WO2016098543A1 - 極端紫外光生成装置 - Google Patents

極端紫外光生成装置 Download PDF

Info

Publication number
WO2016098543A1
WO2016098543A1 PCT/JP2015/083075 JP2015083075W WO2016098543A1 WO 2016098543 A1 WO2016098543 A1 WO 2016098543A1 JP 2015083075 W JP2015083075 W JP 2015083075W WO 2016098543 A1 WO2016098543 A1 WO 2016098543A1
Authority
WO
WIPO (PCT)
Prior art keywords
mirror
concave mirror
convex
convex mirror
axis
Prior art date
Application number
PCT/JP2015/083075
Other languages
English (en)
French (fr)
Inventor
鈴木 徹
崇 菅沼
明大 高山
義明 黒澤
Original Assignee
ギガフォトン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ギガフォトン株式会社 filed Critical ギガフォトン株式会社
Priority to JP2016564756A priority Critical patent/JP6704857B2/ja
Publication of WO2016098543A1 publication Critical patent/WO2016098543A1/ja
Priority to US15/590,238 priority patent/US10374381B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G2/00Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
    • H05G2/001X-ray radiation generated from plasma
    • H05G2/008X-ray radiation generated from plasma involving a beam of energy, e.g. laser or electron beam in the process of exciting the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05GX-RAY TECHNIQUE
    • H05G2/00Apparatus or processes specially adapted for producing X-rays, not involving X-ray tubes, e.g. involving generation of a plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/005Optical components external to the laser cavity, specially adapted therefor, e.g. for homogenisation or merging of the beams or for manipulating laser pulses, e.g. pulse shaping

Definitions

  • This disclosure relates to an extreme ultraviolet light generation apparatus.
  • the EUV light generation apparatus includes an LPP (Laser Produced Plasma) system using plasma generated by irradiating a target material with laser light, and a DPP (Discharge Produced Plasma) using plasma generated by discharge.
  • LPP Laser Produced Plasma
  • DPP discharge Produced Plasma
  • Three types of devices have been proposed: a device of the system and a device of SR (Synchrotron Radiation) method using orbital radiation.
  • An example of the present disclosure is an extreme ultraviolet light generating device that generates plasma by irradiating a target with pulsed laser light output from a laser device, and generates an extreme ultraviolet light.
  • a target supply unit that supplies a target; and a beam adjustment device that is arranged on an optical path of the pulsed laser light applied to the target and adjusts a beam parameter.
  • Distance, and the distance between the second concave mirror and said second convex mirror may comprise a moving device for varying the direction of decreasing increasing or simultaneously at the same time.
  • FIG. 1 schematically shows a configuration of an exemplary LPP type EUV light generation apparatus.
  • FIG. 2 is a partial cross-sectional view of an EUV light generation system in a comparative example.
  • FIG. 3 shows the configuration and operation of the beam adjustment apparatus in the comparative example.
  • FIG. 4 shows a configuration example of the EUV light generation system according to the first embodiment.
  • FIG. 5A shows a configuration example of the beam adjustment apparatus of the first embodiment.
  • FIG. 5B shows a state in which the moving plate is separated from the off-axis paraboloid concave mirror from the state of the beam adjusting device shown in FIG. 5A.
  • FIG. 5A shows a configuration example of the beam adjustment apparatus of the first embodiment.
  • FIG. 5B shows a state in which the moving plate is separated from the off-axis paraboloid concave mirror from the state of the beam adjusting device shown in FIG. 5A.
  • FIG. 5C shows a state in which the moving plate is brought close to the off-axis paraboloid concave mirror from the state of the beam adjusting device shown in FIG. 5A.
  • FIG. 6 shows the result of calculating the divergence angle (half angle) with respect to the moving distance dL of the moving plate from the state of FIG. 5A.
  • FIG. 7 shows a modification of the beam adjustment apparatus of the first embodiment.
  • FIG. 8 shows a configuration example of the beam adjustment apparatus of the second embodiment.
  • FIG. 9 shows a configuration example of the beam adjusting apparatus of the third embodiment.
  • FIG. 10 shows a configuration example of the EUV light generation system according to the fourth embodiment.
  • FIG. 11 shows a configuration example of the beam adjustment apparatus of the fifth embodiment.
  • FIG. 12 is a perspective view of a configuration example of the beam adjusting apparatus according to the sixth embodiment.
  • FIG. 13 is a plan view of a configuration example of the beam adjusting apparatus according to the sixth embodiment.
  • FIG. 14 shows a view of the beam adjusting device from the arrow A shown in FIG.
  • FIG. 15 is a partial cross-sectional view of the uniaxial moving stage along the line BB shown in FIG.
  • FIG. 16 shows an example of a structure for mounting the off-axis parabolic mirror to the base plate.
  • FIG. 17 shows a modification of the beam adjustment apparatus of the sixth embodiment.
  • FIG. 18 shows a view of the beam adjusting device from the arrow C shown in FIG.
  • FIG. 19 shows a beam adjusting apparatus according to the seventh embodiment.
  • FIG. 20 schematically shows the external shape of the liquid cooling aperture shown in FIG.
  • FIG. 21 shows a detailed configuration example of the liquid cooling aperture shown in FIG.
  • FIG. 22 shows a first modification of the beam adjustment device according to the seventh embodiment.
  • FIG. 23 shows a second modification of the beam adjustment device according to the seventh embodiment.
  • 24 shows a view of the protective cover from the arrow E shown in FIG.
  • An LPP-type EUV light generation apparatus can generate EUV light by irradiating a target output from a target supply unit with pulsed laser light output from a laser apparatus and turning it into plasma.
  • the pulsed laser light output from the laser device may be irradiated to the target via the beam adjusting device and the laser focusing optical system.
  • the divergence angle of the pulse laser beam may be adjusted by a beam adjusting device.
  • the beam diameter and the emission direction may vary.
  • the pulsed laser light incident on the laser condensing optical system can deviate from the laser incident condition on the laser condensing optical system.
  • the pulse laser beam can be shielded by the element and the irradiation energy can be reduced, or the optical element can be damaged by the focusing of the pulse laser beam.
  • An example of the beam adjustment device is a first set including a first concave mirror and a first convex mirror, and a second set including a second concave mirror and a second convex mirror disposed downstream from the first set. And a set.
  • the arrangement order of the second concave mirror and the second convex mirror may be opposite to the arrangement order of the first concave mirror and the first convex mirror.
  • the beam adjusting device may change the distance between the first concave mirror and the first convex mirror and the distance between the second concave mirror and the second convex mirror in a direction to increase or decrease simultaneously. Good.
  • the beam adjusting device can reduce the variation of the beam diameter and the emission direction in adjusting the divergence angle of the pulse laser beam, and can maintain the irradiation condition of the pulse laser beam to the target.
  • FIG. 1 schematically shows a configuration of an exemplary LPP type EUV light generation apparatus.
  • the EUV light generation apparatus 1 may be used together with at least one laser apparatus 3 (a system including the EUV light generation apparatus 1 and the laser apparatus 3 is hereinafter referred to as an EUV light generation system 11).
  • the EUV light generation apparatus 1 may include a chamber 2 and a target supply unit 26 (eg, a droplet generator).
  • the chamber 2 may be sealable.
  • the target supply unit 26 may be attached to the wall of the chamber 2, for example.
  • the target material supplied from the target supply device may include, but is not limited to, tin, terbium, gadolinium, lithium, xenon, or a combination of any two or more thereof.
  • the wall of the chamber 2 may be provided with at least one through hole.
  • the pulse laser beam 32 output from the laser device 3 may pass through the through hole.
  • the chamber 2 may be provided with at least one window 21 through which the pulsed laser light 32 output from the laser device 3 passes.
  • an EUV collector mirror 23 having a spheroidal reflecting surface may be disposed.
  • the EUV collector mirror 23 has a first focal point and a second focal point.
  • a multilayer reflective film in which molybdenum and silicon are alternately laminated may be formed on the surface of the EUV collector mirror 23.
  • the EUV collector mirror 23 has a first focal point located at or near the plasma generation position (plasma generation region 25) and a second focal point defined by the specifications of the exposure apparatus. It is preferably arranged so as to be located at (intermediate focal point (IF) 292).
  • a through hole 24 through which the pulse laser beam 33 can pass may be provided at the center of the EUV collector mirror 23.
  • the EUV light generation apparatus 1 may include an EUV light generation control unit 5. Further, the EUV light generation apparatus 1 may include a target sensor 4. The target sensor 4 may detect at least one of the presence, trajectory, and position of the target. The target sensor 4 may have an imaging function.
  • the EUV light generation apparatus 1 may include a connection portion 29 that communicates the inside of the chamber 2 and the inside of the exposure apparatus 6.
  • a wall 291 in which an aperture is formed may be provided inside the connection portion 29.
  • the wall 291 may be arranged such that its aperture is located at the second focal position of the EUV collector mirror 23.
  • the EUV light generation apparatus 1 may include a laser beam traveling direction control unit 34, a laser beam focusing mirror 22, a target recovery unit 28 that recovers the target 27, and the like.
  • the laser beam traveling direction control unit 34 includes an optical element that defines the traveling direction of the laser beam and an actuator for adjusting the position or posture of the optical element in order to control the traveling direction of the laser beam. Good.
  • the pulsed laser beam 31 output from the laser device 3 may pass through the window 21 as the pulsed laser beam 32 through the laser beam traveling direction control unit 34 and enter the chamber 2.
  • the pulse laser beam 32 may travel along the at least one laser beam path into the chamber 2, be reflected by the laser beam collector mirror 22, and irradiate at least one target 27 as the pulse laser beam 33.
  • the target supply unit 26 may output the target 27 toward the plasma generation region 25 inside the chamber 2.
  • the target 27 is irradiated with at least one pulse included in the pulse laser beam 33.
  • the target 27 irradiated with the laser light is turned into plasma, and EUV light 251 is generated from the plasma.
  • the EUV light 251 may be reflected and collected by the EUV collector mirror 23.
  • the EUV light 252 reflected by the EUV collector mirror 23 may be output to the exposure apparatus 6 through the intermediate focal point 292.
  • a single target 27 may be irradiated with a plurality of pulses included in the pulse laser beam 33.
  • the EUV light generation controller 5 may control the entire EUV light generation system 11.
  • the EUV light generation controller 5 may process the image data of the target 27 imaged by the target sensor 4.
  • the EUV light generation controller 5 may perform at least one of, for example, control of the timing for outputting the target 27 and control of the output direction of the target 27.
  • the EUV light generation controller 5 performs, for example, at least one of control of the laser oscillation timing of the laser device 3, control of the traveling direction of the pulsed laser light 32, and control of the focusing position of the pulsed laser light 33. Also good.
  • the various controls described above are merely examples, and other controls may be added as necessary.
  • FIG. 2 is a partial cross-sectional view of an EUV light generation system in a comparative example.
  • the chamber 2 may be disposed on the clean room floor, and the laser device 3 may be disposed on the subfab floor.
  • the subfab floor may be located below the clean room floor.
  • the laser device 3 may be a CO 2 laser device that outputs pulsed laser light.
  • the laser beam traveling direction control unit 34 for controlling the traveling direction of the laser beam supplied from the laser device 3 into the chamber 2 may be disposed across the clean room floor and the subfab floor.
  • the laser device 3 may be fixed inside the housing 310 by a fixing device (not shown).
  • the casing 310 may be installed on the floor of the subfab floor by the air suspension 320.
  • the laser beam traveling direction control unit 34 may include a high reflection mirror 52A.
  • the high reflection mirror 52 ⁇ / b> A may be disposed on the optical path of the pulse laser beam output from the laser device 3.
  • the high reflection mirror 52A may reflect the pulse laser beam toward the optical path tube 520.
  • the laser beam traveling direction control unit 34 may guide the pulse laser beam reflected by the high reflection mirror 52A on the sub-fab floor to the clean room floor.
  • the laser beam traveling direction control unit 34 may include a hollow optical path tube 520.
  • a plurality of high reflection mirrors 52 ⁇ / b> B and 52 ⁇ / b> C may be arranged in the optical path tube 520.
  • the plurality of high reflection mirrors 52 ⁇ / b> B and 52 ⁇ / b> C can form a transmission path that guides the pulsed laser light from the laser device 3 to the chamber 2.
  • the chamber 2 may be fixed on the chamber reference member 10.
  • the chamber reference member 10 may be fixed on the floor of the clean room floor by the installation mechanism 9.
  • the chamber reference member 10 may accommodate an optical element group that constitutes a part of the laser beam traveling direction control unit 34.
  • the laser beam traveling direction control unit 34 may include a beam adjusting device 61, a beam monitor 66, a controller 58, a high reflection mirror 63, and a window 62.
  • the beam adjustment device 61, the beam monitor 66, the high reflection mirror 63, and the window 62 may be disposed in the chamber reference member 10.
  • the reflected light of the high reflection mirror 52C may enter the beam adjusting device 61.
  • the beam adjusting device 61 may be configured to adjust the beam parameters of the pulsed laser light.
  • the beam adjusting device 61 may include at least one mirror or at least one lens.
  • the high reflection mirror 63 may be arranged on the optical path of the pulse laser beam between the beam adjusting device 61 and the window 62.
  • the high reflection mirror 63 may reflect the pulse laser beam from the beam adjusting device 61 toward the window 62 and the plane mirror 64.
  • the window 62 may reflect a part of the pulse laser beam from the high reflection mirror 63 and transmit the other part.
  • the beam monitor 66 may be configured to measure the beam parameters of a pulsed laser with a small amount of light reflected by the window 62.
  • the beam monitor 66 may be configured to output a detection value for calculating a parameter related to the profile of the sample light on the light receiving surface to the controller 58.
  • the parameter may be, for example, a beam diameter and a beam center.
  • the controller 58 may be connected to the beam adjusting device 61, the beam monitor 66, and the EUV light generation controller 5.
  • the controller 58 may calculate a parameter value related to the profile of the sample light based on the detection value output from the beam monitor 66.
  • the controller 58 may feedback control the beam adjusting device 61 so that sample light having a profile within a predetermined range is incident on the light receiving surface of the beam monitor 66 using the parameter value.
  • the laser device 3 may output pulsed laser light.
  • the optical path of the pulsed laser light may reach the beam adjusting device 61 via the high reflection mirrors 52A to 52C.
  • the pulsed laser light adjusted by the beam adjusting device 61 may be reflected by the high reflection mirror 63.
  • the pulsed laser light reflected by the high reflection mirror 63 may pass through the window 62 and enter the flat mirror 64.
  • the window 62 may reflect a part of the pulse laser beam by the beam monitor 66.
  • the beam monitor 66 may output a detection value related to the pulse laser beam.
  • the detected value is input to the controller 58, and the controller 58 may calculate a parameter from the detected value and control the beam adjustment device 61 so that the parameter becomes a desired value.
  • the controller 58 may control the divergence angle of the pulse laser beam by the beam adjusting device 61 so that the beam diameter becomes a predetermined size.
  • the pulsed laser beam having a predetermined divergence angle may be reflected by the plane mirror 64 and the laser beam focusing mirror 65 and focused on the target 27 supplied to the plasma generation region 25.
  • the target 27 is turned into plasma by being irradiated with pulsed laser light, and radiation light including EUV light can be emitted from the plasma.
  • FIG. 3 shows a configuration of a beam adjustment device 61 of a comparative example.
  • the beam adjusting device 61 may include an off-axis paraboloid convex mirror 611, an off-axis paraboloid concave mirror 612, a plane mirror 613, and a uniaxial moving stage 615.
  • the uniaxial moving stage 615 may include a moving plate 616 that can move in the uniaxial direction on the uniaxial moving stage 615.
  • the moving plate 616 may move in the direction of the incident optical axis of the off-axis paraboloid concave mirror 612.
  • the off-axis paraboloid convex mirror 611, the flat mirror 613, and the uniaxial moving stage 615 may be fixed to the base plate 618.
  • the off-axis paraboloid concave mirror 612 may be fixed to the moving plate 616.
  • the controller 58 can adjust the position of the off-axis paraboloid concave mirror 612 in the incident optical axis direction by moving the moving plate 616.
  • FIG. 3B shows a state in which the moving plate 616 is brought closer to the off-axis paraboloid convex mirror 611 from the state of the beam adjusting device shown in FIG.
  • the controller 58 brings the off-axis paraboloid concave mirror 612 closer to the off-axis paraboloid convex mirror 611, the divergence angle of the pulsed laser light emitted from the beam adjusting device 61 can be increased. .
  • the optical axis direction and the beam diameter of the pulse laser beam emitted from the beam adjusting device 61 can also change.
  • FIG. 3 shows a state in which the moving plate 616 is separated from the off-axis paraboloid convex mirror 611 from the state of the beam adjusting device shown in (a).
  • the controller 58 moves the off-axis paraboloid concave mirror 612 away from the off-axis paraboloid convex mirror 611, the divergence angle of the pulsed laser light emitted from the beam adjusting device 61 can be reduced.
  • the optical axis direction and the beam diameter of the pulse laser beam emitted from the beam adjusting device 61 can also change.
  • the optical axis direction and the beam diameter of the pulsed laser light emitted from the beam adjusting device 61 can change greatly with the control of the divergence angle of the pulsed laser light. For this reason, adjustment of irradiation conditions can be complicated.
  • the controller 58 may adjust the incident optical axis to the plane mirror 64 by controlling the direction of the high reflection mirror 63.
  • the beam adjustment device 61 of the comparative example cannot correct the change in the beam diameter. Therefore, when the beam diameter is increased, the beam adjusting device 61 can cause a light amount decrease due to the vignetting of the optical element downstream from the beam adjusting device 61. When the beam diameter is reduced, the beam adjusting device 61 may cause damage to the optical element due to an increase in energy density.
  • FIG. 4 shows a configuration example of the EUV light generation system 11 according to the first embodiment.
  • the laser beam traveling direction control unit 34 may include a beam adjusting device 630 instead of the beam adjusting device 61 in the comparative example of FIG.
  • the laser beam traveling direction control unit 34 may further include a high reflection mirror 610 on the optical path of the pulse laser beam between the high reflection mirror 52C and the beam adjusting device 630.
  • the high reflection mirror 610 may reflect the pulse laser beam from the high reflection mirror 52 ⁇ / b> C toward the beam adjustment device 630.
  • FIG. 5A shows a configuration example of the beam adjusting device 630 of the present embodiment.
  • the beam adjustment device 630 may include two off-axis paraboloid concave mirrors 631 and 634 and two off-axis paraboloid convex mirrors 632 and 633.
  • the off-axis paraboloid concave mirror 631, the off-axis paraboloid convex mirror 632, the off-axis paraboloid convex mirror 633, and the off-axis paraboloid concave mirror 634 are arranged in this order. May be.
  • the off-axis paraboloid concave mirror 631 and the off-axis paraboloid convex mirror 632 constitute an upstream set
  • the off-axis paraboloid convex mirror 633 and the off-axis paraboloid concave mirror 634 constitute a downstream set. May be.
  • the arrangement order of the off-axis paraboloid concave mirror and the off-axis paraboloid convex mirror may be reversed between the upstream set and the downstream set.
  • the upstream side may be on the optical path of the pulse laser beam and close to the light source of the pulse laser beam.
  • the upstream side may be on the optical path of the pulse laser beam and close to the laser device 3.
  • the upstream side may be a side close to the oscillator (MO) 301 on the optical path of the pulse laser beam.
  • the downstream side may be a side near the plasma generation region 25 on the optical path of the pulse laser beam.
  • the beam adjustment device 630 may be configured such that the focal point F1 of the off-axis paraboloid concave mirror 631 and the focal point F2 of the off-axis paraboloid convex mirror 632 coincide. Furthermore, the beam adjustment device 630 may be configured such that the focal point F3 of the off-axis paraboloid convex mirror 633 and the focal point F4 of the off-axis paraboloid concave mirror 634 coincide. In the case where the focal points of the upstream group and the downstream group are aligned, if the pulse laser beam incident on the beam adjustment device 630 is parallel light, the pulse laser beam emitted from the beam adjustment device 630 is It can be parallel light.
  • the off-axis paraboloid concave mirrors 631 and 634 may have a reflection curved surface having a shape represented by the same function. That is, the functions that define the shapes of the reflecting surfaces of the off-axis parabolic concave mirrors 631 and 634 may be the same.
  • the off-axis paraboloid convex mirrors 632 and 633 may have reflection curved surfaces having a shape represented by the same function. That is, the functions that define the shapes of the reflecting surfaces of the off-axis paraboloid convex mirrors 632 and 633 may be the same.
  • the off-axis paraboloid concave mirrors 631 and 634 and the off-axis paraboloid convex mirrors 632 and 633 may be arranged so as to be parallel.
  • the off-axis paraboloid concave surface is such that the optical axis OA1 of the pulse laser beam incident on the off-axis paraboloid concave mirror 631 and the optical axis OA5 of the pulse laser beam emitted from the off-axis paraboloid concave mirror 634 coincide.
  • Mirrors 631 and 634 and off-axis paraboloid convex mirrors 632 and 633 may be disposed.
  • the off-axis paraboloid concave mirrors 631 and 634 and the off-axis paraboloid convex mirrors 632 and 633 may be arranged so that the optical axis OA5 of the pulsed laser light emitted from the mirror 634 is parallel.
  • the angle between the optical axis OA1 of the pulsed laser light incident on the off-axis paraboloid concave mirror 631 and the optical axis OA2 between the off-axis paraboloid concave mirror 631 and the off-axis paraboloid convex mirror 632 is , It may be a right angle. That is, the incident angle and reflection angle of the off-axis paraboloid concave mirrors 631 and 634 and the off-axis paraboloid convex mirrors 632 and 633 may be 45 °.
  • the incident angle and reflection angle of the mirror are defined between the incident optical axis and the outgoing optical axis, and may be half the angle between the incident optical axis and the outgoing optical axis.
  • the distance between the off-axis paraboloid convex mirror 632 and the off-axis paraboloid concave mirror 631 and the distance between the off-axis paraboloid convex mirror 633 and the off-axis paraboloid concave mirror 634 are the same. May be. These distances are represented by H.
  • the distance H between the off-axis paraboloid convex mirror 632 and the off-axis paraboloid concave mirror 631 is the point where the reflection surface of the off-axis paraboloid concave mirror 631 intersects the optical axis OA2 and the off-axis paraboloid.
  • the distance between the reflecting surface of the convex mirror 632 and the point where it intersects with the optical axis OA2 may be used.
  • the distance H between the off-axis paraboloid convex mirror 633 and the off-axis paraboloid concave mirror 634 is equal to the point where the reflection surface of the off-axis paraboloid convex mirror 633 intersects the optical axis OA4 and the off-axis paraboloid.
  • the distance between the point where the reflecting surface of the concave mirror 634 intersects the optical axis OA4 may be used.
  • the beam adjusting device 630 may further include a base plate 638 and a uniaxial moving stage 635.
  • the uniaxial moving stage 635 may include a moving plate 637 that can move on the uniaxial moving stage 635 in the uniaxial direction.
  • the uniaxial moving stage 635 may be a moving device that moves a mirror on the moving plate 637.
  • the single-axis moving stage 635 may be arranged on the base plate 638 and configured to move the moving plate 637 with respect to the base plate 638.
  • the moving plate 637 moves in the optical axis OA2 between the off-axis paraboloid concave mirror 631 and the off-axis paraboloid convex mirror 632, and off-axis paraboloid convex mirror 633 and off-axis paraboloid concave mirror 634. It may be parallel to the optical axis OA4 between.
  • the off-axis paraboloid concave mirrors 631 and 634 may be fixed to the base plate 638.
  • the off-axis paraboloid convex mirrors 632 and 633 may be fixed to the moving plate 637.
  • the uniaxial moving stage 635 includes a distance between the off-axis paraboloid convex mirror 632 and the off-axis paraboloid concave mirror 631, and the off-axis paraboloid convex mirror 633 and the off-axis paraboloid concave mirror 634. Can be changed in the direction of increasing or decreasing simultaneously.
  • the distance H between the off-axis paraboloid convex mirror 632 and the off-axis paraboloid concave mirror 631, and the off-axis paraboloid convex mirror 633 and off-axis can be increased or decreased simultaneously.
  • FIG. 5B shows a state in which the moving plate 637 is separated from the off-axis paraboloid concave mirrors 631 and 634 from the state of the beam adjusting device 630 shown in FIG. 5A.
  • FIG. 5C shows a state in which the moving plate 637 is brought close to the off-axis paraboloid concave mirrors 631 and 634 from the state of the beam adjusting device 630 shown in FIG. 5A.
  • the pulsed laser light incident on the off-axis parabolic concave mirror 631 may be parallel light.
  • the off-axis parabolic concave mirror 631 may reflect the pulsed laser light so that the pulsed laser light is collected at the focal point F1.
  • the focal point F1 may coincide with the focal point F2 of the off-axis paraboloid convex mirror 632. Therefore, the off-axis paraboloid convex mirror 632 can convert the pulsed laser light that is reflected by the off-axis paraboloid concave mirror 631 and travels so as to be condensed at the focal point F1 into parallel light and reflect it.
  • the beam diameter D2 of the pulse laser beam converted into parallel light by the off-axis paraboloid convex mirror 632 can be reduced to 1 / M12 times the incident beam diameter D1.
  • the focal length of the off-axis paraboloid concave mirror 631 is LF1
  • the focal length LF2 of the off-axis paraboloid convex mirror 632 may coincide with each other.
  • the magnification M12 can be LF1 / LF2.
  • the distance H between the off-axis paraboloid concave mirror 631 and the off-axis paraboloid convex mirror 632 can be LF2-LF1.
  • the pulsed laser light that has become parallel light having the beam diameter D2 can be reflected by the off-axis paraboloidal convex mirror 633 as pulsed laser light that diverges from the focal point F3.
  • the focal point F3 and the focal point F4 may coincide with each other. Therefore, the off-axis paraboloid concave mirror 634 converts the pulse laser light that diverges from the focal point F3 into parallel light having the optical axis OA5 substantially the same as the pulse laser light incident on the off-axis paraboloid concave mirror 631. Can transform and reflect.
  • the beam diameter of the pulse laser beam reflected by the off-axis paraboloid convex mirror 633 and incident on the off-axis paraboloid concave mirror 634 can be enlarged by a magnification M43.
  • the focal length LF3 of the off-axis paraboloid convex mirror 633 and the focal length of the off-axis paraboloid concave mirror 634 are LF4. As described above, the focal point F3 and the focal point F4 may coincide with each other.
  • M43 may be LF4 / LF3.
  • the magnification M12 and the magnification M43 can be the same. Therefore, the beam diameter D3 of the emitted light from the off-axis paraboloid concave mirror 634 can be the same as the beam diameter D1 and the pulse laser beam incident on the off-axis paraboloid concave mirror 631.
  • the uniaxial moving stage 635 may move the moving plate 637 with respect to the base plate 638 under the control of the controller 58.
  • the controller 58 can increase or decrease the distance H between the off-axis paraboloid concave mirror 631 and the off-axis paraboloid convex mirror 632 by moving the moving plate 637.
  • the distance H is the distance between the point where the reflecting surface of the off-axis parabolic concave mirror 631 intersects the optical axis OA2 and the point where the reflecting surface of the off-axis parabolic convex mirror 632 intersects the optical axis OA2. May be.
  • the distance between the off-axis paraboloid concave mirror 634 and the off-axis paraboloid convex mirror 633 can also be H.
  • the controller 58 can collect or diverge the light emitted from the beam adjusting device 630.
  • the controller 58 may increase the distance H by dL from the state of FIG. 5A.
  • the divergence angle of the pulsed laser light emitted from the off-axis parabolic concave mirror 634 can be reduced.
  • the beam diameter D3 of the pulse laser beam emitted from the off-axis paraboloid concave mirror 634 is substantially equal to the beam diameter D1 of the pulse laser beam incident on the off-axis paraboloid concave mirror 631 although it is slightly smaller. It can be.
  • optical axis OA1 of the pulsed laser light incident on the off-axis paraboloidal concave mirror 631 and the optical axis OA5 of the pulsed laser light emitted from the off-axis paraboloidal concave mirror 634 can coincide with each other.
  • the controller 58 may decrease the distance H by dL from the state of FIG. 5A.
  • the divergence angle of the pulsed laser light emitted from the off-axis parabolic concave mirror 634 can be increased.
  • the beam diameter D3 of the pulsed laser beam emitted from the off-axis paraboloidal concave mirror 634 is substantially the same as the beam diameter D1 of the pulsed laser beam incident on the off-axis paraboloidal concave mirror 631. It can be.
  • optical axis OA1 of the pulsed laser light incident on the off-axis paraboloidal concave mirror 631 and the optical axis OA5 of the pulsed laser light emitted from the off-axis paraboloidal concave mirror 634 can coincide with each other.
  • FIG. 6 shows a result of calculating a divergence angle (half angle) with respect to the moving distance dL of the moving plate 637 from the state of FIG. 5A in the configuration shown in FIGS. 5A to 5C.
  • the divergence angle can increase or decrease substantially linearly with respect to the distance dL.
  • the beam adjusting device 630 of the present embodiment can change the divergence angle of the emitted light while suppressing the beam diameter of the incident pulse laser light and the beam diameter fluctuation of the emitted pulse laser light. Further, the beam adjusting device 630 of the present embodiment can change the divergence angle of the emitted light while matching the optical axis of the incident pulse laser light and the optical axis of the emitted pulse laser light.
  • the divergence angle can be increased or decreased almost linearly with respect to the distance H, so the controller 58 can easily adjust the divergence angle of the emitted light from the beam adjustment device 630.
  • the beam adjustment device 630 of this embodiment can suppress changes in the beam shape by matching the focal points of the off-axis paraboloid concave mirror and the off-axis paraboloid convex mirror.
  • the beam adjustment device 630 of the present embodiment fixes the position of the off-axis paraboloid concave mirrors 631 and 634 and moves the position of the off-axis paraboloid convex mirrors 632 and 633, thereby adjusting the beam of the pulse laser beam.
  • the divergence angle can be changed without changing the incident position and the outgoing position in the device 630.
  • the off-axis paraboloid concave mirrors 631 and 634 and the off-axis paraboloid convex mirrors 632 and 633 have a reflection angle of 45 °, so that the off-axis paraboloid convex mirrors 632 and 633 are placed in the same direction. Move to adjust the divergence angle.
  • the reflection angle in the off-axis paraboloid concave mirrors 631 and 634 and the off-axis paraboloid convex mirrors 632 and 633 may not be 45 °.
  • the focus adjustment of the pulse laser beam to the target 27 is facilitated by the beam adjusting device 630 of the present embodiment, and appropriate irradiation conditions of the pulse laser beam to the target 27 can be maintained.
  • FIG. 7 shows a modification of the beam adjustment device 630 of the present embodiment.
  • the arrangement order of the off-axis paraboloid concave mirror and the off-axis paraboloid convex mirror in the beam adjusting device 630 may be reverse to the configuration shown in FIG. 5A.
  • the beam adjustment device 630 may include off-axis paraboloid convex mirrors 651 and 654 and off-axis paraboloid concave mirrors 652 and 653.
  • the off-axis paraboloid convex mirror 651, the off-axis paraboloid concave mirror 652, the off-axis paraboloid concave mirror 653, and the off-axis paraboloid convex mirror 654 are arranged in this order on the optical path of the pulse laser beam. May be.
  • Other components and operations may be the same as those shown in FIGS. 5A to 5C.
  • FIG. 8 shows a configuration example of the beam adjustment device 630 of the second embodiment.
  • the reflection angle of the mirror may not be 45 ° but may be less than 45 °.
  • the reflecting surface of the mirror may be a curved surface different from the off-axis paraboloid, for example, a spherical surface.
  • the beam adjusting device 630 may include spherical concave mirrors 661 and 664 and spherical convex mirrors 662 and 663.
  • the spherical concave mirror 661, the spherical convex mirror 662, the spherical convex mirror 663, and the spherical concave mirror 664 may be arranged in this order.
  • the spherical concave mirrors 661 and 664 may have reflection curved surfaces having a shape represented by the same function.
  • the spherical convex mirrors 662 and 663 may have a reflection curved surface having a shape represented by the same function.
  • the spherical concave mirror 661, the spherical convex mirror 662, and the spherical convex mirror 663 are arranged so that the optical axis OA1 of the pulsed laser light incident on the spherical concave mirror 661 and the optical axis OA5 of the pulsed laser light emitted from the spherical concave mirror 664 coincide.
  • spherical concave mirror 664 may be disposed.
  • the spherical surface is such that the optical axis OA2 between the spherical concave mirror 661 and the spherical convex mirror 662 and the optical axis OA4 between the spherical convex mirror 663 and the spherical concave mirror 664 are axisymmetric with respect to an axis perpendicular to the optical axis OA1.
  • the concave mirror 661, the spherical convex mirror 662, the spherical convex mirror 663, and the spherical concave mirror 664 may be arranged.
  • a spherical concave mirror 664 may be disposed.
  • the angle between the optical axis OA1 and the optical axis OA2 and the angle between the optical axis OA2 and the optical axis OA3 may each be less than 90 °, and further less than 40 °. That is, the reflection angles of the spherical concave mirror 661 and the spherical convex mirror 662 may be less than 45 °, and may be less than 20 °.
  • the angle between the optical axis OA3 and the optical axis OA4 and the angle between the optical axis OA4 and the optical axis OA5 may each be less than 90 °, and further less than 40 °. That is, the reflection angle of the spherical convex mirror 663 and the spherical concave mirror 664 may be less than 45 °, and may be less than 20 °.
  • the beam adjusting device 630 may further include a base plate 669 and two uniaxial moving stages 665 and 667.
  • the uniaxial moving stages 665 and 667 may include moving plates 666 and 668, respectively.
  • the uniaxial moving stages 665 and 667 may be moving devices that move the mirrors on the moving plates 666 and 668.
  • the uniaxial moving stages 665 and 667 may be disposed on the base plate 669.
  • the uniaxial moving stages 665 and 667 may be configured to move the moving plates 666 and 668 with respect to the base plate 669, respectively.
  • the moving direction of the moving plate 666 may be parallel to the optical axis OA2 between the spherical concave mirror 661 and the spherical convex mirror 662.
  • the moving direction of the moving plate 668 may be parallel to the optical axis OA4 between the spherical convex mirror 663 and the spherical concave mirror 664.
  • the spherical concave mirrors 661 and 664 may be fixed to the base plate 669.
  • the spherical convex mirror 662 may be fixed to the moving plate 666. As the moving plate 666 moves, the distance between the spherical convex mirror 662 and the spherical concave mirror 661 can increase or decrease.
  • the spherical convex mirror 663 may be fixed to the moving plate 668. As the moving plate 668 moves, the distance between the spherical convex mirror 663 and the spherical concave mirror 664 can increase or decrease.
  • the controller 58 may adjust the divergence angle of the pulsed laser light emitted from the beam adjusting device 630 by moving the moving plates 666 and 668.
  • the controller 58 may change the distance between the spherical concave mirror 661 and the spherical convex mirror 662 and the distance between the spherical convex mirror 663 and the spherical concave mirror 664 in a direction to increase or decrease simultaneously.
  • the controller 58 is configured so that the distance between the spherical concave mirror 661 and the spherical convex mirror 662 is the same as the distance between the spherical convex mirror 663 and the spherical concave mirror 664. 668 may be moved.
  • the change in the divergence angle due to the increase / decrease in the distance between the spherical concave mirror 661 and the spherical convex mirror 662 and the distance between the spherical convex mirror 663 and the spherical concave mirror 664 can be the same as in the first embodiment.
  • fluctuations in the beam diameter and the optical axis accompanying the adjustment of the divergence angle by the beam adjusting device 630 can be reduced.
  • the reflection angle of the mirror the change in the beam shape due to the reflection of the spherical mirror can be reduced.
  • FIG. 9 shows a configuration example of the beam adjustment device 630 of the third embodiment.
  • the beam adjustment device 630 may include off-axis paraboloid convex mirrors 681 and 684, spherical concave mirrors 682 and 683, and a plane mirror 685.
  • an off-axis paraboloid convex mirror 681, a spherical concave mirror 682, a plane mirror 685, a spherical concave mirror 683, and an off-axis paraboloid convex mirror 684 may be arranged in this order.
  • spherical concave mirrors 682 and 683 may be arranged instead of the off-axis paraboloid concave mirrors 652 and 653 as compared with the modification in the first embodiment. Furthermore, a plane mirror 685 may be disposed between the spherical concave mirrors 682 and 683 on the optical path of the pulse laser beam.
  • the spherical concave mirror 682 may reflect the incident pulse laser beam with a reflection angle of less than 45 °. The reflection angle may be less than 20 °.
  • the pulse laser beam reflected by the spherical concave mirror 682 may be incident on the plane mirror 685. The light reflected by the plane mirror 685 may enter the spherical concave mirror 683.
  • the spherical concave mirror 683 may reflect the incident pulse laser beam with a reflection angle of less than 45 °. The reflection angle may be less than 20 °.
  • the change in the divergence angle due to the movement of the moving plate 637 may be the same as in the first embodiment.
  • the reflection angle of the spherical concave mirrors 682 and 683 can be reduced to a small angle of less than 45 ° by the plane mirror 685. For this reason, the change in the beam shape due to the reflection of the spherical concave mirrors 682 and 683 can be reduced.
  • FIG. 10 illustrates a configuration example of the EUV light generation system 11 according to the fourth embodiment.
  • the EUV light generation system 11 may include a beam adjusting device in the laser device 3. Furthermore, the EUV light generation system 11 includes a beam adjusting device downstream of the laser device 3, and the configuration of these beam adjusting devices may be different.
  • the laser device 3 may include an oscillator (MO) 301, amplifiers (PA) 302 to 304, a beam adjustment device 350, a beam sampler 361, and a beam monitor 362.
  • MO oscillator
  • PA amplifiers
  • the oscillator 301 may be composed of one or a plurality of laser light sources.
  • the oscillator 301 may be configured to output pulsed laser light having a wavelength that can be amplified by the amplifiers 302 to 304.
  • the laser light source may be a quantum cascade laser. When a plurality of laser light sources are arranged, the optical paths of the pulsed laser beams from the respective laser light sources may be matched by a beam combiner (not shown).
  • the amplifiers 302 to 304 may be arranged on the optical path in the laser device 3 in this order. Each of the amplifiers 302 to 304 may amplify the incident pulse laser beam with a predetermined gain.
  • the beam sampler 361 may be disposed on the optical path in the laser device 3.
  • the beam sampler 361 may output a part of the pulsed laser light as sample light in a direction different from that of the pulsed laser light.
  • the sample light may be a part of the pulse laser light reflected by the beam sampler 361 or a part of the pulse laser light transmitted through the beam sampler 361.
  • the beam monitor 362 may be disposed at a position for receiving the sample light output from the beam sampler 361.
  • the beam monitor 362 may monitor the sample light profile.
  • the beam monitor 362 may be connected to the controller 58.
  • the beam adjusting device 350 may be disposed upstream of the beam sampler 361 in the optical path in the laser device 3.
  • the beam adjustment device 350 may be disposed between the amplifier 302 and the amplifier 303, and the beam sampler 361 may be disposed between the amplifier 303 and the amplifier 304.
  • the beam adjustment device 350 may be connected to the controller 58.
  • the beam adjusting device 350 may have the same configuration as that shown in FIG. 5A in the first embodiment. Specifically, the beam adjusting device 350 includes an off-axis paraboloid concave mirror 631, an off-axis paraboloid convex mirror 632, an off-axis paraboloid convex mirror 633, and an off-axis paraboloid concave mirror 634 in this order. It may also include a placed mirror.
  • the beam adjusting device 630 may have the same configuration as that of the modification example shown in FIG. Specifically, the beam adjustment device 630 includes an off-axis paraboloid convex mirror 651, an off-axis paraboloid concave mirror 652, an off-axis paraboloid concave mirror 653, and an off-axis paraboloid convex mirror 654 in this order. It may also include a placed mirror.
  • the pulsed laser light output from the oscillator 301 can be sequentially amplified by the amplifiers 302 to 304 and output from the laser device 3.
  • the beam sampler 361 may reflect a part of the pulsed laser light output from the amplifier 303 with the beam monitor 362 as sample light.
  • the beam monitor 362 may detect the profile of the sample light and transmit a detection value related to the profile to the controller 58.
  • the controller 58 may calculate a parameter of the pulse laser beam from the transmitted detection value.
  • the calculated parameter may be, for example, a beam diameter or a beam center position.
  • the controller 58 may control the beam adjustment device 350 so that the calculated parameter becomes a predetermined value.
  • the controller 58 may control the divergence angle of the pulse laser beam by the beam adjusting device 350 so that the beam diameter becomes a predetermined size.
  • the pulsed laser light having a predetermined divergence angle by the beam adjusting device 350 may be further amplified by the amplifier 304 and may enter the beam adjusting device 630 via the high reflection mirrors 52A to 52C and 610. Other operations may be the same as those in the first embodiment.
  • the beam diameter and the beam center position of the pulsed laser light in the next incident amplifier 303 can be adjusted.
  • the pulse laser beam is prevented from being shielded by the internal structure, and the pulse laser beam is condensed by the internal optical element, and the internal optical element is damaged. Can be suppressed.
  • the pulse laser beam can be once condensed.
  • the configuration shown in FIG. 5A can reduce the mirror size.
  • the structure shown in FIG. 7 can make the energy density irradiated to a mirror small.
  • the size of the beam adjusting device 350 in the laser device 3 can be reduced by applying the configuration of FIG. 5A to the beam adjusting device 350 in the laser device 3. Further, the energy of the pulse laser light between the oscillator 301 and the amplifier 302 and between the amplifiers can be smaller than that of the pulse laser light output from the laser device 3. Therefore, damage to the mirror of the beam adjusting device 350 can be avoided.
  • the energy density of the pulsed laser light incident on the mirror in the beam adjusting device 630 is reduced by applying the configuration of FIG. 7 to the beam adjusting device 630 disposed near the entrance of the chamber 2 downstream from the laser device 3. And damage to the mirror can be suppressed.
  • the arrangement positions of the beam adjusting device 350 and the beam sampler 361 may be different from the positions shown in FIG.
  • the beam adjustment device 350 may be disposed after the oscillator 301, and the beam sampler 361 may be disposed after the amplifier 304.
  • the spot position of the laser light incident on the reflection mirror 52A via the amplifiers 302 to 304 may be adjusted.
  • FIG. 11 shows a configuration example of the beam adjustment device 630 of the fifth embodiment.
  • the beam adjusting device 630 replaces the off-axis paraboloid concave mirror 631, the off-axis paraboloid convex mirror 632, the off-axis paraboloid convex mirror 633, and the off-axis paraboloid concave mirror 634 of the first embodiment,
  • An off-axis paraboloid concave mirror 691, an off-axis paraboloid convex mirror 692, an off-axis paraboloid convex mirror 693, and an off-axis paraboloid concave mirror 694 may be included.
  • the off-axis paraboloid concave mirror 691 and the off-axis paraboloid so that the focal point F1 of the off-axis paraboloid concave mirror 691 and the focal point F2 of the off-axis paraboloid convex mirror 692 coincide.
  • the convex mirror 692 may be arranged.
  • the off-axis paraboloid concave mirror 694 and the off-axis paraboloid convex mirror 693 are arranged so that the focal point F4 of the off-axis paraboloid concave mirror 694 and the focal point F3 of the off-axis paraboloid convex mirror 693 coincide. It may be arranged.
  • the magnification M12 by the off-axis paraboloid concave mirror 691 and the off-axis paraboloid convex mirror 692 can be expressed by LF1 / LF2.
  • the magnification M43 by the off-axis paraboloid concave mirror 694 and the off-axis paraboloid convex mirror 693 can be expressed as LF4 / LF3.
  • LF1 and LF4 are the focal lengths of the off-axis paraboloid concave mirrors 691 and 694, respectively.
  • LF2 and LF3 are focal lengths of the off-axis paraboloid convex mirrors 692 and 693, respectively.
  • the off-axis paraboloid concave mirrors 691 and 694 have reflecting surfaces having different function shapes, and the focal length LF4 of the off-axis paraboloid concave mirror 694 is longer than the focal length LF1 of the off-axis paraboloid concave mirror 691. Also good.
  • the off-axis paraboloid convex mirrors 692 and 693 have reflecting surfaces with different function shapes, and the focal length LF3 of the off-axis paraboloid convex mirror 693 is longer than the focal length LF2 of the off-axis paraboloid convex mirror 692. Also good.
  • the distance H2 between the off-axis paraboloid concave mirror 694 and the off-axis paraboloid convex mirror 693 is longer than the distance H1 between the off-axis paraboloid concave mirror 691 and the off-axis paraboloid convex mirror 692. May be.
  • Beam adjusting device 630 further includes flat mirrors 695 and 696, and includes optical axis OA1 of pulse laser light incident on off-axis paraboloid concave mirror 691 and pulse laser light emitted from off-axis paraboloid concave mirror 694.
  • the optical axis OA5 may be made coincident.
  • a plane mirror 695 may be disposed to face the off-axis paraboloid concave mirror 694.
  • the reflected light of the off-axis parabolic concave mirror 694 may enter the flat mirror 695.
  • a plane mirror 696 may be disposed to face the plane mirror 695.
  • the reflected light of the plane mirror 695 may enter the plane mirror 696.
  • the optical axis of the pulse laser beam reflected by the plane mirror 696 may coincide with the optical axis OA1.
  • the plane mirror 695 696 may not be arranged.
  • the relationship between LF1 and LF4 and the relationship between LF2 and LF3 may be reversed.
  • the beam adjustment apparatus of the present embodiment can operate in the same manner as the beam adjustment apparatus of the first embodiment. Similar to the beam adjusting device of the first embodiment, the beam adjusting device of the present embodiment maintains the beam diameter of the incident pulse laser beam and the beam diameter of the emitted pulse laser beam substantially the same, and the divergence angle of the emitted light. Can be changed.
  • the beam adjusting apparatus of the present embodiment uses two plane mirrors to change the divergence angle of the emitted light while matching the optical axis of the incident pulse laser light and the optical axis of the emitted pulse laser light. obtain.
  • the uniaxial moving stage 635 may be configured to move the moving plate 637 with respect to the base plate 638. That is, when the moving plate 637 moves, in the beam adjusting device 630, the off-axis paraboloid convex mirrors 632 and 633 fixed to the moving plate 637 can move with respect to the base plate 638. On the other hand, each of the off-axis paraboloid concave mirrors 631 and 634 and the off-axis paraboloid convex mirrors 632 and 633 can generate heat with irradiation of the pulsed laser beam.
  • a flow path or the like through which a coolant such as cooling water flows is formed in each of these off-axis paraboloid mirrors, and then each of these off-axis paraboloid mirrors. It is conceivable to install a cooling pipe through which the refrigerant flows. However, if the cooling pipes are simply attached to these off-axis paraboloid mirrors, the cooling pipes attached to the off-axis paraboloid convex mirrors 632 and 633 are cooled when the moving plate 637 moves. A force can be applied to pull or compress the tube.
  • the beam adjusting device 630 the divergence angle, the optical axis direction, and the beam diameter of the emitted pulsed laser light may not reach desired values, and the pulsed laser light may not be propagated appropriately.
  • off-axis paraboloid concave mirrors 631 and 634 and the off-axis paraboloid convex mirrors 632 and 633 included in the beam adjusting device 630 are also collectively referred to as off-axis paraboloid mirrors 631 to 634.
  • FIG. 12 is a perspective view of a configuration example of the beam adjusting device 630 according to the sixth embodiment.
  • FIG. 13 is a plan view of a configuration example of the beam adjustment device 630 according to the sixth embodiment.
  • the beam adjusting device 630 may further include a cooling pipe 640.
  • the cooling pipe 640 may be connected to an inflow port and an outflow port provided on the back surface of each of the off-axis parabolic mirrors 631 to 634.
  • the inlet provided in each of the off-axis paraboloid mirrors 631 to 634 may be an inlet for allowing the refrigerant flowing in the cooling pipe 640 to flow into the off-axis paraboloid mirrors 631 to 634.
  • the outlet provided in each of the off-axis parabolic mirrors 631 to 634 may be an outlet for allowing the refrigerant flowing in the off-axis parabolic mirrors 631 to 634 to flow into the cooling pipe 640.
  • the cooling pipe 640 may include a supply port 640a, a discharge port 640b, a spiral pipe part 640c, and a straight pipe part 640d.
  • the supply port 640a may be an inlet for supplying the refrigerant into the cooling pipe 640 from an external cooling device such as a chiller.
  • the discharge port 640b may be an outlet that discharges the refrigerant in the cooling pipe 640 to an external cooling device such as a chiller.
  • the spiral tube portion 640c may be a part of the cooling tube 640 that is formed in a substantially spiral shape.
  • the straight pipe portion 640d may be a part of the cooling pipe 640 that is formed in a substantially linear shape.
  • the cooling pipe 640 including the supply port 640a may connect the inflow port of the off-axis paraboloid concave mirror 631 into which the pulse laser beam is incident and an external cooling device.
  • the cooling tube 640 including the spiral tube portion 640 c may connect the outlet of the off-axis paraboloid concave mirror 631 and the inlet of the off-axis paraboloid convex mirror 632.
  • the cooling pipe 640 including the straight pipe portion 640 d may connect the outlet of the off-axis paraboloid convex mirror 632 and the inlet of the off-axis paraboloid convex mirror 633.
  • the cooling tube 640 including the spiral tube portion 640 c may connect the outlet of the off-axis paraboloid convex mirror 633 and the inlet of the off-axis paraboloid concave mirror 634.
  • the cooling pipe 640 including the discharge port 640b may connect the outlet of the off-axis paraboloid concave mirror 634 and an external cooling device.
  • FIG. 14 shows a view of the beam adjusting device 630 from the arrow A shown in FIG.
  • the spiral tube portion 640c of the cooling tube 640 may constitute a tension spring.
  • the spiral tube portion 640c may be formed in close contact winding, that is, a structure in which adjacent tubes are in close contact with each other.
  • the spiral tube portion 640c may be fixed to the moving plate 637 and the base plate 638 in a state where a tensile load is applied, and may be disposed along the moving direction of the moving plate 637.
  • the spiral start point 640e at one end of the spiral tube portion 640c may be fixed to the first movable piece 637a fixed to the moving plate 637.
  • the spiral start point 640f at the other end of the spiral tube portion 640c may be fixed to a bracket 639 described later fixed to the base plate 638.
  • FIG. 15 is a partial cross-sectional view of the uniaxial moving stage 635 along the line BB shown in FIG.
  • the pedestal 636 of the uniaxial moving stage 635 may include an actuator 636a and a spring 636b.
  • the actuator 636a may be connected to the second movable piece 637b fixed to the moving plate 637 and may be disposed along the moving direction of the moving plate 637.
  • the actuator 636a may expand and contract along the moving direction of the moving plate 637 and move the moving plate 637 via the second movable piece 637b.
  • the spring 636b may be connected to the opposite side of the second movable piece 637b from the actuator 636a, and may be disposed along the expansion / contraction direction of the actuator 636a and the spiral tube portion 640c.
  • the spring 636b is a compression spring, and the second movable piece 637b may be pressed against the actuator 636a by its elastic force.
  • FIG. 16 shows an example of a structure for attaching the off-axis parabolic mirrors 631 to 634 to the base plate 638.
  • the attachment structures of the off-axis parabolic mirrors 631 to 634 to the base plate 638 may be substantially the same.
  • FIG. 16 an example of a structure for attaching the off-axis parabolic concave mirror 634 to the base plate 638 will be described as a representative.
  • the off-axis paraboloid concave mirror 634 may be attached to the base plate 638 using a bracket 639.
  • the bracket 639 may fix the back surface of the off-axis paraboloid concave mirror 634 to the base plate 638.
  • the bracket 639 may be formed so as to cover the inflow port 634b and the outflow port 634c provided on the back surface of the off-axis paraboloid concave mirror 634.
  • the bracket 639 may include an adjuster 639a at a connection portion with the back surface of the off-axis paraboloid concave mirror 634.
  • the adjuster 639a is a mechanism that can adjust the position and posture of the off-axis paraboloidal concave mirror 634 in six degrees of freedom in three translation directions of X, Y, and Z and three rotation directions of Rx, Ry, and Rz. There may be.
  • the beam adjusting device 630 of the present embodiment when the moving plate 637 moves, the cooling pipe 640 can expand and contract along the moving direction of the moving plate 637. For this reason, the beam adjusting device 630 of the present embodiment suppresses the displacement and position of the off-axis paraboloidal mirrors 631 to 634 when the moving plate 637 moves, while maintaining the off-axis paraboloidal mirrors 631 to 631. 634 may be cooled.
  • the spiral start points 640e and 640f of the spiral tube portion 640c are fixed to the first movable piece 637a fixed to the moving plate 637 and the bracket 639 fixed to the base plate 638, respectively. May be. Therefore, in the beam adjusting device 630 of the present embodiment, even if the elastic force of the spiral tube portion 640c fluctuates when the spiral tube portion 640c expands and contracts, the variation in the reaction force is off-axis parabolic mirrors 631 to 634. It can be suppressed to be transmitted to.
  • the spring 636b can press the second movable piece 637b against the actuator 636a by its elastic force. For this reason, in the beam adjustment device 630 of the present embodiment, the posture and movement direction of the second movable piece 637b can be appropriately maintained even when the actuator 636a is expanded and contracted. In particular, the beam adjusting device 630 of this embodiment can suppress the second movable piece 637b from being separated from the actuator 636a due to the reaction force of the elastic force of the spiral tube portion 640c.
  • the beam adjusting device 630 of the present embodiment can adjust the optical relative position of each of the off-axis paraboloidal mirrors 631 to 634 with high accuracy.
  • the beam adjusting device 630 of the present embodiment can adjust the divergence angle, the optical axis direction, and the beam diameter of the emitted pulsed laser light with high accuracy while cooling the off-axis parabolic mirrors 631 to 634.
  • the beam adjustment device 630 of this embodiment can propagate the pulsed laser light more appropriately.
  • FIG. 17 shows a modification of the beam adjustment device 630 of the sixth embodiment.
  • 18 shows a view of the beam adjusting device 630 from the arrow C shown in FIG.
  • the beam adjusting device 630 may include a partition wall 641a.
  • the partition wall 641a may shield the components of the beam adjusting device 630 located near the optical path of the pulse laser beam from the pulse laser beam.
  • the partition wall 641a may shield the spiral tube portion 640c of the cooling tube 640, a part of the pedestal 636 of the uniaxial moving stage 635, and a part of the moving plate 637 from the pulsed laser light.
  • the beam adjustment apparatus 630 can suppress that the components formed using resin materials, such as the spiral tube part 640c, are exposed to the scattered light of pulsed laser light.
  • Other components may be the same as those shown in FIGS.
  • Embodiment 7 In the beam adjusting device 630, when adjusting the divergence angle and optical path of the pulse laser beam, the pulse laser beam reflected by the convex mirror such as the off-axis paraboloid convex mirror 633 may diffuse and leak outside. obtain.
  • the pulse laser beam reflected by the off-axis paraboloid convex mirror 633 is diffused and reflected from the reflection surface 634a of the off-axis paraboloid concave mirror 634 disposed downstream of the off-axis paraboloid convex mirror 633. Large beam diameters can result.
  • the pulse laser beam having a beam diameter larger than that of the reflecting surface 634a may enter and scatter into the components of the beam adjusting device 630, and may leak to the outside as scattered light. . Therefore, as shown in FIG. 19, the beam adjusting device 630 may be provided with a frame 642 for the base plate 638 for the purpose of suppressing the leakage of scattered light to the outside. For the purpose of providing the frame 642, the rigidity of the base plate 638 may be improved. However, for example, when pulsed laser light that has not been reflected by the reflecting surface 634a is incident on the components of the beam adjustment device 630 including the frame 642, the components of the beam adjustment device 630 may be heated and thermally deformed. obtain.
  • the positions and postures of the off-axis paraboloidal mirrors 631 to 634 may be shifted.
  • the divergence angle, the optical axis direction, and the beam diameter of the emitted pulsed laser light may not reach desired values, and the pulsed laser light may not be properly propagated.
  • the phenomenon that the pulse laser beam diffuses as described above can also occur in the pulse laser beam incident on the beam adjusting device 630 and the pulse laser beam emitted from the beam adjusting device 630.
  • the phenomenon that the pulse laser light is diffused as described above can also occur in the pulse laser light incident on the beam adjusting device 630.
  • the phenomenon that the pulsed laser light is diffused as described above can also occur in the pulsed laser light emitted from the beam adjusting device 630.
  • FIG. 19 shows a beam adjustment device 630 of the seventh embodiment.
  • the beam adjusting device 630 includes a frame 642 for the purpose as described above, and may further include liquid cooling apertures 643 to 645.
  • Each of the liquid-cooled apertures 643 to 645 may be an aperture that blocks the excess portion of the pulsed laser light that has been diffused greatly beyond the desired beam diameter while allowing the pulsed laser light to pass therethrough.
  • Each of the liquid cooling apertures 643 to 645 may be cooled by a liquid.
  • the liquid-cooled apertures 643 to 645 may be disposed on the optical path of the pulsed laser light and on the optical path where the above-described phenomenon that the pulsed laser light diffuses easily occurs.
  • the liquid cooling apertures 643 to 645 are pulsed laser light incident on the beam adjusting device 630, pulse laser light reflected by the off-axis paraboloid convex mirror 633, and pulse emitted from the beam adjusting device 630. Each may be arranged on the optical path of the laser beam.
  • the liquid cooling apertures 643 to 645 include the pulse laser beam entrance of the beam adjusting device 630, between the off-axis parabolic convex mirror 633 and the off-axis parabolic concave mirror 634, and the beam adjusting device 630. These may be arranged at the exit of the pulse laser beam. Between the off-axis paraboloid convex mirror 633 and the off-axis paraboloid concave mirror 634, the pulse laser beam reflected by the off-axis paraboloid convex mirror 633 is likely to travel while diffusing. It is preferred that a liquid cooling aperture 644 is arranged.
  • the beam adjusting device 630 may include at least one of the liquid cooling apertures 643 to 645.
  • the priority to be included in the beam adjusting device 630 is from the liquid cooling aperture 643 arranged at the most upstream side to the liquid cooling aperture 644 and the liquid cooling aperture 645 arranged at the most downstream side. The order may be higher. In the beam adjusting device 630, it may be because it is more difficult to generate an excessive portion of the pulsed laser light that is diffused greatly beyond the desired beam diameter when the liquid cooling aperture disposed upstream is included.
  • the beam adjusting device 630 may include a liquid cooling aperture disposed between the off-axis paraboloid concave mirror 631 and the off-axis paraboloid convex mirror 632, or the off-axis paraboloid convex mirror 632 A liquid cooling aperture disposed between the off-axis paraboloid convex mirror 633 may be included.
  • FIG. 20 schematically shows the outer shape of the liquid cooling apertures 643 to 645 shown in FIG.
  • FIG. 21 shows a detailed configuration example of the liquid cooling apertures 643 to 645 shown in FIG.
  • the liquid cooling apertures 643 to 645 may be substantially the same as each other. 20 and 21, the outer shape and configuration of the liquid cooling aperture 644 will be described as a representative.
  • the outer shape of the liquid cooling aperture 644 may be formed in a substantially cylindrical shape as shown in FIG.
  • a through hole 644 a may be formed in the liquid cooling aperture 644.
  • the through hole 644a may include an entrance port 644b, an exit port 644c, and a tapered surface 644d.
  • the incident port 644b may be one opening of the through-hole 644a and may be an entrance through which the pulsed laser light is incident on the liquid cooling aperture 644.
  • the exit port 644c may be the other opening of the through hole 644a and may be an exit for emitting the pulsed laser light from the liquid cooling aperture 644.
  • the entrance 644b and the exit 644c may be formed in a shape corresponding to the beam cross-sectional shape of the pulse laser beam. For example, when the beam cross-sectional shape of the pulse laser beam is substantially circular, the entrance 644b and the exit 644c may be formed in a substantially circular shape.
  • the diameter of the entrance 644b may be larger than the diameter D of the exit 644c.
  • the diameter D of the exit port 644c may be smaller than the diameter of the reflecting surface 634a of the off-axis paraboloid concave mirror 634 located downstream of the liquid cooling aperture 644.
  • the diameter D of the emission port 644c may be smaller than the diameter Dca of the clear aperture that is an effective reflection area of the reflection surface 634a.
  • the diameter D of the emission port 644c may be formed such that the beam diameter at the reflection surface 634a of the emitted pulsed laser light is equal to or less than the diameter Dca.
  • the liquid cooling aperture 644 blocks a surplus portion of the pulsed laser light that exceeds the desired beam diameter and is diffused more than the clear aperture of the off-axis paraboloidal concave mirror 634 downstream of the liquid cooling aperture 644. May be.
  • the tapered surface 644d may be a surface that receives an excess portion of the pulsed laser light that is greatly diffused beyond the desired beam diameter.
  • the tapered surface 644d may be formed to be inclined with respect to the optical axis of the pulsed laser light so as to reduce the power density of the pulsed laser light incident on the tapered surface 644d.
  • the tapered surface 644d is an inner peripheral surface of the through-hole 644a, and may be formed such that its inner diameter becomes smaller from the entrance port 644b toward the exit port 644c.
  • the tapered surface 644d may be formed such that the inclination angle ⁇ with respect to the surface substantially orthogonal to the optical axis direction of the pulsed laser light is 45 ° or more and 90 ° or less.
  • the tapered surface 644d may be formed so that the inclination angle ⁇ is approximately 60 °.
  • At least the tapered surface 644d of the surface of the liquid cooling aperture 644 may be subjected to a surface treatment that makes it easy to absorb the pulse laser beam.
  • the surface treatment for facilitating the absorption of the pulsed laser beam may be, for example, a black alumite treatment.
  • the liquid cooling aperture 644 may be formed using aluminum.
  • a coolant channel 644e through which a coolant such as cooling water flows may be formed inside the liquid cooling aperture 644.
  • the coolant channel 644e may be formed along the outer circumferential direction of the tapered surface 644d.
  • the refrigerant channel 644e may be connected to a cooling device (not shown). When the surplus portion of the pulsed laser beam that is greatly diffused beyond the desired beam diameter is incident on the tapered surface 644d, the liquid cooling aperture 644 can generate heat.
  • the liquid cooling aperture 644 can be cooled by heat exchange with the refrigerant flowing through the refrigerant flow path 644e.
  • the plurality of refrigerant flow paths formed in the plurality of liquid cooling apertures may be connected in series to each other. This may be because it is sufficient for the refrigerant flowing through the plurality of refrigerant channels to suppress overheating of the plurality of liquid cooling apertures.
  • liquid cooling aperture 644 may be fixed to the base plate 638 via the heat insulating member 646.
  • the heat insulating member 646 may be ceramics, for example.
  • each of the liquid cooling apertures 643 to 645 passes an excess portion of the pulsed laser light that is greatly diffused beyond the desired beam diameter while allowing the pulsed laser light to pass at the desired beam diameter. Can absorb. For this reason, the beam adjusting device 630 of this embodiment can suppress that the components of the beam adjusting device 630 including the frame 642 are heated and thermally deformed.
  • the beam adjusting device 630 is configured so that the coolant channels formed in the liquid cooling apertures 643 to 645 even if each of the liquid cooling apertures 643 to 645 generates heat due to the absorption of the excess portion of the pulse laser beam. It can be exhausted by the refrigerant flowing through.
  • each of the liquid cooling apertures 643 to 645 is fixed to the base plate 638 via the heat insulating member 646, so that the transmission from each of the liquid cooling apertures 643 to 645 to the base plate 638 is performed. Heat can be suppressed. For this reason, the beam adjusting device 630 of this embodiment can suppress that the components of the beam adjusting device 630 including the frame 642 are heated and thermally deformed.
  • the beam adjusting device 630 of this embodiment suppresses the displacement and position of the off-axis paraboloidal mirrors 631 to 634, and increases the divergence angle, optical axis direction, and beam diameter of the emitted pulsed laser light. Can be adjusted with accuracy.
  • the beam adjustment device 630 of this embodiment can propagate the pulsed laser light more appropriately.
  • FIG. 22 shows a first modification of the beam adjustment device 630 of the seventh embodiment.
  • the arrangement order of the off-axis paraboloid concave mirror and the off-axis paraboloid convex mirror in the beam adjusting device 630 may be reverse to the configuration shown in FIG.
  • the beam adjusting device 630 may include off-axis paraboloid convex mirrors 647 and 650 and off-axis paraboloid concave mirrors 648 and 649.
  • the off-axis paraboloid convex mirror 647, the off-axis paraboloid concave mirror 648, the off-axis paraboloid concave mirror 649, and the off-axis paraboloid convex mirror 650 are arranged in this order on the optical path of the pulse laser beam. May be. Between the off-axis paraboloid convex mirror 647 and the off-axis paraboloid concave mirror 648, the pulse laser beam reflected by the off-axis paraboloid convex mirror 647 is likely to travel while diffusing. It is preferred that a liquid cooling aperture 644 is arranged. Other components may be the same as those shown in FIGS.
  • FIG. 23 shows a second modification of the beam adjustment device 630 according to the seventh embodiment.
  • FIG. 24 shows a view of the protective cover 641b from the arrow E shown in FIG.
  • the beam adjusting device 630 may include a protective cover 641b.
  • the protective cover 641b may shield the frame 642 from the pulsed laser light.
  • the protective cover 641b may be disposed between the optical path of the pulse laser beam and the frame 642.
  • the surface of the protective cover 641b may be subjected to a surface treatment that makes it easier to absorb pulsed laser light.
  • the surface treatment for facilitating the absorption of the pulsed laser beam may be, for example, a black alumite treatment. When the black alumite treatment is performed, the protective cover 641b may be formed using aluminum.
  • the protective cover 641b may be fixed to the base plate 638 and the moving plate 637 via the heat insulating member 646. Alternatively, the protective cover 641b may be fixed to the frame 642 via the heat insulating member 646. As a result, the beam adjusting device 630 further suppresses the generation of heat from the frame 642 due to the unpredictable scattered light of the pulsed laser light, the radiated light from the plasma, the reflected light from the target 27, etc. entering the frame 642. obtain.
  • Other components may be the same as those shown in FIG.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment.
  • the configuration of another embodiment can be added to the configuration of one embodiment.
  • a part of the configuration of each embodiment may be deleted, added with another configuration, or replaced with another configuration.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • X-Ray Techniques (AREA)
  • Lasers (AREA)

Abstract

 極端紫外光生成装置におけるビーム調節装置は、パルスレーザ光の光路上に配置された、第1凹面ミラーと第1凸面ミラーとからなる第1組と、パルスレーザ光の光路上で第1組より下流において、第1凹面ミラーと第1凸面ミラーの配置順序とは逆に配置された、第2凹面ミラーと第2凸面ミラーとからなる第2組と、第1凹面ミラーと第1凸面ミラーとの間の距離、及び、第2凹面ミラーと第2凸面ミラーとの間の距離を、同時に増加または同時に減少させる方向に変化させる移動装置と、を含んでもよい。

Description

極端紫外光生成装置
 本開示は、極端紫外光生成装置に関する。
 近年、半導体プロセスの微細化に伴って、半導体プロセスの光リソグラフィにおける転写パターンの微細化が急速に進展している。次世代においては、70nm~45nmの微細加工、さらには32nm以下の微細加工が要求されるようになる。このため、例えば32nm以下の微細加工の要求に応えるべく、波長13nm程度の極端紫外(EUV)光を生成するための装置と縮小投影反射光学系(reduced projection reflective optics)とを組み合わせた露光装置の開発が期待されている。
 EUV光生成装置としては、ターゲット物質にレーザ光を照射することによって生成されるプラズマを用いたLPP(Laser Produced Plasma)方式の装置と、放電によって生成されるプラズマを用いたDPP(Discharge Produced Plasma)方式の装置と、軌道放射光を用いたSR(Synchrotron Radiation)方式の装置との3種類の装置が提案されている。
特開2010-135769号 特開2010-186735号 特開2012-175006号 米国特許出願公開第2010/0127191号 米国特許出願公開第2012/0085741号
概要
 本開示の一例は、レーザ装置から出力されたパルスレーザ光をターゲットに照射することによって、プラズマを生成し、極端紫外光を生成する極端紫外光生成装置であって、チャンバと、前記チャンバ内にターゲットを供給するターゲット供給部と、前記ターゲットに照射されるパルスレーザ光の光路上に配置され、ビームパラメータを調整するビーム調節装置と、を含み、前記ビーム調節装置は、前記パルスレーザ光の光路上に配置された、第1凹面ミラーと第1凸面ミラーとからなる第1組と、前記パルスレーザ光の光路上で前記第1組より下流において、前記第1凹面ミラーと前記第1凸面ミラーの配置順序とは逆に配置された、第2凹面ミラーと第2凸面ミラーとからなる第2組と、前記第1凹面ミラーと前記第1凸面ミラーとの間の距離、及び、前記第2凹面ミラーと前記第2凸面ミラーとの間の距離を、同時に増加または同時に減少させる方向に変化させる移動装置と、を含んでもよい。
 本開示のいくつかの実施形態を、単なる例として、添付の図面を参照して以下に説明する。
図1は、例示的なLPP方式のEUV光生成装置の構成を概略的に示す。 図2は、比較例におけるEUV光生成システムの一部断面図を示す。 図3は、比較例におけるビーム調節装置の構成及び動作を示す。 図4は、実施形態1に係るEUV光生成システムの構成例を示す。 図5Aは、実施形態1のビーム調節装置の構成例を示す。 図5Bは、図5Aに示すビーム調節装置の状態から、移動プレートを軸外放物面凹面ミラーから離した状態を示す。 図5Cは、図5Aに示すビーム調節装置の状態から、移動プレートを軸外放物面凹面ミラーに近づけた状態を示す。 図6は、図5Aの状態からの移動プレートの移動距離dLに対する発散角(半角)を計算した結果を示す。 図7は、実施形態1のビーム調節装置の変形例を示す。 図8は、実施形態2のビーム調節装置の構成例を示す。 図9は、実施形態3のビーム調節装置の構成例を示す。 図10は、実施形態4のEUV光生成システムの構成例を示す。 図11は、実施形態5のビーム調節装置の構成例を示す。 図12は、実施形態6のビーム調節装置の構成例における斜視図を示す。 図13は、実施形態6のビーム調節装置の構成例における平面図を示す。 図14は、図13に示された矢印Aからビーム調節装置を視た図を示す。 図15は、図13に示されたB-B線における1軸移動ステージの一部断面図を示す。 図16は、軸外放物面ミラーのベースプレートへの取り付け構造例を示す。 図17は、実施形態6のビーム調節装置の変形例を示す。 図18は、図17に示された矢印Cからビーム調節装置を視た図を示す。 図19は、実施形態7のビーム調節装置を示す。 図20は、図19に示された液冷アパーチャの外形を概略的に示す。 図21は、図19に示された液冷アパーチャの詳細な構成例を示す。 図22は、実施形態7のビーム調節装置の変形例1を示す。 図23は、実施形態7のビーム調節装置の変形例2を示す。 図24は、図23に示された矢印Eから保護カバーを視た図を示す。
実施形態
内容
1.概要
2.EUV光生成システムの全体説明
  構成
  動作
3.EUV光生成システムの比較例
  構成
  動作
  ビーム調節装置の構成
  ビーム調節装置の動作
  課題
4.実施形態1
  構成
  動作
  効果
  変形例
5.実施形態2
  構成
  動作
6.実施形態3
  構成
  動作
7.実施形態4
  構成
  動作
  効果
8.実施形態5
  構成
  動作
9.実施形態6
  構成
  動作及び効果
  変形例
10.実施形態7
  構成
  動作及び効果
  変形例
 以下、本開示の実施形態について、図面を参照しながら詳しく説明する。以下に説明される実施形態は、本開示のいくつかの例を示すものであって、本開示の内容を限定するものではない。また、各実施形態で説明される構成及び動作の全てが本開示の構成及び動作として必須であるとは限らない。なお、同一の構成要素には同一の参照符号を付して、重複する説明を省略する。
1.概要
 LPP方式のEUV光生成装置は、ターゲット供給部から出力したターゲットにレーザ装置から出力したパルスレーザ光を照射し、プラズマ化することによってEUV光を生成し得る。
 レーザ装置から出力されるパルスレーザ光は、ビーム調節装置及びレーザ集光光学系を介してターゲットに照射されてもよい。照射されるパルスレーザ光のエネルギ密度を調整するため、ビーム調節装置によってパルスレーザ光の発散角を調整してもよい。
 従来のビーム調節装置によってパルスレーザ光の発散角を調整すると、ビーム径及び出射方向が変動する場合があった。ビーム径及び出射方向が変動すると、レーザ集光光学系へ入射するパルスレーザ光が、レーザ集光光学系へのレーザ入射条件から外れ得る。これにより、素子によりパルスレーザ光が遮蔽されて照射エネルギが低下し得る、または、パルスレーザ光の集光により光学素子が損傷し得る。
 本開示における一例のビーム調節装置は、第1凹面ミラーと第1凸面ミラーとからなる第1組と、第1組より下流に配置され、第2凹面ミラーと第2凸面ミラーとからなる第2組と、を含んでもよい。第2凹面ミラーと第2凸面ミラーの配置順序は、第1凹面ミラーと第1凸面ミラーの配置順序と逆であってもよい。ビーム調節装置は、第1凹面ミラーと第1凸面ミラーとの間の距離、及び、第2凹面ミラーと第2凸面ミラーとの間の距離を、同時に増加または同時に減少させる方向に変化させてもよい。
 上記ビーム調節装置により、パルスレーザ光の発散角の調節においてビーム径及び出射方向の変動を小さくし、ターゲットへのパルスレーザ光の照射条件を維持し得る。
2.EUV光生成システムの全体説明
<構成>
 図1は、例示的なLPP方式のEUV光生成装置の構成を概略的に示す。EUV光生成装置1は、少なくとも1つのレーザ装置3と共に用いてもよい(EUV光生成装置1及びレーザ装置3を含むシステムを、以下、EUV光生成システム11と称する)。図1に示し、かつ以下に詳細に説明するように、EUV光生成装置1は、チャンバ2及びターゲット供給部26(例えばドロップレット発生器)を含んでもよい。チャンバ2は、密閉可能であってもよい。ターゲット供給部26は、例えばチャンバ2の壁に取り付けられてもよい。ターゲット供給装置から供給されるターゲットの材料は、スズ、テルビウム、ガドリニウム、リチウム、キセノン、又はそれらのうちのいずれか2つ以上の組合せを含んでもよいが、これらに限定されない。
 チャンバ2の壁には、少なくとも1つの貫通孔が設けられてもよい。その貫通孔をレーザ装置3から出力されたパルスレーザ光32が通過してもよい。チャンバ2には、レーザ装置3から出力されたパルスレーザ光32が透過する少なくとも1つのウインドウ21が設けられてもよい。チャンバ2の内部には、例えば、回転楕円面形状の反射面を有するEUV集光ミラー23が配置されてもよい。EUV集光ミラー23は、第1の焦点、及び第2の焦点を有する。EUV集光ミラー23の表面には例えば、モリブデンとシリコンとが交互に積層された多層反射膜が形成されていてもよい。EUV集光ミラー23は、例えば、その第1の焦点がプラズマ発生位置(プラズマ生成領域25)又はその近傍に位置し、その第2の焦点が露光装置の仕様によって規定される所望の集光位置(中間焦点(IF)292)に位置するように配置されるのが好ましい。EUV集光ミラー23の中央部には、パルスレーザ光33が通過することができる貫通孔24が設けられてもよい。
 EUV光生成装置1は、EUV光生成制御部5を含んでもよい。また、EUV光生成装置1は、ターゲットセンサ4を含んでもよい。ターゲットセンサ4は、ターゲットの存在、軌道、位置の少なくとも1つを検出してもよい。ターゲットセンサ4は、撮像機能を有していてもよい。
 更に、EUV光生成装置1は、チャンバ2内部と露光装置6内部とを連通する接続部29を含んでもよい。接続部29内部には、アパーチャが形成された壁291を設けてもよい。壁291は、そのアパーチャがEUV集光ミラー23の第2の焦点位置に位置するように配置してもよい。
 更に、EUV光生成装置1は、レーザ光進行方向制御部34、レーザ光集光ミラー22、ターゲット27を回収するターゲット回収部28などを含んでもよい。レーザ光進行方向制御部34は、レーザ光の進行方向を制御するために、レーザ光の進行方向を規定する光学素子と、この光学素子の位置または姿勢を調整するためのアクチュエータとを備えてもよい。
<動作>
 図1を参照すると、レーザ装置3から出力されたパルスレーザ光31は、レーザ光進行方向制御部34を経てパルスレーザ光32としてウインドウ21を透過してチャンバ2内に入射してもよい。パルスレーザ光32は、少なくとも1つのレーザ光経路に沿ってチャンバ2内に進み、レーザ光集光ミラー22で反射されて、パルスレーザ光33として少なくとも1つのターゲット27に照射されてもよい。
 ターゲット供給部26は、ターゲット27をチャンバ2内部のプラズマ生成領域25に向けて出力してもよい。ターゲット27には、パルスレーザ光33に含まれる少なくとも1つのパルスが照射される。レーザ光が照射されたターゲット27はプラズマ化し、そのプラズマからEUV光251が生成される。EUV光251は、EUV集光ミラー23によって反射されるとともに集光されてもよい。EUV集光ミラー23で反射されたEUV光252は、中間焦点292を通って露光装置6に出力されてもよい。なお、1つのターゲット27に、パルスレーザ光33に含まれる複数のパルスが照射されてもよい。
 EUV光生成制御部5は、EUV光生成システム11全体の制御を統括してもよい。EUV光生成制御部5はターゲットセンサ4によって撮像されたターゲット27のイメージデータ等を処理してもよい。EUV光生成制御部5は、例えば、ターゲット27を出力するタイミングの制御及びターゲット27の出力方向の制御の内の少なくとも1つを行ってもよい。EUV光生成制御部5は、例えば、レーザ装置3のレーザ発振タイミングの制御、パルスレーザ光32の進行方向の制御、及びパルスレーザ光33の集光位置の制御の内の少なくとも1つを行ってもよい。上述の様々な制御は単なる例示に過ぎず、必要に応じて他の制御を追加してもよい。
3.EUV光生成システムの比較例
<構成>
 図2は、比較例におけるEUV光生成システムの一部断面図を示す。チャンバ2は、クリーンルームフロアに配置され、レーザ装置3は、サブファブフロアに配置されてもよい。サブファブフロアはクリーンルームフロアの階下に位置してもよい。レーザ装置3は、パルスレーザ光を出力するCOレーザ装置であってもよい。
 レーザ装置3からチャンバ2内に供給されるレーザ光の進行方向を制御するためのレーザ光進行方向制御部34は、クリーンルームフロアとサブファブフロアとにまたがって配置されてもよい。
 レーザ装置3は、図示しない固定装置により筐体310内部に固定されていてもよい。筐体310はエアサスペンション320によってサブファブフロアの床上に設置されていてもよい。サブファブフロアにおいて、レーザ光進行方向制御部34は、高反射ミラー52Aを含んでもよい。高反射ミラー52Aは、レーザ装置3が出力するパルスレーザ光の光路上に配置されてよい。高反射ミラー52Aは、パルスレーザ光を光路管520に向けて反射してもよい。
 レーザ光進行方向制御部34は、サブファブフロアにおいて高反射ミラー52Aで反射されたパルスレーザ光を、クリーンルームフロアに導いてもよい。サブファブフロアとクリーンルームフロアとにまたがる領域において、レーザ光進行方向制御部34は、中空の光路管520を含んでもよい。光路管520内に、複数の高反射ミラー52B、52Cが配置されてもよい。複数の高反射ミラー52B、52Cは、レーザ装置3からのパルスレーザ光をチャンバ2まで導く伝送経路を構成し得る。
 クリーンルームフロアにおいて、チャンバ2は、チャンバ基準部材10上に固定されてもよい。チャンバ基準部材10は、設置機構9によってクリーンルームフロアの床上に固定されてもよい。チャンバ基準部材10は、レーザ光進行方向制御部34の一部を構成する光学素子群を収容してもよい。
 クリーンルームフロアにおいて、レーザ光進行方向制御部34は、ビーム調節装置61、ビームモニタ66、コントローラ58、高反射ミラー63、及びウインドウ62を含んでもよい。ビーム調節装置61、ビームモニタ66、高反射ミラー63、及びウインドウ62は、チャンバ基準部材10内に配置されてもよい。
 ビーム調節装置61には、高反射ミラー52Cの反射光が入射してもよい。ビーム調節装置61は、パルスレーザ光のビームパラメータを調節するよう構成されてもよい。ビーム調節装置61は、少なくとも1つのミラー或いは少なくとも1つのレンズを含んでもよい。
 高反射ミラー63は、ビーム調節装置61とウインドウ62との間において、パルスレーザ光の光路上に配置されてもよい。高反射ミラー63は、ビーム調節装置61からのパルスレーザ光を、ウインドウ62及び平面ミラー64に向けて反射してもよい。
 ウインドウ62は、高反射ミラー63からのパルスレーザ光の一部を反射し他を透過させてもよい。ビームモニタ66は、ウインドウ62で反射された僅かな光量のパルスレーザのビームパラメータを計測するよう構成されてもよい。ビームモニタ66は、受光面におけるサンプル光のプロファイルに関するパラメータを算出するための検出値を、コントローラ58へ出力するよう構成されてもよい。パラメータは、例えば、ビーム径及びビーム中心であってもよい。
 コントローラ58は、ビーム調節装置61、ビームモニタ66、及びEUV光生成制御部5に接続されてもよい。コントローラ58は、ビームモニタ66から出力される検出値に基づいて、サンプル光のプロファイルに関するパラメータ値を算出してもよい。
 コントローラ58は、上記パラメータ値を利用して、予め定めた範囲内のプロファイルを有するサンプル光がビームモニタ66の受光面に入射するように、ビーム調節装置61をフィードバック制御してもよい。
<動作>
 レーザ装置3は、パルスレーザ光を出力してもよい。パルスレーザ光の光路は、高反射ミラー52A~52Cを経て、ビーム調節装置61に至ってもよい。ビーム調節装置61により調節されたパルスレーザ光は、高反射ミラー63で反射されてもよい。
 高反射ミラー63で反射されたパルスレーザ光は、ウインドウ62を透過して平面ミラー64に入射してもよい。ウインドウ62は、パルスレーザ光の一部をビームモニタ66で反射してもよい。
 ビームモニタ66は、パルスレーザ光に関する検出値を出力してもよい。検出値はコントローラ58に入力され、コントローラ58は、検出値からパラメータを算出し、パラメータが所望の値となるよう、ビーム調節装置61を制御してもよい。コントローラ58は、例えば、ビーム径が所定の大きさとなるように、ビーム調節装置61によってパルスレーザ光の発散角を制御してもよい。
 所定の発散角のパルスレーザ光は、平面ミラー64及びレーザ光集光ミラー65で反射されて、プラズマ生成領域25に供給されるターゲット27に集光されてもよい。ターゲット27は、パルスレーザ光に照射されることによってプラズマ化し、当該プラズマからEUV光を含む放射光が放射され得る。
<ビーム調節装置の構成>
 図3は、比較例のビーム調節装置61の構成を示す。図3における(a)に示すように、ビーム調節装置61は、軸外放物面凸面ミラー611、軸外放物面凹面ミラー612、平面ミラー613、及び1軸移動ステージ615を含んでもよい。1軸移動ステージ615は、1軸移動ステージ615上を1軸方向に移動可能な移動プレート616を含んで構成されてもよい。移動プレート616は、軸外放物面凹面ミラー612の入射光軸方向において移動してもよい。
 軸外放物面凸面ミラー611、平面ミラー613及び1軸移動ステージ615は、ベースプレート618に固定されてもよい。軸外放物面凹面ミラー612は、移動プレート616に固定されてもよい。
<ビーム調節装置の動作>
 コントローラ58は、移動プレート616を移動することで、軸外放物面凹面ミラー612の入射光軸方向における位置を調節し得る。図3における(b)は、(a)に示すビーム調節装置の状態から、移動プレート616を軸外放物面凸面ミラー611に近づけた状態を示す。(b)に示すように、コントローラ58が軸外放物面凹面ミラー612を軸外放物面凸面ミラー611に近付けると、ビーム調節装置61から出射されるパルスレーザ光の発散角は大きくなり得る。しかし、同時にビーム調節装置61から出射されるパルスレーザ光の光軸方向及びビーム径も変化し得る。
 また、図3における(c)は、(a)に示すビーム調節装置の状態から、移動プレート616を軸外放物面凸面ミラー611から離した状態を示す。(c)に示すように、コントローラ58が軸外放物面凹面ミラー612を軸外放物面凸面ミラー611から遠ざけると、ビーム調節装置61から出射されるパルスレーザ光の発散角は小さくなり得る。しかし、同時にビーム調節装置61から出射されるパルスレーザ光の光軸方向及びビーム径も変化し得る。
<課題>
 上述のように、比較例のビーム調節装置61において、パルスレーザ光の発散角の制御に伴って、ビーム調節装置61から出射されるパルスレーザ光の光軸方向及びビーム径が大きく変化し得る。このため、照射条件の調整が複雑となり得る。
 光軸方向の変化を補正するために、コントローラ58は、高反射ミラー63の向きを制御して、平面ミラー64への入射光軸を調節してもよい。しかし、比較例のビーム調節装置61は、ビーム径の変化を補正できない。そのため、ビーム径が大きくなる場合には、ビーム調節装置61は、ビーム調節装置61より下流の光学素子のケラレにより光量低下を生じさせ得る。ビーム径が小さくなる場合は、ビーム調節装置61は、エネルギ密度増加による光学素子へのダメージを生じさせ得る。
4.実施形態1
<構成>
 図4は、実施形態1に係るEUV光生成システム11の構成例を示す。以下において、図2に示す比較例との相違点を主に説明する。クリーンルームフロアにおいて、レーザ光進行方向制御部34は、図2の比較例におけるビーム調節装置61に代えて、ビーム調節装置630を含んでもよい。
 レーザ光進行方向制御部34は、さらに、高反射ミラー52Cとビーム調節装置630との間において、パルスレーザ光の光路上に、高反射ミラー610を含んでもよい。高反射ミラー610は、高反射ミラー52Cからのパルスレーザ光を、ビーム調節装置630に向けて反射してもよい。
 図5Aは、本実施形態のビーム調節装置630の構成例を示す。ビーム調節装置630は、2つの軸外放物面凹面ミラー631、634と2つの軸外放物面凸面ミラー632、633とを含んでもよい。パルスレーザ光の光路上において、軸外放物面凹面ミラー631、軸外放物面凸面ミラー632、軸外放物面凸面ミラー633、及び軸外放物面凹面ミラー634は、この順序で配置されてもよい。
 軸外放物面凹面ミラー631及び軸外放物面凸面ミラー632は上流側の組を構成し、軸外放物面凸面ミラー633及び軸外放物面凹面ミラー634は下流側の組を構成してもよい。上流側の組と下流側の組との間において、軸外放物面凹面ミラーと軸外放物面凸面ミラーの配置順序が逆であってもよい。
 ここで、上流側とは、パルスレーザ光の光路上であって、パルスレーザ光の光源に近い側であってもよい。実施形態1~3、5~7においては、上流側とは、パルスレーザ光の光路上であって、レーザ装置3に近い側であってもよい。実施形態4においては、上流側とは、パルスレーザ光の光路上であって、発振器(MO)301に近い側であってもよい。また、下流側とは、パルスレーザ光の光路上であって、プラズマ生成領域25に近い側であってよい。
 図5Aの状態において、軸外放物面凹面ミラー631の焦点F1と軸外放物面凸面ミラー632の焦点F2とが一致するように、ビーム調節装置630は構成されてもよい。さらに、軸外放物面凸面ミラー633の焦点F3と軸外放物面凹面ミラー634の焦点F4とが一致するように、ビーム調節装置630は構成されてもよい。上流側の組、下流側の組で各々焦点が一致するような配置である場合、ビーム調節装置630に入射するパルスレーザ光が平行光であれば、ビーム調節装置630から出射するパルスレーザ光は平行光であり得る。
 軸外放物面凹面ミラー631、634は、同一の関数で表される形状の反射曲面を有してもよい。つまり、軸外放物面凹面ミラー631、634の反射面の形状を規定する関数は同一であってもよい。軸外放物面凸面ミラー632、633は、同一の関数で表される形状の反射曲面を有してもよい。つまり、軸外放物面凸面ミラー632、633の反射面の形状を規定する関数は同一であってもよい。
 軸外放物面凹面ミラー631と軸外放物面凸面ミラー632との間の光軸OA2と、軸外放物面凸面ミラー633と軸外放物面凹面ミラー634と間の光軸OA4が平行となるよう、軸外放物面凹面ミラー631、634及び軸外放物面凸面ミラー632、633は配置されてもよい。
 軸外放物面凹面ミラー631に入射するパルスレーザ光の光軸OA1と、軸外放物面凹面ミラー634から出射するパルスレーザ光の光軸OA5とが一致するよう、軸外放物面凹面ミラー631、634及び軸外放物面凸面ミラー632、633は配置されてもよい。
 軸外放物面凸面ミラー632と軸外放物面凸面ミラー633間との光軸OA3、軸外放物面凹面ミラー631に入射するパルスレーザ光の光軸OA1、及び軸外放物面凹面ミラー634から出射するパルスレーザ光の光軸OA5が平行となるよう、軸外放物面凹面ミラー631、634及び軸外放物面凸面ミラー632、633は配置されてもよい。
 軸外放物面凹面ミラー631に入射するパルスレーザ光の光軸OA1と、軸外放物面凹面ミラー631と軸外放物面凸面ミラー632との間の光軸OA2との間の角度は、直角であってもよい。つまり、軸外放物面凹面ミラー631、634及び軸外放物面凸面ミラー632、633の入射角及び反射角は、45°であってもよい。ミラーの入射角及び反射角は、入射光軸と出射光軸との間で定義され、入射光軸と出射光軸の間の角度の半分であり得る。
 軸外放物面凸面ミラー632と軸外放物面凹面ミラー631との間の距離と軸外放物面凸面ミラー633と軸外放物面凹面ミラー634との間の距離とは同一であってもよい。これらの距離はHで表わされている。軸外放物面凸面ミラー632と軸外放物面凹面ミラー631との間の距離Hは、軸外放物面凹面ミラー631の反射面が光軸OA2と交差する点と軸外放物面凸面ミラー632の反射面が光軸OA2と交差する点との間の距離であってもよい。軸外放物面凸面ミラー633と軸外放物面凹面ミラー634との間の距離Hは、軸外放物面凸面ミラー633の反射面が光軸OA4と交差する点と軸外放物面凹面ミラー634の反射面が光軸OA4と交差する点との間の距離であってもよい。
 ビーム調節装置630は、さらに、ベースプレート638及び1軸移動ステージ635を含んでもよい。1軸移動ステージ635は、1軸移動ステージ635上を1軸方向において移動可能な移動プレート637含んでもよい。1軸移動ステージ635は、移動プレート637上のミラーを移動する移動装置であり得る。
 1軸移動ステージ635は、ベースプレート638上に配置され、ベースプレート638に対して移動プレート637を移動できるよう構成されてもよい。移動プレート637の移動方向は、軸外放物面凹面ミラー631と軸外放物面凸面ミラー632との間の光軸OA2及び軸外放物面凸面ミラー633と軸外放物面凹面ミラー634と間の光軸OA4に対して平行であってもよい。
 軸外放物面凹面ミラー631、634はベースプレート638に固定されてもよい。軸外放物面凸面ミラー632、633は、移動プレート637に固定されてもよい。1軸移動ステージ635は、軸外放物面凸面ミラー632と軸外放物面凹面ミラー631との間の距離、及び、軸外放物面凸面ミラー633と軸外放物面凹面ミラー634との間の距離を、同時に増加または同時に減少させる方向に変化させ得る。
 具体的には、移動プレート637の移動に伴い、軸外放物面凸面ミラー632と軸外放物面凹面ミラー631との間の距離H、及び、軸外放物面凸面ミラー633と軸外放物面凹面ミラー634との間の距離Hが、同時に増減し得る。
<動作>
 図5A~図5Cを参照して、ビーム調節装置630の動作を説明する。図5Bは、図5Aに示すビーム調節装置630の状態から、移動プレート637を軸外放物面凹面ミラー631、634から離した状態を示す。図5Cは、図5Aに示すビーム調節装置630の状態から、移動プレート637を軸外放物面凹面ミラー631、634に近づけた状態を示す。
 図5Aにおいて、軸外放物面凹面ミラー631に入射するパルスレーザ光は平行光でよい。軸外放物面凹面ミラー631は、パルスレーザ光が焦点F1にて集光されるように、パルスレーザ光を反射してもよい。
 上述のように、焦点F1は、軸外放物面凸面ミラー632の焦点F2と一致してもよい。したがって、軸外放物面凸面ミラー632は、軸外放物面凹面ミラー631で反射され焦点F1に集光するように進行するパルスレーザ光を、平行光に変換して反射し得る。軸外放物面凸面ミラー632によって平行光に変換されたパルスレーザ光のビーム径D2は、入射ビーム径D1の1/M12倍に縮小され得る。
 軸外放物面凹面ミラー631の焦点距離をLF1、軸外放物面凸面ミラー632の焦点距離LF2とする。上述のように、焦点F1と焦点F2とは一致してもよい。倍率M12は、LF1/LF2であり得る。また、軸外放物面凹面ミラー631と軸外放物面凸面ミラー632との間の距離Hは、LF2-LF1であり得る。
 ビーム径D2の平行光となったパルスレーザ光は、軸外放物面凸面ミラー633によって、焦点F3から発散するようなパルスレーザ光として反射され得る。上述のように、焦点F3と焦点F4とは一致してもよい。したがって、軸外放物面凹面ミラー634は、焦点F3から発散するようなパルスレーザ光を、軸外放物面凹面ミラー631に入射したパルスレーザ光と略同一の光軸OA5を持つ平行光に変換して反射し得る。
 軸外放物面凸面ミラー633で反射され軸外放物面凹面ミラー634に入射するパルスレーザ光のビーム径は、倍率M43で拡大され得る。軸外放物面凸面ミラー633の焦点距離LF3、軸外放物面凹面ミラー634の焦点距離をLF4とする。上述のように、焦点F3と焦点F4とは一致してもよい。
 M43は、LF4/LF3であり得る。LF1=LF4、LF2=LF3である場合、倍率M12と倍率M43は同一となり得る。したがって、軸外放物面凹面ミラー634からの出射光のビーム径D3は、軸外放物面凹面ミラー631に入射したパルスレーザ光とビーム径D1と同一であり得る。
 コントローラ58からの制御により、1軸移動ステージ635は、ベースプレート638に対して移動プレート637を移動してもよい。コントローラ58は、移動プレート637を移動することで、軸外放物面凹面ミラー631と軸外放物面凸面ミラー632との間の距離Hを増減させ得る。距離Hは、軸外放物面凹面ミラー631の反射面が光軸OA2と交差する点と軸外放物面凸面ミラー632の反射面が光軸OA2と交差する点との間の距離であってもよい。軸外放物面凹面ミラー634と軸外放物面凸面ミラー633との間の距離もHでありえる。距離Hを変化させることで、コントローラ58は、ビーム調節装置630からの出射光を、集光又は発散させ得る。
 例えば、図5Bに示すように、コントローラ58は、図5Aの状態から距離HをdLだけ増加させてもよい。軸外放物面凹面ミラー634から出射するパルスレーザ光の発散角は減少し得る。軸外放物面凹面ミラー631に入射したパルスレーザ光のビーム径D1に対して、軸外放物面凹面ミラー634から出射するパルスレーザ光のビーム径D3は、わずかに小さくなるものの略等しい径であり得る。さらに、軸外放物面凹面ミラー631に入射したパルスレーザ光の光軸OA1と、軸外放物面凹面ミラー634から出射するパルスレーザ光の光軸OA5とは、一致し得る。
 また、例えば、図5Cに示すように、コントローラ58は、図5Aの状態から距離HをdLだけ減少させてもよい。軸外放物面凹面ミラー634から出射するパルスレーザ光の発散角は増加し得る。軸外放物面凹面ミラー631に入射したパルスレーザ光のビーム径D1に対して、軸外放物面凹面ミラー634から出射するパルスレーザ光のビーム径D3は、わずかに大きくなるものの略等しい径であり得る。さらに、軸外放物面凹面ミラー631に入射したパルスレーザ光の光軸OA1と、軸外放物面凹面ミラー634から出射するパルスレーザ光の光軸OA5とは、一致し得る。
 図6は、図5A~図5Cに示す構成において、図5Aの状態からの移動プレート637の移動距離dLに対する発散角(半角)を計算した結果を示す。図6が示すように、発散角は距離dLに対してほぼ線形に増減し得る。
<効果>
 本実施形態のビーム調節装置630は、入射するパルスレーザ光のビーム径と出射するパルスレーザ光のビーム径変動を抑制しつつ、出射光の発散角を変化させ得る。さらに、本実施形態のビーム調節装置630は、入射するパルスレーザ光の光軸と出射するパルスレーザ光の光軸を一致させつつ、出射光の発散角を変化させ得る。
 本実施形態のビーム調節装置630において、発散角は距離Hに対してほぼ線形に増減し得るため、コントローラ58は、ビーム調節装置630からの出射光の発散角を容易に調整し得る。本実施形態のビーム調節装置630は、軸外放物面凹面ミラーと軸外放物面凸面ミラーの焦点を一致させることで、ビーム形状の変化を抑制し得る。
 本実施形態のビーム調節装置630は、軸外放物面凹面ミラー631、634の位置を固定し、軸外放物面凸面ミラー632、633の位置を移動することで、パルスレーザ光のビーム調節装置630における入射位置及び出射位置を変化させることなく発散角を変化させ得る。
 本実施形態において、軸外放物面凹面ミラー631、634及び軸外放物面凸面ミラー632、633における反射角は45°であるので、軸外放物面凸面ミラー632、633を同一方向に移動して発散角を調節し得る。ただし、軸外放物面凹面ミラー631、634及び軸外放物面凸面ミラー632、633における反射角は45°でなくてもよい。
 以上のように、本実施形態のビーム調節装置630によってターゲット27へのパルスレーザ光のフォーカス調整が容易となり、ターゲット27へのパルスレーザ光の適切な照射条件を保ち得る。
<変形例>
 図7は、本実施形態のビーム調節装置630の変形例を示す。ビーム調節装置630における軸外放物面凹面ミラー及び軸外放物面凸面ミラーの配置順序は、図5Aに示す構成と逆であってもよい。
 具体的には、ビーム調節装置630は、軸外放物面凸面ミラー651、654及び軸外放物面凹面ミラー652、653を含んでもよい。軸外放物面凸面ミラー651、軸外放物面凹面ミラー652、軸外放物面凹面ミラー653、及び軸外放物面凸面ミラー654は、パルスレーザ光の光路上において、この順序で配置されてもよい。他の構成要素及び動作は、図5A~図5Cに示す構成と同様でよい。
5.実施形態2
<構成>
 図8は、実施形態2のビーム調節装置630の構成例を示す。以下において、実施形態1との相違点を主に説明する。ビーム調節装置630において、ミラーの反射角は45°でなくてもよく、45°未満であってもよい。ミラーの反射面は軸外放物面と異なる曲面であってもよく、例えば、球面であってもよい。
 具体的には、図8に示すように、ビーム調節装置630は、球面凹面ミラー661、664及び球面凸面ミラー662、663を含んでもよい。パルスレーザ光の光路上において、球面凹面ミラー661、球面凸面ミラー662、球面凸面ミラー663、及び球面凹面ミラー664は、この順序で配置されてもよい。球面凹面ミラー661、664は、同一の関数で表される形状の反射曲面を有してもよい。球面凸面ミラー662、663は、同一の関数で表される形状の反射曲面を有してもよい。
 球面凹面ミラー661に入射するパルスレーザ光の光軸OA1と、球面凹面ミラー664から出射するパルスレーザ光の光軸OA5とが一致するよう、球面凹面ミラー661、球面凸面ミラー662、球面凸面ミラー663、及び球面凹面ミラー664は配置されてもよい。
 球面凹面ミラー661と球面凸面ミラー662との間の光軸OA2と、球面凸面ミラー663と球面凹面ミラー664と間の光軸OA4が、光軸OA1に垂直な軸について線対称となるよう、球面凹面ミラー661、球面凸面ミラー662、球面凸面ミラー663、及び球面凹面ミラー664は配置されてもよい。球面凸面ミラー662と軸外放物面凸面ミラー633間との光軸OA3、光軸OA1、及び光軸OA5が平行となるよう、球面凹面ミラー661、球面凸面ミラー662、球面凸面ミラー663、及び球面凹面ミラー664は配置されてもよい。
 光軸OA1と光軸OA2との間の角度及び光軸OA2と光軸OA3との間の角度は、それぞれ、90°未満であってもよく、さらに40°未満であってもよい。つまり、球面凹面ミラー661及び球面凸面ミラー662の反射角は、45°未満であってもよく、さらに20°未満であってもよい。
 光軸OA3と光軸OA4との間の角度及び光軸OA4と光軸OA5との間の角度は、それぞれ、90°未満であってもよく、さらに40°未満であってもよい。つまり、球面凸面ミラー663及び球面凹面ミラー664の反射角は、45°未満であってもよく、さらに20°未満であってもよい。
 ビーム調節装置630は、さらに、ベースプレート669及び2つの1軸移動ステージ665、667を含んでもよい。1軸移動ステージ665、667は、それぞれ、移動プレート666、668を含んでもよい。1軸移動ステージ665、667は、移動プレート666、668上のミラーを移動する移動装置であり得る。
 1軸移動ステージ665、667は、ベースプレート669上に配置されてもよい。1軸移動ステージ665、667は、それぞれ、ベースプレート669に対して移動プレート666、668を移動できるよう構成されてもよい。移動プレート666の移動方向は、球面凹面ミラー661と球面凸面ミラー662との間の光軸OA2に対して平行であってもよい。移動プレート668の移動方向は、球面凸面ミラー663と球面凹面ミラー664と間の光軸OA4に対して平行であってもよい。
 球面凹面ミラー661、664は、ベースプレート669に固定されてもよい。球面凸面ミラー662は、移動プレート666に固定されてもよい。移動プレート666の移動に伴い、球面凸面ミラー662と球面凹面ミラー661との間の距離が増減し得る。球面凸面ミラー663は、移動プレート668に固定されてもよい。移動プレート668の移動に伴い、球面凸面ミラー663と球面凹面ミラー664との間の距離が増減し得る。
<動作>
 コントローラ58は、移動プレート666、668を移動して、ビーム調節装置630から出射されるパルスレーザ光の発散角を調整してもよい。コントローラ58は、球面凹面ミラー661及び球面凸面ミラー662の間の距離と、球面凸面ミラー663及び球面凹面ミラー664の間の距離とを、同時に増加または同時に減少させる方向に変化させてもよい。
 図8の例において、コントローラ58は、球面凹面ミラー661及び球面凸面ミラー662の間の距離と、球面凸面ミラー663及び球面凹面ミラー664の間の距離とが同一であるように、移動プレート666、668を移動してもよい。
 球面凹面ミラー661及び球面凸面ミラー662の間の距離と球面凸面ミラー663及び球面凹面ミラー664の間の距離との増減による発散角の変化は、実施形態1と同様であり得る。本実施形態は、ビーム調節装置630による発散角の調整に伴うビーム径及び光軸の変動を小さくし得る。また、ミラーの反射角を小さくすることで、球面ミラーの反射によるビーム形状の変化を小さくし得る。
6.実施形態3
<構成>
 図9は、実施形態3のビーム調節装置630の構成例を示す。以下において、実施形態1との相違点を主に説明する。ビーム調節装置630は、軸外放物面凸面ミラー681、684、球面凹面ミラー682、683、及び平面ミラー685を含んでもよい。パルスレーザ光の光路上において、軸外放物面凸面ミラー681、球面凹面ミラー682、平面ミラー685、球面凹面ミラー683、及び軸外放物面凸面ミラー684の順で配置されてもよい。
 本実施形態の構成において、実施形態1における変形例と比較して、軸外放物面凹面ミラー652、653に代えて、球面凹面ミラー682、683が配置されてもよい。さらに、パルスレーザ光の光路上において、球面凹面ミラー682、683の間に平面ミラー685が配置されてもよい。
<動作>
 球面凹面ミラー682は、入射したパルスレーザ光を、45°未満の反射角で反射してもよい。反射角は、20°未満であってもよい。球面凹面ミラー682で反射されたパルスレーザ光は、平面ミラー685に入射してもよい。平面ミラー685で反射された光は球面凹面ミラー683に入射してもよい。球面凹面ミラー683は、入射したパルスレーザ光を、45°未満の反射角で反射してもよい。反射角は、20°未満であってもよい。移動プレート637の移動による発散角の変化は、実施形態1と同様であり得る。
 平面ミラー685により、球面凹面ミラー682、683の反射角を、45°未満の小さい角度にし得る。このため、球面凹面ミラー682、683の反射によるビーム形状の変化を小さくし得る。
7.実施形態4
<構成>
 図10は、実施形態4のEUV光生成システム11の構成例を示す。EUV光生成システム11は、レーザ装置3内にビーム調節装置を含んでもよい。さらに、EUV光生成システム11は、レーザ装置3より下流のビーム調節装置を含み、これらビーム調節装置の構成が異なっていてもよい。
 以下において、実施形態1との相違点を主に説明する。レーザ装置3は、発振器(MO)301、増幅器(PA)302~304、ビーム調節装置350、ビームサンプラ361、及びビームモニタ362を含んでもよい。
 発振器301は、1つまたは複数のレーザ光源から構成されてもよい。発振器301は、増幅器302~304が増幅可能な波長のパルスレーザ光を出力するよう構成されてもよい。レーザ光源は、量子カスケードレーザでもよい。複数のレーザ光源を配置する場合、図示しないビームコンバイナ等によって各レーザ光源からのパルスレーザ光の光路を一致させてもよい。
 増幅器302~304は、この順序で、レーザ装置3内の光路上に配置されてもよい。増幅器302~304は、それぞれ、入射したパルスレーザ光を所定のゲインで増幅してもよい。
 ビームサンプラ361は、レーザ装置3内の光路上に配置されてもよい。ビームサンプラ361は、パルスレーザ光の一部をサンプル光としてパルスレーザ光と異なる方向に出力してもよい。サンプル光は、ビームサンプラ361によって反射されたパルスレーザ光の一部でもよく、ビームサンプラ361を透過したパルスレーザ光の一部でもよい。
 ビームモニタ362は、ビームサンプラ361から出力されるサンプル光を受光する位置に配置されてもよい。ビームモニタ362は、サンプル光のプロファイルをモニタしてもよい。ビームモニタ362は、コントローラ58に接続されてもよい。
 ビーム調節装置350は、レーザ装置3内の光路において、ビームサンプラ361よりも上流に配置されてもよい。例えば、ビーム調節装置350は増幅器302と増幅器303との間に配置され、ビームサンプラ361は増幅器303と増幅器304との間に配置されてもよい。ビーム調節装置350はコントローラ58に接続されてもよい。
 ビーム調節装置350は、実施形態1において図5Aに示す構成と同様の構成を有してもよい。具体的には、ビーム調節装置350は、軸外放物面凹面ミラー631、軸外放物面凸面ミラー632、軸外放物面凸面ミラー633、及び軸外放物面凹面ミラー634の順序で配置されたミラーを含んでもよい。
 ビーム調節装置630は、実施形態1の図7に示す変形例と同様の構成を有してもよい。具体的には、ビーム調節装置630は、軸外放物面凸面ミラー651、軸外放物面凹面ミラー652、軸外放物面凹面ミラー653、及び軸外放物面凸面ミラー654の順序で配置されたミラーを含んでもよい。
<動作>
 発振器301から出力されたパルスレーザ光は、増幅器302~304で順次増幅されレーザ装置3から出力され得る。ビームサンプラ361は、増幅器303から出力されたパルスレーザ光の一部をサンプル光としてビームモニタ362で反射してもよい。
 ビームモニタ362は、サンプル光のプロファイルを検出しプロファイルに関する検出値をコントローラ58に送信してもよい。コントローラ58は、送信された検出値からパルスレーザ光のパラメータを算出してもよい。算出されるパラメータは、例えば、ビーム径やビーム中心位置であってもよい。
 コントローラ58は、算出したパラメータが所定の値となるよう、ビーム調節装置350を制御してもよい。例えば、コントローラ58は、ビーム調節装置350によって、パルスレーザ光の発散角を制御してビーム径が所定の大きさとなるようにしてもよい。
 ビーム調節装置350によって所定の発散角となったパルスレーザ光は、増幅器304によってさらに増幅され、高反射ミラー52A~52C及び610を経由して、ビーム調節装置630に入射してもよい。他の動作は実施形態1と同様でよい。
<効果>
 本実施形態は、レーザ装置3内でビーム調節装置350によりパルスレーザ光の発散角を調節することで、次に入射する増幅器303おけるパルスレーザ光のビーム径やビーム中心位置を調節し得る。これにより、次に入射する増幅器303において、パルスレーザ光が内部構造物に遮蔽されることを抑制し、また、パルスレーザ光が内部光学素子で集光して、当該内部光学素子が損傷することを抑制し得る。
 図5Aに示すビーム調節装置の内部において、パルスレーザ光は一旦集光され得る。一方、図7に示すビーム調節装置の内部において、パルスレーザ光は一旦発散させ得る。したがって、図7に示す構成と比較して、図5Aに示す構成は、ミラーサイズを小さくし得る。一方、図5Aの構成と比較して、図7に示す構成はミラーに照射されるエネルギ密度を小さくし得る。
 本実施形態は、レーザ装置3内のビーム調節装置350に、図5Aの構成を適用することで、レーザ装置3内のビーム調節装置350のサイズを小さくし得る。また、レーザ装置3から出力されるパルスレーザ光と比較して、発振器301と増幅器302との間及び増幅器間のパルスレーザ光のエネルギは小さくあり得る。したがって、ビーム調節装置350のミラーの損傷を避け得る。
 一方、レーザ装置3より下流においてチャンバ2入り口付近に配置されるビーム調節装置630に、図7の構成を適用することで、ビーム調節装置630内のミラーに入射するパルスレーザ光のエネルギ密度を低減し、ミラーの損傷を抑制し得る。
 なお、ビーム調節装置350及びビームサンプラ361の配置位置は、図10に示した位置と異なっていてもよい。例えば、ビーム調節装置350を発振器301の次に配置し、増幅器304の次にビームサンプラ361を配置してもよい。この構成により、増幅器302~304を経て反射ミラー52Aに入射するレーザ光のスポット位置を調整してもよい。
8.実施形態5
<構成>
 図11は、実施形態5のビーム調節装置630の構成例を示す。以下において、実施形態1との相違点を主に説明する。ビーム調節装置630は、実施形態1の軸外放物面凹面ミラー631、軸外放物面凸面ミラー632、軸外放物面凸面ミラー633、及び軸外放物面凹面ミラー634に代えて、軸外放物面凹面ミラー691、軸外放物面凸面ミラー692、軸外放物面凸面ミラー693、及び軸外放物面凹面ミラー694を含んでもよい。
 軸外放物面凹面ミラー691に入射するパルスレーザ光の光軸OA1と、軸外放物面凹面ミラー694から出射するパルスレーザ光の光軸OA5とが平行であるよう、軸外放物面凹面ミラー691、694及び軸外放物面凸面ミラー692、693は、配置されてもよい。
 図11の状態において、軸外放物面凹面ミラー691の焦点F1と、軸外放物面凸面ミラー692の焦点F2とは一致するよう、軸外放物面凹面ミラー691及び軸外放物面凸面ミラー692は配置されてもよい。さらに、軸外放物面凹面ミラー694の焦点F4と、軸外放物面凸面ミラー693の焦点F3とが一致するよう、軸外放物面凹面ミラー694及び軸外放物面凸面ミラー693は配置されてもよい。
 実施形態1で説明したように、軸外放物面凹面ミラー691と軸外放物面凸面ミラー692による倍率M12は、LF1/LF2で表わされ得る。軸外放物面凹面ミラー694と軸外放物面凸面ミラー693による倍率M43は、LF4/LF3で表わされ得る。LF1、LF4は、それぞれ、軸外放物面凹面ミラー691、694の焦点距離である。LF2、LF3は、それぞれ、軸外放物面凸面ミラー692、693の焦点距離である。
 本実施形態において、M12=M43かつ、LF1≠LF4、LF2≠LF3であるように、軸外放物面凹面ミラー691、694及び軸外放物面凸面ミラー692、693が構成されてもよい。
 軸外放物面凹面ミラー691、694は異なる関数形状の反射面を有し、軸外放物面凹面ミラー694の焦点距離LF4は、軸外放物面凹面ミラー691の焦点距離LF1より長くてもよい。軸外放物面凸面ミラー692、693は異なる関数形状の反射面を有し、軸外放物面凸面ミラー693の焦点距離LF3は、軸外放物面凸面ミラー692の焦点距離LF2より長くてもよい。軸外放物面凹面ミラー694と軸外放物面凸面ミラー693との間の距離H2は、軸外放物面凹面ミラー691と軸外放物面凸面ミラー692との間の距離H1より長くてもよい。
 ビーム調節装置630は、さらに、平面ミラー695、696を含み、軸外放物面凹面ミラー691に入射するパルスレーザ光の光軸OA1と、軸外放物面凹面ミラー694から出射するパルスレーザ光の光軸OA5とを一致させてもよい。
 具体的には、軸外放物面凹面ミラー694に対向して、平面ミラー695が配置されてもよい。軸外放物面凹面ミラー694の反射光が、平面ミラー695に入射してもよい。さらに、平面ミラー695に対向して、平面ミラー696が配置されてもよい。平面ミラー695の反射光が平面ミラー696に入射してもよい。平面ミラー696で反射されたパルスレーザ光の光軸は、光軸OA1と一致してもよい。
 軸外放物面凹面ミラー691に入射するパルスレーザ光の光軸OA1と、軸外放物面凹面ミラー694から出射するパルスレーザ光の光軸OA5とを一致させる必要がない場合、平面ミラー695、696は配置されなくともよい。LF1とLF4との関係及びLF2とLF3との関係はそれぞれ逆でもよい。
<動作>
 本実施形態のビーム調節装置は、実施形態1のビーム調節装置と同様に動作し得る。本実施形態のビーム調節装置は、実施形態1のビーム調節装置と同様に、入射するパルスレーザ光のビーム径と出射するパルスレーザ光のビーム径を略同一に維持しつつ、出射光の発散角を変化させ得る。本実施形態のビーム調節装置は、2枚の平面ミラーを使用することで、入射するパルスレーザ光の光軸と出射するパルスレーザ光の光軸を一致させつつ、出射光の発散角を変化させ得る。
9.実施形態6
 上述のように、1軸移動ステージ635は、ベースプレート638に対して移動プレート637を移動できるよう構成されてもよい。すなわち、移動プレート637が移動する際、ビーム調節装置630では、移動プレート637に固定された軸外放物面凸面ミラー632、633がベースプレート638に対して移動し得る。一方、軸外放物面凹面ミラー631、634及び軸外放物面凸面ミラー632、633のそれぞれは、パルスレーザ光の照射に伴って発熱し得る。このため、ビーム調節装置630では、これらの軸外放物面ミラーのそれぞれの内部に冷却水等の冷媒が流れる流路等を形成した上で、これらの軸外放物面ミラーのそれぞれに対して、冷媒が流れる冷却管を取り付けることが考えられる。しかしながら、これらの軸外放物面ミラーに対して冷却管が単純に取り付けられると、移動プレート637が移動する際、軸外放物面凸面ミラー632、633に取り付けられた冷却管には、冷却管を引張り又は圧縮する力が加えられ得る。この際、これらの軸外放物面ミラーには冷却管からの反力が加えられて、これらの軸外放物面ミラーの位置及び姿勢がずれることがあり得る。それにより、ビーム調節装置630では、出射されるパルスレーザ光の発散角、光軸方向及びビーム径が所望の値にならず、パルスレーザ光を適切に伝搬できないことがあり得る。
 以下の説明では、ビーム調節装置630に含まれる軸外放物面凹面ミラー631、634及び軸外放物面凸面ミラー632、633を総称して、軸外放物面ミラー631~634ともいう。
<構成>
 図12は、実施形態6のビーム調節装置630の構成例における斜視図を示す。図13は、実施形態6のビーム調節装置630の構成例における平面図を示す。以下において、実施形態1との相違点を主に説明する。ビーム調節装置630は、さらに、冷却管640を含んでもよい。冷却管640は、軸外放物面ミラー631~634のそれぞれの背面に設けられた流入口及び流出口に連結されてもよい。軸外放物面ミラー631~634のそれぞれに設けられた流入口は、冷却管640内を流れる冷媒を軸外放物面ミラー631~634内に流入させるための入口であってもよい。軸外放物面ミラー631~634のそれぞれに設けられた流出口は、軸外放物面ミラー631~634内を流れる冷媒を冷却管640内に流出させるための出口であってもよい。
 冷却管640は、供給口640a、排出口640b、スパイラル管部640c及び直管部640dを含んでもよい。供給口640aは、チラー等の外部の冷却装置から冷却管640内に冷媒を供給するための入口であってもよい。排出口640bは、冷却管640内の冷媒を、チラー等の外部の冷却装置に排出する出口であってもよい。スパイラル管部640cは、冷却管640の一部であって略スパイラル形状に形成された部分であってもよい。直管部640dは、冷却管640の一部であって略直線形状に形成された部分であってもよい。
 供給口640aを含む冷却管640は、パルスレーザ光が入射する軸外放物面凹面ミラー631の流入口と、外部の冷却装置とを連結してもよい。スパイラル管部640cを含む冷却管640は、軸外放物面凹面ミラー631の流出口と、軸外放物面凸面ミラー632の流入口とを連結してもよい。直管部640dを含む冷却管640は、軸外放物面凸面ミラー632の流出口と、軸外放物面凸面ミラー633の流入口とを連結してもよい。スパイラル管部640cを含む冷却管640は、軸外放物面凸面ミラー633の流出口と軸外放物面凹面ミラー634の流入口とを連結してもよい。排出口640bを含む冷却管640は、軸外放物面凹面ミラー634の流出口と、外部の冷却装置とを連結してもよい。
 図14は、図13に示された矢印Aからビーム調節装置630を視た図を示す。冷却管640のスパイラル管部640cは、引張ばねを構成してもよい。スパイラル管部640cは、密着巻き、すなわち、隣り合う管同士が密着する構造に形成されてもよい。スパイラル管部640cは、引張荷重が加えられた状態で移動プレート637及びベースプレート638に固定され、移動プレート637の移動方向に沿って配置されてもよい。スパイラル管部640cの一端部にあるスパイラル開始点640eは、移動プレート637に固定された第1可動片637aに対して固定されてもよい。スパイラル管部640cの他端部にあるスパイラル開始点640fは、ベースプレート638に固定された後述のブラケット639に対して固定されてもよい。
 図15は、図13に示されたB-B線における1軸移動ステージ635の一部断面図を示す。1軸移動ステージ635の台座636は、アクチュエータ636a及びばね636bを含んでもよい。アクチュエータ636aは、移動プレート637に固定された第2可動片637bに接続され、移動プレート637の移動方向に沿って配置されてもよい。アクチュエータ636aは、移動プレート637の移動方向に沿って伸縮し、第2可動片637bを介して移動プレート637を移動させてもよい。ばね636bは、第2可動片637bのアクチュエータ636aとは反対側に接続され、アクチュエータ636a及びスパイラル管部640cの伸縮方向に沿って配置されてもよい。ばね636bは、圧縮ばねであり、その弾性力によって第2可動片637bをアクチュエータ636aに押し付けてもよい。
 図16は、軸外放物面ミラー631~634のベースプレート638への取り付け構造例を示す。軸外放物面ミラー631~634のベースプレート638への取り付け構造は、互いに略同一であってもよい。図16では、軸外放物面凹面ミラー634のベースプレート638への取り付け構造例を代表して説明する。軸外放物面凹面ミラー634は、ブラケット639を用いてベースプレート638に取り付けられてもよい。ブラケット639は、軸外放物面凹面ミラー634の背面をベースプレート638に固定してもよい。ブラケット639は、軸外放物面凹面ミラー634の背面に設けられた流入口634b及び流出口634cを覆うように形成されてもよい。ブラケット639は、軸外放物面凹面ミラー634の背面との接続部分に、アジャスタ639aを備えてもよい。アジャスタ639aは、軸外放物面凹面ミラー634の位置及び姿勢を、X、Y及びZの3つの並進方向並びにRx、Ry及びRzの3つの回転方向の6自由度にて調整可能な機構であってもよい。
<動作及び効果>
 本実施形態のビーム調節装置630は、移動プレート637が移動する際、冷却管640が移動プレート637の移動方向に沿って伸縮し得る。このため、本実施形態のビーム調節装置630は、移動プレート637が移動する際に軸外放物面ミラー631~634の位置及び姿勢がずれることを抑制しつつ、軸外放物面ミラー631~634を冷却し得る。
 さらに、本実施形態のビーム調節装置630は、移動プレート637に固定された第1可動片637a及びベースプレート638に固定されたブラケット639には、スパイラル管部640cのスパイラル開始点640e及び640fがそれぞれ固定されてもよい。このため、本実施形態のビーム調節装置630は、スパイラル管部640cが伸縮する際にスパイラル管部640cの弾性力が変動しても、その反力の変動が軸外放物面ミラー631~634に伝わることを抑制し得る。
 しかも、本実施形態のビーム調節装置630は、ばね636bがその弾性力によって第2可動片637bをアクチュエータ636aに押し付け得る。このため、本実施形態のビーム調節装置630は、第2可動片637bの姿勢及び移動方向がアクチュエータ636aの伸縮時でも適切に保たれ得る。特に、本実施形態のビーム調節装置630は、スパイラル管部640cの弾性力の反力によって第2可動片637bがアクチュエータ636aから離れてしまうことを抑制し得る。
 そのうえ、本実施形態のビーム調節装置630は、ブラケット639がアジャスタ639aを備えるため、軸外放物面ミラー631~634のそれぞれにおける光学的な相対位置を高精度で調整し得る。
 したがって、本実施形態のビーム調節装置630は、軸外放物面ミラー631~634を冷却しつつ、出射されるパルスレーザ光の発散角、光軸方向及びビーム径を高精度で調整し得る。本実施形態のビーム調節装置630は、パルスレーザ光をより適切に伝搬し得る。
<変形例>
 図17は、実施形態6のビーム調節装置630の変形例を示す。図18は、図17に示された矢印Cからビーム調節装置630を視た図を示す。ビーム調節装置630は、隔壁641aを含んでもよい。隔壁641aは、パルスレーザ光の光路付近に位置するビーム調節装置630の構成要素を、パルスレーザ光から遮蔽してもよい。隔壁641aは、冷却管640のスパイラル管部640cと1軸移動ステージ635の台座636の一部及び移動プレート637の一部とを、パルスレーザ光から遮蔽してもよい。それにより、ビーム調節装置630は、スパイラル管部640cなどの樹脂材料を用いて形成された構成要素がパルスレーザ光の散乱光に曝露されることを抑制し得る。他の構成要素は、図12~図16に示す構成と同様でよい。
10.実施形態7
 ビーム調節装置630では、パルスレーザ光の発散角及び光路を調整する際、軸外放物面凸面ミラー633等の凸面ミラーによって反射されたパルスレーザ光が、拡散して外部へ漏洩することがあり得る。例えば、軸外放物面凸面ミラー633によって反射されたパルスレーザ光は、拡散して、軸外放物面凸面ミラー633より下流に配置された軸外放物面凹面ミラー634の反射面634aより大きなビーム径となることがあり得る。反射面634aより大きなビーム径となったパルスレーザ光は、反射面634aで有効に反射されず、ビーム調節装置630の構成要素に入射して散乱し、散乱光として外部へ漏洩することがあり得る。このため、ビーム調節装置630は、図19に示されるように、散乱光の外部への漏洩を抑制することを目的として、ベースプレート638に対してフレーム642を設けてもよい。フレーム642が設けられる目的には、ベースプレート638の剛性を向上させることもあり得る。しかしながら、例えば反射面634aで反射されなかったパルスレーザ光がフレーム642をはじめとするビーム調節装置630の構成要素に入射すると、ビーム調節装置630の構成要素は、加熱されて熱変形することがあり得る。それにより、ビーム調節装置630では、軸外放物面ミラー631~634の位置及び姿勢がずれることがあり得る。その結果、ビーム調節装置630では、出射されるパルスレーザ光の発散角、光軸方向及びビーム径が所望の値にならず、パルスレーザ光を適切に伝搬できないことがあり得る。
 上述のようにパルスレーザ光が拡散する現象は、ビーム調節装置630に入射するパルスレーザ光及びビーム調節装置630から出射するパルスレーザ光においても発生し得る。例えば、高反射ミラー610からビーム調節装置630まので距離が比較的長い場合、上述のようにパルスレーザ光が拡散する現象は、ビーム調節装置630に入射するパルスレーザ光においても発生し得る。ビーム調節装置630から高反射ミラー63までの距離が比較的長い場合、上述のようにパルスレーザ光が拡散する現象は、ビーム調節装置630から出射するパルスレーザ光においても発生し得る。
<構成>
 図19は、実施形態7のビーム調節装置630を示す。図19以降の図面では、ブラケット639及び冷却管640の図示が省略されている。以下において、実施形態6との相違点を主に説明する。ビーム調節装置630は、上述のような目的からフレーム642を含むと共に、さらに、液冷アパーチャ643~645を含んでもよい。液冷アパーチャ643~645のそれぞれは、パルスレーザ光を所望のビーム径で通過させつつ、所望のビーム径を超えて大きく拡散したパルスレーザ光の余剰部分を遮断するようなアパーチャであってもよい。液冷アパーチャ643~645のそれぞれは、液体によって冷却されてもよい。
 液冷アパーチャ643~645は、パルスレーザ光の光路上であって、上述のようなパルスレーザ光が拡散する現象が発生し易い光路上に配置されてもよい。具体的には、液冷アパーチャ643~645は、ビーム調節装置630に入射するパルスレーザ光、軸外放物面凸面ミラー633によって反射されたパルスレーザ光、及び、ビーム調節装置630を出射するパルスレーザ光の光路上にそれぞれ配置されてもよい。言い換えると、液冷アパーチャ643~645は、ビーム調節装置630のパルスレーザ光の入射口、軸外放物面凸面ミラー633と軸外放物面凹面ミラー634との間、及び、ビーム調節装置630のパルスレーザ光の出射口にそれぞれ配置されてもよい。軸外放物面凸面ミラー633と軸外放物面凹面ミラー634との間では、軸外放物面凸面ミラー633によって反射されたパルスレーザ光が拡散しながら進行し易いため、これらの間に液冷アパーチャ644が配置されることは好ましい。
 ビーム調節装置630は、液冷アパーチャ643~645のうちの少なくとも1つを含んでもよい。この場合、液冷アパーチャ643~645のうちでビーム調節装置630に含めるべき優先度は、最も上流に配置される液冷アパーチャ643から、液冷アパーチャ644、最も下流に配置される液冷アパーチャ645の順番で高くてもよい。ビーム調節装置630では、より上流に配置される液冷アパーチャを含む方が、所望のビーム径を超えて大きく拡散したパルスレーザ光の余剰部分を発生させ難いからであり得る。また、ビーム調節装置630は、軸外放物面凹面ミラー631と軸外放物面凸面ミラー632との間に配置される液冷アパーチャを含んでもよいし、軸外放物面凸面ミラー632と軸外放物面凸面ミラー633との間に配置される液冷アパーチャを含んでもよい。
 図20は、図19に示された液冷アパーチャ643~645の外形を概略的に示す。図21は、図19に示された液冷アパーチャ643~645の詳細な構成例を示す。液冷アパーチャ643~645は、互いに略同一であってもよい。図20及び図21では、液冷アパーチャ644の外形及び構成を代表して説明する。液冷アパーチャ644の外形は、図19に示されるように、略円筒形状に形成されてもよい。液冷アパーチャ644には、貫通孔644aが形成されてもよい。貫通孔644aは、入射口644bと、出射口644cと、テーパ面644dとを含んでもよい。入射口644bは、貫通孔644aの一方の開口であって、液冷アパーチャ644にパルスレーザ光を入射させる入口であってもよい。出射口644cは、貫通孔644aの他方の開口であって、液冷アパーチャ644からパルスレーザ光を出射させる出口であってもよい。入射口644b及び出射口644cは、パルスレーザ光のビーム断面形状に応じた形状に形成されてもよい。例えば、パルスレーザ光のビーム断面形状が略円形である場合、入射口644b及び出射口644cは、略円形に形成されてもよい。入射口644bの直径は、出射口644cの直径Dよりも大きくてもよい。出射口644cの直径Dは、液冷アパーチャ644の下流にある軸外放物面凹面ミラー634の反射面634aの直径よりも小さくてもよい。出射口644cの直径Dは、反射面634aの有効反射エリアであるクリアアパーチャの直径Dcaよりも小さくてもよい。出射口644cの直径Dは、出射したパルスレーザ光の反射面634aでのビーム径が、直径Dca以下となるように形成されてもよい。それにより、液冷アパーチャ644は、所望のビーム径を超えて、液冷アパーチャ644の下流にある軸外放物面凹面ミラー634のクリアアパーチャよりも大きく拡散したパルスレーザ光の余剰部分を遮断してもよい。
 テーパ面644dは、所望のビーム径を超えて大きく拡散したパルスレーザ光の余剰部分を受ける面であってもよい。テーパ面644dは、テーパ面644dに入射するパルスレーザ光のパワー密度を低減させるよう、パルスレーザ光の光軸に対して傾斜するように形成されてもよい。テーパ面644dは、貫通孔644aの内周面であって、入射口644bから出射口644cに向かうに従い、その内径が小さくなるように形成されてもよい。テーパ面644dは、パルスレーザ光の光軸方向に略直交する面に対する傾斜角度θが、45°以上90°以下となるように形成されてもよい。好ましくは、テーパ面644dは、傾斜角度θが略60°となるように形成されてもよい。
 また、液冷アパーチャ644の表面のうちの少なくともテーパ面644dには、パルスレーザ光を吸収し易くする表面処理が施されてもよい。パルスレーザ光を吸収し易くする表面処理は、例えば、黒色のアルマイト処理であってもよい。黒色のアルマイト処理が施される場合、液冷アパーチャ644は、アルミニウムを用いて形成されてもよい。
 また、液冷アパーチャ644の内部には、冷却水等の冷媒が流れる冷媒流路644eが形成されてもよい。冷媒流路644eは、テーパ面644dの外周方向に沿って形成されてもよい。冷媒流路644eは、不図示の冷却装置に連結されてもよい。所望のビーム径を超えて大きく拡散したパルスレーザ光の余剰部分がテーパ面644dに入射すると、液冷アパーチャ644は発熱し得る。液冷アパーチャ644は、冷媒流路644eを流れる冷媒との熱交換によって冷却され得る。ビーム調節装置630が複数の液冷アパーチャを含む場合、複数の液冷アパーチャに形成される複数の冷媒流路は、互いに直列に連結されてもよい。これは、複数の冷媒流路を流れる冷媒が複数の液冷アパーチャの過熱を抑制すれば十分であるからであり得る。
 また、液冷アパーチャ644は、熱絶縁部材646を介してベースプレート638に固定されてもよい。熱絶縁部材646は、例えばセラミクスであってもよい。
<動作及び効果>
 本実施形態のビーム調節装置630は、液冷アパーチャ643~645のそれぞれが、パルスレーザ光を所望のビーム径で通過させつつ、所望のビーム径を超えて大きく拡散したパルスレーザ光の余剰部分を吸収し得る。このため、本実施形態のビーム調節装置630は、フレーム642をはじめとするビーム調節装置630の構成要素が加熱されて熱変形することを抑制し得る。
 さらに、本実施形態のビーム調節装置630は、液冷アパーチャ643~645のそれぞれがパルスレーザ光の余剰部分の吸収によって発熱しても、液冷アパーチャ643~645のそれぞれに形成された冷媒流路を流れる冷媒によって排熱され得る。しかも、本実施形態のビーム調節装置630は、液冷アパーチャ643~645のそれぞれが熱絶縁部材646を介してベースプレート638に固定されるため、液冷アパーチャ643~645のそれぞれからベースプレート638への伝熱を抑制し得る。このため、本実施形態のビーム調節装置630は、フレーム642をはじめとするビーム調節装置630の構成要素が加熱されて熱変形することを抑制し得る。
 したがって、本実施形態のビーム調節装置630は、軸外放物面ミラー631~634の位置及び姿勢がずれることを抑制し、出射されるパルスレーザ光の発散角、光軸方向及びビーム径を高精度で調整し得る。本実施形態のビーム調節装置630は、パルスレーザ光をより適切に伝搬し得る。
<変形例>
 図22は、実施形態7のビーム調節装置630の変形例1を示す。ビーム調節装置630における軸外放物面凹面ミラー及び軸外放物面凸面ミラーの配置順序は、図19に示す構成と逆であってもよい。
 具体的には、ビーム調節装置630は、軸外放物面凸面ミラー647、650及び軸外放物面凹面ミラー648、649を含んでもよい。軸外放物面凸面ミラー647、軸外放物面凹面ミラー648、軸外放物面凹面ミラー649及び軸外放物面凸面ミラー650は、パルスレーザ光の光路上において、この順序で配置されてもよい。軸外放物面凸面ミラー647と軸外放物面凹面ミラー648との間では、軸外放物面凸面ミラー647によって反射されたパルスレーザ光が拡散しながら進行し易いため、これらの間に液冷アパーチャ644が配置されることは好ましい。他の構成要素は、図19~図21に示す構成と同様でよい。
 図23は、実施形態7のビーム調節装置630の変形例2を示す。図24は、図23に示された矢印Eから保護カバー641bを視た図を示す。ビーム調節装置630は、保護カバー641bを含んでもよい。保護カバー641bは、フレーム642をパルスレーザ光から遮蔽してもよい。保護カバー641bは、パルスレーザ光の光路とフレーム642との間に配置されてもよい。保護カバー641bの表面には、パルスレーザ光を吸収し易くする表面処理が施されてもよい。パルスレーザ光を吸収し易くする表面処理は、例えば、黒色のアルマイト処理であってもよい。黒色のアルマイト処理が施される場合、保護カバー641bは、アルミニウムを用いて形成されてもよい。保護カバー641bは、熱絶縁部材646を介して、ベースプレート638及び移動プレート637に固定されてもよい。或いは、保護カバー641bは、熱絶縁部材646を介してフレーム642に固定されてもよい。それにより、ビーム調節装置630は、予測不能なパルスレーザ光の散乱光、プラズマからの放射光及びターゲット27からの反射光等がフレーム642に入射して、フレーム642を発熱させることを更に抑制し得る。他の構成要素は、図22に示す構成と同様でよい。
 上記の説明は、制限ではなく単なる例示を意図したものである。従って、添付の請求の範囲を逸脱することなく本開示の実施形態に変更を加えてもよいことは、当業者には明らかであろう。
 ある実施形態の構成の一部を他の実施形態の構成に置き換え得る。ある実施形態の構成に他の実施形態の構成を加え得る。各実施形態の構成の一部について、削除、他の構成の追加、他の構成による置換をし得る。 
 本明細書及び添付の特許請求の範囲全体で使用される用語は、「限定的でない」用語と解釈されるべきである。例えば、「含む」又は「含まれる」という用語は、「含まれるものとして記載されたものに限定されない」と解釈されるべきである。「有する」という用語は、「有するものとして記載されたものに限定されない」と解釈されるべきである。また、本明細書及び添付の特許請求の範囲に記載される修飾句「1つの」は、「少なくとも1つ」又は「1又はそれ以上」を意味すると解釈されるべきである。
3 レーザ装置、11 EUV光生成システム、58 コントローラ、61、350、630 ビーム調節装置、66、362 ビームモニタ、361 ビームサンプラ、631、634、648、649、652、653、691、694 軸外放物面凹面ミラー、632、633、647、650、651、654、692、693 軸外放物面凸面ミラー、635、665、667 移動ステージ、661、664、682、683 球面凸面ミラー、662、663 球面凹面ミラー、685、696、697 平面ミラー

Claims (9)

  1.  レーザ装置から出力されたパルスレーザ光をターゲットに照射することによって、プラズマを生成し、極端紫外光を生成する極端紫外光生成装置であって、
     チャンバと、
     前記チャンバ内にターゲットを供給するターゲット供給部と、
     前記ターゲットに照射されるパルスレーザ光の光路上に配置され、ビームパラメータを調整するビーム調節装置と、を含み、
     前記ビーム調節装置は、
     前記パルスレーザ光の光路上に配置された、第1凹面ミラーと第1凸面ミラーとからなる第1組と、
     前記パルスレーザ光の光路上で前記第1組より下流において、前記第1凹面ミラーと前記第1凸面ミラーの配置順序とは逆に配置された、第2凹面ミラーと第2凸面ミラーとからなる第2組と、
     前記第1凹面ミラーと前記第1凸面ミラーとの間の距離、及び、前記第2凹面ミラーと前記第2凸面ミラーとの間の距離を、同時に増加または同時に減少させる方向に変化させる移動装置と、を含む、極端紫外光生成装置。
  2.  請求項1に記載の極端紫外光生成装置であって、
     前記移動装置は、前記第1組における下流側ミラーを前記パルスレーザ光の光軸に沿って移動し、前記第2組における上流側ミラーを前記パルスレーザ光の光軸に沿って移動する、極端紫外光生成装置。
  3.  請求項1に記載の極端紫外光生成装置であって、
     前記第1凹面ミラー及び前記第2凹面ミラーは、軸外放物面凹面ミラーであり、
     前記第1凸面ミラー及び前記第2凸面ミラーは、軸外放物面凸面ミラーであり、
     前記第1凹面ミラーと前記第1凸面ミラーの焦点が一致するとき、前記第2凹面ミラーと前記第2凸面ミラーの焦点は一致する、極端紫外光生成装置。
  4.  請求項3に記載の極端紫外光生成装置であって、
     前記第1凹面ミラー、前記第2凹面ミラー、前記第1凸面ミラー、及び前記第2凸面ミラーそれぞれにおける、前記パルスレーザ光の入射角と出射角は45°である、極端紫外光生成装置。
  5.  請求項4に記載の極端紫外光生成装置であって、
     前記移動装置は、前記第1組の下流側ミラーと前記第2組の上流側ミラーとが固定された移動プレートを含み、前記移動プレートを前記第1組及び前記第2組における前記パルスレーザ光の光軸に沿って移動する、極端紫外光生成装置。
  6.  請求項5に記載の極端紫外光生成装置であって、
     前記第1凹面ミラー及び前記第2凹面ミラーは、同一の関数で表される形状の反射面を備え、
     前記第1凸面ミラー及び前記第2凸面ミラーは、同一の関数で表される形状の反射面を備える、極端紫外光生成装置。
  7.  請求項2に記載の極端紫外光生成装置であって、
     前記第1凹面ミラー及び前記第2凹面ミラーは、同一の関数で表される形状の反射面を備え、
     前記第1凸面ミラー及び前記第2凸面ミラーは、同一の関数で表される形状の反射面を備える、極端紫外光生成装置。
  8.  請求項1に記載の極端紫外光生成装置であって、
     前記第1凹面ミラー及び前記第2凹面ミラーの組、及び、前記第1凸面ミラー及び前記第2凸面ミラーの組の少なくとも一方の組は、球面ミラーであり、
     前記球面ミラーにおける前記パルスレーザ光の入射光軸と出射光軸との間の角度は45°未満である、極端紫外光生成装置。
  9.  請求項1に記載の極端紫外光生成装置であって、
     前記レーザ装置内において増幅器より上流に配置された第2ビーム調節装置をさらに含み、
      前記第2ビーム調節装置は、
     前記パルスレーザ光の光路上に配置された、第3凹面ミラーと第3凸面ミラーとからなる第3組と、
     前記パルスレーザ光の光路上で前記第3組の下流において、前記第3凹面ミラーと前記第3凸面ミラーの配置順序とは逆に配置された、第4凹面ミラーと第4凸面ミラーとからなる第4組と
     前記第3凹面ミラーと前記第3凸面ミラーとの間の距離、及び、前記第4凹面ミラーと前記第4凸面ミラーとの間の距離を、同時に増加または同時に減少させる方向に変化させる第2移動装置と、を含み、
     前記第1組において、前記第1凸面ミラーは上流側ミラーであり、前記第1凹面ミラーは下流側ミラーであり、
     前記第3組において、前記第3凹面ミラーは上流側ミラーであり、前記第3凸面ミラーは下流側ミラーである、極端紫外光生成装置。
PCT/JP2015/083075 2014-12-19 2015-11-25 極端紫外光生成装置 WO2016098543A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016564756A JP6704857B2 (ja) 2014-12-19 2015-11-25 極端紫外光生成装置
US15/590,238 US10374381B2 (en) 2014-12-19 2017-05-09 Extreme ultraviolet light generating apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP2014/083661 WO2016098240A1 (ja) 2014-12-19 2014-12-19 極端紫外光生成装置
JPPCT/JP2014/083661 2014-12-19

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/590,238 Continuation US10374381B2 (en) 2014-12-19 2017-05-09 Extreme ultraviolet light generating apparatus

Publications (1)

Publication Number Publication Date
WO2016098543A1 true WO2016098543A1 (ja) 2016-06-23

Family

ID=56126159

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2014/083661 WO2016098240A1 (ja) 2014-12-19 2014-12-19 極端紫外光生成装置
PCT/JP2015/083075 WO2016098543A1 (ja) 2014-12-19 2015-11-25 極端紫外光生成装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/083661 WO2016098240A1 (ja) 2014-12-19 2014-12-19 極端紫外光生成装置

Country Status (3)

Country Link
US (1) US10374381B2 (ja)
JP (1) JP6704857B2 (ja)
WO (2) WO2016098240A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107702797A (zh) * 2017-08-31 2018-02-16 中国工程物理研究院激光聚变研究中心 可调谐脉冲序列发生装置
JP2020201452A (ja) * 2019-06-13 2020-12-17 ギガフォトン株式会社 極端紫外光生成システム、レーザビームサイズ制御方法及び電子デバイスの製造方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10969690B2 (en) * 2017-09-29 2021-04-06 Taiwan Semiconductor Manufacturing Co., Ltd. Extreme ultraviolet control system for adjusting droplet illumination parameters
CN110666343B (zh) * 2019-10-31 2021-06-25 北京半导体专用设备研究所(中国电子科技集团公司第四十五研究所) 激光转折装置、激光加工光路系统及光路调试方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63249813A (ja) * 1987-03-21 1988-10-17 ヘレウス・インスツルメンツ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング レーザー光線用光線案内光学装置
JP2010135769A (ja) * 2008-11-06 2010-06-17 Komatsu Ltd 極端紫外光源装置、極端紫外光源装置の制御方法
JP2010186735A (ja) * 2008-09-19 2010-08-26 Komatsu Ltd 極端紫外光源装置、極端紫外光源装置用レーザ光源装置及び極端紫外光源装置用レーザ光源の調整方法
JP2012160565A (ja) * 2011-01-31 2012-08-23 Komatsu Ltd チャンバ装置およびそれを備える極端紫外光生成装置
JP2012199512A (ja) * 2011-03-10 2012-10-18 Gigaphoton Inc 極端紫外光生成装置及び極端紫外光生成方法
JP2013038204A (ja) * 2011-08-08 2013-02-21 Panasonic Corp レーザ装置
JP2013165256A (ja) * 2012-01-11 2013-08-22 Gigaphoton Inc レーザビーム制御装置及び極端紫外光生成装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8283643B2 (en) 2008-11-24 2012-10-09 Cymer, Inc. Systems and methods for drive laser beam delivery in an EUV light source
US9862048B2 (en) 2010-10-07 2018-01-09 Illinois Tool Works Inc. Method and apparatus for monitoring weld cell
JP5816440B2 (ja) 2011-02-23 2015-11-18 ギガフォトン株式会社 光学装置、レーザ装置および極端紫外光生成装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63249813A (ja) * 1987-03-21 1988-10-17 ヘレウス・インスツルメンツ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング レーザー光線用光線案内光学装置
JP2010186735A (ja) * 2008-09-19 2010-08-26 Komatsu Ltd 極端紫外光源装置、極端紫外光源装置用レーザ光源装置及び極端紫外光源装置用レーザ光源の調整方法
JP2010135769A (ja) * 2008-11-06 2010-06-17 Komatsu Ltd 極端紫外光源装置、極端紫外光源装置の制御方法
JP2012160565A (ja) * 2011-01-31 2012-08-23 Komatsu Ltd チャンバ装置およびそれを備える極端紫外光生成装置
JP2012199512A (ja) * 2011-03-10 2012-10-18 Gigaphoton Inc 極端紫外光生成装置及び極端紫外光生成方法
JP2013038204A (ja) * 2011-08-08 2013-02-21 Panasonic Corp レーザ装置
JP2013165256A (ja) * 2012-01-11 2013-08-22 Gigaphoton Inc レーザビーム制御装置及び極端紫外光生成装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107702797A (zh) * 2017-08-31 2018-02-16 中国工程物理研究院激光聚变研究中心 可调谐脉冲序列发生装置
CN107702797B (zh) * 2017-08-31 2023-06-23 中国工程物理研究院激光聚变研究中心 可调谐脉冲序列发生装置
JP2020201452A (ja) * 2019-06-13 2020-12-17 ギガフォトン株式会社 極端紫外光生成システム、レーザビームサイズ制御方法及び電子デバイスの製造方法
JP7306888B2 (ja) 2019-06-13 2023-07-11 ギガフォトン株式会社 極端紫外光生成システム、レーザビームサイズ制御方法及び電子デバイスの製造方法

Also Published As

Publication number Publication date
WO2016098240A1 (ja) 2016-06-23
JPWO2016098543A1 (ja) 2017-09-28
US10374381B2 (en) 2019-08-06
US20170250517A1 (en) 2017-08-31
JP6704857B2 (ja) 2020-06-03

Similar Documents

Publication Publication Date Title
US7397056B2 (en) Lithographic apparatus, contaminant trap, and device manufacturing method
TWI469691B (zh) 用於極端紫外光源之射束輸送系統
JP5946612B2 (ja) ミラー、ミラー装置、レーザ装置および極端紫外光生成装置
US10374381B2 (en) Extreme ultraviolet light generating apparatus
US8742379B2 (en) Window unit, window device, laser apparatus, and extreme ultraviolet light generation system
US20130037693A1 (en) Optical system and extreme ultraviolet (euv) light generation system including the optical system
US20120050704A1 (en) Source-collector module with GIC mirror and xenon liquid EUV LPP target system
US8686381B2 (en) Source-collector module with GIC mirror and tin vapor LPP target system
US10211589B2 (en) Laser apparatus and extreme ultraviolet light generation apparatus
US10582602B2 (en) Extreme ultraviolet light generation apparatus
KR20150143802A (ko) 방사선 수집기, 냉각 시스템 및 리소그래피 장치
TW201017345A (en) Collector assembly, radiation source, lithographic apparatus, and device manufacturing method
JP6480960B2 (ja) ビームデリバリシステム及びその制御方法
JP5641958B2 (ja) チャンバ装置およびそれを備える極端紫外光生成装置
JP6541785B2 (ja) 極端紫外光生成装置
US9414477B2 (en) Radiation source, lithographic apparatus and device manufacturing method
US6859263B2 (en) Apparatus for generating partially coherent radiation
US11500194B2 (en) Beam delivery system, focal length selecting method, and electronic device manufacturing method
US11740565B2 (en) Collector flow ring
US8264665B2 (en) Cooled spider and method for grazing-incidence collectors
US20130134330A1 (en) Holder device, chamber apparatus, and extreme ultraviolet light generation system
EP2175701B1 (en) Radiation source, lithographic apparatus, and device manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15869751

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016564756

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15869751

Country of ref document: EP

Kind code of ref document: A1