WO2016092789A1 - 故障検出回路 - Google Patents

故障検出回路 Download PDF

Info

Publication number
WO2016092789A1
WO2016092789A1 PCT/JP2015/006033 JP2015006033W WO2016092789A1 WO 2016092789 A1 WO2016092789 A1 WO 2016092789A1 JP 2015006033 W JP2015006033 W JP 2015006033W WO 2016092789 A1 WO2016092789 A1 WO 2016092789A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
voltage
detection circuit
signal
capacitor
Prior art date
Application number
PCT/JP2015/006033
Other languages
English (en)
French (fr)
Inventor
卓祐 伊藤
茂樹 大塚
浩伸 秋田
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Publication of WO2016092789A1 publication Critical patent/WO2016092789A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere

Definitions

  • the present disclosure relates to a failure detection circuit.
  • a configuration in which the high voltage side circuit and the low voltage side circuit are coupled by a capacitor may be employed.
  • a capacitor fails and is short-circuited, a high-voltage DC voltage in addition to the signal voltage is directly input to the low-voltage circuit. Therefore, in order to prevent a high voltage signal from being directly input to the low voltage circuit even when such a short circuit failure occurs, a plurality of capacitors are connected in series. As a result, even if one capacitor is short-circuited, a signal can be received and operated by a circuit on the low voltage side.
  • An object of the present disclosure is to incorporate a circuit for detecting a short-circuit fault of a capacitor on a low voltage circuit side in a configuration in which a signal from a high voltage circuit is input to a low voltage circuit through a circuit in which a plurality of capacitors are connected in series. It is an object of the present invention to provide a failure detection circuit that can be used.
  • the failure detection circuit includes a first capacitor and a second capacitor that are provided to input a signal provided from a high voltage circuit and are connected in series, and the first and second capacitors.
  • a low-voltage circuit that inputs a signal from the high-voltage circuit, a step-down circuit that steps down the voltage at the connection point of the first and second capacitors, and a level of the voltage signal stepped down by the step-down circuit.
  • a detection circuit for detecting a failure of at least one of the first and second capacitors.
  • the voltage generated at the connection point of the first and second capacitors is input to the detection circuit as a voltage signal converted into a low voltage via the step-down circuit.
  • the level of the voltage signal converted into the low voltage is a level when both the first and second capacitors are in a normal state, a level when the first capacitor on the high voltage circuit side is in a short-circuit fault state, Each of the levels when the second capacitor on the low voltage circuit side is in a short-circuit failure state has a different voltage level.
  • the voltage level when the detection circuit is in the state of at least one short-circuit fault of the first and second capacitors from the voltage level of the voltage signal input via the step-down circuit to the voltage level of the normal state. It can be determined by comparison.
  • the detection circuit can receive the signal from the high voltage circuit at a level converted to the low voltage level via the step-down circuit, and therefore can be configured as a circuit equivalent to the low voltage circuit.
  • FIG. 2 is a basic electrical configuration diagram of a high voltage circuit and a failure detection circuit according to the first embodiment of the present disclosure.
  • FIG. It is an electrical block diagram which shows more specifically the structure shown in FIG. (A), (b) is explanatory drawing of the electric potential relationship of each part.
  • FIG. 6 is a basic electrical configuration diagram of a high voltage circuit and a failure detection circuit according to a second embodiment of the present disclosure.
  • FIG. 5 is an electrical configuration diagram more specifically showing the configuration shown in FIG. 4. It is a figure which shows the output state of a comparison circuit.
  • FIG. 6 is a basic electrical configuration diagram of a high voltage circuit and a failure detection circuit according to a third embodiment of the present disclosure.
  • FIG. 8 is an electrical configuration diagram more specifically showing the configuration shown in FIG. 7. It is a figure which shows the output state of a comparison circuit.
  • FIG. 9 is a basic electrical configuration diagram of a high voltage circuit and a failure detection circuit according to a fourth embodiment of the present disclosure. (A), (b) is explanatory drawing of the electric potential relationship of each part. It is a figure which shows the output state of a comparison circuit.
  • FIG. 9 is a basic electrical configuration diagram of a high voltage circuit and a failure detection circuit according to a fifth embodiment of the present disclosure.
  • FIG. 9 is a basic electrical configuration diagram of a high voltage circuit and a failure detection circuit according to a sixth embodiment of the present disclosure.
  • FIG. 1 shows a basic configuration of a failure detection circuit including a high voltage circuit and a low voltage circuit.
  • the high voltage circuit 1 is a part of a transmission / reception circuit of CAN (controller area network) communication used for communication in a vehicle, for example.
  • the high voltage circuit 1 is shown in a simplified manner in the drawing, the voltage level Vg1 of the ground terminal GND1 is high, for example, set to 11V.
  • a signal source 2 is connected to the ground terminal GND1. In the signal source 2, the amplitude voltage Vamp [V] of the signal is set to 1V.
  • the maximum voltage Vcan [V] of the output signal of the high voltage circuit 1 is 12V.
  • the output terminal of the high voltage circuit 1 is connected to a receiving circuit 5 which is a low voltage circuit through a series circuit of two capacitors 3 and 4.
  • the two capacitors 3 and 4 correspond to the first and second capacitors, and the capacitance values thereof are set to Ct [ ⁇ F] and Cb [ ⁇ F], respectively.
  • the receiving circuit 5 is formed in, for example, the semiconductor IC chip 6. Since the receiving circuit 5 is configured to receive the high voltage signal from the high voltage circuit 1 via the capacitors 3 and 4, it can be received as a signal obtained by cutting a DC component that becomes a high voltage.
  • a protective diode 7, an input bias resistor 8, and a reference voltage power source 9 are connected in series between a low-voltage power supply terminal Vdd and a ground terminal GND2.
  • the voltage level Vg2 of the ground terminal GND2 is set to 0V.
  • the protection diode 7 is an ESD (electrostatic discharge) diode that discharges static electricity when it is input.
  • the high voltage signal Vcan output from the high voltage circuit 1 is input to a common connection point between the protection diode 7 and the input bias resistor 8 via the capacitors 3 and 4. Since the high voltage signal Vcan passes through the capacitors 3 and 4, the voltage level is a low voltage level voltage signal Vac corresponding to the change level of the signal source 2.
  • Both terminals of the input bias resistor 8 are connected to both terminals of the comparator 10.
  • the reference voltage power supply 9 outputs a reference voltage Vref and is input to the inverting input terminal of the comparator 10.
  • a voltage is applied to the non-inverting input terminal of the comparator 10 through the input bias resistor 8.
  • the high voltage signal Vcan is input through the capacitors 3 and 4, and the differentiated signal component is input as the voltage signal Vac.
  • the comparator 10 outputs a high level detection signal H to the output terminal P during a period in which the voltage signal Vac exceeds the reference voltage Vref.
  • the common connection point of the capacitors 3 and 4 is connected to the step-down circuit 11.
  • the step-down circuit 11 outputs a voltage signal Vcmp obtained by stepping down the voltage signal appearing between the capacitors 3 and 4 to the detection circuit 12.
  • the configuration of the step-down circuit 11 is configured by a circuit that can be converted to a level that can be processed by the semiconductor IC chip 6 by stepping down the level of the voltage signal that can be generated between the capacitors 3 and 4 at a predetermined ratio.
  • the detection circuit 12 is provided in the semiconductor IC chip 6.
  • the detection circuit 12 compares the voltage signal Vcmp input from the step-down circuit 11 with a threshold voltage to determine whether or not a short circuit failure has occurred in the capacitors 3 and 4.
  • the detection circuit 12 detects voltage signals Vcmpt and Vcmpb that are input when either of the capacitors 3 or 4 is short-circuited with respect to the voltage signal Vcmp that is input while both the capacitors 3 and 4 are operating normally. Is constituted by a circuit capable of detecting an abnormal level.
  • the level of the voltage signal to the step-down circuit 11 is also connected to the high voltage circuit 1 side through the capacitor 3, so that a high voltage is applied. There is nothing. Further, since it is connected to the receiving circuit 5 side via the capacitor 4, a voltage signal corresponding to the level of the signal Vamp of the signal source 2 is input to the step-down circuit 11. Since the voltage signal Vcmp is lower than the threshold voltage of the detection circuit 12, the detection circuit 12 determines that the voltage signal Vcmp is at a normal level. As a result, the detection circuit 12 determines that the voltage signal Vcmp is at a normal level.
  • the capacitor 3 causes a short circuit failure
  • the high voltage signal Vcan is directly input to the step-down circuit 11 from the high voltage circuit 1.
  • a high level signal Vcmpt stepped down by a predetermined ratio by the step-down circuit 11 is generated and input to the detection circuit 12, whereby the detection circuit 12 sets the level of the voltage signal Vcmp input in a normal state.
  • An abnormal state is determined when the exceeding voltage signal Vcmpt is input.
  • a voltage signal having a level obtained by adding the reference voltage Vref of the reference voltage power supply 9 to the signal Vamp of the signal source 2 is input to the step-down circuit 11.
  • an intermediate level signal Vcmpb that has been stepped down by a predetermined ratio by the step-down circuit 11 is generated and input to the detection circuit 12, whereby the detection circuit 12 determines the level of the voltage signal Vcmp that is input in a normal state.
  • An abnormal state is determined when the exceeding voltage signal Vcmpb is input.
  • the circuit configuration in FIG. 2 is merely a specific example of the basic circuit configuration in FIG. 1, and the basic circuit shown in FIG. 1 is an appropriate circuit as long as it can achieve the functions described above. Can be adopted.
  • FIG. 2 shows a specific circuit of the step-down circuit 11 and the detection circuit 12.
  • the step-down circuit 11 has a configuration in which a series circuit of resistors 11a and 11b is connected between the common connection point of the capacitors 3 and 4 and the ground terminal GND2.
  • the resistance values Rt and Rb of the resistors 11a and 11b are set to have a constant ratio M.
  • the resistance value Rb is R [ ⁇ ]
  • the resistance value Rt is set to M ⁇ R [ ⁇ ].
  • Vcmp voltage appearing between the capacitors 3 and 4 is output as a voltage signal Vcmp that is stepped down to 1 / (M + 1).
  • the detection circuit 12 includes a comparator 12a and a threshold voltage power supply 12b.
  • the threshold voltage power supply 12b inputs the threshold voltage Vth to the inverting input terminal of the comparator 12a with respect to the potential of GND2.
  • the voltage signal Vcmp is input from the step-down circuit 11 to the non-inverting input terminal of the comparator 12. During the period when the level of the voltage signal Vcmp exceeds the threshold voltage Vth, the detection signal SQ from the output terminal Q is at the “H” level.
  • FIG. 3A shows the potential relationship between Vcan, GND1 Vg1, and GND2 Vg2, and FIG. 3B shows the potential relationship between Vcmp (max) and the DC voltage component Vcmpdc excluding the change. .
  • the magnitudes of the voltage signals Vcmp, Vcmpt, Vcmpb, and Vcmpoff input to the circuit 12 can be obtained as follows. (1) During normal communication The high voltage signal Vcan input from the high voltage circuit 1 is input to the receiving circuit 5 side via the capacitors 3 and 4. The component input to the step-down circuit 11 via the capacitor 3 is a divided voltage output of the signal component Vamp because the direct current component is cut. At this time, the maximum detection voltage Vcmp (max) input to the detection circuit 12 is obtained by the following equation (4).
  • the step-down circuit 11 has the voltage signal Vamp added with Vg1, which is a direct current component from the high voltage circuit 1.
  • the voltage Vcan is directly input.
  • the maximum voltage signal Vcmpt (max) input to the detection circuit 12 is obtained as in the following equation (5).
  • Vcmpt (max) Vcan / (1 + M) (5) (3)
  • the second capacitor 4 capacitor Cb
  • the DC component Vg1 on the high voltage circuit 1 side is not applied to the step-down circuit 11, but the reception is caused by the short circuit of the capacitor 4.
  • the DC component Vref on the circuit 5 side is added to the voltage signal Vamp.
  • the maximum voltage signal Vcmpb (max) input to the detection circuit 12 is obtained as in the following equation (6).
  • Vcmpb (max) Vref ⁇ Rb / (Rbias + Rt + Rb) + Vamp ⁇ 1 / (M + 1) (6) (4) When communication is stopped When the communication is stopped with the capacitors 3 and 4 not broken, the voltage signal Vcmpoff output from the step-down circuit 11 is the potential Vg2 of the ground terminal GND2.
  • Vcmpoff Vg2 (7) It becomes.
  • Vdd 3 [V]
  • Vcan 12 [V]
  • Vref 2 [V]
  • Vth 0.35 [V]
  • resistance ratio M 3
  • Rbias 1 [k ⁇ ]
  • Rb 1 [k ⁇ ]
  • Vamp 1 [V]
  • Vg1 11 [V]
  • Vg2 0 [V]
  • Ct 1 [ ⁇ F]
  • Cb 1 [ ⁇ F].
  • Vcmpt (max) 3 [V].
  • the output signal SQ of the detection circuit 12 becomes an “H” level output, and it is detected that a short circuit failure of either the capacitor 3 or 4 has occurred.
  • Vcmpb (max)> Vth the output signal SQ of the detection circuit 12 becomes an “H” level output, and it is detected that either one of the capacitors 3 or 4 is short-circuited.
  • an “L” level output signal SQ indicating a normal state is output in a normal state in which neither the first capacitor 3 nor the second capacitor 4 has failed.
  • an “H” level output signal SQ indicating a failure state is output. Based on the output signal SQ appearing at the output terminal of the detection circuit 12, the failure state of the capacitor can be determined.
  • the semiconductor IC As a configuration in which the detection circuit 12 is provided in the chip 6, a failure state can be determined.
  • FIGS. 4 to 6 show the second embodiment, and different parts from the first embodiment will be described below.
  • the step-down output of one step-down circuit 11 is input to both the detection circuit 12 and the detection circuit 13.
  • different threshold voltages are set for the two detection circuits 12 and 13.
  • one of the capacitors 3 and 4 has been determined to be short-circuited, but depending on the detection results of the detection circuits 12 and 13, any of the capacitors 3 and 4 is short-circuited. Can be identified.
  • FIG. 5 shows a specific circuit of the detection circuits 12 and 13. Note that the circuit configuration of FIG. 5 is merely a specific example of the basic circuit configuration of FIG. 4, and the basic circuit shown in FIG. 4 is an appropriate circuit as long as it can achieve the functions described above. Can be adopted. In addition, it is not always necessary to provide the two detection circuits 12 and 13 in a specific circuit, and it is possible to provide one specific circuit that can achieve these functions.
  • the step-down circuit 11 has the same configuration as that of the first embodiment, and outputs a voltage signal Vcmp obtained by stepping down the voltage appearing between the capacitors 3 and 4 to 1 / (M + 1).
  • the detection circuit 12 has the same configuration as that of the first embodiment, and inputs the threshold voltage Vth1 to the inverting input terminal of the comparator 12a with respect to the potential Vg2 of GND2.
  • the threshold voltage Vth1 is set to be the same as the threshold voltage Vth of the first embodiment.
  • the high-level detection signal SQ is output from the output terminal Q1.
  • the detection circuit 13 includes a comparator 13a and a threshold voltage power supply 13b.
  • the threshold voltage power supply 13b inputs the threshold voltage Vth2 to the inverting input terminal of the comparator 13a with respect to the potential Vg2 of GND2.
  • the voltage signal Vcmp is input from the step-down circuit 11 to the non-inverting input terminal of the comparator 13. During a period in which the level of the voltage signal Vcmp exceeds the threshold voltage Vth2, the high level H detection signal SQ2 is output from the output terminal Q2.
  • Vcmpoff can be obtained by the equations (4) to (7) as in the first embodiment.
  • the threshold voltage Vth1 is the same as the threshold voltage Vth, 0.35 [V]
  • the threshold voltage Vth2 is 1.5 [V].
  • Vcmpt (max) Vth1 and Vcmpt (max)> Vth2
  • the output signal SQ1 of the detection circuit 12 is “H” level
  • the output signal SQ2 of the detection circuit 13 is also “H” level output. It is detected that a short circuit fault has occurred in the capacitor 3.
  • both the output signals SQ1 and SQ2 are at the “L” level. It shows a normal state.
  • the first capacitor 3 causes a short-circuit failure
  • the output signals SQ1 and SQ2 both become “H” level.
  • the second capacitor 4 causes a short circuit failure, the output signal SQ1 becomes “H” level and the output signal SQ2 both becomes “L” level.
  • the detection circuit 13 since the detection circuit 13 is added, in addition to the effect of the first embodiment, it is possible to determine which of the capacitors 3 and 4 is causing the short-circuit failure. it can.
  • FIGS. 7 to 9 show the third embodiment, and only the parts different from the first embodiment will be described below.
  • two step-down circuits 14 and 15 that step down with different voltages are provided, and detection circuits 16 and 17 that perform detection operation with the same threshold voltage Vth on the respective voltage signals Vcmp1 and Vcmp2 are provided. It is the structure to provide.
  • circuit configuration of FIG. 8 is merely a specific example of the basic circuit configuration of FIG. 7, and the basic circuit shown in FIG. 7 is a suitable circuit as long as it can achieve the functions described above. Can be adopted. Further, it is not always necessary to provide the two step-down circuits 14 and 15 and the detection circuits 16 and 17 in a specific circuit, and it is also possible to provide one specific circuit that can achieve these functions.
  • FIG. 8 shows a specific circuit of the step-down circuits 14 and 15 and the detection circuits 16 and 17.
  • the step-down circuit 14 has resistors 14a and 14b connected in series between a power supply terminal Vdd and a ground terminal GND2, and outputs a voltage signal Vcmp1 obtained by stepping down the voltage appearing between the capacitors 3 and 4 to 1 / (M1 + 1).
  • the step-down circuit 15 has resistors 15a and 15b connected in series between the power supply terminal Vdd and the ground terminal GND2, and outputs a voltage signal Vcmp2 obtained by stepping down the voltage appearing between the capacitors 3 and 4 to 1 / (M2 + 1). To do.
  • the detection circuit 16 includes a comparator 16a and a threshold voltage power supply 16b as in the first embodiment.
  • the threshold voltage power supply 16b inputs the threshold voltage Vth to the inverting input terminal of the comparator 16a with respect to the potential Vg2 of the ground terminal GND2.
  • the detection circuit 17 includes a comparator 17a and a threshold voltage power source 17b.
  • the threshold voltage power supply 17b inputs the threshold voltage Vth to the inverting input terminal of the comparator 17a with respect to the potential Vg2 of the ground terminal GND2.
  • the magnitudes of Vcmp1, Vcmpt1, Vcmpb1, and voltage signals Vcmp2, Vcmpt2, and Vcmpb2 input to the detection circuit 17 can be obtained as follows. (1) During normal communication Expressions corresponding to Vcmp1 and Vcmp2 corresponding to Expression (4) described in the first embodiment are as shown in Expressions (8) and (9) below.
  • the expressions corresponding to Vcmp1 and Vcmp2 corresponding to Expression (5) are the following expressions (10), (11 )become that way.
  • Vcmpt1 Vcan / (1 + M1) (10)
  • Vcmpt2 Vcan / (1 + M2) (11) (3)
  • the expressions corresponding to Vcmp1 and Vcmp2 corresponding to the expression (6) are the following expressions (12), (13 )become that way.
  • Vcmpb1 Vref ⁇ Rb1 / (Rbias + Rt1 + Rb1) + Vamp ⁇ 1 / (M1 + 1)
  • Vcmpb2 Vref ⁇ Rb2 / (Rbias + Rt2 + Rb2) + Vamp ⁇ 1 / (M2 + 1) (13)
  • Vdd 3 [V]
  • Vcan 12 [V]
  • Vref 2 [V]
  • Vth 0.35 [V]
  • resistance ratio M1 3
  • resistance ratio M2 9
  • Rbias 1 [k ⁇ ]
  • Rb1 1 [k ⁇ ]
  • Rb2 1 [k ⁇ ]
  • Vamp 1 [V]
  • Vg1 11 [V]
  • Vg2 0 [V]
  • Ct 1 [ ⁇ F]
  • Cb 1 [ ⁇ F].
  • Vcmp2 (max) 0.1 [V] and Vcmp2 (max) ⁇ Vth2
  • the output signal SQ2 is at the “L” level. Therefore, the output signal indicates a normal state.
  • both the output signals SQ1 and SQ2 are at the “L” level. It shows a normal state.
  • the first capacitor 3 causes a short-circuit failure
  • the output signals SQ1 and SQ2 both become “H” level.
  • the second capacitor 4 causes a short circuit failure, the output signal SQ1 becomes “H” level and the output signal SQ2 both becomes “L” level.
  • different voltage signals Vcmp1 and Vcmp2 are output by the two step-down circuits 14 and 15, and these are output by the two detection circuits 16 and 17 having the same threshold voltage Vth. Since the comparison is made, this configuration can also determine which of the capacitors 3 and 4 is causing a short-circuit failure, as in the second embodiment.
  • the semiconductor IC chip 6 may be provided with detection circuits 16 and 17 having the same configuration.
  • FIGS. 10 to 12 show the fourth embodiment. Hereinafter, parts different from the second embodiment will be described.
  • the voltage Vg1 of the ground terminal GND1 and the voltage Vg2 of the ground terminal GND2 constitute a circuit under the condition of Vg2> Vg1.
  • a step-down circuit 18 is provided in place of the step-down circuit 11.
  • the step-down circuit 18 connects a series circuit of two resistors 18 a and 18 b to a common connection point between the power supply terminal Vdd and the capacitors 3 and 4.
  • the resistance values Rb and Rt of the two resistors 18a and 18b are set such that the resistance value ratio Rt is M times Rb.
  • the step-down circuit 18 outputs a voltage signal Vcmp obtained by stepping down the voltage difference between the voltage appearing between the capacitors 3 and 4 and the power supply voltage Vdd to 1 / (M + 1).
  • the detection circuits 12 and 13 have the same configuration as in the second embodiment.
  • the threshold voltages Vth1 and Vth2 are set with respect to the potential Vg2 of GND2.
  • Vcan The potential relationship between Vcan, GND1 Vg1 and GND2 Vg2 is shown in FIG. 11A, and the potential relationship between Vcmp (max) and the DC voltage component Vcmpdc excluding the change is shown in FIG. .
  • Vcmp (min) Vdd ⁇ Vamp / (1 + M) (14)
  • the equation corresponding to Vcmp corresponding to the equation (5) is similarly expressed by the following equation (16). That is, the current I Vdd-GND1 flowing between the power supply terminal Vdd and the ground terminal GDN1 due to the short circuit failure of the capacitor 3 is expressed by the equation (15). From this current value, Vcmpt (min) can be obtained as shown in Equation (16).
  • the equation corresponding to Vcmpb corresponding to the equation (6) is similarly expressed by the following equation (18). That is, the current IVdd -GND1 flowing between the power supply terminal Vdd and the ground terminal GDN1 due to the short circuit failure of the capacitor 4 is expressed by the equation (17). From this current value, Vcmpt (min) can be obtained as shown in Equation (18).
  • Vdd-Vref (Vdd-Vref) / (Rb + Rt + Rbias) (17)
  • Vcmpb Vcmp ⁇ Vamp ⁇ Rb2 / (Rt2 + Rb2) (18)
  • Vdd 3 [V]
  • Vcan ⁇ 12 [V]
  • Vref 1 [V]
  • Vth1 1.5 [V]
  • Vth2 2.75 [V]
  • resistance ratio M 4
  • Rbias 100 [ ⁇ ]
  • Rb 1 [k ⁇ ]
  • Vamp 1 [V]
  • Vg1 ⁇ 11 [V]
  • Vg2 0 [V]
  • Ct 1 [ ⁇ F]
  • Cb 1 [ ⁇ F].
  • the output signal indicates a normal state.
  • Vcmpt (min) 0 [V]
  • the output signal SQ1 becomes “L” level
  • the output signal SQ2 also becomes “L” level. Therefore, it is detected that a short circuit failure has occurred in the capacitor 3.
  • both the output signals SQ1 and SQ2 are at the “H” level. It shows a normal state. Further, when the first capacitor 3 causes a short circuit failure, the output signals SQ1 and SQ2 both become “L” level. When the second capacitor 4 causes a short circuit failure, the output signal SQ1 becomes “H” level and the output signal SQ2 both becomes “L” level. Thereby, since the output results of the output signals SQ1 and SQ2 differ depending on which of the capacitors 3 and 4 is in a failure state, it is possible to determine the capacitor that has caused the short-circuit failure.
  • FIG. 13 to FIG. 16 (d) show the fifth embodiment, and only the parts different from the first embodiment will be described below.
  • a detection circuit 19 is provided instead of the detection circuit 12.
  • the detection circuit 19 includes a buffer circuit 20 and a low-pass filter 21 before the comparator 12a.
  • the output signal Vs of the step-down circuit 11 is input to the low pass filter 21 via the buffer circuit 20.
  • the low-pass filter 21 includes a resistor 21a and a capacitor 21b, and cuts the signal Vamp of the signal source and allows a direct current component to pass therethrough.
  • Vcmpb the voltage signals Vcmp and Vcmpt input to the detection circuit 12 at the time of (1) normal communication, (2) when the first capacitor 3 is short-circuited, and (3) when the second capacitor 4 is short-circuited.
  • Vcmpb can be obtained as follows.
  • FIGS. 14 (a) to 14 (d) show the simulation results of the change state of each part with time.
  • the high voltage signal Vcan input from the high voltage circuit 1 is input as Vac to the receiving circuit 5 side through the capacitors 3 and 4. Further, the signal component signal input to the step-down circuit 11 via the capacitor 3 is cut into a direct current component, and thus becomes a divided output Vs of the signal component Vamp.
  • a detection voltage Vcmp obtained by extracting a DC component through the low-pass filter 21 is input to the comparator 12a.
  • the high-voltage signal Vcan is a signal that fluctuates in the range of the amplitude (1 [V]) of the signal voltage Vamp with the potential Vg1 (11 [V]) of the ground terminal GND1 as the center. It becomes. For this reason, Vamp (max) is 12 [V].
  • the signal Vac that passes through the capacitors 3 and 4 and is input to the receiving circuit 5 has the voltage Vg1 of the ground terminal GND1, which is a direct current component, cut to be 2 as the direct current voltage of the reference voltage Vref. [V] is added to the signal.
  • the signal Vs input from the step-down circuit 11 to the buffer circuit 20 is a signal obtained by dividing the signal Vamp from which the direct current component has been cut, and is expressed by a formula ( The signal changes at the amplitude voltage 0.25 [V] obtained in 4). Then, the voltage signal Vcmp that has passed through the low-pass filter 21 is a signal of 0 [V] as a DC voltage because the change component is cut as shown in FIG.
  • the detection signal SQ is at the “L” level.
  • the first capacitor 3 capacitor Ct
  • the signal component signal input to the step-down circuit 11 is a divided output Vs of the high-voltage signal Vcan containing a DC voltage component.
  • a voltage signal Vcmp obtained by extracting a DC component through the low-pass filter 21 is input to the comparator 12a.
  • the high-voltage signal Vcan and the signal Vac input to the receiving circuit 5 side are the same as the signals in the normal state as shown in FIGS. 15 (a) and 15 (b).
  • the signal Vs input from the step-down circuit 11 to the buffer circuit 20 is a signal obtained by dividing a high-voltage signal Vcan containing a direct current component, and is centered on 2.75 [V].
  • the signal changes with an amplitude voltage of 0.25 [V].
  • the voltage signal Vcmp that has passed through the low-pass filter 21 is a signal of 2.75 [V] as a DC voltage because the change component is cut as shown in FIG.
  • the detection signal SQ is at “H” level.
  • the second capacitor 4 capacitor capactance Cb
  • the simulation results are shown in FIGS.
  • the high-voltage signal Vcan inputted from the high-voltage circuit 1 is inputted as Vac to the receiving circuit 5 side via the capacitor 3 because the capacitor 4 is short-circuited.
  • the signal component signal input to the step-down circuit 11 via the capacitor 3 is cut in the DC component on the high voltage side, but the reference voltage Vref, which is a DC component on the receiving circuit 5 side, is added to the signal component Vamp.
  • the voltage is divided into the divided voltage output Vs.
  • a voltage signal Vcmp obtained by extracting a DC component through the low-pass filter 21 is input to the comparator 12a.
  • the high voltage signal Vcan and the signal Vac input to the receiving circuit 5 side are the same as the signals in the normal state, as shown in FIGS. 16 (a) and 16 (b).
  • the signal Vs input from the step-down circuit 11 to the buffer circuit 20 is 0 as a signal obtained by dividing the voltage added with the reference voltage Vref (2 [V]) on the receiving circuit 5 side, as shown in FIG.
  • the signal changes at an amplitude voltage of 0.25 [V] around 4 [V].
  • the voltage signal Vcmp that has passed through the low-pass filter 21 is a signal of 0.4 [V] as a DC voltage because the change component is cut as shown in FIG.
  • the detection signal SQ becomes “H” level.
  • the low-pass filter 21 at the input portion of the comparator 12a, it is possible to prevent malfunction caused by the fluctuation component of Vamp, which is the amplitude voltage of the signal during normal operation. This also widens the settable range of the threshold voltage Vth and contributes to preventing malfunction.
  • the structure which provides the low-pass filter 21 like 5th Embodiment is applicable similarly not only in 1st Embodiment but in 2nd-4th Embodiment.
  • FIG. 17 shows the sixth embodiment.
  • the step-down circuit 23 is integrally provided in the semiconductor IC chip 22.
  • the resistors 23a and 23b constituting the step-down circuit 23 can be constituted by various forms of semiconductor resistance elements such as diffused resistors and thin film resistors. Thereby, it can be set as a more compact structure.
  • the detection circuit 24 includes a comparator 24a and a threshold voltage power supply 24b.
  • the ESD tolerance may be smaller than the configuration in which the step-down circuit 11 is provided in an external configuration. is there.
  • it can be used as a single chip without providing the external step-down circuit 11.
  • this embodiment can be applied not only to the first embodiment but also to the second to fifth embodiments.
  • various circuits can be used in addition to the voltage dividing circuit using two resistors in series.
  • Various circuits can be used for the detection circuit in addition to the configuration using the comparator and the power supply for threshold voltage.
  • the capacitor provided in the path from the high voltage circuit to the low voltage circuit can be provided as three or more series circuits.
  • the detection circuits 12 and 13 in the second embodiment and the fourth embodiment have a configuration in which one detection circuit is provided, and the output signals SQ1 and SQ2 are input by switching different threshold voltages Vth1 and Vth2 in a time division manner and inputting them to the comparator. You may make it get.
  • the detection circuits 16 and 17 in the third embodiment have a configuration in which one detection circuit is provided, and the voltage signals Vcmp1 and Vcmp2 of the two step-down circuits 14 and 15 are switched in a time division manner and input to the comparator, whereby the output signal SQ1, SQ2 may be obtained.
  • the step-down circuits 14 and 15 in the third embodiment obtain voltage signals Vcmp1 and Vcmp2 by connecting in series three or more resistors so that the resistance value matches the detection voltage in one voltage dividing circuit.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Measurement Of Current Or Voltage (AREA)
  • Electronic Switches (AREA)

Abstract

 故障検出回路は、高電圧回路(1)から与えられる信号を入力するように設けられ直列接続された第1および第2のコンデンサ(3、4)と、第1および第2のコンデンサを介して高電圧回路から信号を入力する低電圧回路(5)と、第1および第2のコンデンサの接続点の電圧を降圧する降圧回路(11、14、15,18、23)と、降圧回路により降圧された電圧信号のレベルから第1および第2のコンデンサの少なくとも一つの故障を検出する検出回路(12、13、16、17、19、24)と、を備える。第1または第2のコンデンサが短絡故障すると、いずれの場合も直流電圧が加算されるので、電圧信号のレベルは高くなる。これにより、第1または第2のコンデンサの短絡故障の状態を低電圧回路の動作状態で検出することができる。

Description

故障検出回路 関連出願の相互参照
 本出願は、2014年12月11日に出願された日本出願番号2014-250884号に基づくもので、ここにその記載内容を援用する。
 本開示は、故障検出回路に関する。
 高電圧側の回路から送信される信号を低電圧側の回路で受信する場合、高電圧側の回路と低電圧側の回路をコンデンサで結合する構成を採用することがある。この場合、コンデンサ1個で結合する構成では、コンデンサが故障して短絡状態になると、信号電圧に加えて高圧の直流電圧が低電圧側の回路に直接入力してしまう。そこで、このような短絡故障が発生したときでも低電圧側の回路に高電圧の信号が直接入力しないようにするため、複数のコンデンサを直列に接続して設けている。これによって1個のコンデンサが短絡故障しても低電圧側の回路で信号を受信して動作させることができる。
 ところで、例えば車載通信などにおいては、機能安全の観点から、低電圧側の回路が正常に動作していたとしても、いずれかのコンデンサが故障している場合にはこれを検出する検出回路が必要になる場合がある。しかし、この場合には、検出回路においてコンデンサの短絡故障で高電圧が印加される可能性があるので、これを検出するためには高電圧が印加されても検出動作が正常に行えるように構成する必要がある。このため、検出回路を低電圧側の回路に組み込むことが難しく、別途設ける必要がある。
特開2012-215558号公報
 本開示の目的は、高電圧回路からの信号を複数のコンデンサを直列接続した回路を介して低電圧回路に入力する構成において、コンデンサの短絡故障を検出する回路を低電圧回路側に組み込むことができるようにした故障検出回路を提供することにある。
 本開示の一態様によれば、故障検出回路は、高電圧回路から与えられる信号を入力するように設けられ直列接続された第1および第2のコンデンサと、前記第1および第2のコンデンサを介して前記高電圧回路から信号を入力する低電圧回路と、前記第1および第2のコンデンサの接続点の電圧を降圧する降圧回路と、前記降圧回路により降圧された電圧信号のレベルから前記第1および第2のコンデンサの少なくとも一つの故障を検出する検出回路とを備えている。
 上記構成を採用することにより、第1および第2のコンデンサの接続点に発生する電圧は、降圧回路を介して低電圧に変換された電圧信号として検出回路に入力される。この低電圧に変換された電圧信号のレベルは、第1および第2のコンデンサが共に正常状態にあるときのレベル、高電圧回路側の第1のコンデンサが短絡故障した状態にあるときのレベル、低電圧回路側の第2のコンデンサが短絡故障した状態にあるときのレベルのそれぞれにおいて、異なる電圧レベルとなる。検出回路により、降圧回路を介して入力される電圧信号の電圧レベルから、正常状態の電圧レベルに対して、第1および第2のコンデンサの少なくとも一つの短絡故障の状態にあるときの電圧レベルを比較により判定することができる。これにより、検出回路は、高電圧回路からの信号を降圧回路を介して低電圧レベルに変換されたレベルで受信できるので、低電圧回路と同等の回路として組み込んで構成することができる。
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。図面において、
本開示の第1実施形態にかかる高電圧回路および故障検出回路の基本的な電気的構成図である。 図1に示す構成をより具体的に示す電気的構成図である。 (a)、(b)は各部の電位関係の説明図である。 本開示の第2実施形態にかかる高電圧回路および故障検出回路の基本的な電気的構成図である。 図4に示す構成をより具体的に示す電気的構成図である。 比較回路の出力状態を示す図である。 本開示の第3実施形態にかかる高電圧回路および故障検出回路の基本的な電気的構成図である。 図7に示す構成をより具体的に示す電気的構成図である。 比較回路の出力状態を示す図である。 本開示の第4実施形態にかかる高電圧回路および故障検出回路の基本的な電気的構成図である。 (a)、(b)は各部の電位関係の説明図である。 比較回路の出力状態を示す図である。 本開示の第5実施形態にかかる高電圧回路および故障検出回路の基本的な電気的構成図である。 (a)~(d)は正常時の各部の信号波形を示すタイムチャートである。 (a)~(d)はコンデンサ3の短絡故障時の各部の信号波形を示すタイムチャートである。 (a)~(d)はコンデンサ4の短絡故障時の各部の信号波形を示すタイムチャートである。 本開示の第6実施形態にかかる高電圧回路および故障検出回路の基本的な電気的構成図である。
 (第1実施形態)
 以下、本開示の第1実施形態について、図1~図3(b)を参照して説明する。
 図1は高電圧回路および低電圧回路を含む故障検出回路の基本構成を示している。高電圧回路1は、例えば車両内での通信に用いられるCAN(controller area network)通信の送受信回路の部分である。高電圧回路1は、図中では簡略化して示しているが、グランド端子GND1の電圧レベルVg1は高く、例えば11Vに設定されている。このグランド端子GND1に信号源2が接続されている。信号源2は、信号の振幅電圧Vamp[V]が1Vに設定されている。高電圧回路1の出力信号の最大電圧Vcan[V]は12Vとなる。
 高電圧回路1の出力端子は2個のコンデンサ3、4の直列回路を介して低電圧回路である受信回路5に接続されている。2個のコンデンサ3、4は第1および第2のコンデンサに相当するもので、これらは容量値がそれぞれCt[μF]、Cb[μF]に設定されている。受信回路5は、例えば半導体ICチップ6内に形成されている。受信回路5においては、高電圧回路1からの高電圧信号をコンデンサ3および4を介して受信する構成であるから、高電圧となる直流成分をカットした信号として受信することができる。
 受信回路5は、低電圧の電源端子Vddとグランド端子GND2との間に保護ダイオード7、入力バイアス抵抗8および基準電圧用電源9を直列に接続している。グランド端子GND2は例えば電圧レベルVg2は0Vに設定されている。保護ダイオード7は静電気が入力した場合にこれを放電させるESD(electro static discharge)ダイオードである。高電圧回路1から出力される高電圧信号Vcanは、コンデンサ3、4を介して保護ダイオード7と入力バイアス抵抗8との共通接続点に入力される。高電圧信号Vcanはコンデンサ3、4を介しているので、電圧レベルは信号源2の変化レベルに対応した低電圧レベルの電圧信号Vacとなっている。
 入力バイアス抵抗8の両端子はコンパレータ10の両端子に接続されている。基準電圧用電源9は、参照電圧Vrefを出力するもので、コンパレータ10の反転入力端子に入力される。コンパレータ10の非反転入力端子には、入力バイアス抵抗8を通じて電圧が印加されている。この場合、高電圧信号Vcanはコンデンサ3、4を介して入力されることで、微分された信号成分が電圧信号Vacとして入力される。コンパレータ10は、電圧信号Vacが参照電圧Vrefを上回る期間中、ハイレベルの検出信号Hを出力端子Pに出力する。
 コンデンサ3および4の共通接続点は、降圧回路11に接続されている。降圧回路11は、コンデンサ3と4の間に現れる電圧信号を降圧した電圧信号Vcmpを検出回路12に出力する。降圧回路11の構成は、コンデンサ3および4の間に発生しうる電圧信号のレベルを所定の比率で降圧することで半導体ICチップ6で処理可能な程度に変換可能な回路で構成される。
 検出回路12は、半導体ICチップ6内に設けられている。検出回路12は、降圧回路11から入力される電圧信号Vcmpを閾値電圧と比較をすることでコンデンサ3、4の短絡故障が発生しているか否かを判断する。検出回路12は、コンデンサ3および4が共に正常に動作している状態で入力される電圧信号Vcmpに対して、コンデンサ3または4のいずれかが短絡故障したときに入力される電圧信号Vcmpt、Vcmpbを異常レベルであることを検出できる回路で構成される。
 上記構成において、コンデンサ3、4が正常に動作している状態では、降圧回路11への電圧信号のレベルもコンデンサ3を介して高電圧回路1側とつながっているので、高電圧が印加されることはない。また、コンデンサ4を介して受信回路5側とつながっているので、降圧回路11には、信号源2の信号Vampのレベルに対応した電圧信号が入力される。そして、電圧信号Vcmpが検出回路12の閾値電圧より低いため、検出回路12においては、電圧信号Vcmpが正常レベルであることが判断される。これによって、検出回路12においては、電圧信号Vcmpが正常レベルであることが判断される。
 これに対して、コンデンサ3が短絡故障を起こすと、降圧回路11には高電圧回路1から直接高電圧信号Vcanが入力される。このとき、降圧回路11により所定比率で降圧されたレベルの高い信号Vcmptが生成されて検出回路12に入力され、これによって、検出回路12は、正常な状態で入力される電圧信号Vcmpのレベルを超えた電圧信号Vcmptが入力されたことで、異常状態を判断する。
 また、コンデンサ4が短絡故障を起こすと、降圧回路11には信号源2の信号Vampに基準電圧用電源9の参照電圧Vrefを加算したレベルの電圧信号が入力される。このとき、降圧回路11により所定比率で降圧された中間レベルの信号Vcmpbが生成されて検出回路12に入力され、これによって、検出回路12は、正常な状態で入力される電圧信号Vcmpのレベルを超えた電圧信号Vcmpbが入力されたことで、異常状態を判断する。
 そして、上記の構成において第1のコンデンサ3および第2のコンデンサ4が短絡故障を起こしたときの電圧信号VcmptおよびVcmpbが通常通信時の電圧信号Vcmpよりも大きくなるように設定されていれば検出回路12において検出が可能である。
 Vcmp<Vcmpt
 Vcmp<Vcmpb                  …(1)
 このため、検出回路12における閾値電圧Vthは、
 Vth>Vcmp                    …(2)
 Vth<Vcmpt
 Vth<Vcmpb                   …(3)となるように設定されていれば良い。
 次に、上記の基本回路構成を前提として、図2に示す具体回路に適用した場合の具体的動作について説明する。なお、図2の回路構成は、図1の基本回路構成の具体的な一例を示しているに過ぎず、図1に示した基本回路では上記説明した機能を達成できる回路であれば適宜の回路を採用することができる。
 図2においては、降圧回路11および検出回路12を具体回路にしたものを示している。降圧回路11は、コンデンサ3および4の共通接続点とグランド端子GND2との間に抵抗11a、11bの直列回路を接続した構成である。抵抗11aおよび11bの各抵抗値Rt、Rbは、一定の比率Mとなるように設定されている。抵抗値RbをR[Ω]とすると、抵抗値RtはM×R[Ω]に設定されている。これにより、コンデンサ3、4間に現れる電圧を1/(M+1)に降圧した電圧信号Vcmpとして出力する。
 検出回路12は、コンパレータ12aおよび閾値電圧用電源12bから構成される。閾値電圧用電源12bは、GND2の電位に対して閾値電圧Vthをコンパレータ12aの反転入力端子に入力する。コンパレータ12の非反転入力端子には降圧回路11から電圧信号Vcmpが入力される。この電圧信号Vcmpのレベルが閾値電圧Vthを超える期間中、出力端子Qから検出信号SQは「H」レベルとなる。
 なお、Vcan、GND1のVg1およびGND2のVg2の電位関係を図3(a)に示し、Vcmp(max)と変化分を除いた直流電圧成分Vcmpdcの電位関係を図3(b)に示している。
 上記構成によれば、(1)通常通信時、(2)第1のコンデンサ3の短絡故障時、(3)第2のコンデンサ4の短絡故障時、(4)通信停止時の各状態の検出回路12に入力する電圧信号Vcmp、Vcmpt、Vcmpb、Vcmpoffの大きさは次式のように求めることができる。
(1)通常通信時
 高電圧回路1から入力する高電圧の信号Vcanは、コンデンサ3および4を介して受信回路5側に入力する。また、コンデンサ3を介して降圧回路11に入力する成分は、直流分がカットされるので、信号成分Vampの分圧出力となる。このとき、検出回路12に入力する最大の検出電圧Vcmp(max)は、次式(4)のように得られる。
 Vcmp(max)=Vamp×Rb/(Rt+Rb)
          =Vamp×1/(M+1)       …(4)
(2)第1のコンデンサ3(容量Ct)が短絡故障したとき
 この場合には、上記と異なり、降圧回路11には電圧信号Vampに高電圧回路1からの直流成分であるVg1が付加された電圧Vcanが直接入力する。このとき、検出回路12に入力する最大の電圧信号Vcmpt(max)は、次式(5)のように得られる。
 Vcmpt(max)=Vcan/(1+M)       …(5)
(3)第2のコンデンサ4(容量Cb)が短絡故障したとき
 この場合には、降圧回路11には、高電圧回路1側の直流成分Vg1は印加されないが、コンデンサ4が短絡したことで受信回路5側の直流成分Vrefが電圧信号Vampに付加される。このとき、検出回路12に入力する最大の電圧信号Vcmpb(max)は、次式(6)のように得られる。
 Vcmpb(max)=Vref×Rb/(Rbias+Rt+Rb)
           +Vamp×1/(M+1)     …(6)
(4)通信停止時
 なお、コンデンサ3、4が故障していない状態で通信を停止している状態では、降圧回路11から出力される電圧信号Vcmpoffはグランド端子GND2の電位Vg2である。
 Vcmpoff=Vg2                 …(7)
となる。
 次に、上記構成について、具体的な数値を用いた場合の例について説明する。計算に際して具体的な値を次のように設定した。
 Vdd=3[V]、Vcan=12[V]、Vref=2[V]、Vth=0.35[V]、抵抗比M=3、Rbias=1[kΩ]、Rb=1[kΩ]、Vamp=1[V]、Vg1=11[V]、Vg2=0[V]、Ct=1[μF]、Cb=1[μF]。
(1)通常通信時
 この状態では、式(4)に各数値を代入すると、Vcmp(max)=0.25[V]となる。この結果、Vcmp(max)(=0.25[V])<Vth(=0.35[V])であるから、検出回路12の出力信号SQは「L」レベルとなり、正常状態を示している。
(2)第1のコンデンサ3(容量Ct)が故障したとき
 この場合には、前述の式(5)の値は、Vcmpt(max)=3[V]となる。この結果、Vcmpt(max)>Vthであるから、検出回路12の出力信号SQは「H」レベルの出力となり、コンデンサ3もしくは4のいずれかの短絡故障が発生していることが検出される。
(3)第2のコンデンサ4(容量Cb)が故障したとき
 この場合には、前述の式(6)の値は、Vcmpb(max)=0.65[V]となる。この結果、Vcmpb(max)>Vthであるから、検出回路12の出力信号SQは「H」レベルの出力となり、コンデンサ3もしくは4のいずれかの短絡故障が発生していることが検出される。
 以上のように動作するので、第1のコンデンサ3および第2のコンデンサ4がいずれも故障していない正常状態では正常状態を示す「L」レベルの出力信号SQが出力される。また、第1のコンデンサ3もしくは第2のコンデンサ4のいずれかが短絡故障している場合には故障状態を示す「H」レベルの出力信号SQが出力されるようになる。検出回路12の出力端子に現れる出力信号SQにより、コンデンサの故障状態を判定することができる。
 このような第1実施形態によれば、第1のコンデンサ3の短絡故障で、検出回路12側に高電圧回路1の高電圧が発生する場合でも、降圧回路11を設けているので、半導体ICチップ6内に検出回路12を設ける構成として故障状態を判定することができる。
 (第2実施形態)
 図4から図6は第2実施形態を示すもので、以下、第1実施形態と異なる部分について説明する。この実施形態では、図4に示すように、一つの降圧回路11の降圧出力を検出回路12および検出回路13の双方に入力する構成である。この場合、2つの検出回路12、13は、異なる閾値電圧が設定されている。これにより、第1実施形態ではコンデンサ3、4のいずれかの短絡故障を判定していたのに対して、検出回路12、13の検出結果により、いずれのコンデンサ3、4の短絡故障が発生しているのかを特定することができる。
 図5は、検出回路12および13の具体回路を示したものである。なお、図5の回路構成は、図4の基本回路構成の具体的な一例を示しているに過ぎず、図4に示した基本回路では上記説明した機能を達成できる回路であれば適宜の回路を採用することができる。また、具体的な回路において必ずしも2個の検出回路12、13を設ける必要はなく、それらの機能を達成できる一つの具体回路を設けることも可能である。
 図5において、降圧回路11は第1実施形態と同じ構成であり、コンデンサ3、4間に現れる電圧を1/(M+1)に降圧した電圧信号Vcmpとして出力する。検出回路12は、第1実施形態と同じ構成であり、GND2の電位Vg2に対して閾値電圧Vth1をコンパレータ12aの反転入力端子に入力する。閾値電圧Vth1は第1実施形態の閾値電圧Vthと同じに設定される。コンパレータ12の非反転入力端子に入力される電圧信号Vcmpのレベルが閾値電圧Vth1を超える期間中、出力端子Q1からハイレベルの検出信号SQを出力する。
 検出回路13は、検出回路12と同様に、コンパレータ13a、閾値電圧用電源13bから構成される。閾値電圧用電源13bは、GND2の電位Vg2に対して閾値電圧Vth2をコンパレータ13aの反転入力端子に入力する。コンパレータ13の非反転入力端子には降圧回路11から電圧信号Vcmpが入力される。この電圧信号Vcmpのレベルが閾値電圧Vth2を超える期間中、出力端子Q2からハイレベルHの検出信号SQ2を出力する。
 次に、上記構成の作用について説明する。(1)通常通信時、(2)第1のコンデンサ3の短絡故障時、(3)第2のコンデンサ4の短絡故障時の各状態の検出回路12に入力される電圧信号Vcmp、Vcmpt、Vcmpb、Vcmpoffの大きさは第1実施形態と同様に式(4)~(7)により求めることができる。
 次に、上記構成について、具体的な数値を用いた場合の例について説明する。計算に際して設定する具体的な値は、第1実施形態と同じであり、閾値電圧Vth1は閾値電圧Vthと同じで0.35[V]、閾値電圧Vth2は、1.5[V]とした。
(1)通常通信時
 この状態では、式(4)に各数値を代入すると、Vcmp(max)=0.25[V]となる。この結果、Vcmp(max)(=0.25[V])<Vth(=0.35[V])であるから、検出回路12の出力信号SQ1は「L」レベルとなり、検出回路13の出力信号SQ2も「L」レベルとなり、正常状態を示している。
(2)第1のコンデンサ3(容量Ct)が故障したとき
 この場合には、前述の式(5)の値は、Vcmpt(max)=3[V]となる。この結果、Vcmpt(max)>Vth1で、且つVcmpt(max)>Vth2であるから、検出回路12の出力信号SQ1は「H」レベル、検出回路13の出力信号SQ2も「H」レベルの出力となり、コンデンサ3に短絡故障が発生していることが検出される。
(3)第2のコンデンサ4(容量Cb)が故障したとき
 この場合には、前述の式(6)の値は、Vcmpb(max)=0.65[V]となる。この結果、Vcmpb(max)>Vth1で、且つVcmpb(max)<Vth2であるから、検出回路12の出力信号SQ1は「H」レベル、検出回路13の出力信号SQ2は「L」レベルの出力となり、コンデンサ4に短絡故障が発生していることが検出される。
 以上のように動作するので、図6に示しているように、第1のコンデンサ3および第2のコンデンサ4がいずれも故障していない正常状態では、出力信号SQ1およびSQ2がともに「L」レベルとなって正常状態を示している。また、第1のコンデンサ3が短絡故障を起こすと、出力信号SQ1およびSQ2がともに「H」レベルとなる。そして、第2のコンデンサ4が短絡故障を起こすと、出力信号SQ1が「H」レベル、出力信号SQ2がともに「L」レベルとなる。これにより、コンデンサ3、4のいずれの故障状態であるかによって出力信号SQ1、SQ2の出力結果が異なるので、短絡故障を起こしたコンデンサを判定することができる。
 このような第2実施形態によれば、検出回路13を付加する構成としたので、第1実施形態の効果に加えて、コンデンサ3、4のいずれが短絡故障を起こしているかも判定することができる。
 (第3実施形態)
 図7から図9は第3実施形態を示すもので、以下、第1実施形態と異なる部分について説明する。この実施形態では、図7に示すように、異なる電圧で降圧する2つの降圧回路14、15を設け、それぞれの電圧信号Vcmp1、Vcmp2に同じ閾値電圧Vthで検出動作を行う検出回路16、17を設ける構成である。
 なお、図8の回路構成は、図7の基本回路構成の具体的な一例を示しているに過ぎず、図7に示した基本回路では上記説明した機能を達成できる回路であれば適宜の回路を採用することができる。また、具体的な回路において必ずしも2個の降圧回路14、15や検出回路16、17を設ける必要はなく、それらの機能を達成できる一つの具体回路を設けることも可能である。
 図8は、降圧回路14、15および検出回路16、17の具体回路を示したものである。降圧回路14は抵抗14a、14bを電源端子Vddとグランド端子GND2との間に直列に接続しており、コンデンサ3、4間に現れる電圧を1/(M1+1)に降圧した電圧信号Vcmp1として出力する。降圧回路15は、抵抗15a、15bを電源端子Vddとグランド端子GND2との間に直列に接続しており、コンデンサ3、4間に現れる電圧を1/(M2+1)に降圧した電圧信号Vcmp2として出力する。
 検出回路16は、第1実施形態と同様に、コンパレータ16aおよび閾値電圧用電源16bから構成されている。閾値電圧用電源16bは、グランド端子GND2の電位Vg2に対して閾値電圧Vthをコンパレータ16aの反転入力端子に入力する。検出回路17も同様に、コンパレータ17aおよび閾値電圧用電源17bから構成されている。閾値電圧用電源17bは、グランド端子GND2の電位Vg2に対して閾値電圧Vthをコンパレータ17aの反転入力端子に入力する。
 上記構成において、降圧回路14、15は、異なる分圧比が設定されていて、これらから出力される電圧信号Vcmp1、Vcmp2は、同じ閾値電圧Vthと比較することで、コンデンサ3あるいは4のいずれが短絡故障しているかを判定可能となるように設定されている。
 上記構成によれば、(1)通常通信時、(2)第1のコンデンサ3の短絡故障時、(3)第2のコンデンサ4の短絡故障時の各状態の検出回路16に入力する電圧信号Vcmp1、Vcmpt1、Vcmpb1、検出回路17に入力する電圧信号Vcmp2、Vcmpt2、Vcmpb2の大きさは次式のように求めることができる。
(1)通常通信時
 第1実施形態で説明した式(4)に相当するVcmp1およびVcmp2に対応する式は、次式(8)、(9)のようになる。
 Vcmp1(max)=Vamp×Rb1/(Rt1+Rb1)
           =Vamp×1/(M1+1)    …(8)
 Vcmp2(max)=Vamp×Rb2/(Rt2+Rb2)
           =Vamp×1/(M2+1)    …(9)
(2)第1のコンデンサ3(容量Ct)が短絡故障したとき
 この場合には、同様にして、式(5)に相当するVcmp1およびVcmp2に対応する式は、次式(10)、(11)のようになる。
 Vcmpt1=Vcan/(1+M1)         …(10)
 Vcmpt2=Vcan/(1+M2)         …(11)
(3)第2のコンデンサ4(容量Cb)が短絡故障したとき
 この場合には、同様にして、式(6)に相当するVcmp1およびVcmp2に対応する式は、次式(12)、(13)のようになる。
 Vcmpb1=Vref×Rb1/(Rbias+Rt1+Rb1)
       +Vamp×1/(M1+1)        …(12)
 Vcmpb2=Vref×Rb2/(Rbias+Rt2+Rb2)
       +Vamp×1/(M2+1)        …(13)
 次に、上記構成について、具体的な数値を用いた場合の例について説明する。計算に際して具体的な値を次のように設定した。
 Vdd=3[V]、Vcan=12[V]、Vref=2[V]、Vth=0.35[V]、抵抗比M1=3、抵抗比M2=9、Rbias=1[kΩ]、Rb1=1[kΩ]、Rb2=1[kΩ]、Vamp=1[V]、Vg1=11[V]、Vg2=0[V]、Ct=1[μF]、Cb=1[μF]。
(1)通常通信時
 この状態では、式(8)、(9)に各数値を代入すると、Vcmp1(max)=0.25[V]となり、Vcmp1(max)<Vth1であるから、出力信号SQ1は「L」レベルとなる。また、Vcmp2(max)=0.1[V]となり、Vcmp2(max)<Vth2であるから、出力信号SQ2は「L」レベルとなる。よって、正常状態を示す出力信号となっている。
(2)第1のコンデンサ3(容量Ct)が故障したとき
 この場合には、前述の式(10)、(11)の値は、Vcmpt1(max)=3[V]となり、Vcmpt1(max)>Vth1であるから、出力信号SQ1は「H」レベルとなる。また、Vcmpt2(max)=1.2[V]となり、Vcmpt2(max)>Vth2であるから、出力信号SQ2も「H」レベルとなる。よって、コンデンサ3に短絡故障が発生していることが検出される。
(3)第2のコンデンサ4(容量Cb)が故障したとき
 この場合には、前述の式(12)、(13)の値は、Vcmpb1(max)=0.65[V]となり、Vcmpb1(max)>Vth1であるから、出力信号SQ1は「H」レベルとなる。また、Vcmpb2=0.28[V]となり、Vcmpb2(max)<Vth1であるから、出力信号SQ2は「L」レベルとなる。よって、コンデンサ4に短絡故障が発生していることが検出される。
 以上のように動作するので、図9に示しているように、第1のコンデンサ3および第2のコンデンサ4がいずれも故障していない正常状態では、出力信号SQ1およびSQ2がともに「L」レベルとなって正常状態を示している。また、第1のコンデンサ3が短絡故障を起こすと、出力信号SQ1およびSQ2がともに「H」レベルとなる。そして、第2のコンデンサ4が短絡故障を起こすと、出力信号SQ1が「H」レベル、出力信号SQ2がともに「L」レベルとなる。これにより、コンデンサ3、4のいずれの故障状態であるかによって出力信号SQ1、SQ2の出力結果が異なるので、短絡故障を起こしたコンデンサを判定することができる。
 このような第3実施形態によれば、2個の降圧回路14、15によって異なる電圧信号Vcmp1、Vcmp2を出力する構成とし、これらを同じ閾値電圧Vthを設定した2個の検出回路16、17で比較する構成としたので、この構成によっても第2実施形態と同様に、コンデンサ3、4のいずれが短絡故障を起こしているかも判定することができる。また、半導体ICチップ6内には、同一構成の検出回路16、17を設ける構成とすることができる。
 (第4実施形態)
 図10から図12は第4実施形態を示すもので、以下、第2実施形態と異なる部分について説明する。図10に示すように、この実施形態では、グランド端子GND1の電圧Vg1およびグランド端子GND2の電圧Vg2が、Vg2>Vg1の条件下で回路を構成している。また、降圧回路11に代えて降圧回路18を設けている。降圧回路18は、2個の抵抗18aおよび18bの直列回路を電源端子Vddとコンデンサ3および4の共通接続点に接続している。
 2個の抵抗18a、18bの各抵抗値Rb、Rtは、抵抗値の比率がRtがRbのM倍に設定されている。これにより、降圧回路18は、コンデンサ3、4間に現れる電圧と電源電圧Vddとの差の電圧を1/(M+1)に降圧した電圧信号Vcmpとして出力する。検出回路12および13は、第2実施形態と同じ構成である。閾値電圧Vth1およびVth2は、それぞれGND2の電位Vg2に対して設定されている。
 なお、Vcan、GND1のVg1およびGND2のVg2の電位関係を図11(a)に示し、Vcmp(max)と変化分を除いた直流電圧成分Vcmpdcの電位関係を図11(b)に示している。
 次に、上記構成の作用について説明する。(1)通常通信時、(2)第1のコンデンサ3の短絡故障時、(3)第2のコンデンサ4の短絡故障時、(4)通信停止時の各状態の検出回路12に入力する電圧信号Vcmp、Vcmpt、Vcmpbの大きさは次のように求めることができる。
(1)通常通信時
 第1実施形態で説明した式(4)に相当するVcmpに対応する式は、次式(14)のようになる。
 Vcmp(min)=Vdd-Vamp/(1+M)    …(14)
(2)第1のコンデンサ3(容量Ct)が短絡故障したとき
 この場合には、同様にして、式(5)に相当するVcmpに対応する式は、次式(16)のようになる。すなわち、コンデンサ3が短絡故障をしたことで、電源端子Vddとグランド端子GDN1の間に流れる電流IVdd-GND1は式(15)のようになる。この電流値からVcmpt(min)は式(16)のように求めることができる。
 IVdd-GND1=(Vdd-Vcan)/(Rb+Rt)    …(15)
 Vcmpt(min)=Vdd-(IVDD-gnd1×Rb)   …(16)
(3)第2のコンデンサ4(容量Cb)が短絡故障したとき
 この場合には、同様にして、式(6)に相当するVcmpbに対応する式は、次式(18)のようになる。すなわち、コンデンサ4が短絡故障をしたことで、電源端子Vddとグランド端子GDN1の間に流れる電流IVdd-GND1は式(17)のようになる。この電流値からVcmpt(min)は式(18)のように求めることができる。
 IVdd-Vref
    =(Vdd-Vref)/(Rb+Rt+Rbias)…(17)
 Vcmpb
    =Vcmp-Vamp×Rb2/(Rt2+Rb2)…(18)
 次に、上記構成について、具体的な数値を用いた場合の例について説明する。計算に際して具体的な値を次のように設定した。
 Vdd=3[V]、Vcan=-12[V]、Vref=1[V]、Vth1=1.5[V]、Vth2=2.75[V]、抵抗比M=4、Rbias=100[Ω]、Rb=1[kΩ]、Vamp=1[V]、Vg1=-11[V]、Vg2=0[V]、Ct=1[μF]、Cb=1[μF]。
(1)通常通信時
 この状態では、式(14)に各数値を代入すると、Vcmp(min)=2.8[V]となり、Vcmp(min)>Vth1、Vcmp(min)>Vth2であるから、出力信号SQ1は「H」レベルとなり、出力信号SQ2も「H」レベルとなる。よって、よって、正常状態を示す出力信号となっている。
(2)第1のコンデンサ3(容量Ct)が故障したとき
 この場合には、前述の式(15)の値は、IVDD-GND1=3[mA]となるから、式(16)の値は、Vcmpt(min)=0[V]となり、Vcmp(min)<Vth1,Vcmp(min)<Vth2である。出力信号SQ1は「L」レベルとなり、出力信号SQ2も「L」レベルとなる。よって、コンデンサ3に短絡故障が発生していることが検出される。
(3)第2のコンデンサ4(容量Cb)が故障したとき
 この場合には、前述の式(17)の値は、IVDD-Vref=0.39[mA]となり、式(18)の値は、Vcmpb=2.41…[V]となり、Vcmpb(min)>Vth1,Vcmpb(min)<Vth2である。出力信号SQ1は「H」レベルとなり、出力信号SQ2は「L」レベルとなる。よって、コンデンサ4に短絡故障が発生していることが検出される。
 以上のように動作するので、図12に示しているように、第1のコンデンサ3および第2のコンデンサ4がいずれも故障していない正常状態では、出力信号SQ1およびSQ2がともに「H」レベルとなって正常状態を示している。また、第1のコンデンサ3が短絡故障を起こすと、出力信号SQ1およびSQ2がともに「L」レベルとなる。そして、第2のコンデンサ4が短絡故障を起こすと、出力信号SQ1が「H」レベル、出力信号SQ2がともに「L」レベルとなる。これにより、コンデンサ3、4のいずれの故障状態であるかによって出力信号SQ1、SQ2の出力結果が異なるので、短絡故障を起こしたコンデンサを判定することができる。
 したがって、このような第4実施形態によっても第2実施形態と同様の作用効果を得ることができる。
 (第5実施形態)
 図13から図16(d)は第5実施形態を示すもので、以下、第1実施形態と異なる部分について説明する。図13に示しているように、第1実施形態の構成において、検出回路12に代えて、検出回路19を設ける構成としている。検出回路19は、コンパレータ12aの前段にバッファ回路20およびローパスフィルタ21を設けている。
 降圧回路11の出力信号Vsは、バッファ回路20を介してローパスフィルタ21に入力される。ローパスフィルタ21は、抵抗21aおよびコンデンサ21bからなるもので、信号源の信号Vampをカットして直流成分を通過させる。
 上記構成によれば、(1)通常通信時、(2)第1のコンデンサ3の短絡故障時、(3)第2のコンデンサ4の短絡故障時の検出回路12に入力する電圧信号Vcmp、Vcmpt、Vcmpbの大きさは次式のように求めることができる。
(1)通常通信時
 各部の信号の時間経過に伴う変化状態について、シミュレーション結果を図14(a)~(d)に示す。高電圧回路1から入力する高電圧の信号Vcanは、コンデンサ3および4を介して受信回路5側にVacとして入力する。また、コンデンサ3を介して降圧回路11に入力する信号成分信号は、直流分がカットされるので、信号成分Vampの分圧出力Vsとなる。ローパスフィルタ21を通じて直流成分を抽出した検出電圧Vcmpがコンパレータ12aに入力される。
 高電圧の信号Vcanは、図14(a)に示すように、グランド端子GND1の電位Vg1(11[V])を中心として、信号電圧Vampの振幅(1[V])の範囲で変動する信号となる。このため、Vamp(max)は12[V]となる。コンデンサ3、4を通過して受信回路5に入力する信号Vacは、図14(b)に示すように、直流成分であるグランド端子GND1の電圧Vg1がカットされ、参照電圧Vrefの直流電圧として2[V]が付加された信号となる。
 また、降圧回路11からバッファ回路20に入力する信号Vsは、図14(c)に示すように、直流成分がカットされた信号Vampを分圧した信号として、0[V]を中心として式(4)で求めた振幅電圧0.25[V]で変化する信号となる。そして、ローパスフィルタ21を通過した電圧信号Vcmpは、図14(d)に示すように、変化成分がカットされるので、直流電圧として0[V]の信号となる。
 コンパレータ12aにおいては、電圧信号Vcmpが閾値電圧Vth(0.35[V])よりも低いことから検出信号SQは「L」レベルとなる。
(2)第1のコンデンサ3(容量Ct)が短絡故障したとき
 各部の信号の時間経過に伴う変化状態について、シミュレーション結果を図15(a)~(d)に示す。コンデンサ3が短絡故障しているので、高電圧回路1から入力する高電圧の信号Vcanは、コンデンサ4を介して受信回路5側にVacとして入力する。また、降圧回路11に入力する信号成分信号は、直流電圧の成分を含んだ高電圧の信号Vcanの分圧出力Vsとなる。ローパスフィルタ21を通じて直流成分を抽出した電圧信号Vcmpがコンパレータ12aに入力される。
 高電圧の信号Vcanおよび受信回路5側に入力する信号Vacは、図15(a)、(b)に示すように、通常状態の信号と同じである。降圧回路11からバッファ回路20に入力する信号Vsは、図15(c)に示すように、直流成分を含んだ高電圧の信号Vcanを分圧した信号として、2.75[V]を中心として振幅電圧0.25[V]で変化する信号となる。そして、ローパスフィルタ21を通過した電圧信号Vcmpは、図15(d)に示すように、変化成分がカットされるので、直流電圧として2.75[V]の信号となる。
 コンパレータ12aにおいては、電圧信号Vcmpが閾値電圧Vth(0.35[V])よりも高いことから検出信号SQは「H」レベルとなる。
(3)第2のコンデンサ4(容量Cb)が短絡故障したとき
 各部の信号の時間経過に伴う変化状態について、シミュレーション結果を図16(a)~(d)に示す。高電圧回路1から入力する高電圧の信号Vcanは、コンデンサ4が短絡故障しているので、コンデンサ3を介して受信回路5側にVacとして入力する。また、コンデンサ3を介して降圧回路11に入力する信号成分信号は、高電圧側の直流分がカットされるが、受信回路5側の直流成分である参照電圧Vrefが信号成分Vampに付加されたものが分圧されて分圧出力Vsとなる。ローパスフィルタ21を通じて直流成分を抽出した電圧信号Vcmpがコンパレータ12aに入力される。
 高電圧の信号Vcanおよび受信回路5側に入力する信号Vacは、図16(a)、(b)に示すように、通常状態の信号と同じである。降圧回路11からバッファ回路20に入力する信号Vsは、図16(c)に示すように、受信回路5側の参照電圧Vref(2[V])を付加した電圧を分圧した信号として、0.4[V]を中心として振幅電圧0.25[V]で変化する信号となる。そして、ローパスフィルタ21を通過した電圧信号Vcmpは、図16(d)に示すように、変化成分がカットされるので、直流電圧として0.4[V]の信号となる。
 コンパレータ12aにおいては、電圧信号Vcmpが閾値電圧Vth(0.35[V])よりも高いことから検出信号SQは「H」レベルとなる。
 このような第5実施形態によれば、コンパレータ12aの入力部にローパスフィルタ21を設けることで、通常動作時の信号の振幅電圧であるVampの変動成分に起因した誤動作を防ぐことができる。また、これによって、閾値電圧Vthの設定可能な範囲が広くなり、さらに誤動作を防止することに寄与する。
 なお、第5実施形態のようにローパスフィルタ21を設ける構成は、第1実施形態のみならず、第2から第4実施形態においても同様に適用することができる。
 (第6実施形態)
 図17は第6実施形態を示すもので、第1実施形態と異なるところは、半導体ICチップ22内に降圧回路23を一体に設ける構成としたところである。この場合、降圧回路23を構成する抵抗23a、23bは、拡散抵抗や薄膜抵抗などの種々の形態の半導体抵抗素子により構成することができる。これにより、さらにコンパクトな構成とすることができる。検出回路24は、検出回路12と同様に、コンパレータ24aおよび閾値電圧用電源24bにより構成されている。
 このように半導体ICチップ22内に降圧回路23を設ける構成では、チップ内部でのパターンのコンパクト化を図ると、外付けの構成で降圧回路11を設ける構成に比べてESD耐量が小さくなる場合がある。しかし、耐圧や電流許容量が満たされる環境において使用する場合には、外付けの降圧回路11を設けることなく1チップで構成したものとして使用することができる。
 また、この実施形態は、第1実施形態のみならず、第2~第5実施形態においても適用することができる。
 (他の実施形態)
 なお、本開示は、上述した実施形態のみに限定されるものではなく、その要旨を逸脱しない範囲で種々の実施形態に適用可能であり、例えば、以下のように変形または拡張することができる。
 降圧回路は、直列にした2個の抵抗による分圧回路以外に種々の回路を用いることができる。検出回路は、コンパレータと閾値電圧用電源を用いる構成以外にも種々の回路を用いることができる。
 高電圧回路から低電圧回路に至る経路に設けるコンデンサは、3個以上の直列回路として設けることもできる。
 第2実施形態および第4実施形態における検出回路12、13は、一つの検出回路を設ける構成とし、異なる閾値電圧Vth1、Vth2を時分割で切り換えてコンパレータに入力することで出力信号SQ1、SQ2を得るようにしても良い。
 第3実施形態における検出回路16、17は、一つの検出回路を設ける構成とし、2つの降圧回路14、15の電圧信号Vcmp1、Vcmp2を時分割で切り換えてコンパレータに入力することで出力信号SQ1、SQ2を得るようにしても良い。
 第3実施形態における降圧回路14、15は、一つの分圧回路で3個以上の抵抗を抵抗値を検出電圧に適合するように選んで直列接続することで、電圧信号Vcmp1、Vcmp2を得るようにしても良い。
 

Claims (10)

  1.  高電圧回路(1)から与えられる信号を入力するように設けられ直列接続された第1および第2のコンデンサ(3、4)と、
     前記第1および第2のコンデンサを介して前記高電圧回路から信号を入力する低電圧回路(5)と、
     前記第1および第2のコンデンサの接続点の電圧を降圧する降圧回路(11、14、15,18、23)と、
     前記降圧回路により降圧された電圧信号のレベルから前記第1および第2のコンデンサの少なくとも一つの故障を検出する検出回路(12、13、16、17、19、24)と、を備える故障検出回路。
  2.  請求項1に記載の故障検出回路において、
     前記検出回路(12、19、24)は、前記電圧信号のレベルから前記第1および第2のコンデンサのいずれか一つでも故障している場合にこれを検出する故障検出回路。
  3.  請求項1に記載の故障検出回路において、
     前記検出回路(12、13)は、
     前記電圧信号のレベルと第1判定レベルとを比較して前記第1のコンデンサもしくは前記第2のコンデンサの故障を検出する第1検出回路(12)と、
     前記電圧信号のレベルと第2判定レベルとを比較して前記第1のコンデンサもしくは前記第2コンデンサのどちらが故障したかを検出する第2検出回路(13)と、
    を備える故障検出回路。
  4.  請求項1に記載の故障検出回路において、
     前記検出回路(16、17)は、
     前記降圧回路からの電圧信号を判定レベルと比較して前記第1のコンデンサもしくは前記第2コンデンサの故障を検出する第1検出回路(16)と、
     前記降圧回路からの電圧信号を前記判定レベルと比較して前記第1のコンデンサもしくは前記第2コンデンサのどちらが故障したかを検出する第2検出回路(17)と、を備え
     前記降圧回路は、
     前記第1のコンデンサもしくは前記第2のコンデンサが故障したときに発生する電圧が前記判定レベルを超えるように降圧する第1降圧回路(14)と、
     前記第1のコンデンサもしくは前記第2コンデンサのどちらが故障したかを検出できる電圧レベルに降圧する第2降圧回路(15)と、
    を備える故障検出回路。
  5.  請求項1から4のいずれか一項に記載の故障検出回路において、
     前記降圧回路(11、14、15、18、23)は、抵抗により分圧することで降圧する故障検出回路。
  6.  請求項1から5のいずれか一項に記載の故障検出回路において、
     前記高電圧回路(1)から前記第1のコンデンサ(3)に入力される信号は、低電圧の振幅の信号が正の高電圧に重畳された信号である故障検出回路。
  7.  請求項1から5のいずれか一項に記載の故障検出回路において、
     前記高電圧回路(1)から前記第1のコンデンサ(3)に入力される信号は、低電圧の振幅の信号が負の高電圧の信号に重畳された信号である故障検出回路。
  8.  請求項6または7に記載の故障検出回路において、
     前記検出回路(19)の前段に前記低電圧の振幅の信号を遮断するローパスフィルタ(21)を設けた故障検出回路。
  9.  請求項1から8のいずれか一項に記載の故障検出回路において、
     前記低電圧回路(5)、前記降圧回路(23)および前記検出回路(12)は、低電圧用の半導体装置(22)に一体に設けられ、
     前記降圧回路(23)は、抵抗体(23a、23b)による分圧回路として設けられ、
     前記検出回路(24)は低電圧用のコンパレータ(24a)を有する故障検出回路。
  10.  請求項1から8のいずれか一項に記載の故障検出回路において、
     前記低電圧回路(5)、前記検出回路(12、13、16、17、19)は、低電圧用の半導体装置(6)に一体に設けられ、
     前記検出回路(12、13、16、17、19)は、低電圧用のコンパレータ(12a、13a、16a、17a)を有する故障検出回路。
PCT/JP2015/006033 2014-12-11 2015-12-04 故障検出回路 WO2016092789A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-250884 2014-12-11
JP2014250884A JP2016114374A (ja) 2014-12-11 2014-12-11 故障検出回路

Publications (1)

Publication Number Publication Date
WO2016092789A1 true WO2016092789A1 (ja) 2016-06-16

Family

ID=56107014

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/006033 WO2016092789A1 (ja) 2014-12-11 2015-12-04 故障検出回路

Country Status (2)

Country Link
JP (1) JP2016114374A (ja)
WO (1) WO2016092789A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110208634A (zh) * 2019-05-08 2019-09-06 上海电力学院 一种复杂电力系统不对称短路电流直流分量获取方法
CN114152897A (zh) * 2020-09-08 2022-03-08 瑞昱半导体股份有限公司 断电检测装置与方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019184582A (ja) * 2018-03-30 2019-10-24 ダイキン工業株式会社 電圧検出回路、電圧監視回路、冷凍装置、およびコンテナ用冷凍装置
JP2023012917A (ja) * 2021-07-14 2023-01-26 株式会社デンソー 故障検出装置及び故障検出方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011067037A (ja) * 2009-09-18 2011-03-31 Panasonic Corp 過電圧保護回路

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011067037A (ja) * 2009-09-18 2011-03-31 Panasonic Corp 過電圧保護回路

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110208634A (zh) * 2019-05-08 2019-09-06 上海电力学院 一种复杂电力系统不对称短路电流直流分量获取方法
CN114152897A (zh) * 2020-09-08 2022-03-08 瑞昱半导体股份有限公司 断电检测装置与方法

Also Published As

Publication number Publication date
JP2016114374A (ja) 2016-06-23

Similar Documents

Publication Publication Date Title
KR102283135B1 (ko) 정전기 방전 보호 회로
WO2016092789A1 (ja) 故障検出回路
US9496705B2 (en) Protection circuit of communication interface
US9727067B2 (en) Charging device including regulator circuit and integrated circuit
US9728956B2 (en) Surge protection device for multi-protection mode communications
EP2071690A2 (en) Overvoltage protection circuit and electronic device comprising the same
JP6180815B2 (ja) ボルテージレギュレータ
US8901985B2 (en) Semiconductor device
US10700516B2 (en) Electrostatic discharge protection circuit
US10164423B2 (en) Method and system for ground plane isolation
CA3071019C (en) Active limiting circuit for intrinsically safe equipment
JP6490176B1 (ja) 電力変換装置
US10065508B2 (en) System for controlling supply voltage of on-board electrical network of motor vehicle
CN210201467U (zh) 一种简易直流防过压电路
JP2017009340A (ja) 静電気保護回路付き電流検出回路
JP2014057404A (ja) 過電流検出回路及び電流制限回路
US9318893B2 (en) Isolated battery management systems and methods thereof
JP4840087B2 (ja) A/d変換方式
US20200088808A1 (en) Electronic device
CN205377651U (zh) 一种耐浪涌保护电路
JP6239171B1 (ja) 電力変換装置
US10234882B2 (en) Electrical function group
EP2667469B1 (en) High precision clipping regulator circuit
US11374399B2 (en) Electronic device
JP2011205180A (ja) 電流検出回路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15866570

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15866570

Country of ref document: EP

Kind code of ref document: A1