WO2009130975A1 - Layered product with hard-coat layer - Google Patents

Layered product with hard-coat layer Download PDF

Info

Publication number
WO2009130975A1
WO2009130975A1 PCT/JP2009/056478 JP2009056478W WO2009130975A1 WO 2009130975 A1 WO2009130975 A1 WO 2009130975A1 JP 2009056478 W JP2009056478 W JP 2009056478W WO 2009130975 A1 WO2009130975 A1 WO 2009130975A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
hard coat
coat layer
unit
laminate
Prior art date
Application number
PCT/JP2009/056478
Other languages
French (fr)
Japanese (ja)
Inventor
伊藤 聡
Original Assignee
コニカミノルタホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタホールディングス株式会社 filed Critical コニカミノルタホールディングス株式会社
Priority to JP2010509124A priority Critical patent/JP5482651B2/en
Publication of WO2009130975A1 publication Critical patent/WO2009130975A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/043Improving the adhesiveness of the coatings per se, e.g. forming primers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/04Coating
    • C08J7/046Forming abrasion-resistant coatings; Forming surface-hardening coatings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2483/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen, or carbon only; Derivatives of such polymers
    • C08J2483/04Polysiloxanes

Definitions

  • the present invention relates to a laminate with a hard coat layer having a laminated structure having excellent film adhesion, high film strength, and excellent scratch resistance.
  • the present invention relates to the surface of a display such as a cathode ray tube (CRT), a liquid crystal display (LCD), a plasma display panel (PDP), a field emission display (FED), a touch panel such as a home appliance, various windows, for example, a house window, a show. It can be used as a glass protective film for a window, a window for a vehicle, a windshield for a vehicle, an amusement machine, or a glass substitute resin product.
  • CTR cathode ray tube
  • LCD liquid crystal display
  • PDP plasma display panel
  • FED field emission display
  • a touch panel such as a home appliance
  • various windows for example, a house window, a show. It can be used as a glass protective film for a window, a window for a vehicle, a windshield for a vehicle, an
  • Patent Document 1 discloses a hard coat film obtained by coating a hard coat layer mainly composed of an active energy ray polymerizable resin on at least one surface of a transparent base film, and has a Mohs hardness of 6 on the hard coat layer.
  • a hard coat film containing the above inorganic fine particles, fine particles having a Mohs hardness of 4 or less and / or fine particles having an elastic modulus E of 6 GPa or less is disclosed.
  • Patent Document 2 discloses a hard coat film in which the transparent hard coat layer contains a synthetic resin and surface-coated metal oxide fine particles dispersed in the resin. .
  • transparent plastic moldings such as polycarbonate resins and acrylic resins are also used as substrates in various fields as substitutes for glass.
  • window glass substitutes lenses represented by glasses, roofing materials, transparent soundproof walls, electric light protection materials, vehicle lighting, windshields, flat panel display members, and the like.
  • a compound having an isocyanate group or a blocked isocyanate group on the surface of a polycarbonate resin molded body contains a compound selected from colloidal silica to obtain a resin molded body having high hardness. Is disclosed.
  • the hard coat layer contains only inorganic fine particles, it is hard and highly resistant to scratches, but cracks such as cracks hardly occur, and it can be satisfied as a hard coat film having excellent adhesion to the substrate. It was not a thing.
  • the present invention has been made in view of the above problems, and an object of the present invention is to provide a laminate with a hard coat layer that can be easily produced, has excellent film adhesion, and has high film strength and scratch resistance. It is in.
  • the hard coat layer has two layers having different inorganic particle concentrations.
  • the layer group having a high inorganic particle concentration is an A layer unit and the layer group having a low inorganic particle concentration is a B layer unit
  • the surface of the hard coat layer is an A layer unit.
  • At least one layer unit of the A layer unit and the B layer unit is composed of at least two layers having different dry film thicknesses, and when the A layer unit is composed of layers having different dry film thicknesses, the A layer unit The dry film thickness of each layer constituting the layer decreases toward the resin substrate, and when the B layer unit is composed of layers having different dry film thicknesses, the dryness of each layer constituting the B layer unit is dried.
  • the thickness increases toward the resin substrate, and the total ⁇ Ah of the dry film thickness of the A layer unit and the total ⁇ Bh of the dry film thickness of the B layer unit satisfy the relationship ⁇ Ah ⁇ ⁇ Bh Laminated body with hard coat layer.
  • the hard coat layer is When the two layers having different inorganic particle concentrations are alternately stacked, the layer group having a high inorganic particle concentration is an A layer unit, and the layer group having a low inorganic particle concentration is a B layer unit.
  • At least one layer unit of the unit and the B layer unit is composed of at least two layers having different dry film thicknesses, and the total dry film thickness ⁇ Ah of the A layer unit and the total dry film thickness ⁇ Bh of the B layer unit are , ⁇ Ah ⁇ ⁇ Bh satisfying the relationship, a laminate with a hard coat layer.
  • the inorganic particle concentration of the A layer unit is 30.0% by volume or more and 70.0% by volume or less, and the inorganic particle concentration of the B layer unit is 0% by volume or more and 40.0% by volume or less.
  • the inorganic particle concentration of the A layer unit is 40.0% by volume or more and 60.0% by volume or less, and the inorganic particle concentration of the B layer unit is 0% by volume or more and 20.0% by volume or less.
  • the laminate with a hard coat layer according to any one of 1 to 3 above.
  • the dry film thickness of the layer closest to the metal oxide layer is 0.1 ⁇ m or more and 2.0 ⁇ m or less.
  • the plasma CVD method is an atmospheric pressure plasma CVD method in which a plasma treatment is performed under an atmospheric pressure or a pressure near atmospheric pressure.
  • the present inventor has a hard coat layer-attached laminate having a hard coat layer composed of at least a resin and inorganic particles or a resin on at least one surface of the resin base material, or
  • a hard coat layer composed of at least a resin and inorganic particles or a resin and a metal oxide layer are laminated in this order on at least one surface of a resin base material
  • the hard coat layer is When the two layers having different inorganic particle concentrations are alternately stacked, the layer group having a high inorganic particle concentration is an A layer unit, and the layer group having a low inorganic particle concentration is a B layer unit.
  • At least one layer unit of the unit and the B layer unit is composed of at least two layers having different dry film thicknesses, and the total ⁇ Ah of the dry film thicknesses of the A layer unit and the B layer unit
  • a laminate with a hard coat layer characterized in that the total dry film thickness ⁇ Bh satisfies the relationship ⁇ Ah ⁇ ⁇ Bh, excellent film adhesion, high film strength, and scratch resistance
  • the hard coat layer has a structure in which two layers having different inorganic particle concentrations are alternately laminated, and a layer group having a high inorganic particle concentration is designated as an A layer unit and an inorganic particle concentration.
  • a layer group having a low A is a B layer unit
  • at least one layer unit of the A layer unit and the B layer unit is composed of at least two layers having different dry film thicknesses, and the total dry film thickness of the A layer unit is The sum of ⁇ Ah and the total dry film thickness ⁇ Bh of the B layer unit is ⁇ Ah ⁇ ⁇ Bh.
  • the total ⁇ Ah of the dry film thickness of the A layer unit is not particularly limited, but is approximately 1.0 ⁇ m or more and 100 ⁇ m or less, preferably 5.0 ⁇ m. Above, it is 50 micrometers or less, More preferably, they are 5.0 micrometers or more and 20 micrometers or less. Further, the total dry thickness ⁇ Bh of the B layer unit is not particularly limited, but is approximately 1.0 ⁇ m or more and 100 ⁇ m or less, preferably 3.0 ⁇ m or more and 50 ⁇ m or less, and more preferably 3.0 ⁇ m. As mentioned above, it is 20 micrometers or less.
  • the present inventor constituted a hard coat layer with a structure in which two layers having different inorganic particle concentrations were alternately laminated, and further, an A layer having a high inorganic particle concentration. At least one layer unit of the unit and the B layer unit having a low inorganic particle concentration is composed of at least two layers having different dry film thicknesses, and the total dry film thickness of the A layer unit ⁇ Ah ⁇ the total dry film thickness of the B layer unit ⁇ Bh
  • the present inventors have found that the effect intended by the present invention can be obtained by satisfying the above condition.
  • the hard coat layer according to the present invention is mainly composed of an actinic ray curable resin, which will be described later, or an actinic ray curable resin and fine particles, but in the present invention, it is composed of an actinic ray curable resin and inorganic particles.
  • the inorganic particle-containing layer the inorganic particle concentration contained in each layer is different, and the inorganic particle concentration contained in each layer constituting the A layer unit is higher than the inorganic particle concentration contained in each layer constituting the B layer unit. It is characterized by doing.
  • the inorganic particle concentration of each layer constituting the A layer unit is 30% by volume or more and 70% by volume or less, and the inorganic particle concentration of each layer constituting the B layer unit is 0% by volume or more and 40% by volume or less. More preferably, the inorganic particle concentration of each layer constituting the A layer unit is 40% by volume or more and 60% by volume or less, and the inorganic particle concentration of each layer constituting the B layer unit is 0% by volume or more and 20% by volume. % Or less.
  • the layer constituting the A layer unit may be a single layer or may be composed of two or more layers.
  • the B layer unit is a single layer.
  • the A layer unit is composed of two or more layers.
  • the layer constituting the B layer unit may be a single layer or may be composed of two or more layers.
  • the B layer unit has 2 layers.
  • Each layer is composed of layers or more, and each layer constituting the A layer unit having different inorganic particle concentrations and each layer constituting the B layer unit are alternately laminated.
  • FIG. 1 shows a typical cross-sectional view of a laminate with a hard coat layer of the present invention, but the present invention is not limited to the configuration exemplified here.
  • FIG. 1 a is a cross-sectional view of a laminate with a hard coat layer in which three inorganic particle-containing layers having different inorganic particle concentrations are laminated.
  • FIG. 1A shows an example in which the A layer unit having a high inorganic particle concentration is composed of two layers A1 and A2, and the B layer unit having a low inorganic particle concentration is composed of a single layer of B1.
  • the A1 of the A layer unit having a high inorganic particle concentration is disposed on the resin base material 2, and then the B1 of the B layer unit having a low inorganic particle concentration is stacked.
  • the total dry film thickness of the two layers A1 and A2 constituting the A layer unit is designed to be larger than the dry film thickness of B1 constituting the B layer unit.
  • the dry film thickness is increased in the order of A1 and A2 toward the metal oxide layer 3.
  • the dry film thickness of the layer (A2) in the layer closest to the metal oxide layer 3 (a in FIG. 1) is: It is preferable that it is 3 micrometers or more and 100 micrometers or less.
  • the dry film thickness of the layer (B1) in the layer closest to the metal oxide layer 3 (a in FIG. 1) is: It is preferable that they are 0.1 micrometer or more and 2 micrometers or less.
  • FIG. 1 b is a cross-sectional view showing another example of a laminate with a hard coat layer in which three inorganic particle-containing layers having different inorganic particle concentrations are laminated.
  • FIG. 1b shows an example in which the A layer unit having a high inorganic particle concentration is constituted by a single layer of only A1, and the B layer unit having a low inorganic particle concentration is constituted by two layers B1 and B2.
  • the B1 of the B layer unit having a low inorganic particle concentration is disposed on the resin base material 2, and then the A1 of the A layer unit having a high inorganic particle concentration is stacked.
  • the dry film thickness of A1 constituting the A layer unit is designed to be thicker than the total dry film thickness of B1 and B2 constituting the B layer unit.
  • the dry film thickness is decreased in the order of B1 and B2 toward the metal oxide layer 3.
  • the dry film thickness of A1) in the layer closest to the metal oxide layer 3 (b in FIG. 1) is: It is preferable that it is 3 micrometers or more and 100 micrometers or less.
  • the dry film thickness of the layer (B2) in the layer closest to the metal oxide layer 3 (b in FIG. 1) is: It is preferable that they are 0.1 micrometer or more and 2 micrometers or less.
  • FIG. 1 c) is a cross-sectional view of a laminate with a hard coat layer in which the A layer unit and the B layer unit having different inorganic particle concentrations are each composed of three layers and are alternately laminated.
  • the B1 of the B layer unit having a low inorganic particle concentration is disposed on the resin base material 2, and then the A1 of the A layer unit having a high inorganic particle concentration is stacked.
  • the laminate with a hard coat layer is obtained by alternately laminating B2, A2, B3, and A3 in this order, and further forming the metal oxide layer 3 thereon.
  • the total dry film thickness of the three layers A1, A2, and A3 constituting the A layer unit is designed to be thicker than the total dry film thickness of the three layers B1, B2, and B3 constituting the B layer unit.
  • the dry film thickness is increased in the order of A1, A2, and A3 toward the metal oxide layer 3.
  • the dry film thickness of the layer (A3) in the layer closest to the metal oxide layer 3 (c in FIG. 1) is: It is preferable that it is 3 micrometers or more and 100 micrometers or less.
  • the dry film thickness is decreased in the order of B1, B2, and B3 toward the metal oxide layer 3.
  • the dry film thickness of the layer (B3) in the layer closest to the metal oxide layer 3 is: It is preferable that they are 0.1 micrometer or more and 2 micrometers or less.
  • each layer of the A layer unit and the B layer unit constituting the hard coat layer according to the present invention is mainly composed of an actinic ray curable resin and fine particles.
  • Typical examples of the actinic ray curable resin applicable to the present invention include an ultraviolet curable resin and an electron beam curable resin, but a resin that is cured by irradiation with active rays other than ultraviolet rays and electron beams may be used.
  • the ultraviolet curable resin include an ultraviolet curable acrylic urethane resin, an ultraviolet curable polyester acrylate resin, an ultraviolet curable epoxy acrylate resin, an ultraviolet curable polyol acrylate resin, and an ultraviolet curable epoxy resin. I can do it.
  • UV-curable acrylic urethane resins are obtained by reacting a polyester polyol with an isocyanate monomer or a prepolymer and further adding 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate (hereinafter referred to as acrylate, methacrylate). It can be easily obtained by reacting an acrylate monomer having a hydroxyl group such as 2-hydroxypropyl acrylate (for example, see JP-A-59-151110).
  • UV curable polyester acrylate resins can be easily obtained by reacting polyester polyols with 2-hydroxyethyl acrylate or 2-hydroxy acrylate monomers, for example (see, for example, JP-A-59-151112). .
  • ultraviolet curable epoxy acrylate resins include those obtained by reacting epoxy acrylate with oligomers, a reactive diluent and a photoreaction initiator added thereto (for example, JP-A-1- No. 105738).
  • a photoreaction initiator for example, JP-A-1- No. 105738.
  • the photoreaction initiator one or more kinds selected from benzoin derivatives, oxime ketone derivatives, benzophenone derivatives, thioxanthone derivatives and the like can be selected and used.
  • ultraviolet curable polyol acrylate resins include trimethylolpropane triacrylate, ditrimethylolpropane tetraacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, dipentaerythritol hexaacrylate, alkyl-modified dipentaerythritol pentaacrylate. Etc. can be mentioned.
  • the said photoinitiator can also be used as a photosensitizer.
  • specific examples include acetophenone, benzophenone, hydroxybenzophenone, Michler's ketone, ⁇ -amyloxime ester, thioxanthone, and the like.
  • a sensitizer such as n-butylamine, triethylamine, tri-n-butylphosphine can be used.
  • the photoreaction initiator or photosensitizer contained in the ultraviolet curable resin composition excluding the solvent component that volatilizes after coating and drying can be added in an amount of usually 1 to 10% by mass of the composition, and 2.5 to 6 It is preferable that it is mass%.
  • the resin monomer may include general monomers such as methyl acrylate, ethyl acrylate, butyl acrylate, vinyl acetate, benzyl acrylate, cyclohexyl acrylate, and styrene as monomers having one unsaturated double bond.
  • Monomers having two or more unsaturated double bonds include ethylene glycol diacrylate, propylene glycol diacrylate, divinylbenzene, 1,4-cyclohexane diacrylate, 1,4-cyclohexyldimethyl adiacrylate, and the above-mentioned trimethylolpropane. Examples thereof include triacrylate and pentaerythritol tetraacryl ester.
  • Adekaoptomer KR / BY series KR-400, KR-410, KR-550, KR-566, KR-567, BY-320B (above, manufactured by Asahi Denka Kogyo Co., Ltd.) Or Koeihard A-101-KK, A-101-WS, C-302, C-401-N, C-501, M-101, M-102, T-102, D-102, NS-101, FT -102Q8, MAG-1-P20, AG-106, M-101-C (from Guangei Chemical Industry Co., Ltd.), or Seika Beam PHC2210 (S), PHC X-9 (K-3), PHC2213, DP- 10, DP-20, DP-30, P1000, P1100, P1200, P1300, P1400, P1500, P1600, SCR900 , Manufactured by Dainichi Seika Kogyo Co., Ltd.),
  • the inorganic particle concentration of each layer constituting the A layer unit is 30% by volume or more and 70% by volume or less, and the inorganic particle concentration of each layer constituting the B layer unit is 0 volume.
  • the inorganic particle concentration of each layer constituting the A layer unit is 40% by volume or more and 60% by volume or less, and the inorganic particle concentration of each layer constituting the B layer unit is It is preferable to set it to 0 volume% or more and 20 volume% or less. That is, the layer constituting the B layer unit according to the present invention includes a case that does not contain any inorganic particles and is composed only of an actinic ray curable resin.
  • Examples of inorganic particles applicable to the constituent layer of the hard coat layer according to the present invention include oxidation of a metal selected from Si, Ti, Mg, Ca, Zr, Sn, Sb, As, Zn, Nb, In, and Al.
  • a metal selected from Si, Ti, Mg, Ca, Zr, Sn, Sb, As, Zn, Nb, In, and Al.
  • silicon oxide that can be preferably applied to the present invention for example, preferably used silicon oxide particles include silicia manufactured by Fuji Silysia Chemical Co., Nippon Sil E manufactured by Nippon Silica Co., Ltd., and Nippon Aerosil Co., Ltd. Aerosil series, colloidal silica manufactured by Nissan Chemical Industries, organosilica sol, etc. can be applied.
  • the average particle diameter of the inorganic particles applicable to the hard coat layer according to the present invention is preferably 5 nm or more and 1.0 ⁇ m or less, more preferably 5 nm or more and 500 nm or less.
  • the average particle diameter of the inorganic particles is obtained as a simple average value (number average) by observing the inorganic particles with an electron microscope, determining the particle diameter of 100 arbitrary primary particles.
  • each particle diameter is expressed by a diameter assuming a circle equal to the projected area.
  • the content of the inorganic particles in the inorganic particle-containing layer is not particularly limited as long as it satisfies the conditions specified in the present invention.
  • the layers constituting the A layer unit and the layers constituting the B layer unit are alternately laminated on the resin base material, and each constituent layer is formed on the resin base material.
  • a method for forming the thin film a known method for forming a thin film can be applied, but it is particularly preferable to form the thin film by a wet coating method.
  • the wet coating method is, for example, an actinic ray curable resin dissolved in a solvent, for example, hydrocarbons, alcohols, ketones, esters, glycol ethers, and other solvents, and then inorganic particles are added to the inorganic particles.
  • a solvent for example, hydrocarbons, alcohols, ketones, esters, glycol ethers, and other solvents
  • inorganic particles are added to the inorganic particles.
  • coating methods used in such wet coating methods include spin coating, dip coating, extrusion coating, roll coating coating spray coating, gravure coating, wire bar coating, air knife coating, slide popper coating, and curtain coating.
  • a coating method (coating apparatus) using a known solution can be applied.
  • the hard coat layer (inorganic particle-containing layer) formed on the resin substrate by the above coating method is irradiated with actinic rays for the purpose of curing the film.
  • actinic rays for the purpose of curing the film.
  • any light source that generates ultraviolet rays can be used.
  • a low-pressure mercury lamp, a medium-pressure mercury lamp, a high-pressure mercury lamp, A high pressure mercury lamp, a carbon arc lamp, a metal halide lamp, a xenon lamp, etc. can be mentioned.
  • the irradiation conditions vary depending on individual lamps, but the amount of light irradiated may if 20 ⁇ 10000mJ / cm 2 degrees, preferably 50 ⁇ 2000mJ / cm 2.
  • the near ultraviolet region to the visible light region it can be used by using a sensitizer having an absorption maximum in that region.
  • the UV curable resin composition is coated and dried and then irradiated with UV light from a light source.
  • the irradiation time is preferably 0.5 seconds to 5 minutes, and 3 seconds to 2 from the curing efficiency and work efficiency of the UV curable resin. Minutes are more preferred.
  • the first layer for example, FIG. After applying B1) in c) of 1 and then irradiating with actinic rays, after applying a second layer (for example, A1) in c of FIG. 1 on the first layer, Irradiate with actinic rays.
  • B2, A2, B3, and A3 can be similarly applied and cured so as to have predetermined film thicknesses.
  • a wet coating method for forming a laminated hard coat layer according to the present invention for example, in the configuration shown in FIG. 1 c), it is high to apply a multilayer simultaneous coating method in which a total of six layers are coated simultaneously. It is preferable from the viewpoint of obtaining productivity.
  • a supply port or a supply slit capable of supplying a plurality of coating liquids is provided, and the supply amount of the coating liquid to each supply port or the supply slit so as to obtain a desired dry film thickness
  • a coating device such as extrusion coating, slide hopper coating, curtain coating, or the like can be applied.
  • the laminated body with a hard-coat layer of this invention can be obtained by forming a metal oxide layer on it.
  • the main component of the constituent material is composed of a metal oxide from the viewpoint of forming an outermost layer having high hardness.
  • the main component referred to in the present invention is that 80% by mass or more of the metal oxide layer is composed of a metal oxide, preferably 90% by mass or more is composed of a metal oxide, Particularly preferably, 95% by mass or more is composed of a metal oxide.
  • the metal oxide constituting the metal oxide layer according to the present invention is not particularly limited, and examples thereof include silicon oxide, silicon oxynitride, silicon nitride, titanium oxide, titanium oxynitride, titanium nitride, boron oxide, and aluminum oxide. Among these, a silicon oxide film is particularly preferable from the viewpoint of obtaining a surface layer having high hardness.
  • the metal oxide layer according to the present invention includes, for example, a dry film formation by a sputtering method, an ion assist method, a plasma CVD method, an atmospheric pressure plasma CVD method under atmospheric pressure or a pressure near atmospheric pressure, a sol-gel method, and a silazane. It can be formed by applying a wet coating by a method.
  • a plasma CVD method as a method for forming a metal oxide layer by dry film formation, and in particular, a high pressure under atmospheric pressure or a pressure near atmospheric pressure.
  • the atmospheric pressure plasma CVD method is preferable because it does not require a decompression chamber or the like and can form a film at a high speed and has high productivity. This is because by forming the metal oxide layer according to the present invention by the atmospheric pressure plasma CVD method, it is possible to relatively easily form a film having a uniform and smooth surface. The details of the layer formation conditions of the atmospheric pressure plasma CVD method will be described later.
  • the laminate with a hard coat layer of the present invention as a method for forming a metal oxide layer by wet coating, it is preferable to apply a sol-gel method or a silazane method, and in particular, a silazane method using an inorganic silazane, From the viewpoint of obtaining a coating film having a relatively low temperature and a high hardness.
  • inorganic polysilazanes applicable to the present invention include inorganic polysilazanes described in paragraph numbers (0097) to (0104) of JP-A No. 11-240103.
  • Polysilazane (perhydropolysilazane) is commercially available as AQUAMICA NAX120-20, NP110, NP140, etc. manufactured by AZ Electronic Materials.
  • the metal oxide layer obtained by the plasma CVD method, or the plasma CVD method under atmospheric pressure or a pressure near atmospheric pressure is a raw material (also referred to as a raw material) organometallic compound, decomposition gas, decomposition temperature, input power, etc.
  • a raw material also referred to as a raw material
  • various metal oxides having various characteristics can be generated.
  • silicon compound is used as a raw material compound and oxygen is used as a decomposition gas
  • silicon oxide is generated. This is because highly active charged particles and active radicals exist in the plasma space at a high density, so that multistage chemical reactions are promoted very rapidly in the plasma space, and the elements present in the plasma space are heated. This is because it is converted into a mechanically stable compound in a very short time.
  • an inorganic material as long as it has a typical or transition metal element, it may be in a gas, liquid, or solid state at normal temperature and pressure.
  • gas it can be introduced into the discharge space as it is, but in the case of liquid or solid, it is used after being vaporized by means such as heating, bubbling, decompression or ultrasonic irradiation.
  • the solvent may be diluted with a solvent, and an organic solvent such as methanol, ethanol, n-hexane or a mixed solvent thereof may be used as the solvent. Since these diluted solvents are decomposed into molecular and atomic forms during the plasma discharge treatment, the influence can be almost ignored.
  • the organometallic compound used for forming the metal oxide is examples of the silicon compound include silane, tetramethoxysilane, tetraethoxysilane (TEOS), tetra n-propoxy silane, tetraisopropoxy silane, tetra n-butoxy silane, tetra t-butoxy silane, dimethyl dimethoxy silane, dimethyl diethoxy.
  • TEOS tetramethoxysilane
  • TEOS tetraethoxysilane
  • TEOS tetra n-propoxy silane
  • tetraisopropoxy silane tetra n-butoxy silane
  • tetra t-butoxy silane tetra t-butoxy silane
  • dimethyl dimethoxy silane dimethyl diethoxy.
  • Silane diethyldimethoxysilane, diphenyldimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, phenyltriethoxysilane, (3,3,3-trifluoropropyl) trimethoxysilane, hexamethyldisiloxane, bis (dimethylamino) Dimethylsilane, bis (dimethylamino) methylvinylsilane, bis (ethylamino) dimethylsilane, N, O-bis (trimethylsilyl) acetamide, bis (trimethylsilyl) carbodiimi , Diethylaminotrimethylsilane, dimethylaminodimethylsilane, hexamethyldisilazane, hexamethylcyclotrisilazane, heptamethyldisilazane, nonamethyltrisilazane, octamethylcyclot
  • titanium compounds include titanium methoxide, titanium ethoxide, titanium isopropoxide, titanium tetraisoporooxide, titanium n-butoxide, titanium diisopropoxide (bis-2,4-pentanedionate), titanium.
  • examples thereof include diisopropoxide (bis-2,4-ethylacetoacetate), titanium di-n-butoxide (bis-2,4-pentanedionate), titanium acetylacetonate, butyl titanate dimer, and the like.
  • Zirconium compounds include zirconium n-propoxide, zirconium n-butoxide, zirconium t-butoxide, zirconium tri-n-butoxide acetylacetonate, zirconium di-n-butoxide bisacetylacetonate, zirconium acetylacetonate, zirconium acetate, Zirconium hexafluoropentanedioate and the like can be mentioned.
  • Examples of the aluminum compound include aluminum ethoxide, aluminum triisopropoxide, aluminum isopropoxide, aluminum n-butoxide, aluminum s-butoxide, aluminum t-butoxide, aluminum acetylacetonate, triethyldialuminum tri-s-butoxide, and the like. Can be mentioned.
  • Boron compounds include diborane, tetraborane, boron fluoride, boron chloride, boron bromide, borane-diethyl ether complex, borane-THF complex, borane-dimethyl sulfide complex, boron trifluoride diethyl ether complex, triethylborane, trimethoxy.
  • Examples include borane, triethoxyborane, tri (isopropoxy) borane, borazole, trimethylborazole, triethylborazole, triisopropylborazole, and the like.
  • tin compounds include tetraethyltin, tetramethyltin, di-n-butyltin diacetate, tetrabutyltin, tetraoctyltin, tetraethoxytin, methyltriethoxytin, diethyldiethoxytin, triisopropylethoxytin, diethyltin, Dimethyltin, diisopropyltin, dibutyltin, diethoxytin, dimethoxytin, diisopropoxytin, dibutoxytin, tin dibutyrate, tin diacetoacetonate, ethyltin acetoacetonate, ethoxytin acetoacetonate, dimethyltin diacetoacetonate
  • tin halides such as tin hydrogen compounds include tin dichloride and tin tetrachloride.
  • organometallic compounds include, for example, antimony ethoxide, arsenic triethoxide, barium 2,2,6,6-tetramethylheptanedionate, beryllium acetylacetonate, bismuth hexafluoropentanedionate, dimethylcadmium, calcium 2,2,6,6-tetramethylheptanedionate, chromium trifluoropentanedionate, cobalt acetylacetonate, copper hexafluoropentanedionate, magnesium hexafluoropentanedionate-dimethyl ether complex, gallium ethoxide, tetraethoxygermane , Tetramethoxygermane, hafnium t-butoxide, hafnium ethoxide, indium acetylacetonate, indium 2,6-dimethylaminoheptane dione , Ferrocene, lanthanum
  • examples of the decomposition gas for decomposing the raw material gas containing these metals to obtain a metal oxide include hydrogen gas, methane gas, acetylene gas, carbon monoxide gas, carbon dioxide gas, and nitrogen gas.
  • Various metal oxides can be obtained by appropriately selecting a raw material gas containing a metal element and a decomposition gas.
  • These discharge gases are mixed with a discharge gas that tends to be in a plasma state, and the gas is sent to a plasma discharge generator.
  • nitrogen gas and / or 18th group atom of the periodic table specifically helium, neon, argon, krypton, xenon, radon, etc. are used.
  • nitrogen, helium, and argon are preferably used, and nitrogen is particularly preferable because of low cost.
  • the film is formed by mixing the discharge gas and the reactive gas and supplying the mixed gas as a mixed gas to a plasma discharge generator (plasma generator).
  • a plasma discharge generator plasma generator
  • the ratio of the discharge gas and the reactive gas varies depending on the properties of the film to be obtained, the reactive gas is supplied with the ratio of the discharge gas being 50% or more with respect to the entire mixed gas.
  • various inorganic thin films can be formed by using the source gas as described above together with the discharge gas.
  • a volatilized / sublimated organometallic compound adheres to the surface of a high-temperature substrate, a thermal decomposition reaction occurs, and a thermally stable inorganic thin film is generated. Is.
  • a normal CVD method also referred to as a thermal CVD method
  • Such a normal CVD method normally requires a substrate temperature of 500 ° C. or higher, and is difficult to use for film formation on a plastic substrate.
  • the plasma CVD method an electric field is applied to the space in the vicinity of the substrate to generate a space (plasma space) where a gas in a plasma state exists, and a volatilized / sublimated organometallic compound is introduced into the plasma space. After the decomposition reaction occurs, the metal oxide thin film is formed by being sprayed on the substrate.
  • a high percentage of gas is ionized into ions and electrons, and although the temperature of the gas is kept low, the electron temperature is very high, so this high temperature electron or low temperature Is in contact with an excited state gas such as ions and radicals, so that the organometallic compound as the raw material of the inorganic film can be decomposed even at a low temperature. Therefore, the temperature of the resin base material on which the metal oxide is formed can be lowered, and the film forming method can sufficiently form the film on the resin base material.
  • the film is usually formed in a reduced pressure space of about 0.10 kPa to 10 kPa.
  • the equipment is large, the operation is complicated, and there is a problem of productivity.
  • the plasma CVD method near atmospheric pressure does not need to be reduced in pressure and has higher productivity than the plasma CVD method under vacuum, and has a high film density because the plasma density is high.
  • the mean free path of gas is very short, so that a very flat film is obtained.
  • the optical properties are good. From the above, in the present invention, it is more preferable to apply the atmospheric pressure plasma CVD method than the plasma CVD method under vacuum.
  • a thin film having a stable performance can be obtained with a dense film density when a metal oxide film is formed on a resin substrate, more specifically, on a hard coat layer. Further, it is characterized in that a metal oxide film having a residual stress as a compressive stress in a range of 0.01 MPa or more and 100 MPa or less can be obtained stably.
  • symbol F is a long film as an example of a base resin having a hard coat layer.
  • the source gas containing the metal and the decomposition gas are appropriately selected from the gas supply means, and these reactive gases are mainly in a plasma state.
  • the ceramic film can be obtained by mixing discharge gas that tends to be mixed and feeding the gas to a plasma discharge generator.
  • nitrogen gas and / or Group 18 atom of the periodic table specifically helium, neon, argon, krypton, xenon, radon, etc. are used as described above.
  • nitrogen, helium, and argon are preferably used, and nitrogen is particularly preferable because of low cost.
  • FIG. 2 shows a jet-type atmospheric pressure plasma discharge processing apparatus, which is not shown in FIG. 2 (shown in FIG. 3 described later) in addition to the plasma discharge processing apparatus and electric field applying means having two power sources. Is an apparatus having gas supply means and electrode temperature adjustment means.
  • the plasma discharge processing apparatus 10 has a counter electrode composed of a first electrode 11 and a second electrode 12, and the frequency ⁇ 1 from the first power supply 21 is connected from the first electrode 11 between the counter electrodes.
  • a first high-frequency electric field having electric field intensity V 1 and current I 1 is applied, and a second high-frequency electric field having frequency ⁇ 2 , electric field intensity V 2 , and current I 2 from second power source 22 is applied from second electrode 12.
  • the first power source 21 can apply a higher frequency electric field strength (V 1 > V 2 ) than the second power source 22, and the first frequency ⁇ 1 of the first power source 21 is higher than the second frequency ⁇ 2 of the second power source 22.
  • a low frequency can be applied.
  • a first filter 23 is installed between the first electrode 11 and the first power source 21 to facilitate passage of current from the first power source 21 to the first electrode 11, and current from the second power source 22. Is designed so that the current from the second power source 22 to the first power source 21 is less likely to pass through.
  • a second filter 24 is installed between the second electrode 12 and the second power source 22 to facilitate passage of current from the second power source 22 to the second electrode, and from the first power source 21. It is designed to ground the current and make it difficult to pass the current from the first power source 21 to the second power source.
  • a gas G is introduced into the space (discharge space) 13 between the first electrode 11 and the second electrode 12 from a gas supply means as shown in FIG. 3 to be described later, and the first electrode 11 and the second electrode A processing space created between the lower surface of the counter electrode and the base material F by generating a discharge by applying a high-frequency electric field from 12 and blowing the gas G in a plasma state to the lower side of the counter electrode (the lower side of the paper).
  • a thin film is formed near position 14.
  • the medium heats or cools the electrode through the pipe from the electrode temperature adjusting means as shown in FIG.
  • the temperature control medium an insulating material such as distilled water or oil is preferably used.
  • it is desirable to uniformly adjust the temperature inside the electrode so that the temperature unevenness of the base resin in the width direction or the longitudinal direction does not occur as much as possible.
  • jet-type atmospheric pressure plasma discharge treatment devices can be connected in series and discharged in the same plasma state at the same time, they can be processed many times and processed at high speed.
  • each apparatus jets gas in a different plasma state, a laminated thin film having different layers can be formed.
  • FIG. 3 is a schematic view showing an example of an atmospheric pressure plasma discharge treatment apparatus of a method for treating a substrate between counter electrodes useful for the present invention.
  • the atmospheric pressure plasma discharge processing apparatus is an apparatus having at least a plasma discharge processing apparatus 30, an electric field applying means 40 having two power sources, a gas supply means 50, and an electrode temperature adjusting means 60.
  • FIG. 3 shows a thin film formed by subjecting the base material F to plasma discharge treatment between the opposed electrodes (discharge space) 32 between the roll rotating electrode (first electrode) 35 and the square tube type fixed electrode group (second electrode) 36. To do.
  • the roll rotating electrode (first electrode) 35 has a first power source.
  • a second high-frequency electric field having a current I 2 is applied.
  • a first filter 43 is installed between the roll rotation electrode (first electrode) 35 and the first power supply 41, and the first filter 43 easily passes a current from the first power supply 41 to the first electrode.
  • the current from the second power supply 42 is grounded so that the current from the second power supply 42 to the first power supply is difficult to pass.
  • a second filter 44 is provided between the square tube type fixed electrode group (second electrode) 36 and the second power source 42, and the second filter 44 is connected from the second power source 42 to the second electrode. It is designed so that the current from the first power supply 41 is grounded and the current from the first power supply 41 to the second power supply is difficult to pass.
  • the roll rotation electrode 35 may be the second electrode, and the rectangular tube-shaped fixed electrode group 36 may be the first electrode.
  • the first power source is connected to the first electrode, and the second power source is connected to the second electrode.
  • the first power supply preferably applies a higher high-frequency electric field strength (V 1 > V 2 ) than the second power supply. Further, the frequency has the ability to satisfy ⁇ 1 ⁇ 2 .
  • the current is preferably I 1 ⁇ I 2 .
  • the current I 1 of the first high-frequency electric field is preferably 0.3 mA / cm 2 to 20 mA / cm 2 , more preferably 1.0 mA / cm 2 to 20 mA / cm 2 .
  • the current I 2 of the second high-frequency electric field is preferably 10 mA / cm 2 to 100 mA / cm 2 , more preferably 20 mA / cm 2 to 100 mA / cm 2 .
  • the gas G generated by the gas generator 51 of the gas supply means 50 is introduced into the plasma discharge processing vessel 31 through the air supply port 52 while controlling the flow rate.
  • the base material F is unwound from the original winding (not shown) and is transported or is transported from the previous process, and the air and the like that is entrained by the base material by the nip roll 65 through the guide roll 64 is blocked. Then, while being wound while being in contact with the roll rotating electrode 35, it is transferred between the square tube fixed electrode group 36 and the roll rotating electrode (first electrode) 35 and the square tube fixed electrode group (second electrode) 36. An electric field is applied from both of them to generate discharge plasma between the counter electrodes (discharge space) 32.
  • the base material F forms a thin film with a gas in a plasma state while being wound while being in contact with the roll rotating electrode 35.
  • the base material F passes through the nip roll 66 and the guide roll 67 and is wound up by a winder (not shown) or transferred to the next process.
  • Discharged treated exhaust gas G ′ is discharged from the exhaust port 53.
  • a medium whose temperature is adjusted by the electrode temperature adjusting means 60 is used as a liquid feed pump. P is sent to both electrodes through the pipe 61, and the temperature is adjusted from the inside of the electrode.
  • Reference numerals 68 and 69 denote partition plates that partition the plasma discharge processing vessel 31 from the outside.
  • FIG. 4 is a perspective view showing an example of the structure of the conductive metallic base material of the roll rotating electrode shown in FIG. 3 and the dielectric material coated thereon.
  • a roll electrode 35a is formed by covering a conductive metallic base material 35A and a dielectric 35B thereon.
  • a temperature adjusting medium water, silicon oil or the like
  • FIG. 5 is a perspective view showing an example of the structure of a conductive metallic base material of a rectangular tube electrode and a dielectric material coated thereon.
  • a rectangular tube type electrode 36a has a coating of a dielectric 36B similar to FIG. 4 on a conductive metallic base material 36A, and the structure of the electrode is a metallic pipe. , It becomes a jacket so that the temperature can be adjusted during discharge.
  • the number of the rectangular tube-shaped fixed electrodes is set in plural along a circumference larger than the circumference of the roll electrode, and the discharge area of the electrodes is a full square tube type facing the roll rotating electrode 35. It is represented by the sum of the area of the fixed electrode surface.
  • the rectangular tube electrode 36a shown in FIG. 5 may be a cylindrical electrode, but the rectangular tube electrode has an effect of widening the discharge range (discharge area) as compared with the cylindrical electrode, and thus is preferably used in the present invention. .
  • a roll electrode 35a and a rectangular tube electrode 36a are formed by spraying ceramics as dielectrics 35B and 36B on conductive metallic base materials 35A and 36A, respectively, and then sealing the inorganic compound. Is subjected to a sealing treatment.
  • the ceramic dielectric may be covered by about 1 mm with a single wall.
  • As the ceramic material used for thermal spraying alumina, silicon nitride, or the like is preferably used. Among these, alumina is particularly preferable because it is easily processed.
  • the dielectric layer may be a lining-processed dielectric provided with an inorganic material by lining.
  • Examples of the conductive metal base materials 35A and 36A include titanium metal or titanium alloy, metal such as silver, platinum, stainless steel, aluminum, and iron, a composite material of iron and ceramics, or a composite material of aluminum and ceramics. Although titanium metal or a titanium alloy is particularly preferable for the reasons described later.
  • the distance between the opposing first electrode and second electrode is the shortest distance between the surface of the dielectric and the surface of the conductive metal base material of the other electrode.
  • a dielectric is provided on both electrodes, it means the shortest distance between the dielectric surfaces.
  • the distance between the electrodes is determined in consideration of the thickness of the dielectric provided on the conductive metallic base material, the magnitude of the applied electric field strength, the purpose of using the plasma, etc. From the viewpoint of carrying out, 0.1 to 20 mm is preferable, and 0.2 to 2 mm is particularly preferable.
  • the plasma discharge treatment vessel 31 is preferably a treatment vessel made of Pyrex (registered trademark) glass or the like, but may be made of metal as long as it can be insulated from the electrodes.
  • polyimide resin or the like may be attached to the inner surface of an aluminum or stainless steel frame, and the metal frame may be thermally sprayed to obtain insulation.
  • FIG. 3 it is preferable to cover both side surfaces (up to the vicinity of the substrate surface) of both parallel electrodes with an object made of the above-described material.
  • Applied power symbol Manufacturer Frequency Product name A1 Shinko Electric 3kHz SPG3-4500 A2 Shinko Electric Co., Ltd. 5kHz SPG5-4500 A3 Kasuga Electric 15kHz AGI-023 A4 Shinko Electric 50kHz SPG50-4500 A5 HEIDEN Laboratory 100kHz * PHF-6k A6 Pearl Industry 200kHz CF-2000-200k A7 Pearl Industry 400kHz CF-2000-400k And the like, and any of them can be used.
  • * indicates a HEIDEN Laboratory impulse high-frequency power source (100 kHz in continuous mode). Other than that, it is a high-frequency power source that can apply only a continuous sine wave.
  • an electrode capable of maintaining a uniform and stable discharge state by applying such an electric field in an atmospheric pressure plasma discharge treatment apparatus.
  • the power applied between the electrodes facing each other is such that power (power density) of 1 W / cm 2 or more is supplied to the second electrode (second high-frequency electric field) to excite the discharge gas to generate plasma.
  • the energy is applied to the thin film forming gas to form a thin film.
  • the upper limit value of the power supplied to the second electrode is preferably 50 W / cm 2 , more preferably 20 W / cm 2 .
  • the lower limit is preferably 1.2 W / cm 2 .
  • discharge area (cm ⁇ 2 >) points out the area of the range which discharge occurs in an electrode.
  • the output density is improved while maintaining the uniformity of the second high frequency electric field. I can do it. Thereby, a further uniform high-density plasma can be generated, and a further improvement in film forming speed and an improvement in film quality can be achieved.
  • it is 5 W / cm 2 or more.
  • the upper limit value of the power supplied to the first electrode is preferably 50 W / cm 2 .
  • the waveform of the high-frequency electric field is not particularly limited.
  • a continuous sine wave continuous oscillation mode called a continuous mode
  • an intermittent oscillation mode called ON / OFF intermittently called a pulse mode
  • the second electrode side second
  • the high-frequency electric field is preferably a continuous sine wave because a denser and better quality film can be obtained.
  • An electrode used for such a method for forming a thin film by atmospheric pressure plasma must be able to withstand severe conditions in terms of structure and performance.
  • Such an electrode is preferably a metal base material coated with a dielectric.
  • the characteristics match between various metallic base materials and dielectrics.
  • One of the characteristics is linear thermal expansion between the metallic base material and the dielectric.
  • the combination is such that the difference in coefficient is 10 ⁇ 10 ⁇ 6 / ° C. or less. It is preferably 8 ⁇ 10 ⁇ 6 / ° C. or less, more preferably 5 ⁇ 10 ⁇ 6 / ° C. or less, and further preferably 2 ⁇ 10 ⁇ 6 / ° C. or less.
  • the linear thermal expansion coefficient is a well-known physical property value of a material.
  • Metal base material is pure titanium or titanium alloy
  • dielectric is ceramic spray coating
  • Metal base material is pure titanium or titanium alloy
  • dielectric is glass lining 3: Metal base material is stainless steel, Dielectric is ceramic spray coating 4: Metal base material is stainless steel, Dielectric is glass lining 5: Metal base material is a composite material of ceramics and iron, Dielectric is ceramic spray coating 6: Metal base material Ceramic and iron composite material, dielectric is glass lining 7: Metal base material is ceramic and aluminum composite material, dielectric is ceramic sprayed coating 8: Metal base material is ceramic and aluminum composite material, dielectric The body has glass lining. From the viewpoint of the difference in linear thermal expansion coefficient, the above-mentioned item 1 or item 2 and item 5 to 8 are preferable, and item 1 is particularly preferable.
  • titanium or a titanium alloy is particularly useful as the metallic base material from the above characteristics.
  • the dielectric is used as described above, so that there is no deterioration of the electrode in use, especially cracking, peeling, dropping off, etc., and it can be used for a long time under harsh conditions. Can withstand.
  • the atmospheric pressure plasma discharge treatment apparatus applicable to the present invention is described in, for example, Japanese Patent Application Laid-Open No. 2004-68143, 2003-49272, International Patent No. 02/48428, etc. in addition to the above description. And an atmospheric pressure plasma discharge treatment apparatus.
  • the thickness of the metal oxide layer provided on the resin base material having the hard coat layer varies depending on the type of the metal oxide to be formed, but is preferably in the range of 50 to 2000 nm. .
  • the hardness measured by the nanoindentation method is preferably 6 GPa or more and 10 GPa or less.
  • the hardness of the metal oxide layer within the above range, it is possible to suppress the occurrence of cracks on the surface, improve the adhesion between the hard coat layer and the metal oxide layer, and prevent cracking of the metal oxide layer. can do.
  • the hardness measurement method by the nanoindentation method is a method of measuring the relationship between the load and the indentation depth (displacement amount) while pushing a small diamond indenter into the thin film, and calculating the plastic deformation hardness from the measured value. is there.
  • the film when measuring a thin film having a thickness of 1 ⁇ m or less, the film is not easily affected by the physical properties of the substrate, and the thin film is not easily cracked when pressed. Generally, it is used for measuring physical properties of a very thin thin film.
  • the resin base material constituting the laminate with a hard coat layer of the present invention is not particularly limited, but may be a polyolefin (PO) resin such as a homopolymer or copolymer such as ethylene, propylene, or butene, or a cyclic polyolefin.
  • PO polyolefin
  • Polyester resins such as amorphous polyolefin resin (APO), polyethylene terephthalate (PET), polyethylene 2,6-naphthalate (PEN), polyamide (PA) resin such as nylon 6, nylon 12, copolymer nylon, polyvinyl alcohol (PVA) resin, polyvinyl alcohol resin such as ethylene-vinyl alcohol copolymer (EVOH), polyimide (PI) resin, polyetherimide (PEI) resin, polysulfone (PS) resin, polyethersulfone (PES) resin , Polyetheretherketone (PEEK Resin, polycarbonate (PC) resin, acrylic resin, polystyrene resin, vinyl chloride resin, polyvinyl butyrate (PVB) resin, polyarylate (PAR) resin, ethylene-tetrafluoroethylene copolymer (ETFE), trifluorinated chloride Ethylene (PFA), ethylene tetrafluoride-perfluoroalkyl vinyl ether copolymer (FEP),
  • a resin composition comprising an acrylate compound having a radical-reactive unsaturated compound, a resin composition comprising an acrylate compound and a mercapto compound having a thiol group, epoxy acrylate, urethane acrylate
  • a photocurable resin such as a resin composition in which an oligomer such as polyester acrylate or polyether acrylate is dissolved in a polyfunctional acrylate monomer, and a mixture thereof.
  • the resin bases exemplified above can be obtained as commercial products, such as ZEONEX and ZEONOR (manufactured by ZEON Corporation), amorphous cyclopolyolefin resin film ARTON (manufactured by GS Corporation), polycarbonate, and the like.
  • Examples include a pure ace film (manufactured by Teijin Ltd.) and a cellulose triacetate film Konica Katak KC4UX, KC8UX (manufactured by Konica Minolta Opto Co., Ltd.).
  • the resin substrate according to the present invention may be in the form of a sheet, a film, or other forms, and the form is not particularly limited.
  • the film thickness of the resin substrate can be appropriately selected from a wide range according to various conditions such as the type of resin used and the intended use, but is usually in the range of 10 ⁇ m to 10 mm, preferably 100 ⁇ m to 5 mm.
  • the laminate with a hard coat layer produced according to the above method has characteristics of high hardness and durability (adhesiveness).
  • a glass protective film or a glass substitute resin product can be applied to a wide range of fields.
  • Example 1 Production of laminate with hard coat layer >> [Preparation of Sample 1] (Resin base material) A polycarbonate resin film (manufactured by Teijin Chemicals Ltd.) having a thickness of 100 ⁇ m was used as the resin base material.
  • the ratio of the inorganic particles (silicon oxide) to the solid content (components other than methyl ethyl ketone as the solvent) in the coating liquid 1A for the A layer unit is about 40% by volume, but the active energy ray curable resin is active. Since it shrinks simultaneously with curing in the polymerization reaction caused by irradiation with energy rays, the filling rate of inorganic particles in the dry film, determined by the filling rate measurement method (volume analysis method) shown below, was 50% by volume.
  • -Filling rate measurement method volume analysis method
  • the filling rate of the inorganic particles in the dried film was measured by the following method. After forming the hard coat layer using the coating liquid 1A for the A layer unit, the hard coat layer is peeled off from the resin base material to measure the total volume, and then the volume of the inorganic particles is measured by dissolving the resin component. And obtained from these measured values.
  • ⁇ Preparation of coating liquid 1B for layer B unit Second layer> Active energy ray curable resin (dipentaerythritol hexaacrylate) 100 g Photoinitiator (Irgacure 184 (Ciba Specialty Chemicals Co., Ltd.)) 5.0g Methyl ethyl ketone 10.0g
  • the above additives were sequentially mixed and stirred for 30 minutes, and then filtered through a polypropylene filter having a pore size of 1 ⁇ m to prepare a coating solution 1B for a B layer unit.
  • the ratio (solid content ratio) of inorganic particles (silicon oxide) to the solid content (components other than methyl ethyl ketone as a solvent) in the coating liquid 1B for the B layer unit is 0% by volume.
  • Formation of hard coat layer Using the coating liquid 1A for the A layer unit on the resin base material, coating with a wire bar under the condition that the dry film thickness is 3.0 ⁇ m, and drying at 90 ° C. Was cured at an illuminance of 100 mW / cm 2 and an irradiation amount of 80 mJ / cm 2 to form a first layer (A layer unit) of the hard coat layer. Next, using the coating liquid 1B for the B layer unit, a wire bar was applied under the condition that the dry film thickness was 3.0 ⁇ m, and the coating was dried at 90 ° C.
  • the second layer (B layer unit) of the hard coat layer was formed by curing with an illuminance of 100 mW / cm 2 and an irradiation amount of 80 mJ / cm 2 .
  • a coating is applied with a wire bar under the condition that the dry film thickness is 6.0 ⁇ m, and drying at 90 ° C.
  • the hard coat layer is formed by the following conditions: the number of layers alternately stacked in the A layer unit and the B layer unit, the thickness of each sensitive layer ( ⁇ m), and the inorganic particles (oxidation) in the A layer unit and the B layer unit.
  • the addition rate of active energy ray curable resin, photoreaction initiator, inorganic particle dispersion and methyl ethyl ketone is adjusted as appropriate so that the filling rate (volume%) of silicon) is reached, and the filling rates shown in Tables 1 and 2 are obtained.
  • Samples 2 to 27 were produced in the same manner except that the changes were made.
  • Sample 28 was prepared in the same manner as in the preparation of Sample 1, except that the silicon oxide particles used for forming the A layer unit of the hard coat layer were changed to titanium oxide particles having a primary average particle diameter of 15 nm.
  • Sample 29 was prepared in the same manner as in the preparation of Sample 1, except that the silicon oxide particles used for forming the A layer unit of the hard coat layer were changed to zirconium oxide particles having a primary average particle diameter of 15 nm.
  • Samples 30 to 33 In the production of Sample 1, the silicon oxide particles (primary average particle diameter of 15 nm) used for forming the A layer unit of the hard coat layer were changed to silicon oxide particles having primary average particle diameters of 7 nm, 200 nm, 450 nm, and 850 nm, respectively. Samples 29 to 33 were prepared in the same manner as described above.
  • each of the first to sixth layer coating liquids was applied on a resin base material using a slide hopper type coating apparatus capable of simultaneous six-layer coating, and the state was maintained for 10 seconds. After the maintenance, the sample 34 was produced in the same manner as in the method described in the sample 1, except that the hard coat layer unit was formed by drying and curing.
  • Tables 1 and 2 below show details of the laminates with hard coat layers produced above.
  • evaluation of hardness (Evaluation 1: Pencil hardness test) Using a test pencil specified by JIS S 6006, measurement was performed according to a pencil hardness evaluation method specified by JIS K 5400. For the test, a pencil hardness tester (HA-301 Clemens type scratch hardness tester) was used. The hardness ranks are (soft) 6B to B, HB, F, H to 9H (hard) in the order of 6B, and 9H is the hardest.
  • Friction tester HEIDON-14DR Steel wool (Bonster # 0, 2cm x 2cm) Load: 9.8N Moving speed: 15 mm / min 20 rubbing treatments After the rubbing treatment, the rubbing range was observed with a magnifying glass, and the scratch resistance was evaluated according to the following criteria.
  • the laminate with a hard coat layer of the present invention having a hard coat layer having a layer structure defined in the present invention is more resistant to pencil hardness test and scratch resistance than the comparative example. It turns out that it is excellent and has high hardness.
  • Example 2 Production of laminate with hard coat layer >> [Preparation of Sample 101] (Resin base material) A polycarbonate resin film (manufactured by Teijin Chemicals Ltd.) having a thickness of 100 ⁇ m was used as the resin base material.
  • the ratio (solid content ratio) of the inorganic particles (silicon oxide) to the solid content (components other than methyl ethyl ketone as the solvent) in the coating liquid 1 for layer A unit is about 40% by volume. Since it shrinks simultaneously with curing in the polymerization reaction caused by irradiation with energy rays, the filling rate of inorganic particles in the dry film, determined by the filling rate measurement method (volume analysis method) shown below, was 50% by volume.
  • -Filling rate measurement method volume analysis method
  • the filling rate of the inorganic particles in the dried film was measured by the following method. After forming the hard coat layer using the coating liquid 1 for the A layer unit, the hard coat layer is peeled off from the resin base material to measure the total volume, and then the volume of the inorganic particles is measured by dissolving the resin component. And obtained from these measured values.
  • ⁇ Preparation of coating solution 1 for layer B unit Second layer> Active energy ray curable resin (dipentaerythritol hexaacrylate) 100 g Photoinitiator (Irgacure 184 (Ciba Specialty Chemicals Co., Ltd.)) 5.0g Methyl ethyl ketone 10.0g
  • the above additives were sequentially mixed and stirred for 30 minutes, and then filtered through a polypropylene filter having a pore size of 1 ⁇ m to prepare a coating solution 1 for B layer unit.
  • the ratio (solid content ratio) of inorganic particles (silicon oxide) to the solid content (components other than methyl ethyl ketone as a solvent) in the coating liquid 1 for the B layer unit is 0% by volume.
  • the second layer (B layer unit) of the hard coat layer was formed by curing with an illuminance of 100 mW / cm 2 and an irradiation amount of 80 mJ / cm 2 .
  • a coating with a wire bar was performed under the condition that the dry film thickness was 6.0 ⁇ m, and the coating was dried at 90 ° C.
  • the film thickness is 150 nm and only SiO 2 is formed on the third layer of the sample in which the hard coat layer is formed on the resin substrate by the atmospheric pressure plasma discharge treatment.
  • the metal oxide layer 1 comprised by this was formed, and the sample 1 which is a laminated body with a hard-coat layer was produced.
  • the discharge treatment apparatus shown in FIG. 3 has a plurality of rod-shaped electrodes placed in parallel to the film transport direction so as to face the roll electrode. It has a structure that can be charged.
  • the dielectric covering each electrode was coated with 1 mm of single-sided ceramic-sprayed one with both opposing electrodes.
  • the electrode gap after coating was set to 1 mm.
  • the metal base material coated with a dielectric has a stainless steel jacket specification having a cooling function by cooling water, and was performed while controlling the electrode temperature by cooling water during discharge.
  • a high frequency power source 80 kHz
  • a high frequency power source 13.56 MHz
  • Pearl Industry were used.
  • Other processing conditions are as follows.
  • a sample 131 was prepared in the same manner as in the preparation of the sample 101 except that the silicon oxide particles used for forming the A layer unit of the hard coat layer were changed to titanium oxide particles having a primary average particle diameter of 15 nm.
  • a sample 132 was produced in the same manner as in the production of the sample 101 except that the silicon oxide particles used for forming the A layer unit of the hard coat layer were changed to zirconium oxide particles having a primary average particle diameter of 15 nm.
  • Samples 133 to 136 In the preparation of the sample 101, the silicon oxide particles (primary average particle diameter of 15 nm) used for forming the A layer unit of the hard coat layer were changed to silicon oxide particles having primary average particle diameters of 7 nm, 200 nm, 450 nm, and 850 nm, respectively. Samples 133 to 136 were produced in the same manner except that.
  • each coating solution of the first layer to the sixth layer was applied on a resin substrate using a slide hopper type coating apparatus capable of simultaneous coating of 6 layers, and the state was maintained for 10 seconds. After the maintenance, a sample 137 was produced in the same manner except that the hard coat layer unit was formed by drying and curing in the same manner as described in the sample 101.
  • a sample 139 was produced in the same manner as in the production of the sample 101 except that the metal oxide layer was formed by the following plasma CVD method instead of the atmospheric pressure plasma CVD method.
  • a film was formed using a plasma CVD apparatus Model PD-270STP manufactured by Samco.
  • the film forming conditions are as follows.
  • Oxygen pressure 40 Pa
  • Reaction gas tetraethoxysilane (TEOS) 5 sccm (standard cubic centimeter per minute)
  • Power 100W at 13.56MHz
  • Substrate holding temperature 120 ° C
  • a sample 140 was prepared in the same manner as in the preparation of 137 except that the formation of the metal oxide layer was changed to the wet coating method (silazane method) using polysilazane shown below instead of the atmospheric pressure plasma CVD method. did.
  • ⁇ Silazane method> A dibutyl ether solution of perhydropolysilazane containing a low-temperature curable metal catalyst (solid content 20% by mass, manufactured by AZ Electronic Materials, trade name: Aquamica NAX120-20) is 4 times in volume ratio using dibutyl ether.
  • the diluted solution is applied to the hard coat layer by a wet coating method so as to have a wet film thickness of 6.0 ⁇ m, dried, and then kept in a hot air circulating oven at 120 ° C. for 60 hours. Then, heat treatment was performed. Next, the metal oxide layer was sufficiently cured by leaving it for 3 days in an environment of 25 ° C. and 50% relative humidity.
  • Tables 4 and 5 below show details of the laminates with hard coat layers produced above.
  • a single blade razor blade was used to insert 11 incisions of 90 degrees with respect to the surface at 1 mm intervals vertically and horizontally to create 100 1 mm square grids.
  • Paste a commercially available cellophane tape on this grid, peel one end vertically by hand, measure the ratio of the area where the metal oxide layer was peeled off to the tape area pasted from the score line, and Adhesion was evaluated according to the evaluation criteria. Moreover, about the sample which raise
  • a pencil hardness tester (HA-301 Clemens type scratch hardness tester) was used.
  • the hardness ranks are (soft) 6B to B, HB, F, H to 9H (hard) in the order of 6B, and 9H is the hardest.
  • the laminate with a hard coat layer of the present invention having a hard coat layer having an inorganic particle-containing layer structure defined in the present invention is a resin substrate and a hard It can be seen that the coating layer or the adhesion between the hard coating layer and the metal oxide layer is excellent, the outermost pencil hardness test and the scratch resistance are excellent, and high hardness is provided.
  • Example 3 The samples 107, 137, and 140 prepared in Example 2 were evaluated for wear resistance according to the method described below, and the results obtained are shown in Table 4.
  • Table 4 shows the haze value (%) of the untreated sample before the wear resistance test as the initial haze value, and the wear resistance (%) after 500 rotations and 2000 rotations is expressed by the following equation. Asked.
  • Wear resistance (%) Haze value after wear test (%)-Initial haze value (%)

Abstract

A layered product having a hard-coat layer is provided which can be easily produced and has excellent film adhesion, high film strength, and excellent marring resistance. This layered product with a hard-coat layer comprises a resinous substrate and, superposed on at least one side thereof in the following order, a hard-coat layer and a metal oxide layer, the hard-coat layer comprising a resin and inorganic particles or comprising a resin. The layered product is characterized in that the hard-coat layer has a structure formed by alternately superposing two layers differing in the concentration of inorganic particles, and that when the layers having a high inorganic-particle concentration are referred to as a layer A unit and the layers having a low inorganic-particle concentration are referred to as a layer B unit, then at least one of the layer A unit and layer B unit is constituted of at least two layers differing in dry-film thickness, the sum of the dry-film thicknesses of the layer A unit, ΣAh, and the sum of the dry-film thicknesses of the layer B unit, ΣBh, satisfying ΣAh≥ΣBh.

Description

ハードコート層付積層体Laminate with hard coat layer
 本発明は、膜密着性に優れ、かつ高い膜強度、耐擦過性に優れた積層構造を有するハードコート層付積層体に関する。本発明は、ブラウン管(CRT)、液晶ディスプレイ(LCD)、プラズマディスプレイパネル(PDP)、電界放出ディスプレイ(FED)等のディスプレイの表面や家電製品等のタッチパネル、各種窓、例えば、住宅用窓、ショーウインドウ、車両用窓、車両用風防、遊戯機械等のガラス保護フィルム、あるいはガラス代替樹脂製品として利用できる。 The present invention relates to a laminate with a hard coat layer having a laminated structure having excellent film adhesion, high film strength, and excellent scratch resistance. The present invention relates to the surface of a display such as a cathode ray tube (CRT), a liquid crystal display (LCD), a plasma display panel (PDP), a field emission display (FED), a touch panel such as a home appliance, various windows, for example, a house window, a show. It can be used as a glass protective film for a window, a window for a vehicle, a windshield for a vehicle, an amusement machine, or a glass substitute resin product.
 近年、プラスチック製品が、加工性、軽量化の観点でガラス製品と置き換わりつつあるが、これらプラスチック製品の表面は傷つきやすいため、耐擦傷性を付与する目的でハードコートフィルムを貼合して用いる。また、従来のガラス製品についても、飛散防止のためにプラスチックフィルムを貼合する場合が増えており、これらのフィルム表面の硬度強化のために、その表面にハードコート層を形成することが広く行われている。しかしながら、前記従来のハードコートフィルムは、そのハードコート層の硬度が不十分であったこと、また、その塗膜厚みが薄いことに起因して、十分に満足できるものではなかった。 In recent years, plastic products are being replaced with glass products in terms of processability and weight reduction, but since the surface of these plastic products is easily damaged, a hard coat film is used for the purpose of imparting scratch resistance. In addition, in the case of conventional glass products, plastic films are increasingly being bonded to prevent scattering, and in order to strengthen the hardness of these film surfaces, a hard coat layer is widely formed on the surface. It has been broken. However, the conventional hard coat film is not fully satisfactory because the hardness of the hard coat layer is insufficient and the thickness of the coating film is thin.
 そこでハードコート層に無機質の装填材料を含む技術が開示されている。例えば、特許文献1には、透明基材フィルムの少なくとも片面に活性エネルギー線重合性樹脂を主体とするハードコート層を塗設してなるハードコートフィルムであって、該ハードコート層にモース硬度6以上の無機微粒子と、モース硬度4以下の微粒子および/または弾性率Eが6GPa以下を有する微粒子を含有するハードコートフィルムが開示されている。 Therefore, a technique in which an inorganic charging material is included in the hard coat layer is disclosed. For example, Patent Document 1 discloses a hard coat film obtained by coating a hard coat layer mainly composed of an active energy ray polymerizable resin on at least one surface of a transparent base film, and has a Mohs hardness of 6 on the hard coat layer. A hard coat film containing the above inorganic fine particles, fine particles having a Mohs hardness of 4 or less and / or fine particles having an elastic modulus E of 6 GPa or less is disclosed.
 また、特許文献2には、透明ハードコート層が、合成樹脂と、該樹脂中に分散された表面被覆処理された金属酸化物微粒子とを含むことを特徴とするハードコートフィルムが開示されている。 Patent Document 2 discloses a hard coat film in which the transparent hard coat layer contains a synthetic resin and surface-coated metal oxide fine particles dispersed in the resin. .
 一方ポリカーボネート樹脂やアクリル樹脂などの透明プラスチック成形体も、ガラスの代替品として、多岐にわたる分野において基材として使用されるようになってきている。例えば、各種窓ガラス代替品、眼鏡に代表されるレンズ類、屋根材、透明防音壁、電灯保護材、車輌用の照明灯・風防、フラットパネルディスプレイ部材などに使用されている。このような分野においても、例えば、特許文献3において、ポリカーボネート樹脂成型体の表面にイソシアネート基またはブロックイソシアネート基を有する化合物にコロイダルシリカから選ばれる化合物を含有し、硬度の高い樹脂成型体を得る技術が開示されている。 On the other hand, transparent plastic moldings such as polycarbonate resins and acrylic resins are also used as substrates in various fields as substitutes for glass. For example, it is used for various types of window glass substitutes, lenses represented by glasses, roofing materials, transparent soundproof walls, electric light protection materials, vehicle lighting, windshields, flat panel display members, and the like. Even in such a field, for example, in Patent Document 3, a compound having an isocyanate group or a blocked isocyanate group on the surface of a polycarbonate resin molded body contains a compound selected from colloidal silica to obtain a resin molded body having high hardness. Is disclosed.
 しかしこれらのいずれの技術においてもハードコート層に無機微粒子を含有させるのみでは、硬くて耐傷性が高いながらもクラックなど割れが生じにくく、基材との密着性能が優れたハードコートフィルムとして満足できるものではなかった。
特開2002-107503号公報 特開2006-159853号公報 特開2006-8776号公報
However, in any of these techniques, if the hard coat layer contains only inorganic fine particles, it is hard and highly resistant to scratches, but cracks such as cracks hardly occur, and it can be satisfied as a hard coat film having excellent adhesion to the substrate. It was not a thing.
JP 2002-107503 A JP 2006-159853 A JP 2006-8776 A
 本発明は、上記課題に鑑みなされたものであり、その目的は、簡便に作製でき、膜密着性に優れ、かつ高い膜強度、耐擦過性に優れたハードコート層付積層体を提供することにある。 The present invention has been made in view of the above problems, and an object of the present invention is to provide a laminate with a hard coat layer that can be easily produced, has excellent film adhesion, and has high film strength and scratch resistance. It is in.
 本発明の上記目的は、以下の構成により達成される。 The above object of the present invention is achieved by the following configuration.
 1.樹脂基材の少なくとも一方の面に、少なくとも樹脂及び無機粒子または樹脂から構成されるハードコート層を有するハードコート層付積層体において、該ハードコート層は、無機粒子の濃度が異なる二つの層が交互に積層された構造であり、無機粒子濃度が高い層群をA層ユニット、無機粒子濃度が低い層群をB層ユニットとしたとき、該ハードコート層の表面はA層ユニットであり、該A層ユニット及びB層ユニットの少なくとも1つの層ユニットは、乾燥膜厚が異なる少なくとも2層で構成され、該A層ユニットが乾燥膜厚の異なる層で構成される場合には、該A層ユニットを構成する各層の乾燥膜厚は、該樹脂基材に向かって減少し、該B層ユニットが乾燥膜厚の異なる層で構成される場合には、該B層ユニットを構成する各層の乾燥膜厚が該樹脂基材に向かって増加し、該A層ユニットの乾燥膜厚の総和ΣAhと該B層ユニットの乾燥膜厚の総和ΣBhとが、ΣAh≧ΣBhの関係を満たすことを特徴とするハードコート層付積層体。 1. In the laminate with a hard coat layer having a hard coat layer composed of at least a resin and inorganic particles or a resin on at least one surface of the resin base material, the hard coat layer has two layers having different inorganic particle concentrations. When the layer group having a high inorganic particle concentration is an A layer unit and the layer group having a low inorganic particle concentration is a B layer unit, the surface of the hard coat layer is an A layer unit. At least one layer unit of the A layer unit and the B layer unit is composed of at least two layers having different dry film thicknesses, and when the A layer unit is composed of layers having different dry film thicknesses, the A layer unit The dry film thickness of each layer constituting the layer decreases toward the resin substrate, and when the B layer unit is composed of layers having different dry film thicknesses, the dryness of each layer constituting the B layer unit is dried. The thickness increases toward the resin substrate, and the total ΣAh of the dry film thickness of the A layer unit and the total ΣBh of the dry film thickness of the B layer unit satisfy the relationship ΣAh ≧ ΣBh Laminated body with hard coat layer.
 2.樹脂基材の少なくとも一方の面に、少なくとも樹脂及び無機粒子または樹脂から構成されるハードコート層と、金属酸化物層とをこの順で積層したハードコート層付積層体において、該ハードコート層は、無機粒子の濃度が異なる二つの層が交互に積層された構造であり、無機粒子濃度が高い層群をA層ユニット、無機粒子濃度が低い層群をB層ユニットとしたとき、該A層ユニット及びB層ユニットの少なくとも1つの層ユニットは、乾燥膜厚が異なる少なくとも2層で構成され、該A層ユニットの乾燥膜厚の総和ΣAhと該B層ユニットの乾燥膜厚の総和ΣBhとが、ΣAh≧ΣBhの関係を満たすことを特徴とするハードコート層付積層体。 2. In a laminate with a hard coat layer in which a hard coat layer composed of at least a resin and inorganic particles or a resin and a metal oxide layer are laminated in this order on at least one surface of a resin base material, the hard coat layer is When the two layers having different inorganic particle concentrations are alternately stacked, the layer group having a high inorganic particle concentration is an A layer unit, and the layer group having a low inorganic particle concentration is a B layer unit. At least one layer unit of the unit and the B layer unit is composed of at least two layers having different dry film thicknesses, and the total dry film thickness ΣAh of the A layer unit and the total dry film thickness ΣBh of the B layer unit are , ΣAh ≧ ΣBh satisfying the relationship, a laminate with a hard coat layer.
 3.前記A層ユニットの無機粒子濃度が30.0体積%以上、70.0体積%以下で、前記B層ユニットの無機粒子濃度が0体積%以上、40.0体積%以下であることを特徴とする前記1または2に記載のハードコート層付積層体。 3. The inorganic particle concentration of the A layer unit is 30.0% by volume or more and 70.0% by volume or less, and the inorganic particle concentration of the B layer unit is 0% by volume or more and 40.0% by volume or less. The laminate with a hard coat layer according to 1 or 2 above.
 4.前記A層ユニットの無機粒子濃度が40.0体積%以上、60.0体積%以下で、前記B層ユニットの無機粒子濃度が0体積%以上、20.0体積%以下であることを特徴とする前記1から3のいずれか1項に記載のハードコート層付積層体。 4. The inorganic particle concentration of the A layer unit is 40.0% by volume or more and 60.0% by volume or less, and the inorganic particle concentration of the B layer unit is 0% by volume or more and 20.0% by volume or less. The laminate with a hard coat layer according to any one of 1 to 3 above.
 5.前記A層ユニットを構成する各層の乾燥膜厚が、前記金属酸化物層に向かって増加することを特徴とする前記2から4のいずれか1項に記載のハードコート層付積層体。 5. The laminate with a hard coat layer according to any one of 2 to 4, wherein a dry film thickness of each layer constituting the A layer unit increases toward the metal oxide layer.
 6.前記A層ユニットを構成する層のうち、前記金属酸化物層に最も近接した位置にある層の乾燥膜厚が、3.0μm以上、100μm以下であることを特徴とする前記2から5のいずれか1項に記載のハードコート層付積層体。 6. Any one of 2 to 5 above, wherein a dry film thickness of a layer which is closest to the metal oxide layer among the layers constituting the A layer unit is 3.0 μm or more and 100 μm or less. 2. A laminate with a hard coat layer according to item 1.
 7.前記B層ユニットを構成する各層の乾燥膜厚が、前記金属酸化物層に向かって減少することを特徴とする前記2から6のいずれか1項に記載のハードコート層付積層体。 7. The laminate with a hard coat layer according to any one of 2 to 6, wherein a dry film thickness of each layer constituting the B layer unit decreases toward the metal oxide layer.
 8.前記B層ユニットを構成する層のうち、前記金属酸化物層に最も近接した位置にある層の乾燥膜厚が、0.1μm以上、2.0μm以下であることを特徴とする前記2から7のいずれか1項に記載のハードコート層付積層体。 8. Of the layers constituting the B layer unit, the dry film thickness of the layer closest to the metal oxide layer is 0.1 μm or more and 2.0 μm or less. The laminated body with a hard-coat layer of any one of these.
 9.前記無機粒子が、酸化珪素粒子であることを特徴とする前記1から8のいずれか1項に記載のハードコート層付積層体。 9. 9. The laminate with a hard coat layer according to any one of 1 to 8, wherein the inorganic particles are silicon oxide particles.
 10.前記無機粒子の平均粒子径が、5.0nm以上、1.0μm以下であることを特徴とする前記1から9のいずれか1項に記載のハードコート層付積層体。 10. 10. The laminate with a hard coat layer according to any one of 1 to 9, wherein an average particle diameter of the inorganic particles is 5.0 nm or more and 1.0 μm or less.
 11.前記ハードコート層が、湿式塗布法により形成されたことを特徴とする前記1から10のいずれか1項に記載のハードコート層付積層体。 11. 11. The laminate with a hard coat layer according to any one of 1 to 10, wherein the hard coat layer is formed by a wet coating method.
 12.前記湿式塗布法が、複数の層を同時に塗布する多層同時塗布法であることを特徴とする前記11に記載のハードコート層付積層体。 12. 12. The laminate with a hard coat layer according to 11 above, wherein the wet coating method is a multilayer simultaneous coating method in which a plurality of layers are coated simultaneously.
 13.前記金属酸化物層の主成分が、酸化珪素であることを特徴とする前記2から12のいずれか1項に記載のハードコート層付積層体。 13. The laminate with a hard coat layer according to any one of 2 to 12, wherein a main component of the metal oxide layer is silicon oxide.
 14.前記金属酸化物層が、プラズマCVD法により形成されたことを特徴とする前記2から13のいずれか1項に記載のハードコート層付積層体。 14. 14. The laminate with a hard coat layer according to any one of 2 to 13, wherein the metal oxide layer is formed by a plasma CVD method.
 15.前記プラズマCVD法が、大気圧または大気圧近傍の圧力下でプラズマ処理する大気圧プラズマCVD法であることを特徴とする前記14に記載のハードコート層付積層体。 15. 15. The laminate with a hard coat layer according to 14, wherein the plasma CVD method is an atmospheric pressure plasma CVD method in which a plasma treatment is performed under an atmospheric pressure or a pressure near atmospheric pressure.
 16.前記金属酸化物層が、無機ポリシラザンを用いた湿式塗布法により形成されたことを特徴とする前記2から13のいずれか1項に記載のハードコート層付積層体。 16. 14. The laminate with a hard coat layer according to any one of 2 to 13, wherein the metal oxide layer is formed by a wet coating method using inorganic polysilazane.
 本発明により、簡便に作製でき、膜密着性に優れ、かつ高い膜強度、耐擦過性に優れたハードコート層付積層体を提供することができた。 According to the present invention, it was possible to provide a laminate with a hard coat layer that can be easily produced, has excellent film adhesion, high film strength, and excellent scratch resistance.
本発明のハードコート層付積層体の代表的な層構成の一例を示す断面図である。It is sectional drawing which shows an example of the typical layer structure of the laminated body with a hard-coat layer of this invention. 本発明に有用なジェット方式の大気圧プラズマ放電処理装置の一例を示した概略図である。It is the schematic which showed an example of the atmospheric pressure plasma discharge processing apparatus of the jet system useful for this invention. 本発明に有用な対向電極間で基材を処理する方式の大気圧プラズマ放電処理装置の一例を示す概略図である。It is the schematic which shows an example of the atmospheric pressure plasma discharge processing apparatus of the system which processes a base material between counter electrodes useful for this invention. ロール回転電極の導電性の金属質母材とその上に被覆されている誘電体の構造の一例を示す斜視図である。It is a perspective view which shows an example of the structure of the electroconductive metal base material of a roll rotating electrode, and the dielectric material coat | covered on it. 角筒型電極の導電性の金属質母材とその上に被覆されている誘電体の構造の一例を示す斜視図である。It is a perspective view which shows an example of the structure of the electroconductive metal preform | base_material of a rectangular tube type electrode, and the dielectric material coat | covered on it.
符号の説明Explanation of symbols
 1 ハードコート層付積層体
 2 樹脂基材
 A1~A3、B1~B3 ハードコート層
 3 金属酸化物層
 10、30 プラズマ放電処理装置
 11 第1電極
 12 第2電極
 14 処理位置
 21、41 第1電源
 22、42 第2電源
 32 放電空間(対向電極間)
 35 ロール回転電極(第1電極)
 35a ロール電極
 35A 金属質母材
 35B、36B 誘電体
 36 角筒型固定電極群(第2電極)
 36a 角筒型電極
 36A 金属質母材
 40 電界印加手段
 50 ガス供給手段
 52 給気口
 53 排気口
 F 基材
 G ガス
 G° プラズマ状態のガス
DESCRIPTION OF SYMBOLS 1 Laminated body with a hard-coat layer 2 Resin base material A1-A3, B1-B3 Hard-coat layer 3 Metal oxide layer 10, 30 Plasma discharge processing apparatus 11 1st electrode 12 2nd electrode 14 Processing position 21, 41 1st power supply 22, 42 Second power source 32 Discharge space (between counter electrodes)
35 Roll rotating electrode (first electrode)
35a Roll electrode 35A Metal base material 35B, 36B Dielectric 36 Square tube type fixed electrode group (second electrode)
36a Rectangular tube electrode 36A Metal base material 40 Electric field applying means 50 Gas supply means 52 Air supply port 53 Air exhaust port F Base material G Gas G ° Gas in plasma state
 以下、本発明を実施するための最良の形態について詳細に説明する。 Hereinafter, the best mode for carrying out the present invention will be described in detail.
 本発明者は、上記課題に鑑み鋭意検討を行った結果、樹脂基材の少なくとも一方の面に、少なくとも樹脂及び無機粒子または樹脂から構成されるハードコート層を有するハードコート層付積層体、あるいは樹脂基材の少なくとも一方の面に、少なくとも樹脂及び無機粒子または樹脂から構成されるハードコート層と、金属酸化物層とをこの順で積層したハードコート層付積層体において、該ハードコート層は、無機粒子の濃度が異なる二つの層が交互に積層された構造であり、無機粒子濃度が高い層群をA層ユニット、無機粒子濃度が低い層群をB層ユニットとしたとき、該A層ユニット及びB層ユニットの少なくとも1つの層ユニットは、乾燥膜厚が異なる少なくとも2層で構成され、該A層ユニットの乾燥膜厚の総和ΣAhと該B層ユニットの乾燥膜厚の総和ΣBhが、ΣAh≧ΣBhの関係を満たすことを特徴とするハードコート層付積層体により、簡便に作製でき、膜密着性に優れ、かつ高い膜強度、耐擦過性に優れたハードコート層付積層体を実現できることを見出し、本発明に至った次第である。 As a result of intensive studies in view of the above-mentioned problems, the present inventor has a hard coat layer-attached laminate having a hard coat layer composed of at least a resin and inorganic particles or a resin on at least one surface of the resin base material, or In a laminate with a hard coat layer in which a hard coat layer composed of at least a resin and inorganic particles or a resin and a metal oxide layer are laminated in this order on at least one surface of a resin base material, the hard coat layer is When the two layers having different inorganic particle concentrations are alternately stacked, the layer group having a high inorganic particle concentration is an A layer unit, and the layer group having a low inorganic particle concentration is a B layer unit. At least one layer unit of the unit and the B layer unit is composed of at least two layers having different dry film thicknesses, and the total ΣAh of the dry film thicknesses of the A layer unit and the B layer unit With a laminate with a hard coat layer characterized in that the total dry film thickness ΣBh satisfies the relationship ΣAh ≧ ΣBh, excellent film adhesion, high film strength, and scratch resistance As a result, it has been found that a laminate with a hard coat layer excellent in the above can be realized, and the present invention has been achieved.
 〔ハードコート層〕
 本発明のハードコート層付積層体においては、ハードコート層は、無機粒子濃度が異なる二つの層が交互に積層された構造であり、無機粒子濃度が高い層群をA層ユニット、無機粒子濃度が低い層群をB層ユニットとしたとき、該A層ユニット及びB層ユニットの少なくとも1つの層ユニットは、乾燥膜厚が異なる少なくとも2層で構成され、該A層ユニットの乾燥膜厚の総和ΣAhと該B層ユニットの乾燥膜厚の総和ΣBhとが、ΣAh≧ΣBhであることを特徴とする。
[Hard coat layer]
In the laminate with a hard coat layer of the present invention, the hard coat layer has a structure in which two layers having different inorganic particle concentrations are alternately laminated, and a layer group having a high inorganic particle concentration is designated as an A layer unit and an inorganic particle concentration. When a layer group having a low A is a B layer unit, at least one layer unit of the A layer unit and the B layer unit is composed of at least two layers having different dry film thicknesses, and the total dry film thickness of the A layer unit is The sum of ΣAh and the total dry film thickness ΣBh of the B layer unit is ΣAh ≧ ΣBh.
 更には、本発明のハードコート層付積層体においては、A層ユニットの乾燥膜厚の総和ΣAhとしては、特に制限はないが、おおよそ1.0μm以上、100μm以下であり、好ましくは5.0μm以上、50μm以下であり、更に好ましくは5.0μm以上、20μm以下である。また、B層ユニットの乾燥膜厚の総和ΣBhとしては、特に制限はないが、おおよそ1.0μm以上、100μm以下であり、好ましくは3.0μm以上、50μm以下であり、更に好ましくは3.0μm以上、20μm以下である。 Furthermore, in the laminate with a hard coat layer of the present invention, the total ΣAh of the dry film thickness of the A layer unit is not particularly limited, but is approximately 1.0 μm or more and 100 μm or less, preferably 5.0 μm. Above, it is 50 micrometers or less, More preferably, they are 5.0 micrometers or more and 20 micrometers or less. Further, the total dry thickness ΣBh of the B layer unit is not particularly limited, but is approximately 1.0 μm or more and 100 μm or less, preferably 3.0 μm or more and 50 μm or less, and more preferably 3.0 μm. As mentioned above, it is 20 micrometers or less.
 (ハードコート層の構成)
 本発明者は、樹脂基材上にハードコート層及び金属酸化物層を設けたハードコート層付積層体の特性について検討を進めた結果、樹脂基材上に、均一組成から構成される所定の膜厚を有するハードコート層を設置し、その上に金属酸化物層を形成した場合、樹脂基材とハードコート層間、あるいはハードコート層と金属酸化物層間での各材料の剛性率、や界面特性の違いにより、例えば、過酷な環境下で長期間にわたり保存した際に各界面で剥離を生じることにより、密着性の低下、あるいは、ハードコート層付積層体が激しい衝撃を受けた際に、それぞれの界面で両者間の組成が大きく異なる場合には、積層された構成層間を破断振動がスムーズに伝播しないため、膜破断を生じることが判明した。
(Configuration of hard coat layer)
As a result of studying the characteristics of a laminate with a hard coat layer in which a hard coat layer and a metal oxide layer are provided on a resin base material, the present inventor has obtained a predetermined composition composed of a uniform composition on the resin base material. When a hard coat layer having a film thickness is installed and a metal oxide layer is formed thereon, the rigidity of each material or the interface between the resin substrate and the hard coat layer or between the hard coat layer and the metal oxide layer Due to the difference in characteristics, for example, when it is stored for a long time in a harsh environment, peeling occurs at each interface, resulting in a decrease in adhesion, or when the laminate with a hard coat layer receives a severe impact, It has been found that when the composition of the two is greatly different at each interface, the fracture vibration does not propagate smoothly through the laminated constituent layers, resulting in film breakage.
 本発明者は、上記課題を解決する方法について鋭意検討を行った結果、無機粒子濃度が異なる二つの層を交互に積層した構造でハードコート層を構成し、更に、無機粒子濃度が高いA層ユニット及び無機粒子濃度が低いB層ユニットの少なくとも1つの層ユニットを乾燥膜厚が異なる少なくとも2層で構成され、A層ユニットの乾燥膜厚の総和ΣAh≧B層ユニットの乾燥膜厚の総和ΣBhの関係を満たす条件とすることにより、本発明が目的する効果が得られることを見出したものである。 As a result of intensive studies on a method for solving the above problems, the present inventor constituted a hard coat layer with a structure in which two layers having different inorganic particle concentrations were alternately laminated, and further, an A layer having a high inorganic particle concentration. At least one layer unit of the unit and the B layer unit having a low inorganic particle concentration is composed of at least two layers having different dry film thicknesses, and the total dry film thickness of the A layer unit ΣAh ≧ the total dry film thickness of the B layer unit ΣBh The present inventors have found that the effect intended by the present invention can be obtained by satisfying the above condition.
 本発明に係るハードコート層は、主には、後述する活性光線硬化樹脂、あるいは活性光線硬化樹脂と無微粒子とから構成されているが、本発明においては、活性光線硬化樹脂と無機粒子から構成される無機粒子含有層において、それぞれの層が含有する無機粒子濃度が異なり、A層ユニットを構成する各層が含有する無機粒子濃度が、B層ユニットを構成する各層が含有する無機粒子濃度より高くすることを特徴とする。 The hard coat layer according to the present invention is mainly composed of an actinic ray curable resin, which will be described later, or an actinic ray curable resin and fine particles, but in the present invention, it is composed of an actinic ray curable resin and inorganic particles. In the inorganic particle-containing layer, the inorganic particle concentration contained in each layer is different, and the inorganic particle concentration contained in each layer constituting the A layer unit is higher than the inorganic particle concentration contained in each layer constituting the B layer unit. It is characterized by doing.
 更に好ましくは、A層ユニットを構成する各層の無機粒子濃度を30体積%以上、70体積%以下とし、B層ユニットを構成する各層の無機粒子濃度を0体積%以上、40体積%以とすることであり、更に好ましくは、A層ユニットを構成する各層の無機粒子濃度を40体積%以上、60体積%以下とし、B層ユニットを構成する各層の無機粒子濃度を0体積%以上、20体積%以下とすることである。 More preferably, the inorganic particle concentration of each layer constituting the A layer unit is 30% by volume or more and 70% by volume or less, and the inorganic particle concentration of each layer constituting the B layer unit is 0% by volume or more and 40% by volume or less. More preferably, the inorganic particle concentration of each layer constituting the A layer unit is 40% by volume or more and 60% by volume or less, and the inorganic particle concentration of each layer constituting the B layer unit is 0% by volume or more and 20% by volume. % Or less.
 本発明に係るハードコート層においては、A層ユニットを構成する層は、単層であっても、あるいは2層以上で構成されていても良いが、例えば、B層ユニットが単層である場合には、A層ユニットは2層以上で構成される。また、B層ユニットを構成する層は、単層であっても、あるいは2層以上で構成されていても良いが、例えば、A層ユニットが単層である場合には、B層ユニットは2層以上で構成され、それぞれ無機粒子濃度の異なるA層ユニットを構成する各層と、B層ユニットを構成する各層が交互に積層された形態をとる。 In the hard coat layer according to the present invention, the layer constituting the A layer unit may be a single layer or may be composed of two or more layers. For example, the B layer unit is a single layer. The A layer unit is composed of two or more layers. Further, the layer constituting the B layer unit may be a single layer or may be composed of two or more layers. For example, when the A layer unit is a single layer, the B layer unit has 2 layers. Each layer is composed of layers or more, and each layer constituting the A layer unit having different inorganic particle concentrations and each layer constituting the B layer unit are alternately laminated.
 以下、本発明に係るハードコート層の層構成について、図を用いて説明する。 Hereinafter, the layer configuration of the hard coat layer according to the present invention will be described with reference to the drawings.
 図1に、本発明のハードコート層付積層体の代表的な構成断面図を示すが、本発明はここで例示する構成にのみ限定されるものではない。 FIG. 1 shows a typical cross-sectional view of a laminate with a hard coat layer of the present invention, but the present invention is not limited to the configuration exemplified here.
 図1のa)は、無機粒子濃度の異なる3層の無機粒子含有層を積層したハードコート層付積層体の断面図である。 FIG. 1 a) is a cross-sectional view of a laminate with a hard coat layer in which three inorganic particle-containing layers having different inorganic particle concentrations are laminated.
 図1のa)において、無機粒子濃度の高いA層ユニットをA1、A2の2つの層で構成し、無機粒子濃度の低いB層ユニットをB1の単層で構成した例を示してある。 1A shows an example in which the A layer unit having a high inorganic particle concentration is composed of two layers A1 and A2, and the B layer unit having a low inorganic particle concentration is composed of a single layer of B1.
 具体的には、ハードコート層付積層体1は、樹脂基材2上に、無機粒子濃度の高いA層ユニットのA1を配置し、次いで無機粒子濃度の低いB層ユニットのB1を積層し、その上に無機粒子濃度の高いA層ユニットのA2を配置し、更にその上に、金属酸化物層3を形成したハードコート層付積層体である。この時、A層ユニットを構成するA1、A2の2つの層の総乾燥膜厚が、B層ユニットを構成するB1の乾燥膜厚より厚く設計することを特徴とする。 Specifically, in the laminate 1 with a hard coat layer, the A1 of the A layer unit having a high inorganic particle concentration is disposed on the resin base material 2, and then the B1 of the B layer unit having a low inorganic particle concentration is stacked. It is a laminate with a hard coat layer in which the A2 of the A layer unit having a high inorganic particle concentration is disposed thereon, and the metal oxide layer 3 is further formed thereon. At this time, the total dry film thickness of the two layers A1 and A2 constituting the A layer unit is designed to be larger than the dry film thickness of B1 constituting the B layer unit.
 更に、A1、A2の2層から構成されるA層ユニットにおいては、金属酸化物層3に向かって、A1、A2の順に乾燥膜厚を厚くする構成とすることが好ましい。 Furthermore, in the A layer unit composed of two layers A1 and A2, it is preferable that the dry film thickness is increased in the order of A1 and A2 toward the metal oxide layer 3.
 更に、本発明に係るハードコート層においては、A層ユニットを構成する層のうち、金属酸化物層3に最も近接した位置にある層(図1のa)におけるA2)の乾燥膜厚は、3μm以上、100μm以下であることが好ましい。 Further, in the hard coat layer according to the present invention, among the layers constituting the A layer unit, the dry film thickness of the layer (A2) in the layer closest to the metal oxide layer 3 (a in FIG. 1) is: It is preferable that it is 3 micrometers or more and 100 micrometers or less.
 更に、本発明に係るハードコート層においては、B層ユニットを構成する層のうち、金属酸化物層3に最も近接した位置にある層(図1のa)におけるB1)の乾燥膜厚は、0.1μm以上、2μm以下であることが好ましい。 Furthermore, in the hard coat layer according to the present invention, among the layers constituting the B layer unit, the dry film thickness of the layer (B1) in the layer closest to the metal oxide layer 3 (a in FIG. 1) is: It is preferable that they are 0.1 micrometer or more and 2 micrometers or less.
 図1のb)は、無機粒子濃度の異なる3層の無機粒子含有層を積層したハードコート層付積層体の他の一例を示す断面図である。 FIG. 1 b) is a cross-sectional view showing another example of a laminate with a hard coat layer in which three inorganic particle-containing layers having different inorganic particle concentrations are laminated.
 図1のb)において、無機粒子濃度の高いA層ユニットをA1のみの単層で構成し、無機粒子濃度の低いB層ユニットをB1、B2の2つの層で構成した例を示してある。 FIG. 1b shows an example in which the A layer unit having a high inorganic particle concentration is constituted by a single layer of only A1, and the B layer unit having a low inorganic particle concentration is constituted by two layers B1 and B2.
 具体的には、ハードコート層付積層体1は、樹脂基材2上に、無機粒子濃度の低いB層ユニットのB1を配置し、次いで無機粒子濃度の高いA層ユニットのA1を積層し、その上に無機粒子濃度の低いB層ユニットのB2を配置し、更にその上に、金属酸化物層3を形成したハードコート層付積層体である。この時、A層ユニットを構成するA1の乾燥膜厚が、B層ユニットを構成するB1、B2の総乾燥膜厚より厚く設計することを特徴とする。 Specifically, in the laminate 1 with a hard coat layer, the B1 of the B layer unit having a low inorganic particle concentration is disposed on the resin base material 2, and then the A1 of the A layer unit having a high inorganic particle concentration is stacked. It is a laminated body with a hard coat layer in which B2 of a B layer unit having a low inorganic particle concentration is disposed thereon, and a metal oxide layer 3 is further formed thereon. At this time, the dry film thickness of A1 constituting the A layer unit is designed to be thicker than the total dry film thickness of B1 and B2 constituting the B layer unit.
 更に、B1、B2の2層から構成されるB層ユニットにおいては、金属酸化物層3に向かって、B1、B2の順に乾燥膜厚を減少する構成とすることが好ましい。 Further, in the B layer unit composed of two layers B1 and B2, it is preferable that the dry film thickness is decreased in the order of B1 and B2 toward the metal oxide layer 3.
 更に、本発明に係るハードコート層においては、A層ユニットを構成する層のうち、金属酸化物層3に最も近接した位置にある層(図1のb)におけるA1)の乾燥膜厚は、3μm以上、100μm以下であることが好ましい。 Furthermore, in the hard coat layer according to the present invention, among the layers constituting the A layer unit, the dry film thickness of A1) in the layer closest to the metal oxide layer 3 (b in FIG. 1) is: It is preferable that it is 3 micrometers or more and 100 micrometers or less.
 更に、本発明に係るハードコート層においては、B層ユニットを構成する層のうち、金属酸化物層3に最も近接した位置にある層(図1のb)におけるB2)の乾燥膜厚は、0.1μm以上、2μm以下であることが好ましい。 Furthermore, in the hard coat layer according to the present invention, among the layers constituting the B layer unit, the dry film thickness of the layer (B2) in the layer closest to the metal oxide layer 3 (b in FIG. 1) is: It is preferable that they are 0.1 micrometer or more and 2 micrometers or less.
 図1のc)は、無機粒子濃度の異なるA層ユニット及びB層ユニットをそれぞれ3層で構成し、それぞれを交互に積層したハードコート層付積層体の断面図である。 FIG. 1 c) is a cross-sectional view of a laminate with a hard coat layer in which the A layer unit and the B layer unit having different inorganic particle concentrations are each composed of three layers and are alternately laminated.
 図1のc)において、無機粒子濃度の高いA層ユニットをA1、A2、A3の3つの層で構成し、無機粒子濃度の低いB層ユニットをB1、B2、B3の3層で構成した例を示してある。 In c) of FIG. 1, an example in which the A layer unit having a high inorganic particle concentration is composed of three layers A1, A2, and A3, and the B layer unit having a low inorganic particle concentration is composed of three layers B1, B2, and B3. Is shown.
 具体的には、ハードコート層付積層体1は、樹脂基材2上に、無機粒子濃度の低いB層ユニットのB1を配置し、次いで無機粒子濃度の高いA層ユニットのA1を積層し、次いで、順次B2、A2、B3、A3の順に交互に積層した後、更にその上に、金属酸化物層3を形成したハードコート層付積層体である。この時、A層ユニットを構成するA1、A2、A3の3層の総乾燥膜厚が、B層ユニットを構成するB1、B2、B3の3層の総乾燥膜厚より厚く設計することを特徴とする。 Specifically, in the laminate 1 with a hard coat layer, the B1 of the B layer unit having a low inorganic particle concentration is disposed on the resin base material 2, and then the A1 of the A layer unit having a high inorganic particle concentration is stacked. Next, the laminate with a hard coat layer is obtained by alternately laminating B2, A2, B3, and A3 in this order, and further forming the metal oxide layer 3 thereon. At this time, the total dry film thickness of the three layers A1, A2, and A3 constituting the A layer unit is designed to be thicker than the total dry film thickness of the three layers B1, B2, and B3 constituting the B layer unit. And
 更に、A1、A2、A3の3層から構成されるA層ユニットにおいては、金属酸化物層3に向かって、A1、A2、A3の順に乾燥膜厚を厚くする構成とすることが好ましい。 Furthermore, in the A layer unit composed of three layers of A1, A2, and A3, it is preferable that the dry film thickness is increased in the order of A1, A2, and A3 toward the metal oxide layer 3.
 更に、本発明に係るハードコート層においては、A層ユニットを構成する層のうち、金属酸化物層3に最も近接した位置にある層(図1のc)におけるA3)の乾燥膜厚は、3μm以上、100μm以下であることが好ましい。 Furthermore, in the hard coat layer according to the present invention, among the layers constituting the A layer unit, the dry film thickness of the layer (A3) in the layer closest to the metal oxide layer 3 (c in FIG. 1) is: It is preferable that it is 3 micrometers or more and 100 micrometers or less.
 更に、B1、B2、B3の3層から構成されるB層ユニットにおいては、金属酸化物層3に向かって、B1、B2、B3の順に乾燥膜厚を減少する構成とすることが好ましい。 Furthermore, in the B layer unit composed of three layers B1, B2, and B3, it is preferable that the dry film thickness is decreased in the order of B1, B2, and B3 toward the metal oxide layer 3.
 更に、本発明に係るハードコート層においては、B層ユニットを構成する層のうち、金属酸化物層3に最も近接した位置にある層(図1のc)におけるB3)の乾燥膜厚は、0.1μm以上、2μm以下であることが好ましい。 Furthermore, in the hard coat layer according to the present invention, among the layers constituting the B layer unit, the dry film thickness of the layer (B3) in the layer closest to the metal oxide layer 3 (FIG. 1c) is: It is preferable that they are 0.1 micrometer or more and 2 micrometers or less.
 (ハードコート層の構成材料)
 本発明に係るハードコート層を構成するA層ユニット、B層ユニットの各層は、主に、活性光線硬化樹脂と無微粒子とで構成されていることが好ましい。
(Constituent material of hard coat layer)
It is preferable that each layer of the A layer unit and the B layer unit constituting the hard coat layer according to the present invention is mainly composed of an actinic ray curable resin and fine particles.
 〈活性光線硬化樹脂〉
 本発明に適用可能な活性光線硬化樹脂としては、紫外線硬化性樹脂や電子線硬化性樹脂などが代表的なものとして挙げられるが、紫外線や電子線以外の活性線照射によって硬化する樹脂でもよい。紫外線硬化性樹脂としては、例えば、紫外線硬化型アクリルウレタン系樹脂、紫外線硬化型ポリエステルアクリレート系樹脂、紫外線硬化型エポキシアクリレート系樹脂、紫外線硬化型ポリオールアクリレート系樹脂、または紫外線硬化型エポキシ樹脂等を挙げることが出来る。
<Actinic ray curable resin>
Typical examples of the actinic ray curable resin applicable to the present invention include an ultraviolet curable resin and an electron beam curable resin, but a resin that is cured by irradiation with active rays other than ultraviolet rays and electron beams may be used. Examples of the ultraviolet curable resin include an ultraviolet curable acrylic urethane resin, an ultraviolet curable polyester acrylate resin, an ultraviolet curable epoxy acrylate resin, an ultraviolet curable polyol acrylate resin, and an ultraviolet curable epoxy resin. I can do it.
 紫外線硬化型アクリルウレタン系樹脂は、一般にポリエステルポリオールにイソシアネートモノマー、もしくはプレポリマーを反応させて得られた生成物に更に2-ヒドロキシエチルアクリレート、2-ヒドロキシエチルメタクリレート(以下アクリレートと記載した場合、メタクリレートを包含するものとする)、2-ヒドロキシプロピルアクリレート等の水酸基を有するアクリレート系のモノマーを反応させることによって容易に得ることが出来る(例えば、特開昭59-151110号等を参照)。 In general, UV-curable acrylic urethane resins are obtained by reacting a polyester polyol with an isocyanate monomer or a prepolymer and further adding 2-hydroxyethyl acrylate, 2-hydroxyethyl methacrylate (hereinafter referred to as acrylate, methacrylate). It can be easily obtained by reacting an acrylate monomer having a hydroxyl group such as 2-hydroxypropyl acrylate (for example, see JP-A-59-151110).
 紫外線硬化型ポリエステルアクリレート系樹脂は、一般にポリエステルポリオールに2-ヒドロキシエチルアクリレート、2-ヒドロキシアクリレート系のモノマーを反応させることによって容易に得ることが出来る(例えば、特開昭59-151112号を参照)。 UV curable polyester acrylate resins can be easily obtained by reacting polyester polyols with 2-hydroxyethyl acrylate or 2-hydroxy acrylate monomers, for example (see, for example, JP-A-59-151112). .
 紫外線硬化型エポキシアクリレート系樹脂の具体例としては、エポキシアクリレートをオリゴマーとし、これに反応性希釈剤、光反応開始剤を添加し、反応させたものを挙げることが出来る(例えば、特開平1-105738号)。この光反応開始剤としては、ベンゾイン誘導体、オキシムケトン誘導体、ベンゾフェノン誘導体、チオキサントン誘導体等のうちから、1種もしくは2種以上を選択して使用することが出来る。 Specific examples of the ultraviolet curable epoxy acrylate resins include those obtained by reacting epoxy acrylate with oligomers, a reactive diluent and a photoreaction initiator added thereto (for example, JP-A-1- No. 105738). As the photoreaction initiator, one or more kinds selected from benzoin derivatives, oxime ketone derivatives, benzophenone derivatives, thioxanthone derivatives and the like can be selected and used.
 また、紫外線硬化型ポリオールアクリレート系樹脂の具体例としては、トリメチロールプロパントリアクリレート、ジトリメチロールプロパンテトラアクリレート、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート、ジペンタエリスリトールヘキサアクリレート、アルキル変性ジペンタエリスリトールペンタアクリレート等を挙げることが出来る。 Specific examples of ultraviolet curable polyol acrylate resins include trimethylolpropane triacrylate, ditrimethylolpropane tetraacrylate, pentaerythritol triacrylate, pentaerythritol tetraacrylate, dipentaerythritol hexaacrylate, alkyl-modified dipentaerythritol pentaacrylate. Etc. can be mentioned.
 これらの樹脂は通常公知の光増感剤と共に使用される。また上記光反応開始剤も光増感剤としても使用出来る。具体的には、アセトフェノン、ベンゾフェノン、ヒドロキシベンゾフェノン、ミヒラーズケトン、α-アミロキシムエステル、チオキサントン等及びこれらの誘導体を挙げることが出来る。また、エポキシアクリレート系の光反応剤の使用の際、n-ブチルアミン、トリエチルアミン、トリ-n-ブチルホスフィン等の増感剤を用いることが出来る。塗布乾燥後に揮発する溶媒成分を除いた紫外線硬化性樹脂組成物に含まれる光反応開始剤また光増感剤は該組成物の通常1~10質量%添加することが出来、2.5~6質量%であることが好ましい。 These resins are usually used together with known photosensitizers. Moreover, the said photoinitiator can also be used as a photosensitizer. Specific examples include acetophenone, benzophenone, hydroxybenzophenone, Michler's ketone, α-amyloxime ester, thioxanthone, and the like. Further, when using an epoxy acrylate photoreactive agent, a sensitizer such as n-butylamine, triethylamine, tri-n-butylphosphine can be used. The photoreaction initiator or photosensitizer contained in the ultraviolet curable resin composition excluding the solvent component that volatilizes after coating and drying can be added in an amount of usually 1 to 10% by mass of the composition, and 2.5 to 6 It is preferable that it is mass%.
 樹脂モノマーとしては、例えば、不飽和二重結合が一つのモノマーとして、メチルアクリレート、エチルアクリレート、ブチルアクリレート、酢酸ビニル、ベンジルアクリレート、シクロヘキシルアクリレート、スチレン等の一般的なモノマーを挙げることが出来る。また不飽和二重結合を二つ以上持つモノマーとして、エチレングリコールジアクリレート、プロピレングリコールジアクリレート、ジビニルベンゼン、1,4-シクロヘキサンジアクリレート、1,4-シクロヘキシルジメチルアジアクリレート、前出のトリメチロールプロパントリアクリレート、ペンタエリスリトールテトラアクリルエステル等を挙げることが出来る。 Examples of the resin monomer may include general monomers such as methyl acrylate, ethyl acrylate, butyl acrylate, vinyl acetate, benzyl acrylate, cyclohexyl acrylate, and styrene as monomers having one unsaturated double bond. Monomers having two or more unsaturated double bonds include ethylene glycol diacrylate, propylene glycol diacrylate, divinylbenzene, 1,4-cyclohexane diacrylate, 1,4-cyclohexyldimethyl adiacrylate, and the above-mentioned trimethylolpropane. Examples thereof include triacrylate and pentaerythritol tetraacryl ester.
 例えば、紫外線硬化樹脂としては、アデカオプトマーKR・BYシリーズ:KR-400、KR-410、KR-550、KR-566、KR-567、BY-320B(以上、旭電化工業株式会社製)、あるいはコーエイハードA-101-KK、A-101-WS、C-302、C-401-N、C-501、M-101、M-102、T-102、D-102、NS-101、FT-102Q8、MAG-1-P20、AG-106、M-101-C(以上、広栄化学工業株式会社製)、あるいはセイカビームPHC2210(S)、PHC X-9(K-3)、PHC2213、DP-10、DP-20、DP-30、P1000、P1100、P1200、P1300、P1400、P1500、P1600、SCR900(以上、大日精化工業株式会社製)、あるいはKRM7033、KRM7039、KRM7130、KRM7131、UVECRYL29201、UVECRYL29202(以上、ダイセル・ユーシービー株式会社)、あるいはRC-5015、RC-5016、RC-5020、RC-5031、RC-5100、RC-5102、RC-5120、RC-5122、RC-5152、RC-5171、RC-5180、RC-5181(以上、大日本インキ化学工業株式会社製)、あるいはオーレックスNo.340クリヤ(中国塗料株式会社製)、あるいはサンラッドH-601(三洋化成工業株式会社製)、あるいはSP-1509、SP-1507(昭和高分子株式会社製)、あるいはRCC-15C(グレース・ジャパン株式会社製)、アロニックスM-6100、M-8030、M-8060(以上、東亞合成株式会社製)あるいはこの他の市販のものから適宜選択して利用出来る。 For example, as an ultraviolet curable resin, Adekaoptomer KR / BY series: KR-400, KR-410, KR-550, KR-566, KR-567, BY-320B (above, manufactured by Asahi Denka Kogyo Co., Ltd.) Or Koeihard A-101-KK, A-101-WS, C-302, C-401-N, C-501, M-101, M-102, T-102, D-102, NS-101, FT -102Q8, MAG-1-P20, AG-106, M-101-C (from Guangei Chemical Industry Co., Ltd.), or Seika Beam PHC2210 (S), PHC X-9 (K-3), PHC2213, DP- 10, DP-20, DP-30, P1000, P1100, P1200, P1300, P1400, P1500, P1600, SCR900 , Manufactured by Dainichi Seika Kogyo Co., Ltd.), or KRM7033, KRM7039, KRM7130, KRM7131, UVECRYL29201, UVECRYL29202 (above, Daicel UCB Corporation), or RC-5015, RC-5016, RC-5020, RC-5031, RC-5100, RC-5102, RC-5120, RC-5122, RC-5152, RC-5171, RC-5180, RC-5181 (manufactured by Dainippon Ink & Chemicals, Inc.) or Aulex No. 340 clear (manufactured by China Paint Co., Ltd.), Sunrad H-601 (manufactured by Sanyo Chemical Industries, Ltd.), SP-1509, SP-1507 (manufactured by Showa Polymer Co., Ltd.), or RCC-15C (Grace Japan Co., Ltd.) (Manufactured by the company), Aronix M-6100, M-8030, M-8060 (above, manufactured by Toagosei Co., Ltd.) or other commercially available products.
 〈無機粒子〉
 本発明に係るハードコート層においては、前述の通り、A層ユニットを構成する各層の無機粒子濃度は30体積%以上、70体積%以下、B層ユニットを構成する各層の無機粒子濃度は0体積%以上、40体積%以とすることが好ましく、更に、A層ユニットを構成する各層の無機粒子濃度を40体積%以上、60体積%以下で、B層ユニットを構成する各層の無機粒子濃度は0体積%以上、20体積%以下とすることが好ましい。すなわち、本発明に係るB層ユニットを構成する層においては、無機粒子を全く含有せず、活性光線硬化樹脂のみで構成されるケースを包含するものである。
<Inorganic particles>
In the hard coat layer according to the present invention, as described above, the inorganic particle concentration of each layer constituting the A layer unit is 30% by volume or more and 70% by volume or less, and the inorganic particle concentration of each layer constituting the B layer unit is 0 volume. Preferably, the inorganic particle concentration of each layer constituting the A layer unit is 40% by volume or more and 60% by volume or less, and the inorganic particle concentration of each layer constituting the B layer unit is It is preferable to set it to 0 volume% or more and 20 volume% or less. That is, the layer constituting the B layer unit according to the present invention includes a case that does not contain any inorganic particles and is composed only of an actinic ray curable resin.
 本発明に係るハードコート層の構成層に適用できる無機粒子としては、例えば、Si、Ti、Mg、Ca、Zr、Sn、Sb、As、Zn、Nb、In、Alから選択される金属の酸化物微粒子が好ましく、具体的には、酸化珪素、酸化チタン、酸化アルミニウム、酸化スズ、酸化インジウム、ITO、酸化亜鉛、酸化ジルコニウム、酸化マグネシウム、炭酸カルシウム、炭酸カルシウム、タルク、クレイ、焼成カオリン、焼成ケイ酸カルシウム、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウム及びリン酸カルシウムを挙げることができる。特に、本発明においては、無機粒子として、酸化珪素を用いることが好ましい。 Examples of inorganic particles applicable to the constituent layer of the hard coat layer according to the present invention include oxidation of a metal selected from Si, Ti, Mg, Ca, Zr, Sn, Sb, As, Zn, Nb, In, and Al. In particular, silicon oxide, titanium oxide, aluminum oxide, tin oxide, indium oxide, ITO, zinc oxide, zirconium oxide, magnesium oxide, calcium carbonate, calcium carbonate, talc, clay, calcined kaolin, calcined Mention may be made of calcium silicate, hydrated calcium silicate, aluminum silicate, magnesium silicate and calcium phosphate. In particular, in the present invention, it is preferable to use silicon oxide as the inorganic particles.
 本発明に好ましく適用することができる酸化珪素としては、例えば、好ましく用いられる酸化珪素粒子は、富士シリシア化学(株)製のサイリシア、日本シリカ(株)製のNipsil E、日本アエロジル(株)製のアエロジルシリーズ、日産化学工業(株)製のコロイダルシリカ、オルガノシリカゾル等を適用することができる。 As silicon oxide that can be preferably applied to the present invention, for example, preferably used silicon oxide particles include silicia manufactured by Fuji Silysia Chemical Co., Nippon Sil E manufactured by Nippon Silica Co., Ltd., and Nippon Aerosil Co., Ltd. Aerosil series, colloidal silica manufactured by Nissan Chemical Industries, organosilica sol, etc. can be applied.
 本発明に係るハードコート層に適用できる無機粒子の平均粒子径としては、5nm以上、1.0μm以下であることが好ましく、更に好ましくは5nm以上、500nm以下である。無機粒子の平均粒子径は、無機粒子を電子顕微鏡で観察し、100個の任意の一次粒子の粒径を求め、その単純平均値(個数平均)として求められる。ここで個々の粒子径はその投影面積に等しい円を仮定した時の直径で表したものである。 The average particle diameter of the inorganic particles applicable to the hard coat layer according to the present invention is preferably 5 nm or more and 1.0 μm or less, more preferably 5 nm or more and 500 nm or less. The average particle diameter of the inorganic particles is obtained as a simple average value (number average) by observing the inorganic particles with an electron microscope, determining the particle diameter of 100 arbitrary primary particles. Here, each particle diameter is expressed by a diameter assuming a circle equal to the projected area.
 本発明に係るハードコート層において、無機粒子含有層における無機粒子の含有量は、本発明で規定する条件を満たす範囲であれば特に制限はない。 In the hard coat layer according to the present invention, the content of the inorganic particles in the inorganic particle-containing layer is not particularly limited as long as it satisfies the conditions specified in the present invention.
 〈無機粒子含有層の形成方法〉
 本発明においては、樹脂基材上にA層ユニットを構成する層と、B層ユニットを構成する層とを交互に積層して構成することを特徴とするが、各構成層を樹脂基材上に形成する方法としては、薄膜を形成する公知の方法を適用することができるが、特に、湿式塗布法により形成することが好ましい。
<Method for forming inorganic particle-containing layer>
In the present invention, the layers constituting the A layer unit and the layers constituting the B layer unit are alternately laminated on the resin base material, and each constituent layer is formed on the resin base material. As a method for forming the thin film, a known method for forming a thin film can be applied, but it is particularly preferable to form the thin film by a wet coating method.
 湿式塗布法とは、例えば、活性光線硬化樹脂を溶媒、例えば、炭化水素類、アルコール類、ケトン類、エステル類、グリコールエーテル類、その他の溶媒に溶解した後、無機粒子を添加して無機粒子を含有する層塗布液、あるいは活性光線硬化樹脂を溶媒に溶解した無機粒子を含有しない層塗布液を調製し、この塗布液を用いて、ウェット状態の薄膜を樹脂基材上等に形成する方法である。 The wet coating method is, for example, an actinic ray curable resin dissolved in a solvent, for example, hydrocarbons, alcohols, ketones, esters, glycol ethers, and other solvents, and then inorganic particles are added to the inorganic particles. For preparing a layer coating solution containing no or an inorganic particle obtained by dissolving an actinic radiation curable resin in a solvent, and forming a wet thin film on a resin substrate using the coating solution It is.
 この様な湿式塗布法に用いられる塗布方式としては、例えば、スピンコート塗布、ディップ塗布、エクストルージョン塗布、ロールコート塗布スプレー塗布、グラビア塗布、ワイヤーバー塗布、エアナイフ塗布、スライドポッパー塗布、カーテン塗布等の公知の溶液を用いた塗布方法(塗布装置)を適用することができる。 Examples of coating methods used in such wet coating methods include spin coating, dip coating, extrusion coating, roll coating coating spray coating, gravure coating, wire bar coating, air knife coating, slide popper coating, and curtain coating. A coating method (coating apparatus) using a known solution can be applied.
 上記の塗布方式により樹脂基材上に形成したハードコート層(無機粒子含有層)は、膜を硬化する目的で、活性光線が照射される。活性光線硬化樹脂を光硬化反応により硬化皮膜層を形成するための光源としては、紫外線を発生する光源であれば何れでも使用することができ、例えば、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、カーボンアーク灯、メタルハライドランプ、キセノンランプ等を挙げることができる。照射条件はそれぞれのランプによって異なるが、照射光量は20~10000mJ/cm程度あればよく、好ましくは、50~2000mJ/cmである。近紫外線領域~可視光線領域にかけてはその領域に吸収極大のある増感剤を用いることによって使用出来る。 The hard coat layer (inorganic particle-containing layer) formed on the resin substrate by the above coating method is irradiated with actinic rays for the purpose of curing the film. As a light source for forming a cured film layer by a photo-curing reaction of an actinic ray curable resin, any light source that generates ultraviolet rays can be used. For example, a low-pressure mercury lamp, a medium-pressure mercury lamp, a high-pressure mercury lamp, A high pressure mercury lamp, a carbon arc lamp, a metal halide lamp, a xenon lamp, etc. can be mentioned. The irradiation conditions vary depending on individual lamps, but the amount of light irradiated may if 20 ~ 10000mJ / cm 2 degrees, preferably 50 ~ 2000mJ / cm 2. In the near ultraviolet region to the visible light region, it can be used by using a sensitizer having an absorption maximum in that region.
 紫外線硬化性樹脂組成物は塗布乾燥された後、紫外線を光源より照射するが、照射時間は0.5秒~5分がよく、紫外線硬化性樹脂の硬化効率、作業効率とから3秒~2分がより好ましい。 The UV curable resin composition is coated and dried and then irradiated with UV light from a light source. The irradiation time is preferably 0.5 seconds to 5 minutes, and 3 seconds to 2 from the curing efficiency and work efficiency of the UV curable resin. Minutes are more preferred.
 本発明に係るA層ユニットを構成する層とB層ユニットを構成する層とを交互に積層した構成とする場合には、樹脂基材上に湿式塗布法により、第1の層(例えば、図1のc)においてはB1)を塗設し、次いで活性光線を照射した後、第1の層上に、第2の層(例えば、図1のc)においてはA1)を塗設した後、活性光線を照射する。そして、図1のc)で示した構成とする場合には、同様にしてB2、A2、B3、A3をそれぞれ所定の膜厚となるように塗布、硬化して形成することができる。 When the layer constituting the A layer unit and the layer constituting the B layer unit according to the present invention are alternately laminated, the first layer (for example, FIG. After applying B1) in c) of 1 and then irradiating with actinic rays, after applying a second layer (for example, A1) in c of FIG. 1 on the first layer, Irradiate with actinic rays. In the case of the configuration shown in FIG. 1 c), B2, A2, B3, and A3 can be similarly applied and cured so as to have predetermined film thicknesses.
 また、本発明に係る積層したハードコート層を形成する湿式塗布法として、例えば、図1のc)で示した構成では、計6層を同時に塗布する多層同時塗布法を適用することが、高い生産性が得られる観点で好ましい。 In addition, as a wet coating method for forming a laminated hard coat layer according to the present invention, for example, in the configuration shown in FIG. 1 c), it is high to apply a multilayer simultaneous coating method in which a total of six layers are coated simultaneously. It is preferable from the viewpoint of obtaining productivity.
 多層同時塗布法に適用可能な塗布装置としては、複数の塗布液を供給できる供給口あるいは供給スリットを備え、所望の乾燥膜厚となるように各供給口あるいは供給スリットへの塗布液の供給量を制御する手段を備えた装置であり、例えば、エクストルージョン塗布、スライドホッパー塗布、カーテン塗布等の塗布装置を適用することができる。 As a coating apparatus applicable to the multilayer simultaneous coating method, a supply port or a supply slit capable of supplying a plurality of coating liquids is provided, and the supply amount of the coating liquid to each supply port or the supply slit so as to obtain a desired dry film thickness For example, a coating device such as extrusion coating, slide hopper coating, curtain coating, or the like can be applied.
 〔金属酸化物層〕
 上記方法に従って樹脂基材上のハードコート層を形成した後、金属酸化物層をその上に形成することで、本発明のハードコート層付積層体を得ることができる。
[Metal oxide layer]
After forming the hard-coat layer on a resin base material according to the said method, the laminated body with a hard-coat layer of this invention can be obtained by forming a metal oxide layer on it.
 本発明に係る金属酸化物層は、その構成材料の主成分が金属酸化物により構成されていることが、高い硬度を備えた最表層を形成できる観点から好ましい。 In the metal oxide layer according to the present invention, it is preferable that the main component of the constituent material is composed of a metal oxide from the viewpoint of forming an outermost layer having high hardness.
 本発明でいう主成分とは、金属酸化物層の80質量%以上が金属酸化物で構成されていることであり、好ましくは90質量%以上が金属酸化物で構成されていることであり、特に好ましくは95質量%以上が金属酸化物で構成されていることである。 The main component referred to in the present invention is that 80% by mass or more of the metal oxide layer is composed of a metal oxide, preferably 90% by mass or more is composed of a metal oxide, Particularly preferably, 95% by mass or more is composed of a metal oxide.
 本発明に係る金属酸化物層を構成する金属酸化物としては、特に制限はなく、例えば、酸化珪素、酸化窒化珪素、窒化珪素、酸化チタン、酸化窒化チタン、窒化チタン、酸化ホウ素又は酸化アルミニウム等の金属酸化物膜が挙げられるが、これらの中でも、高い硬度を備えた表面層が得られる観点から酸化珪素膜であることが、特に好ましい。 The metal oxide constituting the metal oxide layer according to the present invention is not particularly limited, and examples thereof include silicon oxide, silicon oxynitride, silicon nitride, titanium oxide, titanium oxynitride, titanium nitride, boron oxide, and aluminum oxide. Among these, a silicon oxide film is particularly preferable from the viewpoint of obtaining a surface layer having high hardness.
 本発明に係る金属酸化物層は、例えば、スパッタリング法、イオンアシスト法、プラズマCVD法、大気圧または大気圧近傍の圧力下での大気圧プラズマCVD法などによるドライ製膜や、ゾルゲル法、シラザン法による湿式塗布コーティングを適用して形成することができる。 The metal oxide layer according to the present invention includes, for example, a dry film formation by a sputtering method, an ion assist method, a plasma CVD method, an atmospheric pressure plasma CVD method under atmospheric pressure or a pressure near atmospheric pressure, a sol-gel method, and a silazane. It can be formed by applying a wet coating by a method.
 本発明のハードコート層付積層体においては、ドライ製膜で金属酸化物層を形成方法としては、プラズマCVD法を適用することが好ましく、特に、大気圧または大気圧近傍の圧力下での大気圧プラズマCVD法は、減圧チャンバー等が不要で、高速製膜ができ生産性の高い製膜方法である点から好ましい。本発明に係る金属酸化物層を大気圧プラズマCVD法で形成することにより、均一かつ表面の平滑性を有する膜を比較的容易に形成することが可能となるからである。尚、大気圧プラズマCVD法の層形成条件の詳細については、後述する。 In the laminated body with a hard coat layer of the present invention, it is preferable to apply a plasma CVD method as a method for forming a metal oxide layer by dry film formation, and in particular, a high pressure under atmospheric pressure or a pressure near atmospheric pressure. The atmospheric pressure plasma CVD method is preferable because it does not require a decompression chamber or the like and can form a film at a high speed and has high productivity. This is because by forming the metal oxide layer according to the present invention by the atmospheric pressure plasma CVD method, it is possible to relatively easily form a film having a uniform and smooth surface. The details of the layer formation conditions of the atmospheric pressure plasma CVD method will be described later.
 また、本発明のハードコート層付積層体において、湿式塗布コーティングで金属酸化物層を形成方法としては、ゾルゲル法やシラザン法を適用することが好ましく、特に、無機シラザンを用いたシラザン法は、比較的低温で、高硬度な塗膜が得られる観点から好ましい。本発明に適用可能な無機ポリシラザンとしては、特開平11-240103号公報の段落番号(0097)から(0104)に記載されている無機ポリシラザンを挙げることができる。また、ポリシラザン(パーハイドロポリシラザン)としては、AZエレクトロニックマテリアルズ社製のアクアミカ NAX120-20、NP110、NP140等として、市販品として入手可能である。 Further, in the laminate with a hard coat layer of the present invention, as a method for forming a metal oxide layer by wet coating, it is preferable to apply a sol-gel method or a silazane method, and in particular, a silazane method using an inorganic silazane, From the viewpoint of obtaining a coating film having a relatively low temperature and a high hardness. Examples of inorganic polysilazanes applicable to the present invention include inorganic polysilazanes described in paragraph numbers (0097) to (0104) of JP-A No. 11-240103. Polysilazane (perhydropolysilazane) is commercially available as AQUAMICA NAX120-20, NP110, NP140, etc. manufactured by AZ Electronic Materials.
 プラズマCVD法、大気圧または大気圧近傍の圧力下でのプラズマCVD法により得られる金属酸化物層は、原材料(原料ともいう)である有機金属化合物、分解ガス、分解温度、投入電力などの条件を選ぶことで、様々な特性を備えた各種金属酸化物を生成することができるため好ましい。例えば、珪素化合物を原料化合物として用い、分解ガスに酸素を用いれば、珪素酸化物が生成する。これは、プラズマ空間内では非常に活性な荷電粒子・活性ラジカルが高密度で存在するため、プラズマ空間内では多段階の化学反応が非常に高速に促進され、プラズマ空間内に存在する元素は熱力学的に安定な化合物へと非常な短時間で変換されるためである。 The metal oxide layer obtained by the plasma CVD method, or the plasma CVD method under atmospheric pressure or a pressure near atmospheric pressure, is a raw material (also referred to as a raw material) organometallic compound, decomposition gas, decomposition temperature, input power, etc. Is preferable because various metal oxides having various characteristics can be generated. For example, when a silicon compound is used as a raw material compound and oxygen is used as a decomposition gas, silicon oxide is generated. This is because highly active charged particles and active radicals exist in the plasma space at a high density, so that multistage chemical reactions are promoted very rapidly in the plasma space, and the elements present in the plasma space are heated. This is because it is converted into a mechanically stable compound in a very short time.
 このような無機物の原料としては、典型または遷移金属元素を有していれば、常温常圧下で気体、液体、固体いずれの状態であっても構わない。気体の場合にはそのまま放電空間に導入できるが、液体、固体の場合は、加熱、バブリング、減圧、超音波照射等の手段により気化させて使用する。又、溶媒によって希釈して使用してもよく、溶媒は、メタノール,エタノール,n-ヘキサンなどの有機溶媒及びこれらの混合溶媒が使用できる。尚、これらの希釈溶媒は、プラズマ放電処理中において、分子状、原子状に分解されるため、影響は殆ど無視することができる。 As such an inorganic material, as long as it has a typical or transition metal element, it may be in a gas, liquid, or solid state at normal temperature and pressure. In the case of gas, it can be introduced into the discharge space as it is, but in the case of liquid or solid, it is used after being vaporized by means such as heating, bubbling, decompression or ultrasonic irradiation. The solvent may be diluted with a solvent, and an organic solvent such as methanol, ethanol, n-hexane or a mixed solvent thereof may be used as the solvent. Since these diluted solvents are decomposed into molecular and atomic forms during the plasma discharge treatment, the influence can be almost ignored.
 本発明においては、金属酸化物の形成に用いる有機金属化合物は、
 珪素化合物としては、例えば、シラン、テトラメトキシシラン、テトラエトキシシラン(TEOS)、テトラn-プロポキシシラン、テトライソプロポキシシラン、テトラn-ブトキシシラン、テトラt-ブトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジエチルジメトキシシラン、ジフェニルジメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、フェニルトリエトキシシラン、(3,3,3-トリフルオロプロピル)トリメトキシシラン、ヘキサメチルジシロキサン、ビス(ジメチルアミノ)ジメチルシラン、ビス(ジメチルアミノ)メチルビニルシラン、ビス(エチルアミノ)ジメチルシラン、N,O-ビス(トリメチルシリル)アセトアミド、ビス(トリメチルシリル)カルボジイミド、ジエチルアミノトリメチルシラン、ジメチルアミノジメチルシラン、ヘキサメチルジシラザン、ヘキサメチルシクロトリシラザン、ヘプタメチルジシラザン、ノナメチルトリシラザン、オクタメチルシクロテトラシラザン、テトラキスジメチルアミノシラン、テトライソシアナートシラン、テトラメチルジシラザン、トリス(ジメチルアミノ)シラン、トリエトキシフルオロシラン、アリルジメチルシラン、アリルトリメチルシラン、ベンジルトリメチルシラン、ビス(トリメチルシリル)アセチレン、1,4-ビストリメチルシリル-1,3-ブタジイン、ジ-t-ブチルシラン、1,3-ジシラブタン、ビス(トリメチルシリル)メタン、シクロペンタジエニルトリメチルシラン、フェニルジメチルシラン、フェニルトリメチルシラン、プロパルギルトリメチルシラン、テトラメチルシラン、トリメチルシリルアセチレン、1-(トリメチルシリル)-1-プロピン、トリス(トリメチルシリル)メタン、トリス(トリメチルシリル)シラン、ビニルトリメチルシラン、ヘキサメチルジシラン、オクタメチルシクロテトラシロキサン、テトラメチルシクロテトラシロキサン、ヘキサメチルシクロテトラシロキサン、Mシリケート51等が挙げられる。
In the present invention, the organometallic compound used for forming the metal oxide is
Examples of the silicon compound include silane, tetramethoxysilane, tetraethoxysilane (TEOS), tetra n-propoxy silane, tetraisopropoxy silane, tetra n-butoxy silane, tetra t-butoxy silane, dimethyl dimethoxy silane, dimethyl diethoxy. Silane, diethyldimethoxysilane, diphenyldimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, phenyltriethoxysilane, (3,3,3-trifluoropropyl) trimethoxysilane, hexamethyldisiloxane, bis (dimethylamino) Dimethylsilane, bis (dimethylamino) methylvinylsilane, bis (ethylamino) dimethylsilane, N, O-bis (trimethylsilyl) acetamide, bis (trimethylsilyl) carbodiimi , Diethylaminotrimethylsilane, dimethylaminodimethylsilane, hexamethyldisilazane, hexamethylcyclotrisilazane, heptamethyldisilazane, nonamethyltrisilazane, octamethylcyclotetrasilazane, tetrakisdimethylaminosilane, tetraisocyanatosilane, tetramethyldisilazane , Tris (dimethylamino) silane, triethoxyfluorosilane, allyldimethylsilane, allyltrimethylsilane, benzyltrimethylsilane, bis (trimethylsilyl) acetylene, 1,4-bistrimethylsilyl-1,3-butadiyne, di-t-butylsilane, 1,3-disilabutane, bis (trimethylsilyl) methane, cyclopentadienyltrimethylsilane, phenyldimethylsilane, phenyltrimethylsila , Propargyltrimethylsilane, tetramethylsilane, trimethylsilylacetylene, 1- (trimethylsilyl) -1-propyne, tris (trimethylsilyl) methane, tris (trimethylsilyl) silane, vinyltrimethylsilane, hexamethyldisilane, octamethylcyclotetrasiloxane, tetramethyl Examples thereof include cyclotetrasiloxane, hexamethylcyclotetrasiloxane, M silicate 51, and the like.
 チタン化合物としては、例えば、チタンメトキシド、チタンエトキシド、チタンイソプロポキシド、チタンテトライソポロポキシド、チタンn-ブトキシド、チタンジイソプロポキシド(ビス-2,4-ペンタンジオネート)、チタンジイソプロポキシド(ビス-2,4-エチルアセトアセテート)、チタンジ-n-ブトキシド(ビス-2,4-ペンタンジオネート)、チタンアセチルアセトネート、ブチルチタネートダイマー等が挙げられる。 Examples of titanium compounds include titanium methoxide, titanium ethoxide, titanium isopropoxide, titanium tetraisoporooxide, titanium n-butoxide, titanium diisopropoxide (bis-2,4-pentanedionate), titanium. Examples thereof include diisopropoxide (bis-2,4-ethylacetoacetate), titanium di-n-butoxide (bis-2,4-pentanedionate), titanium acetylacetonate, butyl titanate dimer, and the like.
 ジルコニウム化合物としては、ジルコニウムn-プロポキシド、ジルコニウムn-ブトキシド、ジルコニウムt-ブトキシド、ジルコニウムトリ-n-ブトキシドアセチルアセトネート、ジルコニウムジ-n-ブトキシドビスアセチルアセトネート、ジルコニウムアセチルアセトネート、ジルコニウムアセテート、ジルコニウムヘキサフルオロペンタンジオネート等が挙げられる。 Zirconium compounds include zirconium n-propoxide, zirconium n-butoxide, zirconium t-butoxide, zirconium tri-n-butoxide acetylacetonate, zirconium di-n-butoxide bisacetylacetonate, zirconium acetylacetonate, zirconium acetate, Zirconium hexafluoropentanedioate and the like can be mentioned.
 アルミニウム化合物としては、アルミニウムエトキシド、アルミニウムトリイソプロポキシド、アルミニウムイソプロポキシド、アルミニウムn-ブトキシド、アルミニウムs-ブトキシド、アルミニウムt-ブトキシド、アルミニウムアセチルアセトナート、トリエチルジアルミニウムトリ-s-ブトキシド等が挙げられる。 Examples of the aluminum compound include aluminum ethoxide, aluminum triisopropoxide, aluminum isopropoxide, aluminum n-butoxide, aluminum s-butoxide, aluminum t-butoxide, aluminum acetylacetonate, triethyldialuminum tri-s-butoxide, and the like. Can be mentioned.
 硼素化合物としては、ジボラン、テトラボラン、フッ化硼素、塩化硼素、臭化硼素、ボラン-ジエチルエーテル錯体、ボラン-THF錯体、ボラン-ジメチルスルフィド錯体、三フッ化硼素ジエチルエーテル錯体、トリエチルボラン、トリメトキシボラン、トリエトキシボラン、トリ(イソプロポキシ)ボラン、ボラゾール、トリメチルボラゾール、トリエチルボラゾール、トリイソプロピルボラゾール、等が挙げられる。 Boron compounds include diborane, tetraborane, boron fluoride, boron chloride, boron bromide, borane-diethyl ether complex, borane-THF complex, borane-dimethyl sulfide complex, boron trifluoride diethyl ether complex, triethylborane, trimethoxy. Examples include borane, triethoxyborane, tri (isopropoxy) borane, borazole, trimethylborazole, triethylborazole, triisopropylborazole, and the like.
 錫化合物としては、テトラエチル錫、テトラメチル錫、二酢酸ジ-n-ブチル錫、テトラブチル錫、テトラオクチル錫、テトラエトキシ錫、メチルトリエトキシ錫、ジエチルジエトキシ錫、トリイソプロピルエトキシ錫、ジエチル錫、ジメチル錫、ジイソプロピル錫、ジブチル錫、ジエトキシ錫、ジメトキシ錫、ジイソプロポキシ錫、ジブトキシ錫、錫ジブチラート、錫ジアセトアセトナート、エチル錫アセトアセトナート、エトキシ錫アセトアセトナート、ジメチル錫ジアセトアセトナート等、錫水素化合物等、ハロゲン化錫としては、二塩化錫、四塩化錫等が挙げられる。 Examples of tin compounds include tetraethyltin, tetramethyltin, di-n-butyltin diacetate, tetrabutyltin, tetraoctyltin, tetraethoxytin, methyltriethoxytin, diethyldiethoxytin, triisopropylethoxytin, diethyltin, Dimethyltin, diisopropyltin, dibutyltin, diethoxytin, dimethoxytin, diisopropoxytin, dibutoxytin, tin dibutyrate, tin diacetoacetonate, ethyltin acetoacetonate, ethoxytin acetoacetonate, dimethyltin diacetoacetonate Examples of tin halides such as tin hydrogen compounds include tin dichloride and tin tetrachloride.
 また、その他の有機金属化合物としては、例えば、アンチモンエトキシド、ヒ素トリエトキシド、バリウム2,2,6,6-テトラメチルヘプタンジオネート、ベリリウムアセチルアセトナート、ビスマスヘキサフルオロペンタンジオネート、ジメチルカドミウム、カルシウム2,2,6,6-テトラメチルヘプタンジオネート、クロムトリフルオロペンタンジオネート、コバルトアセチルアセトナート、銅ヘキサフルオロペンタンジオネート、マグネシウムヘキサフルオロペンタンジオネート-ジメチルエーテル錯体、ガリウムエトキシド、テトラエトキシゲルマン、テトラメトキシゲルマン、ハフニウムt-ブドキシド、ハフニウムエトキシド、インジウムアセチルアセトナート、インジウム2,6-ジメチルアミノヘプタンジオネート、フェロセン、ランタンイソプロポキシド、酢酸鉛、テトラエチル鉛、ネオジウムアセチルアセトナート、白金ヘキサフルオロペンタンジオネート、トリメチルシクロペンタジエニル白金、ロジウムジカルボニルアセチルアセトナート、ストロンチウム2,2,6,6-テトラメチルヘプタンジオネート、タンタルメトキシド、タンタルトリフルオロエトキシド、テルルエトキシド、タングステンエトキシド、バナジウムトリイソプロポキシドオキシド、マグネシウムヘキサフルオロアセチルアセトナート、亜鉛アセチルアセトナート、ジエチル亜鉛、などが挙げられる。 Other organometallic compounds include, for example, antimony ethoxide, arsenic triethoxide, barium 2,2,6,6-tetramethylheptanedionate, beryllium acetylacetonate, bismuth hexafluoropentanedionate, dimethylcadmium, calcium 2,2,6,6-tetramethylheptanedionate, chromium trifluoropentanedionate, cobalt acetylacetonate, copper hexafluoropentanedionate, magnesium hexafluoropentanedionate-dimethyl ether complex, gallium ethoxide, tetraethoxygermane , Tetramethoxygermane, hafnium t-butoxide, hafnium ethoxide, indium acetylacetonate, indium 2,6-dimethylaminoheptane dione , Ferrocene, lanthanum isopropoxide, lead acetate, tetraethyl lead, neodymium acetylacetonate, platinum hexafluoropentanedionate, trimethylcyclopentadienylplatinum, rhodium dicarbonylacetylacetonate, strontium 2,2,6,6-tetra Examples include methyl heptanedionate, tantalum methoxide, tantalum trifluoroethoxide, tellurium ethoxide, tungsten ethoxide, vanadium triisopropoxide oxide, magnesium hexafluoroacetylacetonate, zinc acetylacetonate, diethylzinc, and the like.
 また、これらの金属を含む原料ガスを分解して金属酸化物を得るための分解ガスとしては、水素ガス、メタンガス、アセチレンガス、一酸化炭素ガス、二酸化炭素ガス、窒素ガス、などが挙げられる。 Also, examples of the decomposition gas for decomposing the raw material gas containing these metals to obtain a metal oxide include hydrogen gas, methane gas, acetylene gas, carbon monoxide gas, carbon dioxide gas, and nitrogen gas.
 金属元素を含む原料ガスと、分解ガスを適宜選択することで、各種の金属酸化物を得ることができる。 Various metal oxides can be obtained by appropriately selecting a raw material gas containing a metal element and a decomposition gas.
 これらの反応性ガスに対して、主にプラズマ状態になりやすい放電ガスを混合し、プラズマ放電発生装置にガスを送りこむ。 These discharge gases are mixed with a discharge gas that tends to be in a plasma state, and the gas is sent to a plasma discharge generator.
 このような放電ガスとしては、窒素ガスおよび/または周期表の第18属原子、具体的には、ヘリウム、ネオン、アルゴン、クリプトン、キセノン、ラドン等が用いられる。これらの中でも窒素、ヘリウム、アルゴンが好ましく用いられ、特に窒素がコストも安く好ましい。 As such a discharge gas, nitrogen gas and / or 18th group atom of the periodic table, specifically helium, neon, argon, krypton, xenon, radon, etc. are used. Among these, nitrogen, helium, and argon are preferably used, and nitrogen is particularly preferable because of low cost.
 上記放電ガスと反応性ガスを混合し、混合ガスとしてプラズマ放電発生装置(プラズマ発生装置)に供給することで膜形成を行う。放電ガスと反応性ガスの割合は、得ようとする膜の性質によって異なるが、混合ガス全体に対し、放電ガスの割合を50%以上として反応性ガスを供給する。 The film is formed by mixing the discharge gas and the reactive gas and supplying the mixed gas as a mixed gas to a plasma discharge generator (plasma generator). Although the ratio of the discharge gas and the reactive gas varies depending on the properties of the film to be obtained, the reactive gas is supplied with the ratio of the discharge gas being 50% or more with respect to the entire mixed gas.
 以上のように、上記のような原料ガスを放電ガスと共に使用することにより様々な無機薄膜を形成することができる。 As described above, various inorganic thin films can be formed by using the source gas as described above together with the discharge gas.
 次いで、本発明のハードコート層付積層体の製造方法において、本発明に係る金属酸化物層の形成に好適に用いることのできるプラズマCVD法及び大気圧プラズマCVD法について、更に詳細に説明する。 Next, the plasma CVD method and the atmospheric pressure plasma CVD method that can be suitably used for forming the metal oxide layer according to the present invention in the method for producing a laminate with a hard coat layer of the present invention will be described in more detail.
 本発明に係るプラズマCVD法について説明する。 The plasma CVD method according to the present invention will be described.
 プラズマCVD法(化学的気相成長法)は、揮発・昇華した有機金属化合物が高温の基材表面に付着し、熱により分解反応が起き、熱的に安定な無機物の薄膜が生成されるというものである。このような通常のCVD法(熱CVD法とも称する)では、通常500℃以上の基板温度が必要であるため、プラスチック基材への製膜には使用することが難しい。 In the plasma CVD method (chemical vapor deposition method), a volatilized / sublimated organometallic compound adheres to the surface of a high-temperature substrate, a thermal decomposition reaction occurs, and a thermally stable inorganic thin film is generated. Is. Such a normal CVD method (also referred to as a thermal CVD method) normally requires a substrate temperature of 500 ° C. or higher, and is difficult to use for film formation on a plastic substrate.
 一方、プラズマCVD法は、基材近傍の空間に電界を印加し、プラズマ状態となった気体が存在する空間(プラズマ空間)を発生させ、揮発・昇華した有機金属化合物がこのプラズマ空間に導入されて分解反応が起きた後に基材上に吹きつけられることにより、金属酸化物の薄膜を形成するというものである。プラズマ空間内では、数%の高い割合の気体がイオンと電子に電離しており、ガスの温度は低く保たれるものの、電子温度は非常な高温のため、この高温の電子、あるいは低温ではあるがイオン・ラジカルなどの励起状態のガスと接するために無機膜の原料である有機金属化合物は低温でも分解することができる。したがって、金属酸化物を製膜する樹脂基材についても低温化することができ、樹脂基材上へも十分製膜することが可能な製膜方法である。 On the other hand, in the plasma CVD method, an electric field is applied to the space in the vicinity of the substrate to generate a space (plasma space) where a gas in a plasma state exists, and a volatilized / sublimated organometallic compound is introduced into the plasma space. After the decomposition reaction occurs, the metal oxide thin film is formed by being sprayed on the substrate. In the plasma space, a high percentage of gas is ionized into ions and electrons, and although the temperature of the gas is kept low, the electron temperature is very high, so this high temperature electron or low temperature Is in contact with an excited state gas such as ions and radicals, so that the organometallic compound as the raw material of the inorganic film can be decomposed even at a low temperature. Therefore, the temperature of the resin base material on which the metal oxide is formed can be lowered, and the film forming method can sufficiently form the film on the resin base material.
 しかしながら、プラズマCVD法においては、ガスに電界を印加して電離させ、プラズマ状態とする必要があるため、通常は、0.10kPa~10kPa程度の減圧空間で製膜していたため、大面積のフィルムを製膜する際には設備が大きく操作が複雑であり、生産性の課題を抱えている方法である。 However, in the plasma CVD method, it is necessary to apply an electric field to the gas to ionize it to be in a plasma state. Therefore, the film is usually formed in a reduced pressure space of about 0.10 kPa to 10 kPa. When forming a film, the equipment is large, the operation is complicated, and there is a problem of productivity.
 これに対し、大気圧近傍でのプラズマCVD法では、真空下のプラズマCVD法に比べ、減圧にする必要がなく生産性が高いだけでなく、プラズマ密度が高密度であるために製膜速度が速く、更にはCVD法の通常の条件に比較して、大気圧下という高圧力条件では、ガスの平均自由工程が非常に短いため、極めて平坦な膜が得られ、そのような平坦な膜は、光学特性が良好である。以上のことから、本発明においては、大気圧プラズマCVD法を適用することが、真空下のプラズマCVD法よりも好ましい。 On the other hand, the plasma CVD method near atmospheric pressure does not need to be reduced in pressure and has higher productivity than the plasma CVD method under vacuum, and has a high film density because the plasma density is high. Faster, and even under high pressure conditions under atmospheric pressure, compared to the normal conditions of CVD, the mean free path of gas is very short, so that a very flat film is obtained. The optical properties are good. From the above, in the present invention, it is more preferable to apply the atmospheric pressure plasma CVD method than the plasma CVD method under vacuum.
 またこの方法によれば、樹脂基材上、更に詳しくはハードコート層上に金属酸化物膜を形成させたときの膜密度が緻密であり、安定した性能を有する薄膜が得られる。また残留応力が圧縮応力で、0.01MPa以上,100MPa以下という範囲の金属酸化物膜が安定に得られることが特徴である。 Further, according to this method, a thin film having a stable performance can be obtained with a dense film density when a metal oxide film is formed on a resin substrate, more specifically, on a hard coat layer. Further, it is characterized in that a metal oxide film having a residual stress as a compressive stress in a range of 0.01 MPa or more and 100 MPa or less can be obtained stably.
 以下、大気圧あるいは大気圧近傍での大気圧プラズマCVD法を用いた金属酸化物層の形成方法について述べる。 Hereinafter, a method for forming a metal oxide layer using atmospheric pressure plasma CVD at or near atmospheric pressure will be described.
 先ず、本発明に係る金属酸化物層の形成に使用されるプラズマ製膜装置の一例について、図2~図5に基づいて説明する。図中、符号Fはハードコート層を有する基材樹脂の一例としての長尺フィルムである。 First, an example of a plasma film forming apparatus used for forming a metal oxide layer according to the present invention will be described with reference to FIGS. In the figure, symbol F is a long film as an example of a base resin having a hard coat layer.
 図2または図3等に述べるプラズマ放電処理装置においては、ガス供給手段から、前記金属を含む原料ガス、分解ガスを適宜選択して、またこれらの反応性ガスに対して、主にプラズマ状態になりやすい放電ガスを混合してプラズマ放電発生装置にガスを送りこむことで前記セラミック膜を得ることができる。 In the plasma discharge processing apparatus described in FIG. 2 or FIG. 3 and the like, the source gas containing the metal and the decomposition gas are appropriately selected from the gas supply means, and these reactive gases are mainly in a plasma state. The ceramic film can be obtained by mixing discharge gas that tends to be mixed and feeding the gas to a plasma discharge generator.
 放電ガスとしては、前記のように窒素ガスおよび/または周期表の第18属原子、具体的には、ヘリウム、ネオン、アルゴン、クリプトン、キセノン、ラドン等が用いられる。これらの中でも窒素、ヘリウム、アルゴンが好ましく用いられ、特に窒素がコストも安く好ましい。 As the discharge gas, nitrogen gas and / or Group 18 atom of the periodic table, specifically helium, neon, argon, krypton, xenon, radon, etc. are used as described above. Among these, nitrogen, helium, and argon are preferably used, and nitrogen is particularly preferable because of low cost.
 図2はジェット方式の大気圧プラズマ放電処理装置であり、プラズマ放電処理装置、二つの電源を有する電界印加手段の他に、図2では図示してない(後述の図3に図示してある)が、ガス供給手段、電極温度調節手段を有している装置である。 FIG. 2 shows a jet-type atmospheric pressure plasma discharge processing apparatus, which is not shown in FIG. 2 (shown in FIG. 3 described later) in addition to the plasma discharge processing apparatus and electric field applying means having two power sources. Is an apparatus having gas supply means and electrode temperature adjustment means.
 プラズマ放電処理装置10は、第1電極11と第2電極12から構成されている対向電極を有しており、該対向電極間に、第1電極11からは第1電源21からの周波数ω、電界強度V、電流Iの第1の高周波電界が印加され、また第2電極12からは第2電源22からの周波数ω、電界強度V、電流Iの第2の高周波電界が印加されるようになっている。第1電源21は第2電源22より高い高周波電界強度(V>V)を印加出来、また第1電源21の第1の周波数ωは第2電源22の第2の周波数ωより低い周波数を印加出来る。 The plasma discharge processing apparatus 10 has a counter electrode composed of a first electrode 11 and a second electrode 12, and the frequency ω 1 from the first power supply 21 is connected from the first electrode 11 between the counter electrodes. A first high-frequency electric field having electric field intensity V 1 and current I 1 is applied, and a second high-frequency electric field having frequency ω 2 , electric field intensity V 2 , and current I 2 from second power source 22 is applied from second electrode 12. Is applied. The first power source 21 can apply a higher frequency electric field strength (V 1 > V 2 ) than the second power source 22, and the first frequency ω 1 of the first power source 21 is higher than the second frequency ω 2 of the second power source 22. A low frequency can be applied.
 第1電極11と第1電源21との間には、第1フィルタ23が設置されており、第1電源21から第1電極11への電流を通過しやすくし、第2電源22からの電流をアースして、第2電源22から第1電源21への電流が通過しにくくなるように設計されている。 A first filter 23 is installed between the first electrode 11 and the first power source 21 to facilitate passage of current from the first power source 21 to the first electrode 11, and current from the second power source 22. Is designed so that the current from the second power source 22 to the first power source 21 is less likely to pass through.
 また、第2電極12と第2電源22との間には、第2フィルタ24が設置されており、第2電源22から第2電極への電流を通過しやすくし、第1電源21からの電流をアースして、第1電源21から第2電源への電流を通過しにくくするように設計されている。 In addition, a second filter 24 is installed between the second electrode 12 and the second power source 22 to facilitate passage of current from the second power source 22 to the second electrode, and from the first power source 21. It is designed to ground the current and make it difficult to pass the current from the first power source 21 to the second power source.
 第1電極11と第2電極12との対向電極間(放電空間)13に、後述の図3に図示してあるようなガス供給手段からガスGを導入し、第1電極11と第2電極12から高周波電界を印加して放電を発生させ、ガスGをプラズマ状態にしながら対向電極の下側(紙面下側)にジェット状に吹き出させて、対向電極下面と基材Fとで作る処理空間をプラズマ状態のガスG°で満たし、図示してない基材の元巻き(アンワインダー)から巻きほぐされて搬送して来るか、あるいは前工程から搬送して来る基材Fの上に、処理位置14付近で薄膜を形成させる。薄膜形成中、後述の図3に図示してあるような電極温度調節手段から媒体が配管を通って電極を加熱または冷却する。プラズマ放電処理の際の基材樹脂の温度によっては、得られる金属酸化物膜の物性や組成等は変化することがあり、これに対して適宜制御することが望ましい。温度調節の媒体としては、蒸留水、油等の絶縁性材料が好ましく用いられる。プラズマ放電処理の際、幅手方向あるいは長手方向での基材樹脂の温度ムラが出来るだけ生じないように電極の内部の温度を均等に調節することが望まれる。 A gas G is introduced into the space (discharge space) 13 between the first electrode 11 and the second electrode 12 from a gas supply means as shown in FIG. 3 to be described later, and the first electrode 11 and the second electrode A processing space created between the lower surface of the counter electrode and the base material F by generating a discharge by applying a high-frequency electric field from 12 and blowing the gas G in a plasma state to the lower side of the counter electrode (the lower side of the paper). Is filled with plasma gas G ° and unwound from a base roll (unwinder) (not shown) to be transported, or processed onto the base material F transported from the previous process. A thin film is formed near position 14. During the thin film formation, the medium heats or cools the electrode through the pipe from the electrode temperature adjusting means as shown in FIG. Depending on the temperature of the base resin during the plasma discharge treatment, the physical properties, composition, etc. of the obtained metal oxide film may change, and it is desirable to appropriately control this. As the temperature control medium, an insulating material such as distilled water or oil is preferably used. During the plasma discharge treatment, it is desirable to uniformly adjust the temperature inside the electrode so that the temperature unevenness of the base resin in the width direction or the longitudinal direction does not occur as much as possible.
 ジェット方式の大気圧プラズマ放電処理装置を複数基接して直列に並べて同時に同じプラズマ状態のガスを放電させることが出来るので、何回も処理され高速で処理することも出来る。また各装置が異なったプラズマ状態のガスをジェット噴射すれば、異なった層の積層薄膜を形成することも出来る。 Since a plurality of jet-type atmospheric pressure plasma discharge treatment devices can be connected in series and discharged in the same plasma state at the same time, they can be processed many times and processed at high speed. In addition, if each apparatus jets gas in a different plasma state, a laminated thin film having different layers can be formed.
 図3は、本発明に有用な対向電極間で基材を処理する方式の大気圧プラズマ放電処理装置の一例を示す概略図である。 FIG. 3 is a schematic view showing an example of an atmospheric pressure plasma discharge treatment apparatus of a method for treating a substrate between counter electrodes useful for the present invention.
 本発明に係る大気圧プラズマ放電処理装置は、少なくとも、プラズマ放電処理装置30、二つの電源を有する電界印加手段40、ガス供給手段50、電極温度調節手段60を有している装置である。 The atmospheric pressure plasma discharge processing apparatus according to the present invention is an apparatus having at least a plasma discharge processing apparatus 30, an electric field applying means 40 having two power sources, a gas supply means 50, and an electrode temperature adjusting means 60.
 図3は、ロール回転電極(第1電極)35と角筒型固定電極群(第2電極)36との対向電極間(放電空間)32で、基材Fをプラズマ放電処理して薄膜を形成するものである。 FIG. 3 shows a thin film formed by subjecting the base material F to plasma discharge treatment between the opposed electrodes (discharge space) 32 between the roll rotating electrode (first electrode) 35 and the square tube type fixed electrode group (second electrode) 36. To do.
 ロール回転電極(第1電極)35と角筒型固定電極群(第2電極)36との間の放電空間(対向電極間)32に、ロール回転電極(第1電極)35には第1電源41から周波数ω、電界強度V、電流Iの第1の高周波電界を、また角筒型固定電極群(第2電極)36には第2電源42から周波数ω、電界強度V、電流Iの第2の高周波電界をかけるようになっている。 In the discharge space (between the counter electrodes) 32 between the roll rotating electrode (first electrode) 35 and the square tube type fixed electrode group (second electrode) 36, the roll rotating electrode (first electrode) 35 has a first power source. The first high-frequency electric field having frequency ω 1 , electric field strength V 1 and current I 1 from 41, and the frequency ω 2 and electric field strength V 2 from the second power source 42 to the rectangular tube-shaped fixed electrode group (second electrode) 36. A second high-frequency electric field having a current I 2 is applied.
 ロール回転電極(第1電極)35と第1電源41との間には、第1フィルタ43が設置されており、第1フィルタ43は第1電源41から第1電極への電流を通過しやすくし、第2電源42からの電流をアースして、第2電源42から第1電源への電流を通過しにくくするように設計されている。また、角筒型固定電極群(第2電極)36と第2電源42との間には、第2フィルタ44が設置されており、第2フィルタ44は、第2電源42から第2電極への電流を通過しやすくし、第1電源41からの電流をアースして、第1電源41から第2電源への電流を通過しにくくするように設計されている。 A first filter 43 is installed between the roll rotation electrode (first electrode) 35 and the first power supply 41, and the first filter 43 easily passes a current from the first power supply 41 to the first electrode. The current from the second power supply 42 is grounded so that the current from the second power supply 42 to the first power supply is difficult to pass. Further, a second filter 44 is provided between the square tube type fixed electrode group (second electrode) 36 and the second power source 42, and the second filter 44 is connected from the second power source 42 to the second electrode. It is designed so that the current from the first power supply 41 is grounded and the current from the first power supply 41 to the second power supply is difficult to pass.
 なお、本発明においては、ロール回転電極35を第2電極、また角筒型固定電極群36を第1電極としてもよい。何れにしろ、第1電極には第1電源が、また第2電極には第2電源が接続される。第1電源は第2電源より高い高周波電界強度(V>V)を印加することが好ましい。また、周波数はω<ωとなる能力を有している。 In the present invention, the roll rotation electrode 35 may be the second electrode, and the rectangular tube-shaped fixed electrode group 36 may be the first electrode. In any case, the first power source is connected to the first electrode, and the second power source is connected to the second electrode. The first power supply preferably applies a higher high-frequency electric field strength (V 1 > V 2 ) than the second power supply. Further, the frequency has the ability to satisfy ω 12 .
 また、電流はI<Iとなることが好ましい。第1の高周波電界の電流Iは、好ましくは0.3mA/cm~20mA/cm、さらに好ましくは1.0mA/cm~20mA/cmである。また、第2の高周波電界の電流Iは、好ましくは10mA/cm~100mA/cm、さらに好ましくは20mA/cm~100mA/cmである。 The current is preferably I 1 <I 2 . The current I 1 of the first high-frequency electric field is preferably 0.3 mA / cm 2 to 20 mA / cm 2 , more preferably 1.0 mA / cm 2 to 20 mA / cm 2 . The current I 2 of the second high-frequency electric field is preferably 10 mA / cm 2 to 100 mA / cm 2 , more preferably 20 mA / cm 2 to 100 mA / cm 2 .
 ガス供給手段50のガス発生装置51で発生させたガスGは、流量を制御して給気口52よりプラズマ放電処理容器31内に導入する。 The gas G generated by the gas generator 51 of the gas supply means 50 is introduced into the plasma discharge processing vessel 31 through the air supply port 52 while controlling the flow rate.
 基材Fを、図示されていない元巻きから巻きほぐして搬送されて来るか、または前工程から搬送されて来て、ガイドロール64を経てニップロール65で基材に同伴されて来る空気等を遮断し、ロール回転電極35に接触したまま巻き回しながら角筒型固定電極群36との間に移送し、ロール回転電極(第1電極)35と角筒型固定電極群(第2電極)36との両方から電界をかけ、対向電極間(放電空間)32で放電プラズマを発生させる。基材Fはロール回転電極35に接触したまま巻き回されながらプラズマ状態のガスにより薄膜を形成する。基材Fは、ニップロール66、ガイドロール67を経て、図示してない巻き取り機で巻き取るか、次工程に移送する。 The base material F is unwound from the original winding (not shown) and is transported or is transported from the previous process, and the air and the like that is entrained by the base material by the nip roll 65 through the guide roll 64 is blocked. Then, while being wound while being in contact with the roll rotating electrode 35, it is transferred between the square tube fixed electrode group 36 and the roll rotating electrode (first electrode) 35 and the square tube fixed electrode group (second electrode) 36. An electric field is applied from both of them to generate discharge plasma between the counter electrodes (discharge space) 32. The base material F forms a thin film with a gas in a plasma state while being wound while being in contact with the roll rotating electrode 35. The base material F passes through the nip roll 66 and the guide roll 67 and is wound up by a winder (not shown) or transferred to the next process.
 放電処理済みの処理排ガスG′は排気口53より排出する。 Discharged treated exhaust gas G ′ is discharged from the exhaust port 53.
 薄膜形成中、ロール回転電極(第1電極)35及び角筒型固定電極群(第2電極)36を加熱または冷却するために、電極温度調節手段60で温度を調節した媒体を、送液ポンプPで配管61を経て両電極に送り、電極内側から温度を調節する。なお、68及び69はプラズマ放電処理容器31と外界とを仕切る仕切板である。 In order to heat or cool the roll rotating electrode (first electrode) 35 and the rectangular tube type fixed electrode group (second electrode) 36 during the formation of the thin film, a medium whose temperature is adjusted by the electrode temperature adjusting means 60 is used as a liquid feed pump. P is sent to both electrodes through the pipe 61, and the temperature is adjusted from the inside of the electrode. Reference numerals 68 and 69 denote partition plates that partition the plasma discharge processing vessel 31 from the outside.
 図4は、図3に示したロール回転電極の導電性の金属質母材とその上に被覆されている誘電体の構造の一例を示す斜視図である。 FIG. 4 is a perspective view showing an example of the structure of the conductive metallic base material of the roll rotating electrode shown in FIG. 3 and the dielectric material coated thereon.
 図4において、ロール電極35aは導電性の金属質母材35Aとその上に誘電体35Bが被覆されたものである。プラズマ放電処理中の電極表面温度を制御するため、温度調節用の媒体(水もしくはシリコンオイル等)が循環できる構造となっている。 In FIG. 4, a roll electrode 35a is formed by covering a conductive metallic base material 35A and a dielectric 35B thereon. In order to control the electrode surface temperature during the plasma discharge treatment, a temperature adjusting medium (water, silicon oil or the like) can be circulated.
 図5は、角筒型電極の導電性の金属質母材とその上に被覆されている誘電体の構造の一例を示す斜視図である。 FIG. 5 is a perspective view showing an example of the structure of a conductive metallic base material of a rectangular tube electrode and a dielectric material coated thereon.
 図5において、角筒型電極36aは、導電性の金属質母材36Aに対し、図4同様の誘電体36Bの被覆を有しており、該電極の構造は金属質のパイプになっていて、それがジャケットとなり、放電中の温度調節が行えるようになっている。 In FIG. 5, a rectangular tube type electrode 36a has a coating of a dielectric 36B similar to FIG. 4 on a conductive metallic base material 36A, and the structure of the electrode is a metallic pipe. , It becomes a jacket so that the temperature can be adjusted during discharge.
 なお、角筒型固定電極の数は、上記ロール電極の円周より大きな円周上に沿って複数本設置されており、該電極の放電面積はロール回転電極35に対向している全角筒型固定電極面の面積の和で表される。 In addition, the number of the rectangular tube-shaped fixed electrodes is set in plural along a circumference larger than the circumference of the roll electrode, and the discharge area of the electrodes is a full square tube type facing the roll rotating electrode 35. It is represented by the sum of the area of the fixed electrode surface.
 図5に示した角筒型電極36aは、円筒型電極でもよいが、角筒型電極は円筒型電極に比べて、放電範囲(放電面積)を広げる効果があるので、本発明に好ましく用いられる。 The rectangular tube electrode 36a shown in FIG. 5 may be a cylindrical electrode, but the rectangular tube electrode has an effect of widening the discharge range (discharge area) as compared with the cylindrical electrode, and thus is preferably used in the present invention. .
 図4及び図5において、ロール電極35a及び角筒型電極36aは、それぞれ導電性の金属質母材35A及び36Aの上に誘電体35B及び36Bとしてのセラミックスを溶射後、無機化合物の封孔材料を用いて封孔処理したものである。セラミックス誘電体は片肉で1mm程度被覆あればよい。溶射に用いるセラミックス材としては、アルミナ・窒化珪素等が好ましく用いられるが、この中でもアルミナが加工し易いので、特に好ましく用いられる。また、誘電体層が、ライニングにより無機材料を設けたライニング処理誘電体であってもよい。 4 and 5, a roll electrode 35a and a rectangular tube electrode 36a are formed by spraying ceramics as dielectrics 35B and 36B on conductive metallic base materials 35A and 36A, respectively, and then sealing the inorganic compound. Is subjected to a sealing treatment. The ceramic dielectric may be covered by about 1 mm with a single wall. As the ceramic material used for thermal spraying, alumina, silicon nitride, or the like is preferably used. Among these, alumina is particularly preferable because it is easily processed. The dielectric layer may be a lining-processed dielectric provided with an inorganic material by lining.
 導電性の金属質母材35A及び36Aとしては、チタン金属またはチタン合金、銀、白金、ステンレススティール、アルミニウム、鉄等の金属等や、鉄とセラミックスとの複合材料またはアルミニウムとセラミックスとの複合材料を挙げることが出来るが、後述の理由からはチタン金属またはチタン合金が特に好ましい。 Examples of the conductive metal base materials 35A and 36A include titanium metal or titanium alloy, metal such as silver, platinum, stainless steel, aluminum, and iron, a composite material of iron and ceramics, or a composite material of aluminum and ceramics. Although titanium metal or a titanium alloy is particularly preferable for the reasons described later.
 対向する第1電極および第2の電極の電極間距離は、電極の一方に誘電体を設けた場合、該誘電体表面ともう一方の電極の導電性の金属質母材表面との最短距離のことを言う。双方の電極に誘電体を設けた場合、誘電体表面同士の距離の最短距離のことを言う。電極間距離は、導電性の金属質母材に設けた誘電体の厚さ、印加電界強度の大きさ、プラズマを利用する目的等を考慮して決定されるが、いずれの場合も均一な放電を行う観点から0.1~20mmが好ましく、特に好ましくは0.2~2mmである。 When the dielectric is provided on one of the electrodes, the distance between the opposing first electrode and second electrode is the shortest distance between the surface of the dielectric and the surface of the conductive metal base material of the other electrode. Say that. When a dielectric is provided on both electrodes, it means the shortest distance between the dielectric surfaces. The distance between the electrodes is determined in consideration of the thickness of the dielectric provided on the conductive metallic base material, the magnitude of the applied electric field strength, the purpose of using the plasma, etc. From the viewpoint of carrying out, 0.1 to 20 mm is preferable, and 0.2 to 2 mm is particularly preferable.
 本発明に有用な導電性の金属質母材及び誘電体についての詳細については後述する。 Details of the conductive metallic base material and dielectric useful in the present invention will be described later.
 プラズマ放電処理容器31はパイレックス(登録商標)ガラス製の処理容器等が好ましく用いられるが、電極との絶縁がとれれば金属製を用いることも可能である。例えば、アルミニウムまたは、ステンレススティールのフレームの内面にポリイミド樹脂等を張り付けても良く、該金属フレームにセラミックス溶射を行い絶縁性をとってもよい。図3において、平行した両電極の両側面(基材面近くまで)を上記のような材質の物で覆うことが好ましい。 The plasma discharge treatment vessel 31 is preferably a treatment vessel made of Pyrex (registered trademark) glass or the like, but may be made of metal as long as it can be insulated from the electrodes. For example, polyimide resin or the like may be attached to the inner surface of an aluminum or stainless steel frame, and the metal frame may be thermally sprayed to obtain insulation. In FIG. 3, it is preferable to cover both side surfaces (up to the vicinity of the substrate surface) of both parallel electrodes with an object made of the above-described material.
 本発明の大気圧プラズマ放電処理装置に設置する第1電源(高周波電源)としては、
 印加電源記号  メーカー      周波数      製品名
  A1    神鋼電機      3kHz  SPG3-4500
  A2    神鋼電機      5kHz  SPG5-4500
  A3    春日電機     15kHz  AGI-023
  A4    神鋼電機     50kHz  SPG50-4500
  A5    ハイデン研究所 100kHz* PHF-6k
  A6    パール工業   200kHz  CF-2000-200k
  A7    パール工業   400kHz  CF-2000-400k
等の市販のものを挙げることが出来、何れも使用することが出来る。
As the first power source (high frequency power source) installed in the atmospheric pressure plasma discharge processing apparatus of the present invention,
Applied power symbol Manufacturer Frequency Product name A1 Shinko Electric 3kHz SPG3-4500
A2 Shinko Electric Co., Ltd. 5kHz SPG5-4500
A3 Kasuga Electric 15kHz AGI-023
A4 Shinko Electric 50kHz SPG50-4500
A5 HEIDEN Laboratory 100kHz * PHF-6k
A6 Pearl Industry 200kHz CF-2000-200k
A7 Pearl Industry 400kHz CF-2000-400k
And the like, and any of them can be used.
 また、第2電源(高周波電源)としては、
 印加電源記号  メーカー      周波数      製品名
  B1    パール工業   800kHz  CF-2000-800k
  B2    パール工業     2MHz  CF-2000-2M
  B3    パール工業 13.56MHz  CF-5000-13M
  B4    パール工業    27MHz  CF-2000-27M
  B5    パール工業   150MHz  CF-2000-150M
等の市販のものを挙げることが出来、何れも好ましく使用出来る。
As the second power source (high frequency power source),
Applied power symbol Manufacturer Frequency Product name B1 Pearl Industry 800kHz CF-2000-800k
B2 Pearl Industry 2MHz CF-2000-2M
B3 Pearl Industry 13.56MHz CF-5000-13M
B4 Pearl Industry 27MHz CF-2000-27M
B5 Pearl Industry 150MHz CF-2000-150M
And the like, and any of them can be preferably used.
 なお、上記電源のうち、*印はハイデン研究所インパルス高周波電源(連続モードで100kHz)である。それ以外は連続サイン波のみ印加可能な高周波電源である。 Of the above power sources, * indicates a HEIDEN Laboratory impulse high-frequency power source (100 kHz in continuous mode). Other than that, it is a high-frequency power source that can apply only a continuous sine wave.
 本発明においては、このような電界を印加して、均一で安定な放電状態を保つことが出来る電極を大気圧プラズマ放電処理装置に採用することが好ましい。 In the present invention, it is preferable to employ an electrode capable of maintaining a uniform and stable discharge state by applying such an electric field in an atmospheric pressure plasma discharge treatment apparatus.
 本発明において、対向する電極間に印加する電力は、第2電極(第2の高周波電界)に1W/cm以上の電力(出力密度)を供給し、放電ガスを励起してプラズマを発生させ、エネルギーを薄膜形成ガスに与え、薄膜を形成する。第2電極に供給する電力の上限値としては、好ましくは50W/cm、より好ましくは20W/cmである。下限値は、好ましくは1.2W/cmである。なお、放電面積(cm)は、電極において放電が起こる範囲の面積のことを指す。 In the present invention, the power applied between the electrodes facing each other is such that power (power density) of 1 W / cm 2 or more is supplied to the second electrode (second high-frequency electric field) to excite the discharge gas to generate plasma. The energy is applied to the thin film forming gas to form a thin film. The upper limit value of the power supplied to the second electrode is preferably 50 W / cm 2 , more preferably 20 W / cm 2 . The lower limit is preferably 1.2 W / cm 2 . In addition, discharge area (cm < 2 >) points out the area of the range which discharge occurs in an electrode.
 また、第1電極(第1の高周波電界)にも、1W/cm以上の電力(出力密度)を供給することにより、第2の高周波電界の均一性を維持したまま、出力密度を向上させることが出来る。これにより、更なる均一高密度プラズマを生成出来、更なる製膜速度の向上と膜質の向上が両立出来る。好ましくは5W/cm以上である。第1電極に供給する電力の上限値は、好ましくは50W/cmである。 Further, by supplying power (output density) of 1 W / cm 2 or more to the first electrode (first high frequency electric field), the output density is improved while maintaining the uniformity of the second high frequency electric field. I can do it. Thereby, a further uniform high-density plasma can be generated, and a further improvement in film forming speed and an improvement in film quality can be achieved. Preferably it is 5 W / cm 2 or more. The upper limit value of the power supplied to the first electrode is preferably 50 W / cm 2 .
 ここで高周波電界の波形としては、特に限定されない。連続モードと呼ばれる連続サイン波状の連続発振モードと、パルスモードと呼ばれるON/OFFを断続的に行う断続発振モード等があり、そのどちらを採用してもよいが、少なくとも第2電極側(第2の高周波電界)は連続サイン波の方がより緻密で良質な膜が得られるので好ましい。 Here, the waveform of the high-frequency electric field is not particularly limited. There are a continuous sine wave continuous oscillation mode called a continuous mode, an intermittent oscillation mode called ON / OFF intermittently called a pulse mode, and either of them may be adopted, but at least the second electrode side (second The high-frequency electric field is preferably a continuous sine wave because a denser and better quality film can be obtained.
 このような大気圧プラズマによる薄膜形成法に使用する電極は、構造的にも、性能的にも過酷な条件に耐えられるものでなければならない。このような電極としては、金属質母材上に誘電体を被覆したものであることが好ましい。 An electrode used for such a method for forming a thin film by atmospheric pressure plasma must be able to withstand severe conditions in terms of structure and performance. Such an electrode is preferably a metal base material coated with a dielectric.
 本発明に使用する誘電体被覆電極においては、様々な金属質母材と誘電体との間に特性が合うものが好ましく、その一つの特性として、金属質母材と誘電体との線熱膨張係数の差が10×10-6/℃以下となる組み合わせのものである。好ましくは8×10-6/℃以下、更に好ましくは5×10-6/℃以下、更に好ましくは2×10-6/℃以下である。なお、線熱膨張係数とは、周知の材料特有の物性値である。 In the dielectric-coated electrode used in the present invention, it is preferable that the characteristics match between various metallic base materials and dielectrics. One of the characteristics is linear thermal expansion between the metallic base material and the dielectric. The combination is such that the difference in coefficient is 10 × 10 −6 / ° C. or less. It is preferably 8 × 10 −6 / ° C. or less, more preferably 5 × 10 −6 / ° C. or less, and further preferably 2 × 10 −6 / ° C. or less. The linear thermal expansion coefficient is a well-known physical property value of a material.
 線熱膨張係数の差が、この範囲にある導電性の金属質母材と誘電体との組み合わせとしては、
 1:金属質母材が純チタンまたはチタン合金で、誘電体がセラミックス溶射被膜
 2:金属質母材が純チタンまたはチタン合金で、誘電体がガラスライニング
 3:金属質母材がステンレススティールで、誘電体がセラミックス溶射被膜
 4:金属質母材がステンレススティールで、誘電体がガラスライニング
 5:金属質母材がセラミックスおよび鉄の複合材料で、誘電体がセラミックス溶射被膜
 6:金属質母材がセラミックスおよび鉄の複合材料で、誘電体がガラスライニング
 7:金属質母材がセラミックスおよびアルミの複合材料で、誘電体がセラミックス溶射皮膜
 8:金属質母材がセラミックスおよびアルミの複合材料で、誘電体がガラスライニング等がある。線熱膨張係数の差という観点では、上記1項または2項および5~8項が好ましく、特に1項が好ましい。
As a combination of a conductive metallic base material and a dielectric whose difference in linear thermal expansion coefficient is within this range,
1: Metal base material is pure titanium or titanium alloy, dielectric is ceramic spray coating 2: Metal base material is pure titanium or titanium alloy, dielectric is glass lining 3: Metal base material is stainless steel, Dielectric is ceramic spray coating 4: Metal base material is stainless steel, Dielectric is glass lining 5: Metal base material is a composite material of ceramics and iron, Dielectric is ceramic spray coating 6: Metal base material Ceramic and iron composite material, dielectric is glass lining 7: Metal base material is ceramic and aluminum composite material, dielectric is ceramic sprayed coating 8: Metal base material is ceramic and aluminum composite material, dielectric The body has glass lining. From the viewpoint of the difference in linear thermal expansion coefficient, the above-mentioned item 1 or item 2 and item 5 to 8 are preferable, and item 1 is particularly preferable.
 本発明において、金属質母材は、上記の特性からはチタンまたはチタン合金が特に有用である。金属質母材をチタンまたはチタン合金とすることにより、誘電体を上記とすることにより、使用中の電極の劣化、特にひび割れ、剥がれ、脱落等がなく、過酷な条件での長時間の使用に耐えることが出来る。 In the present invention, titanium or a titanium alloy is particularly useful as the metallic base material from the above characteristics. By using titanium or a titanium alloy as the metal base material, the dielectric is used as described above, so that there is no deterioration of the electrode in use, especially cracking, peeling, dropping off, etc., and it can be used for a long time under harsh conditions. Can withstand.
 本発明に適用できる大気圧プラズマ放電処理装置としては、上記説明し以外に、例えば、特開2004-68143号公報、同2003-49272号公報、国際特許第02/48428号パンフレット等に記載されている大気圧プラズマ放電処理装置を挙げることができる。 The atmospheric pressure plasma discharge treatment apparatus applicable to the present invention is described in, for example, Japanese Patent Application Laid-Open No. 2004-68143, 2003-49272, International Patent No. 02/48428, etc. in addition to the above description. And an atmospheric pressure plasma discharge treatment apparatus.
 以上の様な方法に従って、ハードコート層を有する樹脂基材に設けられる金属酸化物層の膜厚は、構成する金属酸化物の種類により異なるが、概ね、50~2000nmの範囲であることが好ましい。 According to the method as described above, the thickness of the metal oxide layer provided on the resin base material having the hard coat layer varies depending on the type of the metal oxide to be formed, but is preferably in the range of 50 to 2000 nm. .
 また、上記方法に従って形成される金属酸化物層の硬度としては、ナノインデンテーション法により測定した硬度が6GPa以上、10GPa以下であることが好ましい。 Moreover, as the hardness of the metal oxide layer formed according to the above method, the hardness measured by the nanoindentation method is preferably 6 GPa or more and 10 GPa or less.
 金属酸化物層の硬度を上記範囲とすることで、表面にクラックも発生することを抑制することができ、ハードコート層と金属酸化物層との接着性向上、金属酸化物層のひび割れを防止することができる。 By setting the hardness of the metal oxide layer within the above range, it is possible to suppress the occurrence of cracks on the surface, improve the adhesion between the hard coat layer and the metal oxide layer, and prevent cracking of the metal oxide layer. can do.
 ここでいうナノインデンテーション法による硬度の測定方法は、微小なダイヤモンド圧子を薄膜に押し込みながら荷重と押し込み深さ(変位量)の関係を測定し、測定値から塑性変形硬さを算出する方法である。特に1μm以下の薄膜の測定に対して、基体の物性の影響を受けにくく、又、押し込んだ際に薄膜に割れが発生しにくいという特徴を有している。一般に非常に薄い薄膜の物性測定に用いられている。 Here, the hardness measurement method by the nanoindentation method is a method of measuring the relationship between the load and the indentation depth (displacement amount) while pushing a small diamond indenter into the thin film, and calculating the plastic deformation hardness from the measured value. is there. In particular, when measuring a thin film having a thickness of 1 μm or less, the film is not easily affected by the physical properties of the substrate, and the thin film is not easily cracked when pressed. Generally, it is used for measuring physical properties of a very thin thin film.
 〔樹脂基材〕
 本発明のハードコート層付積層体を構成する樹脂基材としては、特に制限はないが、エチレン、プロピレン、ブテン等の単独重合体または共重合体等のポリオレフィン(PO)樹脂、環状ポリオレフィン等の非晶質ポリオレフィン樹脂(APO)、ポリエチレンテレフタレート(PET)、ポリエチレン2,6-ナフタレート(PEN)等のポリエステル系樹脂、ナイロン6、ナイロン12、共重合ナイロン等のポリアミド系(PA)樹脂、ポリビニルアルコール(PVA)樹脂、エチレン-ビニルアルコール共重合体(EVOH)等のポリビニルアルコール系樹脂、ポリイミド(PI)樹脂、ポリエーテルイミド(PEI)樹脂、ポリサルホン(PS)樹脂、ポリエーテルサルホン(PES)樹脂、ポリエーテルエーテルケトン(PEEK)樹脂、ポリカーボネート(PC)樹脂、アクリル樹脂、ポリスチレン樹脂、塩化ビニル樹脂、ポリビニルブチラート(PVB)樹脂、ポリアリレート(PAR)樹脂、エチレン-四フッ化エチレン共重合体(ETFE)、三フッ化塩化エチレン(PFA)、四フッ化エチレン-パーフルオロアルキルビニルエーテル共重合体(FEP)、フッ化ビニリデン(PVDF)、フッ化ビニル(PVF)、パーフルオロエチレン-パーフロロプロピレン-パーフロロビニルエーテル-共重合体(EPA)等のフッ素系樹脂等を用いることができる。
[Resin substrate]
The resin base material constituting the laminate with a hard coat layer of the present invention is not particularly limited, but may be a polyolefin (PO) resin such as a homopolymer or copolymer such as ethylene, propylene, or butene, or a cyclic polyolefin. Polyester resins such as amorphous polyolefin resin (APO), polyethylene terephthalate (PET), polyethylene 2,6-naphthalate (PEN), polyamide (PA) resin such as nylon 6, nylon 12, copolymer nylon, polyvinyl alcohol (PVA) resin, polyvinyl alcohol resin such as ethylene-vinyl alcohol copolymer (EVOH), polyimide (PI) resin, polyetherimide (PEI) resin, polysulfone (PS) resin, polyethersulfone (PES) resin , Polyetheretherketone (PEEK Resin, polycarbonate (PC) resin, acrylic resin, polystyrene resin, vinyl chloride resin, polyvinyl butyrate (PVB) resin, polyarylate (PAR) resin, ethylene-tetrafluoroethylene copolymer (ETFE), trifluorinated chloride Ethylene (PFA), ethylene tetrafluoride-perfluoroalkyl vinyl ether copolymer (FEP), vinylidene fluoride (PVDF), vinyl fluoride (PVF), perfluoroethylene-perfluoropropylene-perfluorovinyl ether copolymer Fluororesin such as (EPA) can be used.
 また、上記に挙げた樹脂以外にも、ラジカル反応性不飽和化合物を有するアクリレート化合物によりなる樹脂組成物や、上記アクリルレート化合物とチオール基を有するメルカプト化合物よりなる樹脂組成物、エポキシアクリレート、ウレタンアクリレート、ポリエステルアクリレート、ポリエーテルアクリレート等のオリゴマーを多官能アクリレートモノマーに溶解せしめた樹脂組成物等の光硬化性樹脂およびこれらの混合物等を用いることも可能である。 In addition to the resins listed above, a resin composition comprising an acrylate compound having a radical-reactive unsaturated compound, a resin composition comprising an acrylate compound and a mercapto compound having a thiol group, epoxy acrylate, urethane acrylate It is also possible to use a photocurable resin such as a resin composition in which an oligomer such as polyester acrylate or polyether acrylate is dissolved in a polyfunctional acrylate monomer, and a mixture thereof.
 上記例示した樹脂基材は、市販品として入手することができ、例えば、ゼオネックスやゼオノア(日本ゼオン(株)製)、非晶質シクロポリオレフィン樹脂フィルムのARTON(ジェイエスアール(株)製)、ポリカーボネートフィルムのピュアエース(帝人(株)製)、セルローストリアセテートフィルムのコニカタックKC4UX、KC8UX(コニカミノルタオプト(株)製)などを挙げることができる。 The resin bases exemplified above can be obtained as commercial products, such as ZEONEX and ZEONOR (manufactured by ZEON Corporation), amorphous cyclopolyolefin resin film ARTON (manufactured by GS Corporation), polycarbonate, and the like. Examples include a pure ace film (manufactured by Teijin Ltd.) and a cellulose triacetate film Konica Katak KC4UX, KC8UX (manufactured by Konica Minolta Opto Co., Ltd.).
 さらに、これらの樹脂の1または2種以上をラミネート、コーティング等の手段によって積層させたものを樹脂フィルム基材として用いることも可能である。 Furthermore, it is also possible to use a resin film substrate obtained by laminating one or more of these resins by means of lamination, coating or the like.
 また、本発明に係る樹脂基材は、シート状であってもフィルム状であっても、あるいはその他の形態であってもよく、特にその形態には制限はない。また、樹脂基材の膜厚は、使用する樹脂の種類や、目的用途等の各種条件に応じて広い範囲から適宜選択できるが、通常10μm~10mm、好ましくは100μm~5mmの範囲である。 The resin substrate according to the present invention may be in the form of a sheet, a film, or other forms, and the form is not particularly limited. The film thickness of the resin substrate can be appropriately selected from a wide range according to various conditions such as the type of resin used and the intended use, but is usually in the range of 10 μm to 10 mm, preferably 100 μm to 5 mm.
 〔適用分野〕
 以上の方法に従って作製されるハードコート層付積層体は、高い硬度と耐久性(密着性)に優れた特性を備えており、例えば、ブラウン管(CRT)、液晶ディスプレイ(LCD)、プラズマディスプレイパネル(PDP)、電界放出ディスプレイ(FED)等のディスプレイの表面材料や家電製品等のタッチパネル、各種の建築用の窓、例えば、住宅用窓、ショーウインドウ、車両用窓、車両用風防、遊戯機械等のガラス保護フィルム、あるいはガラス代替樹脂製品して、広い分野に適用することができる。
[Application field]
The laminate with a hard coat layer produced according to the above method has characteristics of high hardness and durability (adhesiveness). For example, a cathode ray tube (CRT), a liquid crystal display (LCD), a plasma display panel ( PDP), surface materials for displays such as field emission displays (FEDs), touch panels for home appliances, various architectural windows such as residential windows, show windows, vehicle windows, vehicle windshields, game machines, etc. A glass protective film or a glass substitute resin product can be applied to a wide range of fields.
 以下、実施例を挙げて本発明を具体的に説明するが、本発明はこれらに限定されるものではない。なお、実施例において「部」あるいは「%」の表示を用いるが、特に断りがない限り「質量部」あるいは「質量%」を表す。 Hereinafter, the present invention will be specifically described with reference to examples, but the present invention is not limited thereto. In addition, although the display of "part" or "%" is used in an Example, unless otherwise indicated, "part by mass" or "mass%" is represented.
 実施例1
 《ハードコート層付積層体の作製》
 〔試料1の作製〕
 (樹脂基材)
 樹脂基材としては、厚さ100μmのポリカーボネート樹脂フィルム(帝人化成(株)製)を用いた。
Example 1
<< Production of laminate with hard coat layer >>
[Preparation of Sample 1]
(Resin base material)
A polycarbonate resin film (manufactured by Teijin Chemicals Ltd.) having a thickness of 100 μm was used as the resin base material.
 (ハードコート層用塗布液の調製)
 〈A層ユニット用塗布液1Aの調製:第1層、第3層〉
 活性エネルギー線硬化樹脂(ジペンタエリスリトールヘキサアクリレート)
                                  20.0g
 光反応開始剤(イルガキュア184(チバスペシャルティケミカルズ(株)製))
                                   1.0g
 無機粒子分散液(30質量%酸化珪素含有、メチルエチルケトン分散シリカゾル(日産化学(株)製、商品名MEK-ST)、平均粒径:15nm)      108g
 メチルエチルケトン                        10.0g
 上記各添加剤を順次混合して30分間撹拌した後、孔径が1μmのポリプロピレン製フィルタで濾過して、A層ユニット用塗布液1Aを調製した。A層ユニット用塗布液1Aにおける固形分(溶媒であるメチルエチルケトン以外の成分)に対する無機粒子(酸化珪素)の割合(固形分比率)は約40体積%であるが、活性エネルギー線硬化樹脂は、活性エネルギー線の照射による重合反応で硬化と同時に収縮するため、下記に示す充填率測定法(体積分析法)で求めた、乾燥膜中での無機粒子の充填率は、50体積%であった。
(Preparation of coating solution for hard coat layer)
<Preparation of coating liquid 1A for layer A unit: first layer, third layer>
Active energy ray curable resin (dipentaerythritol hexaacrylate)
20.0g
Photoinitiator (Irgacure 184 (Ciba Specialty Chemicals Co., Ltd.))
1.0g
108 g of inorganic particle dispersion (containing 30% by mass of silicon oxide, methyl ethyl ketone-dispersed silica sol (manufactured by Nissan Chemical Co., Ltd., trade name MEK-ST), average particle size: 15 nm)
Methyl ethyl ketone 10.0g
The above additives were sequentially mixed and stirred for 30 minutes, and then filtered through a polypropylene filter having a pore size of 1 μm to prepare a coating solution 1A for A layer unit. The ratio of the inorganic particles (silicon oxide) to the solid content (components other than methyl ethyl ketone as the solvent) in the coating liquid 1A for the A layer unit is about 40% by volume, but the active energy ray curable resin is active. Since it shrinks simultaneously with curing in the polymerization reaction caused by irradiation with energy rays, the filling rate of inorganic particles in the dry film, determined by the filling rate measurement method (volume analysis method) shown below, was 50% by volume.
 -充填率測定法(体積分析法)-
 乾燥後の膜中での無機粒子の充填率は、次の方法で測定した。A層ユニット用塗布液1Aを用いてハードコート層を形成した後、樹脂基材よりハードコート層を剥離して全体積を測定し、次いで、樹脂成分を溶解して無機粒子の体積を測定し、それらの測定値より求めた。
-Filling rate measurement method (volume analysis method)-
The filling rate of the inorganic particles in the dried film was measured by the following method. After forming the hard coat layer using the coating liquid 1A for the A layer unit, the hard coat layer is peeled off from the resin base material to measure the total volume, and then the volume of the inorganic particles is measured by dissolving the resin component. And obtained from these measured values.
 〈B層ユニット用塗布液1Bの調製:第2層〉
 活性エネルギー線硬化樹脂(ジペンタエリスリトールヘキサアクリレート)100g
 光反応開始剤(イルガキュア184(チバスペシャルティケミカルズ(株)製))
                                   5.0g
 メチルエチルケトン                        10.0g
 上記各添加剤を順次混合して30分間撹拌した後、孔径が1μmのポリプロピレン製フィルタで濾過して、B層ユニット用塗布液1Bを調製した。B層ユニット用塗布液1Bにおける固形分(溶媒であるメチルエチルケトン以外の成分)に対する無機粒子(酸化珪素)の割合(固形分比率)は0体積%である。
<Preparation of coating liquid 1B for layer B unit: second layer>
Active energy ray curable resin (dipentaerythritol hexaacrylate) 100 g
Photoinitiator (Irgacure 184 (Ciba Specialty Chemicals Co., Ltd.))
5.0g
Methyl ethyl ketone 10.0g
The above additives were sequentially mixed and stirred for 30 minutes, and then filtered through a polypropylene filter having a pore size of 1 μm to prepare a coating solution 1B for a B layer unit. The ratio (solid content ratio) of inorganic particles (silicon oxide) to the solid content (components other than methyl ethyl ketone as a solvent) in the coating liquid 1B for the B layer unit is 0% by volume.
 (ハードコート層の形成)
 上記樹脂基材上に、A層ユニット用塗布液1Aを用いて、乾燥膜厚が3.0μmとなる条件で、ワイヤーバーで塗布し、90℃で乾燥した後、紫外線ランプを用い、照射部の照度が100mW/cmで、照射量を80mJ/cmとして硬化させ、ハードコート層の第1層(A層ユニット)を形成した。次いで、その上に、B層ユニット用塗布液1Bを用いて、乾燥膜厚が3.0μmとなる条件で、ワイヤーバーで塗布し、90℃で乾燥した後、紫外線ランプを用い、照射部の照度が100mW/cmで、照射量を80mJ/cmとして硬化させ、ハードコート層の第2層(B層ユニット)を形成した。次いで、その上に、A層ユニット用塗布液1Aを用いて、乾燥膜厚が6.0μmとなる条件で、ワイヤーバーで塗布し、90℃で乾燥した後、紫外線ランプを用い、照射部の照度が100mW/cmで、照射量を80mJ/cmとして硬化させ、ハードコート層の第3層(A層ユニット)を形成し、A層及びB層が交互に積層したハードコート層を作製した。
(Formation of hard coat layer)
Using the coating liquid 1A for the A layer unit on the resin base material, coating with a wire bar under the condition that the dry film thickness is 3.0 μm, and drying at 90 ° C. Was cured at an illuminance of 100 mW / cm 2 and an irradiation amount of 80 mJ / cm 2 to form a first layer (A layer unit) of the hard coat layer. Next, using the coating liquid 1B for the B layer unit, a wire bar was applied under the condition that the dry film thickness was 3.0 μm, and the coating was dried at 90 ° C. Then, using an ultraviolet lamp, The second layer (B layer unit) of the hard coat layer was formed by curing with an illuminance of 100 mW / cm 2 and an irradiation amount of 80 mJ / cm 2 . Next, using the coating liquid 1A for the A layer unit, a coating is applied with a wire bar under the condition that the dry film thickness is 6.0 μm, and drying at 90 ° C. Then, using an ultraviolet lamp, Hardened with an illuminance of 100 mW / cm 2 and an irradiation dose of 80 mJ / cm 2 to form a third layer (A layer unit) of the hard coat layer, and a hard coat layer in which the A layer and the B layer are alternately laminated is produced. did.
 〔試料2~27の作製〕
 上記試料1の作製において、ハードコート層の形成条件として、A層ユニット、B層ユニットにおける交互積層する層数と各感層膜厚(μm)、A層ユニット、B層ユニットにおける無機粒子(酸化珪素)の充填率(体積%)となるように活性エネルギー線硬化樹脂、光反応開始剤、無機粒子分散液及びメチルエチルケトンの添加量を適宜調整して、表1、表2に記載の充填率に変更した以外は同様にして、試料2~27を作製した。
[Preparation of Samples 2 to 27]
In the preparation of Sample 1, the hard coat layer is formed by the following conditions: the number of layers alternately stacked in the A layer unit and the B layer unit, the thickness of each sensitive layer (μm), and the inorganic particles (oxidation) in the A layer unit and the B layer unit. The addition rate of active energy ray curable resin, photoreaction initiator, inorganic particle dispersion and methyl ethyl ketone is adjusted as appropriate so that the filling rate (volume%) of silicon) is reached, and the filling rates shown in Tables 1 and 2 are obtained. Samples 2 to 27 were produced in the same manner except that the changes were made.
 〔試料28の作製〕
 上記試料1の作製において、ハードコート層のA層ユニットの形成に用いた酸化珪素粒子を、一次平均粒子径が15nmの酸化チタン粒子に変更した以外は同様にして、試料28を作製した。
[Preparation of Sample 28]
Sample 28 was prepared in the same manner as in the preparation of Sample 1, except that the silicon oxide particles used for forming the A layer unit of the hard coat layer were changed to titanium oxide particles having a primary average particle diameter of 15 nm.
 〔試料29の作製〕
 上記試料1の作製において、ハードコート層のA層ユニットの形成に用いた酸化珪素粒子を、一次平均粒子径が15nmの酸化ジルコニウム粒子に変更した以外は同様にして、試料29を作製した。
[Preparation of Sample 29]
Sample 29 was prepared in the same manner as in the preparation of Sample 1, except that the silicon oxide particles used for forming the A layer unit of the hard coat layer were changed to zirconium oxide particles having a primary average particle diameter of 15 nm.
 〔試料30~33の作製〕
 上記試料1の作製において、ハードコート層のA層ユニットの形成に用いた酸化珪素粒子(一次平均粒子径15nm)を、それぞれ一次平均粒径が7nm、200nm、450nm、850nmの酸化珪素粒子に変更した以外は同様にして、試料29~33を作製した。
[Production of Samples 30 to 33]
In the production of Sample 1, the silicon oxide particles (primary average particle diameter of 15 nm) used for forming the A layer unit of the hard coat layer were changed to silicon oxide particles having primary average particle diameters of 7 nm, 200 nm, 450 nm, and 850 nm, respectively. Samples 29 to 33 were prepared in the same manner as described above.
 〔試料34の作製〕
 上記試料9の作製において、第1層~第6層の各塗布液を、6層同時重層塗布可能なスライドホッパー方式の塗布装置を用いて、樹脂基材上に塗布し、10秒間その状態を維持した後、試料1に記載の方法と同様にして乾燥及び硬化を行って、ハードコート層ユニットを形成した以外は同様にして、試料34を作製した。
[Preparation of Sample 34]
In the preparation of the sample 9, each of the first to sixth layer coating liquids was applied on a resin base material using a slide hopper type coating apparatus capable of simultaneous six-layer coating, and the state was maintained for 10 seconds. After the maintenance, the sample 34 was produced in the same manner as in the method described in the sample 1, except that the hard coat layer unit was formed by drying and curing.
 下記表1、表2に、上記作製した各ハードコート層付積層体の詳細を示す。 Tables 1 and 2 below show details of the laminates with hard coat layers produced above.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 《ハードコート層付積層体の評価》
 上記作製したハードコート層付積層体(試料1~34)について、下記の各評価を行った。
<< Evaluation of laminate with hard coat layer >>
Each of the following evaluations was performed on the produced laminate with a hard coat layer (samples 1 to 34).
 〔硬度の評価〕
 (評価1:鉛筆硬度試験)
 JIS S 6006が規定する試験用鉛筆を用いて、JIS K 5400が規定する鉛筆硬度評価方法に従い測定した。試験には、鉛筆硬度試験機(HA-301 クレメンス型引掻硬度試験機)を使用した。硬度のランクは(軟)6B~B、HB、F、H~9H(硬)の順に6Bが最も柔らかく、9Hが最も硬い。
[Evaluation of hardness]
(Evaluation 1: Pencil hardness test)
Using a test pencil specified by JIS S 6006, measurement was performed according to a pencil hardness evaluation method specified by JIS K 5400. For the test, a pencil hardness tester (HA-301 Clemens type scratch hardness tester) was used. The hardness ranks are (soft) 6B to B, HB, F, H to 9H (hard) in the order of 6B, and 9H is the hardest.
 (評価2:耐擦過性の評価)
 上記作製した各ハードコート層付積層体表面(ハードコート層形成面側)を、摩擦試験機HEIDON-14DRで、スチールウール(ボンスター #0000、2cm×2cm)を用い、荷重:9.8N、移動速度:15mm/分の条件で、20回の擦過処理を行った後、擦過範囲をルーペで観察し、下記の基準に従って、耐擦過性の評価を行った。
(Evaluation 2: Evaluation of scratch resistance)
Using the steel wool (Bonster # 0000, 2 cm × 2 cm) with a friction tester HEIDON-14DR, the load (9.8 N, movement) was performed on the surface of each of the prepared laminates with a hard coat layer (hard coat layer forming surface side). Speed: After carrying out the rubbing treatment 20 times under the condition of 15 mm / min, the rubbing range was observed with a loupe, and the rubbing resistance was evaluated according to the following criteria.
 ◎:全く擦り傷の発生が認められない
 ○:擦り傷の発生が1本以上、5本以下である
 △:擦り傷の発生が6本以上、15本以下である
 ×:擦り傷の発生が16本以上、25本以下である
 ××:擦り傷の発生が26本以上である
(評価3:耐擦過性の評価2)
 評価2の結果で◎のサンプルについては、耐擦過性を更に詳細に評価するため、スチールウールを変更して、より傷がつきやすい条件で再度評価した。
A: No generation of scratches is observed. O: Generation of scratches is 1 or more and 5 or less. Δ: Generation of scratches is 6 or more and 15 or less. X: Generation of scratches is 16 or more. 25 or less xx: Scratches generated 26 or more (Evaluation 3: Scratch resistance evaluation 2)
As a result of the evaluation 2, the samples marked with “◎” were evaluated again under the condition that the steel wool was changed and the flaws were easily damaged in order to evaluate the scratch resistance in more detail.
 摩擦試験機HEIDON-14DR
 スチールウール(ボンスター #0、2cm×2cm)
 荷重:9.8N
 移動速度:15mm/分
 20回の擦過処理
 擦過処理を行った後、擦過範囲をルーペで観察し、下記の基準に従って、耐擦過性の評価を行った。
Friction tester HEIDON-14DR
Steel wool (Bonster # 0, 2cm x 2cm)
Load: 9.8N
Moving speed: 15 mm / min 20 rubbing treatments After the rubbing treatment, the rubbing range was observed with a magnifying glass, and the scratch resistance was evaluated according to the following criteria.
 5:全く擦り傷の発生が認められない
 4:擦り傷の発生が1本以上、5本以下である
 3:擦り傷の発生が6本以上、15本以下である
 2:擦り傷の発生が16本以上、25本以下である
 1:擦り傷の発生が26本以上である
 以上により得られた結果を、表3に示す。
5: No generation of scratches is observed 4: Generation of scratches is 1 or more and 5 or less 3: Generation of scratches is 6 or more and 15 or less 2: Generation of scratches is 16 or more, The number is 25 or less. 1: The number of scratches is 26 or more. Table 3 shows the results obtained.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表3に記載の結果より明らかな様に、本発明で規定する層構成からなるハードコート層を有する本発明のハードコート層付積層体は、比較例に対し、鉛筆硬度試験及び耐擦過性に優れ、高い硬度を備えていることが分かる。 As is clear from the results shown in Table 3, the laminate with a hard coat layer of the present invention having a hard coat layer having a layer structure defined in the present invention is more resistant to pencil hardness test and scratch resistance than the comparative example. It turns out that it is excellent and has high hardness.
 実施例2
 《ハードコート層付積層体の作製》
 〔試料101の作製〕
 (樹脂基材)
 樹脂基材としては、厚さ100μmのポリカーボネート樹脂フィルム(帝人化成(株)製)を用いた。
Example 2
<< Production of laminate with hard coat layer >>
[Preparation of Sample 101]
(Resin base material)
A polycarbonate resin film (manufactured by Teijin Chemicals Ltd.) having a thickness of 100 μm was used as the resin base material.
 (ハードコート層用塗布液の調製)
 〈A層ユニット用塗布液1の調製:第1層、第3層〉
 活性エネルギー線硬化樹脂(ジペンタエリスリトールヘキサアクリレート)
                                  20.0g
 光反応開始剤(イルガキュア184(チバスペシャルティケミカルズ(株)製))
                                   1.0g
 無機粒子分散液(30質量%酸化珪素含有、メチルエチルケトン分散シリカゾル(日産化学(株)製、商品名MEK-ST)、平均粒径:15nm)      108g
 メチルエチルケトン                        10.0g
 上記各添加剤を順次混合して30分間撹拌した後、孔径1μmのポリプロピレン製フィルタで濾過して、A層ユニット用塗布液1を調製した。A層ユニット用塗布液1における固形分(溶媒であるメチルエチルケトン以外の成分)に対する無機粒子(酸化珪素)の割合(固形分比率)は約40体積%であるが、活性エネルギー線硬化樹脂は、活性エネルギー線の照射による重合反応で硬化と同時に収縮するため、下記に示す充填率測定法(体積分析法)で求めた、乾燥膜中での無機粒子の充填率は、50体積%であった。
(Preparation of coating solution for hard coat layer)
<Preparation of coating solution 1 for layer A unit: first layer, third layer>
Active energy ray curable resin (dipentaerythritol hexaacrylate)
20.0g
Photoinitiator (Irgacure 184 (Ciba Specialty Chemicals Co., Ltd.))
1.0g
108 g of inorganic particle dispersion (containing 30% by mass of silicon oxide, methyl ethyl ketone-dispersed silica sol (manufactured by Nissan Chemical Co., Ltd., trade name MEK-ST), average particle size: 15 nm)
Methyl ethyl ketone 10.0g
The above additives were sequentially mixed and stirred for 30 minutes, and then filtered through a polypropylene filter having a pore size of 1 μm to prepare a coating solution 1 for A layer unit. The ratio (solid content ratio) of the inorganic particles (silicon oxide) to the solid content (components other than methyl ethyl ketone as the solvent) in the coating liquid 1 for layer A unit is about 40% by volume. Since it shrinks simultaneously with curing in the polymerization reaction caused by irradiation with energy rays, the filling rate of inorganic particles in the dry film, determined by the filling rate measurement method (volume analysis method) shown below, was 50% by volume.
 -充填率測定法(体積分析法)-
 乾燥後の膜中での無機粒子の充填率は、次の方法で測定した。A層ユニット用塗布液1を用いてハードコート層を形成した後、樹脂基材よりハードコート層を剥離して全体積を測定し、次いで、樹脂成分を溶解して無機粒子の体積を測定し、それらの測定値より求めた。
-Filling rate measurement method (volume analysis method)-
The filling rate of the inorganic particles in the dried film was measured by the following method. After forming the hard coat layer using the coating liquid 1 for the A layer unit, the hard coat layer is peeled off from the resin base material to measure the total volume, and then the volume of the inorganic particles is measured by dissolving the resin component. And obtained from these measured values.
 〈B層ユニット用塗布液1の調製:第2層〉
 活性エネルギー線硬化樹脂(ジペンタエリスリトールヘキサアクリレート)100g
 光反応開始剤(イルガキュア184(チバスペシャルティケミカルズ(株)製))
                                   5.0g
 メチルエチルケトン                        10.0g
 上記各添加剤を順次混合して30分間撹拌した後、孔径1μmのポリプロピレン製フィルタで濾過して、B層ユニット用塗布液1を調製した。B層ユニット用塗布液1における固形分(溶媒であるメチルエチルケトン以外の成分)に対する無機粒子(酸化珪素)の割合(固形分比率)は0体積%である。
<Preparation of coating solution 1 for layer B unit: second layer>
Active energy ray curable resin (dipentaerythritol hexaacrylate) 100 g
Photoinitiator (Irgacure 184 (Ciba Specialty Chemicals Co., Ltd.))
5.0g
Methyl ethyl ketone 10.0g
The above additives were sequentially mixed and stirred for 30 minutes, and then filtered through a polypropylene filter having a pore size of 1 μm to prepare a coating solution 1 for B layer unit. The ratio (solid content ratio) of inorganic particles (silicon oxide) to the solid content (components other than methyl ethyl ketone as a solvent) in the coating liquid 1 for the B layer unit is 0% by volume.
 (ハードコート層の形成)
 上記樹脂基材上に、A層ユニット用塗布液1を用いて、乾燥膜厚が3.0μmとなる条件で、ワイヤーバーで塗布し、90℃で乾燥した後、紫外線ランプを用い、照射部の照度が100mW/cmで、照射量を80mJ/cmとして硬化させ、ハードコート層の第1層(A層ユニット)を形成した。次いで、その上に、B層ユニット用塗布液1を用いて、乾燥膜厚が3.0μmとなる条件で、ワイヤーバーで塗布し、90℃で乾燥した後、紫外線ランプを用い、照射部の照度が100mW/cmで、照射量を80mJ/cmとして硬化させ、ハードコート層の第2層(B層ユニット)を形成した。次いで、その上に、A層ユニット用塗布液1を用いて、乾燥膜厚が6.0μmとなる条件で、ワイヤーバーで塗布し、90℃で乾燥した後、紫外線ランプを用い、照射部の照度が100mW/cmで、照射量を80mJ/cmとして硬化させ、ハードコート層の第3層(A層ユニット)を形成し、A層及びB層が交互に積層したハードコート層を作製した。
(Formation of hard coat layer)
On the resin base material, using the coating liquid 1 for the A layer unit, after applying with a wire bar under the condition that the dry film thickness is 3.0 μm and drying at 90 ° C., an irradiation part is used using an ultraviolet lamp. Was cured at an illuminance of 100 mW / cm 2 and an irradiation amount of 80 mJ / cm 2 to form a first layer (A layer unit) of the hard coat layer. Next, using the coating liquid 1 for the B layer unit, a wire bar was applied on the condition that the dry film thickness was 3.0 μm, and the coating was dried at 90 ° C. Then, using an ultraviolet lamp, The second layer (B layer unit) of the hard coat layer was formed by curing with an illuminance of 100 mW / cm 2 and an irradiation amount of 80 mJ / cm 2 . Then, using the coating liquid 1 for the A layer unit, a coating with a wire bar was performed under the condition that the dry film thickness was 6.0 μm, and the coating was dried at 90 ° C. Then, using an ultraviolet lamp, Hardened with an illuminance of 100 mW / cm 2 and an irradiation dose of 80 mJ / cm 2 to form a third layer (A layer unit) of the hard coat layer, and a hard coat layer in which the A layer and the B layer are alternately laminated is produced. did.
 (金属酸化物層の形成)
 図3に示すロール電極型放電処理装置を用いて、大気圧プラズマ放電処理により、上記樹脂基材上にハードコート層を形成した試料の第3層上に、膜厚が150nmで,SiOのみで構成される金属酸化物層1を形成して、ハードコート層付積層体である試料1を作製した。
(Formation of metal oxide layer)
Using the roll electrode type discharge treatment apparatus shown in FIG. 3, the film thickness is 150 nm and only SiO 2 is formed on the third layer of the sample in which the hard coat layer is formed on the resin substrate by the atmospheric pressure plasma discharge treatment. The metal oxide layer 1 comprised by this was formed, and the sample 1 which is a laminated body with a hard-coat layer was produced.
 図3に示す放電処理装置は、ロール電極に対向して棒状電極を複数個フィルムの搬送方向に対し平行に設置し、各電極部に原料(下記放電ガス、反応ガス1、2)及び電力を投入出来る構造を有する。 The discharge treatment apparatus shown in FIG. 3 has a plurality of rod-shaped electrodes placed in parallel to the film transport direction so as to face the roll electrode. It has a structure that can be charged.
 ここで各電極を被覆する誘電体は対向する電極共に、セラミック溶射加工のものに片肉で1mm被覆した。被覆後の電極間隙は、1mmに設定した。また誘電体を被覆した金属母材は、冷却水による冷却機能を有するステンレス製ジャケット仕様であり、放電中は冷却水による電極温度コントロールを行いながら実施した。ここで使用する電源は、応用電機製高周波電源(80kHz)、パール工業製高周波電源(13.56MHz)を使用した。その他処理条件は以下の通りである。 Here, the dielectric covering each electrode was coated with 1 mm of single-sided ceramic-sprayed one with both opposing electrodes. The electrode gap after coating was set to 1 mm. The metal base material coated with a dielectric has a stainless steel jacket specification having a cooling function by cooling water, and was performed while controlling the electrode temperature by cooling water during discharge. As the power source used here, a high frequency power source (80 kHz) manufactured by Applied Electric and a high frequency power source (13.56 MHz) manufactured by Pearl Industry were used. Other processing conditions are as follows.
 〈金属酸化物層1の形成条件〉
 放電ガス:Nガス
 反応ガス1:酸素ガスを全ガスに対し5%
 反応ガス2:テトラエトキシシラン(TEOS)を全ガスに対し0.1%
 低周波側電源電力:80kHz、10W/cm
 高周波側電源電力:13.56MHz、10W/cm
 〔試料102~130の作成〕
 上記試料101の作製において、ハードコート層の形成条件として、A層ユニット、B層ユニットにおける交互積層する層数と各感層膜厚(μm)、A層ユニット、B層ユニットにおける無機粒子(酸化珪素)の充填率(体積%)となるように活性エネルギー線硬化樹脂、光反応開始剤、無機粒子分散液及びメチルエチルケトンの添加量を適宜調整して、表4、表5に記載の充填率に変更した以外は同様にして、試料102~130を作製した。
<Formation conditions of metal oxide layer 1>
Discharge gas: N 2 gas Reaction gas 1: Oxygen gas 5% of the total gas
Reaction gas 2: Tetraethoxysilane (TEOS) is 0.1% of the total gas
Low frequency side power supply power: 80 kHz, 10 W / cm 2
High frequency side power supply power: 13.56 MHz, 10 W / cm 2
[Preparation of samples 102 to 130]
In the preparation of the sample 101, the hard coat layer was formed by the following conditions: the number of layers alternately stacked in the A layer unit and the B layer unit, the thickness of each sensitive layer (μm), the inorganic particles in the A layer unit and the B layer unit (oxidation) The addition rate of active energy ray-curable resin, photoreaction initiator, inorganic particle dispersion and methyl ethyl ketone is adjusted as appropriate so that the filling rate (volume%) of silicon) is obtained, and the filling rates shown in Tables 4 and 5 are obtained. Samples 102 to 130 were produced in the same manner except that the changes were made.
 〔試料131の作製〕
 上記試料101の作製において、ハードコート層のA層ユニットの形成に用いた酸化珪素粒子を、一次平均粒子径が15nmの酸化チタン粒子に変更した以外は同様にして、試料131を作製した。
[Preparation of Sample 131]
A sample 131 was prepared in the same manner as in the preparation of the sample 101 except that the silicon oxide particles used for forming the A layer unit of the hard coat layer were changed to titanium oxide particles having a primary average particle diameter of 15 nm.
 〔試料132の作製〕
 上記試料101の作製において、ハードコート層のA層ユニットの形成に用いた酸化珪素粒子を、一次平均粒子径が15nmの酸化ジルコニウム粒子に変更した以外は同様にして、試料132を作製した。
[Preparation of Sample 132]
A sample 132 was produced in the same manner as in the production of the sample 101 except that the silicon oxide particles used for forming the A layer unit of the hard coat layer were changed to zirconium oxide particles having a primary average particle diameter of 15 nm.
 〔試料133~136の作製〕
 上記試料101の作製において、ハードコート層のA層ユニットの形成に用いた酸化珪素粒子(一次平均粒子径15nm)を、それぞれ一次平均粒径が7nm、200nm、450nm、850nmの酸化珪素粒子に変更した以外は同様にして、試料133~136を作製した。
[Preparation of Samples 133 to 136]
In the preparation of the sample 101, the silicon oxide particles (primary average particle diameter of 15 nm) used for forming the A layer unit of the hard coat layer were changed to silicon oxide particles having primary average particle diameters of 7 nm, 200 nm, 450 nm, and 850 nm, respectively. Samples 133 to 136 were produced in the same manner except that.
 〔試料137の作製〕
 上記試料127の作製において、第1層~第6層の各塗布液を、6層同時重層塗布可能なスライドホッパー方式の塗布装置を用いて、樹脂基材上に塗布し、10秒間その状態を維持した後、試料101に記載の方法と同様にして乾燥及び硬化を行って、ハードコート層ユニットを形成した以外は同様にして、試料137を作製した。
[Preparation of Sample 137]
In the preparation of the sample 127, each coating solution of the first layer to the sixth layer was applied on a resin substrate using a slide hopper type coating apparatus capable of simultaneous coating of 6 layers, and the state was maintained for 10 seconds. After the maintenance, a sample 137 was produced in the same manner except that the hard coat layer unit was formed by drying and curing in the same manner as described in the sample 101.
 〔試料138の作製〕
 上記試料101の作製において、金属酸化物層の形成に用いる原料を、テトラエトキシシラン(酸化珪素膜形成)に代えて、テトライソプロポキシチタンに変更して、酸化チタンから構成される金属酸化物層に変更した以外は同様にして、試料138を作製した。
[Preparation of Sample 138]
In the preparation of the sample 101, the raw material used for forming the metal oxide layer is changed to tetraisopropoxy titanium instead of tetraethoxysilane (silicon oxide film formation), and a metal oxide layer composed of titanium oxide Sample 138 was produced in the same manner except that the sample was changed to.
 〔試料139の作製〕
 上記試料101の作製において、金属酸化物層の形成を、大気圧プラズマCVD法に代えて、下記のプラズマCVD法を用いた以外は同様にして、試料139を作製した。
[Preparation of Sample 139]
A sample 139 was produced in the same manner as in the production of the sample 101 except that the metal oxide layer was formed by the following plasma CVD method instead of the atmospheric pressure plasma CVD method.
 薄膜形成装置として、サムコ社製プラズマCVD装置Model PD-270STPを用いて製膜を行った。 As a thin film forming apparatus, a film was formed using a plasma CVD apparatus Model PD-270STP manufactured by Samco.
 製膜条件は以下の通りである。 The film forming conditions are as follows.
 酸素圧力:40Pa
 反応ガス:テトラエトキシシラン(TEOS)5sccm(standard cubic centimeter per minute)
 電力:13.56MHzで100W
 基材保持温度:120℃
 〔試料140の作製〕
 上記137の作製において、金属酸化物層の形成を、大気圧プラズマCVD法に代えて、下記に示すポリシラザンを用いた湿式塗布法(シラザン法)に変更した以外は同様にして、試料140を作製した。
Oxygen pressure: 40 Pa
Reaction gas: tetraethoxysilane (TEOS) 5 sccm (standard cubic centimeter per minute)
Power: 100W at 13.56MHz
Substrate holding temperature: 120 ° C
[Production of Sample 140]
A sample 140 was prepared in the same manner as in the preparation of 137 except that the formation of the metal oxide layer was changed to the wet coating method (silazane method) using polysilazane shown below instead of the atmospheric pressure plasma CVD method. did.
 〈シラザン法〉
 低温硬化性の金属触媒を含有するペルヒドロポリシラザンのジブチルエーテル溶液(固形分量20質量%、AZエレクトロニックマテリアルズ社製、商品名:アクアミカ NAX120-20)を、ジブチルエーテルを用いて体積比で4倍に希釈し、この希釈液を、湿潤膜厚6.0μmとなる様に、ハードコート層上に湿式塗布方式で塗布、乾燥し、次いで、120℃の温風循環オーブン中で60時間保持することで、熱処理を施した。次いで、25℃、相対湿度50%の環境下で3日間放置することにより、金属酸化物層を十分に硬化した。
<Silazane method>
A dibutyl ether solution of perhydropolysilazane containing a low-temperature curable metal catalyst (solid content 20% by mass, manufactured by AZ Electronic Materials, trade name: Aquamica NAX120-20) is 4 times in volume ratio using dibutyl ether. The diluted solution is applied to the hard coat layer by a wet coating method so as to have a wet film thickness of 6.0 μm, dried, and then kept in a hot air circulating oven at 120 ° C. for 60 hours. Then, heat treatment was performed. Next, the metal oxide layer was sufficiently cured by leaving it for 3 days in an environment of 25 ° C. and 50% relative humidity.
 下記表4、表5に、上記作製した各ハードコート層付積層体の詳細を示す。 Tables 4 and 5 below show details of the laminates with hard coat layers produced above.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 《ハードコート層付積層体の評価》
 上記作製したハードコート層付積層体(試料101~140)について、下記の各評価を行った。
<< Evaluation of laminate with hard coat layer >>
Each of the following evaluations was performed on the produced laminate with a hard coat layer (samples 101 to 140).
 〔密着性の評価〕
 上記作製した各ハードコート層付積層体を、JIS K 5400に準拠した碁盤目試験により、密着性の評価を行った。
[Evaluation of adhesion]
Each of the prepared laminates with a hard coat layer was evaluated for adhesion by a cross-cut test based on JIS K 5400.
 各ハードコート層付積層体の各層を形成した面に、片刃のカミソリの刃で表面に対して90度の切り込みを1mm間隔で縦横に11本ずつ入れ、1mm角の碁盤目を100個作成した。この碁盤目上に市販のセロファンテープを貼り付け、その一端を手でもって垂直にはがし、切り込み線からの貼られたテープ面積に対する金属酸化物層が剥がされた面積の割合を測定し、下記の評価基準に従って密着性を評価した。また、剥離を起こした試料については、剥離した層の確認も同時に行った。 On the surface on which each layer of each laminate with a hard coat layer was formed, a single blade razor blade was used to insert 11 incisions of 90 degrees with respect to the surface at 1 mm intervals vertically and horizontally to create 100 1 mm square grids. . Paste a commercially available cellophane tape on this grid, peel one end vertically by hand, measure the ratio of the area where the metal oxide layer was peeled off to the tape area pasted from the score line, and Adhesion was evaluated according to the evaluation criteria. Moreover, about the sample which raise | generated peeling, confirmation of the peeled layer was also performed simultaneously.
 〈評価ランク〉
 5:全く剥離が認められない
 4:剥がれた層の面積が1%以上、5%未満であった
 3:剥がれた層の面積が5%以上、10%未満であった
 2:剥がれた層の面積が、10%以上、20%未満であった
 1:剥がれた層の面積が、20%以上である
 〈剥離位置〉
 a:樹脂基材とハードコート層の第1層間で剥離を生じた
 b:ハードコート層の最表層と金属酸化物層間で剥離を生じた
 -:剥離を全く起こさなかった
 〔硬度の評価〕
 (評価1:鉛筆硬度試験)
 JIS S 6006が規定する試験用鉛筆を用いて、JIS K 5400が規定する鉛筆硬度評価方法に従い測定した。試験には、鉛筆硬度試験機(HA-301 クレメンス型引掻硬度試験機)を使用した。硬度のランクは(軟)6B~B、HB、F、H~9H(硬)の順に6Bが最も柔らかく、9Hが最も硬い。
<Evaluation rank>
5: No peeling was observed 4: The area of the peeled layer was 1% or more and less than 5% 3: The area of the peeled layer was 5% or more and less than 10% 2: of the peeled layer The area was 10% or more and less than 20% 1: The area of the peeled layer was 20% or more <Peeling position>
a: Peeling occurred between the resin substrate and the first layer of the hard coat layer b: Peeling occurred between the outermost layer of the hard coat layer and the metal oxide layer-: No peeling occurred [Evaluation of hardness]
(Evaluation 1: Pencil hardness test)
Using a test pencil specified by JIS S 6006, measurement was performed according to a pencil hardness evaluation method specified by JIS K 5400. For the test, a pencil hardness tester (HA-301 Clemens type scratch hardness tester) was used. The hardness ranks are (soft) 6B to B, HB, F, H to 9H (hard) in the order of 6B, and 9H is the hardest.
 (評価2:耐擦過性の評価)
 上記作製した各ハードコート層付積層体表面(金属酸化物層形成面側)を、摩擦試験機HEIDON-14DRで、スチールウール(ボンスター #0000)を用い、荷重:65kPa、移動速度:15mm/分の条件で、20回の擦過処理を行った後、1cm×1cmの範囲をルーペで観察し、下記の基準に従って、耐擦過性の評価を行った。
(Evaluation 2: Evaluation of scratch resistance)
Using the steel wool (Bonster # 0000), the friction tester HEIDON-14DR, the load (65 kPa), the moving speed: 15 mm / min, on the surface of each laminate (metal oxide layer forming surface) prepared above. Under the above conditions, after rubbing 20 times, the range of 1 cm × 1 cm was observed with a loupe, and the scratch resistance was evaluated according to the following criteria.
 ◎:全く擦り傷の発生が認められない
 ○:擦り傷の発生が1本以上、5本以下である
 △:擦り傷の発生が6本以上、15本以下である
 ×:擦り傷の発生が16本以上、25本以下である
 ××:擦り傷の発生が26本以上である
 以上により得られた結果を、表6に示す。
A: No generation of scratches is observed. O: Generation of scratches is 1 or more and 5 or less. Δ: Generation of scratches is 6 or more and 15 or less. X: Generation of scratches is 16 or more. It is 25 or less. XX: Generation of scratches is 26 or more. Table 6 shows the results obtained as described above.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
 表6に記載の結果より明らかな様に、本発明で規定する無機粒子含有層構成からなるハードコート層を有する本発明のハードコート層付積層体は、比較例に対し、樹脂基材とハードコート層、あるいはハードコート層と金属酸化物層間での密着性に優れ、かつ最表面の鉛筆硬度試験及び耐擦過性に優れ、高い硬度を備えていることが分かる。 As is clear from the results shown in Table 6, the laminate with a hard coat layer of the present invention having a hard coat layer having an inorganic particle-containing layer structure defined in the present invention is a resin substrate and a hard It can be seen that the coating layer or the adhesion between the hard coating layer and the metal oxide layer is excellent, the outermost pencil hardness test and the scratch resistance are excellent, and high hardness is provided.
 実施例3
 実施例2で作製した試料107、137、140について、下記の記載の方法に従って、耐摩耗性の評価を行い、得られた結果を、表4に示す。
Example 3
The samples 107, 137, and 140 prepared in Example 2 were evaluated for wear resistance according to the method described below, and the results obtained are shown in Table 4.
 〔耐摩耗性の評価〕
 JIS R3212に準じた耐摩耗試験法により、2つのCS-10F摩耗輪にそれぞれ500gの加重を装着し、各試料の金属酸化物層表面を500回転及び1000回転させた後の曇価(ヘーズ)を、ヘーズメーターNDH2000(日本電飾工業社製)を用いて測定した。曇価の測定は、CS-10F摩耗輪による摩耗サイクル軌道の4カ所行い、その平均値を求め、これを曇価(ヘーズ)とした。
[Evaluation of wear resistance]
Haze value after applying 500g load to two CS-10F wear wheels and rotating the surface of the metal oxide layer of each sample by 500 and 1000 rotations by the wear resistance test method according to JIS R3212 Was measured using a haze meter NDH2000 (manufactured by Nippon Denshoku Kogyo Co., Ltd.). The haze value was measured at four locations on the wear cycle trajectory of the CS-10F wear wheel, and the average value was obtained and used as the haze value.
 表4には、初期曇価として、上記耐摩耗試験を施す前の未処理試料の曇価(%)を記載し、500回転後及び2000回転後の耐摩耗性(%)は、下式により求めた。 Table 4 shows the haze value (%) of the untreated sample before the wear resistance test as the initial haze value, and the wear resistance (%) after 500 rotations and 2000 rotations is expressed by the following equation. Asked.
   耐摩耗性(%)=摩耗試験後の曇価(%)-初期曇価(%) Wear resistance (%) = Haze value after wear test (%)-Initial haze value (%)
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 表7に記載の結果より明らかな様に、本発明のハードコート層付積層体は、比較例に対し、耐摩耗性に優れていることが分かる。また、本発明のハードコート層付積層体においては、金属酸化物層を、無機ポリシラザンを用いた湿式塗布法により形成した試料140がやや優れていることが分かる。 As is clear from the results shown in Table 7, it can be seen that the laminate with a hard coat layer of the present invention is superior in wear resistance to the comparative example. Moreover, in the laminated body with a hard-coat layer of this invention, it turns out that the sample 140 which formed the metal oxide layer by the wet apply | coating method using inorganic polysilazane is somewhat excellent.

Claims (16)

  1.  樹脂基材の少なくとも一方の面に、少なくとも樹脂及び無機粒子または樹脂から構成されるハードコート層を有するハードコート層付積層体において、該ハードコート層は、無機粒子の濃度が異なる二つの層が交互に積層された構造であり、無機粒子濃度が高い層群をA層ユニット、無機粒子濃度が低い層群をB層ユニットとしたとき、該ハードコート層の表面はA層ユニットであり、該A層ユニット及びB層ユニットの少なくとも1つの層ユニットは、乾燥膜厚が異なる少なくとも2層で構成され、該A層ユニットが乾燥膜厚の異なる層で構成される場合には、該A層ユニットを構成する各層の乾燥膜厚は、該樹脂基材に向かって減少し、該B層ユニットが乾燥膜厚の異なる層で構成される場合には、該B層ユニットを構成する各層の乾燥膜厚が該樹脂基材に向かって増加し、該A層ユニットの乾燥膜厚の総和ΣAhと該B層ユニットの乾燥膜厚の総和ΣBhとが、ΣAh≧ΣBhの関係を満たすことを特徴とするハードコート層付積層体。 In the laminate with a hard coat layer having a hard coat layer composed of at least a resin and inorganic particles or a resin on at least one surface of the resin base material, the hard coat layer has two layers having different inorganic particle concentrations. When the layer group having a high inorganic particle concentration is an A layer unit and the layer group having a low inorganic particle concentration is a B layer unit, the surface of the hard coat layer is an A layer unit. At least one layer unit of the A layer unit and the B layer unit is composed of at least two layers having different dry film thicknesses, and when the A layer unit is composed of layers having different dry film thicknesses, the A layer unit The dry film thickness of each layer constituting the layer decreases toward the resin substrate, and when the B layer unit is composed of layers having different dry film thicknesses, the dry film thickness of each layer constituting the B layer unit is reduced. The film thickness increases toward the resin base material, and the sum ΣAh of the dry film thickness of the A layer unit and the sum ΣBh of the dry film thickness of the B layer unit satisfy the relationship ΣAh ≧ ΣBh, A laminate with a hard coat layer.
  2.  樹脂基材の少なくとも一方の面に、少なくとも樹脂及び無機粒子または樹脂から構成されるハードコート層と、金属酸化物層とをこの順で積層したハードコート層付積層体において、該ハードコート層は、無機粒子の濃度が異なる二つの層が交互に積層された構造であり、無機粒子濃度が高い層群をA層ユニット、無機粒子濃度が低い層群をB層ユニットとしたとき、該A層ユニット及びB層ユニットの少なくとも1つの層ユニットは、乾燥膜厚が異なる少なくとも2層で構成され、該A層ユニットの乾燥膜厚の総和ΣAhと該B層ユニットの乾燥膜厚の総和ΣBhとが、ΣAh≧ΣBhの関係を満たすことを特徴とするハードコート層付積層体。 In a laminate with a hard coat layer in which a hard coat layer composed of at least a resin and inorganic particles or a resin and a metal oxide layer are laminated in this order on at least one surface of a resin base material, the hard coat layer is When the two layers having different inorganic particle concentrations are alternately stacked, the layer group having a high inorganic particle concentration is an A layer unit, and the layer group having a low inorganic particle concentration is a B layer unit. At least one layer unit of the unit and the B layer unit is composed of at least two layers having different dry film thicknesses, and the total dry film thickness ΣAh of the A layer unit and the total dry film thickness ΣBh of the B layer unit are , ΣAh ≧ ΣBh satisfying the relationship, a laminate with a hard coat layer.
  3.  前記A層ユニットの無機粒子濃度が30.0体積%以上、70.0体積%以下で、前記B層ユニットの無機粒子濃度が0体積%以上、40.0体積%以下であることを特徴とする請求の範囲第1項または第2項に記載のハードコート層付積層体。 The inorganic particle concentration of the A layer unit is 30.0% by volume or more and 70.0% by volume or less, and the inorganic particle concentration of the B layer unit is 0% by volume or more and 40.0% by volume or less. The laminate with a hard coat layer according to claim 1 or claim 2.
  4.  前記A層ユニットの無機粒子濃度が40.0体積%以上、60.0体積%以下で、前記B層ユニットの無機粒子濃度が0体積%以上、20.0体積%以下であることを特徴とする請求の範囲第1項から第3項のいずれか1項に記載のハードコート層付積層体。 The inorganic particle concentration of the A layer unit is 40.0% by volume or more and 60.0% by volume or less, and the inorganic particle concentration of the B layer unit is 0% by volume or more and 20.0% by volume or less. The laminate with a hard coat layer according to any one of claims 1 to 3, wherein:
  5.  前記A層ユニットを構成する各層の乾燥膜厚が、前記金属酸化物層に向かって増加することを特徴とする請求の範囲第2項から第4項のいずれか1項に記載のハードコート層付積層体。 The hard coat layer according to any one of claims 2 to 4, wherein a dry film thickness of each layer constituting the A layer unit increases toward the metal oxide layer. Laminated body.
  6.  前記A層ユニットを構成する層のうち、前記金属酸化物層に最も近接した位置にある層の乾燥膜厚が、3.0μm以上、100μm以下であることを特徴とする請求の範囲第2項から第5項のいずれか1項に記載のハードコート層付積層体。 3. The dry film thickness of a layer that is closest to the metal oxide layer among the layers that constitute the A layer unit is 3.0 μm or more and 100 μm or less. The laminated body with a hard-coat layer of any one of Claims 5-5.
  7.  前記B層ユニットを構成する各層の乾燥膜厚が、前記金属酸化物層に向かって減少することを特徴とする請求の範囲第2項から第6項のいずれか1項に記載のハードコート層付積層体。 The hard coat layer according to any one of claims 2 to 6, wherein a dry film thickness of each layer constituting the B layer unit decreases toward the metal oxide layer. Laminated body.
  8.  前記B層ユニットを構成する層のうち、前記金属酸化物層に最も近接した位置にある層の乾燥膜厚が、0.1μm以上、2.0μm以下であることを特徴とする請求の範囲第2項から第7項のいずれか1項に記載のハードコート層付積層体。 The dry film thickness of the layer which is the closest to the metal oxide layer among the layers constituting the B layer unit is 0.1 μm or more and 2.0 μm or less. The laminate with a hard coat layer according to any one of items 2 to 7.
  9.  前記無機粒子が、酸化珪素粒子であることを特徴とする請求の範囲第1項から第8項のいずれか1項に記載のハードコート層付積層体。 The laminate with a hard coat layer according to any one of claims 1 to 8, wherein the inorganic particles are silicon oxide particles.
  10.  前記無機粒子の平均粒子径が、5.0nm以上、1.0μm以下であることを特徴とする請求の範囲第1項から第9項のいずれか1項に記載のハードコート層付積層体。 The laminate with a hard coat layer according to any one of claims 1 to 9, wherein an average particle size of the inorganic particles is 5.0 nm or more and 1.0 µm or less.
  11.  前記ハードコート層が、湿式塗布法により形成されたことを特徴とする請求の範囲第1項から第10項のいずれか1項に記載のハードコート層付積層体。 The laminate with a hard coat layer according to any one of claims 1 to 10, wherein the hard coat layer is formed by a wet coating method.
  12.  前記湿式塗布法が、複数の層を同時に塗布する多層同時塗布法であることを特徴とする請求の範囲第11項に記載のハードコート層付積層体。 The laminate with a hard coat layer according to claim 11, wherein the wet coating method is a multilayer simultaneous coating method in which a plurality of layers are coated simultaneously.
  13.  前記金属酸化物層の主成分が、酸化珪素であることを特徴とする請求の範囲第2項から第12項のいずれか1項に記載のハードコート層付積層体。 The laminate with a hard coat layer according to any one of claims 2 to 12, wherein a main component of the metal oxide layer is silicon oxide.
  14.  前記金属酸化物層が、プラズマCVD法により形成されたことを特徴とする請求の範囲第2項から第13項のいずれか1項に記載のハードコート層付積層体。 The laminate with a hard coat layer according to any one of claims 2 to 13, wherein the metal oxide layer is formed by a plasma CVD method.
  15.  前記プラズマCVD法が、大気圧または大気圧近傍の圧力下でプラズマ処理する大気圧プラズマCVD法であることを特徴とする請求の範囲第14項に記載のハードコート層付積層体。 The laminate with a hard coat layer according to claim 14, wherein the plasma CVD method is an atmospheric pressure plasma CVD method in which plasma treatment is performed under atmospheric pressure or a pressure near atmospheric pressure.
  16.  前記金属酸化物層が、無機ポリシラザンを用いた湿式塗布法により形成されたことを特徴とする請求の範囲第2項から第13項のいずれか1項に記載のハードコート層付積層体。 The laminate with a hard coat layer according to any one of claims 2 to 13, wherein the metal oxide layer is formed by a wet coating method using inorganic polysilazane.
PCT/JP2009/056478 2008-04-22 2009-03-30 Layered product with hard-coat layer WO2009130975A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010509124A JP5482651B2 (en) 2008-04-22 2009-03-30 Laminate with hard coat layer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-111049 2008-04-22
JP2008111049 2008-04-22

Publications (1)

Publication Number Publication Date
WO2009130975A1 true WO2009130975A1 (en) 2009-10-29

Family

ID=41216713

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/056478 WO2009130975A1 (en) 2008-04-22 2009-03-30 Layered product with hard-coat layer

Country Status (2)

Country Link
JP (1) JP5482651B2 (en)
WO (1) WO2009130975A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170094199A (en) 2014-12-16 2017-08-17 도레이 카부시키가이샤 Layered body

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000052472A (en) * 1998-08-04 2000-02-22 Toppan Printing Co Ltd Hard coat film or sheet, and hard coat film or sheet fitted with functional inorganic membrane
JP2000214791A (en) * 1998-11-17 2000-08-04 Dainippon Printing Co Ltd Hard coat film and antireflection film
JP2003260400A (en) * 2002-03-08 2003-09-16 Fuji Photo Film Co Ltd Coating method and apparatus
JP2005219223A (en) * 2004-02-03 2005-08-18 Konica Minolta Opto Inc Anti-staining layer, its manufacturing method, anti-staining antireflection film, polarizing plate and image display device
JP2006321052A (en) * 2005-05-17 2006-11-30 Kuraray Co Ltd Manufacturing method of gas barrier laminate

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5663875B2 (en) * 2007-10-30 2015-02-04 コニカミノルタ株式会社 Laminate with hard coat layer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000052472A (en) * 1998-08-04 2000-02-22 Toppan Printing Co Ltd Hard coat film or sheet, and hard coat film or sheet fitted with functional inorganic membrane
JP2000214791A (en) * 1998-11-17 2000-08-04 Dainippon Printing Co Ltd Hard coat film and antireflection film
JP2003260400A (en) * 2002-03-08 2003-09-16 Fuji Photo Film Co Ltd Coating method and apparatus
JP2005219223A (en) * 2004-02-03 2005-08-18 Konica Minolta Opto Inc Anti-staining layer, its manufacturing method, anti-staining antireflection film, polarizing plate and image display device
JP2006321052A (en) * 2005-05-17 2006-11-30 Kuraray Co Ltd Manufacturing method of gas barrier laminate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170094199A (en) 2014-12-16 2017-08-17 도레이 카부시키가이샤 Layered body

Also Published As

Publication number Publication date
JPWO2009130975A1 (en) 2011-08-18
JP5482651B2 (en) 2014-05-07

Similar Documents

Publication Publication Date Title
JP4821610B2 (en) Transparent gas barrier film
JP5320848B2 (en) Laminate with hard coat layer
JP5626308B2 (en) Method for producing gas barrier laminate and gas barrier laminate
JPWO2007026545A1 (en) Plasma discharge treatment apparatus and method for producing gas barrier film
JPWO2008096616A1 (en) Transparent gas barrier film and method for producing the same
JPWO2008096617A1 (en) Transparent gas barrier film and method for producing transparent gas barrier film
JPWO2008096615A1 (en) Transparent gas barrier film and method for producing the same
JP2006068992A (en) Gas barrier film
JPWO2006075490A1 (en) Transparent gas barrier film
JP5012745B2 (en) Laminate with hard coat layer
JP2007017668A (en) Optical film
JP2009279778A (en) Laminate with hard coat layers
JP2009286035A (en) Laminated form with hard coat layer
JP5663875B2 (en) Laminate with hard coat layer
JP5482651B2 (en) Laminate with hard coat layer
JP2011036803A (en) Method for producing barrier film
JP5719106B2 (en) Transparent gas barrier film and method for producing transparent gas barrier film
JP2010137400A (en) Laminate with hard coat
US20140255288A1 (en) Gas barrier laminate and production method of the same
JP2010058476A (en) Laminate with hard coat layer
JP2006264094A (en) Gas-barrier film
JP2010058477A (en) Laminate with hard coat layer
JP2010031303A (en) Metal oxide thin film and manufacturing method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09735840

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010509124

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09735840

Country of ref document: EP

Kind code of ref document: A1