 또는 분변 세포로부터 i-TGE/PED Detection Kit를 이용하여 바이러스의 RNA를 추출하였다. 정량적 실시간 RT-PCR을 One Step SYBR PrimeScript RT-PCR Kit (TaKaRa, Otsu, Japan)를 이용하여 실시하였다. 반응을 Thermal Cycler Dice Real Time System (TaKaRa)를 이용하여 수행하였으며, 결과를 Sagong and Lee, 2011에서 기술한 시스템을 이용하여 분석하였다.Virus RNA was extracted using i- TGE / PED Detection Kit from virus isolates or fecal cells prepared as described above. Quantitative real-time RT-PCR was performed using One Step SYBR PrimeScript RT-PCR Kit (TaKaRa, Otsu, Japan). The reaction was performed using a Thermal Cycler Dice Real Time System (TaKaRa), and the results were analyzed using the system described in Sagong and Lee, 2011.
1.5 기니피그의 면역조치 (Immunization)1.5 Immunization of Guinea Pigs
8마리의 기니피그를 접종군 (n=6) 및 대조군 (n=2)으로 임의로 배분하였다. 6마리의 기니피그에 0.5 ml의 BEI (binary ethylenimine)-불활화된 KNU-141112-P10 바이러스를 프로인드 완전 어쥬번트 (Freund?s complete adjuvant, Sigma)의 존재하에서 피하로 면역조치하고, 2주 간격으로, 신선하게 제조된 불활화된 바이러스 및 프로인드 완전 어주번트의 에멀전으로 1회 부스팅 (boost)하였다. 2개의 위-접종된 기니피그는 각각의 어주번트 존재 하에서 세포 배양 배지를 투여 및 부스팅하였다. 전면역 (pre-immune) 혈청을 면역조치의 시작 전 수집하고, 항혈청을 최종 부스팅 후 2주경에 수집하였다. Eight guinea pigs were randomly allocated to the inoculation group (n = 6) and the control group (n = 2). Six guinea pigs were immunized subcutaneously with 0.5 ml of binary ethylenimine (BEI) -inactivated KNU-141112-P10 virus in the presence of Freund's complete adjuvant (Sigma), followed by a two week interval. And boosted once with an emulsion of freshly prepared inactivated virus and Freund's complete adjuvant. Two gastric-inoculated guinea pigs were dosed and boosted with cell culture medium in the presence of each adjuvant. Pre-immune serum was collected before the start of immunization and antiserum was collected 2 weeks after the last boost.
1.6 혈청 중화1.6 Serum Neutralization
모든 군의 기니피그로부터 수집한 혈청 샘플 내 PEDV-특이적 중화 항체의 존재여부를 96-웰 마이크로타이터 (microtiter) 플레이트 내에서 PEDV 분리주 KNU-141112 또는 백신주 SM98-1를 이용한 혈청 중화 실험으로 결정하였다. 구체적으로, Vero 세포를 96-웰 조직 배양 플레이트 내 2x104/웰에서 1일간 생장시켰다. KNU-141112-P10 바이러스 스톡을 무혈청 α-MEM으로 희석시켜 50 ㎕ 부피 내 200 TCID로 만들었다. 뒤이어 96-웰 플레이트에서 개별적 불활화된 혈청의 50 ㎕의 2-fold 단계희석물과 상기희석된 바이러스를 혼합하였다. 혼합물을 Vero 세포 내에 접종하고, 37 ℃에서 1시간동안 인큐베이션 하였다. 혼합물을 제거하고, 세포를 5회 PBS로 세척하고, 2일간 5% CO2 인큐베이터 내에서 37℃에서 바이러스 생장 배지내에 유지시켰다. 백신주를 이용한 혈청 중화 실험을 위하여, 트립신 존재하에서 번식된 PEDV주 SM98-1를 무혈청 α-MEM로 희석하여 50 ㎕ 부피로 200 PFU를 만들었다. 뒤이어 96-웰 플레이트에서 상기 기술된 바와 같이 희석된 바이러스를 각 혈청과 혼합하고, 1시간동안 37℃에서 인큐베이션 하였다. 뒤이어, 5% FBS를 포함하는 100㎕의 α-MEM 중 약 1x104 Vero 세포를 각 웰에 첨가하고 혼합물을 37℃에서 3일간 CO2 인큐베이터 내에서 유지시켰다. 중화 역가를 모든 이중 웰에서 바이러스 특이적 CPE를 억제하는 가장 높은 혈청 희석물의 레시프로컬 (reciprocal)로 계산한다. The presence of PEDV-specific neutralizing antibodies in serum samples collected from all groups of guinea pigs was determined by serum neutralization experiments using PEDV isolate KNU-141112 or vaccine SM98-1 in 96-well microtiter plates. . Specifically, Vero cells were grown for 1 day in 2 × 10 4 / well in 96-well tissue culture plates. KNU-141112-P10 virus stock was diluted with serum free α-MEM to 200 TCID in 50 μl volume. Subsequently, the diluted virus was mixed with 50 μl of 2-fold step diluent of individually inactivated serum in 96-well plates. The mixture was inoculated into Vero cells and incubated at 37 ° C. for 1 hour. The mixture was removed and the cells washed with PBS five times and kept in virus growth medium at 37 ° C. in a 5% CO 2 incubator for two days. For serum neutralization experiments with vaccine strains, PEDV strain SM98-1 propagated in the presence of trypsin was diluted with serum-free α-MEM to make 200 PFU in 50 μl volume. The virus diluted as described above in a 96-well plate was then mixed with each serum and incubated at 37 ° C. for 1 hour. Subsequently, about 1 × 10 4 Vero cells in 100 μl of α-MEM containing 5% FBS were added to each well and the mixture was maintained in a CO 2 incubator at 37 ° C. for 3 days. Neutralization titers are calculated as the reciprocal of the highest serum dilution that inhibits virus specific CPE in all duplicate wells.
1.7 돼지 감염 실험1.7 Swine Infection Experiment
In vivo 돼지 실험을 동물실험윤리위원회의 가이드라인에 따라 ImproAH Animal Facility에서 실시하였다. PED가 발별하거나 PEDV로 예방접종되지 않은 총 8마리의 7일령 젖먹이 돼지를 구매하였다. 모든 동물이 PEDV 뿐만 아니라, TGEV (transmissible gastroenteritis virus) 및 돼지번식호흡장애 증후군 바이러스 (porcine reproductive and respiratory syndrome virus)에 대한 항체가 없음을 확인하였다. 돼지를 3개의 실험군으로 임의로 분류하고 2개의 분리된 방에서 사육하였다: 1번 방에는 PEDV-접종군 (n = 4) 및 접촉 대조군 (n = 2)을, 2번 방에는 위-접종대조군 (n = 2)을 사육하였다. 하루간의 순응기간 후, PEDV-접종군의 1마리의 돼지에 1 ml 용량의 103 TCID50/ml KNU-141112-P10 바이러스를 경구투여하였다. 2마리의 돼지는 같은 방에서 사육되어 접종된 돼지에 직접 접촉함으로써 바이러스에 노출시켰다. 위-접종 돼지에는 세포 배양 배지를 플라시보로 투여하였다.In vivo pig experiments were conducted at the ImproAH Animal Facility according to the guidelines of the Animal Experimental Ethics Committee. A total of eight 7-day-old suckling pigs were purchased that were not identified or vaccinated with PEDV. All animals were found to be free of PEDV as well as antibodies to transmissible gastroenteritis virus (TGEV) and porcine reproductive and respiratory syndrome virus. Pigs were randomly divided into three experimental groups and reared in two separate rooms: in room 1 the PEDV-vaccinated group ( n = 4) and the contact control ( n = 2), in the room 2 the gastric-vaccinated control group ( n = 2). After a day of acclimation, one pig of the PEDV-vaccinated group was orally administered with a 1 ml dose of 10 3 TCID50 / ml KNU-141112-P10 virus. Two pigs were bred in the same room and exposed to the virus by direct contact with the inoculated pigs. Gastric-vaccinated pigs were administered with cell culture medium in placebo.
설사 및 폐사의 임상 증상을 매일 모니터링하였다. 모든 군의 배변 샘플을 접종 및 매일 16인치의 면봉으로 수집하고, i-TGE/PED Detection Kit를 이용한 RT-PCR 및 실시간 RT-PCR을 수행하였다. PEDV-접종된 돼지를 사후 부검을 위한 공격 (challenge) 후 매일 (1, 2, 3, 및 4일) 부검하였으며, 반면 접촉 및 대조군의 모든 돼지는 사후 부검을 위한 사후-공격 (challenge) 4일경에 안락사시켰다. 각각의 돼지로부터 수집된 내장 조직 표본 (<3mm thick)를 10% 포르말린으로 24시간동안 실온에서 고정하고, 파라핀에 내장화하였다. 포르말린으로 고정되고 파라핀 내에 내장화된 조직을 마이크로톰 (Leica) 상에서 5-8 ㎛ 두께로 자르고, 증류수를 포함하는 40 ℃의 워터베스에서 부유시킨 후, 글라스 슬라이드 위로 이동시켰다. 조직을 자일렌 내에서 5분간 탈파라핀화하고, 각각 3분 100%, 95%, 90%, 80%, 및 70%의 감소하는 농도의 에탄올로 세척하였다. 탈파라핀화된 장 조직 절편을 헤마톡시린 및 에오신 (sigma)로 염색하고, PEDV N-특이적 Mab를 이용하여 면역염색 어세를 실시하였다. The clinical symptoms of diarrhea and mortality were monitored daily. Bowel samples from all groups were inoculated and collected daily with a 16 inch swab and RT-PCR and real-time RT-PCR using the i- TGE / PED Detection Kit were performed. PEDV-inoculated pigs were necropsied daily (1, 2, 3, and 4 days) after challenge for post necropsy, whereas all pigs in contact and control were post-challenge around post autopsy for post necropsy. Euthanized on. Visceral tissue samples (<3 mm thick) collected from each pig were fixed with 10% formalin at room temperature for 24 hours and embedded in paraffin. Tissue fixed and embedded in paraffin was cut to 5-8 μm thick on a microtome (Leica), suspended in a water bath at 40 ° C. containing distilled water, and then moved onto a glass slide. Tissues were deparaffinized in xylene for 5 minutes and washed with decreasing concentrations of ethanol at 100%, 95%, 90%, 80%, and 70% for 3 minutes respectively. Deparaffinized intestinal tissue sections were stained with hematoxylin and eosin (sigma) and subjected to immunostaining assay using PEDV N-specific Mab.
1.8. 면역조직염색 (1.8. Immunohistostaining ( ImmunohistochemistryImmunohistochemistry ))
파라핀내에 내장화된 조직 절편을 탈파라핀화하고, 0.01 M 구연산염 버퍼 (pH 6.0)를 처리하고 5분간 전자레인지에 돌린 후, 실온에서 20분간 식힌 후, DW 중 0.3% 과산화수소와 함께 20분간 인큐베이션하여 내생적 퍼옥시다아제를 블로킹 하였다. PBS로 3회 세척 후, 절편을 정상 말혈청 (VECTASTAIN ABC Kit; Vector Laboratories, Burlingame, CA)으로 블로킹하고, 1시간동안 실온에서 N-특이적 Mab와 함께 인큐베이션하였다. PBS로 세척후, 샘플을 45분간 실온에서 말 항-마우스 이차 항체 (VECTASTAIN ABC Kit)와 반응시키고, 45분간 아비딘-비오틴 페록시다제 복합체 (VECTASTAIN ABC Kit)와 인큐베이션하고, DAB substrate Kit (Vector Laboratories)를 이용하여 발현시켰다. 뒤이어 슬라이드를 헤마톡실린으로 대비염색하고, 건조하고, 자일렌으로 세척후, 마운팅 버퍼 내의 현미경의 글라스 슬라이드 상에 마운팅하고 조직 염색을 현미경으로 시각화 하였다.Tissue sections embedded in paraffin were deparaffinized, treated with 0.01 M citrate buffer (pH 6.0), placed in a microwave for 5 minutes, cooled at room temperature for 20 minutes, and incubated with 0.3% hydrogen peroxide in DW for 20 minutes. Endogenous peroxidase was blocked. After washing three times with PBS, sections were blocked with normal horse serum (VECTASTAIN ABC Kit; Vector Laboratories, Burlingame, Calif.) And incubated with N-specific Mab for 1 hour at room temperature. After washing with PBS, the sample was reacted with the equine anti-mouse secondary antibody (VECTASTAIN ABC Kit) for 45 minutes at room temperature, incubated with the avidin-biotin peroxidase complex (VECTASTAIN ABC Kit) for 45 minutes, and DAB substrate Kit (Vector Laboratories). ) Expression. The slides were then counterstained with hematoxylin, dried, washed with xylene, then mounted on a microscope glass slide in the mounting buffer and tissue staining visualized under a microscope.
1.9. 뉴클레오티드 시퀀싱 1.9. Nucleotide Sequencing
원천의 분변 샘플 및 이의 P5 및 P10의 분리주의 완전 게놈 서열을 MGS (next-generation sequencing)기술을 이용하여 결정하였다. 분변 및 P5 및 P10 분리주로부터 총 RNA를 RNeasy Mini Kit (Qiagen, Hilden, Germany)를 이용하여 추출하고, 이를 cDNA 조각을 증폭하기 위한 주형으로 사용하였다. The complete genome sequence of the original fecal sample and its isolates of P5 and P10 were determined using next-generation sequencing (MGS) techniques. Total RNA from fecal and P5 and P10 isolates was extracted using the RNeasy Mini Kit (Qiagen, Hilden, Germany) and used as a template for amplifying cDNA fragments.
각 샘플의 전체 게놈을 포함하도록 10개의 오버랩되는 cDNA 조각을 생성하고, 동몰량으로 모은 뒤, Ion Torrent Personal Genome Machine (PGM) Sequencer System (Life Technologies, Carlsbad, CA) 및 316 v2 sequencing chip (Life Technologies)를 이용하여 NGS를 수행하였다. 단일-뉴클레오티드 변이 (single-nucleotide variants, SNVs)를 CLC Genomic Workbench version 7.0 (CLC Bio, Cambridge, MA)을 이용하여 분석하고, 개별적 NGS 판독물을 PEDV 참조주 KOR/KNU-1305/2013 (Genbank accession no. KJ662670)를 이용하여 취합하였다. Ten overlapping cDNA fragments were generated, collected in equimolar amounts to cover the entire genome of each sample, followed by the Ion Torrent Personal Genome Machine (PGM) Sequencer System (Life Technologies, Carlsbad, Calif.) And 316 v2 sequencing chip (Life Technologies NGS was performed using Single-nucleotide variants (SNVs) were analyzed using CLC Genomic Workbench version 7.0 (CLC Bio, Cambridge, Mass.) And individual NGS reads were analyzed in the PEDV reference KOR / KNU-1305 / 2013 (Genbank accession). no.KJ662670).
분변 및 P5 및 P10의 분리주의 게놈의 5' 말단 및 3' 말단을 RACE (rapid amplification of cDNA end)를 이용하여 결정하였다. The 5 'and 3' ends of the feces and genomes of the isolates of P5 and P10 were determined using rapid amplification of cDNA end (RACE).
KNU-141112-feces, KNU-141112-P5, and KNU-141112-P10의 전장 게놈 뉴클레오티드 서열을 각각 KR873431, KR873434, 및 KR873435의 accession number로 GenBank에 기탁하였다. 바이러스 분리주의 S 당단백 유전자 서열을 전형적 Sanger 방법으로 결정하였다. 각 분리주의 S 유전자를 포괄하는 2개의 오버랩핑되는 cDNA 조각을 RT-PCR로 증폭하였다. 개별적 cDNA 증폭체 (amplicon)를 겔-정제하고, pGEM-T easy (Promega, Madison, WI)내로 클로닝 하고, 벡터-특이적 T7 및 SP6 프라이머 및 S 유전자-특이적 프라이머를 이용하여 양쪽 방향으로 시퀀싱하였다. Full-length genomic nucleotide sequences of KNU-141112-feces, KNU-141112-P5, and KNU-141112-P10 were deposited in GenBank with accession numbers of KR873431, KR873434, and KR873435, respectively. S glycoprotein gene sequence of virus isolates was determined by a typical Sanger method. Two overlapping cDNA fragments covering the S gene of each isolate were amplified by RT-PCR. Individual cDNA amplifiers (gellic) were gel-purified, cloned into pGEM-T easy (Promega, Madison, Wis.) And sequenced in both directions using vector-specific T7 and SP6 primers and S gene-specific primers. It was.
또한, 선택된 패시지의 바이러스 분리주 ((KNU-141112-P3, KNU-141112-P4, KNU-141112-P20, 및 KNU-141112-P30)의 완전 구조 유전자 시퀀스를 Sanger 방식으로 결정하고, 도 5에 나타난 accession number로 GenBank 데이터베이스에 기탁하였다. In addition, the complete structural gene sequence of the virus isolate (KNU-141112-P3, KNU-141112-P4, KNU-141112-P20, and KNU-141112-P30) of the selected passage was determined by the Sanger method, and shown in FIG. The accession number was deposited in the GenBank database.
1.10 개통발생 분석 (Phylogenetic analysis)1.10 Phylogenetic analysis
42개의 완전히 시퀀싱된 S 유전자 서열 및 PEDV 분리주의 25개의 완전 게놈에 대하여 독립적으로 시퀀스 얼라이먼트 (sequence alignments) 및 계통발생 분석을 수행하였다. 다중-시퀀스 얼라이먼트를 ClustalX 2.0 program (Thompson et al., 1997)을 이용하여 생성하였으며, 뉴클레오티드 시퀀스 다이버젼스(divergences)의 퍼센트를 동일한 소프트웨어로 측정하였다.Sequence alignments and phylogenetic analyzes were performed independently on 42 fully sequenced S gene sequences and 25 complete genomes of PEDV isolates. Multi-sequence alignments were generated using the ClustalX 2.0 program (Thompson et al., 1997) and the percentage of nucleotide sequence divergences was measured with the same software.
개통수를 인접-결합 방법 (neighbor-joining method)을 이용하여 얼라인된 뉴클레오티드 또는 아미노산 서열로부터 구성하였으며, 뒤이어 복제 (replicate)를 이용한 부트스트랩 (bootstrap) 분석을 수행하여, 계통수의 각 내부 노드 (internal node) 상의 신뢰값 퍼센트를 결정하였다. 모든 계통수 도면은 Mega 4.0 software (Tamura et al., 2007)를 이용하여 생성하였다. Openings were constructed from aligned nucleotide or amino acid sequences using a neighbor-joining method, followed by bootstrap analysis using replicates, whereby each internal node of the phylogenetic tree ( The percent confidence value on the internal node) was determined. All phylogenetic drawings were generated using Mega 4.0 software (Tamura et al., 2007).
1.11 통계적 분석 1.11 Statistical Analysis
모든 통계학적 분석을 위하여 Student?s t test를 이용하였으며 0.05 보다 작은 p-value을 유의적인 것으로 간주하였다. Student's t test was used for all statistical analyzes and p-values less than 0.05 were considered significant.
실시예Example 2. 결과 2. Results
2.1 바이러스 분리 및 in vitro 특정 2.1 Virus isolation and in vitro specificity
본 발명자는 50개의 분변 및 7개의 장 분쇄물을 포함하는, PCR-양성 임상 샘플로부터 Vero 세포 상에 PEDV를 분리고자 하였다. 그중 2014년 9월 29일경 수득한 경상북도에 위치한 농장으로부터 자연적으로 감염된 돼지의 분변으로부터, KNU-141112로 명명된 일 PEDV 분리주를 성공적으로 분리하였다. We sought to isolate PEDV on Vero cells from a PCR-positive clinical sample containing 50 feces and 7 intestinal mills. Among them, one PEDV isolate named KNU-141112 was successfully isolated from feces of naturally infected pigs from a farm located in Gyeongsangbuk-do, which was obtained around September 29, 2014.
또한, 본 발명자는 신규한 돼지 유행성설사 바이러스 국내 분리주인 KNU-141112 바이러스를 2014년 12월 18일자로 대한민국 대전시 유성구 어은동에 위치한 한국생명공학연구원 미생물자원센터에 기탁하여, 2014년 12월 18일자로 기탁번호 KCTC12736BP를 부여받았다. In addition, the present inventors deposited the KNU-141112 virus, a domestic isolate of the swine epidemic diarrhea virus, at the Korea Biotechnology Research Institute microbial resource center located in Eeun-dong, Yuseong-gu, Daejeon, Korea on December 18, 2014. Accession number KCTC12736BP was assigned.
KNU-141112 바이러스는 감염된 Vero 세포에서 패시지 3 (P3)부터 세포 융합, 합포체 (syncytium) 및 탈리 (detachment) 등 PEDV 감염에서 전형적인 분명한 CPE를 나타내었다. KNU-141112 virus exhibited clear CPE, typical of PEDV infection, from passage 3 (P3) to cell fusion, syncytium and detachment in infected Vero cells.
뒤이어, 이 분리주가 세포 배양에서 효과적으로 배양되며 유지되는지를 확인하였다. 이에 따라, 분리된 PEDV 주 KNU- 141112를 Vero 세포에서 총 30 패시지동안 연속 계대배양하였다 (P1부터 P30). CPE 개시 시점은 24 hpi인바, 이에 따라, 현저한 CPE는 48 hpi 이내에, 첫 2 productive passage (P3 및 P4)에서 관찰되었다. 이후 패시지에서, 가지적인 CPE는 12 hpi에서 나타났으며, 24 hpi에서 뚜렷하였다. 바이러스 증식을 PEDV N 단백질-특이적 Mab를 이용한 IFA에 의하여 PEDV 항원을 검출함으로써 확인하였다. 뚜렷한 염색이 전형적인 합포체 (syncytial) 세포의 세포질에 분포하였다. 대조적으로, 위-접종된 Vero 세포에서는 CPE 및 N-특이적 염색이 나타나지 않았다. 선택된 패시지에서의 CPE의 예시 및 관련된 IFA 이미지를 도 1에 나타내었다. Subsequently, it was confirmed that this isolate was effectively cultured and maintained in cell culture. Accordingly, isolated PEDV strain KNU-141112 was serially passaged for 30 total passages in Vero cells (P1 to P30). The time point for CPE initiation was 24 hpi, so that significant CPE was observed in the first 2 productive passages (P3 and P4) within 48 hpi. In subsequent passages, branched CPE appeared at 12 hpi and was pronounced at 24 hpi. Virus proliferation was confirmed by detecting PEDV antigen by IFA using PEDV N protein-specific Mab. Distinct staining was distributed in the cytoplasm of typical syncytial cells. In contrast, no gastric-inoculated Vero cells showed CPE and N-specific staining. Examples of CPEs in selected passages and related IFA images are shown in FIG. 1.
선택된 패시지에서의 바이러스 게놈의 수준을 실시간 RT-PCR로 측정하고 평균 Ct (cycle threshold) 값을 15.3 (P10) 내지 18.7 (P5) 범위의 16.7로 결정하였다. The level of viral genome in selected passages was measured by real-time RT-PCR and the mean cycle threshold (Ct) value was determined to be 16.7 in the range of 15.3 (P10) to 18.7 (P5).
분리주의 P5까지의 감염적 역가를 105.1 내지 106.1 TCID50/ml 범위로 정하고, 이후 패시지에서는 약 107 TCID50/ml로 결정하였다. 패시지 10부터 피크 바이러스 역가는 107.8 TCID50/ml (107.5 PFU/ml와 상응)에 이르렀다 (도 2A). Infectious titers up to P5 of the isolate were determined in the range of 10 5.1 to 10 6.1 TCID 50 / ml, and in subsequent passages were determined to be about 10 7 TCID 50 / ml. From pass 10 the peak virus titer reached 10 7.8 TCID 50 / ml (corresponding to 10 7.5 PFU / ml) (FIG. 2A).
또한, 성장 동역 실험은 KNU-141112가 Vero 세포에서 빠르고 효과적으로 복제되고, 24 dpi에서 최대역가 >107 TCID50/ml에 도달한다는 것을 나타내었다.In addition, growth kinetics experiments showed that KNU-141112 replicates quickly and effectively in Vero cells and reaches a maximum titer> 10 7 TCID 50 / ml at 24 dpi.
2.2. 2.2. 기니피그에서의In guinea pigs KNUKNU -141112의 항체 반응-141112 Antibody Reactions
면역조치 전 (전면역, pre-immune) 기니피그의 항혈청을 수집하고, 최종 부스트 후 2주 후 최종 부스트 (boost) 및 분리된 KNU-141112 또는 백신주에 대한 중화활성을 검사하였다. Antisera of guinea pigs before preimmune (pre-immune) guinea pigs were collected and tested for neutralization activity against final boost and isolated KNU-141112 or vaccine strains 2 weeks after the last boost.
도 3에 나타난 바와 같이, 기니피그 항혈청은 매우 KNU-141112 감염의 억제에 매우 효과적이였으며, 평균 중화항체 (neutralizing antibody, NA) 역가 1:112였다. 반면 상대적으로 낮은 희석의 항혈청은 SM98-1 감염으로부터 Vero 세포를 완전히 방어하였으며, 평균 NA 역가는 1:37 였다. 대조적으로, 전면역 또는 면역조치되지 않은 혈청은 각 주에 대한 중화활성을 나타낸다.As shown in FIG. 3, guinea pig antiserum was very effective in suppressing KNU-141112 infection and had an average neutralizing antibody (NA) titer of 1: 112. On the other hand, relatively low dilution of antiserum completely protected Vero cells from SM98-1 infection, with an average NA titer of 1:37. In contrast, serologous or unimmunized sera exhibit neutralizing activity for each week.
종합하였을 때, 이러한 데이터는 분리한 KNU-141112가 면역조치된 동물에서 잠재적 항체 반응을 이끌어낼수 있음을 나타낸다. 그러나, 항혈청이 동종 야외 분리주를 강하게 인식하는 반면, 이종 PEDV 백신주에는 효과가 없었으며, 이는 백신주 및 야외 PEDVs간의 항원변이를 암시한다. Taken together, these data indicate that isolated KNU-141112 can elicit potential antibody responses in immunized animals. However, while antiserum strongly recognized allogeneic outdoor isolates, it was ineffective against heterologous PEDV vaccine strains, suggesting antigenic variation between the vaccine strain and the field PEDVs.
2.3. 2.3. KNUKNU -- 141112감염의141112Infective 병원성 Pathogenic
4마리의 돼지를 KNU-141112 바이러스로 경구 챌린지 (challenge)하고, 2마리 대조군 동물을 배도 배양 배지로 접종하였다. 2마리의 돼지를 직접 접촉 노출을 위하여 동일한 방에 접종된 돼지와 함께 사육하였다. 임상적 신호를 매일 기록하고, 분변 면봉을 본 실험기간 동안 접종 전후로 수집하였다. 순응 기간 후, 모든 돼지는 활동적이며 정상 분변 농도를 나타내었다. PEDV-챌린지된 돼지는 1 DPI(day post-inoculation)에서 무기력 및 설사변을 포함하는 임상적 신호를 나타내었으며, 심각한 수양성 설사 및 이후 구토를 나타내었다. PEDV-관련 폐사가 1DPI에 접종된 돼지로부터 발생하였다. 접종된군과 함께 사육된 접촉 돼지는 설사변 및 구토를 2 DPI에 나타내었으며, 임상적 신호의 진행은 접종된 동물과 유사하였다. 또한, RT-PCR로 결정한 바와 같이, 1 또는 2 DPI에서 모든 접종된 및 접촉된 돼지는 PEDV에 양성이였으며, 각각 18.7 (범위 16.4-21.0) 및 20.1 (범위 15.4-23.1)의 평균 Ct 값으로 분변 내에 PEDV를 배설하였다. 음성 대조군 돼지의 경우 정상적인 분변과 함께 활발하였으며, 실험 기간동안 PEDV가 존재하는 분변은 검출되지 않았다. Four pigs were challenged orally with the KNU-141112 virus, and two control animals were inoculated with apostasy culture medium. Two pigs were raised with pigs inoculated in the same room for direct contact exposure. Clinical signs were recorded daily and fecal swabs were collected before and after inoculation during this experiment. After the acclimation period, all pigs were active and showed normal fecal concentrations. PEDV-challenged pigs showed clinical signs including lethargy and diarrhea at 1 DPI (day post-inoculation), and severe watery diarrhea followed by vomiting. PEDV-related mortality occurred from pigs inoculated at 1DPI. Contact pigs bred with the inoculated group showed diarrhea and vomiting at 2 DPI, and the progress of clinical signs was similar to the inoculated animals. In addition, as determined by RT-PCR, all inoculated and contacted pigs at 1 or 2 DPI were positive for PEDV, with mean Ct values of 18.7 (range 16.4-21.0) and 20.1 (range 15.4-23.1), respectively. PEDV was excreted in feces. Negative control pigs were active with normal feces and feces with PEDV were not detected during the experimental period.
1마리의 돼지가 PEDV로 폐사하였으며, 뒤이어 1 DPI에 검시를 실시하였으며, 나머지 접종된 돼지는 이후 검시를 위하여 임의로 선별하였다. 모든 접촉 및 대조군 동물은 사후검시연구를 위하여 안락사하였다. 모든 접종 또는 직접 접촉 (naive contact) 돼지는 거시적으로 전형적인 PED-유사 병변을 나타내었다. 소장이 팽창되고, 황색 유채액이 축적되어 있으며, 융모 위축에 의하여 벽은 얇고 투명하였다 (도 4, 패널 A). 위도 팽창되어 있으며, 멍울지고 소화되지 않은 유액으로 차있었다. 대조적으로, 다른 장내기관은 정상적이었다. 바이러스성장염과 일치하는 장의 미시적 관찰은 모든 접종된 및 접촉된 돼지에서 발달되어 있으며, 이는 소장의 장세포의 액포 및 소장융모의 축소 및 융합을 포함한다 (Fig 4, 패널 B 및 C). 유사한 미세 병변이 4 DPI까지 챌린지된 및 접촉된 돼지에서 지속적으로 관찰되었다. 더욱이, IFA 및 IHC 염색은 소장의 모든 조각내 위축된 융모 상의 상피 세포의 세포질에서 바이러스성 항원이 뚜렷하게 검출됨을 나타내었다 (도 4, 패널 D 내지 F). 이러한 결과는 자연적 또는 실험적으로 악성 PEDV주가 감염된 돼지의 것과 비교가능하다 (Debouck et al., 1981; Jung et al., 2014; Madson et al., 2014; Stevenson et al, 2013). 실험기간 동안 음성 대조군 돼지에서는 미시적 또는 거시적 장내 병변이 관찰되지 않았다. One pig died of PEDV, followed by necropsy at 1 DPI, and the remaining inoculated pigs were then randomly selected for necropsy. All contact and control animals were euthanized for postmortem examination. All inoculated or naive contact pigs showed macroscopic typical PED-like lesions. The small intestine was swollen, yellow rapeseed was accumulated, and the wall was thin and transparent due to villi atrophy (FIG. 4, Panel A). The stomach was also swollen and filled with a blunt, undigested fluid. In contrast, other intestinal organs were normal. Microscopic observations of the gut coincident with viral growthitis have developed in all inoculated and contacted pigs, which include the vacuoles of the small intestine and the reduction and fusion of the small intestinal villi (Fig. 4, Panels B and C). Similar micro lesions were observed continuously in challenged and contacted pigs up to 4 DPI. Moreover, IFA and IHC staining showed that viral antigens were distinctly detected in the cytoplasm of epithelial cells on atrophied villi in all fragments of the small intestine (FIG. 4, Panels D to F). These results are comparable to those of pigs infected naturally or experimentally with malignant PEDV strains (Debouck et al., 1981; Jung et al., 2014; Madson et al., 2014; Stevenson et al, 2013). No microscopic or macroscopic intestinal lesions were observed in the negative control pigs during the experimental period.
2.3. 2.3. KNUKNU -141112의 완전 게놈의 특정Specific genome of -141112
원형의 분변 샘플 (KNU-141112-분변) 및 세포 배양-계대된 KNU-141112-P5 및 -P10 바이러스의 전체 게놈 서열 데이터를 NGS 기술을 이용하여 결정하였다. Whole genome sequence data of circular fecal samples (KNU-141112-feces) and cell culture-passed KNU-141112-P5 and -P10 viruses were determined using NGS techniques.
KOR/KNU-1305/2013 PEDV의 전장 게놈을 각 NGS 판독물에 대한 초기 참조 (initial reference)로서 사용하였으며, 개별적인 완전 게놈 서열을 각각의 NGS 판독물의 취합으로 성공적으로 수득하였다. 또한, 이러한 게놈의 5'및 3'말단을 RACE로 시퀀싱하였다. 3개의 모든 게놈은 3'poly(A) tail을 제외하고는 길이상 28,038 뉴클레오티드였으며, 292-nt 5' UTR, 20345-nt ORF1a/1b (1a 에 대하여 nt 293 내지 12601, 및 1b에 대하여 nt 12601 내지 20637), 4161-nt S 유전자 (nt 20634 내지 24794), 675-nt ORF3 (nt 24794 내지 25468), 231-nt E 유전자 (nt 25449 내지 25679), 681-nt 세포막 (membrane, M) 유전자 (nt 25687 내지 26367), 1326-nt N 유전자 (nt 26379 내지 27704), 및 334-nt 3' UTR로 이루어진, 종래 시퀀싱된 PEDV주의 전형적인 게놈 구조를 나타내었다. 슬리퍼리 헵타머 (slippery heptamer) 서열, TTTAAAC, 뒤이은 stem-loop 구조가 PEDV 게놈내의 3' 말단의 ORF1a에 나타났으며, 이는 pp 1ab를 생성하기 위한 번역 중 리보솜 프레임 시프트의 잠재적 신호에 해당한다. The full-length genome of KOR / KNU-1305 / 2013 PEDV was used as an initial reference for each NGS read, and individual complete genome sequences were successfully obtained by collection of each NGS read. In addition, the 5 'and 3' ends of this genome were sequenced with RACE. All three genomes were 28,038 nucleotides in length except for the 3'poly (A) tail, 292-nt 5 'UTR, 20345-nt ORF1a / 1b (nt 293-12601 for 1a, and nt 12601 for 1b). To 20637), 4161-nt S gene (nt 20634 to 24794), 675-nt ORF3 (nt 24794 to 25468), 231-nt E gene (nt 25449 to 25679), 681-nt cell membrane (membrane, M) gene ( nt 25687 to 26367), 1326-nt N genes (nt 26379 to 27704), and 334-nt 3 'UTR, showing typical genomic structures of conventionally sequenced PEDV strains. The slippery heptamer sequence, TTTAAAC, followed by a stem-loop structure, appeared at the 3 'end of ORF1a in the PEDV genome, corresponding to a potential signal of ribosomal frame shift during translation to produce pp 1ab. .
3개의 모든 바이러스의 완전 개놈 서열을 비교하였으며, 그 결과를 하기 표 2에 나타내었다. The complete canonical sequences of all three viruses were compared and the results are shown in Table 2 below.
Figure PCTKR2015014029-appb-T000001
Figure PCTKR2015014029-appb-T000001
KNU-141112-feces, KNU-141112-P5의 비교는 21756 위치의 1개의 상이한 nt를 나타내며, 이는 S 단백질 내의 1개의 아미노산 (amino acid, aa)의 변화 (Leu 에서 Phe)를 야기한다. 반면, KNU-141112-P10은 21448 및 24492의 2개의 추가적 nt 변화를 획득하였으며, 이는 S 단백질 상 2개의 aa 돌연변이를 야기한다. Comparison of KNU-141112-feces, KNU-141112-P5 shows one different nt at position 21756, which results in a change in one amino acid (aa) in the S protein (Lhe to Phe). In contrast, KNU-141112-P10 obtained two additional nt changes of 21448 and 24492, resulting in two aa mutations on the S protein.
원형의 분변 및 선택된 패시지 (P3, P4, P5, P10, P20, 및 P30)의 KNU-141112 바이러스의 전장 S 유전자를 종래 시퀀싱 방법을 이용하여 시퀀싱하였다.The full-length S gene of KNU-141112 virus of circular feces and selected passages (P3, P4, P5, P10, P20, and P30) was sequenced using conventional sequencing methods.
KNU-141112-feces, -P5, 및 -P10의 S 단백질 서열은 NGS로 결정한 서열과 완전히 일치하였다. KNU-141112-P5의 S-유전자에 나타난 한 개의 nt 변화는 패시지 3 (KNU-141112-P3)부터 발생하였다. 분변과 비교하여 10 패시지에서 확인된, 총 3개의 nt 돌연변이는 패시지 30 (KNU-141112-30)까지 지속되었다. The S protein sequences of KNU-141112-feces, -P5, and -P10 were completely identical to those determined by NGS. One nt change in the S-gene of KNU-141112-P5 occurred from passage 3 (KNU-141112-P3). A total of three nt mutations, identified at 10 passages compared to feces, persisted up to passage 30 (KNU-141112-30).
또한, KNU-141112-P10의 비교에서, KNU-141112-P20에서는 24869 및 25656 위치에서 2개의 독립적인 돌연변이를 검출할 수 있었으며, 이는 각각 ORF3 (Asp에서 Tyr) 및 E (Pro에서 Ser)의 아미노산 변화를 야기하며, 이는 패시지 30까지 유지되었다. In addition, in comparison of KNU-141112-P10, KNU-141112-P20 was able to detect two independent mutations at positions 24869 and 25656, which were amino acids of ORF3 (Tyr in Asp) and E (Ser in Pro), respectively. Causing a change, which was maintained up to passage 30.
종합하여 볼 때, 이러한 결과는 PEDV 분리된 KNU-141112가 세포 계대 배양시 유전적으로 안정하다는 것을 나타낸다. Taken together, these results indicate that PEDV isolated KNU-141112 is genetically stable in cell passage culture.
본 발명에서 결정된 PEDV의 전체 게놈 서열을 Genebank에서 확인 가능한 종래 3개의 다른 국내주 또는 8개의 국외 PEDV주와 비교하였으며, 이러한 뉴클레오티드 상동성 데이터를 하기 표 3에 나타내었다. The entire genome sequence of the PEDV determined in the present invention was compared with three conventional domestic or eight foreign PEDV strains which can be identified in Genebank, and these nucleotide homology data are shown in Table 3 below.
Figure PCTKR2015014029-appb-T000002
Figure PCTKR2015014029-appb-T000002
또한, 본 발명에서 결정된 PEDV의 스파이크 단백질에 대한 종래 Genebank에서 확인 가능한 종래 3개의 다른 국내주 또는 8개의 국외 PEDV주와 비교하였으며, 이러한 뉴클레오티드 상동성 데이터를 하기 표 4에 나타내었다. In addition, it was compared with three other domestic strains or eight foreign PEDV strains which can be identified in the conventional Genebank for the PEDV spike protein determined in the present invention, and these nucleotide homology data are shown in Table 4 below.
Figure PCTKR2015014029-appb-T000003
Figure PCTKR2015014029-appb-T000003
KNU-141112 분리주 (feces, 4 P5, 및 P10)는 국내 재출현한 바이러스주 KOR-KNU-1305 및 US주인, IN17846 및 MN와 게놈 수준에서 8 내지 46개의 nt 차이를 나타내어, 가장 높은 뉴클레오티드 상동성 (99.9%)를 나타내었다. KNU-141112 isolates (feces, 4 P5, and P10) exhibited 8 to 46 nt differences at the genome level with domestic reexpressed virus strains KOR-KNU-1305 and US strain, IN17846 and MN, resulting in the highest nucleotide homology. (99.9%).
3개의 모든 바이러스는 한국 백신주인 SM98-1 및 DR-13, 및 원형 CV777주와 유전적으로 분리되며, 96.3% 내지 96.8%의 범위로 비교적 낮은 뉴클레오티드 상동성을 나타내었다. All three viruses were genetically isolated from the Korean vaccine strains SM98-1 and DR-13, and the original CV777 strain, and exhibited relatively low nucleotide homology in the range of 96.3% to 96.8%.
전세계적 PEDV주의 얼라인먼트에 따라, 20204와 20205간의 단일-뉴클레오티드 삽입이 1개의 중국 AH2012주 및 3개의 US 주에서 종래 확인되었으며, 이는 길이에서 pp 1ab 단백질의 단축을 야기한다 (Chen et al., 2014). 그러나, 3개의 PEDV의 개놈 모두 이러한 삽입을 포함하지 않으며, 이러한 결과를 Sanger 시퀀싱 방법에 의하여 확인하였다. According to the worldwide alignment of PEDV strains, single-nucleotide insertions between 20204 and 20205 have been conventionally identified in one Chinese AH2012 strain and three US strains, resulting in a shortening of the pp 1ab protein in length (Chen et al., 2014 ). However, all three PEDV dogs do not include this insertion and this result was confirmed by Sanger sequencing method.
S 유전자 및 S1 부분이 상이한 PEDV 분리주 간의 유전적 관련성을 분석하기에 적절한 부위인 바, 계통발생 분석을 위하여 공개된 PEDV주의 양 부분를 사용하였다. 종래 결과도 동일하게 (Lee et al., 2010; Lee and Lee, 2014; Lee et al., 2014a; Lee et al., 2014b), 전장 S 유전자-기반 계통수는 전세계적 PEDV주가 2개의 클러스터로 명확하게 구분됨을 나타내었으며, 이를 genogroup 1 (G1; classical) 및 genogroup 2 (G2; field epidemic)으로 명명하였다. 각 genogroup은 subgroup 1a, 1b, 2a, 및 2b으로 다시 분류될 수 있다 (Fig. 5A). 모든 원형 분변 및 30 패시지까지 계대된 PEDV 바이러스는 최근 국내 야외 분리주와 마찬가지로 모두 subgroup 2b로 분류되었으며, 동일한 subgroupso의 인접한 계통군 내 신생 US주와 가장 가깝게 클러스터되었다. S1 부분을 이용한 이후의 계통발생분석은 S 유전자-기반 계통수와 동일한 그루핑 구조를 나타내었다.Both parts of the published PEDV strain were used for phylogenetic analysis, as the S gene and S1 moiety were suitable sites for analyzing the genetic association between different PEDV isolates. Conventional results are the same (Lee et al., 2010; Lee and Lee, 2014; Lee et al., 2014a; Lee et al., 2014b), and the full-length S gene-based phylogenetic tree is evident in two clusters of global PEDV strains. Genogroup 1 (G1; classical) and genogroup 2 (G2; field epidemic). Each genogroup can be subdivided into subgroups 1a, 1b, 2a, and 2b (Fig. 5A). PEDV viruses passaged to all circular feces and up to 30 passages were all recently classified as subgroup 2b, similar to domestic field isolates, and clustered closest to the emerging US strains in adjacent lineages of the same subgroupso. Subsequent phylogenetic analysis using the S1 moiety showed the same grouping structure as the S gene-based phylogenetic tree.
또한, 전체 게놈 서열을 바탕으로 한 계통발생 분석은 KNU-141112가 최근 국내주 및 US주와 동일한 클러스터로 분류됨을 증명하였다 (도 5B).In addition, phylogenetic analysis based on the whole genome sequence demonstrated that KNU-141112 was recently classified into the same cluster as domestic and US strains (FIG. 5B).
[수탁번호][Accession number]
기탁기관명 : 한국생명공학연구원Depositary: Korea Research Institute of Bioscience and Biotechnology
수탁번호 : KCTC12736BPAccession number: KCTC12736BP
수탁일자 : 20141218Deposit Date: 20141218
Figure PCTKR2015014029-appb-I000001
Figure PCTKR2015014029-appb-I000001
Figure PCTKR2015014029-appb-I000002
Figure PCTKR2015014029-appb-I000002

Claims (23)

  1. 서열번호 1의 아미노산 서열 또는 이와 98% 이상의 상동성을 가지는 아미노산 서열로 이루어지며 동등한 면역원성을 가지는 스파이크 단백질을 포함하는 돼지 유행성 설사병 바이러스 (Porcine Epidemic Diarrhea Virus, PEDV) 대한민국 분리주.Porcine Epidemic Diarrhea Virus (PEDV) Korea isolate comprising the amino acid sequence of SEQ ID NO: 1 or an amino acid sequence having a homology of 98% or more and having an equivalent immunogenicity.
  2. 청구항 1에 있어서, 상기 98% 이상의 상동성을 가지는 아미노산 서열은 서열번호 8, 15, 22, 28, 34, 및 40으로 이루어진 군으로부터 선택된 아미노산 서열인 것인, 돼지 유행성 설사병 바이러스 (Porcine Epidemic Diarrhea Virus, PEDV) 대한민국 분리주.The method according to claim 1, wherein the amino acid sequence having at least 98% homology is an amino acid sequence selected from the group consisting of SEQ ID NO: 8, 15, 22, 28, 34, and 40, Porcine Epidemic Diarrhea Virus , PEDV) Republic of Korea.
  3. 청구항 1에 있어서, 상기 분리주는 서열번호 2의 ORF (open reading frame) 1a/1b, 서열번호 3의 ORF 3, 서열번호 4의 외피 단백질 (envelope protein), 서열번호 5의 막단백질 (membrane protein), 및 서열번호 6의 뉴로캡사이드 단백질 (nucleocapsid protein)으로 이루어진 군으로부터 1종 이상 선택된 아미노산 서열 또는 이와 98% 이상의 상동성을 가지는 아미노산 서열을 더 포함하는 것인, 돼지 유행성 설사병 바이러스 (Porcine Epidemic Diarrhea Virus, PEDV) 대한민국 분리주.The method of claim 1, wherein the isolate is ORF (open reading frame) 1a / 1b of SEQ ID NO: 2, ORF 3 of SEQ ID NO: 3, envelope protein of SEQ ID NO: 4, membrane protein of SEQ ID NO: 5 , And further comprising at least one amino acid sequence selected from the group consisting of a nucleocapsid protein of SEQ ID NO: 6 or an amino acid sequence having at least 98% homology therewith, Porcine Epidemic Diarrhea Virus, PEDV) South Korea.
  4. 청구항 3에 있어서, 상기 분리주는 서열번호 7의 아미노산 서열로 이루어진 것인, 돼지 유행성 설사병 바이러스 (Porcine Epidemic Diarrhea Virus, PEDV) 대한민국 분리주. The isolate of claim 3, wherein the isolate is composed of the amino acid sequence of SEQ ID NO: 7. Porcine Epidemic Diarrhea Virus (PEDV).
  5. 청구항 3에 있어서, 상기 분리주는 수탁번호 KCTC12736BP로 수탁된 것인, 돼지 유행성 설사병 바이러스 (Porcine Epidemic Diarrhea Virus, PEDV) 대한민국 분리주. The isolate of claim 3, wherein the isolate has been deposited with accession number KCTC12736BP, Porcine Epidemic Diarrhea Virus (PEDV).
  6. 청구항 1에 있어서, 상기 분리주는 서열번호 8의 스파이크 단백질, 서열번호 9의 ORF (open reading frame) 1a/1b, 서열번호 10의 ORF 3, 서열번호 11의 외피 단백질 (envelope protein), 서열번호 12의 막단백질 (membrane protein), 및 서열번호 13의 뉴로캡사이드 단백질 (nucleocapsid protein)으로 이루어진 군으로부터 1종 이상 선택된 아미노산 서열을 포함하는 것인, 돼지 유행성 설사병 바이러스 (Porcine Epidemic Diarrhea Virus, PEDV) 대한민국 분리주. The method of claim 1, wherein the isolate is a spike protein of SEQ ID NO: 8, ORF (open reading frame) 1a / 1b of SEQ ID NO: 9, ORF 3 of SEQ ID NO: 10, envelope protein of SEQ ID NO: 11, SEQ ID NO: 12 Porcine Epidemic Diarrhea Virus (PEDV), which comprises at least one amino acid sequence selected from the group consisting of a membrane protein, and a nucleocapsid protein of SEQ ID NO: 13. Segregation Note.
  7. 청구항 6에 있어서, 상기 분리주는 서열번호 14의 아미노산 서열로 이루어진 것인, 돼지 유행성 설사병 바이러스 (Porcine Epidemic Diarrhea Virus, PEDV) 대한민국 분리주. The isolate of claim 6, wherein the isolate consists of the amino acid sequence of SEQ ID NO: 14, Porcine Epidemic Diarrhea Virus (PEDV).
  8. 청구항 1에 있어서, 상기 분리주는 서열번호 15의 스파이크 단백질, 서열번호 16의 ORF (open reading frame) 1a/1b, 서열번호 17의 ORF 3, 서열번호 18의 외피 단백질 (envelope protein), 서열번호 19의 막단백질 (membrane protein), 및 서열번호 20의 뉴로캡사이드 단백질 (nucleocapsid protein)으로 이루어진 군으로부터 1종 이상 선택된 아미노산 서열을 포함하는 것인 돼지 유행성 설사병 바이러스 (Porcine Epidemic Diarrhea Virus, PEDV) 대한민국 분리주. The method of claim 1, wherein the isolate is a spike protein of SEQ ID NO: 15, ORF (open reading frame) 1a / 1b of SEQ ID NO: 16, ORF 3 of SEQ ID NO: 17, envelope protein of SEQ ID NO: 18, SEQ ID NO: 19 Porcine Epidemic Diarrhea Virus (PEDV) Korea, which comprises at least one amino acid sequence selected from the group consisting of a membrane protein of protein and a nucleocapsid protein of SEQ ID NO: 20 .
  9. 청구항 8에 있어서, 상기 분리주는 서열번호 21의 아미노산 서열로 이루어진 것인, 돼지 유행성 설사병 바이러스 (Porcine Epidemic Diarrhea Virus, PEDV) 대한민국 분리주. The isolate of claim 8, wherein the isolate is composed of the amino acid sequence of SEQ ID NO: 21. Porcine Epidemic Diarrhea Virus (PEDV) Korea isolate.
  10. 청구항 1에 있어서, 상기 분리주는 서열번호 22의 스파이크 단백질, 서열번호 23의 ORF 3, 서열번호 24의 외피 단백질 (envelope protein), 서열번호 25의 막단백질 (membrane protein), 및 서열번호 26의 뉴로캡사이드 단백질 (nucleocapsid protein)으로 이루어진 군으로부터 1종 이상 선택된 아미노산 서열을 포함하는 것인, 돼지 유행성 설사병 바이러스 (Porcine Epidemic Diarrhea Virus, PEDV) 대한민국 분리주. The method of claim 1, wherein the isolate is a spike protein of SEQ ID NO: 22, ORF 3 of SEQ ID NO: 23, envelope protein of SEQ ID NO: 24, membrane protein of SEQ ID NO: 25, and neuro of SEQ ID NO: 26 Porcine epidemic diarrhea virus (PEDV) South Korea isolate comprising at least one amino acid sequence selected from the group consisting of a nucleocapsid protein (nucleocapsid protein).
  11. 청구항 10에 있어서, 상기 분리주는 서열번호 27의 아미노산 서열을 포함하는 것인, 돼지 유행성 설사병 바이러스 (Porcine Epidemic Diarrhea Virus, PEDV) 대한민국 분리주.The isolate of claim 10, wherein the isolate comprises the amino acid sequence of SEQ ID NO: 27. Porcine Epidemic Diarrhea Virus (PEDV) Korea isolate.
  12. 청구항 1에 있어서, 상기 분리주는 서열번호 28의 스파이크 단백질, 서열번호 29의 ORF 3, 서열번호 30의 외피 단백질 (envelope protein), 서열번호 31의 막단백질 (membrane protein), 및 서열번호 32의 뉴로캡사이드 단백질 (nucleocapsid protein)으로 이루어진 군으로부터 1종 이상 선택된 아미노산 서열을 포함하는 것인, 돼지 유행성 설사병 바이러스 (Porcine Epidemic Diarrhea Virus, PEDV) 대한민국 분리주. The method of claim 1, wherein the isolate is a spike protein of SEQ ID NO: 28, ORF 3 of SEQ ID NO: 29, envelope protein of SEQ ID NO: 30, membrane protein of SEQ ID NO: 31, neurons of SEQ ID NO: 32 Porcine epidemic diarrhea virus (PEDV) South Korea isolate comprising at least one amino acid sequence selected from the group consisting of a nucleocapsid protein (nucleocapsid protein).
  13. 청구항 12에 있어서, 상기 분리주는 서열번호 33의 아미노산 서열을 포함하는 것인, 돼지 유행성 설사병 바이러스 (Porcine Epidemic Diarrhea Virus, PEDV) 대한민국 분리주.The isolate of claim 12, wherein the isolate comprises the amino acid sequence of SEQ ID 33. Porcine Epidemic Diarrhea Virus (PEDV).
  14. 청구항 1에 있어서, 상기 분리주는 서열번호 34의 스파이크 단백질, 서열번호 35의 ORF 3, 서열번호 36의 외피 단백질 (envelope protein), 서열번호 37의 막단백질 (membrane protein), 및 서열번호 38의 뉴로캡사이드 단백질 (nucleocapsid protein)으로 이루어진 군으로부터 1종 이상 선택된 아미노산 서열을 포함하는 것인, 돼지 유행성 설사병 바이러스 (Porcine Epidemic Diarrhea Virus, PEDV) 대한민국 분리주. The method of claim 1, wherein the isolate is a spike protein of SEQ ID NO: 34, ORF 3 of SEQ ID NO: 35, envelope protein of SEQ ID NO: 36, membrane protein of SEQ ID NO: 37, and neuro of SEQ ID NO: 38 Porcine epidemic diarrhea virus (PEDV) South Korea isolate comprising at least one amino acid sequence selected from the group consisting of a nucleocapsid protein (nucleocapsid protein).
  15. 청구항 14에 있어서, 상기 분리주는 서열번호 39의 아미노산 서열을 포함하는 것인, 돼지 유행성 설사병 바이러스 (Porcine Epidemic Diarrhea Virus, PEDV) 대한민국 분리주.The isolate of claim 14, wherein the isolate comprises the amino acid sequence of SEQ ID NO: 39. Porcine Epidemic Diarrhea Virus (PEDV) Korea isolate.
  16. 청구항 1에 있어서, 상기 분리주는 서열번호 40의 스파이크 단백질, 서열번호 41의 ORF 3, 서열번호 42의 외피 단백질 (envelope protein), 서열번호 43의 막단백질 (membrane protein), 및 서열번호 44의 뉴로캡사이드 단백질 (nucleocapsid protein)으로 이루어진 군으로부터 1종 이상 선택된 아미노산 서열을 포함하는 것인, 돼지 유행성 설사병 바이러스 (Porcine Epidemic Diarrhea Virus, PEDV) 대한민국 분리주. The method of claim 1, wherein the isolate is a spike protein of SEQ ID NO: 40, ORF 3 of SEQ ID NO: 41, envelope protein of SEQ ID NO: 42, membrane protein of SEQ ID NO: 43, and neuro of SEQ ID NO: 44 Porcine epidemic diarrhea virus (PEDV) South Korea isolate comprising at least one amino acid sequence selected from the group consisting of a nucleocapsid protein (nucleocapsid protein).
  17. 청구항 16에 있어서, 상기 분리주는 서열번호 45의 아미노산 서열을 포함하는 것인, 돼지 유행성 설사병 바이러스 (Porcine Epidemic Diarrhea Virus, PEDV) 대한민국 분리주.The isolate of claim 16, wherein the isolate comprises the amino acid sequence of SEQ ID NO: 45. Porcine Epidemic Diarrhea Virus (PEDV) Korea isolate.
  18. 청구항 1 내지 17 중 어느 한 항의 바이러스, 상기 바이러스의 배양물 또는 이의 항원을 유효성분으로 포함하는 돼지 유행성 설사병 (Porcine Epidemic Diarrhea, PED) 백신 조성물.Porcine epidemic diarrhea (PED) vaccine composition comprising the virus of any one of claims 1 to 17, a culture of the virus or an antigen thereof as an active ingredient.
  19. 청구항 18에 있어서, 상기 백신은 생균 백신 또는 사균 백신인 것인, 백신 조성물. The vaccine composition of claim 18, wherein the vaccine is a live vaccine or a dead vaccine.
  20. 청구항 1 내지 17 중 어느 한 항의 바이러스, 상기 바이러스의 배양물 또는 이의 항원을 유효성분으로 포함하는 돼지 유행성 설사병 (Porcine Epidemic Diarrhea, PED) 예방 또는 치료용 약학적 조성물. A pharmaceutical composition for preventing or treating swine epidemic diarrhea (PED) comprising the virus of any one of claims 1 to 17, a culture of the virus or an antigen thereof as an active ingredient.
  21. 청구항 1 내지 17 중 어느 한 항의 바이러스, 상기 바이러스의 배양물 또는 이의 항원을 유효성분으로 포함하는 돼지 유행성 설사병 (Porcine Epidemic Diarrhea, PED) 진단용 조성물.18. A composition for diagnosing swine epidemic diarrhea (Porcine Epidemic Diarrhea, PED) comprising the virus of any one of claims 1 to 17, a culture of the virus or an antigen thereof as an active ingredient.
  22. 청구항 1 내지 17 중 어느 한 항의 바이러스, 상기 바이러스의 배양물 또는 이의 항원을 검출할 수 있는 제제를 유효성분으로 포함하는 돼지 유행성 설사병 (Porcine Epidemic Diarrhea, PED) 진단용 조성물.A composition for diagnosing swine epidemic diarrhea (Porcine Epidemic Diarrhea, PED) comprising the virus of any one of claims 1 to 17, a culture of the virus or an agent capable of detecting the antigen thereof as an active ingredient.
  23. 청구항 1 내지 17 중 어느 한 항의 바이러스 생장 억제제를 포함하는, 돼지 유행성 설사병 (Porcine Epidemic Diarrhea, PED) 예방 또는 치료용 약학적 조성물. A pharmaceutical composition for preventing or treating porcine epidemic diarrhea (PED), comprising the virus growth inhibitor of claim 1.
PCT/KR2015/014029 2014-12-19 2015-12-21 Novel porcine epidemic diarrhea virus and use thereof WO2016099226A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0184981 2014-12-19
KR20140184981 2014-12-19

Publications (1)

Publication Number Publication Date
WO2016099226A1 true WO2016099226A1 (en) 2016-06-23

Family

ID=56127000

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/014029 WO2016099226A1 (en) 2014-12-19 2015-12-21 Novel porcine epidemic diarrhea virus and use thereof

Country Status (2)

Country Link
KR (1) KR101757331B1 (en)
WO (1) WO2016099226A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102049147B1 (en) * 2017-07-16 2019-11-26 주식회사 중앙백신연구소 A novel attenuated PEDV strain and a vaccine composition comprising thereof
KR102213745B1 (en) * 2019-04-16 2021-02-09 주식회사 바이오앱 Vaccine composition for preventing porcine epidemic diarrhea and manufacturing method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990065235A (en) * 1998-01-10 1999-08-05 김강권 Detection of specific neutralizing antibodies of swine pandemic diarrheal virus
KR20030012280A (en) * 2001-07-31 2003-02-12 주식회사 바이오비전텍 Transformed potato for using vaccination on Porcine epidemic diarrhea virus and method for preparation thereof
KR20070045817A (en) * 2005-10-28 2007-05-02 한국생명공학연구원 Transgenic plant to express antigen for preventing porcine epidemic diarrhea and method for producing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100492820B1 (en) * 2002-04-16 2005-05-31 양문식 Neutralizing epitope for porcine epidemic diarrhea virus and use the same
KR101570143B1 (en) * 2014-05-22 2015-11-20 국립암센터 Lipid marker for diagnosing renal cell carcinoma and diagnostic method using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR19990065235A (en) * 1998-01-10 1999-08-05 김강권 Detection of specific neutralizing antibodies of swine pandemic diarrheal virus
KR20030012280A (en) * 2001-07-31 2003-02-12 주식회사 바이오비전텍 Transformed potato for using vaccination on Porcine epidemic diarrhea virus and method for preparation thereof
KR20070045817A (en) * 2005-10-28 2007-05-02 한국생명공학연구원 Transgenic plant to express antigen for preventing porcine epidemic diarrhea and method for producing the same

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
DATABASE NCB1 5 August 2007 (2007-08-05), Database accession no. ABS72126.1 *
DATABASE NCBI 20 December 2013 (2013-12-20), Database accession no. AHA38125.1 *
DATABASE NCBI 26 December 2013 (2013-12-26), Database accession no. KF804028.1 *
DATABASE NCBI 27 September 2010 (2010-09-27), Database accession no. ADC67062.1 *
DATABASE NCBI 28 February 2012 (2012-02-28), Database accession no. AFB77236.1 *
DATABASE NCBI 3 June 2013 (2013-06-03), Database accession no. AEZ68021.1 *
DATABASE NCBI 7 July 2014 (2014-07-07), Database accession no. AID66722.1 *
DATABASE NCBI 7 July 2014 (2014-07-07), Database accession no. KJ662670.1 *

Also Published As

Publication number Publication date
KR20160075378A (en) 2016-06-29
KR101757331B1 (en) 2017-07-12

Similar Documents

Publication Publication Date Title
AU2015241107B2 (en) Porcine epidemic diarrhea virus vaccine
Lee et al. Isolation and characterization of a Korean porcine epidemic diarrhea virus strain KNU-141112
US11376319B2 (en) Recombinant H7N9 subtype avian influenza virus, inactivated marked vaccine and preparation method thereof
US20200038504A1 (en) Porcine coronavirus vaccines
KR102336158B1 (en) Vaccine Composition Against Porcine Epidemic Diarrhea Virus and Porcine Rotavirus
Wang et al. Pathogenicity and immunogenicity of a new strain of porcine epidemic diarrhea virus containing a novel deletion in the N gene
WO2017073851A1 (en) Attenuated strain and inactivated vaccine composition of porcine epidemic diarrhea virus, and vaccine composition for oral administration using same
CN113943714B (en) Callicarpa virus strain and application thereof
WO2016099226A1 (en) Novel porcine epidemic diarrhea virus and use thereof
KR102049147B1 (en) A novel attenuated PEDV strain and a vaccine composition comprising thereof
Wang et al. Infection, genetic and virulence characteristics of porcine epidemic diarrhea virus in northwest China
US11464852B2 (en) Modified PEDV spike protein
US9790474B2 (en) Attenuation of infectious bronchitis virus variant GA-13
US10190099B2 (en) IBV strains and uses thereof
KR100502008B1 (en) A attenuated porcine epidemic diarrhrea virus, an immunogenic composition comprising the same and a method for detecting the virus
KR20100101216A (en) Attenuated avian infectious bronchitis virus and vaccine for avian infectious bronchitis comprising the same
KR102542601B1 (en) Novel porcine epidemic diarrhea virus isolate and use thereof
CN110760485B (en) Avian reovirus strain and application thereof
WO2023085760A1 (en) Novel recombinant newcastle virus vector, and vaccine composition comprising same
Lei et al. Safety and Immunogenicity of a Novel Recombinant Newcastle Disease Virus Spotteddove-S Expressing the S Protein of Porcine Epidemic Diarrhea Virus Variant in Pigs
WO2021153873A1 (en) Live attenuated vaccine strain for porcine epidemic diarrhea virus, composition comprising same, and method for preparing same
KR20220061636A (en) Novel porcine epidemic diarrhea virus and vaccine composition for preventing porcine epidemic diarrhea using the same
EP3337813B1 (en) Synthetic btv vp2 fusion protein
KR20210094975A (en) Systemic spread specific factors of influenza virus
KR20200126029A (en) A novel PEDV virus having reduced virulence and its use

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15870393

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15870393

Country of ref document: EP

Kind code of ref document: A1