WO2016098836A1 - Coated solder wire and method for manufacturing same - Google Patents

Coated solder wire and method for manufacturing same Download PDF

Info

Publication number
WO2016098836A1
WO2016098836A1 PCT/JP2015/085280 JP2015085280W WO2016098836A1 WO 2016098836 A1 WO2016098836 A1 WO 2016098836A1 JP 2015085280 W JP2015085280 W JP 2015085280W WO 2016098836 A1 WO2016098836 A1 WO 2016098836A1
Authority
WO
WIPO (PCT)
Prior art keywords
solder wire
organosilicon compound
coated
group
coating film
Prior art date
Application number
PCT/JP2015/085280
Other languages
French (fr)
Japanese (ja)
Inventor
小林 宏
山辺 秀敏
Original Assignee
住友金属鉱山株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015095763A external-priority patent/JP6455303B2/en
Application filed by 住友金属鉱山株式会社 filed Critical 住友金属鉱山株式会社
Priority to CN201580069325.8A priority Critical patent/CN107107274A/en
Priority to US15/536,330 priority patent/US20170348807A1/en
Priority to EP15870038.5A priority patent/EP3235586B1/en
Publication of WO2016098836A1 publication Critical patent/WO2016098836A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/40Making wire or rods for soldering or welding
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C26/00Coating not provided for in groups C23C2/00 - C23C24/00

Definitions

  • the present invention relates to a solder wire used in manufacturing a semiconductor device and a manufacturing method thereof.
  • soldering is generally employed when bonding metal materials together or when bonding electronic components such as semiconductor elements to a printed circuit board.
  • Solder materials used for soldering are formed into various shapes such as wires, ribbons, sheets, preform materials (punching materials), balls, and fine powders.
  • Solder material is easily oxidized in the presence of oxygen, and an oxide film is formed on the surface during storage.
  • the oxidation proceeds and the oxide film becomes thick. This causes joint defects such as voids.
  • the oxide film becomes thicker. If the thick oxide film formed in this way is present at the bonding interface, problems such as poor continuity and poor bonding are caused.
  • the surface treatment using the atmospheric pressure plasma CVD method can form a dense coating film at a relatively low cost, so that not only the antioxidant effect is high but also the film forming material diffuses into the room. It has attracted attention because of its superior safety.
  • a spray liquid coating forming material composed of an organosilicon compound is introduced into an atmospheric pressure plasma discharge, and a substrate such as a metal is exposed to the spray coating forming material (coating material).
  • a method of forming a coating (coating film) made of polydimethylsiloxane or the like on the surface of a substrate is disclosed.
  • the reaction gas is turned into plasma and activated (radicalization) of the coating material that is atomized. Since they are performed simultaneously, the activation of the coating material becomes non-uniform, and it is difficult to form a dense coating film uniformly over the entire surface of the substrate.
  • the technique described in this document is not intended to prevent the oxidation of the surface of the solder material, but the behavior of the coating film when the solder material melts, the wettability due to the presence of the coating film, and bonding. No consideration is given to the effect on sex.
  • Japanese Patent Application Laid-Open No. 2014-195831 discloses radicalization of an organosilicon compound by mixing and spraying an organosilicon compound together with a carrier gas in a plasma gas under atmospheric pressure.
  • a method for producing a coated solder material is disclosed in which a coating film made of polysiloxane having a thickness of 4 nm to 200 nm is formed by reacting with a metal present on the surface of the solder material while polymerizing the compound.
  • a dense coating film can be uniformly formed over the entire surface of the solder material while maintaining the basic skeleton of the organosilicon compound. it can. For this reason, it becomes possible to prevent the progress of oxidation during long-term storage and melting without impairing the wetting and joining properties of the solder material.
  • an object of the present invention is to provide a coated solder wire in which a dense coating film made of polysiloxane is uniformly provided over the entire surface of the solder wire. Moreover, an object of this invention is to provide the method of manufacturing such a coated solder wire efficiently by one process.
  • the coated solder wire of the present invention is a coated solder wire composed of a solder wire and a coating film made of polysiloxane provided on the surface of the solder wire, and the coating film has a thickness of 4 nm. 200 nm, the difference between the maximum value and the minimum value of the thickness is within 2.5 nm, and the ratio of the coating film to the entire coated solder wire is 200 mass ppm or less in terms of silicon.
  • the solder wire contains 80% by mass or more of Pb and one or more second elements selected from the group consisting of Sn, Ag, Cu, In, Te, and P, and Pb and second A solder wire made of a solder alloy having a total content of 95% by mass or more with elements can be suitably used.
  • 80% by mass or more of Sn and one or more second elements selected from the group consisting of Ag, Sb, Cu, Ni, Ge, and P, and Sn and the second element A solder wire made of a solder alloy having a total content of 95% by mass or more can be suitably used.
  • the method for producing the coated solder wire of the present invention is as follows. Radicalization that forms a radicalized organosilicon compound by mixing the reaction gas plasmatized at atmospheric pressure with an organosilicon compound introduced via a carrier gas and radicalizing the organosilicon compound Process, A reaction zone forming step defined by a spiral gas flow to form a reaction zone in which the radicalized organosilicon compound is uniformly dispersed; A coating made of polysiloxane having a thickness of 4 nm to 200 nm on the surface of the solder wire by transporting the solder wire in the reaction region and reacting the radicalized organosilicon compound with the metal on the surface of the solder wire. A coating process for forming a film; It is characterized by providing.
  • the reaction region forming step it is preferable to form the reaction region by mixing the radicalized organosilicon compound into a spiral gas flow introduced in advance.
  • the spiral gas flow can be formed by at least one selected from the group consisting of argon, helium, nitrogen, oxygen, and air.
  • organosilicon compound at least one organic substituent selected from the group consisting of alkyl group, alkoxy group, fluoroalkyl group, amino group, epoxy group, isocyanate group, mercapto group, vinyl group, methacryloxy group, and acryloxy group It is preferable to use an organosilicon compound having
  • reaction gas at least one selected from the group consisting of argon, helium, nitrogen, oxygen, and air can be used.
  • carrier gas at least one selected from argon, helium, and nitrogen can be used.
  • the organosilicon compound is preferably radicalized by an atmospheric pressure plasma polymerization treatment apparatus.
  • the amount of the organosilicon compound introduced into 1 m of the solder wire is preferably 0.006 g to 0.300 g.
  • the conveying speed of the solder wire in the coating step is 1 m / min to 100 m / min.
  • the present invention it is possible to provide a coated solder wire in which a dense coating film made of polysiloxane is uniformly provided over the entire surface of the solder wire. Moreover, according to this invention, the method which can manufacture such a covering solder wire efficiently by one process can be provided. For this reason, the industrial significance of the present invention is extremely large.
  • FIG. 1A is a schematic perspective view for explaining a method of manufacturing a coated solder wire according to the present invention
  • FIG. 1B is a cross-sectional view of the coated solder wire obtained by this manufacturing method.
  • 2 (a-1) to 2 (c-1) are schematic perspective views for explaining a conventional method for manufacturing a coated solder wire
  • FIG. 3 is a cross-sectional view of a coated solder wire at each stage.
  • 3A to 3D are cross-sectional TEM photographs of the coated solder wire obtained in Example 2.
  • FIG. 4A and 4B are cross-sectional TEM photographs of the coated solder wire obtained in Comparative Example 3.
  • the present inventors have previously obtained a reaction region in which radicalized organosilicon compounds are uniformly dispersed and the radicalized organosilicon compounds can react with the metal on the surface of the solder wire. It was found that an extremely uniform and dense coating film can be formed by a single treatment by forming a solder wire and transporting a solder wire in the reaction region. In addition, the inventors have found that such a reaction region can be formed by mixing a radicalized organosilicon compound in a spiral gas flow. The present invention has been completed based on these findings.
  • coated solder wire is not limited by the diameter of the solder wire used as the base material.
  • a solder wire having a diameter of 0.3 mm to 1.0 mm that is generally used is used. The case where it is used as a base material will be described as an example.
  • the coated solder wire of the present invention is composed of a solder wire and a coating film made of polysiloxane provided on the surface of the solder wire.
  • This coating film has a thickness of 4 nm to 200 nm, a difference between the maximum value and the minimum value (maximum difference) within 2.5 nm, and the ratio of the coating film to the entire coated solder wire is silicon It is characterized by being 200 mass ppm or less in terms of conversion.
  • the composition of the solder wire is not particularly limited, and those having various compositions can be used. However, when the present invention is applied to a solder wire having the following composition, the effects of the present invention can be suitably exhibited.
  • the composition of the solder wire can be determined by ICP emission spectroscopic analysis.
  • Pb-based solder wires are mainly composed of Pb (lead), Sn (tin), Ag (silver), Cu (copper), In (indium), Te (tellurium), and P (phosphorus) And a solder alloy containing at least one second element selected from the group consisting of:
  • Pb as a main component means that content of Pb with respect to the whole solder alloy is 80 mass% or more.
  • Pb-based solder wires are extremely versatile and have been used for various purposes.
  • the use of Pb has been restricted in consideration of the effects on the human body and the environment, but due to its versatility and ease of use, as a high temperature solder, in some applications such as joining power devices, But it continues to be used.
  • the total content of Pb and the second element is 95% by mass or more, preferably 97% by mass or more in total. If the total content of Pb and the second element is less than 95% by mass, it is difficult to obtain the above characteristics.
  • the Pb content is preferably 80% by mass to 98% by mass, and more preferably 85% by mass to 98% by mass.
  • the content of the second element is preferably 2% by mass or more and 15% by mass or less, more preferably 2% by mass or more and 12% by mass or less.
  • an element other than Pb and the second element may be contained according to the application and purpose.
  • a third element include Ni (nickel), Ge (germanium), Co (cobalt), Sb (antimony), Bi (bismuth), and the like.
  • the content of these third elements is preferably 5.0% by mass or less, more preferably 4.5% by mass or less. When the content of the third element exceeds 5.0% by mass, desired characteristics may not be obtained due to the relationship between the content of Pb and the second element.
  • Sn-based solder wire contains Sn as a main component and contains one or more second elements selected from the group consisting of Ag, Sb, Cu, Ni, Ge, and P (phosphorus). , Composed of solder alloy.
  • Sn as a main component means that the Sn content with respect to the entire solder alloy is 80% by mass or more.
  • Such Sn-based solder wires have a low melting point and can be preferably applied to applications such as semiconductor devices, and are used as so-called “lead-free solder”.
  • lead-free means that the content is less than 0.01% by mass even when lead is not contained at all or as an inevitable impurity.
  • the total content of Sn and the second element is 95% by mass or more, preferably 97% by mass or more. If the total content of Sn and the second element is less than 95% by mass, the above characteristics cannot be obtained.
  • the content of Sn is preferably 80% by mass or more and 98% by mass or less, and more preferably 90% by mass or more and 98% by mass or less.
  • the content of the second element is preferably 1% by mass to 10% by mass, more preferably 2% by mass to 7% by mass.
  • Sn-based solder wires may contain elements other than Sn and the second element (third element) depending on the application and purpose.
  • third element examples include In, Co, and Bi.
  • the content of these third elements is preferably 5.0% by mass or less, more preferably 3.0% by mass or less. If the content of the third element exceeds 5.0% by mass, desired characteristics cannot be obtained due to the relationship between the contents of Sn and the second element.
  • the coating film in this invention is comprised from polysiloxane.
  • Such a coating film made of polysiloxane has a high density, and can thereby impart excellent oxidation resistance to the solder wire.
  • the thickness of the coating film is controlled to 4 nm to 200 nm, preferably 6 nm to 100 nm, more preferably 8 nm to 50 nm. If the thickness of the coating film is less than 4 nm, the progress of oxidation on the surface of the solder wire cannot be sufficiently suppressed, and problems such as deterioration of wetting spreadability, bondability, and generation of voids may occur. . On the other hand, if the thickness of the coating film exceeds 200 nm, the progress of the oxidation of the solder wire surface can be suppressed, but due to the effect of the coating film, the solder wire wettability and bondability are reduced, There are cases where voids are generated.
  • the thickness of the coating film is determined by observing each cross section with a transmission electron microscope (TEM) after cutting the coated solder wire along the length direction at three or more positions in the circumferential direction. Can be sought.
  • TEM transmission electron microscope
  • Thickness uniformity This coating film is also excellent in thickness uniformity. Specifically, in the coated solder wire of the present invention, the difference between the maximum value and the minimum value (maximum difference) in the thickness (diameter dimension) of the coated film is determined as the entire coated solder wire (length direction and circumferential direction). ) Over 2.5 nm, preferably within 2.0 nm, more preferably within 1.5 nm. For this reason, it can be said that the coated solder wire of the present invention has extremely small variations in characteristics such as oxidation resistance, wettability, and bondability.
  • the ratio of the coated film to the entire coated solder wire is 200 mass ppm or less, preferably 5 mass ppm to 95 mass ppm, more preferably 7 mass ppm to 50 in terms of silicon. The mass is controlled to ppm. As described above, in the coated solder wire of the present invention, since the ratio of the coating film is extremely small, it can be said that the coating film has almost no influence on the solder wire wettability and bonding property.
  • the coating film constituting the coated solder wire of the present invention is extremely thin, it is firmly bonded to the metal on the surface of the solder wire and has excellent thickness uniformity. Can be evaluated. Therefore, it is possible to suppress the progress of oxidation on the surface of the solder wire, and thus it is possible to effectively suppress the deterioration of the solder wire wetting and spreadability and the generation of voids.
  • this coating film is colorless and transparent, and as described above, although it is formed very thin, it has excellent thickness uniformity, resulting in poor appearance such as processing unevenness and spots. There is hardly anything.
  • a radicalized organosilicon compound is formed by mixing a reaction gas plasmified under atmospheric pressure with an organosilicon compound introduced via a carrier gas and radicalizing the organosilicon compound.
  • a radicalization step (2) a reaction region forming step defined by a spiral gas flow and forming a reaction region in which radicalized organosilicon compounds are uniformly dispersed; (3) A coating made of polysiloxane having a thickness of 4 nm to 200 nm on the surface of the solder wire by transporting the solder wire in the reaction region and reacting the radicalized organosilicon compound with the metal on the surface of the solder wire.
  • a coating process for forming a film It is characterized by providing.
  • a dense coating film made of polysiloxane can be uniformly formed on a solder wire by a single treatment, so that it is described in Japanese Patent Application Laid-Open No. 2014-195831. Compared with the method, productivity can be dramatically improved.
  • this manufacturing method uses an organic silicon compound that is normally liquid as the coating material, and the coating film is formed by a dry method, so that it is not only easy to handle, but also safe. It can be evaluated that it is excellent.
  • Radicalization process In the radicalization process, a reaction gas that has been plasmatized under atmospheric pressure and an organosilicon compound introduced through a carrier gas are mixed to radicalize the organosilicon compound, thereby producing radicals. This is a step of forming an organosilicon compound.
  • the atmospheric pressure plasma polymerization treatment is a technique that has been widely known
  • the atmospheric pressure plasma polymerization treatment used in the present invention is a chemical reaction that does not proceed under normal conditions. It is made to progress by the conversion.
  • Such an atmospheric pressure plasma polymerization process is characterized by high productivity because it is suitable for continuous processing, and has a feature that the processing cost is low because a vacuum apparatus is unnecessary, and the apparatus configuration can be simplified.
  • atmospheric pressure plasma examples include corona discharge, dielectric barrier discharge, RF discharge, microwave discharge, arc discharge, and the like, but any of them can be applied in the present invention without any particular limitation. For this reason, a known plasma generator can be used without any particular limitation as long as it can plasmify the reaction gas under atmospheric pressure. .
  • atmospheric pressure includes atmospheric pressure (1013.25 hPa) and atmospheric pressure in the vicinity thereof, and also includes atmospheric pressure within the range of changes in normal atmospheric pressure.
  • organic silicon is different from the conventional method for forming a coating film using atmospheric pressure plasma CVD, in which the reaction gas is plasmatized and the coating material is activated (plasmaized) simultaneously. Since the compound can be radicalized instantly, a dense coating film made of polysiloxane can be uniformly formed over the entire surface of the solder wire while maintaining the basic skeleton of the organosilicon compound.
  • the conditions for converting the reaction gas to plasma should be appropriately selected according to the plasma apparatus to be used, the thickness of the target coating film, and the like.
  • the generator output voltage is preferably in the range of 150 V to 350 V, more preferably 200 V to 330 V.
  • the generator output voltage is less than 150 V, the reaction gas cannot be sufficiently converted to plasma, and thus the hydrocarbon may not be sufficiently radicalized.
  • it exceeds 350 V there may be a problem such as damage to the apparatus.
  • Reactive gas is not particularly limited as long as it can be easily converted to plasma.
  • Ar argon
  • He helium
  • N 2 nitrogen
  • O 2 oxygen
  • Air or the like
  • These reaction gases may be used alone or in combination of two or more at a predetermined ratio. From the viewpoint of production cost, it is preferable to use N 2 , O 2 , or a mixed gas thereof, particularly air.
  • Carrier gas is not particularly limited as long as it can transport the sprayed organosilicon compound.
  • Ar, He, N 2 and the like can be used. These carrier gases may be used alone or in combination of two or more at a predetermined ratio. Note that N 2 is preferably used from the viewpoint of production cost.
  • an organosilicon compound that is liquid at room temperature can be used as a coating material for forming a coating film.
  • Such an organosilicon compound includes at least one selected from the group consisting of an alkyl group, an alkoxy group, a fluoroalkyl group, an amino group, an epoxy group, an isocyanate group, a mercapto group, a vinyl group, a methacryloxy group, and an acryloxy group. It is preferable to use a compound having an organic substituent.
  • those having an alkyl group include tetramethyldisiloxane (TMDSO), hexamethyldisiloxane (HMDSO), octamethyltrisiloxane (OMTSO), decamethyltetrasiloxane (DMTSO), and octamethylcyclotetrasiloxane.
  • TMDSO tetramethyldisiloxane
  • HMDSO hexamethyldisiloxane
  • OMTSO decamethyltetrasiloxane
  • OMCTSO hexamethylcyclotrisiloxane
  • OMCTSO octamethylcyclotetrasiloxane
  • DMCPSO tetramethylcyclotetrasiloxane
  • TMCTSO tetramethylcyclotetrasiloxane
  • those having an organic substituent such as an alkoxyl group or a fluoroalkyl group include methyltrimethoxysilane, methyltriethoxysilane, methyltriisopropoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, ethyltriisopropoxysilane.
  • HMDSO hexamethyldisiloxane
  • the amount of the organosilicon compound introduced into 1 m of solder wire is preferably 0.006 g to 0.300 g, more preferably 0.010 g to 0.200 g, and further preferably 0.012 g to 0.075 g. preferable. If the introduced amount of the organosilicon compound is less than 0.006 g, the thickness of the coating film may be 4 nm or less, or the thickness may vary. On the other hand, if the amount of the organosilicon compound introduced exceeds 0.300 g, the thickness of the coating film may exceed 200 nm.
  • reaction region forming step is a step of forming a reaction region that is defined by a spiral gas flow and in which the radicalized organosilicon compound obtained in the radicalization step is uniformly dispersed.
  • a radicalized organosilicon compound is uniformly dispersed, and a reaction region in which this organosilicon compound can react with a metal on the surface of the solder wire is formed in advance. It becomes important.
  • the organosilicon compound in this reaction region is radicalized, the state is not limited and may be any state of a monomer, a semipolymer, or a polymer.
  • the means for forming the reaction region defined by the spiral gas flow is not particularly limited.
  • it can be formed by introducing a spiral gas flow into the apparatus in advance and mixing the radicalized organosilicon compound produced in the radicalization step described above with this spiral gas flow.
  • the radicalization step may be performed outside the apparatus, and the generated radicalized organosilicon compound may be introduced into the apparatus as a spiral gas flow using a carrier gas.
  • the former method is preferable.
  • the spiral gas flow is, for example, at least one selected from the group consisting of argon, helium, nitrogen, oxygen, and air, that is, the same gas as the carrier gas described above, or these It can be formed by introducing a mixture of a radical organosilicon compound generated outside the apparatus into the gas so as to flow spirally.
  • argon, helium, nitrogen, oxygen, and air that is, the same gas as the carrier gas described above, or these It can be formed by introducing a mixture of a radical organosilicon compound generated outside the apparatus into the gas so as to flow spirally.
  • oxygen or air particularly dry air.
  • the spiral gas flow needs to be formed so that its cross-sectional area is larger than the diameter of the solder wire to be coated.
  • the velocity of the spiral gas flow (velocity in the direction of travel and velocity in the circumferential direction) is appropriately selected according to the thickness of the target coating film and the properties of the solder wire (reactivity with the organosilicon compound). It is necessary to do. For this reason, it is preferable to set the speed of the spiral gas flow after performing a preliminary test.
  • the coating process is a polysiloxane having a thickness of 4 nm to 200 nm on the surface of the solder wire by conveying the solder wire in the reaction region and reacting the radicalized organosilicon compound with the metal on the surface of the solder wire.
  • Forming a coating film comprising:
  • solder wire constituting the coated solder wire of the present invention is not particularly limited, and various types can be used. However, in order to fully exhibit the effects of the present invention, it is preferable to use a solder wire obtained by a molding method described below.
  • known means such as a resistance heating method, a reduction diffusion method, and a high-frequency dissolution method can be used.
  • a high-frequency dissolution method capable of efficiently melting in a short time is preferable.
  • a raw material melted by these methods is cast into a mold prepared in advance to form a solder mother alloy ingot having a predetermined shape. If oxygen is present during melting or casting, not only the oxidation of the raw material proceeds, but also an oxide film is involved at the time of casting, and the resulting oxide film on the surface of the solder wire becomes thicker or the surface roughness (Ra) increases. Or for this reason, it is preferable that the atmosphere at the time of melting the raw material is an inert gas atmosphere and the inert gas is circulated to the molten metal inlet of the mold at the time of casting.
  • solder wire When forming wire-shaped solder, a solder mother alloy ingot is formed by an extrusion method, a wire drawing method, or the like. For example, when forming by an extrusion method, it is necessary to select an appropriate extrusion temperature in accordance with the composition of the solder wire. This is because if the extrusion temperature is too high, surface oxidation tends to proceed, and conversely, if the extrusion temperature is too low, the solder wire will be extruded in a hard state, which requires a long molding time. .
  • the extrusion is preferably performed in an inert gas, and more preferably performed while circulating the inert gas in a sealed state. This is because if oxygen is present during extrusion, the wire heated to the extrusion temperature will immediately oxidize.
  • the timing for performing the acid cleaning and polishing may be any timing after casting the solder mother alloy and before performing the predetermined processing, during processing, or after processing.
  • the type of acid used when performing acid cleaning is not particularly limited as long as it is appropriately selected depending on the composition of the solder wire, and both inorganic acid and organic acid can be used.
  • an inorganic acid which is inexpensive and has a large oxide film removing effect.
  • hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, acetic acid and the like can be used as the inorganic acid.
  • citric acid, oxalic acid, etc. can be used as the organic acid.
  • a strong acid due to the high dissolution rate of the solder wire in the acidic solution, partial dissolution proceeds and the surface roughness (Ra) increases or composition deviation occurs. There is. For this reason, it is preferable to use a weak acid that has a slow dissolution rate and is easy to handle. In acid cleaning, it is necessary to sufficiently consider acid concentration, cleaning time, cleaning temperature, and the like.
  • the oxide film of the solder wire has the largest amount of dissolution immediately after contact with the acetic acid aqueous solution, and then gradually decreases and becomes saturated at a certain stage. Specifically, when an oxide film having a thickness of about 100 ⁇ m is cleaned, the thickness of the oxide film is reduced from 20 ⁇ m to 30 ⁇ m in about 5 minutes and is reduced to about 10 ⁇ m in about 15 minutes.
  • the polishing method is not particularly limited.
  • the solder wire may be sandwiched between polishing papers, pressed with an appropriate force, and wound by pulling it while being pulled.
  • the reaction between the radicalized organosilicon compound and the metal on the surface of the solder wire is performed within the reaction region described above. proceed. Specifically, as shown in FIG. 1A, the solder wire 2 serving as a base material is conveyed in the direction of arrow A through the substantially central portion of the reaction region 6 defined by the spiral gas flow 4. . At this time, since the radicalized organosilicon compound 5 is uniformly dispersed in the reaction region 6, the organosilicon compound 5 contacts the entire surface of the solder wire 2 equally by the action of the spiral gas flow 4. To do. As a result, the reaction between the radicalized organosilicon compound 5 and the metal on the surface of the solder wire 2 proceeds simultaneously and at the same reaction rate.
  • the radicalized organosilicon compound 5 exists in various forms such as a monomer, a semipolymer, and a polymer. Therefore, the reaction between the radicalized organosilicon compound 5 and the metal on the surface of the solder wire 2 is as follows: (I) an embodiment in which the radicalized organosilicon compound 5 is polymerized after reacting with the metal on the surface of the solder wire 2; (Ii) a mode in which the radicalized organosilicon compound 5 reacts with the metal on the surface of the solder wire 2 while being polymerized, or (iii) a mode in which the radicalized organosilicon compound 5 reacts with the metal on the surface of the solder wire 2 after polymerization, Can be considered.
  • the method for producing a coated solder wire according to the present invention is not limited to any embodiment as long as the coated solder wire having the above-described coated film can be obtained.
  • the thickness of the coating film is adjusted to a range of 4 nm to 200 nm.
  • the thickness of the coating film can be controlled not only by the amount of the organosilicon compound introduced as the coating material and the speed of the spiral gas flow, but also by the solder wire conveyance speed.
  • the solder wire conveyance speed in the coating step is preferably 1 m / min to 100 m / min, more preferably 5 m / min to 80 m / min, and 10 m / min to 50 m / min. More preferably.
  • the thickness of the coating film may be 4 nm or less, or the thickness may vary.
  • the coated solder wire of the present invention can be used for joining various semiconductor elements and substrates, and specifically, a wide variety of semiconductors such as discrete, IC (integrated circuit) chips, modules, etc. It can be used for bonding the element and the substrate.
  • IC integrated circuit
  • high melting point particles particles having a temperature higher by 50 ° C. or more than the melting point of the solder wire are preferably used.
  • metal particles such as Cu and Ni, oxide particles such as SiO 2, and carbide particles such as SiC. Can be used.
  • These high melting point particles preferably have an average particle size of 1 ⁇ m to 70 ⁇ m.
  • the content of the high melting point particles is preferably about 1% by mass to 40% by mass with respect to the solder wire.
  • a heater part is provided in a semi-sealed chamber provided with openings for supplying solder wires and semiconductor elements, and the substrate is transported to the heater part and heated.
  • an inert gas or forming gas (a gas obtained by mixing inert gas with hydrogen as a reducing gas) is circulated in the chamber.
  • a solder wire is supplied onto the substrate heated to a predetermined temperature, melted, and a semiconductor element is placed on the solder wire, and the substrate and the semiconductor element are joined by pressing.
  • the solder wire waits in a state where a heated mixed gas of inert gas and air is sprayed at the heater portion, so that oxidation proceeds on the surface thereof. Further, although the inert gas is circulating, the chamber is not completely sealed, so that the oxidation proceeds even by oxygen flowing into the chamber when the solder wire is supplied.
  • the temperature of the heater section in order to achieve good bonding, it is necessary to set the temperature of the heater section to a temperature about 30 ° C. to 70 ° C. higher than the melting point of the solder wire.
  • the temperature of the heater when using a high melting point solder such as a Pb-based solder wire containing 5% by mass of Sn, the temperature of the heater must be set to about 340 ° C. to 380 ° C. Will progress further.
  • the coated solder wire of the present invention is used instead of the conventional solder wire, it is possible to prevent oxidation during standby and melting by the action of the coating film. Therefore, the coated solder wire of the present invention realizes bonding with excellent wettability and bondability (bonding strength) and extremely low void generation, and the manufacturing method of the present invention has such characteristics. Production of coated solder wire is easily realized on an industrial scale. Therefore, the coated solder wire of the present invention can be suitably used for production of a semiconductor element bonded substrate that requires high reliability and various devices using the substrate.
  • solder wire Bi, Zn, Ag, Sn, Pb, Cu, Au, In, Al, Ni, Sb, Ge, Te, and P having a purity of 99.9% or more were prepared as raw materials.
  • large flakes and bulk materials were cut or pulverized and adjusted to a size of 3 mm or less.
  • a predetermined amount was weighed from the raw material adjusted in this way and put into a graphite crucible.
  • the crucible was placed in a high-frequency melting furnace, and in order to suppress oxidation, the melting furnace was turned on in a state where 0.7 L / min or more of nitrogen per 1 kg of raw material was circulated.
  • the raw material was melted while sufficiently stirring with a mixing rod so as not to cause variation.
  • the melting furnace was turned off, the crucible was quickly taken out, and the obtained molten metal was cast into a solder mother alloy mold to obtain solder mother alloy ingots having different compositions.
  • the mold used was the same as a general mold used in the production of a solder mother alloy.
  • Each solder mother alloy ingot was processed into a wire shape using an extruder in an inert gas atmosphere.
  • 1-No. 18 solder wires (diameter 0.76 mm) were obtained.
  • the composition of these solder wires was measured using an ICP emission spectroscopic analyzer (manufactured by Shimadzu Corporation, ICPS-8100). The results are shown in Table 1.
  • Example 1 [Production of coated solder wire] Sample No. 1 is wound on the surface of the solder wire being conveyed by the method shown in FIG. 1 when winding the Pb-based solder wire with a solder wire automatic winding machine (TM type winding machine manufactured by Tanabe Seisakusho Co., Ltd.). A coating film made of polysiloxane was formed using an atmospheric pressure polymerization apparatus (Plasma Polymer Lab System PAD-1 type, manufactured by Plasma Treat Co., Ltd.).
  • HMDSO manufactured by Kanto Chemical Co., Inc.
  • a carrier gas (N 2 ) introduced through a carrier gas (N 2 ) is mixed with a reaction gas (N 2 ) that has been plasmatized under atmospheric pressure, and radicals are generated by radicalizing HMDSO.
  • HMDSO was obtained (radicalization step).
  • N 2 is introduced into the apparatus as a spiral gas flow, and radicalized HMDSO is sprayed from the nozzle of the atmospheric pressure polymerization processing apparatus to the spiral gas stream, and the spiral gas stream and radicals are sprayed.
  • a reaction region was formed by mixing HMDSO (reaction region formation step).
  • Examples 2 to 26, Comparative Examples 1 and 2 A coated solder wire was produced in the same manner as in Example 1 except that the coating material and the treatment conditions were changed as shown in Table 2, and the evaluations (a) to (e) were performed. The results are shown in Table 3. Moreover, about the coated solder wire obtained in Example 2, the cross-sectional TEM photograph in the position rotated 90 degrees, 180 degrees, and 270 degrees with respect to the reference value (0 degree) and the reference value is shown in FIG.
  • a transfer jig 7 capable of preventing twisting of the solder wire 2 during transfer is fixed in such a manner that the surface 7a is fixed on the bottom side, while the solder wire 2 is transferred in the direction of arrow A, the nozzle The radicalized organosilicon compound 5 was sprayed from 8 to form a coating film 3a (see FIG. 2 (a-1)).
  • the transfer jig 7 is rotated 120 ° so that the surface 7b is on the bottom surface side, and then the coating film 3b is formed in the same manner as in the step (1) (FIG. 2 (b-1) )reference).
  • the conveying jig 7 is further rotated by 120 ° so that the surface 7c becomes the bottom surface side, the coating film 3c is formed in the same manner as in the steps (1) and (2). (See FIG. 2 (c-1)).
  • FIG. 4 shows a cross-sectional TEM photograph at a reference position (0 °) and a position rotated by 90 ° with respect to the reference position.
  • Comparative Example 4 Sample No. When winding 1 Pb-based solder wire with a solder wire automatic winder, it is immersed in a silicon-based coating agent (manufactured by Toray Dow Corning Co., Ltd., APZ6601) for 10 minutes and then dried at 120 ° C. for 10 minutes. A coated solder wire was prepared.
  • a silicon-based coating agent manufactured by Toray Dow Corning Co., Ltd., APZ6601
  • Example 27 to 34 A coated solder wire was prepared in the same manner as in Example 1 except that the Pb solder wire shown in Table 4 was used as the solder wire serving as the base material, and the evaluations (a) to (e) were performed. . The results are shown in Table 5.
  • Example 35 to 43 A coated solder wire was prepared in the same manner as in Example 1 except that the Sn-based solder wire shown in Table 6 was used as the solder wire serving as the base material, and the evaluations (a) to (e) were performed. . The results are shown in Table 3.
  • the coated solder wires of Examples 1 to 43 had a coating film thickness in the range of 4 nm to 200 nm, and the coating There is little variation in the thickness of the film, and the silicon content (the silicon equivalent value of the ratio of the coating film) is within 200 ppm.
  • the coated solder wire of Example 1 has a maximum thickness difference within a range of 1.0 nm at each position. Compared with the comparative example 3 whose maximum difference is 14.2 nm, the uniformity of the coating film is dramatically improved.
  • coated solder wires of Examples 1 to 43 had almost no change in the surface state before and after the neutral salt spray test, had excellent oxidation resistance, and also had good wettability and heat cycle evaluation. is there.
  • Example 1 the processing time in Example 1 is suppressed to 1/3 or less of the processing time in Comparative Example 3. Therefore, the productivity of the coated solder wire can be greatly improved by applying the manufacturing method of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Die Bonding (AREA)

Abstract

The present invention provides a manufacturing method by which a coated solder wire having a dense coating film of polysiloxane uniformly provided over the entire surface of the solder wire can be obtained efficiently, through a single process. This method for manufacturing a coated solder wire comprises a radicalization step for mixing a reactant gas transformed into a plasma at atmospheric pressure, and an organosilicon compound introduced through the agency of carrier gas, and radicalizing the organosilicon compound to form a radicalized organosilicon compound; a reaction area formation step for forming a reaction area which is demarcated by a spiral gas flow and in which the radicalized organosilicon compound is uniformly dispersed; and a coating step for transporting the solder wire into the reaction area, and reacting the metal at the solder wire surface with the radicalized organosilicon compound, thereby forming a coating film of polysiloxane having a thickness of 4-200 nm on the solder wire surface.

Description

被覆はんだワイヤおよびその製造方法Coated solder wire and manufacturing method thereof
 本発明は、半導体装置を製造する際に用いられるはんだワイヤおよびその製造方法に関する。 The present invention relates to a solder wire used in manufacturing a semiconductor device and a manufacturing method thereof.
 半導体素子接合基板や半導体装置などの製造において、金属材料同士を接合する場合に、あるいは、半導体素子などの電子部品をプリント基板に接合する場合に、はんだ付けが一般的に採用される。はんだ付けに使用されるはんだ材料は、ワイヤ、リボン、シート、プリフォーム材(打抜き材)、ボール、微粉末などの種々の形状に成形される。 In the manufacture of semiconductor element bonding substrates and semiconductor devices, soldering is generally employed when bonding metal materials together or when bonding electronic components such as semiconductor elements to a printed circuit board. Solder materials used for soldering are formed into various shapes such as wires, ribbons, sheets, preform materials (punching materials), balls, and fine powders.
 はんだ材料は、酸素の存在下で酸化しやすく、保管中に、その表面に酸化膜が形成される。特に、はんだ材料を製造してから長期間経過後に使用する場合には、酸化が進行し、この酸化膜が厚いものとなるため、はんだ材料の濡れ広がり性や接合性の低下、あるいは、空隙(ボイド)の発生などの接合欠陥を招く。加えて、はんだ材料は、使用時に高温で溶融されるため、酸化膜はさらに厚いものとなる。このようにして形成された分厚い酸化膜が、接合界面に存在すると、導通不良や接合性の低下といった問題を引き起こす。 Solder material is easily oxidized in the presence of oxygen, and an oxide film is formed on the surface during storage. In particular, when the solder material is used after a long period of time since it is manufactured, the oxidation proceeds and the oxide film becomes thick. This causes joint defects such as voids. In addition, since the solder material is melted at a high temperature during use, the oxide film becomes thicker. If the thick oxide film formed in this way is present at the bonding interface, problems such as poor continuity and poor bonding are caused.
 金属材料や合金材料の酸化を防止する技術として、表面処理により被覆膜を形成する方法が知られている。特に、大気圧プラズマCVD法を用いた表面処理は、比較的低コストで、緻密な被覆膜を形成することができるため、酸化防止効果が高いばかりでなく、成膜材料が室内に拡散することがないため、安全性にも優れることから注目を集めている。 As a technique for preventing oxidation of metal materials and alloy materials, a method of forming a coating film by surface treatment is known. In particular, the surface treatment using the atmospheric pressure plasma CVD method can form a dense coating film at a relatively low cost, so that not only the antioxidant effect is high but also the film forming material diffuses into the room. It has attracted attention because of its superior safety.
 たとえば、特表2004-510571号公報には、有機ケイ素化合物からなる噴霧液体コーティング形成材料を大気圧プラズマ放電中に導入し、金属などの基板をこの噴霧コーティング形成材料(被覆材料)に晒すことにより、基板の表面に、ポリジメチルシロキサンなどからなるコーティング(被覆膜)を形成する方法が開示されている。 For example, in Japanese translation of PCT publication No. 2004-510571, a spray liquid coating forming material composed of an organosilicon compound is introduced into an atmospheric pressure plasma discharge, and a substrate such as a metal is exposed to the spray coating forming material (coating material). A method of forming a coating (coating film) made of polydimethylsiloxane or the like on the surface of a substrate is disclosed.
 しかしながら、この文献に記載の技術では、反応ガスと、キャリアガスと、被覆材料とが装置内に供給された後、反応ガスのプラズマ化と微粒化される被覆材料の活性化(ラジカル化)が同時に行われるため、被覆材料の活性化が不均一なものとなり、基板の表面全面にわたって、緻密な被覆膜を均一に形成することは困難である。また、この文献に記載の技術は、はんだ材料表面の酸化を防止することを意図したものではなく、はんだ材料の溶融時における被覆膜の挙動や、被覆膜の存在による濡れ広がり性および接合性への影響については何ら考慮されていない。 However, in the technique described in this document, after the reaction gas, the carrier gas, and the coating material are supplied into the apparatus, the reaction gas is turned into plasma and activated (radicalization) of the coating material that is atomized. Since they are performed simultaneously, the activation of the coating material becomes non-uniform, and it is difficult to form a dense coating film uniformly over the entire surface of the substrate. In addition, the technique described in this document is not intended to prevent the oxidation of the surface of the solder material, but the behavior of the coating film when the solder material melts, the wettability due to the presence of the coating film, and bonding. No consideration is given to the effect on sex.
 これに対して、特開2014-195831号公報には、大気圧下でプラズマガス中に、有機ケイ素化合物を、キャリアガスとともに混合噴霧することで、有機ケイ素化合物をラジカル化し、ラジカル化した有機ケイ素化合物を重合させながら、はんだ材料の表面に存在する金属と反応させることで、厚さが4nm~200nmのポリシロキサンからなる被覆膜を形成する、被覆はんだ材料の製造方法が開示されている。この方法によれば、有機ケイ素化合物を瞬時にラジカル化させることができるため、有機ケイ素化合物の基本骨格を維持したまま、緻密な被覆膜をはんだ材料の表面全体にわたって、均一に形成することができる。このため、はんだ材料の濡れ広がり性や接合性を損ねることなく、長期保管時および溶融時における酸化の進行を防止することが可能となる。 On the other hand, Japanese Patent Application Laid-Open No. 2014-195831 discloses radicalization of an organosilicon compound by mixing and spraying an organosilicon compound together with a carrier gas in a plasma gas under atmospheric pressure. A method for producing a coated solder material is disclosed in which a coating film made of polysiloxane having a thickness of 4 nm to 200 nm is formed by reacting with a metal present on the surface of the solder material while polymerizing the compound. According to this method, since the organosilicon compound can be radicalized instantly, a dense coating film can be uniformly formed over the entire surface of the solder material while maintaining the basic skeleton of the organosilicon compound. it can. For this reason, it becomes possible to prevent the progress of oxidation during long-term storage and melting without impairing the wetting and joining properties of the solder material.
特表2004-510571号公報Japanese translation of PCT publication No. 2004-510571 特開2014-195831号公報JP 2014-195831 A
 ところで、特開2014-195831号公報に記載の技術により、長尺のはんだワイヤの表面全体を被覆する場合、図2に示すように、基材となるはんだワイヤ2に対して複数回(図示の例では3回)の処理をすることが必要となる。すなわち、
 (1)搬送中におけるはんだワイヤ2の捻れを防止可能な搬送治具7を、面7aが底面側となるよう固定した状態で、はんだワイヤ2を矢印Aの方向に搬送しつつ、ノズル8からラジカル化した有機ケイ素化合物5を噴霧し、被覆膜3aを形成し(図2(a-1)参照)、
 次いで、(2)搬送治具7を、面7bが底面側となるように120°回転させた後、工程(1)と同様にして、被覆膜3bを形成し(図2(b-1)参照)、
 最後に、(3)搬送治具7を、面7cが底面側となるようにさらに120°回転させた後、工程(1)および工程(2)と同様にして、被覆膜3c形成する(図2(c-1)参照)、
ことが必要となる。
By the way, when the entire surface of a long solder wire is coated by the technique described in Japanese Patent Application Laid-Open No. 2014-195831, as shown in FIG. In the example, it is necessary to perform processing three times. That is,
(1) While conveying the solder wire 2 in the direction of arrow A while fixing the conveying jig 7 capable of preventing the twist of the solder wire 2 during conveyance so that the surface 7a is on the bottom surface side, from the nozzle 8 The radicalized organosilicon compound 5 is sprayed to form a coating film 3a (see FIG. 2 (a-1)),
Next, (2) the transfer jig 7 is rotated 120 ° so that the surface 7b is on the bottom surface side, and then the coating film 3b is formed in the same manner as in the step (1) (FIG. 2 (b-1)). )reference),
Finally, (3) the transport jig 7 is further rotated by 120 ° so that the surface 7c is on the bottom side, and then the coating film 3c is formed in the same manner as in the steps (1) and (2) ( Fig. 2 (c-1))
It will be necessary.
 このため、特開2014-195831号公報に記載の技術をそのまま、工業規模の製造に適用した場合には、被覆はんだワイヤの生産性が著しく損なわれることが予想される。また、図2(a-2)、図2(b-2)、および図2(c-2)に示されるように、被覆膜3a~3cの境界に被覆が薄い部分が生じるため、被覆膜全体としての厚さの均一性については改善の余地がある。 For this reason, when the technique described in Japanese Patent Application Laid-Open No. 2014-195831 is applied as it is to manufacturing on an industrial scale, the productivity of the coated solder wire is expected to be significantly impaired. Further, as shown in FIGS. 2 (a-2), 2 (b-2), and 2 (c-2), a thin coating portion is formed at the boundary between the coating films 3a to 3c. There is room for improvement in the uniformity of the thickness of the entire coating film.
 本発明は、これらの問題に鑑みて、ポリシロキサンからなる緻密な被覆膜が、はんだワイヤの表面全体にわたって均一に備えられた被覆はんだワイヤを提供することを目的とする。また、本発明は、このような被覆はんだワイヤを1回の処理で効率よく製造する方法を提供することを目的とする。 In view of these problems, an object of the present invention is to provide a coated solder wire in which a dense coating film made of polysiloxane is uniformly provided over the entire surface of the solder wire. Moreover, an object of this invention is to provide the method of manufacturing such a coated solder wire efficiently by one process.
 本発明の被覆はんだワイヤは、はんだワイヤと、該はんだワイヤの表面に備えられたポリシロキサンからなる被覆膜とから構成される被覆はんだワイヤであって、前記被覆膜は、厚さが4nm~200nm、該厚さの最大値と最小値の差が2.5nm以内であり、かつ、前記被覆はんだワイヤ全体に対する該被覆膜の割合が、ケイ素換算で200質量ppm以下であることを特徴とする。 The coated solder wire of the present invention is a coated solder wire composed of a solder wire and a coating film made of polysiloxane provided on the surface of the solder wire, and the coating film has a thickness of 4 nm. 200 nm, the difference between the maximum value and the minimum value of the thickness is within 2.5 nm, and the ratio of the coating film to the entire coated solder wire is 200 mass ppm or less in terms of silicon. And
 前記はんだワイヤとして、80質量%以上のPbと、Sn、Ag、Cu、In、Te、およびPからなる群から選択される1種以上の第2元素とを含有し、かつ、Pbと第2元素との含有量が、合計で95質量%以上のはんだ合金からなる、はんだワイヤを好適に用いることができる。または、80質量%以上のSnと、Ag、Sb、Cu、Ni、Ge、およびPからなる群から選択される1種以上の第2元素とを含有し、かつ、Snと第2元素との含有量が、合計で95質量%以上のはんだ合金からなる、はんだワイヤを好適に用いることができる。 The solder wire contains 80% by mass or more of Pb and one or more second elements selected from the group consisting of Sn, Ag, Cu, In, Te, and P, and Pb and second A solder wire made of a solder alloy having a total content of 95% by mass or more with elements can be suitably used. Alternatively, 80% by mass or more of Sn and one or more second elements selected from the group consisting of Ag, Sb, Cu, Ni, Ge, and P, and Sn and the second element A solder wire made of a solder alloy having a total content of 95% by mass or more can be suitably used.
 本発明の被覆はんだワイヤの製造方法は、
 大気圧下でプラズマ化された反応ガスと、キャリアガスを介して導入された有機ケイ素化合物とを混合し、該有機ケイ素化合物をラジカル化することにより、ラジカル化有機ケイ素化合物を形成する、ラジカル化工程と、
 螺旋状のガス流によって画定され、前記ラジカル化有機ケイ素化合物が均一に分散した反応領域を形成する、反応領域形成工程と、
 前記反応領域内で、はんだワイヤを搬送し、前記ラジカル化有機ケイ素化合物を該はんだワイヤ表面の金属と反応させることにより、該はんだワイヤ表面に厚さが4nm~200nmの、ポリシロキサンからなる被覆膜を形成する、被覆工程と、
を備えることを特徴とする。
The method for producing the coated solder wire of the present invention is as follows.
Radicalization that forms a radicalized organosilicon compound by mixing the reaction gas plasmatized at atmospheric pressure with an organosilicon compound introduced via a carrier gas and radicalizing the organosilicon compound Process,
A reaction zone forming step defined by a spiral gas flow to form a reaction zone in which the radicalized organosilicon compound is uniformly dispersed;
A coating made of polysiloxane having a thickness of 4 nm to 200 nm on the surface of the solder wire by transporting the solder wire in the reaction region and reacting the radicalized organosilicon compound with the metal on the surface of the solder wire. A coating process for forming a film;
It is characterized by providing.
 前記反応領域形成工程において、予め導入した螺旋状のガス流に、前記ラジカル化有機ケイ素化合物を混合することにより、前記反応領域を形成することが好ましい。この場合、前記螺旋状のガス流を、アルゴン、ヘリウム、窒素、酸素、および空気の群から選択される少なくとも1種によって形成することができる。 In the reaction region forming step, it is preferable to form the reaction region by mixing the radicalized organosilicon compound into a spiral gas flow introduced in advance. In this case, the spiral gas flow can be formed by at least one selected from the group consisting of argon, helium, nitrogen, oxygen, and air.
 前記有機ケイ素化合物として、アルキル基、アルコキシ基、フルオロアルキル基、アミノ基、エポキシ基、イソシアネート基、メルカプト基、ビニル基、メタクリロキシ基、およびアクリロキシ基の群から選択される少なくとも1種の有機置換基を有する有機ケイ素化合物を用いることが好ましい。 As the organosilicon compound, at least one organic substituent selected from the group consisting of alkyl group, alkoxy group, fluoroalkyl group, amino group, epoxy group, isocyanate group, mercapto group, vinyl group, methacryloxy group, and acryloxy group It is preferable to use an organosilicon compound having
 前記反応ガスとしては、アルゴン、ヘリウム、窒素、酸素、および空気の群から選択される少なくとも1種を用いることができる。また、前記キャリアガスとしては、アルゴン、ヘリウム、および窒素から選択される少なくとも1種を用いることができる。 As the reaction gas, at least one selected from the group consisting of argon, helium, nitrogen, oxygen, and air can be used. Further, as the carrier gas, at least one selected from argon, helium, and nitrogen can be used.
 前記ラジカル化工程において、大気圧プラズマ重合処理装置により、前記有機ケイ素化合物をラジカル化することが好ましい。 In the radicalization step, the organosilicon compound is preferably radicalized by an atmospheric pressure plasma polymerization treatment apparatus.
 前記ラジカル化工程において、前記はんだワイヤ1mに対する前記有機ケイ素化合物の導入量を0.006g~0.300gとすることが好ましい。また、前記被覆工程における該はんだワイヤの搬送速度を1m/分~100m/分とすることが好ましい。 In the radicalization step, the amount of the organosilicon compound introduced into 1 m of the solder wire is preferably 0.006 g to 0.300 g. In addition, it is preferable that the conveying speed of the solder wire in the coating step is 1 m / min to 100 m / min.
 本発明によれば、ポリシロキサンからなる緻密な被覆膜が、はんだワイヤの表面全体にわたって均一に備えられた被覆はんだワイヤを提供することができる。また、本発明によれば、このような被覆はんだワイヤを1回の処理で効率よく製造可能な方法を提供することができる。このため、本発明の工業的意義はきわめて大きい。 According to the present invention, it is possible to provide a coated solder wire in which a dense coating film made of polysiloxane is uniformly provided over the entire surface of the solder wire. Moreover, according to this invention, the method which can manufacture such a covering solder wire efficiently by one process can be provided. For this reason, the industrial significance of the present invention is extremely large.
図1(a)は、本発明の被覆はんだワイヤの製造方法を説明するための概略斜視図であり、および、図1(b)は、この製造方法で得られた被覆はんだワイヤの断面図である。FIG. 1A is a schematic perspective view for explaining a method of manufacturing a coated solder wire according to the present invention, and FIG. 1B is a cross-sectional view of the coated solder wire obtained by this manufacturing method. is there. 図2(a-1)~(c-1)は、従来の被覆はんだワイヤの製造方法を説明するための概略斜視図であり、および、図2(a-2)~(c-2)は、それぞれの段階における被覆はんだワイヤの断面図である。2 (a-1) to 2 (c-1) are schematic perspective views for explaining a conventional method for manufacturing a coated solder wire, and FIGS. 2 (a-2) to 2 (c-2) FIG. 3 is a cross-sectional view of a coated solder wire at each stage. 図3(a)~(d)は、実施例2で得られた被覆はんだワイヤの断面TEM写真である。3A to 3D are cross-sectional TEM photographs of the coated solder wire obtained in Example 2. FIG. 図4(a)および図4(b)は、比較例3で得られた被覆はんだワイヤの断面TEM写真である。4A and 4B are cross-sectional TEM photographs of the coated solder wire obtained in Comparative Example 3. FIG.
 本発明者らは、上述した課題について検討を重ねた結果、予め、ラジカル化した有機ケイ素化合物が均一に分散し、かつ、ラジカル化した有機ケイ素化合物がはんだワイヤ表面の金属と反応可能な反応領域を形成し、この反応領域内ではんだワイヤを搬送することにより、1回の処理で、きわめて均一かつ緻密な被覆膜を形成することができるとの知見を得た。また、このような反応領域は、螺旋状のガス流に、ラジカル化した有機ケイ素化合物を混合することにより形成できるとの知見を得た。本発明は、これらの知見に基づき完成されたものである。 As a result of repeated investigations on the above-described problems, the present inventors have previously obtained a reaction region in which radicalized organosilicon compounds are uniformly dispersed and the radicalized organosilicon compounds can react with the metal on the surface of the solder wire. It was found that an extremely uniform and dense coating film can be formed by a single treatment by forming a solder wire and transporting a solder wire in the reaction region. In addition, the inventors have found that such a reaction region can be formed by mixing a radicalized organosilicon compound in a spiral gas flow. The present invention has been completed based on these findings.
 以下、本発明について、「1.被覆はんだワイヤ」、「2.被覆はんだワイヤの製造方法」、および「3.被覆はんだワイヤによるダイボンディング方法」に分けて詳細に説明する。なお、本発明の被覆はんだワイヤは、基材として使用するはんだワイヤの直径によって制限されることはないが、以下では、一般的に用いられる、直径が0.3mm~1.0mmのはんだワイヤを基材として用いる場合を例に挙げて説明する。 Hereinafter, the present invention will be described in detail by dividing it into “1. coated solder wire”, “2. manufacturing method of coated solder wire”, and “3. die bonding method using coated solder wire”. The coated solder wire of the present invention is not limited by the diameter of the solder wire used as the base material. However, in the following, a solder wire having a diameter of 0.3 mm to 1.0 mm that is generally used is used. The case where it is used as a base material will be described as an example.
 1.被覆はんだワイヤ
 本発明の被覆はんだワイヤは、はんだワイヤと、はんだワイヤの表面に備えられたポリシロキサンからなる被覆膜とから構成される。この被覆膜は、厚さが4nm~200nm、厚さの最大値と最小値の差(最大差)が2.5nm以内であり、かつ、被覆はんだワイヤ全体に対する被覆膜の割合が、ケイ素換算で200質量ppm以下であることを特徴とする。
1. Coated Solder Wire The coated solder wire of the present invention is composed of a solder wire and a coating film made of polysiloxane provided on the surface of the solder wire. This coating film has a thickness of 4 nm to 200 nm, a difference between the maximum value and the minimum value (maximum difference) within 2.5 nm, and the ratio of the coating film to the entire coated solder wire is silicon It is characterized by being 200 mass ppm or less in terms of conversion.
 (1)はんだワイヤ
 本発明において、はんだワイヤの組成は特に制限されることはなく、種々の組成を有するものを用いることができる。しかしながら、本発明を以下の組成を有するはんだワイヤに適用した場合に、本発明の効果を好適に発揮することができる。なお、はんだワイヤの組成は、ICP発光分光分析法により求めることができる。
(1) Solder Wire In the present invention, the composition of the solder wire is not particularly limited, and those having various compositions can be used. However, when the present invention is applied to a solder wire having the following composition, the effects of the present invention can be suitably exhibited. The composition of the solder wire can be determined by ICP emission spectroscopic analysis.
 a)Pb系はんだワイヤ
 Pb系はんだワイヤは、Pb(鉛)を主成分とし、Sn(スズ)、Ag(銀)、Cu(銅)、In(インジウム)、Te(テルル)、およびP(リン)からなる群から選択される1種以上の第2元素を含有する、はんだ合金から構成される。なお、Pbを主成分とするとは、はんだ合金全体に対するPbの含有量が80質量%以上であることを意味する。
a) Pb-based solder wires Pb-based solder wires are mainly composed of Pb (lead), Sn (tin), Ag (silver), Cu (copper), In (indium), Te (tellurium), and P (phosphorus) And a solder alloy containing at least one second element selected from the group consisting of: In addition, Pb as a main component means that content of Pb with respect to the whole solder alloy is 80 mass% or more.
 このようなPb系はんだワイヤは、きわめて汎用性が高く、従来、種々の用途に使用されている。近年、人体や環境への影響を考慮して、Pbの使用が制限されているものの、その汎用性や使いやすさから、高温はんだとして、パワーデバイスの接合などの一部の用途においては、現在でも使用され続けている。 Such Pb-based solder wires are extremely versatile and have been used for various purposes. In recent years, the use of Pb has been restricted in consideration of the effects on the human body and the environment, but due to its versatility and ease of use, as a high temperature solder, in some applications such as joining power devices, But it continues to be used.
 Pb系はんだワイヤにおいて、Pbと第2元素の含有量は、合計で95質量%以上、好ましくは合計で97質量%以上とする。Pbと第2元素の含有量が、合計で95質量%未満では、上記特性を得ることは難しい。 In the Pb-based solder wire, the total content of Pb and the second element is 95% by mass or more, preferably 97% by mass or more in total. If the total content of Pb and the second element is less than 95% by mass, it is difficult to obtain the above characteristics.
 なお、Pbの含有量は、好ましくは80質量%以上98質量%以下、より好ましくは85質量%以上98質量%以下とする。また、第2元素の含有量は、好ましくは2質量%以上15質量%以下、より好ましくは2質量%以上12質量%以下とする。 The Pb content is preferably 80% by mass to 98% by mass, and more preferably 85% by mass to 98% by mass. The content of the second element is preferably 2% by mass or more and 15% by mass or less, more preferably 2% by mass or more and 12% by mass or less.
 また、Pb系はんだワイヤにおいては、その用途や目的に応じて、Pbおよび第2元素以外の元素(第3元素)を含有させてもよい。このような第3元素としては、たとえば、Ni(ニッケル)、Ge(ゲルマニウム)、Co(コバルト)、Sb(アンチモン)、Bi(ビスマス)などを挙げることができる。これらの第3元素の含有量は、好ましくは5.0質量%以下、より好ましくは4.5質量%以下とする。第3元素の含有量が5.0質量%を超えると、Pbおよび第2元素の含有量の関係で、所望の特性を得ることができなくなる場合がある。 In addition, in the Pb-based solder wire, an element other than Pb and the second element (third element) may be contained according to the application and purpose. Examples of such a third element include Ni (nickel), Ge (germanium), Co (cobalt), Sb (antimony), Bi (bismuth), and the like. The content of these third elements is preferably 5.0% by mass or less, more preferably 4.5% by mass or less. When the content of the third element exceeds 5.0% by mass, desired characteristics may not be obtained due to the relationship between the content of Pb and the second element.
 b)Sn系はんだワイヤ
 Sn系はんだワイヤは、Snを主成分とし、Ag、Sb、Cu、Ni、Ge、およびP(リン)からなる群から選択される1種以上の第2元素を含有する、はんだ合金から構成される。なお、Snを主成分とするとは、はんだ合金全体に対するSnの含有量が80質量%以上であることを意味する。
b) Sn-based solder wire The Sn-based solder wire contains Sn as a main component and contains one or more second elements selected from the group consisting of Ag, Sb, Cu, Ni, Ge, and P (phosphorus). , Composed of solder alloy. Here, Sn as a main component means that the Sn content with respect to the entire solder alloy is 80% by mass or more.
 このようなSn系はんだワイヤは、低融点で、半導体装置などの用途に好ましく適用することができ、いわゆる「鉛フリーはんだ」として用いられている。ここで、鉛フリーとは、鉛を全く含有しないか、不可避不純物として含有する場合であっても、その含有量が0.01質量%未満であることを意味する。 Such Sn-based solder wires have a low melting point and can be preferably applied to applications such as semiconductor devices, and are used as so-called “lead-free solder”. Here, lead-free means that the content is less than 0.01% by mass even when lead is not contained at all or as an inevitable impurity.
 Sn系はんだワイヤにおいて、Snと第2元素の含有量は、合計で、95質量%以上、好ましくは97質量%以上とする。Snと第2元素の含有量が、合計で、95質量%未満では、上記特性を得ることができない。 In the Sn-based solder wire, the total content of Sn and the second element is 95% by mass or more, preferably 97% by mass or more. If the total content of Sn and the second element is less than 95% by mass, the above characteristics cannot be obtained.
 なお、Snの含有量は、好ましくは80質量%以上98質量%以下、より好ましくは90質量%以上98質量%以下とする。第2元素の含有量は、好ましくは1質量%以上10質量%以下、より好ましくは2質量%以上7質量%以下とする。 In addition, the content of Sn is preferably 80% by mass or more and 98% by mass or less, and more preferably 90% by mass or more and 98% by mass or less. The content of the second element is preferably 1% by mass to 10% by mass, more preferably 2% by mass to 7% by mass.
 また、Sn系はんだワイヤにおいても、その用途や目的に応じて、Snおよび第2元素以外の元素(第3元素)を含有させてもよい。このような第3元素としては、たとえば、In、CoおよびBiなどを挙げることができる。これらの第3元素の含有量は、好ましくは5.0質量%以下、より好ましくは3.0質量%以下とする。第3元素の含有量が5.0質量%を超えると、Snおよび第2元素の含有量の関係で、所望の特性を得ることができなくなる。 In addition, Sn-based solder wires may contain elements other than Sn and the second element (third element) depending on the application and purpose. Examples of such third element include In, Co, and Bi. The content of these third elements is preferably 5.0% by mass or less, more preferably 3.0% by mass or less. If the content of the third element exceeds 5.0% by mass, desired characteristics cannot be obtained due to the relationship between the contents of Sn and the second element.
 (2)被覆膜
 a)組成および構造
 本発明における被覆膜は、ポリシロキサンから構成される。ポリシロキサンの種類は任意であるが、はんだワイヤ表面の酸化の進行を抑制する観点から、その主鎖に、シロキサン結合-(Si-O-Si)n-(n=1、2、3・・・)を有し、かつ、単位Siあたりに、アルキル基が1個~3個結合しているポリアルキルシロキサンが好ましく、特に、単位Siあたりに、メチル基が2個~3個結合しているポリジメチルポリシロキサンがより好ましい。このようなポリシロキサンからなる被覆膜は、高い緻密性を備えており、これによって、はんだワイヤに優れた耐酸化性を付与することができる。
(2) Coating film a) Composition and structure The coating film in this invention is comprised from polysiloxane. The type of polysiloxane is arbitrary, but from the viewpoint of suppressing the progress of oxidation on the surface of the solder wire, the main chain has a siloxane bond — (Si—O—Si) n — (n = 1, 2, 3,. And a polyalkylsiloxane having 1 to 3 alkyl groups bonded per unit Si, particularly 2 to 3 methyl groups bonded per unit Si. Polydimethylpolysiloxane is more preferred. Such a coating film made of polysiloxane has a high density, and can thereby impart excellent oxidation resistance to the solder wire.
 b)厚さ
 被覆膜の厚さは4nm~200nm、好ましくは6nm~100nm、より好ましくは8nm~50nmに制御される。被覆膜の厚さが4nm未満では、はんだワイヤ表面の酸化の進行を十分に抑制することができず、濡れ広がり性や接合性の低下、空隙(ボイド)の発生といった問題が生じる場合がある。一方、被覆膜の厚さが200nmを超えると、はんだワイヤ表面の酸化の進行を抑制することはできるものの、被覆膜の影響により、はんだワイヤの濡れ広がり性や接合性が低下したり、空隙(ボイド)が発生したりする場合がある。
b) Thickness The thickness of the coating film is controlled to 4 nm to 200 nm, preferably 6 nm to 100 nm, more preferably 8 nm to 50 nm. If the thickness of the coating film is less than 4 nm, the progress of oxidation on the surface of the solder wire cannot be sufficiently suppressed, and problems such as deterioration of wetting spreadability, bondability, and generation of voids may occur. . On the other hand, if the thickness of the coating film exceeds 200 nm, the progress of the oxidation of the solder wire surface can be suppressed, but due to the effect of the coating film, the solder wire wettability and bondability are reduced, There are cases where voids are generated.
 なお、被覆膜の厚さは、被覆はんだワイヤを周方向3か所以上の位置で長さ方向に沿って切断した上で、それぞれの断面を透過型電子顕微鏡(TEM)で観察することにより求めることができる。 The thickness of the coating film is determined by observing each cross section with a transmission electron microscope (TEM) after cutting the coated solder wire along the length direction at three or more positions in the circumferential direction. Can be sought.
 c)厚さの均一性
 この被覆膜は、厚さの均一性にも優れる。具体的には、本発明の被覆はんだワイヤは、被覆膜の厚さ(径方向の寸法)の最大値と最小値の差(最大差)を、被覆はんだワイヤ全体(長さ方向および周方向)にわたって2.5nm以内、好ましくは2.0nm以内、より好ましくは1.5nm以内に制御することが可能である。このため、本発明の被覆はんだワイヤは、耐酸化性、濡れ広がり性、接合性などの特性のばらつきがきわめて小さいということができる。
c) Thickness uniformity This coating film is also excellent in thickness uniformity. Specifically, in the coated solder wire of the present invention, the difference between the maximum value and the minimum value (maximum difference) in the thickness (diameter dimension) of the coated film is determined as the entire coated solder wire (length direction and circumferential direction). ) Over 2.5 nm, preferably within 2.0 nm, more preferably within 1.5 nm. For this reason, it can be said that the coated solder wire of the present invention has extremely small variations in characteristics such as oxidation resistance, wettability, and bondability.
 d)被覆量
 本発明の被覆はんだワイヤにおいて、被覆はんだワイヤ全体に対する被覆膜の割合は、ケイ素換算で200質量ppm以下、好ましくは5質量ppm~95質量ppm、より好ましくは7質量ppm~50質量ppmに制御される。このように、本発明の被覆はんだワイヤにおいては、被覆膜の割合がきわめて微量であるため、被覆膜による、はんだワイヤの濡れ広がり性や接合性などへの影響がほとんどないといえる。
d) Amount of coating In the coated solder wire of the present invention, the ratio of the coated film to the entire coated solder wire is 200 mass ppm or less, preferably 5 mass ppm to 95 mass ppm, more preferably 7 mass ppm to 50 in terms of silicon. The mass is controlled to ppm. As described above, in the coated solder wire of the present invention, since the ratio of the coating film is extremely small, it can be said that the coating film has almost no influence on the solder wire wettability and bonding property.
 e)特性
 本発明の被覆はんだワイヤを構成する被覆膜は、きわめて薄く形成されるにもかかわらず、はんだワイヤ表面の金属と強固に結合し、かつ、厚さの均一性にも優れていると評価することができる。したがって、はんだワイヤ表面における酸化の進行を抑制することができ、これにより、はんだワイヤの濡れ広がり性や接合性の低下や、空隙(ボイド)の発生を効果的に抑制することが可能である。
e) Characteristics Although the coating film constituting the coated solder wire of the present invention is extremely thin, it is firmly bonded to the metal on the surface of the solder wire and has excellent thickness uniformity. Can be evaluated. Therefore, it is possible to suppress the progress of oxidation on the surface of the solder wire, and thus it is possible to effectively suppress the deterioration of the solder wire wetting and spreadability and the generation of voids.
 また、この被覆膜は、無色透明であり、かつ、上述したように、きわめて薄く形成されるにもかかわらず、厚さの均一性に優れるため、処理ムラやシミなどの外観不良が発生することはほとんどない。 In addition, this coating film is colorless and transparent, and as described above, although it is formed very thin, it has excellent thickness uniformity, resulting in poor appearance such as processing unevenness and spots. There is hardly anything.
 2.被覆はんだワイヤの製造方法
 本発明の被覆はんだワイヤの製造方法は、
 (1)大気圧下でプラズマ化された反応ガスと、キャリアガスを介して導入された有機ケイ素化合物とを混合し、有機ケイ素化合物をラジカル化することにより、ラジカル化有機ケイ素化合物を形成する、ラジカル化工程と、
 (2)螺旋状のガス流によって画定され、ラジカル化有機ケイ素化合物が均一に分散した反応領域を形成する、反応領域形成工程と、
 (3)反応領域内で、はんだワイヤを搬送し、ラジカル化有機ケイ素化合物をはんだワイヤ表面の金属と反応させることにより、はんだワイヤ表面に厚さが4nm~200nmである、ポリシロキサンからなる被覆膜を形成する、被覆工程と、
を備えることを特徴とする。
2. Manufacturing method of coated solder wire The manufacturing method of the coated solder wire of the present invention is as follows.
(1) A radicalized organosilicon compound is formed by mixing a reaction gas plasmified under atmospheric pressure with an organosilicon compound introduced via a carrier gas and radicalizing the organosilicon compound. A radicalization step;
(2) a reaction region forming step defined by a spiral gas flow and forming a reaction region in which radicalized organosilicon compounds are uniformly dispersed;
(3) A coating made of polysiloxane having a thickness of 4 nm to 200 nm on the surface of the solder wire by transporting the solder wire in the reaction region and reacting the radicalized organosilicon compound with the metal on the surface of the solder wire. A coating process for forming a film;
It is characterized by providing.
 このような製造方法によれば、はんだワイヤに対して、1回の処理で、ポリシロキサンからなる緻密な被覆膜を均一に形成することができるため、特開2014-195831号公報に記載の方法と比べて、生産性を飛躍的に向上させることが可能である。また、この製造方法は、被覆材料として、常態で液体である有機ケイ素化合物を使用し、かつ、被覆膜を乾式の方法により形成しているため、取扱いが容易であるばかりでなく、安全性にも優れていると評価することができる。 According to such a manufacturing method, a dense coating film made of polysiloxane can be uniformly formed on a solder wire by a single treatment, so that it is described in Japanese Patent Application Laid-Open No. 2014-195831. Compared with the method, productivity can be dramatically improved. In addition, this manufacturing method uses an organic silicon compound that is normally liquid as the coating material, and the coating film is formed by a dry method, so that it is not only easy to handle, but also safe. It can be evaluated that it is excellent.
 (1)ラジカル化工程
 ラジカル化工程は、大気圧下でプラズマ化された反応ガスと、キャリアガスを介して導入された有機ケイ素化合物とを混合し、有機ケイ素化合物をラジカル化することにより、ラジカル化有機ケイ素化合物を形成する工程である。
(1) Radicalization process In the radicalization process, a reaction gas that has been plasmatized under atmospheric pressure and an organosilicon compound introduced through a carrier gas are mixed to radicalize the organosilicon compound, thereby producing radicals. This is a step of forming an organosilicon compound.
 a)大気圧プラズマ重合処理
 プラズマ重合処理は従来から広く知られた技術であるが、本発明で利用する大気圧プラズマ重合処理は、常態では進行しない化学反応を、大気圧プラズマによる反応粒子の活性化により進行させるものである。このような大気圧プラズマ重合処理は、連続処理に向いているため生産性が高く、また、真空装置が不要であるため処理コストが低く、装置構成を簡易化することができるといった特徴を有する。
a) Atmospheric pressure plasma polymerization treatment Although the plasma polymerization treatment is a technique that has been widely known, the atmospheric pressure plasma polymerization treatment used in the present invention is a chemical reaction that does not proceed under normal conditions. It is made to progress by the conversion. Such an atmospheric pressure plasma polymerization process is characterized by high productivity because it is suitable for continuous processing, and has a feature that the processing cost is low because a vacuum apparatus is unnecessary, and the apparatus configuration can be simplified.
 大気圧プラズマとしては、コロナ放電、誘電体バリア放電、RF放電、マイクロ波放電、アーク放電などを挙げることができるが、本発明では、特に制限されることなく、いずれも適用可能である。このため、プラズマ化するために使用する装置としては、大気圧下で反応ガスをプラズマ化することができるものであれば、特に制限されることなく、公知のプラズマ発生装置を使用することができる。なお、本発明において、大気圧とは、大気圧(1013.25hPa)およびその近傍の気圧を含み、通常の大気圧の変化の範囲内の気圧も含まれる。 Examples of atmospheric pressure plasma include corona discharge, dielectric barrier discharge, RF discharge, microwave discharge, arc discharge, and the like, but any of them can be applied in the present invention without any particular limitation. For this reason, a known plasma generator can be used without any particular limitation as long as it can plasmify the reaction gas under atmospheric pressure. . In the present invention, atmospheric pressure includes atmospheric pressure (1013.25 hPa) and atmospheric pressure in the vicinity thereof, and also includes atmospheric pressure within the range of changes in normal atmospheric pressure.
 ただし、本発明では、予めプラズマ化された反応ガス中に、有機ケイ素化合物を、キャリアガスを介して混合噴霧することが必要となる。このような構成を採ることにより、反応ガスのプラズマ化と被覆材料の活性化(プラズマ化)が同時に行われる従来の大気圧プラズマCVD法を利用した被覆膜の形成方法と異なって、有機ケイ素化合物を瞬時にラジカル化させることができるため、有機ケイ素化合物の基本骨格を維持したまま、ポリシロキサンからなる緻密な被覆膜をはんだワイヤの表面全体にわたって、均一に形成することが可能となる。 However, in the present invention, it is necessary to mix and spray the organosilicon compound into the reaction gas that has been plasmatized in advance through a carrier gas. By adopting such a configuration, organic silicon is different from the conventional method for forming a coating film using atmospheric pressure plasma CVD, in which the reaction gas is plasmatized and the coating material is activated (plasmaized) simultaneously. Since the compound can be radicalized instantly, a dense coating film made of polysiloxane can be uniformly formed over the entire surface of the solder wire while maintaining the basic skeleton of the organosilicon compound.
 b)プラズマ化条件
 反応ガスをプラズマ化するための条件としては、使用するプラズマ装置や、目的とする被覆膜の厚さなどにより適宜選択されるべきものであるが、有機ケイ素化合物を効率よくラジカル化し、高品質の被覆膜を形成する観点から、ジュネレータ出力電圧を、好ましくは150V~350V、より好ましくは200V~330Vの範囲とすることが好ましい。ジュネレータ出力電圧が150V未満では、反応ガスが十分にプラズマ化することができないため、炭化水素を十分にラジカル化することができない場合がある。一方、350Vを超えると、装置の破損といった問題が生じる場合がある。
b) Plasmaization conditions The conditions for converting the reaction gas to plasma should be appropriately selected according to the plasma apparatus to be used, the thickness of the target coating film, and the like. From the viewpoint of radicalizing and forming a high-quality coating film, the generator output voltage is preferably in the range of 150 V to 350 V, more preferably 200 V to 330 V. When the generator output voltage is less than 150 V, the reaction gas cannot be sufficiently converted to plasma, and thus the hydrocarbon may not be sufficiently radicalized. On the other hand, if it exceeds 350 V, there may be a problem such as damage to the apparatus.
 c)反応ガス
 反応ガスとしては、プラズマ化が容易なものであれば特に制限されることはなく、たとえば、Ar(アルゴン)、He(ヘリウム)、N2(窒素)、O2(酸素)、空気などを使用することができる。これらの反応ガスは、単独で使用してもよく、2種類以上を、所定の割合で混合して使用してもよい。なお、生産コストの観点から、N2、O2、またはその混合ガス、特に空気を使用することが好ましい。
c) Reactive gas The reactive gas is not particularly limited as long as it can be easily converted to plasma. For example, Ar (argon), He (helium), N 2 (nitrogen), O 2 (oxygen), Air or the like can be used. These reaction gases may be used alone or in combination of two or more at a predetermined ratio. From the viewpoint of production cost, it is preferable to use N 2 , O 2 , or a mixed gas thereof, particularly air.
 b)キャリアガス
 キャリアガスとしては、噴霧した有機ケイ素化合物を搬送することができるものであれば特に制限されることはない。たとえば、Ar、He、N2などを使用することができる。これらのキャリアガスは、単独で使用してもよく、2種類以上を所定の割合で混合して使用してもよい。なお、生産コストの観点から、N2を使用することが好ましい。
b) Carrier gas The carrier gas is not particularly limited as long as it can transport the sprayed organosilicon compound. For example, Ar, He, N 2 and the like can be used. These carrier gases may be used alone or in combination of two or more at a predetermined ratio. Note that N 2 is preferably used from the viewpoint of production cost.
 c)有機ケイ素化合物
 本発明では、被覆膜を形成するための被覆材料として、常温で液体である有機ケイ素化合物を使用することができる。このような有機ケイ素化合物としては、アルキル基、アルコキシ基、フルオロアルキル基、アミノ基、エポキシ基、イソシアネート基、メルカプト基、ビニル基、メタクリロキシ基、およびアクリロキシ基の群から選択される少なくとも1種の有機置換基を有する化合物を使用することが好ましい。
c) Organosilicon compound In the present invention, an organosilicon compound that is liquid at room temperature can be used as a coating material for forming a coating film. Such an organosilicon compound includes at least one selected from the group consisting of an alkyl group, an alkoxy group, a fluoroalkyl group, an amino group, an epoxy group, an isocyanate group, a mercapto group, a vinyl group, a methacryloxy group, and an acryloxy group. It is preferable to use a compound having an organic substituent.
 具体的には、アルキル基を有するものとしては、テトラメチルジシロキサン(TMDSO)、ヘキサメチルジシロキサン(HMDSO)、オクタメチルトリシロキサン(OMTSO)、デカメチルテトラシロキサン(DMTSO)、オクタメチルシクロテトラシロキサン(OMCTSO)、ヘキサメチルシクロトリシロキサン(HMCTSO)、オクタメチルシクロテトラシロキサン(OMCTSO)、デカメチルシクロペンタシロキサン(DMCPSO)、テトラメチルシクロテトラシロキサン(TMCTSO)などを使用することができる。 Specifically, those having an alkyl group include tetramethyldisiloxane (TMDSO), hexamethyldisiloxane (HMDSO), octamethyltrisiloxane (OMTSO), decamethyltetrasiloxane (DMTSO), and octamethylcyclotetrasiloxane. (OMCTSO), hexamethylcyclotrisiloxane (HMCTSO), octamethylcyclotetrasiloxane (OMCTSO), decamethylcyclopentasiloxane (DMCPSO), tetramethylcyclotetrasiloxane (TMCTSO), and the like can be used.
 また、アルコキシル基やフルオロアルキル基などの有機置換基を有するものとしては、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリイソプロポキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、エチルトリイソプロポキシシラン、プロピルトリメトキシシラン、プロピルトリエトキシシラン、プロピルトリイソプロポキシシラン、フェニルトリメトキシシラン(PTMEOS)、アリルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン(GPTMOS)、γ-グリシドキシプロピルトリエトキシシラン、γ-クロロプロピルトリメトキシシラン、トリス(3-トリエトキシシリルプロピル)イソシアヌレート、4-トリメトキシシリルプロピルオキシ-2-ヒドロキシベンゾフェノン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、メチルエチルジメトキシシラン、ジエチルジメトキシシラン、ジエチルジエトキシシラン、メチルプロピルジメトキシシラン、メチルプロピルジエトキシシラン、ジイソプロピルジメトキシシラン、フェニルメチルジメトキシシラン、γ-グリシドキシプロピルメチルジメトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、テトラメトキシシラン、テトラエトキシシラン、ヘプタデカフルオロデシルメトキシシラン、トリフルオロプロピルトリメトキシシラン(TFPTMOS)、ペンタフルオロブチルトリプロポキシシラン、パーフルオロヘキシルエチルメトキシシラン、パーフルオロペンチルエチルトリメトキシシラン、パーフルオロヘキシルエチルエトキシシラン、パーフルオロオクチルエチルトリメトキシシラン、パーフルオロペンチルエチルメチルジエトキシシラン、パーフルオロオクチルエチルメチルジエトキシシラン、パーフルオロペンチルエチルメチルジプロポキシシラン、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)アミノプロピルトリメトキシシラン、γ-アミノプロピルメチルジエトキシシラン、N-(2-アミノエチル)アミノプロピルメチルジメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルメチルジメトキシシラン、γ-イソシアネートプロピルトリメトキシシラン、γ-イソシアネートプロピルトリエトキシシラン、イソシアネート基同士が結合したトリス(3-トリメトキシシリルプロピル)イソシアヌレート、γ-メルカプトプロピルトリメトキシシラン、γ-メルカプトプロピルメチルジメトキシシラン、ビニルトリメトキシシラン、ビニルメチルジメトキシシラン、γ-メタクリロキシプロピルトリメトキシシラン、γ-メタクリロキシプロピルトリエトキシシラン、γ-メタクリロキシプロピルメチルジメトキシシラン、γ-メタクリロキシプロピルメチルジエトキシシラン、γ-アクリロキシプロピルトリメトキシシランなどを使用することができる。 In addition, those having an organic substituent such as an alkoxyl group or a fluoroalkyl group include methyltrimethoxysilane, methyltriethoxysilane, methyltriisopropoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, ethyltriisopropoxysilane. , Propyltrimethoxysilane, propyltriethoxysilane, propyltriisopropoxysilane, phenyltrimethoxysilane (PTMEOS), allyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane (GPTMOS), γ-glycidoxypropyltri Ethoxysilane, γ-chloropropyltrimethoxysilane, tris (3-triethoxysilylpropyl) isocyanurate, 4-trimethoxysilylpropyloxy-2-hydroxybenzof Non, dimethyldimethoxysilane, dimethyldiethoxysilane, methylethyldimethoxysilane, diethyldimethoxysilane, diethyldiethoxysilane, methylpropyldimethoxysilane, methylpropyldiethoxysilane, diisopropyldimethoxysilane, phenylmethyldimethoxysilane, γ-glycidoxy Propylmethyldimethoxysilane, γ-glycidoxypropylmethyldiethoxysilane, tetramethoxysilane, tetraethoxysilane, heptadecafluorodecylmethoxysilane, trifluoropropyltrimethoxysilane (TFPTMOS), pentafluorobutyltripropoxysilane, perfluoro Hexylethylmethoxysilane, perfluoropentylethyltrimethoxysilane, perfluorohexylethyleth Sisilane, perfluorooctylethyltrimethoxysilane, perfluoropentylethylmethyldiethoxysilane, perfluorooctylethylmethyldiethoxysilane, perfluoropentylethylmethyldipropoxysilane, γ-aminopropyltrimethoxysilane, γ-aminopropyltri Ethoxysilane, N- (2-aminoethyl) aminopropyltrimethoxysilane, γ-aminopropylmethyldiethoxysilane, N- (2-aminoethyl) aminopropylmethyldimethoxysilane, β- (3,4-epoxycyclohexyl) Ethyltrimethoxysilane, β- (3,4-epoxycyclohexyl) ethylmethyldimethoxysilane, γ-isocyanatopropyltrimethoxysilane, γ-isocyanatopropyltriethoxysilane, Tris (3-trimethoxysilylpropyl) isocyanurate in which isocyanate groups are bonded, γ-mercaptopropyltrimethoxysilane, γ-mercaptopropylmethyldimethoxysilane, vinyltrimethoxysilane, vinylmethyldimethoxysilane, γ-methacryloxypropyltri Methoxysilane, γ-methacryloxypropyltriethoxysilane, γ-methacryloxypropylmethyldimethoxysilane, γ-methacryloxypropylmethyldiethoxysilane, γ-acryloxypropyltrimethoxysilane and the like can be used.
 これらの中でも、アルキル基を有するもの、特に、下記の化学式(化1)によって表されるヘキサメチルジシロキサン(HMDSO)は、沸点が99.5℃で、無色かつ無臭の液体であり、空気中において高い安定性を示し、その取扱いが容易であるため、好適に使用することができる。 Among these, those having an alkyl group, particularly hexamethyldisiloxane (HMDSO) represented by the following chemical formula (Chemical Formula 1), is a colorless and odorless liquid having a boiling point of 99.5 ° C. Since it exhibits high stability and is easy to handle, it can be suitably used.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 d)有機ケイ素化合物の導入量
 被覆膜を形成するはんだワイヤの直径やプラズマ化条件などによっても異なるが、一般的なはんだワイヤ(直径:0.3mm~1.0mm)を対象とする場合、はんだワイヤ1mに対する有機ケイ素化合物の導入量を0.006g~0.300gとすることが好ましく、0.010g~0.200gとすることがより好ましく、0.012g~0.075gとすることがさらに好ましい。有機ケイ素化合物の導入量が0.006g未満では、被覆膜の厚さが4nm以下になったり、厚さにばらつきが生じたりするおそれがある。一方、有機ケイ素化合物の導入量が0.300gを超えると、被覆膜の厚さが200nmを超えるおそれがある。
d) Amount of introduction of organosilicon compound Depending on the diameter of the solder wire forming the coating film and the plasma forming conditions, etc., but when targeting a general solder wire (diameter: 0.3 mm to 1.0 mm), The amount of the organosilicon compound introduced into 1 m of solder wire is preferably 0.006 g to 0.300 g, more preferably 0.010 g to 0.200 g, and further preferably 0.012 g to 0.075 g. preferable. If the introduced amount of the organosilicon compound is less than 0.006 g, the thickness of the coating film may be 4 nm or less, or the thickness may vary. On the other hand, if the amount of the organosilicon compound introduced exceeds 0.300 g, the thickness of the coating film may exceed 200 nm.
 (2)反応領域形成工程
 反応領域形成工程は、螺旋状のガス流によって画定され、ラジカル化工程で得られたラジカル化有機ケイ素化合物が均一に分散した反応領域を形成する工程である。
(2) Reaction region forming step The reaction region forming step is a step of forming a reaction region that is defined by a spiral gas flow and in which the radicalized organosilicon compound obtained in the radicalization step is uniformly dispersed.
 a)反応領域
 本発明の被覆はんだワイヤの製造方法では、ラジカル化した有機ケイ素化合物が均一に分散し、この有機ケイ素化合物がはんだワイヤ表面の金属と反応可能な反応領域を、予め形成することが重要となる。なお、この反応領域内における有機ケイ素化合物はラジカル化している限り、その状態が制限されることはなく、単量体、半重合体、または重合体のいずれの状態であってもよい。
a) Reaction region In the method for producing a coated solder wire of the present invention, a radicalized organosilicon compound is uniformly dispersed, and a reaction region in which this organosilicon compound can react with a metal on the surface of the solder wire is formed in advance. It becomes important. In addition, as long as the organosilicon compound in this reaction region is radicalized, the state is not limited and may be any state of a monomer, a semipolymer, or a polymer.
 また、本発明の被覆はんだワイヤの製造方法では、この反応領域を、螺旋状のガス流によって画定することが必要となる。ラジカル化有機ケイ素化合物が均一に分散した螺旋状のガス流を形成して、反応領域内において、はんだワイヤ表面の金属とラジカル化有機ケイ素化合物との反応を、同時にかつ同程度の反応速度で進行させることにより、得られる被覆膜をきわめて均一に形成することができるためである。 Also, in the method for producing a coated solder wire according to the present invention, it is necessary to define this reaction region by a spiral gas flow. A spiral gas flow in which radicalized organosilicon compounds are uniformly dispersed is formed, and the reaction between the metal on the solder wire surface and the radicalized organosilicon compound proceeds simultaneously and at the same rate in the reaction zone. This is because the resulting coating film can be formed extremely uniformly.
 このような螺旋状のガス流によって画定された反応領域を形成する手段については、特に制限されることはない。たとえば、装置内に、予め螺旋状のガス流を導入し、上述したラジカル化工程で生成したラジカル化有機ケイ素化合物を、この螺旋状のガス流と混合することにより形成することができる。また、装置外でラジカル化工程を行い、生成したラジカル化有機ケイ素化合物を、キャリアガスを用いて螺旋状のガス流として装置内に導入してもよい。ただし、ラジカル化有機ケイ素化合物は不安定であり、すぐに通常の有機ケイ素化合物に戻ってしまうことを考慮すると、前者の方法が好ましいといえる。 The means for forming the reaction region defined by the spiral gas flow is not particularly limited. For example, it can be formed by introducing a spiral gas flow into the apparatus in advance and mixing the radicalized organosilicon compound produced in the radicalization step described above with this spiral gas flow. Alternatively, the radicalization step may be performed outside the apparatus, and the generated radicalized organosilicon compound may be introduced into the apparatus as a spiral gas flow using a carrier gas. However, considering that the radicalized organosilicon compound is unstable and immediately returns to the normal organosilicon compound, the former method is preferable.
 b)螺旋状のガス流
 螺旋状のガス流は、たとえば、アルゴン、ヘリウム、窒素、酸素、および空気の群から選択される少なくとも1種、すなわち、上述したキャリアガスと同種のガス、または、これらのガスに装置外で生成したラジカル有機ケイ素化合物を混合したものを、螺旋状に流れるように、装置内に導入することで形成することができる。ただし、被覆膜を薄く形成する場合には、酸素や空気(特に乾燥空気)を用いて螺旋状のガス流を形成することが好ましい。酸素や空気を用いると、被覆膜中の酸素導入量を増加させることでき、この結果、被覆膜の緻密性や平滑性をより向上させることが可能となる。
b) Spiral gas flow The spiral gas flow is, for example, at least one selected from the group consisting of argon, helium, nitrogen, oxygen, and air, that is, the same gas as the carrier gas described above, or these It can be formed by introducing a mixture of a radical organosilicon compound generated outside the apparatus into the gas so as to flow spirally. However, when forming a thin coating film, it is preferable to form a spiral gas flow using oxygen or air (particularly dry air). When oxygen or air is used, the amount of oxygen introduced into the coating film can be increased, and as a result, the denseness and smoothness of the coating film can be further improved.
 なお、螺旋状のガス流は、その断面積が、被覆対象となるはんだワイヤの直径よりも大きくなるように形成することが必要となる。また、螺旋状のガス流の速度(進行方向に対する速度および周方向に対する速度)は、目的とする被覆膜の厚さやはんだワイヤの性状(有機ケイ素化合物との反応性)に応じて、適宜選択することが必要となる。このため、予備試験を実施した上で、螺旋状のガス流の速度を設定することが好ましい。 Note that the spiral gas flow needs to be formed so that its cross-sectional area is larger than the diameter of the solder wire to be coated. Moreover, the velocity of the spiral gas flow (velocity in the direction of travel and velocity in the circumferential direction) is appropriately selected according to the thickness of the target coating film and the properties of the solder wire (reactivity with the organosilicon compound). It is necessary to do. For this reason, it is preferable to set the speed of the spiral gas flow after performing a preliminary test.
 (3)被覆工程
 被覆工程は、反応領域内ではんだワイヤを搬送し、ラジカル化有機ケイ素化合物をはんだワイヤ表面の金属と反応させることにより、はんだワイヤ表面に厚さが4nm~200nmの、ポリシロキサンからなる被覆膜を形成する工程である。
(3) Coating process The coating process is a polysiloxane having a thickness of 4 nm to 200 nm on the surface of the solder wire by conveying the solder wire in the reaction region and reacting the radicalized organosilicon compound with the metal on the surface of the solder wire. Forming a coating film comprising:
 a)はんだワイヤ
 本発明の被覆はんだワイヤを構成するはんだワイヤとしては、特に制限されることなく、種々のものを用いることができる。ただし、本発明の効果を十分に発揮するためには、以下で説明する成形方法で得られるはんだワイヤを用いることが好ましい。
a) Solder Wire The solder wire constituting the coated solder wire of the present invention is not particularly limited, and various types can be used. However, in order to fully exhibit the effects of the present invention, it is preferable to use a solder wire obtained by a molding method described below.
 [原料の融解]
 原料の融解方法としては、抵抗加熱法、還元拡散法、高周波溶解法などの公知の手段を用いることができ、特に、短時間で、効率よく融解することができる高周波溶解法が好ましい。これらの方法により融解した原料を、予め用意した鋳型に鋳込むことにより、所定形状のはんだ母合金インゴットを形成する。なお、融解や鋳込み時に酸素が存在すると、原料の酸化が進行するばかりでなく、鋳込み時に酸化膜を巻き込み、得られるはんだワイヤ表面の酸化膜が厚くなったり、表面粗さ(Ra)が大きくなったりする。このため、原料の融解時の雰囲気を不活性ガス雰囲気とするとともに、鋳込み時に、鋳型の溶湯入口に不活性ガスを流通させることが好ましい。
[Melting raw materials]
As a method for melting the raw material, known means such as a resistance heating method, a reduction diffusion method, and a high-frequency dissolution method can be used. In particular, a high-frequency dissolution method capable of efficiently melting in a short time is preferable. A raw material melted by these methods is cast into a mold prepared in advance to form a solder mother alloy ingot having a predetermined shape. If oxygen is present during melting or casting, not only the oxidation of the raw material proceeds, but also an oxide film is involved at the time of casting, and the resulting oxide film on the surface of the solder wire becomes thicker or the surface roughness (Ra) increases. Or For this reason, it is preferable that the atmosphere at the time of melting the raw material is an inert gas atmosphere and the inert gas is circulated to the molten metal inlet of the mold at the time of casting.
 [はんだワイヤ]
 ワイヤ状のはんだを成形する場合、はんだ母合金インゴットを押出法や伸線法などにより成形する。たとえば、押出法により成形する場合、はんだワイヤの組成に応じた適切な押出温度を選択する必要がある。これは、押出温度が高すぎると、表面の酸化が進行しやすく、逆に、押出温度が低すぎると、はんだワイヤが硬い状態で押し出すこととなるため、成形時間が長時間を要するためである。
[Solder wire]
When forming wire-shaped solder, a solder mother alloy ingot is formed by an extrusion method, a wire drawing method, or the like. For example, when forming by an extrusion method, it is necessary to select an appropriate extrusion temperature in accordance with the composition of the solder wire. This is because if the extrusion temperature is too high, surface oxidation tends to proceed, and conversely, if the extrusion temperature is too low, the solder wire will be extruded in a hard state, which requires a long molding time. .
 また、押出は、不活性ガス中で行うことが好ましく、密封状態で、不活性ガスを流通させながら行うことがより好ましい。これは、押出時に酸素が存在すると、押出温度まで加熱されたワイヤがすぐに酸化してしまうからである。 Further, the extrusion is preferably performed in an inert gas, and more preferably performed while circulating the inert gas in a sealed state. This is because if oxygen is present during extrusion, the wire heated to the extrusion temperature will immediately oxidize.
 [酸洗浄および研磨]
 はんだワイヤ表面の酸化膜を薄くしたり、表面粗さ(Ra)を小さくしたりするためには、はんだワイヤに対して、酸洗浄や研磨を行うことが好ましい。酸洗浄や研磨を行うタイミングとしては、はんだ母合金を鋳造した後、所定の加工を行う前、加工中または加工後のいずれのタイミングでもよい。
[Acid cleaning and polishing]
In order to reduce the thickness of the oxide film on the surface of the solder wire or reduce the surface roughness (Ra), it is preferable to perform acid cleaning or polishing on the solder wire. The timing for performing the acid cleaning and polishing may be any timing after casting the solder mother alloy and before performing the predetermined processing, during processing, or after processing.
 酸洗浄を行う場合に使用する酸の種類は、はんだワイヤの組成に応じて適宜選択する限り、特に制限されることはなく、無機酸と有機酸のいずれも用いることができるが、コスト面を考慮すると、安価で、酸化膜除去効果の大きい無機酸を用いることが好ましい。具体的には、無機酸としては、塩酸、硫酸、硝酸、リン酸、酢酸などを用いることができる。また、有機酸としては、クエン酸やシュウ酸などを用いることができる。ただし、強酸を用いる場合、はんだワイヤの酸性溶液への溶解速度が速いことに起因して、部分的な溶解が進行し、表面粗さ(Ra)が大きくなったり、組成ずれが生じたりする場合がある。このため、溶解速度が遅く、取扱いの容易な弱酸を用いることが好ましい。なお、酸洗浄では、酸濃度、洗浄時間、および洗浄温度などについても十分に配慮する必要がある。 The type of acid used when performing acid cleaning is not particularly limited as long as it is appropriately selected depending on the composition of the solder wire, and both inorganic acid and organic acid can be used. In consideration, it is preferable to use an inorganic acid which is inexpensive and has a large oxide film removing effect. Specifically, hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, acetic acid and the like can be used as the inorganic acid. Moreover, citric acid, oxalic acid, etc. can be used as the organic acid. However, when a strong acid is used, due to the high dissolution rate of the solder wire in the acidic solution, partial dissolution proceeds and the surface roughness (Ra) increases or composition deviation occurs. There is. For this reason, it is preferable to use a weak acid that has a slow dissolution rate and is easy to handle. In acid cleaning, it is necessary to sufficiently consider acid concentration, cleaning time, cleaning temperature, and the like.
 たとえば、5%の酢酸水溶液を用いて、Pb系はんだワイヤを洗浄する場合、洗浄温度を約20℃、洗浄時間を約15分程度として酸洗浄を行うことが好ましい。この場合、はんだワイヤの酸化膜が、酢酸水溶液に接触した直後の溶解量が最も多く、その後次第に減少し、ある段階で飽和する。具体的には、厚さ約100μmの酸化膜を洗浄する場合、酸化膜の厚さは5分程度で20μm~30μmまで薄くなり、約15分程度で約10μm程度まで薄くなる。 For example, when cleaning a Pb solder wire using a 5% aqueous acetic acid solution, it is preferable to perform acid cleaning at a cleaning temperature of about 20 ° C. and a cleaning time of about 15 minutes. In this case, the oxide film of the solder wire has the largest amount of dissolution immediately after contact with the acetic acid aqueous solution, and then gradually decreases and becomes saturated at a certain stage. Specifically, when an oxide film having a thickness of about 100 μm is cleaned, the thickness of the oxide film is reduced from 20 μm to 30 μm in about 5 minutes and is reduced to about 10 μm in about 15 minutes.
 一方、はんだワイヤ表面を研磨する場合、研磨方法は特に制限されない。たとえば、はんだワイヤを研磨紙に挟み込み、適度な力で押圧し、引っ張りながら巻き取っていくことで研磨してもよい。 On the other hand, when polishing the surface of the solder wire, the polishing method is not particularly limited. For example, the solder wire may be sandwiched between polishing papers, pressed with an appropriate force, and wound by pulling it while being pulled.
 b)ラジカル化有機ケイ素化合物とはんだワイヤ表面の金属との反応
 本発明の被覆はんだワイヤの製造方法において、ラジカル化有機ケイ素化合物とはんだワイヤ表面の金属との反応は、上述した反応領域の内部で進行する。具体的には、図1(a)に示すように、螺旋状のガス流4によって画定される反応領域6の略中央部を、基材となるはんだワイヤ2が矢印Aの方向に搬送される。この際、反応領域6内には、ラジカル化有機ケイ素化合物5が均一に分散しているため、螺旋状のガス流4の作用により、有機ケイ素化合物5は、はんだワイヤ2の表面全体に等しく接触する。この結果、ラジカル化有機ケイ素化合物5とはんだワイヤ2表面の金属との反応が、同時かつ同程度の反応速度で進行する。
b) Reaction between radicalized organosilicon compound and metal on the surface of the solder wire In the method for producing a coated solder wire of the present invention, the reaction between the radicalized organosilicon compound and the metal on the surface of the solder wire is performed within the reaction region described above. proceed. Specifically, as shown in FIG. 1A, the solder wire 2 serving as a base material is conveyed in the direction of arrow A through the substantially central portion of the reaction region 6 defined by the spiral gas flow 4. . At this time, since the radicalized organosilicon compound 5 is uniformly dispersed in the reaction region 6, the organosilicon compound 5 contacts the entire surface of the solder wire 2 equally by the action of the spiral gas flow 4. To do. As a result, the reaction between the radicalized organosilicon compound 5 and the metal on the surface of the solder wire 2 proceeds simultaneously and at the same reaction rate.
 ところで、上述したように反応領域6内では、ラジカル化有機ケイ素化合物5は、単量体、半重合体、および重合体といった種々の形態で存在している。したがって、ラジカル化有機ケイ素化合物5とはんだワイヤ2表面の金属との反応としては、
 (i)ラジカル化有機ケイ素化合物5が、はんだワイヤ2表面の金属と反応した後に重合する態様、
 (ii)ラジカル化有機ケイ素化合物5が重合しながら、はんだワイヤ2表面の金属と反応する態様、または、
 (iii)ラジカル化有機ケイ素化合物5が重合した後に、はんだワイヤ2表面の金属と反応する態様、
が考えられる。本発明の被覆はんだワイヤの製造方法では、上述した被覆膜を備えた被覆はんだワイヤを得ることができる限り、いずれかの態様にも制限されることはない。
By the way, in the reaction region 6 as described above, the radicalized organosilicon compound 5 exists in various forms such as a monomer, a semipolymer, and a polymer. Therefore, the reaction between the radicalized organosilicon compound 5 and the metal on the surface of the solder wire 2 is as follows:
(I) an embodiment in which the radicalized organosilicon compound 5 is polymerized after reacting with the metal on the surface of the solder wire 2;
(Ii) a mode in which the radicalized organosilicon compound 5 reacts with the metal on the surface of the solder wire 2 while being polymerized, or
(iii) a mode in which the radicalized organosilicon compound 5 reacts with the metal on the surface of the solder wire 2 after polymerization,
Can be considered. The method for producing a coated solder wire according to the present invention is not limited to any embodiment as long as the coated solder wire having the above-described coated film can be obtained.
 c)はんだワイヤの搬送速度
 本発明の被覆はんだワイヤでは、被覆膜の厚さが4nm~200nmの範囲に調整される。このような被覆膜の厚さは、被覆材料として導入する有機ケイ素化合物の量や螺旋状のガス流の速度のほか、はんだワイヤの搬送速度によっても制御することができる。具体的には、被覆工程におけるはんだワイヤの搬送速度を1m/分~100m/分とすることが好ましく、5m/分~80m/分とすることがより好ましく、10m/分~50m/分とすることがさらに好ましい。はんだワイヤの搬送速度が1m/分未満では、被覆膜が厚くなりすぎるおそれがあるばかりでなく、生産性が著しく低下してしまう。一方、搬送速度が100m/分を超えると、被覆膜の厚さが4nm以下になったり、厚さにばらつきが生じたりするおそれがある。
c) Solder Wire Transport Speed In the coated solder wire of the present invention, the thickness of the coating film is adjusted to a range of 4 nm to 200 nm. The thickness of the coating film can be controlled not only by the amount of the organosilicon compound introduced as the coating material and the speed of the spiral gas flow, but also by the solder wire conveyance speed. Specifically, the solder wire conveyance speed in the coating step is preferably 1 m / min to 100 m / min, more preferably 5 m / min to 80 m / min, and 10 m / min to 50 m / min. More preferably. When the conveying speed of the solder wire is less than 1 m / min, not only the coating film may be too thick, but also the productivity is significantly reduced. On the other hand, when the conveyance speed exceeds 100 m / min, the thickness of the coating film may be 4 nm or less, or the thickness may vary.
 3.被覆はんだワイヤによるダイボンディング方法
 本発明の被覆はんだワイヤは、各種半導体素子と基板との接合に用いることができ、具体的には、ディスクリート、IC(集積回路)チップ、モジュールなど、多種多様の半導体素子と基板との接合に用いることができる。以下、本発明の被覆はんだワイヤを用いて、ICチップをリードフレームのダイ部に接合する、ダイボンディング方法について説明する。
3. Die Bonding Method Using Coated Solder Wire The coated solder wire of the present invention can be used for joining various semiconductor elements and substrates, and specifically, a wide variety of semiconductors such as discrete, IC (integrated circuit) chips, modules, etc. It can be used for bonding the element and the substrate. Hereinafter, a die bonding method for bonding an IC chip to a die portion of a lead frame using the coated solder wire of the present invention will be described.
 なお、本発明の被覆はんだワイヤを用いてダイボンディングをする場合、ICチップの水平を保つため、はんだワイヤに、高融点粒子を添加することが好ましい。高融点粒子としては、はんだワイヤの融点よりも50℃以上高いものを使用することが好ましく、具体的には、CuやNiなどの金属粒子、SiO2などの酸化物粒子、SiCなどの炭化物粒子を用いることができる。これらの高融点粒子は、その平均粒径が1μm~70μmであることが好ましい。また、高融点粒子の含有量は、はんだワイヤに対して1質量%~40質量%程度とすることが好ましい。 When die bonding is performed using the coated solder wire of the present invention, it is preferable to add high melting point particles to the solder wire in order to keep the IC chip horizontal. As the high melting point particles, particles having a temperature higher by 50 ° C. or more than the melting point of the solder wire are preferably used. Specifically, metal particles such as Cu and Ni, oxide particles such as SiO 2, and carbide particles such as SiC. Can be used. These high melting point particles preferably have an average particle size of 1 μm to 70 μm. The content of the high melting point particles is preferably about 1% by mass to 40% by mass with respect to the solder wire.
 一般的なダイボンディングでは、はんだワイヤや半導体素子を供給するための開口部が設けられた半密閉状のチャンバ内に、ヒータ部が設けられており、このヒータ部に基板を搬送し、加熱する。この際、チャンバ内には、不活性ガスまたはフォーミングガス(不活性ガスに、還元性ガスとして水素を混合したガス)を流通させておく。その後、所定の温度まで加熱された基板上にはんだワイヤを供給し、これを溶融させ、この上に半導体素子を載せ、加圧することにより、基板と半導体素子を接合する。 In general die bonding, a heater part is provided in a semi-sealed chamber provided with openings for supplying solder wires and semiconductor elements, and the substrate is transported to the heater part and heated. . At this time, an inert gas or forming gas (a gas obtained by mixing inert gas with hydrogen as a reducing gas) is circulated in the chamber. Thereafter, a solder wire is supplied onto the substrate heated to a predetermined temperature, melted, and a semiconductor element is placed on the solder wire, and the substrate and the semiconductor element are joined by pressing.
 このとき、はんだワイヤは、ヒータ部で、加熱された不活性ガスと空気の混合ガスが吹き付けられた状態で待機するため、その表面で酸化が進行する。また、不活性ガスが流通しているとはいえ、チャンバ内は完全な密閉状とはなっていないため、はんだワイヤの供給時にチャンバ内に流入した酸素によっても、酸化が進行する。 At this time, the solder wire waits in a state where a heated mixed gas of inert gas and air is sprayed at the heater portion, so that oxidation proceeds on the surface thereof. Further, although the inert gas is circulating, the chamber is not completely sealed, so that the oxidation proceeds even by oxygen flowing into the chamber when the solder wire is supplied.
 加えて、良好な接合を行うため、ヒータ部の温度を、はんだワイヤの融点より30℃~70℃程度高い温度に設定する必要がある。特に、Snを5質量%含むPb系はんだワイヤなどの高融点はんだを使用する場合には、ヒータ部の温度を340℃~380℃程度に設定しなければならず、これにより、はんだワイヤの酸化が一層進行してしまう。 In addition, in order to achieve good bonding, it is necessary to set the temperature of the heater section to a temperature about 30 ° C. to 70 ° C. higher than the melting point of the solder wire. In particular, when using a high melting point solder such as a Pb-based solder wire containing 5% by mass of Sn, the temperature of the heater must be set to about 340 ° C. to 380 ° C. Will progress further.
 このようなダイボンディングにおいて、従来のはんだワイヤに変えて、本発明の被覆はんだワイヤを使用すれば、被覆膜の作用により、待機時および溶融時の酸化を防止することが可能となる。したがって、本発明の被覆はんだワイヤにより、濡れ広がり性や接合性(接合強度)に優れ、空隙の発生がきわめて少ない接合が実現されるとともに、本発明の製造方法により、このような特性を備えた被覆はんだワイヤの生産が、工業規模において容易に実現される。したがって、本発明の被覆はんだワイヤは、高信頼性が要求される半導体素子接合基板、および、この基板を用いた各種装置の生産に好適に用いることができる。 In such die bonding, if the coated solder wire of the present invention is used instead of the conventional solder wire, it is possible to prevent oxidation during standby and melting by the action of the coating film. Therefore, the coated solder wire of the present invention realizes bonding with excellent wettability and bondability (bonding strength) and extremely low void generation, and the manufacturing method of the present invention has such characteristics. Production of coated solder wire is easily realized on an industrial scale. Therefore, the coated solder wire of the present invention can be suitably used for production of a semiconductor element bonded substrate that requires high reliability and various devices using the substrate.
 以下、本発明について実施例を参照しながら、さらに詳細に説明する。 Hereinafter, the present invention will be described in more detail with reference to examples.
 [はんだワイヤの作製]
 原料として、純度が99.9%以上のBi、Zn、Ag、Sn、Pb、Cu、Au、In、Al、Ni、Sb、Ge、Te、およびPを準備した。なお、得られる被覆はんだワイヤにおいて、サンプリング位置による組成のばらつきを防止するため、大きな薄片やバルク状の原料については、切断または粉砕して、3mm以下の大きさに調整した。
[Production of solder wire]
Bi, Zn, Ag, Sn, Pb, Cu, Au, In, Al, Ni, Sb, Ge, Te, and P having a purity of 99.9% or more were prepared as raw materials. In the obtained coated solder wire, in order to prevent variation in composition depending on the sampling position, large flakes and bulk materials were cut or pulverized and adjusted to a size of 3 mm or less.
 このように調整された原料から所定量を秤量して、グラファイト製の坩堝に投入した。この坩堝を高周波溶解炉内に載置するとともに、酸化を抑制するために、原料1kgあたり0.7L/分以上の窒素を流通させた状態で、溶解炉の電源を入れ、局所的な組成のばらつきが生じないように混合棒で十分に撹拌しながら、原料を融解させた。原料が十分に融解したことを確認した後、溶解炉の電源を切り、速やかに坩堝を取り出し、得られた溶湯をはんだ母合金の鋳型に鋳込み、組成の異なるはんだ母合金インゴットを得た。 A predetermined amount was weighed from the raw material adjusted in this way and put into a graphite crucible. The crucible was placed in a high-frequency melting furnace, and in order to suppress oxidation, the melting furnace was turned on in a state where 0.7 L / min or more of nitrogen per 1 kg of raw material was circulated. The raw material was melted while sufficiently stirring with a mixing rod so as not to cause variation. After confirming that the raw materials were sufficiently melted, the melting furnace was turned off, the crucible was quickly taken out, and the obtained molten metal was cast into a solder mother alloy mold to obtain solder mother alloy ingots having different compositions.
 なお、鋳型は、はんだ母合金の製造の際に用いられる一般的な鋳型と同様のものを使用した。それぞれのはんだ母合金インゴットを、不活性ガス雰囲気下、押出加工機を用い、ワイヤ状に加工することで、試料No.1~No.18のはんだワイヤ(直径0.76mm)を得た。これらのはんだワイヤの組成についてICP発光分光分析器(株式会社島津製作所製、ICPS-8100)を用いて測定した。この結果を表1に示す。
The mold used was the same as a general mold used in the production of a solder mother alloy. Each solder mother alloy ingot was processed into a wire shape using an extruder in an inert gas atmosphere. 1-No. 18 solder wires (diameter 0.76 mm) were obtained. The composition of these solder wires was measured using an ICP emission spectroscopic analyzer (manufactured by Shimadzu Corporation, ICPS-8100). The results are shown in Table 1.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 (実施例1)
 [被覆はんだワイヤの作製]
 試料No.1のPb系はんだワイヤを、はんだワイヤ自動巻取機(株式会社田邊製作所製、TM型巻線機)で巻き取る際に、図1に示すような方法により、搬送中のはんだワイヤの表面に大気圧重合処理装置(プラズマトリート株式会社製、プラズマポリマーラボシステム PAD-1型)を用いて、ポリシロキサンからなる被覆膜を形成した。
(Example 1)
[Production of coated solder wire]
Sample No. 1 is wound on the surface of the solder wire being conveyed by the method shown in FIG. 1 when winding the Pb-based solder wire with a solder wire automatic winding machine (TM type winding machine manufactured by Tanabe Seisakusho Co., Ltd.). A coating film made of polysiloxane was formed using an atmospheric pressure polymerization apparatus (Plasma Polymer Lab System PAD-1 type, manufactured by Plasma Treat Co., Ltd.).
 はじめに、大気圧下でプラズマ化された反応ガス(N2)に、キャリアガス(N2)を介して導入したHMDSO(関東化学株式会社製)を混合し、HMDSOをラジカル化することにより、ラジカル化HMDSOを得た(ラジカル化工程)。 First, HMDSO (manufactured by Kanto Chemical Co., Inc.) introduced through a carrier gas (N 2 ) is mixed with a reaction gas (N 2 ) that has been plasmatized under atmospheric pressure, and radicals are generated by radicalizing HMDSO. HMDSO was obtained (radicalization step).
  <プラズマ化条件>
  ・プラズマ発生装置の発信周波数:21kHz
  ・ジェネレータの出力電圧   :280V
  ・圧力            :大気圧(1013.25hPa)
 一方、N2を螺旋状のガス流として、装置内に導入し、この螺旋状のガス流に対して、大気圧重合処理装置のノズルからラジカル化HMDSOを噴霧し、螺旋状のガス流とラジカル化HMDSOを混合することにより、反応領域を形成した(反応領域形成工程)。
<Plasmaization conditions>
・ Transmission frequency of plasma generator: 21 kHz
-Generator output voltage: 280V
・ Pressure: Atmospheric pressure (1013.25 hPa)
On the other hand, N 2 is introduced into the apparatus as a spiral gas flow, and radicalized HMDSO is sprayed from the nozzle of the atmospheric pressure polymerization processing apparatus to the spiral gas stream, and the spiral gas stream and radicals are sprayed. A reaction region was formed by mixing HMDSO (reaction region formation step).
 この状態で、反応領域の略中心部に、はんだワイヤを通過させることにより、このはんだワイヤの表面に被覆膜を形成した。この際、はんだワイヤ1mあたりのラジカル化有機ケイ素化合物の反応量を0.022g、はんだワイヤの搬送速度を15.0m/分に調整した。 In this state, a coating film was formed on the surface of the solder wire by passing the solder wire through substantially the center of the reaction region. At this time, the reaction amount of the radicalized organosilicon compound per 1 m of the solder wire was adjusted to 0.022 g, and the solder wire conveyance speed was adjusted to 15.0 m / min.
 [被覆はんだワイヤの評価]
 上述のようにして得られた被覆はんだワイヤに対して、以下の(a)~(e)の項目について評価を行った。
[Evaluation of coated solder wire]
The following items (a) to (e) were evaluated for the coated solder wires obtained as described above.
 (a)被覆膜の厚さの測定
 被覆はんだワイヤを、基準位置(0°)ならびに基準位置に対して、90°および180°回転させた位置で長さ方向に沿って切断した上で、各断面をTEM(株式会社日立ハイテクノロジーズ製、透過型電子顕微鏡HF-2000)により観察し、被覆膜の厚さを測定した。この結果を表3に示す。
(A) Measurement of the thickness of the coating film After cutting the coated solder wire along the length direction at a reference position (0 °) and a position rotated by 90 ° and 180 ° with respect to the reference position, Each cross section was observed with a TEM (manufactured by Hitachi High-Technologies Corporation, transmission electron microscope HF-2000), and the thickness of the coating film was measured. The results are shown in Table 3.
 (b)表面状態の評価
 被覆はんだワイヤを作製した時点における表面状態を、光学顕微鏡(株式会社ニコン、ECLIPSE M6600)を用いて観察した。この結果、表面状態が、被覆膜が形成されていない状態とほぼ同様である場合を「良(○)」、変色が見られる場合を「不良(×)」として評価した。
(B) Evaluation of surface state The surface state at the time of producing the coated solder wire was observed using an optical microscope (Nikon Corporation, ECLIPSE M6600). As a result, the case where the surface state was almost the same as the state where the coating film was not formed was evaluated as “good (◯)”, and the case where discoloration was observed was evaluated as “bad” (x).
 また、この被覆はんだワイヤに対して、JISZ2371に準拠した中性塩水噴霧試験を7日間行った後、その表面状態を、光学顕微鏡を用いて観察した。この結果、表面状態が、初期状態とほぼ同様である場合を「良(○)」、初期状態と比較して変色していたり、平滑性が悪化していたりした場合を「不良(×)」として評価した。これらの結果を表3に示す。 Further, a neutral salt spray test based on JISZ2371 was performed on the coated solder wire for 7 days, and then the surface state was observed using an optical microscope. As a result, when the surface state is almost the same as the initial state, “good (◯)”, and when the surface state is discolored compared to the initial state or the smoothness is deteriorated, “bad” (x). As evaluated. These results are shown in Table 3.
 なお、初期および中性塩水噴霧試験後の表面状態の観察は、いずれも、基準位置(0°)ならびに基準位置に対して、90°および180°回転させた位置で行った。 In addition, observation of the surface state after the initial stage and the neutral salt spray test was both performed at positions rotated 90 ° and 180 ° with respect to the reference position (0 °) and the reference position.
 (c)ケイ素含有量の評価
 被覆はんだワイヤの表面に存在するケイ素の量を、ICP発光分光分析器を用いて測定することにより評価した。この結果を表3に示す。
(C) Evaluation of silicon content The amount of silicon present on the surface of the coated solder wire was evaluated by measuring using an ICP emission spectroscopic analyzer. The results are shown in Table 3.
 (d)濡れ性(濡れ広がり性および接合性)の評価
 雰囲気制御式濡れ性試験機(自社製)のヒータ部に2重のカバーをした後、ヒータ部の周囲4箇所からN2を12L/分の流量で流しつつ、ヒータ温度を、被覆はんだワイヤの融点よりも50℃高い温度に設定して加熱した。ヒータ温度が安定したことを確認した後、Cu基板(板厚:約0.70mm)をヒータ部に設置し、25秒間加熱した。この状態で、5cmに切断した被覆はんだワイヤをCu基板の上に載置し、さらに25秒間加熱した。その後、Cu基板をヒータ部から取り上げ、窒素雰囲気中で室温まで冷却した。Cu基板が十分に冷却したことを確認した後、はんだの接合状態を目視により観察した。
(D) After the double cover the heater portion of the wettability (wettability and bondability) Evaluation controlled atmosphere wettability tester (manufactured by company), the N 2 from four locations around the heater unit 12L / While flowing at a flow rate of minutes, the heater temperature was set to a temperature higher by 50 ° C. than the melting point of the coated solder wire and heated. After confirming that the heater temperature was stable, a Cu substrate (plate thickness: about 0.70 mm) was placed on the heater and heated for 25 seconds. In this state, the coated solder wire cut to 5 cm was placed on the Cu substrate and further heated for 25 seconds. Thereafter, the Cu substrate was taken up from the heater portion and cooled to room temperature in a nitrogen atmosphere. After confirming that the Cu substrate was sufficiently cooled, the solder bonding state was visually observed.
 この結果、Cu基板と被覆はんだワイヤが接合しており、かつ、被覆はんだワイヤの濡れ広がりが良好な場合(接合後のはんだが薄く濡れ広がっている場合)を「良(○)」と、接合することはできたが、被覆はんだワイヤの濡れ広がりが悪い場合(接合後のはんだが盛り上がっている場合)を「不良(△)」、接合することができなかった場合を「不可(×)」として評価した。この結果を表3に示す。 As a result, when the Cu substrate and the coated solder wire are bonded and the coated solder wire has good wet spreading (when the solder after bonding is thin and spread), the bonding is determined as “good (○)”. Although it was possible to do so, the case where the coated solder wire was poorly spread (when the solder after joining was swelled) was “bad” (△), and when it was not possible to join, “impossible (×)” As evaluated. The results are shown in Table 3.
 (e)ヒートサイクル性の評価
 上述した濡れ性の評価で被覆はんだワイヤを接合したCu基板に対して、-55℃の冷却と、+150℃の加熱を1サイクルとするヒートサイクル試験を500サイクル実施した後、Cu基板ごと樹脂に埋め込み、断面研磨を行い、接合面をSEM(株式会社日立ハイテクノロジーズ製、走査電子顕微鏡S-4800)により観察した。この結果、初期状態と同様の接合面を保っていた場合を「良(○)」、接合面にはがれが生じていたり、被覆はんだワイヤにクラックが生じていたりした場合を「不良(×)」として評価した。この結果を表3に示す。
(E) Evaluation of heat cycle performance 500 cycles of heat cycle test with one cycle consisting of -55 ° C cooling and + 150 ° C heating for the Cu substrate to which the coated solder wire was joined in the wettability evaluation described above. After that, the entire Cu substrate was embedded in a resin, cross-section polishing was performed, and the joint surface was observed with an SEM (manufactured by Hitachi High-Technologies Corporation, scanning electron microscope S-4800). As a result, the case where the same joint surface as in the initial state is maintained is “good” (◯), and the case where the joint surface is peeled or the coated solder wire is cracked is “bad” (x). As evaluated. The results are shown in Table 3.
 (実施例2~26、比較例1、2)
 被覆材料および処理条件を表2に示すように変更したこと以外は、実施例1と同様にして被覆はんだワイヤを作製し、上記(a)~(e)の評価を行った。この結果を表3に示す。また、実施例2で得られた被覆はんだワイヤについて、基準値(0°)ならびに基準値に対して90°、180°、および270°回転させた位置における断面TEM写真を図3に示す。
(Examples 2 to 26, Comparative Examples 1 and 2)
A coated solder wire was produced in the same manner as in Example 1 except that the coating material and the treatment conditions were changed as shown in Table 2, and the evaluations (a) to (e) were performed. The results are shown in Table 3. Moreover, about the coated solder wire obtained in Example 2, the cross-sectional TEM photograph in the position rotated 90 degrees, 180 degrees, and 270 degrees with respect to the reference value (0 degree) and the reference value is shown in FIG.
 (比較例3)
 試料No.1のPb系はんだワイヤを、はんだワイヤ自動巻取機で巻き取る際、図2に示すような方法により、搬送中のはんだワイヤの表面に大気圧重合処理装置(プラズマトリート株式会社製、プラズマポリマーラボシステム PAD-1型)を用いて、ポリシロキサンからなる被覆膜を形成した。
(Comparative Example 3)
Sample No. When a Pb-based solder wire 1 is wound up by an automatic solder wire winder, an atmospheric pressure polymerization treatment device (Plasma Polymer, manufactured by Plasmatreat Co., Ltd.) is applied to the surface of the solder wire being conveyed by the method shown in FIG. (Lab system PAD-1 type) was used to form a coating film made of polysiloxane.
 はじめに、(1)搬送中におけるはんだワイヤ2の捻れを防止可能な搬送治具7を、面7aが底面側となるよう固定した状態で、はんだワイヤ2を矢印Aの方向に搬送しつつ、ノズル8をからラジカル化した有機ケイ素化合物5を噴霧し、被覆膜3aを形成した(図2(a-1)参照)。次いで、(2)搬送治具7を、面7bが底面側となるように120°回転させた後、工程(1)と同様にして、被覆膜3bを形成した(図2(b-1)参照)。最後に、(3)搬送治具7を、面7cが底面側となるようにさらに120°回転させた後、工程(1)および工程(2)と同様にして、被覆膜3cを形成した(図2(c-1)参照)。 First, (1) a transfer jig 7 capable of preventing twisting of the solder wire 2 during transfer is fixed in such a manner that the surface 7a is fixed on the bottom side, while the solder wire 2 is transferred in the direction of arrow A, the nozzle The radicalized organosilicon compound 5 was sprayed from 8 to form a coating film 3a (see FIG. 2 (a-1)). Next, (2) the transfer jig 7 is rotated 120 ° so that the surface 7b is on the bottom surface side, and then the coating film 3b is formed in the same manner as in the step (1) (FIG. 2 (b-1) )reference). Finally, (3) after the conveying jig 7 is further rotated by 120 ° so that the surface 7c becomes the bottom surface side, the coating film 3c is formed in the same manner as in the steps (1) and (2). (See FIG. 2 (c-1)).
 このようにして得られた被覆はんだワイヤに対して、上記(a)~(e)の評価を行った。この結果を表3に示す。また、基準位置(0°)および基準位置に対して90°回転させた位置における断面TEM写真を図4に示す。 The above-mentioned evaluations (a) to (e) were performed on the thus obtained coated solder wire. The results are shown in Table 3. FIG. 4 shows a cross-sectional TEM photograph at a reference position (0 °) and a position rotated by 90 ° with respect to the reference position.
 (比較例4)
 試料No.1のPb系はんだワイヤを、はんだワイヤ自動巻取機で巻き取る際、シリコン系コーティング剤(東レ・ダウコーニング株式会社製、APZ6601)に10分間浸漬した後、120℃で10分間乾燥することにより、被覆はんだワイヤを作製した。
(Comparative Example 4)
Sample No. When winding 1 Pb-based solder wire with a solder wire automatic winder, it is immersed in a silicon-based coating agent (manufactured by Toray Dow Corning Co., Ltd., APZ6601) for 10 minutes and then dried at 120 ° C. for 10 minutes. A coated solder wire was prepared.
 このようにして得られた被覆はんだワイヤに対して、上記(a)~(d)の評価を行った。この結果を表3に示す。なお、比較例4では、(d)濡れ性の評価において、被覆はんだワイヤとCu基板を接合することができなかったため、(e)ヒートサイクル性の評価は行わなかった。 The above-mentioned evaluations (a) to (d) were performed on the coated solder wires thus obtained. The results are shown in Table 3. In Comparative Example 4, since (d) the wettability evaluation could not join the coated solder wire and the Cu substrate, (e) the heat cycle performance was not evaluated.
 (比較例5)
 試料No.1のPb系はんだワイヤを、はんだワイヤ自動巻取機で巻き取る際、フッ素系コーティング剤(株式会社フロロテクノロジー製、FG-3020C30)に10分間浸漬した後、冷風で10分間乾燥することにより、被覆はんだワイヤを作製した。
(Comparative Example 5)
Sample No. When winding 1 Pb solder wire with a solder wire automatic winder, it was immersed in a fluorine-based coating agent (Fluoro Technology Co., Ltd., FG-3020C30) for 10 minutes, and then dried with cold air for 10 minutes. A coated solder wire was produced.
 このようにして得られた被覆はんだワイヤに対して、上記(a)、(b)、および(d)の評価を行った。この結果を表3に示す。なお、比較例5では、(d)濡れ性の評価において、被覆はんだワイヤとCu基板を接合することができなかったため、(e)ヒートサイクル性の評価は行わなかった。 The above-described evaluations (a), (b), and (d) were performed on the coated solder wires thus obtained. The results are shown in Table 3. In Comparative Example 5, since (d) the wettability evaluation could not join the coated solder wire and the Cu substrate, (e) the heat cycle performance was not evaluated.
 (比較例6)
 試料No.1のPb系はんだワイヤに、被覆膜を形成せずに、上記(b)、(d)、および(e)の評価を行った。この結果を表3に示す。
(Comparative Example 6)
Sample No. The above (b), (d), and (e) were evaluated without forming a coating film on the Pb solder wire of No. 1. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 (実施例27~34)
 基材となるはんだワイヤとして、表4に示すPb系はんだワイヤを使用したこと以外は、実施例1と同様にして被覆はんだワイヤを作製し、上記(a)~(e)の評価を行った。この結果を表5に示す。
(Examples 27 to 34)
A coated solder wire was prepared in the same manner as in Example 1 except that the Pb solder wire shown in Table 4 was used as the solder wire serving as the base material, and the evaluations (a) to (e) were performed. . The results are shown in Table 5.
 (比較例7~比較例14)
 表4に示すPb系はんだワイヤに、被覆膜を形成せずに、上記(b)、(d)、および(e)の評価を行った。この結果を表3に示す。
(Comparative Examples 7 to 14)
The above (b), (d), and (e) were evaluated without forming a coating film on the Pb-based solder wires shown in Table 4. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 (実施例35~43)
 基材となるはんだワイヤとして、表6に示すSn系はんだワイヤを使用したこと以外は、実施例1と同様にして被覆はんだワイヤを作製し、上記(a)~(e)の評価を行った。この結果を表3に示す。
(Examples 35 to 43)
A coated solder wire was prepared in the same manner as in Example 1 except that the Sn-based solder wire shown in Table 6 was used as the solder wire serving as the base material, and the evaluations (a) to (e) were performed. . The results are shown in Table 3.
 (比較例15~23)
 表6に示すSn系はんだワイヤに、被覆膜を形成せずに、上記(b)、(d)、および(e)の評価を行った。この結果を表3に示す。
(Comparative Examples 15 to 23)
The above-mentioned (b), (d), and (e) were evaluated without forming a coating film on the Sn-based solder wires shown in Table 6. The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 [評価結果]
 表3、表5、および表7に示した結果より理解されるように、実施例1~43の被覆はんだワイヤは、被覆膜の厚さが4nm~200nmの範囲にあり、かつ、被覆膜の厚さのばらつきが少なく、かつ、ケイ素の含有量(被覆膜の割合のケイ素換算値)が200ppm以内である。特に、図3および図4を参照としつつ、表3に示した結果から理解されるように、実施例1の被覆はんだワイヤは、それぞれの位置における厚さの最大差が1.0nmの範囲内に抑えられており、その最大差が14.2nmである比較例3と比べて、被覆膜の均一性が飛躍的に向上している。
[Evaluation results]
As understood from the results shown in Table 3, Table 5, and Table 7, the coated solder wires of Examples 1 to 43 had a coating film thickness in the range of 4 nm to 200 nm, and the coating There is little variation in the thickness of the film, and the silicon content (the silicon equivalent value of the ratio of the coating film) is within 200 ppm. In particular, as can be understood from the results shown in Table 3 with reference to FIGS. 3 and 4, the coated solder wire of Example 1 has a maximum thickness difference within a range of 1.0 nm at each position. Compared with the comparative example 3 whose maximum difference is 14.2 nm, the uniformity of the coating film is dramatically improved.
 また、実施例1~43の被覆はんだワイヤは、中性塩水噴霧試験の前後で表面状態の変化はほとんどなく、耐酸化性に優れており、さらには、濡れ性やヒートサイクルの評価も良好である。 In addition, the coated solder wires of Examples 1 to 43 had almost no change in the surface state before and after the neutral salt spray test, had excellent oxidation resistance, and also had good wettability and heat cycle evaluation. is there.
 このほか、実施例1における処理時間は、比較例3における処理時間の1/3以下に抑えられている。したがって、本発明の製造方法を適用することにより、被覆はんだワイヤの生産性を大幅に改善することが可能となる。 In addition, the processing time in Example 1 is suppressed to 1/3 or less of the processing time in Comparative Example 3. Therefore, the productivity of the coated solder wire can be greatly improved by applying the manufacturing method of the present invention.
 1 被覆はんだワイヤ
 2 はんだワイヤ
 3、3a、3b、3c 被覆膜
 4 螺旋状のガス流
 5 ラジカル化有機ケイ素化合物
 6 反応領域
 7 搬送治具
 7a、7b、7c 搬送治具の面
 8 ノズル
 A はんだワイヤの搬送方向
DESCRIPTION OF SYMBOLS 1 Coated solder wire 2 Solder wire 3, 3a, 3b, 3c Coating film 4 Spiral gas flow 5 Radicalized organosilicon compound 6 Reaction region 7 Transfer jig 7a, 7b, 7c Surface of transfer jig 8 Nozzle A Solder Wire transfer direction

Claims (12)

  1.  はんだワイヤと、該はんだワイヤの表面に備えられたポリシロキサンからなる被覆膜とから構成される被覆はんだワイヤであって、
     前記被覆膜は、厚さが4nm~200nm、該厚さの最大値と最小値の差が2.5nm以内であり、かつ、前記被覆はんだワイヤ全体に対する該被覆膜の割合が、ケイ素換算で200質量ppm以下である、被覆はんだワイヤ。
    A coated solder wire composed of a solder wire and a coating film made of polysiloxane provided on the surface of the solder wire,
    The coating film has a thickness of 4 nm to 200 nm, the difference between the maximum value and the minimum value of the thickness is within 2.5 nm, and the ratio of the coating film to the entire coated solder wire is equivalent to silicon A coated solder wire having a mass of 200 ppm by mass or less.
  2.  前記はんだワイヤは、80質量%以上のPbと、Sn、Ag、Cu、In、Te、およびPからなる群から選択される1種以上の第2元素とを含有し、かつ、Pbと第2元素との含有量が、合計で95質量%以上のはんだ合金からなる、請求項1に記載の被覆はんだワイヤ。 The solder wire contains 80% by mass or more of Pb and one or more second elements selected from the group consisting of Sn, Ag, Cu, In, Te, and P, and Pb and second The coated solder wire according to claim 1, comprising a solder alloy having a total content of 95% by mass or more with elements.
  3.  前記はんだワイヤは、80質量%以上のSnと、Ag、Sb、Cu、Ni、Ge、およびPからなる群から選択される1種以上の第2元素とを含有し、かつ、Snと第2元素との含有量が、合計で95質量%以上のはんだ合金からなる、請求項1に記載の被覆はんだワイヤ。 The solder wire contains 80% by mass or more of Sn and one or more second elements selected from the group consisting of Ag, Sb, Cu, Ni, Ge, and P, and Sn and second The coated solder wire according to claim 1, comprising a solder alloy having a total content of 95% by mass or more with elements.
  4.  大気圧下でプラズマ化された反応ガスと、キャリアガスを介して導入された有機ケイ素化合物とを混合し、該有機ケイ素化合物をラジカル化することにより、ラジカル化有機ケイ素化合物を形成する、ラジカル化工程と、
     螺旋状のガス流によって画定され、前記ラジカル化有機ケイ素化合物が均一に分散した反応領域を形成する、反応領域形成工程と、
     前記反応領域内で、はんだワイヤを搬送し、前記ラジカル化有機ケイ素化合物を該はんだワイヤ表面の金属と反応させることにより、該はんだワイヤ表面に厚さが4nm~200nmの、ポリシロキサンからなる被覆膜を形成する、被覆工程と、
    を備える、被覆はんだワイヤの製造方法。
    Radicalization that forms a radicalized organosilicon compound by mixing the reaction gas plasmatized at atmospheric pressure with an organosilicon compound introduced via a carrier gas and radicalizing the organosilicon compound Process,
    A reaction zone forming step defined by a spiral gas flow to form a reaction zone in which the radicalized organosilicon compound is uniformly dispersed;
    A coating made of polysiloxane having a thickness of 4 nm to 200 nm on the surface of the solder wire by transporting the solder wire in the reaction region and reacting the radicalized organosilicon compound with the metal on the surface of the solder wire. A coating process for forming a film;
    A method for producing a coated solder wire, comprising:
  5.  前記反応領域形成工程において、予め導入した螺旋状のガス流に、前記ラジカル化有機ケイ素化合物を混合することにより、前記反応領域を形成する、請求項4に記載の被覆はんだワイヤの製造方法。 The method for producing a coated solder wire according to claim 4, wherein in the reaction region forming step, the reaction region is formed by mixing the radicalized organosilicon compound in a spiral gas flow introduced in advance.
  6.  前記螺旋状のガス流を、アルゴン、ヘリウム、窒素、酸素、および空気の群から選択される少なくとも1種によって形成する、請求項5に記載の被覆はんだワイヤの製造方法。 The method for producing a coated solder wire according to claim 5, wherein the spiral gas flow is formed by at least one selected from the group consisting of argon, helium, nitrogen, oxygen, and air.
  7.  前記有機ケイ素化合物として、アルキル基、アルコキシ基、フルオロアルキル基、アミノ基、エポキシ基、イソシアネート基、メルカプト基、ビニル基、メタクリロキシ基、およびアクリロキシ基の群から選択される少なくとも1種の有機置換基を有する有機ケイ素化合物を用いる、請求項4~6のいずれかに記載の被覆はんだワイヤの製造方法。 As the organosilicon compound, at least one organic substituent selected from the group consisting of alkyl group, alkoxy group, fluoroalkyl group, amino group, epoxy group, isocyanate group, mercapto group, vinyl group, methacryloxy group, and acryloxy group The method for producing a coated solder wire according to any one of claims 4 to 6, wherein an organosilicon compound having the following is used.
  8.  前記反応ガスとして、アルゴン、ヘリウム、窒素、酸素、および空気の群から選択される少なくとも1種を用いる、請求項4~7のいずれかに記載の被覆はんだワイヤの製造方法。 The method for producing a coated solder wire according to any one of claims 4 to 7, wherein at least one selected from the group consisting of argon, helium, nitrogen, oxygen, and air is used as the reaction gas.
  9.  前記キャリアガスとして、アルゴン、ヘリウムおよび窒素から選択される少なくとも1種を用いる、請求項4~8のいずれかに記載の被覆はんだワイヤの製造方法。 The method for producing a coated solder wire according to any one of claims 4 to 8, wherein at least one selected from argon, helium and nitrogen is used as the carrier gas.
  10.  前記ラジカル化工程において、大気圧プラズマ重合処理装置により、前記有機ケイ素化合物をラジカル化する、請求項4~9のいずれかに記載の被覆はんだワイヤの製造方法。 10. The method for producing a coated solder wire according to claim 4, wherein, in the radicalization step, the organosilicon compound is radicalized by an atmospheric pressure plasma polymerization treatment apparatus.
  11.  前記ラジカル化工程において、前記はんだワイヤ1mに対する前記有機ケイ素化合物の導入量を0.006g~0.300gとする、請求項4~10に記載の被覆はんだワイヤの製造方法。 11. The method for producing a coated solder wire according to claim 4, wherein, in the radicalization step, the amount of the organosilicon compound introduced into 1 m of the solder wire is 0.006 g to 0.300 g.
  12.  前記被覆工程における該はんだワイヤの搬送速度を1m/分~100m/分とする、請求項11に記載の被覆はんだワイヤの製造方法。 12. The method for producing a coated solder wire according to claim 11, wherein a conveying speed of the solder wire in the coating step is 1 m / min to 100 m / min.
PCT/JP2015/085280 2014-12-19 2015-12-16 Coated solder wire and method for manufacturing same WO2016098836A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580069325.8A CN107107274A (en) 2014-12-19 2015-12-16 Coated solder line and its manufacture method
US15/536,330 US20170348807A1 (en) 2014-12-19 2015-12-16 Coated solder wire and method for manufacturing same
EP15870038.5A EP3235586B1 (en) 2014-12-19 2015-12-16 Coated solder wire and method for manufacturing same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2014-257363 2014-12-19
JP2014257363 2014-12-19
JP2015095763A JP6455303B2 (en) 2014-12-19 2015-05-08 Coated solder wire and manufacturing method thereof
JP2015-095763 2015-05-08

Publications (1)

Publication Number Publication Date
WO2016098836A1 true WO2016098836A1 (en) 2016-06-23

Family

ID=56126720

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/085280 WO2016098836A1 (en) 2014-12-19 2015-12-16 Coated solder wire and method for manufacturing same

Country Status (1)

Country Link
WO (1) WO2016098836A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017018155A1 (en) * 2015-07-27 2017-02-02 住友金属鉱山株式会社 Coated solder wire and method for manufacturing same
CN115805388A (en) * 2022-12-10 2023-03-17 郑州机械研究所有限公司 Flux-cored brazing filler metal with visible flux core and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0919794A (en) * 1995-07-03 1997-01-21 Showa Denko Kk Powdered solder
JP2006088205A (en) * 2004-09-24 2006-04-06 Toshiba Corp Manufacturing method of jointing material, and jointing material obtained by the method
JP2014195831A (en) * 2013-03-08 2014-10-16 住友金属鉱山株式会社 Coating solder material, and method of manufacturing the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0919794A (en) * 1995-07-03 1997-01-21 Showa Denko Kk Powdered solder
JP2006088205A (en) * 2004-09-24 2006-04-06 Toshiba Corp Manufacturing method of jointing material, and jointing material obtained by the method
JP2014195831A (en) * 2013-03-08 2014-10-16 住友金属鉱山株式会社 Coating solder material, and method of manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017018155A1 (en) * 2015-07-27 2017-02-02 住友金属鉱山株式会社 Coated solder wire and method for manufacturing same
CN115805388A (en) * 2022-12-10 2023-03-17 郑州机械研究所有限公司 Flux-cored brazing filler metal with visible flux core and preparation method thereof
CN115805388B (en) * 2022-12-10 2024-03-19 郑州机械研究所有限公司 Flux-cored solder with visible flux core and preparation method thereof

Similar Documents

Publication Publication Date Title
JP6160498B2 (en) Coated solder material and manufacturing method thereof
EP3124166B1 (en) Coated solder material and method for producing same
KR101617396B1 (en) Superhydrophobic coating material and method for manufacturing the same
WO2007105800A1 (en) Surface treatment liquid for copper material, method of surface treatment for copper material, copper material with surface treatment coating, and laminate member
KR20120095042A (en) Method for coating substrate with graphene oxide and method of manufacuring substrate coated reduced graphene oxide
JP6455303B2 (en) Coated solder wire and manufacturing method thereof
WO2016098836A1 (en) Coated solder wire and method for manufacturing same
JP6381486B2 (en) Reactive curing process for semiconductor substrates
JP6471676B2 (en) Coated solder wire and manufacturing method thereof
JP7009979B2 (en) Manufacturing method of surface treatment powder for heat conductive grease and surface treatment powder for heat conductive grease
WO2017018155A1 (en) Coated solder wire and method for manufacturing same
TW201518442A (en) Surface modified silica nanowires composite and method of preparing the same
US20160289825A1 (en) Carbon thin-film device and method of manufacturing the same
Yu et al. Microstructure developments of F-doped SiO2 thin films prepared by liquid phase deposition
JP6486696B2 (en) Thin film deposition method and thin film deposition apparatus
JP2016140864A (en) Coated solder wire and production method for the same
JP2011152691A (en) Water repellent release film for manufacturing flexible flat cable (ffc)
JP2011231356A (en) Insulation coating method of metal base, insulation coated metal base, and apparatus for producing semiconductor using the same
JP7514808B2 (en) Low dielectric substrate and its manufacturing method
JP2018199147A (en) Manufacturing method for coating solder material
KR102083075B1 (en) Alloy thin layer and fabricating method of the same
KR102416127B1 (en) Manufacturing method for spherical YOF-based powder and spherical YOF-based powder manufactured through the same and YOF-based coating using the same
JP2005350685A (en) Parts of substrate treatment apparatus, and manufacturing method therefor
Abe et al. A novel copper interconnection cleaning by atomic hydrogen using diluted hydrogen gas
CN116837265A (en) Liquid metal heat conduction material and coating thereof, preparation method and application

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15870038

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15536330

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015870038

Country of ref document: EP