WO2016098658A1 - Layered body - Google Patents

Layered body Download PDF

Info

Publication number
WO2016098658A1
WO2016098658A1 PCT/JP2015/084513 JP2015084513W WO2016098658A1 WO 2016098658 A1 WO2016098658 A1 WO 2016098658A1 JP 2015084513 W JP2015084513 W JP 2015084513W WO 2016098658 A1 WO2016098658 A1 WO 2016098658A1
Authority
WO
WIPO (PCT)
Prior art keywords
elastic modulus
surface layer
supporting substrate
layer
coating
Prior art date
Application number
PCT/JP2015/084513
Other languages
French (fr)
Japanese (ja)
Inventor
岩谷忠彦
大橋純平
石田康之
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2016519407A priority Critical patent/JP6662287B2/en
Priority to CN201580068091.5A priority patent/CN107000400B/en
Priority to KR1020177015755A priority patent/KR102540277B1/en
Publication of WO2016098658A1 publication Critical patent/WO2016098658A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/51Elastic

Definitions

  • the present invention relates to a laminate having both high surface hardness and flexibility.
  • a plastic film provided with a surface layer made of a synthetic resin or the like has been used for the purpose of protecting the surface of optical materials such as color filters and flat panel displays (for preventing scratches and imparting antifouling properties). These surface layers are required to have scratch resistance as an important characteristic from the viewpoint of surface protection. Therefore, in general, a coating composition containing various prepolymers and oligomers such as organosilanes and polyfunctional acrylics described in Non-Patent Document 1 is coated, dried, heated, or cured by UV or UV curing. "Density material” is used to provide scratch resistance. Further, scratch resistance is imparted by using a so-called “hard coat material” in which the surface hardness of the coating film is increased using an “organic-inorganic hybrid material” combined with various surface-modified fillers.
  • Patent Document 1 and Patent Document 2 indicate that “adhesion between hard coat / base material, film bending crack, curl and the like are practically acceptable.
  • a “hard coat film that can fall within the range and has a pencil hardness value of 4H or higher” is disclosed.
  • a cured resin coating layer formed by providing a cured resin layer containing inorganic or organic internal crosslinked ultrafine particles, and further providing a clear cured resin thin film not containing inorganic or organic internal crosslinked ultrafine particles.
  • a cured resin coating layer consisting of a two-layer structure in which a cured resin coating layer comprising a blend of a radical polymerization resin and a cationic polymerization resin and a cured resin coating layer comprising only a radical polymerization resin are formed in this order.
  • Patent Document 3 discloses “a hard coat film that improves surface hardness and prevents damage to the hard coat film due to stress concentration, and is hard to be damaged”. Specifically, “the hard coat layer is formed in two or more layers, and the elastic modulus ⁇ m of the hard coat layer formed closest to the transparent substrate is higher than the elastic modulus ⁇ s of the hard coat layer of the surface layer. Has been proposed.
  • Patent Document 4 discloses “a laminate with a hard coat layer that can be easily produced, has excellent film adhesion, and has high film strength and scratch resistance”. Specifically, “a structure in which two layers having different inorganic particle concentrations are alternately stacked, a layer group having a high inorganic particle concentration is an A layer unit, and a layer group having a low inorganic particle concentration is a B layer unit.
  • a layered product with a hard coat layer in which the sum ⁇ Ah of the dry film thickness of the A layer unit and the sum ⁇ Bh of the dry film thickness of the B layer unit satisfy the relationship ⁇ Ah ⁇ ⁇ Bh ” is proposed ing.
  • Patent Document 1 that is, “a hard coat film obtained by laminating a coat layer having an elastic modulus in the range of 1.0 GPa to 6.0 GPa on a coat layer having an elastic modulus in the range of 0.5 GPa to 4.5 GPa”.
  • Patent Document 2 that is, “a hard coat formed by laminating a coat layer having an elastic modulus in the range of 2.0 GPa to 4.5 GPa on a coat layer having an elastic modulus in the range of 1.5 GPa to 4.5 GPa.
  • a hard coat formed by laminating a coat layer having an elastic modulus in the range of 2.0 GPa to 4.5 GPa on a coat layer having an elastic modulus in the range of 1.5 GPa to 4.5 GPa As a result of an investigation by the present inventors on “film”, sufficient “flexibility” has not been obtained.
  • the configuration proposed in Patent Document 3 is “the elastic modulus ⁇ m of the hard coat layer formed closest to the base material is higher than the elastic modulus ⁇ s of the hard coat layer of the surface layer”.
  • the present inventors confirmed these configurations, it was found that a higher elastic modulus of the outermost layer is advantageous for the surface hardness.
  • Patent Document 4 that is, “a group of inorganic particles having a high inorganic particle concentration of 30.0% by volume to 70.0% by volume and an inorganic particle concentration of 0% by volume to 40.0% by volume
  • the resin material is selected from highly crosslinkable actinic ray curable resin, so it can be used in the first place.
  • the design is not flexible.
  • an object of the present invention is to provide a laminate having both high surface hardness and sufficient flexibility to withstand use on a curved surface.
  • the present invention is as follows.
  • Fa Presence frequency of a portion where the elastic modulus is higher than the elastic modulus of the supporting base material
  • Fb Presence frequency of a portion where the elastic modulus is lower than the elastic modulus of the supporting base material
  • a laminate having both high surface hardness and flexibility can be provided.
  • the laminate of the present invention has excellent surface hardness compared to a homogeneous resin layer of equivalent thickness, and at the same time, it suppresses the occurrence of curling due to stress concentration, cracking during peeling and peeling of the coating film. it can.
  • the technical difficulty lies in both the hardness, that is, the high elastic modulus and the flexibility, that is, the low elastic modulus.
  • the balance between hardness and flexibility is adjusted by the elastic modulus of the material, the resin type, or the amount of particles.
  • these methods cannot achieve the above-mentioned problems.
  • the cause is that the elastic modulus of the material used for imparting flexibility is too high.
  • the present inventors first examined in detail the “occurrence of scratches by the pencil hardness test” in terms of hardness. As a result, it was confirmed that the forms of scratches generated in the pencil hardness test were classified into the following three types. That is, (1) scratches caused by the outermost surface of the film, (2) scratches caused by the interface in which the elastic modulus changes discontinuously in the film, and (3) scratches caused by the supporting substrate. That is, (1) is a scratch caused by insufficient hardness of the surface layer, (2) is a scratch caused by an interlayer such as interface peeling, and (3) is a dent caused by bending of the substrate.
  • the properties required for the surface layer to suppress the occurrence of scratches by the pencil hardness test are (I) the outermost surface layer has a high elastic modulus, and (II) the surface layer and the supporting substrate There is no stress strain at the interface of (III), and (III) the stress propagating to the substrate is reduced.
  • a surface layer that satisfies the conditions described later is a material whose elastic modulus is lower than the elastic modulus of the supporting base material while maintaining the surface hardness. It was found that it can be incorporated. That is, the present inventors have a surface layer that has excellent surface hardness as described above, and suppresses the occurrence of curling due to stress concentration, cracks during bending, and peeling of the coating film as the surface layer of the laminate. The laminated body which has is found. This will be described below with reference to the drawings.
  • the laminate of the present invention is a laminate 3 in which a surface layer 2 is laminated on one surface of a support base 1 as shown in FIG.
  • the surface layer 2 has a nonuniform elastic modulus distribution in the thickness direction.
  • the elastic modulus of the surface layer may be a laminate in which a plurality of layers having different elastic moduli are laminated as long as the conditions described later are satisfied, and the elastic modulus is different in the thickness direction within the same layer. Such a layer may be used.
  • the “elastic modulus of the cross section of the laminate” in the present invention is measured by an atomic force microscope.
  • Elastic modulus measurement with an atomic force microscope is a compression test with a probe of a very small portion, and measures the degree of deformation due to pressing force. Therefore, using a cantilever with a known spring constant, the elastic modulus in the cross section at each position in the thickness direction of the surface layer is measured. Specifically, the laminate is cut, and the elastic modulus in the cross section at each position in the thickness direction of the surface layer is measured with an atomic force microscope.
  • the cantilever obtained by using the atomic force microscope shown below contacting the tip of the cantilever tip to the cross section of the surface layer, and measuring the force curve with a pressing force of 55 nN Can be measured.
  • the spatial resolution in the thickness direction depends on the scanning range of the atomic force microscope and the number of scanning lines, but under realistic measurement conditions, the lower limit is approximately 50 nm. Details and a measuring method will be described later.
  • Atomic force microscope MFP-3DSA-J manufactured by Asylum Technology Cantilever: A cantilever “R150-NCL-10 made by NANOSENSORS (material Si, spring constant 48 N / m, radius of curvature of the tip 150 nm).
  • NANOSENSORS material Si, spring constant 48 N / m, radius of curvature of the tip 150 nm.
  • the “elastic modulus distribution in the thickness direction of the surface layer” is expressed as a continuous curve in FIG. 2, but is actually a set of data points measured at intervals of 100 nm.
  • the change in elastic modulus at intervals less than 100 nm has little effect on the hardness or flexibility of the laminate, so the effect of elastic modulus change that is not detected under the above measurement conditions is practically ignored. can do.
  • the details of the method of measuring the “elastic modulus distribution in the thickness direction of the surface layer” will be described later.
  • both the elastic modulus on the outermost surface side and the elastic modulus on the interface side are higher than the elastic modulus of the supporting substrate.
  • the “outermost surface” refers to the outermost surface of the surface layer.
  • the “interface” refers to the interface between the surface layer and the supporting substrate (that is, the boundary line between the surface layer and the supporting substrate).
  • the elastic modulus on the interface side is lower than the elastic modulus of the supporting base material, scratches caused by the supporting base material may easily occur.
  • the elastic modulus on the outermost surface side is preferably the highest in the surface layer.
  • the “elastic modulus on the outermost surface side” is the elastic modulus of the outermost surface in the surface layer.
  • the modulus of elasticity on line 4 in FIG. 1 located on the true outermost surface is not an accurate value of the surface layer. Is the “elastic modulus on the outermost surface side”.
  • the “elastic modulus on the interface side” refers to the elastic modulus at the interface between the surface layer and the support substrate.
  • the elastic modulus on the line 6 in FIG. 1 located at the true interface does not become an accurate value of the interface, so in reality, the boundary line 6 between the surface layer and the supporting substrate
  • the measured value 7 on the 100 nm surface layer side is defined as “interface side elastic modulus”.
  • the maximum elastic modulus is preferably 100 times or more and 10,000 times or less than the minimum elastic modulus.
  • the relationship between the maximum elastic modulus and the minimum elastic modulus is not within the above-mentioned range, specifically, when it is smaller than 100 times, either physical property of hardness or flexibility is insufficient, and it becomes difficult to achieve both. There is a case.
  • it exceeds 10,000 times a sudden change in elastic modulus tends to cause distortion in the surface layer, which may lead to a decrease in pencil hardness and peeling of the film.
  • the minimum elastic modulus 15 is preferably 0.1 GPa or less, more preferably 0.05 GPa or less, and particularly preferably 0.01 GPa or less.
  • the minimum elastic modulus is higher than 0.1 GPa, the aforementioned flexibility is likely to be insufficient, and cracks and curls are likely to occur.
  • the “maximum elastic modulus” refers to the maximum value of the elastic modulus in the elastic modulus distribution in the thickness direction of the surface layer measured by the method described later.
  • the “minimum elastic modulus” refers to the minimum value of the elastic modulus in the elastic modulus distribution in the thickness direction of the surface layer measured by the method described later.
  • the elastic modulus and the thickness As a structure that makes it difficult to generate deformation strain due to stress in the surface layer. Specifically, in the elastic modulus distribution in the thickness direction of the surface layer, as shown in FIG. 3, the maximum value (maximum elastic modulus 16) and the elastic modulus are higher than the elastic modulus 9 of the supporting substrate. It is preferable that a minimum value (minimum elastic modulus 18) lower than the elastic modulus 9 of the material exists.
  • both the elastic modulus on the interface side of the surface layer with the supporting substrate and the elastic modulus on the outermost surface side are higher than the elastic modulus of the supporting substrate.
  • a maximum value in which the elastic modulus is higher than the elastic modulus 9 of the supporting substrate, and the elastic modulus is the supporting substrate.
  • the minimum value (minimum elastic modulus 18) lower than the elastic modulus 9 is “alternately” and the average value of the thickness 20 of the portion where the elastic modulus is higher than the elastic modulus 9 of the supporting base material and the elastic modulus is supported.
  • the average value of the thickness 21 of the portion lower than the elastic modulus 9 of the base material satisfies the following relational expression. 10 ⁇ (Tb [nm] / Ta [nm]) ⁇ (Ea [MPa]) / Eb [MPa]) ⁇ 1,000
  • Ta [nm] is the average value of the thickness of the portion where the elastic modulus is higher than the elastic modulus of the supporting substrate
  • Tb [nm] is the average value of the thickness of the portion where the elastic modulus is lower than the elastic modulus of the supporting substrate.
  • Ea [MPa] is the average value 17 of the maximum elastic modulus
  • Eb [MPa] is the average value 19 of the minimum elastic modulus.
  • the maximum value (maximum elastic modulus 16) in which the elastic modulus is higher than the elastic modulus of the supporting base material means that the elastic modulus is higher than the elastic modulus of the supporting base material and, as shown in FIG. When the relationship between the thickness and the elastic modulus is graphed, it means a maximum value (a value at which the slope becomes zero).
  • the minimum value (minimum elastic modulus 18) in which the elastic modulus is lower than the elastic modulus of the supporting base material is that the elastic modulus is lower than the elastic modulus of the supporting base material and, as shown in FIG. When the relationship with the elastic modulus is graphed, it means a minimum value (a value at which the slope becomes zero).
  • the elastic modulus distribution in the thickness direction of the surface layer there are alternately a maximum value whose elastic modulus is higher than that of the supporting substrate and a minimum value whose elastic modulus is lower than that of the supporting substrate. Satisfying the following requirements (1) to (4) when the elastic modulus distribution in the thickness direction of the surface layer is measured by the method described in the example section. (1) There are at least two local maximums and local minimums. (2) There is no minimum value that is an elastic modulus higher than the elastic modulus of the supporting substrate. (3) There is no maximum value that is an elastic modulus lower than the elastic modulus of the supporting substrate.
  • the average value of the thickness of the portion where the elastic modulus is higher than the elastic modulus of the supporting base material is the average of the thickness of each portion where the elastic modulus existing in the surface layer is higher than the elastic modulus of the supporting base material. Value. Furthermore, “the average value of the thickness of the portion where the elastic modulus is lower than the elastic modulus of the supporting substrate” means the average thickness of each portion where the elastic modulus existing in the surface layer is lower than the elastic modulus of the supporting substrate. Value.
  • the average value of the maximum elastic modulus is the average value of the maximum values having an elastic modulus higher than the elastic modulus of the supporting substrate existing in the surface layer
  • the average value of the minimum elastic modulus is the value in the surface layer.
  • the structure of the surface layer that realizes the above-mentioned elastic modulus, which is the average value of the minimum values having an elastic modulus lower than the elastic modulus of the existing supporting substrate, is a layer having a high elastic modulus, that is, a hard layer and an elastic modulus.
  • a low layer that is, a “multi-layer structure” in which soft layers are alternately stacked, or an integral layer without a clear interface, but having a distribution in elastic modulus due to bias of constituent components such as particles and resins For example, “inclined structure”. Details of the structure of the surface layer and the manufacturing method thereof will be described later in the section of [Manufacturing Method of Laminate].
  • the above-mentioned relational expression is a parameter representing the “flexibility” of the laminate defined based on the ratio between the elastic modulus and thickness of the components constituting the surface layer.
  • the increase in this parameter means that Tb, that is, “the thickness of the portion where the elastic modulus is lower than the elastic modulus of the supporting substrate” is relatively large, or that Eb, that is, “minimum elastic modulus” is relatively small. All correspond to the softening of the laminate. Conversely, a decrease in this parameter corresponds to an increase in the hardness of the laminate.
  • the “surface layer” in the present invention refers to a layer formed on a support substrate, and a combination of all the series of layers including the surface layer and the support substrate is referred to as a “laminate”. That is, when only one layer is formed on the support base material, the one layer becomes a “surface layer”. For example, when two or more layers are formed on a supporting base material, all the two or more layers excluding the supporting base material are referred to as one “surface layer”.
  • the “layer” refers to a portion having a finite thickness that can be distinguished from the surface side of the laminate in the thickness direction by having a boundary surface and a portion adjacent to the thickness direction. More specifically, when the cross section of the said laminated body is cross-sectional-observed with an electron microscope (a transmission type, a scanning type) or an optical microscope, it points out what is distinguished by the presence or absence of a discontinuous interface.
  • the laminate of the present invention may be in a planar state or a three-dimensional shape after being molded as long as it has a surface layer exhibiting the above-mentioned physical properties.
  • the thickness of the entire surface layer is not particularly limited, but is preferably 1 ⁇ m or more and 50 ⁇ m or less, and more preferably 3 ⁇ m or more and 20 ⁇ m or less.
  • the laminate is a subject of the present invention, as well as antifouling properties, antireflection properties, antistatic properties, antifouling properties, electrical conductivity, heat ray reflectivity, You may have a layer which has other functions, such as near-infrared absorptivity, electromagnetic wave shielding, and easy adhesion, and these functions may be provided to the said surface layer.
  • the material constituting the support substrate used in the laminate of the present invention may be either a thermoplastic resin or a thermosetting resin, may be a homo resin, may be a copolymer or a blend of two or more types. Good. More preferably, the resin constituting the support substrate is preferably a thermoplastic resin from the viewpoint of moldability.
  • thermoplastic resins examples include polyolefin resins such as polyethylene, polypropylene, polystyrene and polymethylpentene, alicyclic polyolefin resins, polyamide resins such as nylon 6 and nylon 66, aramid resins, polyester resins, polycarbonate resins and polyarylate resins.
  • Fluorine resins such as polyacetal resin, polyphenylene sulfide resin, tetrafluoroethylene resin, trifluoroethylene resin, trifluoroethylene resin, tetrafluoroethylene-6-fluoropropylene copolymer, vinylidene fluoride resin, acrylic Resins, methacrylic resins, polyacetal resins, polyglycolic acid resins, polylactic acid resins, and the like can be used.
  • the thermoplastic resin is preferably a resin having sufficient stretchability and followability.
  • the thermoplastic resin is more preferably a polyester resin, a polycarbonate resin, or a methacrylic resin from the viewpoint of strength, heat resistance, and transparency, and a polyester resin is particularly preferable.
  • the polyester resin in the present invention is a general term for polymers having an ester bond as a main bond chain, and is obtained by polycondensation of an acid component and its ester with a diol component.
  • Specific examples include polyethylene terephthalate, polypropylene terephthalate, polyethylene-2,6-naphthalate, polybutylene terephthalate, and the like. These may be copolymerized with other dicarboxylic acids and their esters or diol components as acid components or diol components.
  • polyethylene terephthalate and polyethylene-2,6-naphthalate are particularly preferable in terms of transparency, dimensional stability, heat resistance and the like.
  • the support substrate may be either a single layer configuration or a laminated configuration.
  • the surface of the support substrate can be subjected to various surface treatments before forming the surface layer.
  • the surface treatment include chemical treatment, mechanical treatment, corona discharge treatment, flame treatment, ultraviolet irradiation treatment, high frequency treatment, glow discharge treatment, active plasma treatment, laser treatment, mixed acid treatment and ozone oxidation treatment.
  • glow discharge treatment, ultraviolet irradiation treatment, corona discharge treatment and flame treatment are preferred, and glow discharge treatment and ultraviolet treatment are more preferred.
  • a functional layer such as an easy-adhesion layer, an antistatic layer, an undercoat layer, and an ultraviolet absorption layer can be provided in advance on the surface of the support substrate. It is preferable to provide a layer.
  • the elasticity modulus of the support base material in this invention means the elasticity modulus of the support base material measured by the method mentioned later.
  • the elastic modulus measured by the method mentioned later is called elastic modulus of a support base material.
  • the laminate of the present invention forms a surface layer having a structure capable of achieving the above-mentioned physical properties by applying, drying and curing a coating composition on a supporting substrate using a laminate production method described later. can do.
  • the “coating composition” is a liquid composed of a solvent and a solute, and is a material that can be applied to the above-mentioned supporting substrate and volatilized, removed, and cured in a drying process to form a surface layer.
  • the “type” of the coating composition refers to liquids that are different in part even in the type of solute constituting the coating composition.
  • This solute is a resin or a material that can form them in the coating process (hereinafter referred to as a precursor), particles, and polymerization initiators, curing agents, catalysts, leveling agents, ultraviolet absorbers, antioxidants, etc. Consists of various additives.
  • the surface layer of the present invention comprises a coating composition A capable of forming the aforementioned “part having a higher elastic modulus than the elastic modulus of the cross section of the supporting substrate” and a coating composition capable of forming a “part having a lower elastic modulus”. It is preferable to form by using at least two types of coating compositions of B and sequentially or simultaneously coating on a supporting substrate.
  • a hard coat coating material that forms a coating layer having a high elastic modulus can be suitably used.
  • the elastic modulus of the coating layer single layer film preferably has an elastic modulus of 6 GPa to 200 GPa.
  • a coating material capable of forming a hard coat layer having a particularly high elastic modulus it is preferable to use a composite coating material of an organic material and an inorganic material called an organic-inorganic hybrid coating material.
  • organic-inorganic hybrid coating materials examples include “Taisei Fine Chemical Co., Ltd .; (organic-inorganic hybrid coating material“ STR-SiA ”)” and “Toagosei Co., Ltd .; (trade name“ photo-curing type SQ series ”)” And “Toyo Ink Co., Ltd .; (trade name“ Rioduras ”(registered trademark))” and the like, and these materials can be preferably used.
  • a typical form of the organic-inorganic hybrid coating material preferably includes a highly crosslinkable binder composed of inorganic particles having a high elastic modulus and an organic compound. Preferred particle components and binder components will be described later.
  • Coating composition B As the coating composition B, a resin coating material rich in flexibility and moldability can be suitably used.
  • the elastic modulus of the coating layer single film preferably has an elastic modulus of 1 MPa to 100 MPa.
  • those commercially available as scratch-repairing coating materials, moldable HC (Hard Coating) coating materials, or adhesives can be suitably used. Part of it may contain a particulate material.
  • Examples of scratch-repairable coating materials and moldable HC coating materials are “China Paint Co., Ltd. (trade name“ Forseed ”series”) and “Aika Industry Co., Ltd. (trade name“ Aika Itron ”series)”. Etc.
  • Examples of pressure-sensitive adhesives include acrylic adhesives such as “Toagosei Co., Ltd .;“ Aron Tuck ”series”, “Soken Chemicals Co., Ltd .;“ SK Dyne ”(registered trademark) series”, and silicone adhesives as “ Adhesives of “Toray Dow Corning Co., Ltd.” and “Shin-Etsu Silicone Co., Ltd.” can be mentioned.
  • a preferable paint component will be described later.
  • the surface layer of the laminate of the present invention preferably contains a particle component.
  • the coating composition A suitable for forming the surface layer of the present invention preferably contains particles.
  • the particles may be either inorganic particles or organic particles, but inorganic particles are preferred from the viewpoint of durability.
  • the number of types of inorganic particles is preferably 1 or more and 20 or less.
  • the number of types of inorganic particles is more preferably 1 or more and 10 or less, and particularly preferably 1 or more and 4 or less.
  • “inorganic particles” include those subjected to surface treatment. This surface treatment means introducing a compound onto the particle surface by chemical bonds (including covalent bonds, hydrogen bonds, ionic bonds, van der Waals bonds, hydrophobic bonds, etc.) and adsorption (including physical adsorption and chemical adsorption). Point to.
  • the kind of inorganic particles is determined by the kind of elements constituting the inorganic particles, and when some surface treatment is performed, the kind is determined by the kind of elements constituting the particles before the surface treatment.
  • the elements constituting the inorganic particles are different, Different types of inorganic particles.
  • particles (ZnO) consisting only of the same element, for example, Zn and O even if there are a plurality of particles having different number average particle diameters, and the composition ratio of Zn and O is different, These are the same type of particles. Even if there are a plurality of Zn particles having different oxidation numbers, as long as the elements constituting the particles are the same (in this example, all elements other than Zn are the same), these are the same kind of particles. .
  • the particles contained in the coating composition suitable for forming the surface layer of the present invention change its surface state by heat, ionizing radiation or the like in a process such as coating, drying, curing or vapor deposition. And is included in the surface layer.
  • the particles present in the coating composition used in the present invention are “particulate material”, and the coating composition is present in the surface layer formed by a process such as coating, drying, curing or vapor deposition.
  • the particles are called “particle components”.
  • the inorganic particles are not particularly limited, but are preferably metal or metalloid oxides, nitrides, borides, chlorides, carbonates, sulfates, composite oxides containing two metals, metalloids, Different elements may be introduced between the lattices, lattice points may be replaced with different elements, or lattice defects may be introduced.
  • the inorganic particles are oxide particles in which at least one metal or semimetal selected from the group consisting of Si, Al, Ca, Zn, Ga, Mg, Zr, Ti, In, Sb, Sn, Ba, and Ce is oxidized. More preferably.
  • the surface modification necessary for stably dispersing silica in a good solvent as a binder raw material is made.
  • the surface modification requires an alkyl group, alkenyl group, vinyl group, (meth) acryl group or the like having a carbon number of 1 to 5 as a minimum. It is preferable that it is introduced on the surface.
  • the number average particle diameter of the inorganic particles means the number-based arithmetic average length diameter described in JIS Z8819-2 (2001).
  • the primary particles are observed using a scanning electron microscope (SEM), a transmission electron microscope, etc., and the diameter of the circumscribed circle of each primary particle is defined as the particle diameter. Refers to the calculated value.
  • the number average particle diameter can be determined by observing the surface or cross section.
  • the coating composition diluted with a solvent is dropped and dried. Thus, it is possible to prepare and observe a sample.
  • the surface layer of the laminate of the present invention particularly preferably contains inorganic particles having an anisotropic shape.
  • the coating composition suitable for forming the surface layer of the present invention preferably contains inorganic particles having an anisotropic shape, and particularly preferably contains inorganic particles having an anisotropic shape in the coating composition B.
  • the inorganic particles having an anisotropic shape mean that the shape is not a spherical shape but a biased particle. Specifically, needle-like, plate-like or spherical particles are bound in a chain. It means beaded particles.
  • the hardness of the surface layer can be imparted while maintaining the flexibility of the entire laminate.
  • the cause of the compatibility between flexibility and hardness is not clear, but by adding inorganic particles having an anisotropic shape, only the stress in the shear direction may increase while the stress in the indentation direction is maintained. It has been confirmed that it is possible to suppress the breakage of the laminated film due to shear.
  • Rl / Rs which is the ratio of the long diameter Rl to the short diameter Rs of the inorganic particles, is preferably 1.2 or more and 20,000 or less, and more preferably 1.5 or more and 10,000 or less. More preferred.
  • Rl / Rs is smaller than 1.2, the difference between the indentation stress and the shear stress described above becomes difficult to occur, and the flexibility of the surface layer may be lowered.
  • Rl / Rs is high, the performance of the laminate is not deteriorated immediately, but if Rl / Rs exceeds 20,000, thixotropy occurs in the coating material, and uniform coating is performed. May be difficult.
  • the short diameter Rs is preferably 1 nm or more and 100 nm or less, and particularly preferably 3 nm or more and 50 nm or less.
  • Rs is less than 1 nm, the volume ratio of the inorganic particles in the laminate becomes small, and a sufficient hardness improvement effect may not be obtained.
  • Rs exceeds 100 nm, the contribution to the aforementioned indentation stress is increased, and the flexibility of the surface layer may be reduced. A method for measuring the long diameter Rl and the short diameter Rs will be described later.
  • the inorganic particles having the anisotropic shape have a modulus of elasticity of the laminate. It is particularly preferable that a large amount exists in a portion lower than the elastic modulus of the material.
  • Inorganic particles having an anisotropic shape are oxidized with at least one metal or metalloid selected from the group consisting of Si, Al, Ca, Zn, Ga, Mg, Zr, Ti, In, Sb, Sn, Ba and Ce. More preferably, it is an oxide particle.
  • silica SiO 2
  • aluminum oxide Al 2 O 3
  • zinc oxide ZnO
  • zirconium oxide ZrO 2
  • titanium oxide TiO 2
  • indium oxide In 2 O 3
  • tin oxide It is at least one metal oxide or semimetal oxide selected from the group consisting of (SnO 2 ), antimony oxide (Sb 2 O 3 ), and indium tin oxide (In 2 O 3 ).
  • metal oxide or semimetal oxide selected from the group consisting of (SnO 2 ), antimony oxide (Sb 2 O 3 ), and indium tin oxide (In 2 O 3 ).
  • the coating composition suitable for forming the surface layer of the present invention preferably contains a binder raw material.
  • the binder refers to a compound having a reactive site or a higher order compound formed by the reaction.
  • the binder present in the coating composition used in the present invention is “binder material”, and the binder present in the surface layer formed by coating, drying, curing treatment, vapor deposition or the like of the coating composition. Is called “binder component”.
  • the reactive site refers to a site that reacts with other components by external energy such as heat or light.
  • the coating composition A suitable for forming the surface layer of the present invention preferably contains a “highly crosslinkable binder” described later, and the coating composition B preferably contains at least a “flexible binder” described later. May be contained simultaneously.
  • the highly crosslinkable binder can be suitably used mainly as a binder component of the coating composition A, and may be contained in the coating composition B from the viewpoint of improving adhesion and film forming property.
  • a material having 2 or more and 20 or less reactive sites in one molecule is preferable.
  • Either a thermosetting resin or an ultraviolet curable resin may be used, and two or more kinds of blends may be used.
  • Thermosetting resins suitable for highly crosslinkable binders are composed of a hydroxyl group-containing resin and a polyisocyanate compound.
  • hydroxyl group-containing resins include acrylic polyols, polyether polyols, polyester polyols, polyolefin polyols, polycarbonate polyols, and urethane polyols. These may be one kind or a blend of two or more kinds.
  • the hydroxyl value of the hydroxyl group-containing resin is preferably in the range of 1 to 200 mgKOH / g from the viewpoints of durability, hydrolysis resistance, and adhesion when formed into a coating film. When the hydroxyl value is less than 1, curing of the coating film hardly proceeds, and durability and strength may decrease. On the other hand, when the hydroxyl group is greater than 200, the curing shrinkage is too large, and the adhesion may be lowered.
  • the acrylic polyol containing a hydroxyl group in the present invention is obtained, for example, by polymerizing an acrylic ester or a methacrylic ester as a component.
  • Such an acrylic resin can be easily prepared, for example, by copolymerizing a methacrylic acid ester as a component and a carboxylic acid group-containing monomer such as (meth) acrylic acid, itaconic acid, and maleic anhydride as necessary. Can be manufactured.
  • (meth) acrylic acid esters examples include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, isopropyl (meth) acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, and tert-butyl.
  • acrylic polyol containing a hydroxyl group include DIC Corporation (trade name “Acridic” (registered trademark) series, etc.), Taisei Fine Chemical Co., Ltd. (trade name “Acrit” (registered trademark) series, etc.
  • polyester polyol containing a hydroxyl group in the present invention examples include aliphatic glycols such as ethylene glycol, propylene glycol, butanediol, pentanediol, hexanediol, heptanediol, decanediol, and cyclohexanedimethanol, and succinic acid and adipine.
  • Aliphatic polyester polyol reacted as an essential raw material component with an aliphatic dibasic acid such as acid, sebacic acid, fumaric acid, suberic acid, azelaic acid, 1,10-decamethylenedicarboxylic acid, cyclohexanedicarboxylic acid, or ethylene glycol
  • Aromatic polymers obtained by reacting aliphatic glycols such as propylene glycol and butanediol with aromatic dibasic acids such as terephthalic acid, isophthalic acid and naphthalenedicarboxylic acid as essential raw material components Ester polyols.
  • polyester polyols containing hydroxyl groups examples include DIC Corporation (trade name “Polylite” (registered trademark) series, etc.), Kuraray Co., Ltd. (trade name “Kuraray polyol” (registered trademark) series, etc.), Takeda. Yakuhin Kogyo Co., Ltd. (trade name “Takelac” (registered trademark) U series) can be mentioned, and these products can be used.
  • Examples of the polyolefin-based polyol containing a hydroxyl group in the present invention include polymers and copolymers of diolefins having 4 to 12 carbon atoms such as butadiene and isoprene, diolefins having 4 to 12 carbon atoms, and 2 to 22 carbon atoms.
  • the compound contains a hydroxyl group.
  • the method for containing a hydroxyl group is not particularly limited, and for example, there is a method of reacting a diene monomer with hydrogen peroxide. Furthermore, you may make saturated aliphatic by hydrogenating the remaining double bond.
  • polyolefin-based polyols containing hydroxyl groups examples include Nippon Soda Co., Ltd. (trade name “NISSO-PB” (registered trademark) G series, etc.), Idemitsu Kosan Co., Ltd .; (trade name “Poly bd” (registered trademark). ) Series, “Epaul” (registered trademark) series, etc.), and these products can be used.
  • polycarbonate polyol containing a hydroxyl group in the present invention for example, a polycarbonate polyol obtained using only dialkyl carbonate and 1,6-hexanediol can be used.
  • polycarbonate polyol containing such a hydroxyl group Asahi Kasei Chemicals Co., Ltd., which is a copolymerized polycarbonate polyol; (trade names “T5650J”, “T5652”, “T4671”, “T4672”, etc.), Ube Industries, Ltd .; Trade names such as “ETERNACLL” (registered trademark) UM series), and these products can be used.
  • the urethane polyol containing a hydroxyl group in the present invention is, for example, a reaction between a polyisocyanate compound and a compound containing at least two hydroxyl groups in one molecule at a ratio such that the hydroxyl group is excessive with respect to the isocyanate group. Obtained.
  • the polyisocyanate compound used in this case include hexamethylene diisocyanate, toluene diisocyanate, m-xylene diisocyanate, and isophorone diisocyanate.
  • the compound containing at least two hydroxyl groups in one molecule include polyhydric alcohols, polyester diol, polyethylene glycol, polypropylene glycol, and polycarbonate diol.
  • the polyisocyanate compound used for the thermosetting resin in the present invention refers to a resin containing an isocyanate group, a monomer or an oligomer containing an isocyanate group.
  • the compound containing an isocyanate group include methylene bis-4-cyclohexyl isocyanate, trimethylolpropane adduct of tolylene diisocyanate, trimethylolpropane adduct of hexamethylene diisocyanate, trimethylolpropane adduct of isophorone diisocyanate, and tolylene diisocyanate.
  • thermosetting resins examples include Mitsui Chemicals, Inc. (trade name “Takenate” (registered trademark) series, etc.), Nippon Polyurethane Industry Co., Ltd .; (trade name “Coronate” (registered trademark). Asahi Kasei Chemicals Corporation; (trade name “Duranate” (registered trademark) series, etc.), DIC Corporation (trade name “Burnock” (registered trademark) series, etc.).
  • polyfunctional acrylate monomer, oligomer, alkoxysilane, alkoxysilane hydrolyzate, alkoxysilane oligomer, urethane acrylate oligomer, etc. are preferable, and polyfunctional acrylate monomer, oligomer, urethane.
  • An acrylate oligomer is more preferable.
  • polyfunctional acrylate monomer examples include polyfunctional acrylates having two or more (meth) acryloyloxy groups in one molecule and modified polymers thereof. Specific examples include pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol tri (meth) acrylate, dipentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, Dipentaerythritol hexa (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol triacrylate hexanemethylene diisocyanate urethane polymer, and the like can be used. These monomers can be used alone or in combination of two or more.
  • polyfunctional acrylic compositions include Mitsubishi Rayon Co., Ltd. (trade name “Diabeam” (registered trademark) series, etc.), Nippon Synthetic Chemical Industry Co., Ltd. (trade name “SHIKOH” (registered trademark)). ) Series), Nagase Sangyo Co., Ltd .; (trade name “Denacol” (registered trademark) series, etc.), Shin-Nakamura Chemical Co., Ltd.
  • the flexible binder can be suitably used mainly as a binder component of the coating composition B.
  • a material having 4 or less reactive sites in one molecule is preferable, and the active reactive sites may be deactivated like an acrylic polymer.
  • Preferred materials for the flexible binder are exemplified below.
  • Preferred forms of the coating composition B include “a coating composition for forming a scratch-repairing resin layer”, “a moldable HC coating material” having a breaking elongation of about 5 to 50%, and “an adhesive”.
  • the coating composition for forming the scratch-repairable resin layer includes: (1) a segment containing at least one selected from the group consisting of a polycaprolactone segment, a polycarbonate segment and a polyalkylene glycol segment in the solute; It is particularly preferable to include a resin or precursor containing a segment. Each of these segments can be confirmed by TOF-SIMS, FT-IR, or the like.
  • a pressure-sensitive adhesive “rubber-based pressure-sensitive adhesive” using the most general rubber and tackifier, “acryl-based pressure-sensitive adhesive” that can give various functions with an acrylic polymer copolymer, excellent temperature characteristics, although it has chemical resistance, any of the high-cost “silicone-based pressure-sensitive adhesive” can be suitably used.
  • acrylic pressure-sensitive adhesive It is particularly preferable to use
  • the coating composition A and the coating composition B preferably contain a solvent.
  • the number of solvent types is preferably 1 or more and 20 or less, more preferably 1 or more and 10 or less, and still more preferably 1 or more and 6 or less.
  • the “solvent” refers to a substance that is liquid at room temperature and normal pressure, and can be removed from the coating film by evaporating almost the whole amount in the drying step after coating.
  • the type of solvent is determined by the molecular structure constituting the solvent. That is, the same elemental composition and the same type and number of functional groups have different bond relationships (structural isomers), which are not structural isomers, but what conformations are in three-dimensional space Those that do not overlap exactly even if they are removed (stereoisomers) are treated as different types of solvents. For example, 2-propanol and n-propanol are handled as different solvents.
  • the coating composition A and the coating composition B preferably contain a polymerization initiator, a curing agent, and a catalyst.
  • a polymerization initiator and a catalyst are used to accelerate the curing of the surface layer.
  • the polymerization initiator those capable of initiating or accelerating polymerization, condensation or crosslinking reaction by anion, cation, radical polymerization reaction or the like of components contained in the coating composition are preferable.
  • polymerization initiators curing agents and catalysts
  • the polymerization initiator, the curing agent, and the catalyst may be used alone, or a plurality of polymerization initiators, curing agents, and catalysts may be used simultaneously.
  • acidic catalysts include aqueous hydrochloric acid, formic acid, acetic acid and the like.
  • thermal polymerization initiator include peroxides and azo compounds.
  • the photopolymerization initiator include alkylphenone compounds, sulfur-containing compounds, acylphosphine oxide compounds, amine compounds, and the like.
  • an alkylphenone compound is preferable from the viewpoint of curability.
  • the alkylphenone compounds include 1-hydroxy-cyclohexyl-phenyl-ketone, 2,2-dimethoxy-1,2-diphenylethane-1-one, 2-methyl-1- (4-methylthiophenyl)- 2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1- (4-phenyl) -1-butane, 2- (dimethylamino) -2-[(4-methylphenyl) methyl]- 1- (4-phenyl) -1-butane, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -1-butane, 2- (dimethylamino) -2-[(4-methylphenyl ) Methyl] -1- [4- (4-morpholinyl) phenyl] -1-butane, 1-cyclohexyl-phenone
  • the progress of the polymerization reaction by the thermal polymerization initiator or photopolymerization initiator can be controlled by the amount of heat or the amount of light applied, and when the surface layer is formed by sequential coating, the progress of the polymerization is incomplete. By applying the next layer, a mixed layer having intermediate physical properties can be formed without forming a clear interface.
  • a leveling agent, an ultraviolet absorber, a lubricant, an antistatic agent, etc. may be added to the coating composition A and the coating composition B used for forming the surface layer as long as the effects of the present invention are not impaired.
  • the surface layer can contain a leveling agent, an ultraviolet absorber, a lubricant, an antistatic agent, and the like.
  • the leveling agent include acrylic copolymers, silicone-based and fluorine-based leveling agents.
  • Specific examples of the ultraviolet absorber include benzophenone-based, benzotriazole-based, oxalic acid anilide-based, triazine-based and hindered amine-based ultraviolet absorbers.
  • the antistatic agent include metal salts such as lithium salt, sodium salt, potassium salt, rubidium salt, cesium salt, magnesium salt and calcium salt.
  • the production method of the laminate of the present invention uses a production method in which at least the coating composition A and the coating composition B are formed by applying, drying, and curing sequentially or simultaneously on the supporting substrate. More preferred.
  • “sequentially apply” or “sequentially apply” means that after coating-drying-curing one type of coating composition, the surface layer is then formed by coating-drying-curing a different type of coating composition. Intended to form.
  • the surface layer formed in “sequential coating” can be selected by appropriately selecting the type and number of coating compositions to be used. You can control the size.
  • the surface layer formed by “sequential application” usually has a “multilayer structure” having a plurality of interfaces, but by appropriately selecting the type, composition, drying conditions, and curing conditions of the coating composition, It is also possible to control the separation and diffusion of the material species to form a pseudo gradient structure. With the layer structure as described above, the elastic modulus distribution in the surface layer can be changed stepwise or continuously.
  • Another manufacturing method is a method in which two or more kinds of coating compositions are formed by simultaneously applying, drying and curing on a supporting substrate.
  • “simultaneous application” or “simultaneous application” is intended to dry and cure after applying two or more types of liquid films on a supporting substrate in the application step.
  • the surface layer formed in “simultaneous application” forms an “inclined structure” having no clear interface.
  • the coating method is a dip coating method, a roller coating method, a wire bar coating method, a gravure coating method or a die coating method (US Pat. No. 2,681,294) when the aforementioned coating composition is sequentially applied. It is preferable to form a surface layer by applying it to a supporting base material, etc.
  • the coating method is a dip coating method, a roller coating method, a wire bar coating method, a gravure coating method or a die coating method (US Pat. No. 2,681,294) when the aforementioned coating composition is sequentially applied. It is preferable to form a surface layer by applying it to a supporting base material, etc.
  • FIG. 5 shows “Multilayer Slide Die Coat” to be applied
  • FIG. 6 “Multilayer Slot Die Coat” to be laminated on the substrate simultaneously with application
  • a single layer of liquid film formed on the support substrate then undried Any of “wet-on-wet coat” (FIG. 7) or the like in which another layer is laminated.
  • the liquid film applied on the support substrate or the like is dried.
  • the drying process involves heating the liquid film.
  • drying methods include heat transfer drying (adherence to high-temperature objects), convection heat transfer (hot air), radiant heat transfer (infrared rays), and others (microwave, induction heating).
  • heat transfer drying adherence to high-temperature objects
  • convection heat transfer hot air
  • radiant heat transfer infrared rays
  • microwave, induction heating microwave, induction heating
  • a further curing operation by irradiating heat or energy rays may be performed.
  • the temperature is preferably from room temperature to 200 ° C., and from the viewpoint of the activation energy of the curing reaction, 80 ° C. or more and 200 ° C.
  • the temperature is 80 ° C. or higher and 100 ° C. or lower.
  • the outermost surface can prevent oxygen inhibition, so that the oxygen concentration is preferably as low as possible, and it is more preferable to cure in a nitrogen atmosphere (nitrogen purge).
  • nitrogen purge nitrogen purge
  • the oxygen concentration is high, the hardening of the outermost surface is inhibited, and the surface hardening may be insufficient.
  • the layer forming the inside of the surface layer it is preferable because the next coating layer easily penetrates by promoting oxygen inhibition, and the mixed layer having the above-mentioned intermediate physical properties is easily formed. .
  • Examples of the ultraviolet lamp used when irradiating ultraviolet rays include a discharge lamp method, a flash method, a laser method, and an electrodeless lamp method.
  • the illuminance of UV is 100 to 3,000 mW / cm 2 , preferably 200 to 2,000 mW / cm 2 , more preferably 300 to 1,500 mW / cm 2. It is preferable to perform ultraviolet irradiation under the following conditions, and the cumulative amount of ultraviolet light is 100 to 3,000 mJ / cm 2 , preferably 200 to 2,000 mJ / cm 2 , more preferably 300 to 1,500 mJ / cm 2.
  • the illuminance of ultraviolet rays is the irradiation intensity received per unit area, and changes depending on the lamp output, the emission spectral efficiency, the diameter of the light emitting bulb, the design of the reflector, and the light source distance to the irradiated object.
  • the illuminance does not change depending on the conveyance speed.
  • the UV integrated light amount is irradiation energy received per unit area, and is the total amount of photons reaching the surface.
  • the integrated light quantity is inversely proportional to the irradiation speed passing under the light source, and is proportional to the number of irradiations and the number of lamps.
  • the laminate of the present invention can be widely used for a member having a curved surface in order to achieve both excellent surface hardness and flexibility, for example, an electrical appliance, an automobile interior member, and a building member.
  • plastic products such as glasses / sunglasses, cosmetic boxes, food containers, smartphone housings, touch panels, keyboards, home appliances such as remote controls for TVs and air conditioners, buildings, dashboards, car navigation systems, touch panels, and rooms. It can be suitably used for vehicle interior parts such as mirrors, and the surfaces of various printed materials.
  • Coating composition A1 The following materials were mixed and diluted with ethyl acetate to obtain a coating composition A1.
  • MEK methyl ethyl ketone
  • Coating composition B1 The following materials were mixed and diluted with ethyl acetate to obtain a coating composition B1.
  • Photoradical polymerization Initiator 0.15 parts by mass (“Irgacure” (registered trademark) 184 BASF Japan Ltd.).
  • Coating composition B2 The following materials were mixed and diluted with ethyl acetate to obtain a coating composition B2. ⁇ Self-healing paint 7.1 parts by mass (“Folceed” NO.521C China Paint Co., Ltd.) -92.86 mass parts of ethyl acetate.
  • Coating composition B3 The following materials were mixed and diluted with ethyl acetate to obtain a coating composition B3. ⁇ Acrylic adhesive 16.7 parts by mass (“SK Dyne” 1439U Soken Chemical Co., Ltd.) -Ethyl acetate 83.26 mass parts-Curing agent 0.08 mass part (Curing agent E-50C Soken Chemical Co., Ltd.).
  • Particle additive C Silica particle dispersion (“MEK-AC-2140Z” Nissan Chemical Industries, Ltd.)
  • Particle additive C2 Boehmite dispersion (columnar boehmite sol, manufactured by Kawaken Fine Chemical Co., Ltd.)
  • Particle additive C3 Boehmite dispersion (columnar boehmite sol, manufactured by Kawaken Fine Chemical Co., Ltd.)
  • Particle additive C4 layered silicate (“Lucentite SPN” Corp Chemical) 1 wt% IPA dispersion particle additive
  • C5 chained silica particle dispersion (“MEK-ST-UP” Nissan Chemical Industries, Ltd.)
  • Particle additive C6 Boehmite dispersion (Fibrous boehmite sol Kawaken Fine Chemical Co., Ltd.)
  • Particle additive C7 Silica particle dispersion (“MEK-ST
  • Coating compositions A and B are applied onto the supporting substrate using a wire bar, and the coating is adjusted so that the thickness of the surface layer after drying becomes the specified film thickness, and then the drying process and curing are performed under the following conditions: The process was performed. A surface layer was formed on the support substrate by sequentially repeating these series of coating, drying, and curing.
  • Table 1 shows the method for preparing the laminate, the coating composition to be used, and the theoretical film thickness of each layer corresponding to each of the examples and comparative examples.
  • “UV curing 1 curing process” Integrated light quantity: 120 mJ / cm 2 Oxygen concentration: 200 ppm or less.
  • the elastic modulus distribution in the thickness direction was obtained by performing analysis based on the Hertz theory attached to the software “IgorPro 6.22A MFP3D101010 + 1313” attached to the AFM apparatus.
  • the center of the bright line or dark line generated by the mismatch in elastic modulus between the surface layer and the embedding resin was used as a measurement reference line in the thickness direction of the surface layer.
  • the term “distance from the outermost surface” refers to the distance from the center of the bright line or dark line on the outermost surface
  • the term “distance to the outermost surface” refers to the distance from the outermost surface. The distance to the center of the bright line or dark line.
  • distance from the interface between the surface layer and the supporting substrate refers to the distance from the center of the bright line or dark line at the above-mentioned interface, and the term “distance to the interface between the surface layer and the supporting substrate”. The distance to the center of the bright line or dark line at the aforementioned interface.
  • the distance between the aforementioned surface layer-supporting substrate interface and the outermost surface was defined as the total thickness of the surface layer.
  • a data group on a straight line running through the surface layer was selected from lattice point-like measurement points with a resolution of 512 ⁇ 512.
  • the distance in the thickness direction from the interface between the surface layer and the supporting substrate at each data point is calculated from the angle formed by the straight line perpendicular to the surface layer to which the above data group belongs and the normal line of the laminate.
  • the elastic modulus distribution in the thickness direction was obtained by measuring the elastic modulus by the above-described method so as to be approximately 100 nm.
  • the point in the thickness direction from the interface between the surface layer and the supporting substrate is less than 100 nm (reference numeral 10 in FIG. 1) and the distance from the outermost surface is less than 100 nm (reference numeral 11 in FIG. 1). Since it is easily affected by the interface and surface, it was excluded from the measurement.
  • the lower limit of the distance between the measurement points that can be set practically is determined from the thickness of the surface layer and the resolution. Specifically, it is about 1/500 of the thickness of the surface layer. For example, if the thickness of the surface layer is 50 ⁇ m, the spatial resolution is about 100 nm.
  • the above-mentioned value of about 100 nm is a practically measurable value from the curvature of the cantilever, the number of measurement points, and the like.
  • the elastic modulus on the outermost surface side and the interface side there is no elasticity in the surface layer because it exists at a position 100 nm inside from the outermost surface (reference numeral 5 in FIG. 1) and at a position 100 nm inside from the interface (reference numeral 7 in FIG. 1). It selected for work and made the average value of the measurement result in each 5 places the elastic modulus of the outermost surface side and the interface side.
  • the elastic modulus of supporting substrate was measured for the supporting substrate.
  • the measurement position in the supporting substrate, from the point of the distance of 100 nm from the interface between the supporting substrate and the surface layer to the supporting substrate side (for example, reference numeral 8 in FIG. 1), the thickness direction of the supporting substrate (the surface layer exists)
  • the elastic modulus was measured at intervals of 100 nm in the direction opposite to the direction in which it was performed.
  • the elastic modulus is measured at intervals of 100 nm up to the distance), and the average value is taken as the elastic modulus of the supporting substrate.
  • the maximum elastic modulus is the maximum elastic modulus
  • the minimum elastic modulus is the minimum elastic modulus.
  • the points where the elastic modulus becomes maximum are extracted from the measurement points belonging to the surface layer, and further all of the values larger than the elastic modulus of the supporting base material are extracted from these maximum values, and Ea is obtained as an average value thereof. Obtained. Eb was also calculated in the same manner except that a minimum value was extracted instead of the maximum value and a value smaller than the elastic modulus of the support base was used.
  • the coordinates of the intersection point Calculated. Then, the distance in the thickness direction between the intersections is calculated from the calculated coordinates of each intersection, and “the thickness of the portion where the elastic modulus is higher than the elastic modulus of the supporting substrate” and “the elastic modulus is higher than the elastic modulus of the supporting substrate. “Low thickness”. Note that the thickness on the interface side with the support substrate is the distance from the surface layer-support substrate interface (reference numeral 13 in FIG.
  • the elastic modulus is the elasticity of the supporting substrate by averaging the thickness of the portion where the calculated elastic modulus is lower than the elastic modulus of the supporting substrate and the thickness of the portion where the elastic modulus is lower than the elastic modulus of the supporting substrate.
  • the average value (Ta) of the thickness of the portion higher than the modulus and the average value (Tb) of the thickness of the portion where the elastic modulus is lower than the elastic modulus of the supporting substrate were calculated.
  • the shape of the inorganic particles contained in the cross section of the surface layer was measured by observing the cross section using a transmission electron microscope (TEM).
  • the shape of the inorganic particles was measured according to the following method. First, an ultrathin section of the cross section of the laminate was taken with a TEM at a magnification of 200,000 times. Subsequently, the image is converted to gray scale using the image processing software EasyAccess Ver 6.7.1.23, and the white balance is adjusted so that the brightest and darkest parts are within the 8-bit tone curve, and the boundaries of the inorganic particles are clear. The contrast was adjusted so that it could be distinguished.
  • the pixels are binarized at the boundary described above, and individual inorganic particles are analyzed by the Analyze Particles (particle analysis) function.
  • the area of the corresponding area was extracted, and the area of the corresponding area was approximated to an ellipse by Fit Ellipse, and the value of Major was determined as the long diameter, and the value of Minor was determined as the short diameter.
  • the above analysis was performed on a total of 50 individual inorganic particles, and the maximum value of the long diameter was the long diameter Rl and the minimum value of the short diameter was the short diameter Rs.
  • the “thickness of the portion where the elastic modulus is higher than the elastic modulus of the supporting substrate” and the “elastic modulus is the supporting base” obtained by the method described in the section “Calculation of parameters from elastic modulus distribution in the thickness direction” described above.
  • the image was subdivided into strips in a direction parallel to the interface along the value of “thickness of the portion lower than the elastic modulus of the material”.
  • the software image processing software ImageJ / Developer: National Institutes of Health (NIH)
  • the pixels are binarized on the boundary described above, and each inorganic particle is analyzed by the Analyze Particles (particle analysis) function. The area formed by the particles was extracted, and the area of the corresponding area was calculated therefrom.
  • the area formed by the cut strip-shaped image was calculated, and the area ratio of the inorganic particles in the strip was calculated as the presence frequency of the inorganic particles.
  • the average value of the values obtained from the strip formed by the “thickness of the portion where the elastic modulus is higher than the elastic modulus of the supporting base material” is the elastic modulus from the elastic modulus of the supporting base material.
  • the average value of the values obtained from the strip formed by the “thickness of the portion where the elastic modulus is lower than the elastic modulus of the supporting substrate” is the portion where the elastic modulus is lower than the elastic modulus of the supporting substrate.
  • the existence frequency Fb was determined.
  • the laminate according to the present invention can also be used for imparting similar functions to the surfaces of plastic molded products, home appliances, buildings, vehicle interiors, and various printed materials.
  • Thickness 21 of the high portion The elastic modulus distribution in the thickness direction and the thickness 22 of the portion where the elastic modulus is lower than the elastic modulus of the supporting base material Among the points where the elastic modulus of the supporting base material and the surface layer are equal, the surface layer and the supporting base Point 23 closest to the interface of the material The elastic modulus of the supporting substrate and the surface layer are equal. Among consisting point, the closest point 24 multilayer slide die 25 multilayer slot die 26 monolayers slot die on the outermost surface

Abstract

Provided is a layered body in which flexibility and high surface hardness are both obtained at the same time. A layered body in which a surface layer is layered on a supporting substrate, the layered body characterized in that a maximum value at which the elastic modulus of the surface layer is higher than the elastic modulus of the supporting substrate and a minimum value at which the elastic modulus of the surface layer is lower than the elastic modulus of the supporting substrate are present in the elastic modulus distribution in the thickness direction of the surface layer, and the elastic modulus on the interface side of the surface layer with the supporting substrate and the elastic modulus of the outermost surface side of the surface layer are both higher than the elastic modulus of the supporting substrate.

Description

積層体Laminated body
 本発明は高い表面硬度と可撓性を両立した積層体に関する。 The present invention relates to a laminate having both high surface hardness and flexibility.
 従来、カラーフィルターなどの光学材料やフラットパネルディスプレーなどの表面保護(傷付き防止や防汚性付与等)を目的として、合成樹脂等からなる表面層が設けられたプラスチックフィルムが使用されている。これらの表面層には、表面保護の観点から耐擦傷性が重要な特性として要求される。そのため、一般的には、非特許文献1に記載のオルガノシラン系や多官能アクリル系などの各種プレポリマー、オリゴマー等を含む塗料組成物を、塗布-乾燥-熱もしくはUV硬化させることによる「高架橋密度材料」を用いて耐擦傷性を付与している。また、さらに各種表面修飾フィラーを組み合わせた「有機-無機ハイブリット材料」などを用いて塗膜の表面硬度を高めた、いわゆる「ハードコート材料」を用いることで耐擦傷性を付与している。 Conventionally, a plastic film provided with a surface layer made of a synthetic resin or the like has been used for the purpose of protecting the surface of optical materials such as color filters and flat panel displays (for preventing scratches and imparting antifouling properties). These surface layers are required to have scratch resistance as an important characteristic from the viewpoint of surface protection. Therefore, in general, a coating composition containing various prepolymers and oligomers such as organosilanes and polyfunctional acrylics described in Non-Patent Document 1 is coated, dried, heated, or cured by UV or UV curing. "Density material" is used to provide scratch resistance. Further, scratch resistance is imparted by using a so-called “hard coat material” in which the surface hardness of the coating film is increased using an “organic-inorganic hybrid material” combined with various surface-modified fillers.
 一方、近年ではプラスチックフィルムの軽く、柔軟であるという特性を活かし、パソコンやスマートフォンなどの表示面ばかりでなく、筐体面のような「曲面の保護」や、いわゆる「フレキシブルデバイス」と呼ばれるような柔軟性に富む筐体への利用が進みつつある。この様な用途では、表面層の耐擦傷性や打痕耐久性などの「表面硬度」に加えて、屈曲時にもひび割れや剥離などが生じにくいこと、すなわち「可撓性」を両立することが要求されている。 On the other hand, in recent years, taking advantage of the light and flexible characteristics of plastic films, not only the display surface of PCs and smartphones, but also the “curved surface protection” of the housing surface and the so-called “flexible device” The use for the housing which is rich in property is progressing. In such applications, in addition to the “surface hardness” such as the scratch resistance and dent durability of the surface layer, it is possible to achieve both “flexibility”, that is, cracking and peeling hardly occur even during bending. It is requested.
 ハードコート材料において、耐擦傷性と可撓性の両立に着目した積層体として、特許文献1および特許文献2では「ハードコート/基材間の密着、フィルム折曲げクラック、カール等を実用的許容範囲内に収めることができ、4H以上の鉛筆硬度値を有するハードコートフィルム」が開示されている。具体的には、「無機質或いは有機質の内部架橋超微粒子を含有する硬化樹脂層を設けた後、さらに無機質或いは有機質の内部架橋超微粒子を含有しないクリア硬化樹脂の薄膜を設けてなる硬化樹脂被膜層」、および「ラジカル重合型樹脂とカチオン重合型樹脂のブレンドから成る硬化樹脂被膜層とラジカル重合型樹脂のみから成る硬化樹脂被膜層をこの順に形成した2層構成から成る硬化樹脂被膜層」が提案されている。 In the hard coat material, as a laminate focusing on the compatibility between scratch resistance and flexibility, Patent Document 1 and Patent Document 2 indicate that “adhesion between hard coat / base material, film bending crack, curl and the like are practically acceptable. A “hard coat film that can fall within the range and has a pencil hardness value of 4H or higher” is disclosed. Specifically, “a cured resin coating layer formed by providing a cured resin layer containing inorganic or organic internal crosslinked ultrafine particles, and further providing a clear cured resin thin film not containing inorganic or organic internal crosslinked ultrafine particles. , And "a cured resin coating layer consisting of a two-layer structure in which a cured resin coating layer comprising a blend of a radical polymerization resin and a cationic polymerization resin and a cured resin coating layer comprising only a radical polymerization resin are formed in this order" Has been.
 一方、特許文献3には「表面硬度の向上を図るとともに、応力集中によるハードコートフィルムの損傷を防ぎ、傷付きにくいハードコートフィルム」が開示されている。具体的には、「ハードコート層が2層以上に形成されており、透明基材に最も近く形成されたハードコート層の弾性率σmが、表層のハードコート層の弾性率σsよりも高いことを特徴とするハードコートフィルム」が提案されている。 On the other hand, Patent Document 3 discloses “a hard coat film that improves surface hardness and prevents damage to the hard coat film due to stress concentration, and is hard to be damaged”. Specifically, “the hard coat layer is formed in two or more layers, and the elastic modulus σm of the hard coat layer formed closest to the transparent substrate is higher than the elastic modulus σs of the hard coat layer of the surface layer. Has been proposed.
 また、特許文献4には「簡便に作製でき、膜密着性に優れ、かつ高い膜強度、耐擦過性に優れたハードコート層付積層体」が開示されている。具体的には、「無機粒子の濃度が異なる二つの層が交互に積層された構造であり、無機粒子濃度が高い層群をA層ユニット、無機粒子濃度が低い層群をB層ユニットとしたとき、該A層ユニットの乾燥膜厚の総和ΣAhと該B層ユニットの乾燥膜厚の総和ΣBhとが、ΣAh≧ΣBhの関係を満たすことを特徴とするハードコート層付積層体」が提案されている。 Patent Document 4 discloses “a laminate with a hard coat layer that can be easily produced, has excellent film adhesion, and has high film strength and scratch resistance”. Specifically, “a structure in which two layers having different inorganic particle concentrations are alternately stacked, a layer group having a high inorganic particle concentration is an A layer unit, and a layer group having a low inorganic particle concentration is a B layer unit. A layered product with a hard coat layer in which the sum ΣAh of the dry film thickness of the A layer unit and the sum ΣBh of the dry film thickness of the B layer unit satisfy the relationship ΣAh ≧ ΣBh ”is proposed ing.
特開2000-052472号公報Japanese Patent Laid-Open No. 2000-052472 特開2000-071392号公報JP 2000-071392 A 特開2000-214791号公報JP 2000-214791 A 国際公開第2009/130975号パンフレットInternational Publication No. 2009/130975 Pamphlet
 しかしながら、前記表面層に前記「ハードコート材料」を用いたプラスチックフィルムは、表面硬度、すなわち弾性率が極めて高いために、屈曲時のわずかな変形により大きな応力が発生し、容易にひび割れが発生する。これに対して、特許文献1および特許文献2の構成は、ハードコート層の収縮による「カールの発生」を抑制するものである。特許文献1の構成、すなわち「弾性率が0.5GPaから4.5GPaの範囲のコート層の上に弾性率が1.0GPaから6.0GPaの範囲のコート層を積層してなるハードコートフィルム」、および特許文献2の構成、すなわち「弾性率が1.5GPa ~4.5GPaの範囲のコート層の上に弾性率が2.0GPa ~4.5GPaの範囲のコート層を積層してなるハードコートフィルム」について、本発明者らが調査したところ、十分な「屈曲性」を得ることができていない。 However, since the plastic film using the “hard coat material” for the surface layer has a very high surface hardness, that is, an elastic modulus, a large amount of stress is generated due to slight deformation at the time of bending, and cracks are easily generated. . On the other hand, the configurations of Patent Document 1 and Patent Document 2 suppress “curling” due to shrinkage of the hard coat layer. The configuration of Patent Document 1, that is, “a hard coat film obtained by laminating a coat layer having an elastic modulus in the range of 1.0 GPa to 6.0 GPa on a coat layer having an elastic modulus in the range of 0.5 GPa to 4.5 GPa”. And the configuration of Patent Document 2, that is, “a hard coat formed by laminating a coat layer having an elastic modulus in the range of 2.0 GPa to 4.5 GPa on a coat layer having an elastic modulus in the range of 1.5 GPa to 4.5 GPa. As a result of an investigation by the present inventors on “film”, sufficient “flexibility” has not been obtained.
 一方、特許文献3に提案されている構成は、「基材に最も近く形成されたハードコート層の弾性率σmが、表層のハードコート層の弾性率σsよりも高いこと」である。しかし、これらの構成について本発明者らが確認したところ、逆に最表層の弾性率が高い方が表面硬度には有利であることが判った。 On the other hand, the configuration proposed in Patent Document 3 is “the elastic modulus σm of the hard coat layer formed closest to the base material is higher than the elastic modulus σs of the hard coat layer of the surface layer”. However, when the present inventors confirmed these configurations, it was found that a higher elastic modulus of the outermost layer is advantageous for the surface hardness.
 更に特許文献4の構成、すなわち「無機粒子濃度が30.0体積%以上、70.0体積%以下の無機粒子濃度が高い層群と、無機粒子濃度が0体積%以上、40.0体積%以下の無機粒子濃度が低い層群が交互に積層されたハードコート層」においては、表面硬度の向上は見られるものの、樹脂材料は高架橋性の活性光線硬化樹脂から選定されているため、そもそも可撓性が得られる設計になっていない。 Further, the configuration of Patent Document 4, that is, “a group of inorganic particles having a high inorganic particle concentration of 30.0% by volume to 70.0% by volume and an inorganic particle concentration of 0% by volume to 40.0% by volume In the following “hard coat layer in which layer groups with low inorganic particle concentration are alternately laminated”, although the surface hardness is improved, the resin material is selected from highly crosslinkable actinic ray curable resin, so it can be used in the first place. The design is not flexible.
 そこで本発明の目的は、高い表面硬度と曲面での使用に耐えうる十分な可撓性を両立した積層体を提供することにある。 Therefore, an object of the present invention is to provide a laminate having both high surface hardness and sufficient flexibility to withstand use on a curved surface.
 上記課題を解決するために本発明者らは、鋭意研究を重ねた結果、以下の発明を完成させた。すなわち、本発明は以下の通りである。
(1)支持基材上に表面層が積層された積層体であって、前記表面層の厚み方向の弾性率分布において、弾性率が支持基材の弾性率よりも高い極大値と弾性率が支持基材の弾性率よりも低い極小値が存在し、前記表面層における支持基材との界面側の弾性率と最表面側の弾性率が、共に支持基材の弾性率よりも高いことを特徴とする積層体。
(2)前記表面層の厚み方向の弾性率分布における最大弾性率が、最小弾性率の100倍以上10,000倍以下であることを特徴とする(1)に記載の積層体。
(3)前記表面層の厚み方向の弾性率分布における最小弾性率が0.1GPa以下であることを特徴とする(1)または(2)に記載の積層体。
(4)前記表面層の厚み方向の弾性率分布において、弾性率が支持基材の弾性率よりも高い極大値と弾性率が支持基材の弾性率よりも低い極小値が交互に存在し、弾性率分布から算出される厚みおよび弾性率が、以下の関係を満たすことを特徴とする(1)から(3)のいずれかに記載の積層体。
10≦(Tb[nm]/Ta[nm])×(Ea[MPa])/Eb[MPa])≦1,000・・・(式1)
 Ta[nm]:弾性率が支持基材の弾性率よりも高い部分の厚みの平均値
 Tb[nm]:弾性率が支持基材の弾性率よりも低い部分の厚みの平均値
 Ea[MPa]:極大弾性率の平均値
 Eb[MPa]:極小弾性率の平均値
(5)前記表面層が以下を満たす異方形状を有する無機粒子を含むことを特徴とする、(1)から(4)のいずれかに記載の積層体。
1.2≦Rl/Rs≦20,000・・・(式2)
1nm≦Rs≦100nm・・・(式3)
Rl[nm]:無機粒子の長直径
Rs[nm]:無機粒子の短直径
(6)前記表面層の支持基材に垂直な断面における、前記異方形状を有する無機粒子の、厚み方向の存在頻度Fが以下の条件を満たすことを特徴とする(1)から(5)のいずれかに記載の積層体。
Fa<Fb・・・(式4)
Fa:弾性率が支持基材の弾性率よりも高い部分の存在頻度
Fb:弾性率が支持基材の弾性率よりも低い部分の存在頻度
In order to solve the above-mentioned problems, the present inventors have intensively studied and as a result, completed the following invention. That is, the present invention is as follows.
(1) A laminate in which a surface layer is laminated on a supporting base material, and in the elastic modulus distribution in the thickness direction of the surface layer, a maximum value and an elastic modulus are higher than the elastic modulus of the supporting base material. There is a minimum value lower than the elastic modulus of the supporting substrate, and both the elastic modulus on the interface side with the supporting substrate in the surface layer and the elastic modulus on the outermost surface side are both higher than the elastic modulus of the supporting substrate. A featured laminate.
(2) The laminate according to (1), wherein the maximum elastic modulus in the elastic modulus distribution in the thickness direction of the surface layer is 100 to 10,000 times the minimum elastic modulus.
(3) The laminate according to (1) or (2), wherein the minimum elastic modulus in the elastic modulus distribution in the thickness direction of the surface layer is 0.1 GPa or less.
(4) In the elastic modulus distribution in the thickness direction of the surface layer, there are alternately a maximum value where the elastic modulus is higher than the elastic modulus of the supporting base material and a minimum value where the elastic modulus is lower than the elastic modulus of the supporting base material, The laminated body according to any one of (1) to (3), wherein the thickness and the elastic modulus calculated from the elastic modulus distribution satisfy the following relationship:
10 ≦ (Tb [nm] / Ta [nm]) × (Ea [MPa]) / Eb [MPa]) ≦ 1,000 (Formula 1)
Ta [nm]: Average thickness of the portion where the elastic modulus is higher than the elastic modulus of the supporting substrate Tb [nm]: Average thickness of the portion where the elastic modulus is lower than the elastic modulus of the supporting substrate Ea [MPa] : Average value of maximum elastic modulus Eb [MPa]: Average value of minimum elastic modulus (5) The surface layer includes inorganic particles having anisotropic shapes satisfying the following: (1) to (4) The laminated body in any one of.
1.2 ≦ Rl / Rs ≦ 20,000 (Formula 2)
1 nm ≦ Rs ≦ 100 nm (Formula 3)
Rl [nm]: Long diameter of the inorganic particles Rs [nm]: Short diameter of the inorganic particles (6) Presence of the inorganic particles having the anisotropic shape in the thickness direction in a cross section perpendicular to the support substrate of the surface layer The laminated body according to any one of (1) to (5), wherein the frequency F satisfies the following condition.
Fa <Fb (Formula 4)
Fa: Presence frequency of a portion where the elastic modulus is higher than the elastic modulus of the supporting base material Fb: Presence frequency of a portion where the elastic modulus is lower than the elastic modulus of the supporting base material
 本発明によれば、高い表面硬度と可撓性を両立した積層体を提供できる。本発明の積層体は同等の厚みの均質な樹脂層と比較して、優れた表面硬度を有すると同時に、応力集中によるカールの発生や、折り曲げ時のクラックや塗膜の剥がれを抑制することができる。 According to the present invention, a laminate having both high surface hardness and flexibility can be provided. The laminate of the present invention has excellent surface hardness compared to a homogeneous resin layer of equivalent thickness, and at the same time, it suppresses the occurrence of curling due to stress concentration, cracking during peeling and peeling of the coating film. it can.
本発明の積層体の断面模式図と断面における厚み方向の弾性率分布の概念図である。It is a conceptual diagram of the cross-sectional schematic diagram of the laminated body of this invention, and the elastic modulus distribution of the thickness direction in a cross section. 厚み方向の弾性率分布と最大弾性率、最小弾性率の概念図である。It is a conceptual diagram of the elastic modulus distribution in the thickness direction, the maximum elastic modulus, and the minimum elastic modulus. 厚み方向の弾性率分布と極大弾性率、極小弾性率およびそれらの平均値の概念図である。It is a conceptual diagram of the elastic modulus distribution in the thickness direction, the maximum elastic modulus, the minimum elastic modulus, and the average value thereof. 厚み方向の弾性率分布と弾性率が支持基材の弾性率よりも高い部分、弾性率が支持基材の弾性率よりも低い部分の概念図である。It is a conceptual diagram of the part whose elastic modulus distribution and elastic modulus of a thickness direction are higher than the elastic modulus of a support base material, and a part whose elastic modulus is lower than the elastic modulus of a support base material. 表面層を形成する製造方法の例(多層スライドダイコート)である。It is an example (multilayer slide die coat) of the manufacturing method which forms a surface layer. 表面層を形成する製造方法の例(多層スロットダイコート)である。It is an example (multilayer slot die coat) of the manufacturing method which forms a surface layer. 表面層を形成する製造方法の例(ウェット-オン-ウェットコート)である。It is an example of a manufacturing method (wet-on-wet coat) for forming a surface layer.
 上記課題を達成するにあたり、その技術的難点は、硬度すなわち高弾性率と可撓性すなわち低弾性率の両立にある。特許文献1~4の発明はいずれも、材料の弾性率、樹脂種、もしくは粒子量により、その硬度と可撓性のバランスを調整するものであるが、これらの方法では上記課題を達成できない。その原因は可撓性の付与に使用される材料の弾性率が高すぎることにある。 In achieving the above-mentioned problem, the technical difficulty lies in both the hardness, that is, the high elastic modulus and the flexibility, that is, the low elastic modulus. In any of the inventions of Patent Documents 1 to 4, the balance between hardness and flexibility is adjusted by the elastic modulus of the material, the resin type, or the amount of particles. However, these methods cannot achieve the above-mentioned problems. The cause is that the elastic modulus of the material used for imparting flexibility is too high.
 そこで本発明者らは、まず硬度の点から「鉛筆硬度試験による傷の発生」について詳細に検討した。その結果、鉛筆硬度試験において発生する傷の形態が以下の3つに分類されることを確認した。すなわち、(1)フィルムの最表面に起因する傷、(2)フィルム内において弾性率が不連続に変化する界面に起因する傷、(3)支持基材に起因する傷である。すなわち(1)は表面層の硬度不足に起因する傷であり、(2)は界面の剥離などの層間に起因する傷、(3)は基材の折れ曲がりなどに起因するへこみである。このことから、鉛筆硬度試験による傷の発生を抑制する表面層に要求される特性は、(I)表面層の最表面が高い弾性率を有し、(II)表面層内および支持基材との界面に応力ひずみがなく、(III)基材に伝搬する応力を低減すること、の3点である。 Therefore, the present inventors first examined in detail the “occurrence of scratches by the pencil hardness test” in terms of hardness. As a result, it was confirmed that the forms of scratches generated in the pencil hardness test were classified into the following three types. That is, (1) scratches caused by the outermost surface of the film, (2) scratches caused by the interface in which the elastic modulus changes discontinuously in the film, and (3) scratches caused by the supporting substrate. That is, (1) is a scratch caused by insufficient hardness of the surface layer, (2) is a scratch caused by an interlayer such as interface peeling, and (3) is a dent caused by bending of the substrate. From this, the properties required for the surface layer to suppress the occurrence of scratches by the pencil hardness test are (I) the outermost surface layer has a high elastic modulus, and (II) the surface layer and the supporting substrate There is no stress strain at the interface of (III), and (III) the stress propagating to the substrate is reduced.
 そして上記の設計指針を基に本発明者らが検討を実施したところ、後述する条件を満たす表面層が、表面の硬度を維持したまま、弾性率が支持基材の弾性率よりも低い材料を組み込むことが可能であることを見出した。すなわち、本発明者らは積層体の表面層として、前述のように優れた表面硬度を有すると同時に、応力集中によるカールの発生や、折り曲げ時のクラックや塗膜の剥がれを抑制する表面層を有する積層体を見出した。以下に図を用いて説明する。 And when the present inventors conducted an examination based on the above design guidelines, a surface layer that satisfies the conditions described later is a material whose elastic modulus is lower than the elastic modulus of the supporting base material while maintaining the surface hardness. It was found that it can be incorporated. That is, the present inventors have a surface layer that has excellent surface hardness as described above, and suppresses the occurrence of curling due to stress concentration, cracks during bending, and peeling of the coating film as the surface layer of the laminate. The laminated body which has is found. This will be described below with reference to the drawings.
 まず、本発明の積層体は、図1に示すように支持基材1の一方の面に表面層2が積層された積層体3である。そして、表面層2は、その厚み方向に不均一な弾性率分布を有している。なお、表面層の弾性率は、後述の条件を満たせば弾性率の異なる複数の層が積層された積層体であってもよいし、同じ1つの層内で厚み方向に弾性率が異なっているような層であってもよい。 First, the laminate of the present invention is a laminate 3 in which a surface layer 2 is laminated on one surface of a support base 1 as shown in FIG. The surface layer 2 has a nonuniform elastic modulus distribution in the thickness direction. The elastic modulus of the surface layer may be a laminate in which a plurality of layers having different elastic moduli are laminated as long as the conditions described later are satisfied, and the elastic modulus is different in the thickness direction within the same layer. Such a layer may be used.
 また、本発明における「積層体断面の弾性率」は原子間力顕微鏡により測定される。原子間力顕微鏡による弾性率測定は、極微小部分の探針による圧縮試験であり、押し付け力による変形度合いを測定する。そのため、ばね定数が既知のカンチレバーを用いて、表面層の厚み方向の各位置の断面における弾性率を測定する。具体的には積層体を切断し、表面層の厚み方向の各位置の断面における弾性率を原子間力顕微鏡により測定する。詳細は実施例の項で記載するが、下記に示す原子間力顕微鏡を用い、カンチレバー先端の探針を、表面層の断面に接触させ、55nNの押し付け力によりフォースカーブを測定して求めたカンチレバーの撓み量を測定することができる。またこの時、厚み方向の空間分解能については原子間力顕微鏡のスキャン範囲およびスキャンライン数に依存するが、現実的な測定条件では、概ね50nm程度が下限である。詳細および測定方法については後述する。 Further, the “elastic modulus of the cross section of the laminate” in the present invention is measured by an atomic force microscope. Elastic modulus measurement with an atomic force microscope is a compression test with a probe of a very small portion, and measures the degree of deformation due to pressing force. Therefore, using a cantilever with a known spring constant, the elastic modulus in the cross section at each position in the thickness direction of the surface layer is measured. Specifically, the laminate is cut, and the elastic modulus in the cross section at each position in the thickness direction of the surface layer is measured with an atomic force microscope. Details will be described in the Examples section, but the cantilever obtained by using the atomic force microscope shown below, contacting the tip of the cantilever tip to the cross section of the surface layer, and measuring the force curve with a pressing force of 55 nN Can be measured. At this time, the spatial resolution in the thickness direction depends on the scanning range of the atomic force microscope and the number of scanning lines, but under realistic measurement conditions, the lower limit is approximately 50 nm. Details and a measuring method will be described later.
 原子間力顕微鏡:アサイラムテクノロジー社製 MFP-3DSA-J
 カンチレバー:NANOSENSORS製のカンチレバー「R150-NCL-10(材質Si、ばね定数48N/m、先端の曲率半径150nm)。
以下、表面層の弾性率の好ましい形態について説明する。
Atomic force microscope: MFP-3DSA-J manufactured by Asylum Technology
Cantilever: A cantilever “R150-NCL-10 made by NANOSENSORS (material Si, spring constant 48 N / m, radius of curvature of the tip 150 nm).
Hereinafter, the preferable form of the elasticity modulus of a surface layer is demonstrated.
 [支持基材の弾性率と表面層の弾性率]
 まず図2に示されるような、表面層の厚みを横軸に、前記の方法で測定した断面の弾性率を縦軸にプロットした「表面層の厚み方向の弾性率分布」において、「支持基材断面の弾性率9と比較して弾性率が高い部分と弾性率が低い部分とが存在すること」が好ましい。前述の弾性率が高い部分を有さない場合には、表面層の弾性率が不足するため、十分な硬度を得ることができない場合がある。また、反対に前述の弾性率が低い部分を有さない場合には、可撓性、特に折り曲げに対するクラックの抑制が不十分となり、課題を達成することができない場合がある。なお「表面層の厚み方向の弾性率分布」は、図2では連続する曲線として表現されているが、現実的には100nm間隔で測定されたデータ点の集合である。100nm未満の間隔での微細な弾性率の変化については、積層体の硬度、もしくは可撓性に与える影響が少ないことから、上記の測定条件で検出されない弾性率変化の影響は現実的には無視することができる。なお「表面層の厚み方向の弾性率分布」の測定方法の詳細については後述する。
[The elastic modulus of the supporting substrate and the elastic modulus of the surface layer]
First, as shown in FIG. 2, in the “elastic modulus distribution in the thickness direction of the surface layer” plotted with the thickness of the surface layer on the horizontal axis and the elastic modulus of the cross section measured by the above method on the vertical axis, It is preferable that a portion having a higher elastic modulus and a portion having a lower elastic modulus than the elastic modulus 9 of the material cross section exist. When there is no portion having a high elastic modulus as described above, the surface layer has insufficient elastic modulus, so that sufficient hardness may not be obtained. On the other hand, when there is no portion having a low elastic modulus, there is a case where flexibility, in particular, suppression of cracking against bending becomes insufficient, and the problem cannot be achieved. The “elastic modulus distribution in the thickness direction of the surface layer” is expressed as a continuous curve in FIG. 2, but is actually a set of data points measured at intervals of 100 nm. The change in elastic modulus at intervals less than 100 nm has little effect on the hardness or flexibility of the laminate, so the effect of elastic modulus change that is not detected under the above measurement conditions is practically ignored. can do. The details of the method of measuring the “elastic modulus distribution in the thickness direction of the surface layer” will be described later.
 [最表面側の弾性率と支持基材との界面側の弾性率]
 本発明における最表面側の弾性率と界面側の弾性率は共に支持基材の弾性率よりも高いことが好ましい。ここで、「最表面」とは、表面層の最表面をいう。また、「界面」とは、表面層と支持基材との界面(すなわち、表面層と支持基材との境界線)をいう。最表面側の弾性率が支持基材の弾性率よりも低い場合には、内部に弾性率がより高い部分があっても傷が付きやすくなる場合がある。また界面側の弾性率が支持基材の弾性率よりも低い場合には、支持基材に起因する傷が生じやすくなる場合がある。特に最表面側の弾性率は表面層の中で最も高いことが好ましい。ここで「最表面側の弾性率」とは表面層における最表面の弾性率である。ただし断面における弾性率測定において、真の最表面に位置する図1の4線上の弾性率は正確な表面層の値とはならないことから、現実には最表面から100nm内側の測定点5の値を「最表面側の弾性率」とする。また、「界面側の弾性率」とは、表面層と支持基材との界面における弾性率をいう。ただし、ただし断面における弾性率測定において、真の界面に位置する図1の6線上の弾性率は正確な界面の値とはならないことから、現実には表面層と支持基材との境界線6から100nm表面層側の測定値7を「界面側の弾性率」とする。
[Elastic modulus of outermost surface and elastic modulus of interface with supporting substrate]
In the present invention, it is preferable that both the elastic modulus on the outermost surface side and the elastic modulus on the interface side are higher than the elastic modulus of the supporting substrate. Here, the “outermost surface” refers to the outermost surface of the surface layer. The “interface” refers to the interface between the surface layer and the supporting substrate (that is, the boundary line between the surface layer and the supporting substrate). When the elastic modulus on the outermost surface side is lower than the elastic modulus of the supporting base material, even if there is a portion with a higher elastic modulus inside, it may be easily damaged. Further, when the elastic modulus on the interface side is lower than the elastic modulus of the supporting base material, scratches caused by the supporting base material may easily occur. In particular, the elastic modulus on the outermost surface side is preferably the highest in the surface layer. Here, the “elastic modulus on the outermost surface side” is the elastic modulus of the outermost surface in the surface layer. However, in measuring the modulus of elasticity in the cross section, the modulus of elasticity on line 4 in FIG. 1 located on the true outermost surface is not an accurate value of the surface layer. Is the “elastic modulus on the outermost surface side”. The “elastic modulus on the interface side” refers to the elastic modulus at the interface between the surface layer and the support substrate. However, in the measurement of the elastic modulus in the cross section, the elastic modulus on the line 6 in FIG. 1 located at the true interface does not become an accurate value of the interface, so in reality, the boundary line 6 between the surface layer and the supporting substrate The measured value 7 on the 100 nm surface layer side is defined as “interface side elastic modulus”.
 [最大弾性率と最小弾性率]
 一方、表面層の厚み方向の弾性率分布(図2)において、表面層における弾性率の最大値である「最大弾性率14」と、表面層における弾性率の最小値である「最小弾性率15」の間には好ましい関係が存在する。具体的には最大弾性率が最小弾性率の100倍以上10,000倍以下であることが好ましい。最大弾性率と最小弾性率の関係が前述の範囲にない場合、具体的には100倍よりも小さい場合には、硬度もしくは可撓性のいずれかの物性が不足し、両者の両立が難しくなる場合がある。一方、10,000倍を超える場合には、急激な弾性率変化により表面層内にひずみが生じやすくなり、鉛筆硬度の低下や膜の剥離が起こりやすくなる場合がある。
[Maximum modulus and minimum modulus]
On the other hand, in the elastic modulus distribution in the thickness direction of the surface layer (FIG. 2), the “maximum elastic modulus 14” that is the maximum elastic modulus in the surface layer and the “minimum elastic modulus 15” that is the minimum elastic modulus in the surface layer. There is a favorable relationship between “ Specifically, the maximum elastic modulus is preferably 100 times or more and 10,000 times or less than the minimum elastic modulus. When the relationship between the maximum elastic modulus and the minimum elastic modulus is not within the above-mentioned range, specifically, when it is smaller than 100 times, either physical property of hardness or flexibility is insufficient, and it becomes difficult to achieve both. There is a case. On the other hand, when it exceeds 10,000 times, a sudden change in elastic modulus tends to cause distortion in the surface layer, which may lead to a decrease in pencil hardness and peeling of the film.
 さらに最小弾性率15には好ましい数値範囲が存在する。具体的には0.1GPa以下であることが好ましく、0.05GPa以下であることがより好ましく、0.01GPa以下であることが特に好ましい。最小弾性率が0.1GPaよりも高い場合には、前述の可撓性が不足しやすくなり、クラックやカールの発生が起こりやすくなる場合がある。 Furthermore, there is a preferable numerical range for the minimum elastic modulus 15. Specifically, it is preferably 0.1 GPa or less, more preferably 0.05 GPa or less, and particularly preferably 0.01 GPa or less. When the minimum elastic modulus is higher than 0.1 GPa, the aforementioned flexibility is likely to be insufficient, and cracks and curls are likely to occur.
 ここで「最大弾性率」とは、後述する方法により測定した表面層の厚み方向の弾性率分布における弾性率の最大値をいう。また、「最小弾性率」とは、後述する方法により測定した表面層の厚み方向の弾性率分布における弾性率の最小値をいう。 Here, the “maximum elastic modulus” refers to the maximum value of the elastic modulus in the elastic modulus distribution in the thickness direction of the surface layer measured by the method described later. The “minimum elastic modulus” refers to the minimum value of the elastic modulus in the elastic modulus distribution in the thickness direction of the surface layer measured by the method described later.
 [極大弾性率および極小弾性率と厚みの関係]
 更に表面層内に、応力に対する変形ひずみを発生させにくくする構造として、弾性率と厚みの間には好ましい関係が存在する。具体的には、表面層の厚み方向の弾性率分布において、図3に示すように、弾性率が支持基材の弾性率9よりも高い極大値(極大弾性率16)と弾性率が支持基材の弾性率9より低い極小値(極小弾性率18)が存在することが好ましい。また、表面層の厚み方向の弾性率分布において、表面層における支持基材との界面側の弾性率と最表面側の弾性率が、共に支持基材の弾性率よりも高いことが好ましい。さらには、表面層の厚み方向の弾性率分布において、図4に示すように、弾性率が支持基材の弾性率9よりも高い極大値(極大弾性率16)と、弾性率が支持基材の弾性率9よりも低い極小値(極小弾性率18)が「交互に」存在し、かつ弾性率が支持基材の弾性率9よりも高い部分の厚み20の平均値と、弾性率が支持基材の弾性率9よりも低い部分の厚み21の平均値が以下の関係式を満たすことがより好ましい。
10≦(Tb[nm]/Ta[nm])×(Ea[MPa])/Eb[MPa])≦1,000
 ここでTa[nm]は弾性率が支持基材の弾性率よりも高い部分の厚みの平均値であり、Tb[nm]は弾性率が支持基材の弾性率よりも低い部分の厚みの平均値であり、Ea[MPa]は極大弾性率の平均値17であり、Eb[MPa]は極小弾性率の平均値19である。
[Relationship between maximum and minimum elastic modulus and thickness]
Further, there is a preferable relationship between the elastic modulus and the thickness as a structure that makes it difficult to generate deformation strain due to stress in the surface layer. Specifically, in the elastic modulus distribution in the thickness direction of the surface layer, as shown in FIG. 3, the maximum value (maximum elastic modulus 16) and the elastic modulus are higher than the elastic modulus 9 of the supporting substrate. It is preferable that a minimum value (minimum elastic modulus 18) lower than the elastic modulus 9 of the material exists. Moreover, in the elastic modulus distribution in the thickness direction of the surface layer, it is preferable that both the elastic modulus on the interface side of the surface layer with the supporting substrate and the elastic modulus on the outermost surface side are higher than the elastic modulus of the supporting substrate. Furthermore, in the elastic modulus distribution in the thickness direction of the surface layer, as shown in FIG. 4, a maximum value (maximum elastic modulus 16) in which the elastic modulus is higher than the elastic modulus 9 of the supporting substrate, and the elastic modulus is the supporting substrate. The minimum value (minimum elastic modulus 18) lower than the elastic modulus 9 is “alternately” and the average value of the thickness 20 of the portion where the elastic modulus is higher than the elastic modulus 9 of the supporting base material and the elastic modulus is supported. It is more preferable that the average value of the thickness 21 of the portion lower than the elastic modulus 9 of the base material satisfies the following relational expression.
10 ≦ (Tb [nm] / Ta [nm]) × (Ea [MPa]) / Eb [MPa]) ≦ 1,000
Here, Ta [nm] is the average value of the thickness of the portion where the elastic modulus is higher than the elastic modulus of the supporting substrate, and Tb [nm] is the average value of the thickness of the portion where the elastic modulus is lower than the elastic modulus of the supporting substrate. Ea [MPa] is the average value 17 of the maximum elastic modulus, and Eb [MPa] is the average value 19 of the minimum elastic modulus.
 ここで、弾性率が支持基材の弾性率よりも高い極大値(極大弾性率16)とは、弾性率が支持基材の弾性率よりも高く、かつ図3に示すように、表面層の厚みと弾性率との関係をグラフ化した場合、極大値(傾きがゼロとなる値)をいう。また、弾性率が支持基材の弾性率より低い極小値(極小弾性率18)とは、弾性率が支持基材の弾性率よりも低く、かつ図3に示すように、表面層の厚みと弾性率との関係をグラフ化した場合、極小値(傾きがゼロとなる値)をいう。 Here, the maximum value (maximum elastic modulus 16) in which the elastic modulus is higher than the elastic modulus of the supporting base material means that the elastic modulus is higher than the elastic modulus of the supporting base material and, as shown in FIG. When the relationship between the thickness and the elastic modulus is graphed, it means a maximum value (a value at which the slope becomes zero). Moreover, the minimum value (minimum elastic modulus 18) in which the elastic modulus is lower than the elastic modulus of the supporting base material is that the elastic modulus is lower than the elastic modulus of the supporting base material and, as shown in FIG. When the relationship with the elastic modulus is graphed, it means a minimum value (a value at which the slope becomes zero).
 また、表面層の厚み方向の弾性率分布において、弾性率が支持基材の弾性率よりも高い極大値と弾性率が支持基材の弾性率よりも低い極小値が交互に存在するとは、実施例の項に記載された方法にて表面層の厚み方向の弾性率分布を測定したとき、以下の(1)~(4)の要件すべてを満たすことをいう。
(1)極大値と極小値がそれぞれ少なくとも各2個ずつ存在する。
(2)支持基材の弾性率よりも高い弾性率である極小値がない。
(3)支持基材の弾性率よりも低い弾性率である極大値がない。
(4)極大値と極小値を厚み方向に順に並べたとき、(i)極大値-極小値-極大値-極小値または(ii)極小値-極大値-極小値-極大値となる順列が少なくとも1つ存在する。
Further, in the elastic modulus distribution in the thickness direction of the surface layer, there are alternately a maximum value whose elastic modulus is higher than that of the supporting substrate and a minimum value whose elastic modulus is lower than that of the supporting substrate. Satisfying the following requirements (1) to (4) when the elastic modulus distribution in the thickness direction of the surface layer is measured by the method described in the example section.
(1) There are at least two local maximums and local minimums.
(2) There is no minimum value that is an elastic modulus higher than the elastic modulus of the supporting substrate.
(3) There is no maximum value that is an elastic modulus lower than the elastic modulus of the supporting substrate.
(4) When the maximum value and the minimum value are arranged in order in the thickness direction, there is a permutation in which (i) maximum value-minimum value-maximum value-minimum value or (ii) minimum value-maximum value-minimum value-maximum value There is at least one.
 さらに、「弾性率が支持基材の弾性率よりも高い部分の厚みの平均値」とは、表面層内に存在する弾性率が支持基材の弾性率よりも高い部分それぞれの厚みを平均した値をいう。さらに、「弾性率が支持基材の弾性率よりも低い部分の厚みの平均値」とは、表面層内に存在する弾性率が支持基材の弾性率よりも低い部分それぞれの厚みを平均した値をいう。 Furthermore, “the average value of the thickness of the portion where the elastic modulus is higher than the elastic modulus of the supporting base material” is the average of the thickness of each portion where the elastic modulus existing in the surface layer is higher than the elastic modulus of the supporting base material. Value. Furthermore, “the average value of the thickness of the portion where the elastic modulus is lower than the elastic modulus of the supporting substrate” means the average thickness of each portion where the elastic modulus existing in the surface layer is lower than the elastic modulus of the supporting substrate. Value.
 また、極大弾性率の平均値とは、表面層内に存在する支持基材の弾性率より高い弾性率を有する極大値の平均値であり、極小弾性率の平均値とは、表面層内に存在する支持基材の弾性率より低い弾性率を有する極小値の平均値である
 前述のような弾性率を実現する表面層の構成としては、弾性率の高い層、すなわち硬い層と弾性率の低い層、すなわち軟らかい層が交互に積層された「多層構造」や、もしくは明確な界面が存在しない一体の層でありながら、粒子、樹脂などの構成成分の偏りにより弾性率に分布を有するような「傾斜構造」などが挙げられる。表面層の構造、およびその製造方法の詳細については[積層体の製造方法]の項に後述する。
Moreover, the average value of the maximum elastic modulus is the average value of the maximum values having an elastic modulus higher than the elastic modulus of the supporting substrate existing in the surface layer, and the average value of the minimum elastic modulus is the value in the surface layer. The structure of the surface layer that realizes the above-mentioned elastic modulus, which is the average value of the minimum values having an elastic modulus lower than the elastic modulus of the existing supporting substrate, is a layer having a high elastic modulus, that is, a hard layer and an elastic modulus. A low layer, that is, a “multi-layer structure” in which soft layers are alternately stacked, or an integral layer without a clear interface, but having a distribution in elastic modulus due to bias of constituent components such as particles and resins For example, “inclined structure”. Details of the structure of the surface layer and the manufacturing method thereof will be described later in the section of [Manufacturing Method of Laminate].
 前述の関係式は、表面層を構成する成分の弾性率と厚みの比率を基に規定した積層体の「可撓性」を表すパラメータである。このパラメータが大きくなることは、Tbすなわち「弾性率が支持基材の弾性率よりも低い部分の厚み」が相対的に大きくなる、もしくはEbすなわち「極小弾性率」が相対的に小さくなることに対応しており、いずれも積層体が軟らかくになることに相当する。反対にこのパラメータが小さくなることは、積層体の硬度が増すことに相当する。 The above-mentioned relational expression is a parameter representing the “flexibility” of the laminate defined based on the ratio between the elastic modulus and thickness of the components constituting the surface layer. The increase in this parameter means that Tb, that is, “the thickness of the portion where the elastic modulus is lower than the elastic modulus of the supporting substrate” is relatively large, or that Eb, that is, “minimum elastic modulus” is relatively small. All correspond to the softening of the laminate. Conversely, a decrease in this parameter corresponds to an increase in the hardness of the laminate.
 具体的には前述の関係式が10よりも小さい場合には表面層全体としての可撓性が不足しやすくなり、クラックやカールの発生が起こりやすくなる場合がある。一方で、1,000よりも大きい場合には表面層全体として硬度が不足しやすくなり、特に界面での剥離や鉛筆硬度の低下が引き起こされる場合がある。 Specifically, when the above relational expression is smaller than 10, the flexibility of the entire surface layer is likely to be insufficient, and cracks and curls are likely to occur. On the other hand, if it is larger than 1,000, the hardness of the entire surface layer tends to be insufficient, and peeling at the interface and a decrease in pencil hardness may be caused.
 前述の関係式を弾性率の高い成分Aと弾性率の低い成分Bに分解すると、「Ea/Ta」および「Eb/Tb」すなわち「(弾性率)/(塗膜厚み)」に分解することができる。一方、バネに働く合力を考える際に、「バネの長さ」は「バネ定数」と反比例の関係にある値であり、一般に長さが増すほどにバネ定数の値は小さくなる。ここで厚み方向への押し込みを考える際に、「塗膜の厚み」は、すなわち「バネの長さ」に相当する値であり、厚みが厚いほどそのバネ定数を低く見積もる必要がある。従って、前述の関係式は「塗膜厚みで補正したバネ定数」の好ましい数値範囲と考えることができる。
以下、本発明の実施の形態を詳細に説明する。
When the above relational expression is decomposed into a component A having a high elastic modulus and a component B having a low elastic modulus, it is decomposed into “Ea / Ta” and “Eb / Tb”, that is, “(elastic modulus) / (film thickness)”. Can do. On the other hand, when considering the resultant force acting on the spring, the “spring length” is a value that is inversely proportional to the “spring constant”, and generally the value of the spring constant decreases as the length increases. Here, when considering indentation in the thickness direction, the “coating thickness” is a value corresponding to the “spring length”, and the thicker the thickness, the lower the spring constant needs to be estimated. Therefore, the above-mentioned relational expression can be considered as a preferable numerical range of “spring constant corrected by coating film thickness”.
Hereinafter, embodiments of the present invention will be described in detail.
 [積層体、および表面層]
 本発明における「表面層」とは、支持基材上に形成された層をいい、前記表面層および支持基材を含む一連の層を全て統合したものを「積層体」と呼ぶ。すなわち、支持基材上に層が1層のみ形成されている場合は、当該1層が「表面層」となる。また、例えば支持基材上に層が2層以上形成されている場合は、支持基材を除いた当該2層以上の層すべてを1つの「表面層」というものとする。
[Laminated body and surface layer]
The “surface layer” in the present invention refers to a layer formed on a support substrate, and a combination of all the series of layers including the surface layer and the support substrate is referred to as a “laminate”. That is, when only one layer is formed on the support base material, the one layer becomes a “surface layer”. For example, when two or more layers are formed on a supporting base material, all the two or more layers excluding the supporting base material are referred to as one “surface layer”.
 ここで「層」とは、積層体の表面側から厚み方向に向かって、厚み方向に隣接する部位と境界面を有することにより区別でき、かつ有限の厚みを有する部位を指す。より具体的には、前記積層体の断面を電子顕微鏡(透過型、走査型)または光学顕微鏡にて断面観察した際、不連続な境界面の有無により区別されるものを指す。本発明の積層体は、前述の物性を示す表面層を有していれば平面状態、または成型された後の3次元形状のいずれであってもよい。前記表面層全体の厚みは特に限定はないが、1μm以上50μm以下が好ましく、3μm以上20μm以下がより好ましい。 Here, the “layer” refers to a portion having a finite thickness that can be distinguished from the surface side of the laminate in the thickness direction by having a boundary surface and a portion adjacent to the thickness direction. More specifically, when the cross section of the said laminated body is cross-sectional-observed with an electron microscope (a transmission type, a scanning type) or an optical microscope, it points out what is distinguished by the presence or absence of a discontinuous interface. The laminate of the present invention may be in a planar state or a three-dimensional shape after being molded as long as it has a surface layer exhibiting the above-mentioned physical properties. The thickness of the entire surface layer is not particularly limited, but is preferably 1 μm or more and 50 μm or less, and more preferably 3 μm or more and 20 μm or less.
 前記積層体は本発明の課題としている耐擦傷性、特に反復擦過耐性と成型性の両立のほかに、防汚性、反射防止性、帯電防止性、防汚性、導電性、熱線反射性、近赤外線吸収性、電磁波遮蔽性、易接着等の他の機能を有する層を有してもよく、これらの機能が前記表面層に付与されていてもよい。 In addition to the scratch resistance, particularly the repeated scratch resistance and moldability, the laminate is a subject of the present invention, as well as antifouling properties, antireflection properties, antistatic properties, antifouling properties, electrical conductivity, heat ray reflectivity, You may have a layer which has other functions, such as near-infrared absorptivity, electromagnetic wave shielding, and easy adhesion, and these functions may be provided to the said surface layer.
 [支持基材]
 本発明の積層体に用いられる支持基材を構成する材料は、熱可塑性樹脂、熱硬化性樹脂のいずれでもよく、ホモ樹脂であってもよく、共重合または2種類以上のブレンドであってもよい。より好ましくは、支持基材を構成する樹脂は、成型性の点から熱可塑性樹脂が好ましい。
[Supporting substrate]
The material constituting the support substrate used in the laminate of the present invention may be either a thermoplastic resin or a thermosetting resin, may be a homo resin, may be a copolymer or a blend of two or more types. Good. More preferably, the resin constituting the support substrate is preferably a thermoplastic resin from the viewpoint of moldability.
 熱可塑性樹脂の例としては、ポリエチレン、ポリプロピレン、ポリスチレンおよびポリメチルペンテンなどのポリオレフィン樹脂、脂環族ポリオレフィン樹脂、ナイロン6およびナイロン66などのポリアミド樹脂、アラミド樹脂、ポリエステル樹脂、ポリカーボネート樹脂、ポリアリレート樹脂、ポリアセタール樹脂、ポリフェニレンサルファイド樹脂、4フッ化エチレン樹脂、3フッ化エチレン樹脂、3フッ化塩化エチレン樹脂、4フッ化エチレン-6フッ化プロピレン共重合体、フッ化ビニリデン樹脂などのフッ素樹脂、アクリル樹脂、メタクリル樹脂、ポリアセタール樹脂、ポリグリコール酸樹脂、ポリ乳酸樹脂などを用いることができる。熱可塑性樹脂は、十分な延伸性と追従性を備える樹脂が好ましい。熱可塑性樹脂は、強度・耐熱性・透明性の観点から、ポリエステル樹脂、もしくはポリカーボネート樹脂、メタクリル樹脂であることがより好ましく、ポリエステル樹脂が特に好ましい。 Examples of thermoplastic resins include polyolefin resins such as polyethylene, polypropylene, polystyrene and polymethylpentene, alicyclic polyolefin resins, polyamide resins such as nylon 6 and nylon 66, aramid resins, polyester resins, polycarbonate resins and polyarylate resins. Fluorine resins such as polyacetal resin, polyphenylene sulfide resin, tetrafluoroethylene resin, trifluoroethylene resin, trifluoroethylene resin, tetrafluoroethylene-6-fluoropropylene copolymer, vinylidene fluoride resin, acrylic Resins, methacrylic resins, polyacetal resins, polyglycolic acid resins, polylactic acid resins, and the like can be used. The thermoplastic resin is preferably a resin having sufficient stretchability and followability. The thermoplastic resin is more preferably a polyester resin, a polycarbonate resin, or a methacrylic resin from the viewpoint of strength, heat resistance, and transparency, and a polyester resin is particularly preferable.
 本発明におけるポリエステル樹脂とは、エステル結合を主鎖の主要な結合鎖とする高分子の総称であって、酸成分およびそのエステルとジオール成分の重縮合によって得られる。具体例としてはポリエチレンテレフタレート、ポリプロピレンテレフタレート、ポリエチレン-2,6-ナフタレート、ポリブチレンテレフタレートなどを挙げることができる。またこれらに酸成分やジオール成分として他のジカルボン酸およびそのエステルやジオール成分を共重合したものであってもよい。これらの中でも透明性、寸法安定性、耐熱性などの点でポリエチレンテレフタレート、ポリエチレン-2,6-ナフタレートが特に好ましい。 The polyester resin in the present invention is a general term for polymers having an ester bond as a main bond chain, and is obtained by polycondensation of an acid component and its ester with a diol component. Specific examples include polyethylene terephthalate, polypropylene terephthalate, polyethylene-2,6-naphthalate, polybutylene terephthalate, and the like. These may be copolymerized with other dicarboxylic acids and their esters or diol components as acid components or diol components. Among these, polyethylene terephthalate and polyethylene-2,6-naphthalate are particularly preferable in terms of transparency, dimensional stability, heat resistance and the like.
 また、支持基材には、各種添加剤、例えば、酸化防止剤、帯電防止剤、結晶核剤、無機粒子、有機粒子、減粘剤、熱安定剤、滑剤、赤外線吸収剤、紫外線吸収剤、屈折率調整のためのドープ剤などが添加されていてもよい。支持基材は、単層構成、積層構成のいずれであってもよい。 In addition, for the support substrate, various additives such as antioxidants, antistatic agents, crystal nucleating agents, inorganic particles, organic particles, viscosity reducers, thermal stabilizers, lubricants, infrared absorbers, ultraviolet absorbers, A dopant for adjusting the refractive index may be added. The support substrate may be either a single layer configuration or a laminated configuration.
 支持基材の表面には、前記表面層を形成する前に各種の表面処理を施すことも可能である。表面処理の例としては、薬品処理、機械的処理、コロナ放電処理、火焔処理、紫外線照射処理、高周波処理、グロー放電処理、活性プラズマ処理、レーザー処理、混酸処理およびオゾン酸化処理が挙げられる。これらの中でもグロー放電処理、紫外線照射処理、コロナ放電処理および火焔処理が好ましく、グロー放電処理と紫外線処理がさらに好ましい。 The surface of the support substrate can be subjected to various surface treatments before forming the surface layer. Examples of the surface treatment include chemical treatment, mechanical treatment, corona discharge treatment, flame treatment, ultraviolet irradiation treatment, high frequency treatment, glow discharge treatment, active plasma treatment, laser treatment, mixed acid treatment and ozone oxidation treatment. Among these, glow discharge treatment, ultraviolet irradiation treatment, corona discharge treatment and flame treatment are preferred, and glow discharge treatment and ultraviolet treatment are more preferred.
 また、支持基材の表面には、本発明の表面層とは別に易接着層、帯電防止層、アンダーコート層、紫外線吸収層などの機能性層をあらかじめ設けることも可能であり、特に易接着層を設けることが好ましい。 In addition to the surface layer of the present invention, a functional layer such as an easy-adhesion layer, an antistatic layer, an undercoat layer, and an ultraviolet absorption layer can be provided in advance on the surface of the support substrate. It is preferable to provide a layer.
 なお、本発明における支持基材の弾性率とは、後述する方法で測定した支持基材の弾性率のことをいう。ここで、弾性率分布を持たない支持基材であっても、厚み方向に弾性率分布を有する支持基材であっても後述する方法で測定した弾性率を支持基材の弾性率という。 In addition, the elasticity modulus of the support base material in this invention means the elasticity modulus of the support base material measured by the method mentioned later. Here, even if it is a support base material which does not have elastic modulus distribution, even if it is a support base material which has elastic modulus distribution in the thickness direction, the elastic modulus measured by the method mentioned later is called elastic modulus of a support base material.
 [塗料組成物]
 本発明の積層体は、支持基材上に後述する積層体の製造方法を用いて、塗料組成物を塗布、乾燥、硬化することで、前述の物性を達成可能な構造を持つ表面層を形成することができる。ここで「塗料組成物」とは、溶媒と溶質からなる液体であり、前述の支持基材上に塗布し、溶媒を乾燥工程で揮発、除去、硬化することにより表面層を形成可能な材料を指す。ここで、塗料組成物の「種類」とは、塗料組成物を構成する溶質の種類が一部でも異なる液体を指す。この溶質は、樹脂もしくは塗布プロセス内でそれらを形成可能な材料(以降これを前駆体と呼ぶ)、粒子、および重合開始剤、硬化剤、触媒、レベリング剤、紫外線吸収剤、酸化防止剤等の各種添加剤からなる。
[Coating composition]
The laminate of the present invention forms a surface layer having a structure capable of achieving the above-mentioned physical properties by applying, drying and curing a coating composition on a supporting substrate using a laminate production method described later. can do. Here, the “coating composition” is a liquid composed of a solvent and a solute, and is a material that can be applied to the above-mentioned supporting substrate and volatilized, removed, and cured in a drying process to form a surface layer. Point to. Here, the “type” of the coating composition refers to liquids that are different in part even in the type of solute constituting the coating composition. This solute is a resin or a material that can form them in the coating process (hereinafter referred to as a precursor), particles, and polymerization initiators, curing agents, catalysts, leveling agents, ultraviolet absorbers, antioxidants, etc. Consists of various additives.
 本発明の表面層は、前述の「支持基材断面の弾性率と比較して弾性率が高い部分」を形成可能な塗料組成物Aと「弾性率が低い部分」を形成可能な塗料組成物Bの、少なくとも2種類の塗料組成物を用い、支持基材上に逐次塗布、もしくは同時塗布することにより形成することが好ましい。 The surface layer of the present invention comprises a coating composition A capable of forming the aforementioned “part having a higher elastic modulus than the elastic modulus of the cross section of the supporting substrate” and a coating composition capable of forming a “part having a lower elastic modulus”. It is preferable to form by using at least two types of coating compositions of B and sequentially or simultaneously coating on a supporting substrate.
 [塗料組成物A]
 塗料組成物Aとしては、高弾性率の塗布層を形成するハードコート塗材を好適に用いることができる。塗布層単層膜の弾性率としては6GPa~200GPaの弾性率を有することが好ましい。具体的な構成成分としては、反応性部位を多数含む高架橋性のバインダー成分と、弾性率付与のための粒子成分を有することが好ましい。特に高い弾性率を有するハードコート層を形成可能な塗材としては、有機-無機ハイブリッド塗材と呼ばれる、有機材料と無機材料の複合塗材を用いることが好ましい。有機-無機ハイブリッド塗材の例としては、「大成ファインケミカル株式会社;(有機-無機ハイブリッドコート材“STR-SiA”)」や「東亞合成株式会社;(商品名“光硬化型SQシリーズ”)」や「東洋インキ株式会社;(商品名“リオデュラス”(登録商標))」などが挙げられ、これらの材料を好適に使用することが可能である。なお有機-無機ハイブリッド塗材の代表的な形態としては、高弾性率の無機粒子と有機化合物から成る高架橋性のバインダーを含むことが好ましい。好ましい粒子成分およびバインダー成分については後述する。
[Coating composition A]
As the coating composition A, a hard coat coating material that forms a coating layer having a high elastic modulus can be suitably used. The elastic modulus of the coating layer single layer film preferably has an elastic modulus of 6 GPa to 200 GPa. As specific components, it is preferable to have a highly crosslinkable binder component containing many reactive sites and a particle component for imparting elastic modulus. As a coating material capable of forming a hard coat layer having a particularly high elastic modulus, it is preferable to use a composite coating material of an organic material and an inorganic material called an organic-inorganic hybrid coating material. Examples of organic-inorganic hybrid coating materials include “Taisei Fine Chemical Co., Ltd .; (organic-inorganic hybrid coating material“ STR-SiA ”)” and “Toagosei Co., Ltd .; (trade name“ photo-curing type SQ series ”)” And “Toyo Ink Co., Ltd .; (trade name“ Rioduras ”(registered trademark))” and the like, and these materials can be preferably used. A typical form of the organic-inorganic hybrid coating material preferably includes a highly crosslinkable binder composed of inorganic particles having a high elastic modulus and an organic compound. Preferred particle components and binder components will be described later.
 [塗料組成物B]
 塗料組成物Bとしては柔軟性や成形性に富む樹脂塗材を好適に用いることができる。塗布層単膜の弾性率としては1MPa~100MPaの弾性率を有することが好ましい。具体的には、擦傷修復性塗材や、成形性HC(Hard Coating:ハードコート)塗材もしくは粘着剤として市販されているものを好適に使用することができる。またその一部に粒子材料を含んでもよい。
[Coating composition B]
As the coating composition B, a resin coating material rich in flexibility and moldability can be suitably used. The elastic modulus of the coating layer single film preferably has an elastic modulus of 1 MPa to 100 MPa. Specifically, those commercially available as scratch-repairing coating materials, moldable HC (Hard Coating) coating materials, or adhesives can be suitably used. Part of it may contain a particulate material.
 擦傷修復性の塗材や成形性HC塗材の例としては「中国塗料株式会社;(商品名“フォルシード”シリーズ)」や「アイカ工業株式会社;(商品名“アイカアイトロン”シリーズ)」などが挙げられる。また粘着剤の例としてはアクリル系粘着剤としては「東亞合成株式会社;“アロンタック”シリーズ」、「綜研化学株式会社;“SKダイン”(登録商標)シリーズ」などが、シリコーン粘着剤としては「東レダウコーニング株式会社」、「信越シリコーン株式会社」の粘着剤がそれぞれ挙げられる。なお好ましい塗料成分については後述する。 Examples of scratch-repairable coating materials and moldable HC coating materials are “China Paint Co., Ltd. (trade name“ Forseed ”series”) and “Aika Industry Co., Ltd. (trade name“ Aika Itron ”series)”. Etc. Examples of pressure-sensitive adhesives include acrylic adhesives such as “Toagosei Co., Ltd .;“ Aron Tuck ”series”, “Soken Chemicals Co., Ltd .;“ SK Dyne ”(registered trademark) series”, and silicone adhesives as “ Adhesives of “Toray Dow Corning Co., Ltd.” and “Shin-Etsu Silicone Co., Ltd.” can be mentioned. A preferable paint component will be described later.
 [粒子材料、粒子成分]
 本発明の積層体が有する表面層は粒子成分を含むことが好ましく、特に本発明の表面層を形成するのに適した塗料組成物Aは粒子を含むことが好ましい。ここで、粒子とは無機粒子、有機粒子のいずれでもよいが、耐久性の観点から無機粒子が好ましい。
[Particulate material, particle component]
The surface layer of the laminate of the present invention preferably contains a particle component. In particular, the coating composition A suitable for forming the surface layer of the present invention preferably contains particles. Here, the particles may be either inorganic particles or organic particles, but inorganic particles are preferred from the viewpoint of durability.
 無機粒子の種類数としては、1種類以上20種類以下が好ましい。無機粒子の種類数は1種類以上10種類以下がさらに好ましく、1種類以上4種類以下が特に好ましい。ここで、「無機粒子」とは表面処理を施したものも含む。この表面処理とは、粒子表面に化合物を化学結合(共有結合、水素結合、イオン結合、ファンデルワールス結合、疎水結合等を含む)や吸着(物理吸着、化学吸着を含む)によって導入することを指す。 The number of types of inorganic particles is preferably 1 or more and 20 or less. The number of types of inorganic particles is more preferably 1 or more and 10 or less, and particularly preferably 1 or more and 4 or less. Here, “inorganic particles” include those subjected to surface treatment. This surface treatment means introducing a compound onto the particle surface by chemical bonds (including covalent bonds, hydrogen bonds, ionic bonds, van der Waals bonds, hydrophobic bonds, etc.) and adsorption (including physical adsorption and chemical adsorption). Point to.
 ここで無機粒子の種類とは、無機粒子を構成する元素の種類によって決まり、何らかの表面処理を行う場合には、表面処理される前の粒子を構成する元素の種類によって決まる。例えば、酸化チタン(TiO)と酸化チタンの酸素の一部をアニオンである窒素で置換した窒素ドープ酸化チタン(TiO2-x)とでは、無機粒子を構成する元素が異なるために、異なる種類の無機粒子である。また、同一の元素、例えばZnおよびOのみからなる粒子(ZnO)であれば、その数平均粒子径が異なる粒子が複数存在しても、またZnとOとの組成比が異なっていても、これらは同一種類の粒子である。また酸化数の異なるZn粒子が複数存在しても、粒子を構成する元素が同一である限りは(この例ではZn以外の元素が全て同一である限りは)、これらは同一種類の粒子である。 Here, the kind of inorganic particles is determined by the kind of elements constituting the inorganic particles, and when some surface treatment is performed, the kind is determined by the kind of elements constituting the particles before the surface treatment. For example, since titanium oxide (TiO 2 ) and nitrogen-doped titanium oxide (TiO 2−x N x ) in which part of oxygen of titanium oxide is substituted with nitrogen as an anion, the elements constituting the inorganic particles are different, Different types of inorganic particles. Further, if particles (ZnO) consisting only of the same element, for example, Zn and O, even if there are a plurality of particles having different number average particle diameters, and the composition ratio of Zn and O is different, These are the same type of particles. Even if there are a plurality of Zn particles having different oxidation numbers, as long as the elements constituting the particles are the same (in this example, all elements other than Zn are the same), these are the same kind of particles. .
 また、本発明の表面層を形成するのに適した塗料組成物中に含まれる粒子は、塗工、乾燥、硬化処理もしくは蒸着等の処理において、熱や電離放射線などによりその表面状態を変化させた形で、前記表面層に含まれる。ここで、本発明にて用いられる塗料組成物中に存在する粒子を「粒子材料」、前記塗料組成物を塗工、乾燥、硬化処理もしくは蒸着等の処理により形成された前記表面層に存在する粒子を「粒子成分」という。 In addition, the particles contained in the coating composition suitable for forming the surface layer of the present invention change its surface state by heat, ionizing radiation or the like in a process such as coating, drying, curing or vapor deposition. And is included in the surface layer. Here, the particles present in the coating composition used in the present invention are “particulate material”, and the coating composition is present in the surface layer formed by a process such as coating, drying, curing or vapor deposition. The particles are called “particle components”.
 無機粒子は特に限定されないが、金属や半金属の酸化物、窒化物、ホウ素化物、塩化物、炭酸塩、硫酸塩であることが好ましく、2種類の金属、半金属を含む複合酸化物や、格子間に異元素が導入されたり、格子点が異種元素で置換されたり、格子欠陥が導入されていてもよい。 The inorganic particles are not particularly limited, but are preferably metal or metalloid oxides, nitrides, borides, chlorides, carbonates, sulfates, composite oxides containing two metals, metalloids, Different elements may be introduced between the lattices, lattice points may be replaced with different elements, or lattice defects may be introduced.
 無機粒子はSi、Al、Ca、Zn、Ga、Mg、Zr、Ti、In、Sb、Sn、BaおよびCeよりなる群から選ばれる少なくとも一つの金属や半金属が酸化された酸化物粒子であることがさらに好ましい。 The inorganic particles are oxide particles in which at least one metal or semimetal selected from the group consisting of Si, Al, Ca, Zn, Ga, Mg, Zr, Ti, In, Sb, Sn, Ba, and Ce is oxidized. More preferably.
 具体的にはシリカ(SiO)、酸化アルミニウム(Al)、酸化亜鉛(ZnO)、酸化ジルコニウム(ZrO)、酸化チタン(TiO)、酸化インジウム(In)、酸化スズ(SnO)、酸化アンチモン(Sb)およびインジウムスズ酸化物(In)からなる群より選ばれる少なくとも一つの金属酸化物や半金属酸化物である。特に好ましくはシリカ(SiO)である。 Specifically, silica (SiO 2 ), aluminum oxide (Al 2 O 3 ), zinc oxide (ZnO), zirconium oxide (ZrO 2 ), titanium oxide (TiO 2 ), indium oxide (In 2 O 3 ), tin oxide It is at least one metal oxide or semimetal oxide selected from the group consisting of (SnO 2 ), antimony oxide (Sb 2 O 3 ), and indium tin oxide (In 2 O 3 ). Particularly preferred is silica (SiO 2 ).
 本発明の表面層を形成する塗料組成物の粒子成分としては、シリカがバインダー原料の良溶媒中で安定して分散するのに必要な表面修飾がなされていることが特に好ましい。例えば、バインダー原料としてアクリル系モノマー、オリゴマーを使用する場合には、表面修飾としては炭素数1~5以内のアルキル基、アルケニル基、ビニル基、(メタ)アクリル基などが必要最低限、粒子成分の表面に導入されていることが好ましい。 As the particle component of the coating composition for forming the surface layer of the present invention, it is particularly preferable that the surface modification necessary for stably dispersing silica in a good solvent as a binder raw material is made. For example, when acrylic monomers and oligomers are used as the raw material for the binder, the surface modification requires an alkyl group, alkenyl group, vinyl group, (meth) acryl group or the like having a carbon number of 1 to 5 as a minimum. It is preferable that it is introduced on the surface.
 ここで無機粒子の数平均粒子径は、JIS Z8819-2(2001年)に記載の個数基準算術平均長さ径を意味する。粒子成分、粒子材料のいずれにおいても走査型電子顕微鏡(SEM)、透過型電子顕微鏡等を用いて一次粒子を観察し、各一次粒子の外接円の直径を粒子径とし、その個数基準平均値から求めた値を指す。積層体の場合には、表面、または断面を観察することにより数平均粒子径を求めることが可能であり、また、塗料組成物の場合には、溶媒で希釈した塗料組成物を滴下、乾燥することによりサンプルを調製して観察することが可能である。 Here, the number average particle diameter of the inorganic particles means the number-based arithmetic average length diameter described in JIS Z8819-2 (2001). In both the particle component and the particle material, the primary particles are observed using a scanning electron microscope (SEM), a transmission electron microscope, etc., and the diameter of the circumscribed circle of each primary particle is defined as the particle diameter. Refers to the calculated value. In the case of a laminate, the number average particle diameter can be determined by observing the surface or cross section. In the case of a coating composition, the coating composition diluted with a solvent is dropped and dried. Thus, it is possible to prepare and observe a sample.
 [異方形状を有する無機粒子]
 更に本発明の積層体が有する表面層は異方形状を有する無機粒子を含むことが特に好ましい。また本発明の表面層を形成するのに適した塗料組成物は異方形状を有する無機粒子を含むことが好ましく、特に塗料組成物Bに異方形状を有する無機粒子を含むことが好ましい。ここで異方形状を有する無機粒子とは、その形状が真球状ではなく偏りを持った粒子であることを意味し、具体的には、針状や板状もしくは球状粒子が連鎖状に結合した数珠状の粒子を意味する。前記表面層に含まれる無機粒子が前述のような異方形状を有することで、積層体全体の可撓性を維持したまま表面層の硬度を付与することが出来る。可撓性と硬度の両立の原因は明らかではないが、異方形状を有する無機粒子を添加することで、押し込み方向への応力が維持されたまま、せん断方向への応力のみが増加することが確認されており、積層膜のずりによる破壊を抑制できるものと推定している。
[Inorganic particles with anisotropic shape]
Further, the surface layer of the laminate of the present invention particularly preferably contains inorganic particles having an anisotropic shape. The coating composition suitable for forming the surface layer of the present invention preferably contains inorganic particles having an anisotropic shape, and particularly preferably contains inorganic particles having an anisotropic shape in the coating composition B. Here, the inorganic particles having an anisotropic shape mean that the shape is not a spherical shape but a biased particle. Specifically, needle-like, plate-like or spherical particles are bound in a chain. It means beaded particles. When the inorganic particles contained in the surface layer have the anisotropic shape as described above, the hardness of the surface layer can be imparted while maintaining the flexibility of the entire laminate. The cause of the compatibility between flexibility and hardness is not clear, but by adding inorganic particles having an anisotropic shape, only the stress in the shear direction may increase while the stress in the indentation direction is maintained. It has been confirmed that it is possible to suppress the breakage of the laminated film due to shear.
 前記異方形状を有する無機粒子には好ましい形状が存在する。具体的には無機粒子の長直径Rlと短直径Rsの比率であるRl/Rsが1.2以上、20,000以下であることが好ましく、1.5以上、10,000以下であることがより好ましい。Rl/Rsが1.2よりも小さい場合には、前述の押し込み応力とせん断応力の差異が生じにくくなり、表面層の可撓性が低下する場合がある。一方、Rl/Rsが高くても積層体の性能を直ちに低下させることはないが、Rl/Rsが20,000を超える場合には、塗材にチキソ性が生じるため均一な塗工を行うことが困難となる場合がある。 Favorable shapes exist for the inorganic particles having the anisotropic shape. Specifically, Rl / Rs, which is the ratio of the long diameter Rl to the short diameter Rs of the inorganic particles, is preferably 1.2 or more and 20,000 or less, and more preferably 1.5 or more and 10,000 or less. More preferred. When Rl / Rs is smaller than 1.2, the difference between the indentation stress and the shear stress described above becomes difficult to occur, and the flexibility of the surface layer may be lowered. On the other hand, even if Rl / Rs is high, the performance of the laminate is not deteriorated immediately, but if Rl / Rs exceeds 20,000, thixotropy occurs in the coating material, and uniform coating is performed. May be difficult.
 一方、短直径Rsは1nm以上100nm以下であることが好ましく、3nm以上50nm以下であることが特に好ましい。Rsが1nmに満たない場合には、積層体に占める無機粒子の体積比が小さくなり、十分な硬度向上効果が得られない場合がある。一方、Rsが100nmを上回る場合には、前述の押し込み応力への寄与が大きくなり、表面層の可撓性が低下する場合がある。長直径Rlと短直径Rsの測定方法については後述する。 On the other hand, the short diameter Rs is preferably 1 nm or more and 100 nm or less, and particularly preferably 3 nm or more and 50 nm or less. When Rs is less than 1 nm, the volume ratio of the inorganic particles in the laminate becomes small, and a sufficient hardness improvement effect may not be obtained. On the other hand, when Rs exceeds 100 nm, the contribution to the aforementioned indentation stress is increased, and the flexibility of the surface layer may be reduced. A method for measuring the long diameter Rl and the short diameter Rs will be described later.
 また前述の押し込み応力とせん断応力の差異については、後述するバインダー成分が柔軟性バインダーである時に特に顕著に見られることから、前記異方形状を有する無機粒子は前記積層体の弾性率が支持基材の弾性率よりも低い部分に多く存在することが特に好ましい。具体的には後述する異方形状を有する無機粒子の存在頻度が(式4)を満たすこと、すなわち前記積層体の弾性率が支持基材の弾性率よりも高い部分よりも前記積層体の弾性率が支持基材の弾性率よりも低い部分に多いことが好ましい。前記積層体の弾性率が支持基材の弾性率よりも高い部分の異方形状を有する無機粒子の存在頻度が大きい場合には、前述の積層膜のずりによる破壊を抑制する効果が十分に得られなくなる、もしくは塗膜の屈曲性が低下するため、積層体の可撓性と硬度の両立が困難となる場合がある。 Further, the difference between the indentation stress and the shear stress described above is particularly noticeable when the binder component described later is a flexible binder. Therefore, the inorganic particles having the anisotropic shape have a modulus of elasticity of the laminate. It is particularly preferable that a large amount exists in a portion lower than the elastic modulus of the material. Specifically, the presence frequency of inorganic particles having an anisotropic shape, which will be described later, satisfies (Equation 4), that is, the elasticity of the laminate is higher than the portion where the modulus of elasticity of the laminate is higher than the modulus of elasticity of the support substrate. It is preferable that the modulus is large in a portion lower than the elastic modulus of the supporting substrate. When the existence frequency of the inorganic particles having an anisotropic shape at a portion where the elastic modulus of the laminated body is higher than the elastic modulus of the supporting base material is large, the effect of suppressing breakage due to shearing of the laminated film is sufficiently obtained. Since it becomes impossible or the flexibility of a coating film falls, it may become difficult to make flexibility and hardness of a laminated body compatible.
 異方形状を有する無機粒子はSi、Al、Ca、Zn、Ga、Mg、Zr、Ti、In、Sb、Sn、BaおよびCeよりなる群から選ばれる少なくとも一つの金属や半金属が酸化された酸化物粒子であることがさらに好ましい。 Inorganic particles having an anisotropic shape are oxidized with at least one metal or metalloid selected from the group consisting of Si, Al, Ca, Zn, Ga, Mg, Zr, Ti, In, Sb, Sn, Ba and Ce. More preferably, it is an oxide particle.
 具体的にはシリカ(SiO)、酸化アルミニウム(Al)、酸化亜鉛(ZnO)、酸化ジルコニウム(ZrO)、酸化チタン(TiO)、酸化インジウム(In)、酸化スズ(SnO)、酸化アンチモン(Sb)およびインジウムスズ酸化物(In)からなる群より選ばれる少なくとも一つの金属酸化物や半金属酸化物である。特に好ましくは酸化アルミニウム(Al)もしくはその前駆体となる酸化アルミニウム水和物(AlOOH)である。 Specifically, silica (SiO 2 ), aluminum oxide (Al 2 O 3 ), zinc oxide (ZnO), zirconium oxide (ZrO 2 ), titanium oxide (TiO 2 ), indium oxide (In 2 O 3 ), tin oxide It is at least one metal oxide or semimetal oxide selected from the group consisting of (SnO 2 ), antimony oxide (Sb 2 O 3 ), and indium tin oxide (In 2 O 3 ). Particularly preferred is aluminum oxide (Al 2 O 3 ) or aluminum oxide hydrate (AlOOH) serving as a precursor thereof.
 [バインダー材料、バインダー成分]
 本発明の表面層を形成するのに適した塗料組成物はバインダー原料を含有することが好ましい。ここでバインダーとは反応性部位を有する化合物、もしくはその反応により形成された高次化合物を指す。ここで本発明にて用いられる塗料組成物中に存在するバインダーを「バインダー材料」、前記塗料組成物を塗工、乾燥、硬化処理もしくは蒸着等の処理により形成された前記表面層に存在するバインダーを「バインダー成分」という。また反応性部位とは、熱または光などの外部エネルギーにより他の成分と反応する部位を指す。このような反応性部位のうち好ましいものとして、反応性の観点からアルコキシシリル基及びアルコキシシリル基が加水分解されたシラノール基や、カルボキシル基、水酸基、エポキシ基、ビニル基、アリル基、アクリロイル基、メタクリロイル基などが挙げられる。なお本発明の表面層を形成するのに適した塗料組成物Aは後述する「高架橋性バインダー」を、塗料組成物Bは後述する「柔軟性バインダー」を少なくとも含有することが好ましく、これらのバインダーを同時に含有してもよい。
[Binder material, binder component]
The coating composition suitable for forming the surface layer of the present invention preferably contains a binder raw material. Here, the binder refers to a compound having a reactive site or a higher order compound formed by the reaction. Here, the binder present in the coating composition used in the present invention is “binder material”, and the binder present in the surface layer formed by coating, drying, curing treatment, vapor deposition or the like of the coating composition. Is called “binder component”. The reactive site refers to a site that reacts with other components by external energy such as heat or light. Among such reactive sites, preferred are silanol groups in which alkoxysilyl groups and alkoxysilyl groups are hydrolyzed from the viewpoint of reactivity, carboxyl groups, hydroxyl groups, epoxy groups, vinyl groups, allyl groups, acryloyl groups, And a methacryloyl group. The coating composition A suitable for forming the surface layer of the present invention preferably contains a “highly crosslinkable binder” described later, and the coating composition B preferably contains at least a “flexible binder” described later. May be contained simultaneously.
 [高架橋性バインダー]
 高架橋性バインダーは主に塗料組成物Aのバインダー成分として好適に使用できるほか、密着性や造膜性向上の観点から塗料組成物B中に含まれる場合もある。1分子中に2以上、20以下の反応性部位を有する材料が好ましい。また熱硬化型樹脂、紫外線硬化型樹脂のいずれでもよく、2種類以上のブレンドであってもよい。
[Highly crosslinkable binder]
The highly crosslinkable binder can be suitably used mainly as a binder component of the coating composition A, and may be contained in the coating composition B from the viewpoint of improving adhesion and film forming property. A material having 2 or more and 20 or less reactive sites in one molecule is preferable. Either a thermosetting resin or an ultraviolet curable resin may be used, and two or more kinds of blends may be used.
 高架橋性バインダーに好適な熱硬化型樹脂は、水酸基を含有する樹脂とポリイソシアネート化合物からなり、水酸基を含有する樹脂としてアクリルポリオール、ポリエーテルポリオール、ポリエステルポリオール、ポリオレフィン系ポリオール、ポリカーボネートポリオール、ウレタンポリオール等が挙げられ、これらは1種類、もしくは2種類以上のブレンドであってもよい。水酸基を含有する樹脂の水酸基価は1~200mgKOH/gの範囲であれば、塗膜とした時の耐久性、耐加水分解性、密着性の観点から好ましい。水酸基価が1より小さい場合は塗膜の硬化がほとんど進まず、耐久性や強度が低下する場合がある。一方、水酸基が200より大きい場合は、硬化収縮が大きすぎるために、密着性を低下させる場合がある。 Thermosetting resins suitable for highly crosslinkable binders are composed of a hydroxyl group-containing resin and a polyisocyanate compound. Examples of hydroxyl group-containing resins include acrylic polyols, polyether polyols, polyester polyols, polyolefin polyols, polycarbonate polyols, and urethane polyols. These may be one kind or a blend of two or more kinds. The hydroxyl value of the hydroxyl group-containing resin is preferably in the range of 1 to 200 mgKOH / g from the viewpoints of durability, hydrolysis resistance, and adhesion when formed into a coating film. When the hydroxyl value is less than 1, curing of the coating film hardly proceeds, and durability and strength may decrease. On the other hand, when the hydroxyl group is greater than 200, the curing shrinkage is too large, and the adhesion may be lowered.
 本発明における水酸基を含有するアクリルポリオールとは、例えば、アクリル酸エステルまたはメタクリル酸エステルを成分として重合して得られる。この様なアクリル樹脂は、例えば、(メタ)アクリル酸エステルを成分として、必要に応じて(メタ)アクリル酸、イタコン酸、無水マレイン酸等のカルボキシル酸基含有モノマーを共重合することで容易に製造することができる。(メタ)アクリル酸エステルとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、イソプロピル(メタ)アクリレート、ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、メチルヘキシル(メタ)アクリレート、シクロドデシル(メタ)アクリレート、イソボルニル(メタ)アクリレートなどが挙げられる。この様な水酸基を含有するアクリルポリオールとしては、例えば、DIC株式会社;(商品名“アクリディック”(登録商標)シリーズなど)、大成ファインケミカル株式会社;(商品名“アクリット”(登録商標)シリーズなど)、株式会社日本触媒;(商品名“アクリセット”(登録商標)シリーズなど)、三井化学株式会社;(商品名“タケラック”(登録商標)UAシリーズ)などを挙げることができ、これらの製品を利用することができる。 The acrylic polyol containing a hydroxyl group in the present invention is obtained, for example, by polymerizing an acrylic ester or a methacrylic ester as a component. Such an acrylic resin can be easily prepared, for example, by copolymerizing a methacrylic acid ester as a component and a carboxylic acid group-containing monomer such as (meth) acrylic acid, itaconic acid, and maleic anhydride as necessary. Can be manufactured. Examples of (meth) acrylic acid esters include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, isopropyl (meth) acrylate, butyl (meth) acrylate, isobutyl (meth) acrylate, and tert-butyl. (Meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, cyclohexyl (meth) acrylate, methylhexyl (meth) acrylate, cyclododecyl (meth) acrylate, isobornyl (meth) acrylate Etc. Examples of such an acrylic polyol containing a hydroxyl group include DIC Corporation (trade name “Acridic” (registered trademark) series, etc.), Taisei Fine Chemical Co., Ltd. (trade name “Acrit” (registered trademark) series, etc. ), Nippon Shokubai Co., Ltd .; (trade name “Akreset” (registered trademark) series, etc.), Mitsui Chemicals Co., Ltd. (trade name “Takelac” (registered trademark) UA series), etc. Can be used.
 本発明における水酸基を含有するポリエステルポリオールとしては、例えば、エチレングリコール、プロピレングリコール、ブタンジオール、ペンタンジオール、ヘキサンジオール、ヘプタンジオール、デカンジオール、シクロヘキサンジメタノール等の脂肪族グリコールと、例えばコハク酸、アジピン酸、セバシン酸、フマル酸、スベリン酸、アゼライン酸、1,10-デカメチレンジカルボン酸、シクロヘキサンジカルボン酸等の脂肪族二塩基酸との必須原料成分として反応させた脂肪族ポリエステルポリオールや、エチレングリコール、プロピレングリコール、ブタンジオール等の脂肪族グリコールと、例えばテレフタル酸、イソフタル酸、ナフタレンジカルボン酸等の芳香族二塩基酸とを必須原料成分として反応させた芳香族ポリエステルポリオールが挙げられる。 Examples of the polyester polyol containing a hydroxyl group in the present invention include aliphatic glycols such as ethylene glycol, propylene glycol, butanediol, pentanediol, hexanediol, heptanediol, decanediol, and cyclohexanedimethanol, and succinic acid and adipine. Aliphatic polyester polyol reacted as an essential raw material component with an aliphatic dibasic acid such as acid, sebacic acid, fumaric acid, suberic acid, azelaic acid, 1,10-decamethylenedicarboxylic acid, cyclohexanedicarboxylic acid, or ethylene glycol Aromatic polymers obtained by reacting aliphatic glycols such as propylene glycol and butanediol with aromatic dibasic acids such as terephthalic acid, isophthalic acid and naphthalenedicarboxylic acid as essential raw material components Ester polyols.
 このような水酸基を含有するポリエステルポリオールとしては、DIC株式会社;(商品名“ポリライト”(登録商標)シリーズなど)、株式会社クラレ;(商品名“クラレポリオール”(登録商標)シリーズなど)、武田薬品工業株式会社;(商品名“タケラック”(登録商標)Uシリーズ)を挙げることができ、これらの製品を利用することができる。 Examples of such polyester polyols containing hydroxyl groups include DIC Corporation (trade name “Polylite” (registered trademark) series, etc.), Kuraray Co., Ltd. (trade name “Kuraray polyol” (registered trademark) series, etc.), Takeda. Yakuhin Kogyo Co., Ltd. (trade name “Takelac” (registered trademark) U series) can be mentioned, and these products can be used.
 本発明における水酸基を含有するポリオレフィン系ポリオールとしては、ブタジエンやイソプレンなどの炭素数4から12個のジオレフィン類の重合体および共重合体、炭素数4から12のジオレフィンと炭素数2から22のα-オレフィン類の共重合体のうち、水酸基を含有している化合物である。水酸基を含有させる方法としては、特に制限されないが、例えば、ジエンモノマーを過酸化水素と反応させる方法がある。さらに、残存する二重結合を水素添加することで、飽和脂肪族化してもよい。このような水酸基を含有するポリオレフィン系ポリオールとしては、日本曹達株式会社;(商品名“NISSO-PB”(登録商標)Gシリーズなど)、出光興産株式会社;(商品名“Poly bd”(登録商標)シリーズ、“エポール”(登録商標)シリーズなど)を挙げることができ、これらの製品を利用することができる。 Examples of the polyolefin-based polyol containing a hydroxyl group in the present invention include polymers and copolymers of diolefins having 4 to 12 carbon atoms such as butadiene and isoprene, diolefins having 4 to 12 carbon atoms, and 2 to 22 carbon atoms. Among the α-olefin copolymers, the compound contains a hydroxyl group. The method for containing a hydroxyl group is not particularly limited, and for example, there is a method of reacting a diene monomer with hydrogen peroxide. Furthermore, you may make saturated aliphatic by hydrogenating the remaining double bond. Examples of such polyolefin-based polyols containing hydroxyl groups include Nippon Soda Co., Ltd. (trade name “NISSO-PB” (registered trademark) G series, etc.), Idemitsu Kosan Co., Ltd .; (trade name “Poly bd” (registered trademark). ) Series, “Epaul” (registered trademark) series, etc.), and these products can be used.
 本発明における水酸基を含有するポリカーボネートポリオールとしては、例えば、炭酸ジアルキルと1,6-ヘキサンジオールのみを用いて得たポリカーボネートポリオールを用いることができる。より結晶性が低い点で、ジオールとして、1,6-ヘキサンジオールと、1,4-ブタンジオール、1,5-ペンタンジオールまたは1,4-シクロヘキサンジメタノールとを共重合させて得られるポリカーボネートポリオールを用いることが好ましい。 As the polycarbonate polyol containing a hydroxyl group in the present invention, for example, a polycarbonate polyol obtained using only dialkyl carbonate and 1,6-hexanediol can be used. Polycarbonate polyol obtained by copolymerizing 1,6-hexanediol and 1,4-butanediol, 1,5-pentanediol, or 1,4-cyclohexanedimethanol as a diol in terms of lower crystallinity Is preferably used.
 このような水酸基を含有するポリカーボネートポリオールとしては、共重合ポリカーボネートポリオールである旭化成ケミカルズ株式会社;(商品名“T5650J”、“T5652”、“T4671”、“T4672”など)、宇部興産株式会社;(商品名“ETERNACLL”(登録商標)UMシリーズなど)を挙げることができ、これらの製品を利用することができる。 As the polycarbonate polyol containing such a hydroxyl group, Asahi Kasei Chemicals Co., Ltd., which is a copolymerized polycarbonate polyol; (trade names “T5650J”, “T5652”, “T4671”, “T4672”, etc.), Ube Industries, Ltd .; Trade names such as “ETERNACLL” (registered trademark) UM series), and these products can be used.
 本発明における水酸基を含有するウレタンポリオールとは、例えば、ポリイソシアネート化合物と1分子中に少なくとも2個の水酸基を含有する化合物とを、水酸基がイソシアネート基に対して過剰となるような比率で反応させて得られる。その際に使用されるポリイソシアネート化合物としては、ヘキサメチレンジイソシアネート、トルエンジイソシアネート、m-キシレンジイソシアネート、イソホロンジイソシアネート等が挙げられる。また、1分子中に少なくとも2個の水酸基を含有する化合物としては、多価アルコール類、ポリエステルジオール、ポリエチレングリコール、ポリプロピレングリコール、ポリカーボネートジオール等が挙げられる。 The urethane polyol containing a hydroxyl group in the present invention is, for example, a reaction between a polyisocyanate compound and a compound containing at least two hydroxyl groups in one molecule at a ratio such that the hydroxyl group is excessive with respect to the isocyanate group. Obtained. Examples of the polyisocyanate compound used in this case include hexamethylene diisocyanate, toluene diisocyanate, m-xylene diisocyanate, and isophorone diisocyanate. Examples of the compound containing at least two hydroxyl groups in one molecule include polyhydric alcohols, polyester diol, polyethylene glycol, polypropylene glycol, and polycarbonate diol.
 本発明における熱硬化型樹脂に用いられるポリイソシアネート化合物としては、イソシアネート基を含有する樹脂や、イソシアネート基を含有するモノマーやオリゴマーを指す。イソシアネート基を含有する化合物は、例えば、メチレンビス-4-シクロヘキシルイソシアネート、トリレンジイソシアネートのトリメチロールプロパンアダクト体、ヘキサメチレンジイソシアネートのトリメチロールプロパンアダクト体、イソホロンジイソシアネートのトリメチロールプロパンアダクト体、トリレンジイソシアネートのイソシアヌレート体、ヘキサメチレンジイソシアネートのイソシアヌレート体、ヘキサメチレンイソシアネートのビューレット体などの(ポリ)イソシアネート、および上記イソシアネートのブロック体などを挙げることができる。この様な熱硬化型樹脂に用いられるポリイソシアネート化合物としては、三井化学株式会社;(商品名“タケネート”(登録商標)シリーズなど)、日本ポリウレタン工業株式会社;(商品名“コロネート”(登録商標)シリーズなど)、旭化成ケミカルズ株式会社;(商品名“デュラネート”(登録商標)シリーズなど)、DIC株式会社;(商品名“バーノック”(登録商標)シリーズなど)が挙げられる。 The polyisocyanate compound used for the thermosetting resin in the present invention refers to a resin containing an isocyanate group, a monomer or an oligomer containing an isocyanate group. Examples of the compound containing an isocyanate group include methylene bis-4-cyclohexyl isocyanate, trimethylolpropane adduct of tolylene diisocyanate, trimethylolpropane adduct of hexamethylene diisocyanate, trimethylolpropane adduct of isophorone diisocyanate, and tolylene diisocyanate. Examples include isocyanurate bodies, isocyanurate bodies of hexamethylene diisocyanate, (poly) isocyanates such as a burette body of hexamethylene isocyanate, and block bodies of the above isocyanates. Polyisocyanate compounds used in such thermosetting resins include Mitsui Chemicals, Inc. (trade name “Takenate” (registered trademark) series, etc.), Nippon Polyurethane Industry Co., Ltd .; (trade name “Coronate” (registered trademark). Asahi Kasei Chemicals Corporation; (trade name “Duranate” (registered trademark) series, etc.), DIC Corporation (trade name “Burnock” (registered trademark) series, etc.).
 一方、高架橋性バインダーにおける好適な紫外線硬化型樹脂としては、多官能アクリレートモノマー、オリゴマー、アルコキシシラン、アルコキシシラン加水分解物、アルコキシシランオリゴマー、ウレタンアクリレートオリゴマー等が好ましく、多官能アクリレートモノマー、オリゴマー、ウレタンアクリレートオリゴマーがより好ましい。 On the other hand, as a suitable ultraviolet curable resin in the highly crosslinkable binder, polyfunctional acrylate monomer, oligomer, alkoxysilane, alkoxysilane hydrolyzate, alkoxysilane oligomer, urethane acrylate oligomer, etc. are preferable, and polyfunctional acrylate monomer, oligomer, urethane. An acrylate oligomer is more preferable.
 多官能アクリレートモノマーの例としては、1分子中に2個以上の(メタ)アクリロイルオキシ基を有する多官能アクリレートおよびその変性ポリマーが挙げられる。具体的な例としては、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリアクリレートヘキサンメチレンジイソシアネートウレタンポリマーなどを用いることができる。これらの単量体は、1種または2種以上を混合して使用することができる。 Examples of the polyfunctional acrylate monomer include polyfunctional acrylates having two or more (meth) acryloyloxy groups in one molecule and modified polymers thereof. Specific examples include pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol tri (meth) acrylate, dipentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, Dipentaerythritol hexa (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol triacrylate hexanemethylene diisocyanate urethane polymer, and the like can be used. These monomers can be used alone or in combination of two or more.
 また、市販されている多官能アクリル系組成物としては三菱レイヨン株式会社;(商品名“ダイヤビーム”(登録商標)シリーズなど)、日本合成化学工業株式会社;(商品名“SHIKOH”(登録商標)シリーズなど)、長瀬産業株式会社;(商品名“デナコール”(登録商標)シリーズなど)、新中村化学株式会社;(商品名“NKエステル”シリーズなど)、DIC株式会社;(商品名“UNIDIC”(登録商標)など)、東亞合成株式会社;(“アロニックス”(登録商標)シリーズなど)、日油株式会社;(“ブレンマー”(登録商標)シリーズなど)、日本化薬株式会社;(商品名“KAYARAD”(登録商標)シリーズなど)、共栄社化学株式会社;(商品名“ライトエステル”シリーズなど)などを挙げることができ、これらの製品を利用することができる。 Commercially available polyfunctional acrylic compositions include Mitsubishi Rayon Co., Ltd. (trade name “Diabeam” (registered trademark) series, etc.), Nippon Synthetic Chemical Industry Co., Ltd. (trade name “SHIKOH” (registered trademark)). ) Series), Nagase Sangyo Co., Ltd .; (trade name “Denacol” (registered trademark) series, etc.), Shin-Nakamura Chemical Co., Ltd. (trade name “NK ester” series, etc.), DIC Corporation; "(Registered trademark) etc.), Toagosei Co., Ltd .; (" Aronix "(registered trademark) series etc.), NOF Corporation; (" Blemmer "(registered trademark) series etc.), Nippon Kayaku Co., Ltd .; Name “KAYARAD” (registered trademark) series, etc.), Kyoeisha Chemical Co., Ltd. (trade name “light ester” series, etc.) , It is possible to use these products.
 [柔軟性バインダー]
 柔軟性バインダーは主に塗料組成物Bのバインダー成分として好適に使用することができる。1分子中に4以下の反応性部位を有する材料が好ましく、アクリルポリマーのように、活性な反応性部位が失活した形態であってもよい。柔軟性バインダーの好ましい材料を以下に例示する。
[Flexible binder]
The flexible binder can be suitably used mainly as a binder component of the coating composition B. A material having 4 or less reactive sites in one molecule is preferable, and the active reactive sites may be deactivated like an acrylic polymer. Preferred materials for the flexible binder are exemplified below.
 塗料組成物Bの好ましい形態として「擦傷修復性の樹脂層を形成する塗料組成物」、破断伸度5~50%程度を有する「成形性HC塗材」および「粘着剤」が挙げられる。 Preferred forms of the coating composition B include “a coating composition for forming a scratch-repairing resin layer”, “a moldable HC coating material” having a breaking elongation of about 5 to 50%, and “an adhesive”.
 擦傷修復性の樹脂層を形成する塗料組成物としては、溶質に(1)ポリカプロラクトンセグメント、ポリカーボネートセグメントおよびポリアルキレングリコールセグメントからなる群より選ばれる少なくとも一つを含むセグメント、(2)ウレタン結合のセグメントを含む樹脂もしくは前駆体を含むことが特に好ましい。これら各セグメントについては、TOF-SIMS、FT-IR等により確認することできる。 The coating composition for forming the scratch-repairable resin layer includes: (1) a segment containing at least one selected from the group consisting of a polycaprolactone segment, a polycarbonate segment and a polyalkylene glycol segment in the solute; It is particularly preferable to include a resin or precursor containing a segment. Each of these segments can be confirmed by TOF-SIMS, FT-IR, or the like.
 一方、粘着剤としては、最も汎用なゴムと粘着付与剤による「ゴム系粘着剤」、アクリルポリマーの共重合体で様々な機能付与が可能である「アクリル系粘着剤」、優れた温度特性、耐薬品性を有する反面、高コストな「シリコーン系粘着剤」のいずれも好適に使用することが可能であるが、高弾性率層との相溶性およびコストの観点から、「アクリル系粘着剤」を用いることが特に好ましい。 On the other hand, as a pressure-sensitive adhesive, “rubber-based pressure-sensitive adhesive” using the most general rubber and tackifier, “acryl-based pressure-sensitive adhesive” that can give various functions with an acrylic polymer copolymer, excellent temperature characteristics, Although it has chemical resistance, any of the high-cost “silicone-based pressure-sensitive adhesive” can be suitably used. However, from the viewpoint of compatibility with the high elastic modulus layer and cost, “acrylic pressure-sensitive adhesive” It is particularly preferable to use
 [溶媒]
 前記塗料組成物A、塗料組成物Bは溶媒を含むことが好ましい。溶媒の種類数としては1種類以上20種類以下が好ましく、より好ましくは1種類以上10種類以下、さらに好ましくは1種類以上6種類以下である。ここで「溶媒」とは、塗布後の乾燥工程にて、ほぼ全量を蒸発させ、塗膜から除去することが可能な、常温、常圧で液体である物質を指す。
[solvent]
The coating composition A and the coating composition B preferably contain a solvent. The number of solvent types is preferably 1 or more and 20 or less, more preferably 1 or more and 10 or less, and still more preferably 1 or more and 6 or less. Here, the “solvent” refers to a substance that is liquid at room temperature and normal pressure, and can be removed from the coating film by evaporating almost the whole amount in the drying step after coating.
 ここで、溶媒の種類とは溶媒を構成する分子構造によって決まる。すなわち、同一の元素組成で、かつ官能基の種類と数が同一であっても結合関係が異なるもの(構造異性体)、前記構造異性体ではないが、3次元空間内ではどのような配座をとらせてもぴったりとは重ならないもの(立体異性体)は、種類の異なる溶媒として取り扱う。例えば、2-プロパノールと、n-プロパノールは異なる溶媒として取り扱う。 Here, the type of solvent is determined by the molecular structure constituting the solvent. That is, the same elemental composition and the same type and number of functional groups have different bond relationships (structural isomers), which are not structural isomers, but what conformations are in three-dimensional space Those that do not overlap exactly even if they are removed (stereoisomers) are treated as different types of solvents. For example, 2-propanol and n-propanol are handled as different solvents.
 [他の添加剤]
 前記塗料組成物Aと塗料組成物Bは、重合開始剤や硬化剤や触媒を含むことが好ましい。重合開始剤および触媒は、表面層の硬化を促進するために用いられる。重合開始剤としては、塗料組成物に含まれる成分をアニオン、カチオン、ラジカル重合反応等による重合、縮合または架橋反応を開始あるいは促進できるものが好ましい。
[Other additives]
The coating composition A and the coating composition B preferably contain a polymerization initiator, a curing agent, and a catalyst. A polymerization initiator and a catalyst are used to accelerate the curing of the surface layer. As the polymerization initiator, those capable of initiating or accelerating polymerization, condensation or crosslinking reaction by anion, cation, radical polymerization reaction or the like of components contained in the coating composition are preferable.
 重合開始剤、硬化剤および触媒は種々のものを使用できる。また、重合開始剤、硬化剤および触媒はそれぞれ単独で用いてもよく、複数の重合開始剤、硬化剤および触媒を同時に用いてもよい。さらに、酸性触媒や、熱重合開始剤や光重合開始剤を併用してもよい。酸性触媒の例としては、塩酸水溶液、蟻酸、酢酸などが挙げられる。熱重合開始剤の例としては、過酸化物、アゾ化合物が挙げられる。また、光重合開始剤の例としては、アルキルフェノン系化合物、含硫黄系化合物、アシルホスフィンオキシド系化合物、アミン系化合物などが挙げられる。 Various polymerization initiators, curing agents and catalysts can be used. In addition, the polymerization initiator, the curing agent, and the catalyst may be used alone, or a plurality of polymerization initiators, curing agents, and catalysts may be used simultaneously. Furthermore, you may use together an acidic catalyst, a thermal-polymerization initiator, and a photoinitiator. Examples of acidic catalysts include aqueous hydrochloric acid, formic acid, acetic acid and the like. Examples of the thermal polymerization initiator include peroxides and azo compounds. Examples of the photopolymerization initiator include alkylphenone compounds, sulfur-containing compounds, acylphosphine oxide compounds, amine compounds, and the like.
 光重合開始剤としては、硬化性の点から、アルキルフェノン系化合物が好ましい。アルキルフェノン系化合物の具体例としては、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-フェニル)-1-ブタン、2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル]-1-(4-フェニル)-1-ブタン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-1-ブタン、2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル]-1-[4-(4-モルフォリニル)フェニル]-1-ブタン、1-シクロヒキシル-フェニルケトン、2-メチル-1-フェニルプロパン-1-オン、1-[4-(2-エトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、ビス(2-フェニル-2-オキソ酢酸)オキシビスエチレン、およびこれらの材料を高分子量化したものなどが挙げられる。 As the photopolymerization initiator, an alkylphenone compound is preferable from the viewpoint of curability. Specific examples of the alkylphenone compounds include 1-hydroxy-cyclohexyl-phenyl-ketone, 2,2-dimethoxy-1,2-diphenylethane-1-one, 2-methyl-1- (4-methylthiophenyl)- 2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1- (4-phenyl) -1-butane, 2- (dimethylamino) -2-[(4-methylphenyl) methyl]- 1- (4-phenyl) -1-butane, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -1-butane, 2- (dimethylamino) -2-[(4-methylphenyl ) Methyl] -1- [4- (4-morpholinyl) phenyl] -1-butane, 1-cyclohexyl-phenylketone, 2-methyl-1-phenylpropane-1-one , 1- [4- (2-Ethoxy) -phenyl] -2-hydroxy-2-methyl-1-propan-1-one, bis (2-phenyl-2-oxoacetic acid) oxybisethylene, and materials thereof And the like having a high molecular weight.
 なお、熱重合開始剤や光重合開始剤による重合反応の進行状態は、加える熱量もしくは光量で制御可能であり、逐次塗布により表面層を形成する場合には、重合の進行を不完全な状態で次の層を塗布することにより、明確な界面を形成せずに、中間的な物性を有する混在層を作ることが可能である。 The progress of the polymerization reaction by the thermal polymerization initiator or photopolymerization initiator can be controlled by the amount of heat or the amount of light applied, and when the surface layer is formed by sequential coating, the progress of the polymerization is incomplete. By applying the next layer, a mixed layer having intermediate physical properties can be formed without forming a clear interface.
 また、本発明の効果を阻害しない範囲であれば、表面層を形成するために用いる塗料組成物A、塗料組成物Bにレベリング剤、紫外線吸収剤、滑剤、帯電防止剤等を加えてもよい。これにより、表面層はレベリング剤、紫外線吸収剤、滑剤、帯電防止剤等を含有することができる。レベリング剤の例としては、アクリル共重合体またはシリコーン系、フッ素系のレベリング剤が挙げられる。紫外線吸収剤の具体例としては、ベンゾフェノン系、ベンゾトリアゾール系、シュウ酸アニリド系、トリアジン系およびヒンダードアミン系の紫外線吸収剤が挙げられる。帯電防止剤の例としてはリチウム塩、ナトリウム塩、カリウム塩、ルビジウム塩、セシウム塩、マグネシウム塩、カルシウム塩などの金属塩が挙げられる。 In addition, a leveling agent, an ultraviolet absorber, a lubricant, an antistatic agent, etc. may be added to the coating composition A and the coating composition B used for forming the surface layer as long as the effects of the present invention are not impaired. . Thereby, the surface layer can contain a leveling agent, an ultraviolet absorber, a lubricant, an antistatic agent, and the like. Examples of the leveling agent include acrylic copolymers, silicone-based and fluorine-based leveling agents. Specific examples of the ultraviolet absorber include benzophenone-based, benzotriazole-based, oxalic acid anilide-based, triazine-based and hindered amine-based ultraviolet absorbers. Examples of the antistatic agent include metal salts such as lithium salt, sodium salt, potassium salt, rubidium salt, cesium salt, magnesium salt and calcium salt.
 [積層体の製造方法]
 本発明の積層体の製造方法は、少なくとも前述の塗料組成物Aと塗料組成物Bを、逐次または同時に前述の支持基材上に塗布-乾燥-硬化することにより形成する製造方法を用いることがより好ましい。
[Manufacturing method of laminate]
The production method of the laminate of the present invention uses a production method in which at least the coating composition A and the coating composition B are formed by applying, drying, and curing sequentially or simultaneously on the supporting substrate. More preferred.
 ここで「逐次に塗布する」もしくは「逐次塗布」とは、1種類の塗料組成物を塗布-乾燥-硬化後、次いで種類の異なる塗料組成物を、塗布-乾燥-硬化することにより表面層を形成することを意図している。「逐次塗布」において形成される表面層は、用いる塗料組成物の種類、数を適宜選択することにより、表面側-基材側の弾性率の大小や勾配、基材と表面層の弾性率の大小を制御することができる。「逐次塗布」により形成される表面層は、通常、複数の界面を有する「多層構造」となるが、塗料組成物の種類、組成、乾燥条件、硬化条件を適宜選択することにより、塗布層間の材料種の分離・拡散を制御し、疑似的な傾斜構造を形成することも可能である。前述のような層構造により、表面層内の弾性率分布を段階的、もしくは連続的に変化させることができる。 Here, “sequentially apply” or “sequentially apply” means that after coating-drying-curing one type of coating composition, the surface layer is then formed by coating-drying-curing a different type of coating composition. Intended to form. The surface layer formed in “sequential coating” can be selected by appropriately selecting the type and number of coating compositions to be used. You can control the size. The surface layer formed by “sequential application” usually has a “multilayer structure” having a plurality of interfaces, but by appropriately selecting the type, composition, drying conditions, and curing conditions of the coating composition, It is also possible to control the separation and diffusion of the material species to form a pseudo gradient structure. With the layer structure as described above, the elastic modulus distribution in the surface layer can be changed stepwise or continuously.
 もう1つの製造方法としては、2種類以上の塗料組成物を支持基材上に「同時に」塗布、乾燥、硬化することにより形成する方法である。塗料組成物の種類の数は2種類以上であれば特に制約はない。ここで「同時塗布する」もしくは「同時塗布」とは塗布工程において支持基材上に、2種類以上の液膜を塗布後、乾燥、硬化することを意図している。「同時塗布」において形成される表面層は、明確な界面を有さない「傾斜構造」を形成する。 Another manufacturing method is a method in which two or more kinds of coating compositions are formed by simultaneously applying, drying and curing on a supporting substrate. There are no particular restrictions as long as the number of types of coating compositions is two or more. Here, “simultaneous application” or “simultaneous application” is intended to dry and cure after applying two or more types of liquid films on a supporting substrate in the application step. The surface layer formed in “simultaneous application” forms an “inclined structure” having no clear interface.
 本製造方法において、塗布方法は、前述の塗料組成物を逐次に塗布する場合には、ディップコート法、ローラーコート法、ワイヤーバーコート法、グラビアコート法やダイコート法(米国特許第2681294号明細書)などにより支持基材等に塗布することにより表面層を形成することが好ましい
 また、前述の2種類以上の塗料組成物を同時塗布する場合には、塗布前の状態で液膜を順に積層後塗布する「多層スライドダイコート」(図5)や、基材上に塗布と同時に積層する「多層スロットダイコート」(図6)、支持基材上に1層の液膜を形成後、未乾燥の状態でもう1層を積層させる「ウェット-オンーウェットコート」(図7)等のいずれでもよい。
In this production method, the coating method is a dip coating method, a roller coating method, a wire bar coating method, a gravure coating method or a die coating method (US Pat. No. 2,681,294) when the aforementioned coating composition is sequentially applied. It is preferable to form a surface layer by applying it to a supporting base material, etc. In addition, when simultaneously applying two or more kinds of coating compositions as described above, after laminating liquid films in order before application “Multilayer Slide Die Coat” to be applied (FIG. 5), “Multilayer Slot Die Coat” to be laminated on the substrate simultaneously with application (FIG. 6), and a single layer of liquid film formed on the support substrate, then undried Any of “wet-on-wet coat” (FIG. 7) or the like in which another layer is laminated.
 次いで、支持基材等の上に塗布された液膜を乾燥する。得られる積層体中から完全に溶媒を除去することに加え、乾燥工程では液膜の加熱を伴うことが好ましい。 Next, the liquid film applied on the support substrate or the like is dried. In addition to completely removing the solvent from the resulting laminate, it is preferable that the drying process involves heating the liquid film.
 乾燥方法については、伝熱乾燥(高熱物体への密着)、対流伝熱(熱風)、輻射伝熱(赤外線)、その他(マイクロ波、誘導加熱)などが挙げられる。この中でも、本発明の製造方法では、精密に幅方向でも乾燥速度を均一にする必要から、対流伝熱、または輻射伝熱を使用した方式が好ましい。 Examples of drying methods include heat transfer drying (adherence to high-temperature objects), convection heat transfer (hot air), radiant heat transfer (infrared rays), and others (microwave, induction heating). Among these, in the manufacturing method of the present invention, a method using convective heat transfer or radiant heat transfer is preferable because it is necessary to make the drying speed uniform even in the width direction.
 さらに、熱またはエネルギー線を照射することによるさらなる硬化操作(硬化工程)を行ってもよい。硬化工程において、塗料組成物Aおよび塗料組成物Bを用い、熱で硬化する場合には、室温から200℃以下であることが好ましく、硬化反応の活性化エネルギーの観点から、80℃以上200℃以下がより好ましく、前述の中間的な物性を有する混在層を形成するためには80℃以上100℃以下であることがさらに好ましい。 Furthermore, a further curing operation (curing step) by irradiating heat or energy rays may be performed. In the curing step, when the coating composition A and the coating composition B are used and cured by heat, the temperature is preferably from room temperature to 200 ° C., and from the viewpoint of the activation energy of the curing reaction, 80 ° C. or more and 200 ° C. The following is more preferable, and in order to form the mixed layer having the above-described intermediate physical properties, it is more preferable that the temperature is 80 ° C. or higher and 100 ° C. or lower.
 また、活性エネルギー線により硬化する場合には汎用性の点から電子線(EB線)および/または紫外線(UV線)であることが好ましい。また紫外線により硬化する場合は、最表面については酸素阻害を防ぐことができることから酸素濃度ができるだけ低い方が好ましく、窒素雰囲気下(窒素パージ)で硬化する方がより好ましい。酸素濃度が高い場合には、最表面の硬化が阻害され、表面の硬化が不十分となる場合がある。一方、表面層の内部を形成する層においては、反対に酸素阻害を促すことで、次の塗工層が浸透しやすくなり、前述の中間的な物性を有する混在層を形成しやすくなるため好ましい。 Further, when curing with active energy rays, electron beams (EB rays) and / or ultraviolet rays (UV rays) are preferable from the viewpoint of versatility. In the case of curing with ultraviolet rays, the outermost surface can prevent oxygen inhibition, so that the oxygen concentration is preferably as low as possible, and it is more preferable to cure in a nitrogen atmosphere (nitrogen purge). When the oxygen concentration is high, the hardening of the outermost surface is inhibited, and the surface hardening may be insufficient. On the other hand, in the layer forming the inside of the surface layer, it is preferable because the next coating layer easily penetrates by promoting oxygen inhibition, and the mixed layer having the above-mentioned intermediate physical properties is easily formed. .
 また、紫外線を照射する際に用いる紫外線ランプの種類としては、例えば、放電ランプ方式、フラッシュ方式、レーザー方式、無電極ランプ方式等が挙げられる。放電ランプ方式である高圧水銀灯を用いて紫外線硬化させる場合、紫外線の照度が100~3,000mW/cm、好ましくは200~2,000mW/cm、さらに好ましくは300~1,500mW/cmとなる条件で紫外線照射を行うことが好ましく、紫外線の積算光量が100~3,000mJ/cm、好ましくは200~2,000mJ/cm、さらに好ましくは300~1,500mJ/cmとなる条件で紫外線照射を行うことが好ましい。ここで、紫外線の照度とは、単位面積当たりに受ける照射強度で、ランプ出力、発光スペクトル効率、発光バルブの直径、反射鏡の設計および被照射物との光源距離によって変化する。しかし、搬送スピードによって照度は変化しない。また、紫外線積算光量とは単位面積当たりに受ける照射エネルギーで、その表面に到達するフォトンの総量である。積算光量は、光源下を通過する照射速度に反比例し、照射回数とランプ灯数に比例する。 Examples of the ultraviolet lamp used when irradiating ultraviolet rays include a discharge lamp method, a flash method, a laser method, and an electrodeless lamp method. When UV curing is performed using a high-pressure mercury lamp that is a discharge lamp method, the illuminance of UV is 100 to 3,000 mW / cm 2 , preferably 200 to 2,000 mW / cm 2 , more preferably 300 to 1,500 mW / cm 2. It is preferable to perform ultraviolet irradiation under the following conditions, and the cumulative amount of ultraviolet light is 100 to 3,000 mJ / cm 2 , preferably 200 to 2,000 mJ / cm 2 , more preferably 300 to 1,500 mJ / cm 2. It is preferable to perform ultraviolet irradiation under conditions. Here, the illuminance of ultraviolet rays is the irradiation intensity received per unit area, and changes depending on the lamp output, the emission spectral efficiency, the diameter of the light emitting bulb, the design of the reflector, and the light source distance to the irradiated object. However, the illuminance does not change depending on the conveyance speed. Further, the UV integrated light amount is irradiation energy received per unit area, and is the total amount of photons reaching the surface. The integrated light quantity is inversely proportional to the irradiation speed passing under the light source, and is proportional to the number of irradiations and the number of lamps.
 [用途例]
 本発明の積層体は、優れた表面硬度と可撓性を両立するため曲面を有する部材、例えば電化製品や自動車の内装部材、建築部材等に幅広く用いることができる。
[Application example]
The laminate of the present invention can be widely used for a member having a curved surface in order to achieve both excellent surface hardness and flexibility, for example, an electrical appliance, an automobile interior member, and a building member.
 一例を挙げると、メガネ・サングラス、化粧箱、食品容器などのプラスチック成型品、スマートフォンの筐体、タッチパネル、キーボード、テレビ・エアコンのリモコンなどの家電製品、建築物、ダッシュボード、カーナビ・タッチパネル、ルームミラーなどの車両内装品、および種々の印刷物のそれぞれの表面などに好適に用いることができる。 Examples include plastic products such as glasses / sunglasses, cosmetic boxes, food containers, smartphone housings, touch panels, keyboards, home appliances such as remote controls for TVs and air conditioners, buildings, dashboards, car navigation systems, touch panels, and rooms. It can be suitably used for vehicle interior parts such as mirrors, and the surfaces of various printed materials.
 次に、実施例に基づいて本発明を説明するが、本発明は必ずしもこれらに限定されるものではない。 Next, the present invention will be described based on examples, but the present invention is not necessarily limited thereto.
 <塗料組成物Aの調合>
 [塗料組成物A1]
 下記材料を混合し、酢酸エチルを用いて希釈し、塗料組成物A1を得た。
・有機-無機ハイブリッドHC塗材                80.0質量部
 (“アイカアイトロン” Z-729-18 アイカ工業株式会社)
・酢酸エチル                          20.0質量部。
<Preparation of coating composition A>
[Coating composition A1]
The following materials were mixed and diluted with ethyl acetate to obtain a coating composition A1.
・ Organic-inorganic hybrid HC coating material 80.0 parts by mass (“Aika Aitoron” Z-729-18 Aika Industry Co., Ltd.)
-Ethyl acetate 20.0 mass parts.
 [塗料組成物A2]
・ジペンタエリスリトールヘキサアクリレート           18.8質量部
・粒子添加剤C1(シリカ粒子分散物)              44.4質量部
 (“MEK-AC-2140Z” 日産化学工業株式会社)
・酢酸エチル                          35.6質量部
・光ラジカル重合開始剤                      1.2質量部
 (“イルガキュア”(登録商標)184 BASFジャパン株式会社)。
[Coating composition A2]
Dipentaerythritol hexaacrylate 18.8 parts by mass Particle additive C1 (silica particle dispersion) 44.4 parts by mass (“MEK-AC-2140Z” Nissan Chemical Industries, Ltd.)
-Ethyl acetate 35.6 mass parts-Photoradical polymerization initiator 1.2 mass parts ("Irgacure" (trademark) 184 BASF Japan Ltd.).
 [塗料組成物A3]
・ジペンタエリスリトールヘキサアクリレート           38.8質量部
・酢酸エチル                          60.0質量部
・光ラジカル重合開始剤                      1.2質量部
 (“イルガキュア”(登録商標)184 BASFジャパン株式会社)。
[Coating composition A3]
-Dipentaerythritol hexaacrylate 38.8 mass parts-Ethyl acetate 60.0 mass parts-Photoradical polymerization initiator 1.2 mass parts ("IRGACURE" (trademark) 184 BASF Japan Ltd.).
 [塗料組成物A4]
・ジペンタエリスリトールヘキサアクリレート           36.8質量部
 (“アイカアイトロン” Z-729-18 アイカ工業株式会社)
・粒子添加剤C3                        2.0質量部
・酢酸エチル                          60.0質量部
・光ラジカル重合開始剤                      1.2質量部
 (“イルガキュア”(登録商標)184 BASFジャパン株式会社)。
[Coating composition A4]
・ 36.8 parts by mass of dipentaerythritol hexaacrylate (“Aika Itron” Z-729-18 Aika Industry Co., Ltd.)
-Particle additive C3 2.0 mass parts-Ethyl acetate 60.0 mass parts-Photoradical polymerization initiator 1.2 mass parts ("IRGACURE" (trademark) 184 BASF Japan Ltd.).
 <塗料組成物Bの調合>
 <ウレタンアクリレートの合成>
 [ウレタンアクリレート1のトルエン溶液]
 トルエン50質量部、ヘキサメチレンジイソシアネートのイソシアヌレート変性タイプ(三井化学株式会社製 タケネートD-170N)50質量部、ポリカプロラクトン変性ヒドロキシエチルアクリレート(ダイセル化学工業株式会社製 プラクセルFA5)76質量部、ジブチル錫ラウレート0.02質量部、およびハイドロキノンモノメチルエーテル0.02質量部を混合し、70℃で5時間保持した。その後、トルエン79質量部を加えて固形分濃度50質量%のウレタンアクリレート1のトルエン溶液を得た。
<Preparation of coating composition B>
<Synthesis of urethane acrylate>
[Toluene acrylate 1 in toluene solution]
50 parts by mass of toluene, isocyanurate-modified type of hexamethylene diisocyanate (Takenate D-170N, manufactured by Mitsui Chemicals), 76 parts by mass of polycaprolactone-modified hydroxyethyl acrylate (Placcel FA5, manufactured by Daicel Chemical Industries, Ltd.), dibutyltin 0.02 part by mass of laurate and 0.02 part by mass of hydroquinone monomethyl ether were mixed and held at 70 ° C. for 5 hours. Thereafter, 79 parts by mass of toluene was added to obtain a toluene solution of urethane acrylate 1 having a solid content concentration of 50% by mass.
 [ウレタンアクリレート2のトルエン溶液]
 ヘキサメチレンジイソシアネートのイソシアヌレート変性体(三井化学株式会社製 タケネートD-170N、イソシアネート基含有量:20.9質量%)50質量部、ポリエチレングリコールモノアクリレート(日油株式会社製 ブレンマーAE-150(水酸基価:264(mgKOH/g))53質量部、ジブチルスズラウレート0.02質量部及びハイドロキノンモノメチルエーテル0.02質量部を仕込んだ。そして、70℃で5時間保持して反応を行った。反応終了後、反応液にメチルエチルケトン(以下、MEKという)102質量部を加え、固形分濃度50質量%のウレタンアクリレート2のトルエン溶液を得た。
[Toluene solution of urethane acrylate 2]
Isocyanurate-modified hexamethylene diisocyanate (Takenate D-170N, Mitsui Chemicals, Inc., isocyanate group content: 20.9% by mass), 50 parts by mass of polyethylene glycol monoacrylate (Blenmer AE-150, manufactured by NOF Corporation) Value: 264 (mg KOH / g)) 53 parts by weight, dibutyltin laurate 0.02 part by weight and hydroquinone monomethyl ether 0.02 part by weight were charged, and the reaction was carried out while maintaining at 70 ° C. for 5 hours. After the completion, 102 parts by mass of methyl ethyl ketone (hereinafter referred to as MEK) was added to the reaction solution to obtain a toluene solution of urethane acrylate 2 having a solid content concentration of 50% by mass.
 [塗料組成物B1]
 下記材料を混合し、酢酸エチルを用いて希釈し、塗料組成物B1を得た。
・ウレタンアクリレート1の固形分濃度50質量%-トルエン溶液   4.9質量部
・ウレタンアクリレート2の固形分濃度50質量%-トルエン溶液   4.9質量部
・酢酸エチル                         90.05質量部
・光ラジカル重合開始剤                     0.15質量部
 (“イルガキュア”(登録商標)184 BASFジャパン株式会社)。
[Coating composition B1]
The following materials were mixed and diluted with ethyl acetate to obtain a coating composition B1.
-Solid content concentration of urethane acrylate 1-4.9 parts by mass of toluene solution-Solid content concentration of urethane acrylate 2-4.9 parts by mass of toluene solution-90.05 parts by mass of ethyl acetate-Photoradical polymerization Initiator 0.15 parts by mass (“Irgacure” (registered trademark) 184 BASF Japan Ltd.).
 [塗料組成物B2]
 下記材料を混合し、酢酸エチルを用いて希釈し、塗料組成物B2を得た。
・自己修復性塗料                         7.1質量部
 (“フォルシード” NO.521C 中国塗料株式会社)
・酢酸エチル                         92.86質量部。
[Coating composition B2]
The following materials were mixed and diluted with ethyl acetate to obtain a coating composition B2.
・ Self-healing paint 7.1 parts by mass (“Folceed” NO.521C China Paint Co., Ltd.)
-92.86 mass parts of ethyl acetate.
 [塗料組成物B3]
 下記材料を混合し、酢酸エチルを用いて希釈し、塗料組成物B3を得た。
・アクリル系粘着剤                       16.7質量部
 (“SKダイン”1439U 綜研化学株式会社)
・酢酸エチル                         83.26質量部
・硬化剤                            0.08質量部
 (硬化剤E-50C 綜研化学株式会社)。
[Coating composition B3]
The following materials were mixed and diluted with ethyl acetate to obtain a coating composition B3.
・ Acrylic adhesive 16.7 parts by mass (“SK Dyne” 1439U Soken Chemical Co., Ltd.)
-Ethyl acetate 83.26 mass parts-Curing agent 0.08 mass part (Curing agent E-50C Soken Chemical Co., Ltd.).
 [塗料組成物B4]
・ウレタンアクリレート1の固形分濃度50質量%-トルエン溶液   4.85質量部
・ウレタンアクリレート2の固形分濃度50質量%-トルエン溶液   4.85質量部
・粒子添加剤C2                         0.1質量部
・酢酸エチル                          90.05質量部
・光ラジカル重合開始剤                      0.15質量部
 (“イルガキュア”(登録商標)184 BASFジャパン株式会社)。
[Coating composition B4]
-Solid content concentration of urethane acrylate 1-toluene solution 4.85 parts by mass-Solid content concentration of urethane acrylate 2-50% by weight-toluene solution 4.85 parts by mass-Particle additive C2 0.1 part by mass-Acetic acid 90.05 parts by mass of ethyl and 0.15 parts by mass of radical photopolymerization initiator (“Irgacure” (registered trademark) 184 BASF Japan Ltd.).
 [塗料組成物B5]
・ウレタンアクリレート1の固形分濃度50質量%-トルエン溶液   4.85質量部
・ウレタンアクリレート2の固形分濃度50質量%-トルエン溶液   4.85質量部
・粒子添加剤C3                         0.1質量部
・酢酸エチル                         90.05質量部
・光ラジカル重合開始剤                     0.15質量部
 (“イルガキュア”(登録商標)184 BASFジャパン株式会社)。
[Coating composition B5]
-Solid content concentration of urethane acrylate 1-toluene solution 4.85 parts by mass-Solid content concentration of urethane acrylate 2-50% by weight-toluene solution 4.85 parts by mass-Particle additive C3 0.1 part by mass-Acetic acid 90.05 parts by mass of ethyl and 0.15 parts by mass of radical photopolymerization initiator (“Irgacure” (registered trademark) 184 BASF Japan Ltd.).
 [塗料組成物B6]
・ウレタンアクリレート1の固形分濃度50質量%-トルエン溶液   4.85質量部
・ウレタンアクリレート2の固形分濃度50質量%-トルエン溶液   4.85質量部
・粒子添加剤C4                         0.1質量部
・酢酸エチル                         90.05質量部
・光ラジカル重合開始剤                     0.15質量部
 (“イルガキュア”(登録商標)184 BASFジャパン株式会社)。
[Coating composition B6]
-Solid content concentration of urethane acrylate 1-toluene solution 4.85 parts by mass-Solid content concentration of urethane acrylate 2-50% by weight-toluene solution 4.85 parts by mass-Particle additive C4 0.1 part by mass-Acetic acid 90.05 parts by mass of ethyl and 0.15 parts by mass of radical photopolymerization initiator (“Irgacure” (registered trademark) 184 BASF Japan Ltd.).
 [塗料組成物B7]
・ウレタンアクリレート1の固形分濃度50質量%-トルエン溶液   4.85質量部
・ウレタンアクリレート2の固形分濃度50質量%-トルエン溶液   4.85質量部
・粒子添加剤C5                         0.1質量部
・酢酸エチル                         90.05質量部
・光ラジカル重合開始剤                     0.15質量部
 (“イルガキュア”(登録商標)184 BASFジャパン株式会社)。
[Coating composition B7]
-Solid content concentration of urethane acrylate 1-toluene solution 4.85 parts-Solid content concentration of urethane acrylate 2-50% by weight-toluene solution 4.85 parts-Particle additive C5 0.1 part-acetic acid 90.05 parts by mass of ethyl and 0.15 parts by mass of radical photopolymerization initiator (“Irgacure” (registered trademark) 184 BASF Japan Ltd.).
 [塗料組成物B8]
・ウレタンアクリレート1の固形分濃度50質量%-トルエン溶液   4.85質量部
・ウレタンアクリレート2の固形分濃度50質量%-トルエン溶液   4.85質量部
・粒子添加剤C6                         0.1質量部
・酢酸エチル                         90.05質量部
・光ラジカル重合開始剤                     0.15質量部
 (“イルガキュア”(登録商標)184 BASFジャパン株式会社)。
[Coating composition B8]
-Solid content concentration of urethane acrylate 1-4.85 parts by mass of toluene solution-Solid content concentration of urethane acrylate 2-4.85 parts by mass of toluene solution-0.1 part by mass of particle additive C6-Acetic acid 90.05 parts by mass of ethyl and 0.15 parts by mass of radical photopolymerization initiator (“Irgacure” (registered trademark) 184 BASF Japan Ltd.).
 [塗料組成物B9]
・ウレタンアクリレート1の固形分濃度50質量%-トルエン溶液   4.85質量部
・ウレタンアクリレート2の固形分濃度50質量%-トルエン溶液   4.85質量部
・粒子添加剤C7                         0.1質量部
・酢酸エチル                         90.05質量部
・光ラジカル重合開始剤                     0.15質量部
 (“イルガキュア”(登録商標)184 BASFジャパン株式会社)。
[Coating composition B9]
-Solid content concentration of urethane acrylate 1-4.85 parts by mass of toluene solution-Solid content concentration of urethane acrylate 2-4.85 parts by mass of toluene solution-0.1 part by mass of particle additive C7-Acetic acid 90.05 parts by mass of ethyl and 0.15 parts by mass of radical photopolymerization initiator (“Irgacure” (registered trademark) 184 BASF Japan Ltd.).
 [塗料組成物B10]
・ウレタンアクリレート1の固形分濃度50質量%-トルエン溶液   4.85質量部
・ウレタンアクリレート2の固形分濃度50質量%-トルエン溶液   4.85質量部
・粒子添加剤C8                         0.1質量部
・酢酸エチル                         90.05質量部
・光ラジカル重合開始剤                     0.15質量部
 (“イルガキュア”(登録商標)184 BASFジャパン株式会社)。
[Coating composition B10]
-Solid content concentration of urethane acrylate 1-toluene solution 4.85 parts by mass-Solid content concentration of urethane acrylate 2-50% by weight-toluene solution 4.85 parts by mass-Particle additive C8 0.1 part by mass-Acetic acid 90.05 parts by mass of ethyl and 0.15 parts by mass of radical photopolymerization initiator (“Irgacure” (registered trademark) 184 BASF Japan Ltd.).
 <粒子添加剤C>
 粒子添加剤Cとしてそれぞれ下記の粒子分散物を使用した。なお各粒子成分の形状の詳細については表1に記載する。
粒子添加剤C1:シリカ粒子分散物(“MEK-AC-2140Z” 日産化学工業株式会社)
粒子添加剤C2:ベーマイト分散物(柱状ベーマイトゾル 川研ファインケミカル株式会社製)
粒子添加剤C3:ベーマイト分散物(柱状ベーマイトゾル 川研ファインケミカル株式会社製)
粒子添加剤C4:層状珪酸塩(“ルーセンタイトSPN”コープケミカル)1wt%IPA分散液
粒子添加剤C5:連鎖状シリカ粒子分散物(“MEK-ST-UP”日産化学工業株式会社)
粒子添加剤C6:ベーマイト分散物(繊維状ベーマイトゾル 川研ファインケミカル株式会社製)
粒子添加剤C7:シリカ粒子分散物(“MEK-ST-L”    日産化学工業株式会社)
粒子添加剤C8:シリカ粒子分散物(“MEK-ST-2040” 日産化学工業株式会社)
 <積層体の製造方法>
 支持基材としてPET樹脂フィルム上に易接着性塗料が塗布されている厚み50μmの“ルミラー”(登録商標)U48(東レ株式会社製)を用いた。支持基材上に塗料組成物AおよびBをワイヤーバーを用い、乾燥後の表面層の厚みが指定の膜厚になるように番手を調整して塗布し、次いで下記の条件で乾燥工程、硬化工程を行った。これらの一連の塗布、乾燥、硬化を順次繰り返すことにより、支持基材上に表面層を形成した。
<Particle additive C>
The following particle dispersions were used as the particle additive C, respectively. Details of the shape of each particle component are shown in Table 1.
Particle additive C1: Silica particle dispersion (“MEK-AC-2140Z” Nissan Chemical Industries, Ltd.)
Particle additive C2: Boehmite dispersion (columnar boehmite sol, manufactured by Kawaken Fine Chemical Co., Ltd.)
Particle additive C3: Boehmite dispersion (columnar boehmite sol, manufactured by Kawaken Fine Chemical Co., Ltd.)
Particle additive C4: layered silicate (“Lucentite SPN” Corp Chemical) 1 wt% IPA dispersion particle additive C5: chained silica particle dispersion (“MEK-ST-UP” Nissan Chemical Industries, Ltd.)
Particle additive C6: Boehmite dispersion (Fibrous boehmite sol Kawaken Fine Chemical Co., Ltd.)
Particle additive C7: Silica particle dispersion (“MEK-ST-L” Nissan Chemical Industries, Ltd.)
Particle additive C8: Silica particle dispersion (“MEK-ST-2040” Nissan Chemical Industries, Ltd.)
<Method for producing laminate>
As a supporting substrate, “Lumirror” (registered trademark) U48 (manufactured by Toray Industries, Inc.) having a thickness of 50 μm in which an easy-adhesive paint is applied on a PET resin film was used. Coating compositions A and B are applied onto the supporting substrate using a wire bar, and the coating is adjusted so that the thickness of the surface layer after drying becomes the specified film thickness, and then the drying process and curing are performed under the following conditions: The process was performed. A surface layer was formed on the support substrate by sequentially repeating these series of coating, drying, and curing.
 なお各実施例・比較例に対応する上記積層体の作成方法、使用する塗料組成物、各層の理論膜厚を表1に記載した。
「UV硬化1の乾燥工程」
送風温湿度 : 温度:80℃
風速    : 塗布面側:5m/秒、反塗布面側:5m/秒
風向    : 塗布面側:基材の面に対して平行、反塗布面側:基材の面に対して垂直
滞留時間  : 2分間
「UV硬化1硬化工程」
積算光量  : 120mJ/cm
酸素濃度  : 200ppm以下。
「UV硬化2の乾燥工程」
送風温湿度 : 温度:80℃
風速    : 塗布面側:5m/秒、反塗布面側:5m/秒
風向    : 塗布面側:基材の面に対して平行、反塗布面側:基材の面に対して垂直
滞留時間  : 2分間
「UV硬化2の硬化工程」
積算光量  : 120mJ/cm
酸素濃度  : 大気雰囲気。
「熱硬化1の乾燥・硬化工程」
送風温湿度 : 温度:80℃
風速    : 塗布面側:5m/秒、反塗布面側:5m/秒
風向    : 塗布面側:基材の面に対して平行、反塗布面側:基材の面に対して垂直
滞留時間  : 2分間
以上の方法により実施例1~19、比較例1~6の積層体を作成した。
Table 1 shows the method for preparing the laminate, the coating composition to be used, and the theoretical film thickness of each layer corresponding to each of the examples and comparative examples.
"Drying process of UV curing 1"
Air temperature and humidity: Temperature: 80 ° C
Wind speed: coating surface side: 5 m / sec, anti-coating surface side: 5 m / sec Wind direction: coating surface side: parallel to substrate surface, anti-coating surface side: vertical residence time to substrate surface: 2 Minutes "UV curing 1 curing process"
Integrated light quantity: 120 mJ / cm 2
Oxygen concentration: 200 ppm or less.
"Drying process of UV curing 2"
Air temperature and humidity: Temperature: 80 ° C
Wind speed: coating surface side: 5 m / sec, anti-coating surface side: 5 m / sec Wind direction: coating surface side: parallel to substrate surface, anti-coating surface side: vertical residence time to substrate surface: 2 Minute "UV curing 2 curing process"
Integrated light quantity: 120 mJ / cm 2
Oxygen concentration: Atmospheric atmosphere.
"Drying / curing process of thermosetting 1"
Air temperature and humidity: Temperature: 80 ° C
Wind speed: coating surface side: 5 m / sec, anti-coating surface side: 5 m / sec Wind direction: coating surface side: parallel to substrate surface, anti-coating surface side: vertical residence time to substrate surface: 2 Laminates of Examples 1 to 19 and Comparative Examples 1 to 6 were prepared by a method of minutes or more.
 <積層体の評価>
 作成した積層体について、次に示す性能評価を実施し、得られた結果を表2~4に示す。特に断らない場合を除き、測定は各実施例・比較例において、1つのサンプルにつき場所を変えて3回測定を行い、その平均値を用いた。
<Evaluation of laminate>
The produced laminate was subjected to the following performance evaluation, and the results obtained are shown in Tables 2 to 4. Unless otherwise specified, in each of the examples and comparative examples, the measurement was performed three times at different locations for each sample, and the average value was used.
 [原子間力顕微鏡による弾性率の測定]
 実施例1~19、比較例1~6の積層体を電顕用エポキシ樹脂(日新EM社製Quetol812)で包埋し硬化させた後、凍結ミクロトーム法により断面を切り出し、当該断面を測定面として専用のサンプル固定台に固定した。アサイラムテクノロジー製のAFM「MFP-3DSA-J」とNANOSENSORS製のカンチレバー「R150-NCL-10(材質Si、ばね定数48N/m、先端の曲率半径150nm)」を用い、表面層および支持基材の断面に対して、Contactモードでフォースカーブ (カンチレバーの移動速度2μm/s、最大押し込み荷重2μN)を測定した。
[Measurement of elastic modulus by atomic force microscope]
The laminates of Examples 1 to 19 and Comparative Examples 1 to 6 were embedded and cured with an electron microscope epoxy resin (Quetol 812 manufactured by Nissin EM Co., Ltd.), and then a cross section was cut out by a freezing microtome method. And fixed to a dedicated sample fixing base. Using an AFM “MFP-3DSA-J” manufactured by Asylum Technology and a cantilever “R150-NCL-10 (material Si, spring constant 48 N / m, radius of curvature of the tip 150 nm) manufactured by NANOSENSORS” A force curve (cantilever moving speed 2 μm / s, maximum indentation load 2 μN) was measured on the cross section in the Contact mode.
 フォースカーブから得られたForce-Ind曲線からAFM装置付属のソフト「IgorPro 6.22A MFP3D101010+1313」に付属のHertzの理論に基づいた解析を行わせることで厚み方向の弾性率分布を求めた。なお、Tip Geometry=Sphere、Radius=150nm、Select=Fused Silica、νTip=0.17、ETip=74.9GPa、νSample=0.33、ForceタブのLow=10%、ForceタブのHigh=90%で計算した。 From the Force-Ind curve obtained from the force curve, the elastic modulus distribution in the thickness direction was obtained by performing analysis based on the Hertz theory attached to the software “IgorPro 6.22A MFP3D101010 + 1313” attached to the AFM apparatus. Tip Geometry = Sphere, Radius = 150 nm, Select = Fused Silica, νTip = 0.17, Etip = 74.9 GPa, νSample = 0.33, Force tab Low = 10%, Force tab High = 90% Calculated.
 [断面厚み方向の弾性率分布の測定]
 前述の方法で用意した積層体断面に対して、Tappingモード、分解能512×512pixelsにて表面像の測定を実施した。次いで、得られた表面像から表面層の厚みが視野角内に収まるように倍率を調整した。この時、表面層-支持基材界面は、表面層と支持基材の境界部分の弾性率の不整合から輝線または暗線として観察され、この輝線または暗線の中央を表面層の厚み方向の測定基準線とした。また最表面についても同様に、表面層と包埋樹脂との弾性率不整合により生じる輝線または暗線の中央を表面層の厚み方向の測定基準線とした。以下の測定においては、「最表面からの距離」という場合は、前述の最表面における輝線または暗線の中央をからの距離をいい、「最表面までの距離」という場合は、前述の最表面における輝線または暗線の中央までの距離をいう。同様に、「表面層-支持基材界面からの距離」という場合は、前述の界面における輝線または暗線の中央をからの距離をいい、「表面層-支持基材界面までの距離」という場合は、前述の界面における輝線または暗線の中央までの距離をいう。
[Measurement of elastic modulus distribution in cross-sectional thickness direction]
The surface image was measured in the tapping mode and the resolution of 512 × 512 pixels for the cross section of the laminate prepared by the above method. Subsequently, the magnification was adjusted from the obtained surface image so that the thickness of the surface layer was within the viewing angle. At this time, the interface between the surface layer and the supporting substrate is observed as a bright line or dark line due to a mismatch in elastic modulus at the boundary between the surface layer and the supporting substrate, and the center of this bright line or dark line is a measurement standard in the thickness direction of the surface layer. A line. Similarly, for the outermost surface, the center of the bright line or dark line generated by the mismatch in elastic modulus between the surface layer and the embedding resin was used as a measurement reference line in the thickness direction of the surface layer. In the following measurement, the term “distance from the outermost surface” refers to the distance from the center of the bright line or dark line on the outermost surface, and the term “distance to the outermost surface” refers to the distance from the outermost surface. The distance to the center of the bright line or dark line. Similarly, the term “distance from the interface between the surface layer and the supporting substrate” refers to the distance from the center of the bright line or dark line at the above-mentioned interface, and the term “distance to the interface between the surface layer and the supporting substrate”. The distance to the center of the bright line or dark line at the aforementioned interface.
 前述の表面層-支持基材界面と最表面の距離を表面層の総厚みとした。次いで分解能512×512の格子点状の測定点から、表面層を縦断する直線上のデータ群を選択した。更に、前述のデータ群が属する表面層を縦断する直線と積層体の法線のなす角から、各データ点の表面層-支持基材界面からの厚み方向の距離を算出し、厚み方向の距離が概ね100nm間隔となるように前述の方法で弾性率の測定を実施することで、厚み方向の弾性率分布を得た。この時、表面層-支持基材界面からの厚み方向の距離が100nm未満になる点(図1の符号10)、および最表面からの距離が100nm未満になる点(図1の符号11)は、界面および表面の影響を受けやすいため測定から除外した。なお上記の方法で測定を実施した場合、現実的に設定可能な各測定点間の距離の下限は、表面層の厚みと分解能から決定される。具体的には表面層の厚みの概ね500分の1程度であり、例えば表面層の厚みが50μmであれば、その空間分解能は概ね100nm程度となる。装置の設定上は更に分解能を高めることも可能であるが、カンチレバーの曲率や測定点の数などから前述の100nm程度が現実的に測定可能な数値となる。 The distance between the aforementioned surface layer-supporting substrate interface and the outermost surface was defined as the total thickness of the surface layer. Next, a data group on a straight line running through the surface layer was selected from lattice point-like measurement points with a resolution of 512 × 512. Further, the distance in the thickness direction from the interface between the surface layer and the supporting substrate at each data point is calculated from the angle formed by the straight line perpendicular to the surface layer to which the above data group belongs and the normal line of the laminate. The elastic modulus distribution in the thickness direction was obtained by measuring the elastic modulus by the above-described method so as to be approximately 100 nm. At this time, the point in the thickness direction from the interface between the surface layer and the supporting substrate is less than 100 nm (reference numeral 10 in FIG. 1) and the distance from the outermost surface is less than 100 nm (reference numeral 11 in FIG. 1). Since it is easily affected by the interface and surface, it was excluded from the measurement. When the measurement is performed by the above method, the lower limit of the distance between the measurement points that can be set practically is determined from the thickness of the surface layer and the resolution. Specifically, it is about 1/500 of the thickness of the surface layer. For example, if the thickness of the surface layer is 50 μm, the spatial resolution is about 100 nm. Although it is possible to further increase the resolution in setting the apparatus, the above-mentioned value of about 100 nm is a practically measurable value from the curvature of the cantilever, the number of measurement points, and the like.
 次いで、最表面側および界面側の弾性率として、表面層において最表面から100nm内側の位置(図1の符号5)および界面から100nm内側の位置(図1の符号7)に存在する点から無作為に選定し、それぞれ5箇所での測定結果の平均値を最表面側および界面側の弾性率とした。 Next, as the elastic modulus on the outermost surface side and the interface side, there is no elasticity in the surface layer because it exists at a position 100 nm inside from the outermost surface (reference numeral 5 in FIG. 1) and at a position 100 nm inside from the interface (reference numeral 7 in FIG. 1). It selected for work and made the average value of the measurement result in each 5 places the elastic modulus of the outermost surface side and the interface side.
 [支持基材の弾性率の測定]
 支持基材についても同様に断面の弾性率を測定した。測定位置については支持基材において、支持基材と表面層との界面から支持基材側に100nmの距離の点(例えば、図1の符号8)から支持基材の厚み方向(表面層が存在する方向とは逆の方向)に100nm間隔で弾性率を測定した。支持基材と表面層との界面から、表面層と同一の厚みに相当する距離まで測定を行い(例えば、表面層の厚みが3μmであれば、支持基材と表面層との界面から3μmの距離まで100nm間隔で弾性率測定を行う)、その平均値を支持基材の弾性率とした。
[Measurement of elastic modulus of supporting substrate]
Similarly, the elastic modulus of the cross section was measured for the supporting substrate. Regarding the measurement position, in the supporting substrate, from the point of the distance of 100 nm from the interface between the supporting substrate and the surface layer to the supporting substrate side (for example, reference numeral 8 in FIG. 1), the thickness direction of the supporting substrate (the surface layer exists) The elastic modulus was measured at intervals of 100 nm in the direction opposite to the direction in which it was performed. Measure from the interface between the support substrate and the surface layer to a distance corresponding to the same thickness as the surface layer (for example, if the thickness of the surface layer is 3 μm, 3 μm from the interface between the support substrate and the surface layer) The elastic modulus is measured at intervals of 100 nm up to the distance), and the average value is taken as the elastic modulus of the supporting substrate.
 [厚み方向の弾性率分布からのパラメータの算出]
 前述の方法で得られた厚み方向のパラメータを基に最大弾性率、最小弾性率、弾性率が支持基材の弾性率よりも高い部分の厚みの平均値(Ta)、弾性率が支持基材の弾性率よりも低い部分の厚みの平均値(Tb)、極大弾性率の平均値(Ea)および極小弾性率の平均値(Eb)の算出をそれぞれ以下の方法で実施した。
[Calculation of parameters from elastic modulus distribution in the thickness direction]
Based on the parameters in the thickness direction obtained by the method described above, the maximum elastic modulus, the minimum elastic modulus, the average value (Ta) of the thickness where the elastic modulus is higher than the elastic modulus of the supporting substrate, and the elastic modulus is the supporting substrate. The average value of the thickness (Tb), the average value of the maximum elastic modulus (Ea), and the average value of the minimum elastic modulus (Eb) of the portion lower than the elastic modulus of each were calculated by the following methods.
 まず得られた弾性率のうち、その厚み方向の測定位置が表面層内に属する測定点のうち、弾性率が最大の値を最大弾性率、弾性率が最小の値を最小弾性率とした。次いで、表面層内に属する測定点から弾性率が極大となる点を抽出し、更にこれらの極大値から支持基材の弾性率よりも大きい値のものを全て抽出し、その平均値としてEaを得た。Ebについても、極大値の代わりに極小値を抽出し、支持基材の弾性率よりも小さい値を使用すること以外は同様にして算出した。 First, among the obtained elastic moduli, among the measurement points where the measurement position in the thickness direction belongs to the surface layer, the maximum elastic modulus is the maximum elastic modulus, and the minimum elastic modulus is the minimum elastic modulus. Next, the points where the elastic modulus becomes maximum are extracted from the measurement points belonging to the surface layer, and further all of the values larger than the elastic modulus of the supporting base material are extracted from these maximum values, and Ea is obtained as an average value thereof. Obtained. Eb was also calculated in the same manner except that a minimum value was extracted instead of the maximum value and a value smaller than the elastic modulus of the support base was used.
 次いで、厚み方向の弾性率分布と支持基材の弾性率により、弾性率が支持基材の弾性率よりも高い部分と弾性率が支持基材の弾性率よりも低い部分を算出した。その概念は図3に示しているが、具体的には「支持基材の弾性率」の数値と「厚み方向の弾性率分布」の交点の座標を下記の方法で算出した。前述の通り「厚み方向の弾性率分布」は100nm間隔の離散的なデータ点の集合であることから、「一方の弾性率が支持基材の弾性率よりも低く、かつ他方の弾性率が支持基材の弾性率よりも高い」条件を満たす隣接する2点を抽出し、前記条件を満たす2点を結ぶ直線と支持基材の弾性率を示す直線との交点の座標(以下、交点の座標という)を算出した。そして、算出した各交点の座標から交点間の厚み方向の距離を算出し、「弾性率が支持基材の弾性率よりも高い部分の厚み」および「弾性率が支持基材の弾性率よりも低い部分の厚み」とした。なお、支持基材との界面側の厚みは、表面層-支持基材界面(図4の符号13)から最も距離が短い交点の座標(図4の符号22)までの距離を「弾性率が支持基材の弾性率よりも高い部分の厚み」とした。また、最表面側の厚みは、最表面(図4の符号12)から最も距離が短い交点(図4の符号23)までの距離を「弾性率が支持基材の弾性率よりも高い部分の厚み」とした。さらに算出した弾性率が支持基材の弾性率よりも低い部分の厚みおよび弾性率が支持基材の弾性率よりも低い部分の厚みの値をそれぞれ平均して、弾性率が支持基材の弾性率よりも高い部分の厚みの平均値(Ta)および弾性率が支持基材の弾性率よりも低い部分の厚みの平均値(Tb)を算出した。 Next, from the elastic modulus distribution in the thickness direction and the elastic modulus of the supporting substrate, a portion where the elastic modulus is higher than the elastic modulus of the supporting substrate and a portion where the elastic modulus is lower than the elastic modulus of the supporting substrate were calculated. The concept is shown in FIG. 3, specifically, the coordinates of the intersection of the “elastic modulus of the supporting substrate” and the “elastic modulus distribution in the thickness direction” were calculated by the following method. As described above, since the “elastic modulus distribution in the thickness direction” is a set of discrete data points at intervals of 100 nm, “one elastic modulus is lower than the elastic modulus of the supporting substrate and the other elastic modulus is supported. Two adjacent points satisfying the condition “higher than the elastic modulus of the base material” are extracted, and the coordinates of the intersection of the straight line connecting the two points satisfying the condition and the straight line indicating the elastic modulus of the supporting base material (hereinafter, the coordinates of the intersection point) Calculated). Then, the distance in the thickness direction between the intersections is calculated from the calculated coordinates of each intersection, and “the thickness of the portion where the elastic modulus is higher than the elastic modulus of the supporting substrate” and “the elastic modulus is higher than the elastic modulus of the supporting substrate. “Low thickness”. Note that the thickness on the interface side with the support substrate is the distance from the surface layer-support substrate interface (reference numeral 13 in FIG. 4) to the coordinate of the shortest intersection (reference numeral 22 in FIG. 4). The thickness of the portion higher than the elastic modulus of the supporting substrate ”. Further, the thickness on the outermost surface side is the distance from the outermost surface (reference numeral 12 in FIG. 4) to the shortest intersection (reference numeral 23 in FIG. 4) of “the portion where the elastic modulus is higher than the elastic modulus of the supporting substrate. "Thickness". Furthermore, the elastic modulus is the elasticity of the supporting substrate by averaging the thickness of the portion where the calculated elastic modulus is lower than the elastic modulus of the supporting substrate and the thickness of the portion where the elastic modulus is lower than the elastic modulus of the supporting substrate. The average value (Ta) of the thickness of the portion higher than the modulus and the average value (Tb) of the thickness of the portion where the elastic modulus is lower than the elastic modulus of the supporting substrate were calculated.
 [異方形状を有する無機粒子の形状測定]
 透過型電子顕微鏡(TEM)を用いて断面を観察することにより、表面層断面に含まれる無機粒子の形状を測定した。無機粒子の形状は、以下の方法に従い測定した。まず積層体の断面の超薄切片をTEMにより20万倍の倍率で撮影した。続いて画像処理ソフトEasyAccess Ver6.7.1.23 にて画像をグレースケールに変換し、ホワイトバランスを最明部と最暗部が8bitのトーンカーブに収まるように調整、さらに無機粒子の境界が明確に見分けられるようにコントラストを調節した。次いでソフトウェア(画像処理ソフトImageJ/開発元:アメリカ国立衛生研究所(NIH))を用いて、前述の境界を境に画素の2値化を行い、Analize Particles(粒子解析)機能により個々の無機粒子のなす領域を抽出し、そこから該当領域の面積をFit Ellipseにて楕円形近似したときのMajorの値を長直径、Minorの値を短直径として求めた。前述の解析を個々の無機粒子計50個に対して実施し、長直径の最大値を長直径Rl、短直径の最小値を短直径Rsとした。
[Shape measurement of inorganic particles having anisotropic shape]
The shape of the inorganic particles contained in the cross section of the surface layer was measured by observing the cross section using a transmission electron microscope (TEM). The shape of the inorganic particles was measured according to the following method. First, an ultrathin section of the cross section of the laminate was taken with a TEM at a magnification of 200,000 times. Subsequently, the image is converted to gray scale using the image processing software EasyAccess Ver 6.7.1.23, and the white balance is adjusted so that the brightest and darkest parts are within the 8-bit tone curve, and the boundaries of the inorganic particles are clear. The contrast was adjusted so that it could be distinguished. Then, using the software (image processing software ImageJ / Developer: National Institutes of Health (NIH)), the pixels are binarized at the boundary described above, and individual inorganic particles are analyzed by the Analyze Particles (particle analysis) function. The area of the corresponding area was extracted, and the area of the corresponding area was approximated to an ellipse by Fit Ellipse, and the value of Major was determined as the long diameter, and the value of Minor was determined as the short diameter. The above analysis was performed on a total of 50 individual inorganic particles, and the maximum value of the long diameter was the long diameter Rl and the minimum value of the short diameter was the short diameter Rs.
 [異方形状を有する無機粒子の存在頻度測定]
 続いて同様の透過型電子顕微鏡(TEM)の断面観察から、無機粒子の存在頻度の算出を実施した。まず積層体の断面の超薄切片をTEMにより5万倍の倍率で撮影した。次いで画像処理ソフトEasyAccess Ver6.7.1.23 にて、画像をグレースケールに変換し、ホワイトバランスを最明部と最暗部が8bitのトーンカーブに収まるように調整した。さらに無機粒子の境界が明確に見分けられるようにコントラストを調節し、表面層-支持基材界面(図4の符号13)が水平となるように回転・トリミング加工を施した。次いで前述の[厚み方向の弾性率分布からのパラメータの算出]の項の方法にて得られた、「弾性率が支持基材の弾性率よりも高い部分の厚み」および「弾性率が支持基材の弾性率よりも低い部分の厚み」の値に沿って、画像を界面に平行な方向に短冊状に細分化した。次にソフトウェア(画像処理ソフトImageJ/開発元:アメリカ国立衛生研究所(NIH))を用いて、前述の境界を境に画素の2値化を行い、Analize Particles(粒子解析)機能により個々の無機粒子のなす領域を抽出し、そこから該当領域の面積を算出した。同様にして、切り出した短冊状の画像の成す面積を算出し、短冊中に占める無機粒子の面積比を、無機粒子の存在頻度として算出した。以上のようにして算出した存在頻度のうち、「弾性率が支持基材の弾性率よりも高い部分の厚み」の成す短冊から求められる値の平均値を弾性率が支持基材の弾性率よりも高い部分の存在頻度Faとし、「弾性率が支持基材の弾性率よりも低い部分の厚み」の成す短冊から求められる値の平均値を弾性率が支持基材の弾性率よりも低い部分の存在頻度Fbとした。
[Measurement of existence frequency of inorganic particles with anisotropic shape]
Subsequently, the presence frequency of the inorganic particles was calculated from the cross-sectional observation of the same transmission electron microscope (TEM). First, an ultrathin section of the cross section of the laminate was taken with a TEM at a magnification of 50,000 times. Next, the image was converted to a gray scale by image processing software EasyAccess Ver6.7.23, and the white balance was adjusted so that the brightest part and the darkest part were within an 8-bit tone curve. Further, the contrast was adjusted so that the boundaries of the inorganic particles could be clearly identified, and rotation / trimming was performed so that the interface between the surface layer and the supporting substrate (reference numeral 13 in FIG. 4) was horizontal. Next, the “thickness of the portion where the elastic modulus is higher than the elastic modulus of the supporting substrate” and the “elastic modulus is the supporting base” obtained by the method described in the section “Calculation of parameters from elastic modulus distribution in the thickness direction” described above. The image was subdivided into strips in a direction parallel to the interface along the value of “thickness of the portion lower than the elastic modulus of the material”. Next, using the software (image processing software ImageJ / Developer: National Institutes of Health (NIH)), the pixels are binarized on the boundary described above, and each inorganic particle is analyzed by the Analyze Particles (particle analysis) function. The area formed by the particles was extracted, and the area of the corresponding area was calculated therefrom. Similarly, the area formed by the cut strip-shaped image was calculated, and the area ratio of the inorganic particles in the strip was calculated as the presence frequency of the inorganic particles. Of the existence frequencies calculated as described above, the average value of the values obtained from the strip formed by the “thickness of the portion where the elastic modulus is higher than the elastic modulus of the supporting base material” is the elastic modulus from the elastic modulus of the supporting base material. The average value of the values obtained from the strip formed by the “thickness of the portion where the elastic modulus is lower than the elastic modulus of the supporting substrate” is the portion where the elastic modulus is lower than the elastic modulus of the supporting substrate. The existence frequency Fb was determined.
 [表面層の鉛筆硬度試験法による表面硬度測定]
 作成した積層体を常態下(24℃、相対湿度65%)で12時間放置した後、同環境にてJIS K 5600-5-4(1999年)に記載の引っかき硬度(鉛筆法)に従い、表面層の表面硬度を測定した。
[Surface hardness measurement by pencil hardness test method for surface layer]
The prepared laminate is allowed to stand under normal conditions (24 ° C., relative humidity 65%) for 12 hours, and then in accordance with the scratch hardness (pencil method) described in JIS K 5600-5-4 (1999) in the same environment. The surface hardness of the layer was measured.
 [表面層の耐擦傷性]
 作成した積層体を常態下(24℃、相対湿度65%)で12時間放置した後、表面層を有する面に対して、1,000g/cm荷重となるスチールウール(#0000)を垂直にあて、5cmの長さを10往復した際に目視される傷の概算本数を記載し、下記のクラス分けを行った。
5点:0本
4点:1本以上 5本未満
3点:5本以上 10本未満
2点:10本以上 20本未満
1点:20本以上。
[Scratch resistance of surface layer]
The prepared laminate is allowed to stand under normal conditions (24 ° C., relative humidity 65%) for 12 hours, and then steel wool (# 0000) having a load of 1,000 g / cm 2 is perpendicular to the surface having the surface layer. The approximate number of scratches visually observed when the length of 5 cm was reciprocated 10 times was described, and the following classification was performed.
5 points: 0 4 points: 1 or more Less than 5 3 points: 5 or more Less than 10 2 points: 10 or more Less than 20 1 point: 20 or more.
 [積層体の屈曲性]
 作成した積層体を常態下(24℃、相対湿度65%)で12時間放置した後、同環境にてJIS K 5600-5-1(1999年)に記載の耐屈曲性(円筒形マンドレル法)のタイプ1により評価を実施した。マンドレルとして直径2、3、4、5mmのものを使用し、目視による判定でクラックおよび塗膜の剥がれが観測されない最小直径により下記のようにクラス分けを行った。なお同様の評価を、表面層を有する面が外側になるように折る(山折り)条件と表面層を有する面が内側になるように折る(谷折り)条件にてそれぞれ実施した。
5点:2mmφ クラック、剥がれなし
4点:2mmφ クラック、剥がれあり、3mmφ クラック、剥がれなし
3点:3mmφ クラック、剥がれあり、4mmφ クラック、剥がれなし
2点:4mmφ クラック、剥がれあり、5mmφ クラック、剥がれなし
1点:5mmφ クラック、剥がれあり。
[Flexibility of laminate]
The prepared laminate is allowed to stand under normal conditions (24 ° C., relative humidity 65%) for 12 hours, and then is bent in the same environment as described in JIS K 5600-5-1 (1999) (cylindrical mandrel method) Evaluation was performed according to type 1 of The mandrels having diameters of 2, 3, 4, and 5 mm were used, and classification was performed as follows according to the minimum diameter at which cracks and coating film peeling were not observed by visual judgment. The same evaluation was carried out under the condition that the surface having the surface layer was folded (mountain fold) and the condition that the surface having the surface layer was folded (valley fold).
5 points: 2 mmφ crack, no peeling 4 points: 2 mmφ crack, peeling 3 mmφ crack, no peeling 3 points: 3 mmφ crack, peeling 4 mmφ crack, no peeling 2 points: 4 mmφ crack, peeling 5 mmφ crack, no peeling 1 point: 5 mmφ Cracking and peeling.
 [積層体のカール性]
 作成した積層体を常態下(24℃、相対湿度65%)で12時間放置した後、10cm四方の正方形状に切り出し、水平面上に静置した。次いで積層体の4隅点と水平面の距離を計測し、その数値の平均により5段階に分類した。
5点:1mm未満
4点:1mm以上、10mm未満
3点:10mm以上、20mm未満
2点:20mm以上
1点:筒状となり計測不可。
[Curlability of laminate]
The prepared laminate was allowed to stand under normal conditions (24 ° C., relative humidity 65%) for 12 hours, then cut into a 10 cm square shape and left on a horizontal plane. Next, the distance between the four corner points of the laminate and the horizontal plane was measured, and classified into five levels based on the average of the numerical values.
5 points: less than 1 mm 4 points: 1 mm or more, less than 10 mm 3 points: 10 mm or more, less than 20 mm 2 points: 20 mm or more 1 point: cylindrical and cannot be measured.
 [表面層の密着性]
 作成した積層体を常態下(24℃、相対湿度65%)で12時間放置した後、表面層を有する面に対して1mmのクロスカットを100個入れ、ニチバン株式会社製“セロテープ”(登録商標)をその上に貼り付け、ゴムローラーを用いて、荷重19.6Nで3往復させ、押し付けた後、90度方向に剥離し、導電層の残存した個数により5段階評価(5:96個~100個、4:81個~95個、3:71個~80個、2:61個~70個、1:0個~60個)した。
[Adhesion of surface layer]
The prepared laminate was allowed to stand under normal conditions (24 ° C., relative humidity 65%) for 12 hours, and then 100 pieces of 1 mm 2 crosscuts were placed on the surface having the surface layer, and “Cello tape” (registered) manufactured by Nichiban Co., Ltd. (Trademark) is affixed on it, reciprocated three times with a load of 19.6 N using a rubber roller, pressed, peeled off in the direction of 90 degrees, and evaluated in five stages based on the number of remaining conductive layers (5:96) To 100, 4:81 to 95, 3:71 to 80, 2:61 to 70, 1: 0 to 60).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 本発明に係る積層体は、プラスチック成型品、家電製品、建築物や車両内装品および種々の印刷物のそれぞれの表面に同様の機能を付与するためにも用いることができる。 The laminate according to the present invention can also be used for imparting similar functions to the surfaces of plastic molded products, home appliances, buildings, vehicle interiors, and various printed materials.
1 支持基材
2 表面層
3 積層体
4 表面層の最表面
5 最表面側の弾性率の測定点
6 表面層と支持基材の界面
7 界面側の弾性率の測定点
8 支持基材の弾性率測定開始点
9 支持基材の弾性率
10 支持基材の影響から測定を行わない領域
11 表面の影響から測定を行わない領域
12 表面層の最表面の位置
13 表面層-支持基材界面の位置
14 最大弾性率
15 最小弾性率
16 極大弾性率
17 極大弾性率の平均値
18 極小弾性率
19 極小弾性率の平均値
20 厚み方向の弾性率分布と弾性率が支持基材の弾性率よりも高い部分の厚み
21 厚み方向の弾性率分布と弾性率が支持基材の弾性率よりも低い部分の厚み
22 支持基材と表面層の弾性率が等しくなる点の中で、表面層と支持基材の界面に最も近い点
23 支持基材と表面層の弾性率が等しくなる点の中で、最表面に最も近い点
24 多層スライドダイ
25 多層スロットダイ
26 単層スロットダイ
DESCRIPTION OF SYMBOLS 1 Support base material 2 Surface layer 3 Laminate 4 Outer surface 5 of surface layer Measurement point 6 of elastic modulus of the outermost surface side Interface 7 of surface layer and support base material Measurement point 8 of elastic modulus of interface side Elasticity of support base material Rate measurement start point 9 Elastic modulus of supporting substrate 10 Region 11 where measurement is not performed due to influence of supporting substrate 12 Region where measurement is not performed due to influence of surface 12 Position of outermost surface of surface layer 13 Surface layer-supporting substrate interface Position 14 Maximum elastic modulus 15 Minimum elastic modulus 16 Maximum elastic modulus 17 Average value of maximum elastic modulus 18 Minimum elastic modulus 19 Average value of minimum elastic modulus 20 The elastic modulus distribution in the thickness direction and the elastic modulus are larger than the elastic modulus of the supporting substrate. Thickness 21 of the high portion The elastic modulus distribution in the thickness direction and the thickness 22 of the portion where the elastic modulus is lower than the elastic modulus of the supporting base material Among the points where the elastic modulus of the supporting base material and the surface layer are equal, the surface layer and the supporting base Point 23 closest to the interface of the material The elastic modulus of the supporting substrate and the surface layer are equal. Among consisting point, the closest point 24 multilayer slide die 25 multilayer slot die 26 monolayers slot die on the outermost surface

Claims (6)

  1. 支持基材上に表面層が積層された積層体であって、前記表面層の厚み方向の弾性率分布において、弾性率が支持基材の弾性率よりも高い極大値と弾性率が支持基材の弾性率よりも低い極小値が存在し、前記表面層における支持基材との界面側の弾性率と最表面側の弾性率が、共に支持基材の弾性率よりも高いことを特徴とする積層体。 A laminate in which a surface layer is laminated on a supporting substrate, and in the elastic modulus distribution in the thickness direction of the surface layer, the maximum value and the elastic modulus are higher than the elastic modulus of the supporting substrate. There is a minimum value lower than the elastic modulus of the surface layer, and both the elastic modulus on the interface side with the supporting substrate and the elastic modulus on the outermost surface side in the surface layer are both higher than the elastic modulus of the supporting substrate. Laminated body.
  2. 前記表面層の厚み方向の弾性率分布における最大弾性率が、最小弾性率の100倍以上10,000倍以下であることを特徴とする請求項1に記載の積層体。 2. The laminate according to claim 1, wherein the maximum elastic modulus in the elastic modulus distribution in the thickness direction of the surface layer is 100 to 10,000 times the minimum elastic modulus.
  3. 前記表面層の厚み方向の弾性率分布における最小弾性率が0.1GPa以下であることを特徴とする請求項1または2に記載の積層体。 The laminate according to claim 1 or 2, wherein the minimum elastic modulus in the elastic modulus distribution in the thickness direction of the surface layer is 0.1 GPa or less.
  4. 前記表面層の厚み方向の弾性率分布において、弾性率が支持基材の弾性率よりも高い極大値と弾性率が支持基材の弾性率よりも低い極小値が交互に存在し、弾性率分布から算出される厚みおよび弾性率が、以下の関係を満たすことを特徴とする請求項1から3のいずれかに記載の積層体。
    10≦(Tb[nm]/Ta[nm])×(Ea[MPa])/Eb[MPa])≦1,000・・・(式1)
     Ta[nm]:弾性率が支持基材の弾性率よりも高い部分の厚みの平均値
     Tb[nm]:弾性率が支持基材の弾性率よりも低い部分の厚みの平均値
     Ea[MPa]:極大弾性率の平均値
     Eb[MPa]:極小弾性率の平均値
    In the elastic modulus distribution in the thickness direction of the surface layer, a maximum value whose elastic modulus is higher than the elastic modulus of the supporting substrate and a minimum value whose elastic modulus is lower than the elastic modulus of the supporting substrate are alternately present, and the elastic modulus distribution 4. The laminate according to claim 1, wherein a thickness and an elastic modulus calculated from the above satisfy the following relationship.
    10 ≦ (Tb [nm] / Ta [nm]) × (Ea [MPa]) / Eb [MPa]) ≦ 1,000 (Formula 1)
    Ta [nm]: Average thickness of the portion where the elastic modulus is higher than the elastic modulus of the supporting substrate Tb [nm]: Average thickness of the portion where the elastic modulus is lower than the elastic modulus of the supporting substrate Ea [MPa] : Average value of maximum elastic modulus Eb [MPa]: Average value of minimum elastic modulus
  5. 前記表面層が以下を満たす異方形状を有する無機粒子を含むことを特徴とする、請求項1から4のいずれかに記載の積層体。
     1.2≦Rl/Rs≦20,000・・・(式2)
     1nm≦Rs≦100nm・・・(式3)
     Rl[nm]:無機粒子の長直径
     Rs[nm]:無機粒子の短直径
    The laminate according to any one of claims 1 to 4, wherein the surface layer includes inorganic particles having an anisotropic shape satisfying the following.
    1.2 ≦ Rl / Rs ≦ 20,000 (Formula 2)
    1 nm ≦ Rs ≦ 100 nm (Formula 3)
    Rl [nm]: Long diameter of the inorganic particle Rs [nm]: Short diameter of the inorganic particle
  6. 前記表面層の支持基材に垂直な断面における、前記異方形状を有する無機粒子の、厚み方向の存在頻度Fが以下の条件を満たすことを特徴とする請求項1から5のいずれかに記載の積層体。
     Fa<Fb・・・(式4)
     Fa:弾性率が支持基材の弾性率よりも高い部分の存在頻度
     Fb:弾性率が支持基材の弾性率よりも低い部分の存在頻度
    6. The existence frequency F in the thickness direction of the inorganic particles having the anisotropic shape in a cross section perpendicular to the supporting base material of the surface layer satisfies the following condition. Laminated body.
    Fa <Fb (Formula 4)
    Fa: Presence frequency of a portion where the elastic modulus is higher than the elastic modulus of the supporting base material Fb: Presence frequency of a portion where the elastic modulus is lower than the elastic modulus of the supporting base material
PCT/JP2015/084513 2014-12-16 2015-12-09 Layered body WO2016098658A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016519407A JP6662287B2 (en) 2014-12-16 2015-12-09 Laminate
CN201580068091.5A CN107000400B (en) 2014-12-16 2015-12-09 Laminated body
KR1020177015755A KR102540277B1 (en) 2014-12-16 2015-12-09 Layered body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-253670 2014-12-16
JP2014253670 2014-12-16

Publications (1)

Publication Number Publication Date
WO2016098658A1 true WO2016098658A1 (en) 2016-06-23

Family

ID=56126550

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/084513 WO2016098658A1 (en) 2014-12-16 2015-12-09 Layered body

Country Status (5)

Country Link
JP (1) JP6662287B2 (en)
KR (1) KR102540277B1 (en)
CN (1) CN107000400B (en)
TW (1) TWI667141B (en)
WO (1) WO2016098658A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018105442A1 (en) * 2016-12-08 2018-06-14 Dic株式会社 Active-energy-beam-curable resin composition, and laminate film
JP2019025765A (en) * 2017-07-31 2019-02-21 東レ株式会社 Laminate, cover film, and production method of laminate
US20220017026A1 (en) * 2018-11-26 2022-01-20 Autonetworks Technologies, Ltd. Door wiring module

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111526613B (en) * 2020-05-18 2022-07-12 无锡格菲电子薄膜科技有限公司 Copper electrode graphene electrothermal film and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004004404A (en) * 2002-04-05 2004-01-08 Fuji Photo Film Co Ltd Anti-reflection film, manufacturing method for the same, and picture display device
WO2008096617A1 (en) * 2007-02-06 2008-08-14 Konica Minolta Holdings, Inc. Transparent gas barrier film and method for producing transparent gas barrier film
WO2011040541A1 (en) * 2009-09-30 2011-04-07 大日本印刷株式会社 Optical laminate and method for producing optical laminate
JP2012011478A (en) * 2010-06-30 2012-01-19 National Institute Of Advanced Industrial Science & Technology Method for forming microstructure and micropattern

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4075147B2 (en) 1998-08-04 2008-04-16 凸版印刷株式会社 Hard coat film or sheet, and hard coat film or sheet with functional inorganic thin film
JP4543441B2 (en) 1998-09-01 2010-09-15 凸版印刷株式会社 Hard coat film or sheet
JP4574766B2 (en) 1998-11-17 2010-11-04 大日本印刷株式会社 Hard coat film and antireflection film
JP2007108592A (en) * 2005-10-17 2007-04-26 Nitto Denko Corp Laminate for liquid crystal display apparatus, and liquid crystal display apparatus with same
CN101410729B (en) * 2006-03-31 2011-03-30 大日本印刷株式会社 Optical laminate
WO2009130975A1 (en) 2008-04-22 2009-10-29 コニカミノルタホールディングス株式会社 Layered product with hard-coat layer
TWI509071B (en) * 2013-05-22 2015-11-21 Univ China Medical Method for inducing secondary metabolites production of fungus utilizing apoptosis mechanism

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004004404A (en) * 2002-04-05 2004-01-08 Fuji Photo Film Co Ltd Anti-reflection film, manufacturing method for the same, and picture display device
WO2008096617A1 (en) * 2007-02-06 2008-08-14 Konica Minolta Holdings, Inc. Transparent gas barrier film and method for producing transparent gas barrier film
WO2011040541A1 (en) * 2009-09-30 2011-04-07 大日本印刷株式会社 Optical laminate and method for producing optical laminate
JP2012011478A (en) * 2010-06-30 2012-01-19 National Institute Of Advanced Industrial Science & Technology Method for forming microstructure and micropattern

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018105442A1 (en) * 2016-12-08 2018-06-14 Dic株式会社 Active-energy-beam-curable resin composition, and laminate film
JPWO2018105442A1 (en) * 2016-12-08 2019-10-24 Dic株式会社 Active energy ray-curable resin composition and laminated film
JP7024729B2 (en) 2016-12-08 2022-02-24 Dic株式会社 Active energy ray-curable resin composition and laminated film
JP2019025765A (en) * 2017-07-31 2019-02-21 東レ株式会社 Laminate, cover film, and production method of laminate
US20220017026A1 (en) * 2018-11-26 2022-01-20 Autonetworks Technologies, Ltd. Door wiring module
US11565634B2 (en) * 2018-11-26 2023-01-31 Autonetworks Technologies, Ltd. Door wiring module

Also Published As

Publication number Publication date
JPWO2016098658A1 (en) 2017-09-21
CN107000400A (en) 2017-08-01
KR102540277B1 (en) 2023-06-07
TWI667141B (en) 2019-08-01
TW201630714A (en) 2016-09-01
KR20170094199A (en) 2017-08-17
CN107000400B (en) 2018-11-23
JP6662287B2 (en) 2020-03-11

Similar Documents

Publication Publication Date Title
JP6950330B2 (en) Laminated body and resin film
JP6394395B2 (en) Laminated film
WO2016098658A1 (en) Layered body
KR102242709B1 (en) Layered film and process for producing layered film
JP7468573B2 (en) Laminate
JP6531531B2 (en) Laminated film, and method of manufacturing laminated film
JP6878833B2 (en) Laminate
JP2016085451A (en) Hard coat film and information display device
JP2017064968A (en) Laminated film
JP6897043B2 (en) Laminate
WO2015041175A1 (en) Layered film
JP6582862B2 (en) Laminated film
JP7346881B2 (en) Laminates and resin films
JP2019130889A (en) Laminate and resin film
WO2019235206A1 (en) Actinic-ray-curable composition and film formed using same
JP2024020313A (en) Laminates and resin films
JP6680003B2 (en) Laminate
JP2019025765A (en) Laminate, cover film, and production method of laminate
JP2014149512A (en) Molding material

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016519407

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15869863

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20177015755

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15869863

Country of ref document: EP

Kind code of ref document: A1