WO2016095837A1 - 飞行器系统 - Google Patents
飞行器系统 Download PDFInfo
- Publication number
- WO2016095837A1 WO2016095837A1 PCT/CN2015/097804 CN2015097804W WO2016095837A1 WO 2016095837 A1 WO2016095837 A1 WO 2016095837A1 CN 2015097804 W CN2015097804 W CN 2015097804W WO 2016095837 A1 WO2016095837 A1 WO 2016095837A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- aircraft
- pan
- tilt
- motor
- communication circuit
- Prior art date
Links
- 238000004891 communication Methods 0.000 claims abstract description 32
- 230000005540 biological transmission Effects 0.000 claims description 7
- 238000005259 measurement Methods 0.000 claims description 6
- 238000003384 imaging method Methods 0.000 claims description 5
- 238000013016 damping Methods 0.000 claims description 3
- 230000008054 signal transmission Effects 0.000 description 3
- 230000007547 defect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B17/00—Details of cameras or camera bodies; Accessories therefor
- G03B17/56—Accessories
- G03B17/561—Support related camera accessories
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U20/00—Constructional aspects of UAVs
- B64U20/80—Arrangement of on-board electronics, e.g. avionics systems or wiring
- B64U20/87—Mounting of imaging devices, e.g. mounting of gimbals
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16M—FRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
- F16M11/00—Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
- F16M11/02—Heads
- F16M11/04—Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand
- F16M11/041—Allowing quick release of the apparatus
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16M—FRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
- F16M11/00—Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
- F16M11/02—Heads
- F16M11/04—Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand
- F16M11/06—Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting
- F16M11/08—Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting around a vertical axis, e.g. panoramic heads
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16M—FRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
- F16M11/00—Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
- F16M11/02—Heads
- F16M11/04—Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand
- F16M11/06—Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting
- F16M11/10—Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting around a horizontal axis
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16M—FRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
- F16M11/00—Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
- F16M11/20—Undercarriages with or without wheels
- F16M11/2007—Undercarriages with or without wheels comprising means allowing pivoting adjustment
- F16M11/2035—Undercarriages with or without wheels comprising means allowing pivoting adjustment in more than one direction
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16M—FRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
- F16M11/00—Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
- F16M11/20—Undercarriages with or without wheels
- F16M11/2007—Undercarriages with or without wheels comprising means allowing pivoting adjustment
- F16M11/2035—Undercarriages with or without wheels comprising means allowing pivoting adjustment in more than one direction
- F16M11/2071—Undercarriages with or without wheels comprising means allowing pivoting adjustment in more than one direction for panning and rolling
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16M—FRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
- F16M13/00—Other supports for positioning apparatus or articles; Means for steadying hand-held apparatus or articles
- F16M13/02—Other supports for positioning apparatus or articles; Means for steadying hand-held apparatus or articles for supporting on, or attaching to, an object, e.g. tree, gate, window-frame, cycle
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B15/00—Special procedures for taking photographs; Apparatus therefor
- G03B15/006—Apparatus mounted on flying objects
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/60—Control of cameras or camera modules
- H04N23/63—Control of cameras or camera modules by using electronic viewfinders
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/60—Control of cameras or camera modules
- H04N23/66—Remote control of cameras or camera parts, e.g. by remote control devices
- H04N23/661—Transmitting camera control signals through networks, e.g. control via the Internet
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N7/00—Television systems
- H04N7/18—Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N7/00—Television systems
- H04N7/18—Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
- H04N7/183—Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast for receiving images from a single remote source
- H04N7/185—Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast for receiving images from a single remote source from a mobile camera, e.g. for remote control
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U2101/00—UAVs specially adapted for particular uses or applications
- B64U2101/30—UAVs specially adapted for particular uses or applications for imaging, photography or videography
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64U—UNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
- B64U2201/00—UAVs characterised by their flight controls
- B64U2201/20—Remote controls
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B2206/00—Systems for exchange of information between different pieces of apparatus, e.g. for exchanging trimming information, for photo finishing
Definitions
- the invention relates to an aircraft system.
- an aircraft is usually capable of realizing an aerial photography function, and an image acquired by an aircraft needs to be displayed through a separate display device, making it inconvenient for the user to observe the image.
- the image signal obtained by the aircraft is easily interfered during transmission, and the signal transmission between the aircraft and the remote controller is not stable and reliable.
- the technical problem to be solved by the present invention is to overcome the defects that the user observes the image acquired by the aircraft in the prior art, and the transmission of the image signal obtained by the aircraft is not stable and reliable, and provides an aircraft system that is convenient for the user to view and has stable signal transmission. .
- an aircraft system includes an aircraft provided with an imaging device and a remote controller, wherein the remote controller includes a display and a device for a first communication circuit for transmitting an aircraft control signal by the aircraft and a second communication circuit for receiving an image signal of the camera device, the display for displaying the image signal.
- the remote controller of the present application is provided with a display capable of displaying an image signal, and the operator can intuitively observe the image captured by the camera device when using the remote controller to control the aircraft, thereby providing convenience for the operator.
- the remote controller of the present application utilizes two communication circuits and can be equipped with two antennas and flying The device communicates with the camera device, and the transmission of the control signal and the image signal are independent of each other and do not interfere with each other, and the signal transmission is more stable and reliable.
- the aircraft includes a pan/tilt, and the aircraft is connected to the camera device through the pan/tilt.
- the aircraft includes a power supply circuit, and the aircraft supplies power to the camera device through the power supply circuit.
- the first communication circuit is a 2.4 GHz communication circuit
- the second communication circuit is a 5.8 GHz communication circuit.
- the pan/tilt head is connected to the aircraft through a pan/tilt adapter, and the pan/tilt head includes an adapter body, and the front and rear sides of the adapter body respectively extend outwardly
- the buckle portion is configured to be engaged with a cloud platform to restrict movement of the cloud platform in a vertical direction and a front-rear direction, and the adapter body is further provided with a plurality of fixing portions.
- an upper damper plate is further disposed between the pan/tilt adapter and the pan/tilt, and two top surfaces of the upper damper plate are disposed corresponding to the two buckle portions. And the two bayonet ports are respectively engaged with the corresponding latching portions.
- the top surface of the upper damper plate is provided with two channels near the two bayonet ports, and the cross-sectional shapes of the two bayonet ports are all L-shaped, and the two channels are located at Directly below the corresponding bayonet, the front and rear sides of the right end of the adapter body respectively extend outwardly with a first limiting portion, and the two first limiting portions respectively abut against the corresponding a accommodating slot is disposed on a left end of the accommodating body, a second limiting portion is disposed on the left end surface of the accommodating slot, and the second limiting portion is located at the right end of the accommodating body The second limiting portion abuts against the left end surface of the upper damper plate
- the aircraft includes an aircraft control circuit
- the pan/tilt includes a first motor, a second motor, a third motor, a picture transmitting unit and an inertial measurement unit, the first motor, the first
- the two motors and the third motor are respectively used to control three axial rotations of the three-dimensional coordinate system
- the aircraft control circuit is configured to respectively communicate with the first motor and the second motor through three-phase lines
- the third motor is electrically connected
- the aircraft control circuit is further configured to be electrically connected to the inertial measurement unit through a communication line.
- the second communication circuit is a 5.8 GHz Wi-Fi communication circuit.
- the positive progress of the present invention is that in the aircraft system of the present application, the control signal of the aircraft and the image signal transmitted by the camera device do not interfere with each other and the transmission is more stable, and the display can directly display the image signal to provide convenience for the user.
- the image signal is transmitted through the 5.8 GHz communication circuit, and the image displayed on the display screen is smoother.
- FIG. 1 is a schematic structural view of an aircraft system according to an embodiment of the present invention.
- FIG. 2 is a schematic perspective structural view of a PTZ adapter according to an embodiment of the present invention.
- Fig. 3 is a bottom view corresponding to Fig. 2.
- FIG. 4 is a schematic perspective structural view of a portion of an aircraft pan/tilt head according to an embodiment of the present invention.
- FIG. 5 is a schematic exploded view of a portion of an aircraft pan/tilt head according to an embodiment of the present invention.
- FIG. 6 is another schematic structural diagram of an aircraft system according to an embodiment of the present invention.
- the embodiment provides an aircraft system including an aircraft 31 provided with an imaging device 33 and a remote controller 32.
- the remote controller includes a display 321 and a system for transmitting to the aircraft.
- the first communication circuit 322 is a 2.4 GHz communication circuit
- the second communication circuit 323 is a 5.8 GHz Wi-Fi communication circuit.
- the aircraft control signal of the remote control is transmitted to the aircraft control circuit of the aircraft via a 2.4 GHz communication signal 41, which communicates with the camera device via a 5.8 GHz Wi-Fi communication signal 42.
- the aircraft control circuit and power supply circuit 34 of the aircraft communicate with the camera 33 via wires 43.
- the aircraft further includes a cloud platform 1 and a power supply circuit 34 through which the aircraft is connected to the camera device and supplies power to the camera device through the power supply circuit.
- the pan/tilt head 1 is connected to the aircraft 31 via a pan/tilt adapter 2, and an upper damper plate 11 is further disposed between the pan/tilt adapter and the pan/tilt.
- the two bayonet ports 111 have an L-shaped cross-sectional shape, and both of the bayonet ports 111 are disposed along the longitudinal direction of the pan-tilt adapter 2, that is, in the left-right direction. At the same time, the lengths of the two bayonet ports 111 are equal and opposite.
- the pan/tilt adapter 2 includes an adapter body 21.
- a latching portion 22 is defined on the front and rear sides of the adapter body 21, and the latching portion 22 is configured to be engaged with the pan/tilt head to limit the pan/tilt head in a vertical direction. And movement in the front and rear direction.
- the two latching portions 22 are respectively disposed corresponding to the two latching ports 111, and the two latching portions 22 are respectively engaged with the corresponding latching ports 111. This enables the pan/tilt to be easily snapped onto the pan/tilt adapter 2, and the pan/tilt can be easily detached from the pan-tilt adapter 2.
- the shape of the left end surface of the adapter body 21 is set to an arc shape, and the shape of the right end surface surface is also set to an arc shape.
- the width of the left end portion of the adapter body 21 is greater than the width of the right end portion of the adapter body 21.
- the latching portion 22 is provided at a right end portion of the adapter body 21 and integrally formed with the adapter body 21.
- the adapter body 21 is provided with a fixing portion 23. Because the structure of the pan/tilt adapter 2 is simple, its volume is small and the weight is light, the pan/tilt adapter 2 can be conveniently fixed to different devices, such as an aircraft or a hand-held rack, through the fixing portion 23.
- Two channels 112 are formed on the top surface of the upper damper plate 11 near the two bayonet ports 111.
- the two portholes 111 have an L-shaped cross-sectional shape, and the two channels 112 are Located directly below the corresponding bayonet 111. This further reduces the contact area between the top surface of the gimbal and the bottom surface of the pan/tilt adapter 2, so that assembly or disassembly between the gimbal and the pan/tilt adapter 2 is more convenient.
- a first limiting portion 25 extends outwardly from the front and rear sides of the right end portion of the adapter body 21, respectively.
- the first limiting portion 25 is configured to abut the right end portion of the corresponding bayonet 111 to restrict the movement of the upper damping plate 11 of the pan/tilt in the longitudinal direction of the adapter body 21. .
- the first limiting portion 25 abuts against the right end portion of the corresponding bayonet 111, and the first limiting portion 25 performs the advancing direction when the pan/tilt is inserted into the pan/tilt adapter 2
- the restriction is to prevent the degree of advancement from slipping out of the bayonet 111 of the pan/tilt adapter 2, and cooperate with the latching portion 22 to play a limiting role in the vertical direction.
- a accommodating groove 26 is disposed on the left end of the accommodating body 21, and a left end surface of the accommodating groove 26 is disposed on the left end surface of the accommodating groove 26 for limiting the length of the pylon in the longitudinal direction of the Adapter body 21.
- the second limit portion 27 that moves. The second limiting portion 27 is located in the accommodating groove 26, and the second limiting portion 27 is bent upward when subjected to an upward force.
- the second limiting portion 27 functions as a limit. When the pan/tilt is inserted into the adapter, the direction in which the head of the pan/tilt is reversed is restricted to prevent the pan/tilt from moving backward. Meanwhile, the second limiting portion 27 It can be bent upward when subjected to a certain upward force, so that the pan/tilt can be inserted into or removed from the pan/tilt adapter 2.
- the second limiting portion 27 abuts against the left end surface of the upper damper plate 11. This restricts the movement of the upper damper plate 11 in the left-right direction, preventing the pan/tilt from being detached from the pan-tilt adapter 2 during the shooting.
- An aircraft control circuit is included, the cloud platform includes a first motor, a second motor, a third motor, a picture transmission unit, and an inertial measurement unit, the first motor, the second motor, and the The third motor is configured to respectively control three axial rotations of the three-dimensional coordinate system, and the aircraft control circuit is configured to respectively electrically connect the first motor, the second motor, and the third motor through three-phase lines Connected, the aircraft control circuit is further configured to be electrically coupled to the inertial measurement unit via a communication line.
- control signal of the aircraft and the image signal transmitted by the camera device do not interfere with each other and the transmission is more stable, and the display can directly display the image signal to provide convenience for the user.
- the image signal is transmitted through the 5.8 GHz communication circuit, and the image displayed on the display screen is smoother.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Aviation & Aerospace Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Remote Sensing (AREA)
- Studio Devices (AREA)
- Details Of Aerials (AREA)
Abstract
Description
Claims (9)
- 一种飞行器系统,其包括一设有摄像装置的飞行器以及一遥控器,其特征在于,所述遥控器包括一显示器、一用于向所述飞行器传输飞行器控制信号的第一通信电路以及一用于接收所述摄像装置的影像信号的第二通信电路,所述显示器用于显示所述影像信号。
- 如权利要求1所述的飞行器系统,其特征在于,所述飞行器包括一云台,所述飞行器通过所述云台与所述摄像装置连接。
- 如权利要求1或2所述的飞行器系统,其特征在于,所述飞行器包括一供电电路,所述飞行器通过所述供电电路向所述摄像装置供电。
- 如权利要求1-3中至少一项所述的飞行器系统,其特征在于,所述第一通信电路为2.4GHz通信电路,所述第二通信电路为5.8GHz通信电路。
- 如权利要求2所述的飞行器系统,其特征在于,所述云台通过一云台转接件与所述飞行器连接,所述云台转接件包括一转接本体,所述转接本体的前、后侧面上分别向外延伸有一卡扣部,所述卡扣部用于与一云台相卡接限制所述云台在竖直方向和前后方向上的移动,所述转接本体上还设置有若干固定部。
- 如权利要求5所述的飞行器系统,其特征在于,所述云台转接件与所述云台之间还设有一上减震板,所述上减震板的顶面上设有与两个所述卡扣部对应设置的两个卡口,且两个所述卡口分别与相应的所述卡扣部卡接。
- 如权利要求6所述的飞行器系统,其特征在于,所述上减震板的顶面上靠近两个所述卡口处开设有两个通道,两个所述卡口的横截面形状均为L形,且两个所述通道位于相应的所述卡口的正下方,所述转接本体的右端部的前、后侧面上分别向外延伸有一第一限位部,两个所述第一限位部分别抵靠于相应的所述卡口的右端部,所述转接本体的左端部上设有一容置槽,所述容置槽的左端面上设有一第二限位部,且所述第二限位部位于所述容置 槽内,所述第二限位部抵靠于所述上减震板的左端面上。
- 如权利要求2所述的飞行器系统,其特征在于,飞行器包括一飞行器控制电路,所述云台包括一第一电机、一第二电机、一第三电机、一图传单元及一惯性测量单元,所述第一电机、所述第二电机及所述第三电机用于分别控制三维坐标系的三个轴向上的转动,所述飞行器控制电路用于通过三相线分别与所述第一电机、所述第二电机及所述第三电机电连接,所述飞行器控制电路还用于通过通信线与所述惯性测量单元电连接。
- 如权利要求4所述的飞行器系统,其特征在于,所述第二通信电路为5.8GHz的Wi-Fi通信电路。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US15/529,779 US10053229B2 (en) | 2014-12-18 | 2015-12-18 | Aircraft system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201420814036.9U CN204362205U (zh) | 2014-12-18 | 2014-12-18 | 飞行器系统 |
CN201420814036.9 | 2014-12-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016095837A1 true WO2016095837A1 (zh) | 2016-06-23 |
Family
ID=53263649
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2015/097804 WO2016095837A1 (zh) | 2014-12-18 | 2015-12-18 | 飞行器系统 |
Country Status (3)
Country | Link |
---|---|
US (1) | US10053229B2 (zh) |
CN (1) | CN204362205U (zh) |
WO (1) | WO2016095837A1 (zh) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6408832B2 (ja) * | 2014-08-27 | 2018-10-17 | ルネサスエレクトロニクス株式会社 | 制御システム、中継装置、及び制御方法 |
CN204452948U (zh) * | 2014-12-15 | 2015-07-08 | 昆山优力电能运动科技有限公司 | 云台 |
CN204362205U (zh) * | 2014-12-18 | 2015-05-27 | 昆山优力电能运动科技有限公司 | 飞行器系统 |
EP3317576B1 (en) * | 2015-07-02 | 2020-09-02 | SZ DJI Osmo Technology Co., Ltd. | Gimbal for image capturing |
CN105597308B (zh) * | 2015-10-29 | 2019-01-22 | 上海圣尧智能科技有限公司 | 一种无人机、模拟空战游戏设备和模拟空战游戏系统 |
CN110891862B (zh) * | 2017-08-10 | 2023-07-11 | 深圳零零无限科技有限公司 | 飞行系统中用于避障的系统和方法 |
CN112128557B (zh) * | 2020-09-10 | 2021-11-30 | 深圳市博铭维智能科技有限公司 | 一种动态密封云台探测设备 |
CN113464800B (zh) * | 2021-07-12 | 2022-07-15 | 珠海格力电器股份有限公司 | 摄像机 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN200983031Y (zh) * | 2006-09-19 | 2007-11-28 | 深圳市一电科技有限公司 | 无线遥控云台摄像机 |
CN203047531U (zh) * | 2012-11-15 | 2013-07-10 | 深圳市大疆创新科技有限公司 | 多旋翼无人飞行器 |
CN203490821U (zh) * | 2013-06-13 | 2014-03-19 | 昊翔电能运动科技(昆山)有限公司 | 智能显示遥控器和飞行控制系统 |
CN203528816U (zh) * | 2013-06-26 | 2014-04-09 | 南昌航空大学 | 一种航拍无人机 |
US20140103158A1 (en) * | 2012-10-12 | 2014-04-17 | Benjamin Lawrence Berry | AirShip Endurance VTOL UAV and Solar Turbine Clean Tech Propulsion |
CN203705964U (zh) * | 2014-02-28 | 2014-07-09 | 哈尔滨伟方智能科技开发有限责任公司 | 一种机载三自由度云台稳定闭环控制装置 |
CN103921942A (zh) * | 2014-04-24 | 2014-07-16 | 安徽瓦尔特机械贸易有限公司 | 一种高空清障无人机 |
CN203889081U (zh) * | 2014-06-06 | 2014-10-22 | 中孚航空科技(天津)有限公司 | 电动无人直升机云台减震装置 |
CN204362205U (zh) * | 2014-12-18 | 2015-05-27 | 昆山优力电能运动科技有限公司 | 飞行器系统 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8643719B2 (en) * | 2008-02-29 | 2014-02-04 | The Boeing Company | Traffic and security monitoring system and method |
US20100302359A1 (en) * | 2009-06-01 | 2010-12-02 | Honeywell International Inc. | Unmanned Aerial Vehicle Communication |
US9456185B2 (en) * | 2009-08-26 | 2016-09-27 | Geotech Environmental Equipment, Inc. | Helicopter |
EP2527787B1 (en) * | 2011-05-23 | 2019-09-11 | Kabushiki Kaisha TOPCON | Aerial photograph image pickup method and aerial photograph image pickup apparatus |
KR20140067753A (ko) * | 2012-11-27 | 2014-06-05 | 삼성전자주식회사 | 멀티 뷰 디스플레이를 수행하는 디스플레이 장치 및 그 방법 |
CN106471337B (zh) * | 2014-04-28 | 2020-12-18 | 深圳市大疆创新科技有限公司 | 可替换的安装平台 |
US9310221B1 (en) * | 2014-05-12 | 2016-04-12 | Unmanned Innovation, Inc. | Distributed unmanned aerial vehicle architecture |
CN204452948U (zh) * | 2014-12-15 | 2015-07-08 | 昆山优力电能运动科技有限公司 | 云台 |
-
2014
- 2014-12-18 CN CN201420814036.9U patent/CN204362205U/zh active Active
-
2015
- 2015-12-18 WO PCT/CN2015/097804 patent/WO2016095837A1/zh active Application Filing
- 2015-12-18 US US15/529,779 patent/US10053229B2/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN200983031Y (zh) * | 2006-09-19 | 2007-11-28 | 深圳市一电科技有限公司 | 无线遥控云台摄像机 |
US20140103158A1 (en) * | 2012-10-12 | 2014-04-17 | Benjamin Lawrence Berry | AirShip Endurance VTOL UAV and Solar Turbine Clean Tech Propulsion |
CN203047531U (zh) * | 2012-11-15 | 2013-07-10 | 深圳市大疆创新科技有限公司 | 多旋翼无人飞行器 |
CN203490821U (zh) * | 2013-06-13 | 2014-03-19 | 昊翔电能运动科技(昆山)有限公司 | 智能显示遥控器和飞行控制系统 |
CN203528816U (zh) * | 2013-06-26 | 2014-04-09 | 南昌航空大学 | 一种航拍无人机 |
CN203705964U (zh) * | 2014-02-28 | 2014-07-09 | 哈尔滨伟方智能科技开发有限责任公司 | 一种机载三自由度云台稳定闭环控制装置 |
CN103921942A (zh) * | 2014-04-24 | 2014-07-16 | 安徽瓦尔特机械贸易有限公司 | 一种高空清障无人机 |
CN203889081U (zh) * | 2014-06-06 | 2014-10-22 | 中孚航空科技(天津)有限公司 | 电动无人直升机云台减震装置 |
CN204362205U (zh) * | 2014-12-18 | 2015-05-27 | 昆山优力电能运动科技有限公司 | 飞行器系统 |
Also Published As
Publication number | Publication date |
---|---|
US20170305574A1 (en) | 2017-10-26 |
CN204362205U (zh) | 2015-05-27 |
US10053229B2 (en) | 2018-08-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016095837A1 (zh) | 飞行器系统 | |
CN111742544B (zh) | 模块化图像捕获系统 | |
US11560920B2 (en) | Gimbal for image capturing | |
US10560611B2 (en) | Interchangeable mounting platform | |
US20170310868A1 (en) | Shooting apparatus with stabilizer module | |
CN110325906B (zh) | 用于固定相机的连接组件及自拍杆、拍摄装置 | |
WO2017076079A1 (zh) | 无人飞行器、影像拍摄装置及其云台 | |
CN114467067A (zh) | 用于可移除地附接到显示设备和插接台组件的插接站的系统和方法 | |
WO2016095793A1 (zh) | 遥控器 | |
WO2019134385A1 (zh) | 摄像头组件及无人机 | |
JP2016017993A (ja) | 撮像装置 | |
US20130250130A1 (en) | Extendable-reach imaging apparatus | |
WO2019061163A1 (zh) | 成像装置、云台以及相机本体 | |
CN107637059B (zh) | 拍摄装置、拍摄设备及便携式电子设备 | |
CN206628079U (zh) | 用于控制移动设备的遥控器 | |
CN211685666U (zh) | 一种云台、无人机及控制系统 | |
KR100829800B1 (ko) | 크레들 | |
US20150326764A1 (en) | Extendable-reach imaging apparatus with memory | |
CN212473942U (zh) | 一种无人机云台、无人机及无人机控制系统 | |
CN210958576U (zh) | 图像传输装置 | |
CN208971610U (zh) | 连接装置及全景拍摄系统 | |
WO2022000401A1 (zh) | 遥控器及遥控系统 | |
CN212413543U (zh) | 遥控器 | |
CN112797266A (zh) | 分体式云台、无人机、无人机控制系统及其控制方法 | |
CN212156577U (zh) | 手持云台 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15869344 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15529779 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 04/10/2017) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15869344 Country of ref document: EP Kind code of ref document: A1 |