WO2016092584A1 - Resin product with plating film, and method for producing resin product and method for producing resin product with plating film - Google Patents

Resin product with plating film, and method for producing resin product and method for producing resin product with plating film Download PDF

Info

Publication number
WO2016092584A1
WO2016092584A1 PCT/JP2014/006113 JP2014006113W WO2016092584A1 WO 2016092584 A1 WO2016092584 A1 WO 2016092584A1 JP 2014006113 W JP2014006113 W JP 2014006113W WO 2016092584 A1 WO2016092584 A1 WO 2016092584A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin product
plating film
ultraviolet rays
plating
ultraviolet
Prior art date
Application number
PCT/JP2014/006113
Other languages
French (fr)
Japanese (ja)
Inventor
太輔 岩下
Original Assignee
キヤノン・コンポーネンツ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノン・コンポーネンツ株式会社 filed Critical キヤノン・コンポーネンツ株式会社
Priority to JP2015514257A priority Critical patent/JP5856354B1/en
Priority to PCT/JP2014/006113 priority patent/WO2016092584A1/en
Publication of WO2016092584A1 publication Critical patent/WO2016092584A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins

Definitions

  • the present invention relates to a resin product with a plating film, a resin product, and a method for producing a resin product with a plating film.
  • Patent Document 1 describes a method for manufacturing a printed wiring board using surface modification by ultraviolet rays. Specifically, first, surface modification necessary for electroless plating is performed by irradiating the entire surface of the cycloolefin polymer material, which is a resin product, with ultraviolet rays from a low-pressure mercury lamp. And the plating film is formed by performing electroless plating on the surface of the modified resin product, and this is used as the material of the printed wiring board. By processing the obtained plating film so as to have a predetermined pattern using a photolithography process and an etching process, a conductive line having a predetermined pattern can be provided.
  • the object of the present invention is to modify the surface of a resin product in a short time so that a plating film is deposited.
  • a method for producing a resin product of the present invention comprises the following arrangement. That is, A method for producing a resin product modified so that a plating film is deposited on the surface by plating, A first modification step of modifying the surface by irradiating the resin product with ultraviolet light having a dominant wavelength of less than 184 nm; A second modification step of modifying the surface by further modifying the resin product irradiated with the ultraviolet rays; It is characterized by having.
  • the surface of the resin product can be modified in a short time so that the plating film is deposited.
  • the accompanying drawings are included in the specification, constitute a part thereof, show an embodiment of the present invention, and are used to explain the principle of the present invention together with the description.
  • the present inventor studied to irradiate ultraviolet rays with higher energy and shorter wavelengths instead of ultraviolet rays (main wavelength: 254 nm) from a low-pressure mercury lamp for the purpose of modifying the resin product in a short time. .
  • main wavelength: 254 nm main wavelength
  • the inventor irradiates a resin product with short-wavelength ultraviolet light, and then additionally irradiates longer-wavelength ultraviolet light in a shorter time than when using only long-wavelength ultraviolet light,
  • the present inventors have found that resin products can be sufficiently modified. Based on such knowledge, the present inventor has completed the invention.
  • the method for manufacturing a resin product with a plating film according to an embodiment of the present invention includes a first modification step, a second modification step, and a plating step.
  • a resin product modified so that a plating film is deposited on the surface by electroless plating is produced by the first modification step and the second modification step.
  • the surface is modified by irradiating the resin product with ultraviolet rays having a dominant wavelength of less than 184 nm.
  • the modified portion 120 is formed in the portion irradiated with the ultraviolet rays.
  • the resin product 110 is irradiated with ultraviolet rays in an atmosphere containing at least one of oxygen and ozone.
  • irradiation of the resin product 110 with ultraviolet rays can be performed in the atmosphere.
  • irradiation is performed in an atmosphere containing ozone in order to further promote the modification.
  • an ultraviolet ray having a specific wavelength or less capable of decomposing oxygen is irradiated in an atmosphere containing oxygen
  • the oxygen in the atmosphere is decomposed to generate ozone.
  • active oxygen is generated in the process of decomposing ozone.
  • the energy of a photon with a specific wavelength can be expressed by the following equation.
  • E Nhc / ⁇ (KJ ⁇ mol ⁇ 1 )
  • N 6.022 ⁇ 10 23 mol ⁇ 1 (Avocado number)
  • h 6.626 ⁇ 10 ⁇ 37 KJ ⁇ s (Planck constant)
  • c 2.88 ⁇ 10 8 m ⁇ s ⁇ 1 (speed of light)
  • wavelength of light (nm)
  • the binding energy of the oxygen molecule is 490.4 KJ ⁇ mol ⁇ 1 . From the photon energy formula, this binding energy is converted to the wavelength of light, which is about 243 nm. This indicates that oxygen molecules in the atmosphere absorb and decompose ultraviolet rays having a wavelength of 243 nm or less. As a result, ozone O 3 is generated. Furthermore, active oxygen is generated in the process of decomposing ozone. At this time, if ultraviolet rays having a wavelength of 310 nm or less are present, ozone is efficiently decomposed and active oxygen is generated. Furthermore, ultraviolet light having a wavelength of 254 nm decomposes ozone most efficiently.
  • the bonds in the molecules constituting the resin on the resin surface are also broken by the short wavelength ultraviolet rays.
  • the molecule constituting the resin reacts with active oxygen, and the resin surface is oxidized, that is, the resin surface has a C—O bond, a C ⁇ O bond, a C ( ⁇ O) —O bond (the skeleton of the carboxyl group ) And the like are formed.
  • Such a hydrophilic group increases the chemical adsorption between the resin product 110 and the plating film 140.
  • catalyst ions can be selectively adsorbed in the modified portion when electroless plating is performed.
  • the plating film 140 by electroless plating is likely to be deposited on the surface of the resin product 110 modified by ultraviolet rays.
  • the arithmetic average roughness Ra of the resin product surface is 10 nm or less.
  • the unevenness formed in this way is much smaller than the unevenness of micrometer order obtained by, for example, irradiating the surface of a resin product with a higher-intensity visible laser, or formed by treatment with chromic acid or the like. It is expected.
  • the plating film 140 deposited on a relatively smooth surface is considered to have a smooth surface as well. When such a smooth plating film 140 is used as a wiring, the loss of a high frequency signal can be suppressed.
  • the arithmetic average roughness Ra is defined by JIS B0601: 2001.
  • the resin product 110 used in the present embodiment is not particularly limited as long as it has a resin material that can be modified by ultraviolet rays on the surface.
  • the resin material include cycloolefin polymers or polyolefins such as polystyrene, polyesters such as polyethylene terephthalate, polyvinyls such as polyvinyl chloride, and polycarbonates.
  • the resin product 110 is a flat substrate.
  • the resin product 110 may have an arbitrary three-dimensional shape.
  • the resin product is composed only of resin.
  • the resin product 110 is a composite material having a coating structure obtained by coating the surface of another material with a resin material.
  • a specific example of the composite material includes a metal material whose surface is coated with a resin material.
  • the shape of the metal material is not particularly limited, and may be a substrate shape or a more complicated three-dimensional shape.
  • the resin product 110 has a smooth surface. Since the resin product 110 has a smoother surface, a more uniform plating film 140 is formed by plating.
  • the ultraviolet rays are applied to the entire surface of the resin product 110.
  • ultraviolet rays are irradiated to a part of the surface of the resin product 110.
  • the modified portion 120 is selectively formed on a part of the surface of the resin product 110.
  • a plating film 140 is formed on the modified portion 120. That is, by selectively irradiating a part of the surface of the resin product 110 with ultraviolet rays, a plating film can be selectively deposited on a part of the surface of the resin product 110. According to such a configuration, the plating film 140 having a desired pattern can be formed without patterning the plating film by photolithography or the like.
  • the plating film 140 is deposited on the modified portion 120 only in the first modifying step. It is sufficient if the plating film 140 is deposited on the modified portion 120 after being modified in both the first modification step and the second modification step. For example, by using two or more appropriate reforming steps, it is possible to reduce the required reforming time and improve productivity compared to the case of using one reforming step.
  • the method used for selectively irradiating a part of the surface of the resin product 110 with ultraviolet rays is not particularly limited.
  • the irradiation range of ultraviolet rays is limited using a photomask. That is, by irradiating the resin product 110 with ultraviolet rays through a photomask having an ultraviolet transmissive portion and an ultraviolet non-transmissive portion, the modified portion 120 corresponding to the shape of the ultraviolet transmissive portion is formed.
  • ultraviolet light having a dominant wavelength of less than 184 nm is irradiated.
  • Ultraviolet light having a dominant wavelength of less than 184 nm has higher energy than ultraviolet light having a larger dominant wavelength, such as ultraviolet light from a low-pressure mercury lamp. Therefore, the time required for the modification of the resin product 110 can be reduced.
  • ultraviolet light having a dominant wavelength of 172 nm or less is irradiated.
  • the irradiation amount and irradiation intensity of ultraviolet rays refer to values at the dominant wavelength.
  • the dominant wavelength refers to a wavelength having the highest intensity in a region of 300 nm or less. Specifically, in the case of a low-pressure mercury lamp, the dominant wavelength is 254 nm.
  • ultraviolet rays from an ultraviolet lamp or an ultraviolet LED are irradiated.
  • An example of the ultraviolet lamp is an excimer lamp.
  • an Xe 2 excimer lamp that emits ultraviolet light having a dominant wavelength of 172 nm is known. Quasi-monochromatic light is obtained from the excimer lamp, and visible light and infrared light are relatively small. For this reason, the use of an excimer lamp can suppress the heat generation of the substrate during irradiation.
  • the excimer lamp has a characteristic that it can be turned on instantaneously as compared with, for example, a low-pressure mercury lamp.
  • the ultraviolet rays are irradiated only when the resin product 110 reaches the irradiation position, and the ultraviolet rays are emitted while the resin product 110 is not at the irradiation position. It is possible to control the excimer lamp so as not to irradiate. In this way, it is possible to save energy and extend the life of the excimer lamp.
  • ultraviolet light from the excimer lamp 310 is irradiated to the resin product 110 through the quartz chrome mask 320.
  • the quartz chrome mask 320 is disposed so as to be in contact with the planar irradiation surface of the excimer lamp 310, and the resin product 110 is also disposed so as to be in contact with the quartz chrome mask 320.
  • the quartz chrome mask 320 and the resin product 110 are fixed using the holding glass 330.
  • the irradiation is performed even when ultraviolet rays having a dominant wavelength of less than 184 nm are used. Can be carried out in the atmosphere.
  • the ultraviolet rays leaking from the resin product 110 are easily absorbed in the atmosphere, the influence on the human body can be suppressed.
  • quasi-monochromatic light such as ultraviolet light from an excimer lamp is used, in which most of the wavelengths that are easily absorbed in the atmosphere are used.
  • the ultraviolet irradiation time in the first modification step is not particularly limited as long as the resin product 110 can be modified so that the plating film 140 is deposited.
  • the irradiation time of ultraviolet rays is 6 seconds or more.
  • the irradiation time of ultraviolet rays is 60 seconds or less.
  • the irradiation amount of ultraviolet rays is not particularly limited as long as the resin product 110 can be modified so that the plating film 140 is deposited.
  • the irradiation amount of ultraviolet rays is 100 mJ / cm 2 or more.
  • the irradiation amount of an ultraviolet-ray is 2000 mJ / cm ⁇ 2 > or less.
  • the energy density of the irradiated ultraviolet rays is not particularly limited as long as the modification proceeds, and may be, for example, 1.0 ⁇ 10 ⁇ 3 W / cm 2 or more, or 1.0 ⁇ 10 2 W / cm 2. It may be 2 or less.
  • the deposition conditions for plating may vary depending on the type of plating solution, the type of substrate, the degree of contamination of the substrate surface, the concentration of the plating solution, temperature, pH, aging, fluctuations in the output of the ultraviolet lamp, and the like.
  • the irradiation amount from the ultraviolet lamp may be appropriately determined so that the plating is selectively deposited on the modified portion 120 with reference to the above numerical values.
  • the irradiation amount of ultraviolet rays can be controlled by changing the irradiation time.
  • the amount of ultraviolet irradiation can also be controlled by changing the output, number, or irradiation distance of the ultraviolet lamp.
  • the temperature of the resin product 110 and the quartz chrome mask 320 may increase. For this reason, due to the difference in thermal expansion coefficient between the resin product 110 and the quartz chrome mask 320, the portion irradiated with the ultraviolet rays may be shifted during the irradiation of the ultraviolet rays.
  • the ultraviolet ray from a low-pressure mercury lamp is irradiated for about 10 minutes as in the prior art, the temperature of the substrate rises from room temperature to about 50 ° C. In this case, it is conceivable that it is difficult to obtain a plating film 140 having a precise pattern.
  • the irradiation time of the ultraviolet rays is selected so that the temperature rise of the resin product 110 and the quartz chrome mask 320 becomes sufficiently small.
  • the temperature rise of the resin product 110 due to ultraviolet irradiation is 10 ° C. or less in one embodiment, 5 ° C. or less in another embodiment, and 2 ° C. or less in a further embodiment.
  • the irradiation time of ultraviolet rays in the first modification step may be short, and for this reason, the temperature of the substrate can be increased without cooling the substrate. Can be suppressed.
  • the resin product 110 may not be sufficiently modified so that the plating film 140 is deposited by electroless plating only by irradiating ultraviolet rays having a dominant wavelength of less than 184 nm.
  • the present inventor irradiates ultraviolet rays having a short wavelength (the main wavelength is less than 184 nm)
  • the resin molecule breaks up smoothly, but the subsequent oxidation reaction does not proceed. It is estimated that one of the reasons is that it does not proceed smoothly.
  • the resin product 110 is oxidized until there are many carboxyl groups on the surface of the resin product 110 in the irradiation of the low-pressure mercury lamp. It was confirmed. On the other hand, in the irradiation of the Xe 2 excimer lamp, it was confirmed that many hydroxyl groups were generated on the surface of the resin product 110, but not so many carboxyl groups were generated. Furthermore, as this reason, it is also conceivable that the carboxyl group is decomposed by the high energy of the short wavelength ultraviolet rays. In any case, when the number of carboxy groups is small, it is conceivable that the catalyst ions selectively adsorbed on the carboxyl groups are difficult to be adsorbed.
  • the resin product 110 is subjected to the second modification step in addition to the first modification step.
  • a modification process is performed on the resin product 110. That is, the second modification process is further performed on the resin product 110 irradiated with ultraviolet rays in the first modification step.
  • the reforming process is performed on a region including a portion irradiated with ultraviolet rays in the first reforming process.
  • the modified portion 120 generated in the first modification step is sufficiently modified so that the plating film 140 is deposited in the plating step (S230).
  • the modification process is performed only on the portion irradiated with ultraviolet rays in the first modification step.
  • the reforming process is performed on a wider area including the portion irradiated with ultraviolet rays in the first reforming step. When such a configuration is used, it is not essential to limit the modification range using, for example, a mask or the like in the second modification process.
  • FIG. 1C shows an example in which the second reforming process is performed on the entire surface of the resin product 110.
  • the reforming unit 120 is further reformed by the second reforming process, while the reforming unit 130 is also generated in a portion that has not been irradiated with ultraviolet rays in the first reforming process.
  • the reforming unit 120 is reformed in the first reforming process and the second reforming process, whereas the reforming unit 130 is reformed only in the second reforming process.
  • the plating film 140 can be deposited only on the reforming part 120 without depositing the plating film 140 on the reforming part 130.
  • the modification treatment refers to treatment for modifying the surface of the resin product 110 so that a plating film is easily deposited by electroless plating, and specific examples include oxidation treatment.
  • Specific examples of the oxidation treatment include photoexcitation ashing treatment, plasma ashing treatment, oxidation treatment using chemicals, and oxidation treatment by ultraviolet irradiation.
  • the method using the ultraviolet-ray which can be performed simply is demonstrated.
  • the resin product 110 is further modified by irradiating with ultraviolet rays in the same atmosphere as in the irradiation step. In one embodiment, irradiation with ultraviolet rays is performed in an atmosphere containing at least one of oxygen and ozone.
  • the surface of the resin product 110 is modified by irradiating with ultraviolet rays having a dominant wavelength of 184 nm or more. Irradiation with ultraviolet rays having a dominant wavelength of 184 nm or more further promotes modification of the resin product surface.
  • Such ultraviolet rays can be irradiated using an ultraviolet lamp or an ultraviolet LED that continuously emits ultraviolet rays. Specific examples include a low-pressure mercury lamp and an excimer lamp.
  • the low-pressure mercury lamp can irradiate ultraviolet rays having wavelengths of 185 nm and 254 nm.
  • the KrBr excimer lamp can irradiate ultraviolet rays having a wavelength of 206 nm
  • the KrCl excimer lamp can irradiate ultraviolet rays having a wavelength of 222 nm.
  • the energy density of the irradiated ultraviolet rays is not particularly limited as long as the modification proceeds, and may be, for example, 1.0 ⁇ 10 ⁇ 3 W / cm 2 or more, or 1.0 ⁇ 10 2 W / cm 2. It may be 2 or less. It's okay.
  • the irradiation time and irradiation amount of ultraviolet rays in the second modification step can modify the resin product 110 so that the plating film 140 is deposited on the reforming part 120 and the plating film 140 is not deposited on the reforming part 130. If it is, it will not be restrict
  • the irradiation time of ultraviolet rays is 1 minute or longer.
  • the irradiation time of an ultraviolet-ray is 5 minutes or less.
  • the irradiation amount of an ultraviolet-ray is 100 mJ / cm ⁇ 2 > or more.
  • the irradiation amount of an ultraviolet-ray is 1500 mJ / cm ⁇ 2 > or less.
  • the energy density of the irradiated ultraviolet rays is not particularly limited as long as the modification proceeds, and may be, for example, 1.0 ⁇ 10 ⁇ 3 W / cm 2 or more, or 1.0 ⁇ 10 2 W / cm 2. It may be 2 or less.
  • the deposition conditions of the plating can change, so that the irradiation amount from the ultraviolet lamp is selected so that the plating is selectively deposited on the reforming portion 120 with reference to the above numerical values. Can be appropriately determined.
  • the reforming unit 120 has already been modified to some extent by using high-energy ultraviolet rays in the first reforming step. Therefore, the ultraviolet irradiation time in the second modification step may be shorter than the conventional case in which the first modification step is not used. In addition, since ultraviolet rays having high energy are used in the first modification step, the sum of the irradiation time of ultraviolet rays in the first modification step and the irradiation time of ultraviolet rays in the second modification step in the present embodiment. However, it can be made shorter than the conventional case in which the first reforming step is not used.
  • the surface is rapidly oxidized and modified in a short time by high energy due to ultraviolet rays having a short wavelength. Then, by performing the second reforming step, the surface is sufficiently reformed so that the catalyst ions are easily adsorbed. At this time, the time required for sufficient surface modification is shorter when the first modification step and the second modification step are combined than when the second modification step is used alone. be able to.
  • the sum of the ultraviolet irradiation time in the first reforming step and the ultraviolet irradiation time in the second reforming step is 8 in one embodiment. Minutes or less, in another embodiment 5 minutes or less, and in further embodiments 3 minutes or less.
  • the ultraviolet irradiation time in the second modification step is long, and even if the resin product 110 is heated, the shape of the obtained plating film 140 is not significantly affected.
  • the plating film 140 having a precise pattern can be obtained by limiting the irradiation time of ultraviolet rays. From such a viewpoint, in one embodiment, the ultraviolet irradiation time in the first modification step is shorter than the ultraviolet irradiation time in the second modification step.
  • plating process In the plating step (S230), as shown in FIG. 1D, electroless plating is performed on the resin product 110 whose surface has been modified in the first modification step and the second modification step. Specifically, the modified portion 120 irradiated with ultraviolet rays in the first modification step is modified so that the plating film 140 is deposited by the first modification step and the second modification step. . On the other hand, the modified portion 130 that has not been modified in the first reforming process has been reformed to such an extent that the plating film 140 is deposited, although the modification in the second reforming process has been performed. Not.
  • the plating film 140 is deposited on the modified portion 120, but the plating film 140 is not deposited on the modified portion 130.
  • the plating film 140 is selectively deposited on the desired modified portion 120.
  • a part of the surface of the resin product 110 for example, a modified portion. 120
  • a plating film 140 is deposited.
  • the plating film 140 is not deposited in a region adjacent to this part, for example, the modified portion 130. Therefore, it is not essential to pattern the plating film 140 by a method such as photolithography and etching after the plating film 140 is formed.
  • the specific electroless plating method is not particularly limited. Examples of electroless plating methods that can be used include an electroless plating method using a formalin-based electroless plating bath and an electroless plating method using hypophosphorous acid as a reducing agent, which is slow in deposition but easy to handle. It is done. Further specific examples of the electroless plating method include electroless nickel plating, electroless copper plating, electroless copper nickel plating, and electroless zinc oxide plating.
  • the plating film 140 formed by electroless plating can be a metal film. By modifying the resin product 110 as described above, the adhesion between the modified portion 120 and the deposited plating film 140 is improved.
  • electroless plating can be performed by the following method.
  • Alkali treatment The resin product 110 is immersed in an alkali solution, degreased, and hydrophilicity is improved. Examples of the alkaline solution include an aqueous sodium hydroxide solution.
  • 2. The resin product 110 is immersed in a solution containing a binder of the resin product 110 and catalyst ions. Examples of the binder include a cationic polymer.
  • 3. Activator treatment
  • the resin product 110 is immersed in a solution containing catalyst ions. Examples of the catalyst ion include a palladium complex such as an acidic palladium complex hydrochloride. 4).
  • the resin product 110 is immersed in a solution containing a reducing agent to reduce and precipitate catalyst ions.
  • a reducing agent examples include hydrogen gas, dimethylamine borane and sodium borohydride. 5.
  • a plating film 140 is deposited on the deposited catalyst.
  • the electroless plating according to such a method can be performed using an electroless plating solution set such as Cu-Ni plating solution set “AISL” manufactured by JCU.
  • an electroless plating solution set such as Cu-Ni plating solution set “AISL” manufactured by JCU.
  • a palladium complex that easily adheres to the reforming unit 120 and has a positive charge at least partially is used as the catalyst ion.
  • a solution containing a palladium complex ion having a positive charge in the solution is used so that adhesion to the reforming unit 120 is improved.
  • An example of a palladium complex having a positive charge at least partially includes a complex in which an amine-based ligand is coordinated.
  • Another example of a palladium complex having a positive charge at least in part is a basic amino acid complex of palladium.
  • the basic amino acid complex of palladium is a complex of palladium ion and basic amino acid.
  • the palladium ion is not limited, but divalent palladium ions are often used.
  • the basic amino acid may be a natural amino acid or an artificial amino acid. In one embodiment, the amino acid is an ⁇ -amino acid.
  • Examples of basic amino acids include amino acids having a basic substituent such as an amino group or a guanidyl group in the side chain. Examples of basic amino acids include lysine, arginine, ornithine and the like.
  • a palladium complex having a positive charge at least in part as the catalyst ion in that the plating film 140 is likely to be selectively deposited on the modified portion 120. It has been found that a palladium complex ion having a positive charge at least partially is particularly selectively adsorbed to a carboxyl group among hydroxyl groups, carbonyl groups and carboxyl groups, which are typical hydrophilic groups. That is, when such a catalyst is used, the plating film 140 is less likely to be deposited on a portion where the plating film 140 is not provided, for example, on the modified portion 130.
  • the carboxyl group is not sufficiently formed in the modification step, it is considered that palladium complex ions having a positive charge at least partially are not easily adsorbed on the surface, and the deposition of plating becomes insufficient.
  • the use of a palladium complex having a positive charge at least in part as the catalyst ion is advantageous in that it can improve the productivity by omitting the conditioner treatment step.
  • Examples of the basic amino acid complex of palladium include those described in International Publication No. 2007/066460. Specific examples include those represented by the following formula (I).
  • L 1 and L 2 each independently represent an alkylene group having 1 to 10 carbon atoms
  • R 3 and R 4 each independently represent an amino group or a guanidyl group.
  • the alkylene group having 1 to 10 carbon atoms include linear alkylene groups such as methylene group, 1,2-ethanediyl group, 1,3-propanediyl group, and n-butane-1,4-diyl group.
  • the two amino groups are coordinated at the trans position, but the two amino groups may be coordinated at the cis position.
  • the basic amino acid complex of palladium may be a mixture of a cis isomer and a trans isomer.
  • Examples of the electroless plating kit using such a basic amino acid complex of palladium include ELFSEED (manufactured by JCU).
  • the plating film 140 can be formed by a high-speed electroless plating method. According to the high speed electroless plating method, a thicker plating film can be formed. In a further embodiment, plating is further deposited on the plating film 140 formed by electroless plating using an electrolytic plating method. According to this method, a thicker plating film 140 can be formed.
  • the specific method of electroplating is not specifically limited.
  • the thickness of the plating film 140 there is no particular limitation on the thickness of the plating film 140 to be obtained.
  • a plating film 140 having an appropriate thickness is formed according to the intended use of the resin product 100 with a plating film.
  • the material of the plating film 140 is not particularly limited. An appropriate material is selected according to the use of the obtained resin product 100 with a plating film.
  • the resin product 100 with a plating film obtained in this way can be used for various uses, such as a wiring board or a electrically conductive film, for example.
  • the surface of the resin product 110 is considered to be relatively flat even after the modification. . Therefore, the resin product 100 with a plating film produced in this way is expected to be excellent in high-frequency characteristics since the interface between the resin product 110 and the plating film 140 is relatively flat.
  • Example 1 As the resin product 110 , a cycloolefin polymer material (manufactured by Zeon Corporation, ZEONOR film ZF-16, film thickness 100 ⁇ m, surface roughness 1.01 nm) was used.
  • the surface of the resin product 110 was modified using an excimer lamp.
  • an excimer lamp a Xe 2 plane excimer lamp (manufactured by Quark Technology Co., Ltd., QEF160, wavelength 172 nm) was used.
  • the resin product 110 is disposed on the planar irradiation surface of the excimer lamp 310 through the quartz chrome mask 320 in the atmosphere.
  • the resin product 110 was fixed by the holding glass 330. In this state, the resin product 110 was irradiated with ultraviolet rays from the excimer lamp 310 through the quartz chrome mask 320 for 10 seconds.
  • the intensity of the ultraviolet rays from the excimer lamp 310 measured through the quartz chrome mask 320 was 30 mW / cm 2 . Moreover, when the change of the surface temperature of the resin product 110 before and after irradiating with ultraviolet rays for 10 seconds was measured three times, the average rise temperature was 0.5 ° C.
  • the quartz chrome mask 320 had an ultraviolet opaque part 321 formed with a chromium film and an ultraviolet transparent part 322 where a chromium film was not formed. Therefore, a part of the surface of the resin product 110 was modified according to the shape of the ultraviolet transmitting part 322, and the modified part 120 corresponding to the shape of the ultraviolet transmitting part 322 was generated. Further, the quartz chrome mask 320 has a plurality of band-like ultraviolet transmitting portions 322, and each ultraviolet transmitting portion has a width of about 50 ⁇ m to 100 ⁇ m.
  • the surface of the resin product 110 was further modified by an oxidation treatment using a low-pressure mercury lamp.
  • ultraviolet rays from a low-pressure mercury lamp (manufactured by Samco Corporation, UV-300, peak wavelengths of 185 nm and 254 nm) are applied to the entire surface of the resin product 110 on which the modified portion 120 is formed. Irradiated for 2 minutes 30 seconds. At this time, a mask for limiting the irradiation range of ultraviolet rays from the low-pressure mercury lamp was not used.
  • the illuminance of the low-pressure mercury lamp at an irradiation distance of 3.5 cm was 5.40 mW / cm 2 (254 nm) and 1.35 mW / cm 2 (185 nm).
  • the reforming part 120 was further reformed, and the reforming part 130 was also formed in the part not irradiated with the ultraviolet rays from the excimer lamp.
  • the electroless plating treatment included an alkali treatment step, an activator treatment step, an accelerator treatment step, and an electroless plating step.
  • the resin product 110 was treated with an alkali solution.
  • a treatment solution was prepared using EC-B and AISL-ATM contained in a plating solution set “AISL” manufactured by JCU, heated to 50 ° C., and the resin product 110 was immersed for 2 minutes. Thereafter, the resin product 110 was washed with water.
  • AISL plating solution set “AISL” manufactured by JCU
  • the catalyst product was treated with a catalyst ion solution to give catalyst ions to the surface of the resin product 110.
  • a treatment solution was prepared using an activator solution ES-300 included in a plating solution set “ELFSEED” manufactured by JCU, and the resin product 110 was immersed for 5 minutes by heating to 50 ° C. Thereafter, the resin product 110 was washed with water.
  • the catalyst product applied to the surface of the resin product 110 was reduced by treating the resin product 110 with a reducing agent.
  • the catalyst was deposited on the surface of the resin product 110.
  • a treatment solution was prepared using an accelerator solution ES-400 included in a plating solution set “ELFSEED” manufactured by JCU, heated to 35 ° C., and immersed in the resin product 110 for 4 minutes. Thereafter, the resin product 110 was washed with water.
  • the plating film 140 was deposited on the resin product 110 by immersing the resin product 110 in an electroless copper nickel plating solution.
  • an electroless copper nickel plating solution was prepared using a plating solution set “AISL” manufactured by JCU, and the resin product 110 was immersed for 5 minutes by heating to 60 ° C. Thereafter, the resin product 110 was washed with water. By this treatment, the resin product 100 with a plating film in which the plating film 140 is formed on the resin product 110 was obtained.
  • the plating film 140 was uniformly deposited on the modified portion 120 irradiated with ultraviolet rays from the excimer lamp. That is, a strip-shaped plating film 140 having a width of about 50 ⁇ m to 100 ⁇ m was formed on the resin product 110. On the other hand, the plating film 140 was not deposited on the modified portion 130 that was not irradiated with ultraviolet rays from the excimer lamp.
  • Example 2 A resin product 100 with a plating film was produced in the same manner as in Example 1 except that the irradiation time of the ultraviolet rays from the excimer lamp was 15 seconds, 20 seconds, 25 seconds, 30 seconds, 35 seconds, and 40 seconds. In each case, the plating film 140 was uniformly deposited on the modified portion 120 irradiated with the ultraviolet rays from the excimer lamp. On the other hand, the plating film 140 was not deposited on the modified portion 130 that was not irradiated with ultraviolet rays from the excimer lamp.
  • Example 3 A resin product 100 with a plating film was produced in the same manner as in Example 1 except that the irradiation time of ultraviolet rays from the excimer lamp was set to 5 seconds. Although the plating film 140 was deposited on the modified portion 120 irradiated with ultraviolet rays from the excimer lamp, a portion with a small amount of deposition was also observed. On the other hand, the plating film 140 was not deposited on the modified portion 130 that was not irradiated with ultraviolet rays from the excimer lamp.
  • Example 4 A resin product 100 with a plating film was produced in the same manner as in Example 1 except that ultraviolet rays from a low-pressure mercury lamp were not irradiated.
  • the plating film 140 was hardly deposited on the modified portion 120 irradiated with the ultraviolet rays from the excimer lamp.
  • Example 5 A resin product 100 with a plating film was produced in the same manner as in Example 1 except that the excimer lamp was not used and only the ultraviolet rays from the low-pressure mercury lamp were used for modification. At this time, in order to deposit the plating film 140, it was necessary to irradiate ultraviolet rays from a low-pressure mercury lamp for about 10 minutes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Chemically Coating (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

A method for modifying a resin product, on which a plating film is to be deposited, within a short period of time, said method comprising a first modification step for irradiating the resin product with ultraviolet rays having a main wavelength of less than 184 nm to thereby modify the surface, and a second modification step for further modifying the surface of the resin product having been irradiated with the ultraviolet rays as described above.

Description

めっき皮膜付樹脂製品並びに樹脂製品及びめっき皮膜付樹脂製品の製造方法Resin product with plating film, resin product, and method for producing resin product with plating film
 本発明は、めっき皮膜付樹脂製品並びに樹脂製品及びめっき皮膜付樹脂製品の製造方法に関するものである。 The present invention relates to a resin product with a plating film, a resin product, and a method for producing a resin product with a plating film.
 樹脂製品上に設けられた所定のパターンを有する機能性皮膜を備えるめっき皮膜付樹脂製品は、特に配線板又は導電膜等として有用である。そこで、所定のパターンを有する導電線を樹脂製品上に設ける方法が検討されてきた。例えば、特許文献1には、紫外線による表面改質を用いたプリント配線板の製造方法が記載されている。具体的には、まず、樹脂製品であるシクロオレフィンポリマー材の表面全体に低圧水銀ランプからの紫外線を照射することにより、無電解めっきに必要な表面改質が行われる。そして、改質された樹脂製品の表面に無電解めっきを行うことによりめっき皮膜が形成され、これがプリント配線板の材料として用いられる。得られためっき皮膜をフォトリソグラフィー工程及びエッチング工程を用いて所定のパターンを有するように加工することにより、所定のパターンを有する導電線を設けることができる。 The resin product with a plating film provided with a functional film having a predetermined pattern provided on the resin product is particularly useful as a wiring board or a conductive film. Therefore, a method of providing a conductive wire having a predetermined pattern on a resin product has been studied. For example, Patent Document 1 describes a method for manufacturing a printed wiring board using surface modification by ultraviolet rays. Specifically, first, surface modification necessary for electroless plating is performed by irradiating the entire surface of the cycloolefin polymer material, which is a resin product, with ultraviolet rays from a low-pressure mercury lamp. And the plating film is formed by performing electroless plating on the surface of the modified resin product, and this is used as the material of the printed wiring board. By processing the obtained plating film so as to have a predetermined pattern using a photolithography process and an etching process, a conductive line having a predetermined pattern can be provided.
特開2008-094923号公報JP 2008-094923 A
 特許文献1に記載の方法では、樹脂製品を改質するために、低圧水銀ランプからの紫外線が10分間から45分間照射される。このため、生産効率の向上のために、より短時間で樹脂製品を改質できる方法が求められていた。 In the method described in Patent Document 1, ultraviolet rays from a low-pressure mercury lamp are irradiated for 10 to 45 minutes in order to modify a resin product. For this reason, in order to improve production efficiency, a method capable of modifying a resin product in a shorter time has been demanded.
 本発明は、めっき皮膜が析出するように短時間で樹脂製品の表面を改質することを目的とする。 The object of the present invention is to modify the surface of a resin product in a short time so that a plating film is deposited.
 本発明の目的を達成するために、例えば、本発明の樹脂製品の製造方法は以下の構成を備える。すなわち、
 めっきにより表面にめっき皮膜が析出するように改質された樹脂製品の製造方法であって、
 樹脂製品に対して主波長が184nm未満である紫外線を照射することで表面を改質する第1の改質工程と、
 前記紫外線が照射された前記樹脂製品に対してさらに改質処理を行うことで表面を改質する第2の改質工程と、
 を有することを特徴とする。
In order to achieve the object of the present invention, for example, a method for producing a resin product of the present invention comprises the following arrangement. That is,
A method for producing a resin product modified so that a plating film is deposited on the surface by plating,
A first modification step of modifying the surface by irradiating the resin product with ultraviolet light having a dominant wavelength of less than 184 nm;
A second modification step of modifying the surface by further modifying the resin product irradiated with the ultraviolet rays;
It is characterized by having.
 めっき皮膜が析出するように短時間で樹脂製品の表面を改質することができる。 The surface of the resin product can be modified in a short time so that the plating film is deposited.
 本発明のその他の特徴及び利点は、添付図面を参照とした以下の説明により明らかになるであろう。なお、添付図面においては、同じ若しくは同様の構成には、同じ参照番号を付す。 Other features and advantages of the present invention will become apparent from the following description with reference to the accompanying drawings. In the accompanying drawings, the same or similar components are denoted by the same reference numerals.
 添付図面は明細書に含まれ、その一部を構成し、本発明の実施の形態を示し、その記述と共に本発明の原理を説明するために用いられる。
一実施形態に係るめっき皮膜付樹脂製品の製造方法を説明する図。 一実施形態に係るめっき皮膜付樹脂製品の製造方法を説明する図。 一実施形態に係るめっき皮膜付樹脂製品の製造方法を説明する図。 一実施形態に係るめっき皮膜付樹脂製品の製造方法を説明する図。 一実施形態に係るめっき皮膜付樹脂製品の製造方法のフローチャート。 第1の改質工程における紫外線の照射方法の一例を示す図。 第1の改質工程で用いられる石英クロムマスクの一例を示す図。
The accompanying drawings are included in the specification, constitute a part thereof, show an embodiment of the present invention, and are used to explain the principle of the present invention together with the description.
The figure explaining the manufacturing method of the resin product with a plating film which concerns on one Embodiment. The figure explaining the manufacturing method of the resin product with a plating film which concerns on one Embodiment. The figure explaining the manufacturing method of the resin product with a plating film which concerns on one Embodiment. The figure explaining the manufacturing method of the resin product with a plating film which concerns on one Embodiment. The flowchart of the manufacturing method of the resin product with a plating film which concerns on one Embodiment. The figure which shows an example of the irradiation method of the ultraviolet-ray in a 1st modification | reformation process. The figure which shows an example of the quartz chromium mask used at a 1st modification | reformation process.
 本発明者は、樹脂製品を短時間で改質することを目的として、低圧水銀ランプからの紫外線(主波長:254nm)の代わりに、よりエネルギーの高い短波長の紫外線を照射することを検討した。しかしながら、樹脂製品に対して短波長の紫外線を照射した後に無電解めっきを行っても、めっき皮膜が十分に析出しないことがあることが見出された。 The present inventor studied to irradiate ultraviolet rays with higher energy and shorter wavelengths instead of ultraviolet rays (main wavelength: 254 nm) from a low-pressure mercury lamp for the purpose of modifying the resin product in a short time. . However, it has been found that even when electroless plating is performed after irradiating a resin product with ultraviolet rays having a short wavelength, the plating film may not be sufficiently deposited.
 本発明者は、種々検討の結果、樹脂製品に対して短波長の紫外線を照射した後に、より長波長の紫外線を追加照射することにより、長波長の紫外線のみを用いる場合よりも短時間で、樹脂製品を十分に改質できることを見出した。このような知見に基づき、本発明者は発明を完成させた。 As a result of various studies, the inventor irradiates a resin product with short-wavelength ultraviolet light, and then additionally irradiates longer-wavelength ultraviolet light in a shorter time than when using only long-wavelength ultraviolet light, The present inventors have found that resin products can be sufficiently modified. Based on such knowledge, the present inventor has completed the invention.
 以下、本発明を適用できる実施形態を図面に基づいて説明する。ただし、本発明の範囲は以下の実施形態に限定されるものではない。 Hereinafter, embodiments to which the present invention can be applied will be described with reference to the drawings. However, the scope of the present invention is not limited to the following embodiments.
 本発明の一実施形態に係るめっき皮膜付樹脂製品の製造方法は、第1の改質工程と、第2の改質工程と、めっき工程と、を含む。特に、第1の改質工程及び第2の改質工程により、無電解めっきにより表面にめっき皮膜が析出するように改質された樹脂製品が製造される。以下、これらの各工程について、図1A~D及び図2を参照しながら説明する。 The method for manufacturing a resin product with a plating film according to an embodiment of the present invention includes a first modification step, a second modification step, and a plating step. In particular, a resin product modified so that a plating film is deposited on the surface by electroless plating is produced by the first modification step and the second modification step. Hereinafter, each of these steps will be described with reference to FIGS. 1A to 1D and FIG.
(第1の改質工程)
 第1の改質工程(S210)においては、樹脂製品に対して主波長が184nm未満である紫外線を照射することで表面が改質される。例えば、図1Aに示される樹脂製品110に対して、図1Bに示されるように紫外線を照射することにより、紫外線が照射された部分に改質部120が形成される。
(First modification step)
In the first modification step (S210), the surface is modified by irradiating the resin product with ultraviolet rays having a dominant wavelength of less than 184 nm. For example, by irradiating the resin product 110 shown in FIG. 1A with ultraviolet rays as shown in FIG. 1B, the modified portion 120 is formed in the portion irradiated with the ultraviolet rays.
 一実施形態において、紫外線の樹脂製品110への照射は、酸素とオゾンとの少なくとも一方を含む雰囲気下で行われる。具体的な例としては、紫外線の樹脂製品110への照射は、大気中で行われうる。別の実施形態においては、より改質を促進するために、オゾンを含む雰囲気中で照射が行われる。 In one embodiment, the resin product 110 is irradiated with ultraviolet rays in an atmosphere containing at least one of oxygen and ozone. As a specific example, irradiation of the resin product 110 with ultraviolet rays can be performed in the atmosphere. In another embodiment, irradiation is performed in an atmosphere containing ozone in order to further promote the modification.
 例えば、酸素を含む雰囲気下で、酸素を分解可能な特定の波長以下の紫外線を照射すると、雰囲気中の酸素は分解されてオゾンが生成する。更にはオゾンが分解する過程で活性酸素が発生する。 For example, when an ultraviolet ray having a specific wavelength or less capable of decomposing oxygen is irradiated in an atmosphere containing oxygen, the oxygen in the atmosphere is decomposed to generate ozone. Furthermore, active oxygen is generated in the process of decomposing ozone.
 特定波長のフォトンのエネルギーは次の式で表せる。
 E=Nhc/λ(KJ・mol-1
  N=6.022×1023mol-1(アボガドロ数)
  h=6.626×10-37KJ・s(プランク定数)
  c=2.988×10m・s-1(光速)
  λ=光の波長(nm)
The energy of a photon with a specific wavelength can be expressed by the following equation.
E = Nhc / λ (KJ · mol −1 )
N = 6.022 × 10 23 mol −1 (Avocado number)
h = 6.626 × 10 −37 KJ · s (Planck constant)
c = 2.88 × 10 8 m · s −1 (speed of light)
λ = wavelength of light (nm)
 ここで、酸素分子の結合エネルギーは490.4KJ・mol-1である。フォトンのエネルギーの式から、この結合エネルギーを光の波長へと換算すると約243nmとなる。このことは、雰囲気中の酸素分子は、波長243nm以下の紫外線を吸収し分解することを示している。これによりオゾンOが発生する。さらに、オゾンが分解する過程で活性酸素が発生する。このとき、波長310nm以下の紫外線が存在すると、効率よくオゾンが分解され、活性酸素が発生する。さらには、波長254nmの紫外線がオゾンを最も効率よく分解する。
 O+hν(243nm以下)→O(3P)+O(3P)
 O+O(3P)→O(オゾン)
 O+hν(310nm以下)→O+O(1D)(活性酸素)
  O(3P):基底状態酸素原子
  O(1D):励起酸素原子(活性酸素)
Here, the binding energy of the oxygen molecule is 490.4 KJ · mol −1 . From the photon energy formula, this binding energy is converted to the wavelength of light, which is about 243 nm. This indicates that oxygen molecules in the atmosphere absorb and decompose ultraviolet rays having a wavelength of 243 nm or less. As a result, ozone O 3 is generated. Furthermore, active oxygen is generated in the process of decomposing ozone. At this time, if ultraviolet rays having a wavelength of 310 nm or less are present, ozone is efficiently decomposed and active oxygen is generated. Furthermore, ultraviolet light having a wavelength of 254 nm decomposes ozone most efficiently.
O 2 + hν (243 nm or less) → O (3P) + O (3P)
O 2 + O (3P) → O 3 (ozone)
O 3 + hν (310 nm or less) → O 2 + O (1D) (active oxygen)
O (3P): Ground state oxygen atom O (1D): Excited oxygen atom (active oxygen)
 また、同時に短波長の紫外線により、樹脂表面において樹脂を構成する分子中の結合も切断される。このとき、樹脂を構成する分子と活性酸素とが反応し、樹脂表面が酸化され、すなわち樹脂表面にC-O結合、C=O結合、C(=O)-O結合(カルボキシル基の骨格部分)等が形成される。このような親水性基は、樹脂製品110とめっき皮膜140との化学的吸着性を増大させる。また、樹脂製品110の表面の酸化により脆化した部分が例えばアルカリ処理等により脱落することにより微細な粗面が形成されるため、投錨効果により樹脂製品110とめっき皮膜140との物理的吸着性が増大する。さらに、改質された部分については、無電解めっきを行う場合に触媒イオンを選択的に吸着させることができる。このようにして、紫外線により改質された樹脂製品110の表面に、無電解めっきによるめっき皮膜140が析出しやすくなるものと考えられる。 Simultaneously, the bonds in the molecules constituting the resin on the resin surface are also broken by the short wavelength ultraviolet rays. At this time, the molecule constituting the resin reacts with active oxygen, and the resin surface is oxidized, that is, the resin surface has a C—O bond, a C═O bond, a C (═O) —O bond (the skeleton of the carboxyl group ) And the like are formed. Such a hydrophilic group increases the chemical adsorption between the resin product 110 and the plating film 140. In addition, since the portion embrittled by the oxidation of the surface of the resin product 110 is removed by, for example, alkali treatment or the like, a fine rough surface is formed. Will increase. Furthermore, catalyst ions can be selectively adsorbed in the modified portion when electroless plating is performed. Thus, it is considered that the plating film 140 by electroless plating is likely to be deposited on the surface of the resin product 110 modified by ultraviolet rays.
 本実施形態のように紫外線を用いて樹脂製品110の表面を改質する方法によれば、樹脂製品110の表面にはナノメートルオーダーの微細な凹凸が形成される。一実施形態において、樹脂製品表面の算術平均粗さRaは、10nm以下である。このように形成される凹凸は、例えばより高強度の可視レーザを樹脂製品表面に照射して得られる、又はクロム酸等で処理することにより形成されるマイクロメートルオーダーの凹凸よりも、格段に小さいことが期待される。このように比較的平滑な表面に析出しためっき皮膜140も、同様に平滑な表面を有するものと考えられる。このような平滑なめっき皮膜140を配線として用いると、高周波信号の損失を抑えることができる。本明細書において、算術平均粗さRaは、JIS B0601:2001により定義される。 According to the method of modifying the surface of the resin product 110 using ultraviolet rays as in the present embodiment, fine irregularities on the order of nanometers are formed on the surface of the resin product 110. In one embodiment, the arithmetic average roughness Ra of the resin product surface is 10 nm or less. The unevenness formed in this way is much smaller than the unevenness of micrometer order obtained by, for example, irradiating the surface of a resin product with a higher-intensity visible laser, or formed by treatment with chromic acid or the like. It is expected. Thus, the plating film 140 deposited on a relatively smooth surface is considered to have a smooth surface as well. When such a smooth plating film 140 is used as a wiring, the loss of a high frequency signal can be suppressed. In this specification, the arithmetic average roughness Ra is defined by JIS B0601: 2001.
 しかしながら、例えばアンモニアのようなアミン化合物ガス雰囲気下又はアミド化合物ガス雰囲気下等の、他の気体雰囲気下で紫外線の照射を行うこともできる。アミン化合物ガス雰囲気下又はアミド化合物ガス雰囲気下で照射を行うことにより、樹脂製品110の表面を酸化する、すなわち樹脂製品110の表面に窒素原子を含む結合を生成することができる。 However, it is also possible to irradiate ultraviolet rays in other gas atmospheres such as an amine compound gas atmosphere such as ammonia or an amide compound gas atmosphere. By irradiation in an amine compound gas atmosphere or an amide compound gas atmosphere, the surface of the resin product 110 can be oxidized, that is, a bond containing nitrogen atoms can be generated on the surface of the resin product 110.
 本実施形態において用いられる樹脂製品110は、紫外線により改質可能な樹脂材料を表面に有するものであれば特に限定されない。樹脂材料の例としては、シクロオレフィンポリマー若しくはポリスチレンのようなポリオレフィン、ポリエチレンテレフタレートのようなポリエステル、ポリ塩化ビニルのようなポリビニル、又はポリカーボネート等が挙げられる。 The resin product 110 used in the present embodiment is not particularly limited as long as it has a resin material that can be modified by ultraviolet rays on the surface. Examples of the resin material include cycloolefin polymers or polyolefins such as polystyrene, polyesters such as polyethylene terephthalate, polyvinyls such as polyvinyl chloride, and polycarbonates.
 本実施形態においては、樹脂製品110は平面状に形成された基板であるものとする。しかしながら、樹脂製品110は任意の3次元形状を有しうる。また、樹脂製品が樹脂のみで構成されている必要はない。すなわち、一実施形態において、樹脂製品110は、他の材料の表面に樹脂材料を被覆して得られる被覆構造を有する複合材料である。複合材料の具体的な例としては、金属材料の表面が樹脂材料で被覆されたものが挙げられる。この金属材料の形状は特に限定されず、基板状であってもより複雑な三次元形状を有していてもよい。一実施形態において、樹脂製品110は平滑な表面を有する。樹脂製品110がより平滑な表面を有することにより、より均一なめっき皮膜140がめっきにより形成される。 In this embodiment, it is assumed that the resin product 110 is a flat substrate. However, the resin product 110 may have an arbitrary three-dimensional shape. Moreover, it is not necessary that the resin product is composed only of resin. That is, in one embodiment, the resin product 110 is a composite material having a coating structure obtained by coating the surface of another material with a resin material. A specific example of the composite material includes a metal material whose surface is coated with a resin material. The shape of the metal material is not particularly limited, and may be a substrate shape or a more complicated three-dimensional shape. In one embodiment, the resin product 110 has a smooth surface. Since the resin product 110 has a smoother surface, a more uniform plating film 140 is formed by plating.
 一実施形態においては、紫外線は樹脂製品110の表面全体に照射される。しかしながら、本実施形態においては、図1Bに示すように、紫外線は樹脂製品110の表面の一部に照射される。このような実施形態においては、樹脂製品110の表面の一部に選択的に改質部120が形成される。後述するめっき工程においては、この改質部120上にめっき皮膜140が形成される。すなわち、樹脂製品110の表面の一部に選択的に紫外線を照射することにより、樹脂製品110の表面の一部に選択的にめっき皮膜を析出させることができる。このような構成によれば、フォトリソグラフィー等によりめっき皮膜をパターニングすることなく、所望のパターンを有するめっき皮膜140を形成することができる。 In one embodiment, the ultraviolet rays are applied to the entire surface of the resin product 110. However, in the present embodiment, as shown in FIG. 1B, ultraviolet rays are irradiated to a part of the surface of the resin product 110. In such an embodiment, the modified portion 120 is selectively formed on a part of the surface of the resin product 110. In a plating process described later, a plating film 140 is formed on the modified portion 120. That is, by selectively irradiating a part of the surface of the resin product 110 with ultraviolet rays, a plating film can be selectively deposited on a part of the surface of the resin product 110. According to such a configuration, the plating film 140 having a desired pattern can be formed without patterning the plating film by photolithography or the like.
 一方で、後述するように、第1の改質工程のみで改質部120にめっき皮膜140が析出するように樹脂製品110を改質する必要はない。第1の改質工程と第2の改質工程との双方で改質された後の改質部120にめっき皮膜140が析出すれば十分である。例えば、適切な2回以上の改質工程を用いることにより、1回の改質工程を用いる場合と比べて必要な改質時間を減らし、生産性を向上させることが可能である。 On the other hand, as described later, it is not necessary to modify the resin product 110 so that the plating film 140 is deposited on the modified portion 120 only in the first modifying step. It is sufficient if the plating film 140 is deposited on the modified portion 120 after being modified in both the first modification step and the second modification step. For example, by using two or more appropriate reforming steps, it is possible to reduce the required reforming time and improve productivity compared to the case of using one reforming step.
 紫外線を樹脂製品110の表面の一部に選択的に照射するために用いられる方法は特に限定されない。一実施形態においては、フォトマスクを用いて紫外線の照射範囲が制限される。すなわち、紫外線透過部と紫外線不透過部とを有するフォトマスクを介して樹脂製品110に紫外線を照射することにより、紫外線透過部の形状に対応する改質部120が形成される。 The method used for selectively irradiating a part of the surface of the resin product 110 with ultraviolet rays is not particularly limited. In one embodiment, the irradiation range of ultraviolet rays is limited using a photomask. That is, by irradiating the resin product 110 with ultraviolet rays through a photomask having an ultraviolet transmissive portion and an ultraviolet non-transmissive portion, the modified portion 120 corresponding to the shape of the ultraviolet transmissive portion is formed.
 本実施形態においては、主波長が184nm未満である紫外線が照射される。主波長が184nm未満である紫外線は、例えば低圧水銀ランプからの紫外線のようなより大きい主波長を有する紫外線と比べて、エネルギーが高い。したがって、樹脂製品110の改質に要する時間を減らすことができる。一実施形態においては、主波長が172nm以下である紫外線が照射される。本明細書においては、特に断りがない限り、紫外線の照射量及び照射強度は、主波長における値を指す。本明細書において、主波長とは、300nm以下の領域において最も強度が高い波長のことを指す。具体的には、低圧水銀ランプであれば主波長は254nmである。 In the present embodiment, ultraviolet light having a dominant wavelength of less than 184 nm is irradiated. Ultraviolet light having a dominant wavelength of less than 184 nm has higher energy than ultraviolet light having a larger dominant wavelength, such as ultraviolet light from a low-pressure mercury lamp. Therefore, the time required for the modification of the resin product 110 can be reduced. In one embodiment, ultraviolet light having a dominant wavelength of 172 nm or less is irradiated. In this specification, unless otherwise specified, the irradiation amount and irradiation intensity of ultraviolet rays refer to values at the dominant wavelength. In this specification, the dominant wavelength refers to a wavelength having the highest intensity in a region of 300 nm or less. Specifically, in the case of a low-pressure mercury lamp, the dominant wavelength is 254 nm.
 一実施形態においては、紫外線ランプ又は紫外線LEDからの紫外線が照射される。紫外線ランプの例としては、エキシマランプが挙げられる。例えば、主波長172nmの紫外線を照射するXeエキシマランプが知られている。エキシマランプからは準単色光が得られ、可視光及び赤外光は比較的少ない。このため、エキシマランプを用いることにより、照射時における基板の発熱を抑えることができる。また、エキシマランプは、例えば低圧水銀ランプ等と比較して、瞬時に点灯が可能であるという特性を有する。このため、ベルトコンベア上で樹脂製品110を搬送しながら紫外線を照射する際に、樹脂製品110が照射位置に到達した際にのみ紫外線を照射し、樹脂製品110が照射位置にない間には紫外線を照射しないようにエキシマランプを制御することが可能である。このように、エネルギーを節約すること及びエキシマランプの寿命を延ばすことが可能である。 In one embodiment, ultraviolet rays from an ultraviolet lamp or an ultraviolet LED are irradiated. An example of the ultraviolet lamp is an excimer lamp. For example, an Xe 2 excimer lamp that emits ultraviolet light having a dominant wavelength of 172 nm is known. Quasi-monochromatic light is obtained from the excimer lamp, and visible light and infrared light are relatively small. For this reason, the use of an excimer lamp can suppress the heat generation of the substrate during irradiation. In addition, the excimer lamp has a characteristic that it can be turned on instantaneously as compared with, for example, a low-pressure mercury lamp. For this reason, when irradiating ultraviolet rays while conveying the resin product 110 on the belt conveyor, the ultraviolet rays are irradiated only when the resin product 110 reaches the irradiation position, and the ultraviolet rays are emitted while the resin product 110 is not at the irradiation position. It is possible to control the excimer lamp so as not to irradiate. In this way, it is possible to save energy and extend the life of the excimer lamp.
 紫外線の照射装置の一例について図3を用いて説明する。図3の例においては、エキシマランプ310からの紫外線が、石英クロムマスク320を介して樹脂製品110へと照射される。石英クロムマスク320はエキシマランプ310が有する平面状の照射面に接触するように配置され、樹脂製品110も石英クロムマスク320に接触するように配置される。図3の例においては、抑えガラス330を用いて石英クロムマスク320及び樹脂製品110が固定されている。このように、紫外線ランプ又は紫外線LEDの照射面にフォトマスク及び樹脂製品110を接触させる構成によれば、大気中で吸収されやすい主波長が184nm未満である紫外線を用いる場合であっても、照射を大気中で行うことができる。一方で、樹脂製品110から漏れた紫外線は大気中で吸収されやすいため、人体への影響を抑えることができる。この観点から、一実施形態においては、大気中で吸収されやすい波長が大部分を占める、エキシマランプからの紫外線のような準単色光が用いられる。 An example of an ultraviolet irradiation device will be described with reference to FIG. In the example of FIG. 3, ultraviolet light from the excimer lamp 310 is irradiated to the resin product 110 through the quartz chrome mask 320. The quartz chrome mask 320 is disposed so as to be in contact with the planar irradiation surface of the excimer lamp 310, and the resin product 110 is also disposed so as to be in contact with the quartz chrome mask 320. In the example of FIG. 3, the quartz chrome mask 320 and the resin product 110 are fixed using the holding glass 330. As described above, according to the configuration in which the photomask and the resin product 110 are brought into contact with the irradiation surface of the ultraviolet lamp or the ultraviolet LED, the irradiation is performed even when ultraviolet rays having a dominant wavelength of less than 184 nm are used. Can be carried out in the atmosphere. On the other hand, since the ultraviolet rays leaking from the resin product 110 are easily absorbed in the atmosphere, the influence on the human body can be suppressed. From this point of view, in one embodiment, quasi-monochromatic light such as ultraviolet light from an excimer lamp is used, in which most of the wavelengths that are easily absorbed in the atmosphere are used.
 第1の改質工程における紫外線の照射時間は、めっき皮膜140が析出するように樹脂製品110を改質できるのであれば特に制限されない。例えば、一実施形態において紫外線の照射時間は6秒間以上である。また、基板の発熱を抑えるために、一実施形態において紫外線の照射時間は60秒間以下である。紫外線の照射量も、めっき皮膜140が析出するように樹脂製品110を改質できるのであれば特に制限されない。例えば、一実施形態において紫外線の照射量は100mJ/cm以上である。また、一実施形態において紫外線の照射量は2000mJ/cm以下である。照射される紫外線のエネルギー密度は、改質が進行するのであれば特に限定されず、例えば1.0×10-3W/cm以上であってもよく、1.0×10W/cm以下であってもよい。 The ultraviolet irradiation time in the first modification step is not particularly limited as long as the resin product 110 can be modified so that the plating film 140 is deposited. For example, in one embodiment, the irradiation time of ultraviolet rays is 6 seconds or more. Moreover, in order to suppress the heat generation of the substrate, in one embodiment, the irradiation time of ultraviolet rays is 60 seconds or less. The irradiation amount of ultraviolet rays is not particularly limited as long as the resin product 110 can be modified so that the plating film 140 is deposited. For example, in one embodiment, the irradiation amount of ultraviolet rays is 100 mJ / cm 2 or more. Moreover, in one Embodiment, the irradiation amount of an ultraviolet-ray is 2000 mJ / cm < 2 > or less. The energy density of the irradiated ultraviolet rays is not particularly limited as long as the modification proceeds, and may be, for example, 1.0 × 10 −3 W / cm 2 or more, or 1.0 × 10 2 W / cm 2. It may be 2 or less.
 しかしながら、めっきの析出条件は、めっき液の種類、基板の種類、基板表面の汚染度、めっき液の濃度、温度、pH、及び経時劣化、紫外線ランプの出力の変動等により変化しうる。この場合、上記の数値を参考に、改質部120に選択的にめっきが析出するように、紫外線ランプからの照射量を適宜決定すればよい。紫外線の照射量は、照射時間を変えることにより制御することができる。また、紫外線照射量は、紫外線ランプの出力、本数、又は照射距離等を変えることにより制御することもできる。 However, the deposition conditions for plating may vary depending on the type of plating solution, the type of substrate, the degree of contamination of the substrate surface, the concentration of the plating solution, temperature, pH, aging, fluctuations in the output of the ultraviolet lamp, and the like. In this case, the irradiation amount from the ultraviolet lamp may be appropriately determined so that the plating is selectively deposited on the modified portion 120 with reference to the above numerical values. The irradiation amount of ultraviolet rays can be controlled by changing the irradiation time. The amount of ultraviolet irradiation can also be controlled by changing the output, number, or irradiation distance of the ultraviolet lamp.
 紫外線が長時間照射されると、樹脂製品110及び石英クロムマスク320の温度が上昇する可能性がある。このために、樹脂製品110と石英クロムマスク320との熱膨張係数の相違のために、紫外線の照射中に紫外線が照射される部分がずれることがある。例えば、従来のように低圧水銀ランプからの紫外線を10分間程度照射すると、基板の温度は室温から50℃程度までに上昇する。この場合、精密なパターンを有するめっき皮膜140が得られにくいことが考えられる。したがって、一実施形態においては、樹脂製品110及び石英クロムマスク320の温度上昇が十分に小さくなるように紫外線の照射時間が選択される。例えば、紫外線照射による樹脂製品110の温度上昇は、一実施形態においては10℃以下であり、別の実施形態においては5℃以下であり、さらなる実施形態においては2℃以下である。本実施形態のようにエネルギーの大きい紫外線を照射する場合、第1の改質工程における紫外線の照射時間は短時間であってもよく、このために基板を冷却しなくても基板の温度上昇を抑えることができる。 When the ultraviolet rays are irradiated for a long time, the temperature of the resin product 110 and the quartz chrome mask 320 may increase. For this reason, due to the difference in thermal expansion coefficient between the resin product 110 and the quartz chrome mask 320, the portion irradiated with the ultraviolet rays may be shifted during the irradiation of the ultraviolet rays. For example, when the ultraviolet ray from a low-pressure mercury lamp is irradiated for about 10 minutes as in the prior art, the temperature of the substrate rises from room temperature to about 50 ° C. In this case, it is conceivable that it is difficult to obtain a plating film 140 having a precise pattern. Therefore, in one embodiment, the irradiation time of the ultraviolet rays is selected so that the temperature rise of the resin product 110 and the quartz chrome mask 320 becomes sufficiently small. For example, the temperature rise of the resin product 110 due to ultraviolet irradiation is 10 ° C. or less in one embodiment, 5 ° C. or less in another embodiment, and 2 ° C. or less in a further embodiment. When irradiating ultraviolet rays with large energy as in this embodiment, the irradiation time of ultraviolet rays in the first modification step may be short, and for this reason, the temperature of the substrate can be increased without cooling the substrate. Can be suppressed.
(第2の改質工程)
 上述のように、主波長が184nm未満である紫外線を照射するだけでは、無電解めっきによりめっき皮膜140が析出するように樹脂製品110を十分に改質できないことがある。その詳細な理由は明確ではないが、本発明者は、短波長の(主波長が184nm未満である)紫外線を照射する場合、樹脂分子の断裂は円滑に進行する一方で、その後の酸化反応が円滑に進行しないことが理由の1つであるものと推定している。実際、紫外線による改質後の樹脂製品110の表面のXPSスペクトルを比較したところ、低圧水銀ランプの照射においては、樹脂製品110の表面にカルボキシル基が多く存在するまでに樹脂製品110が酸化されることが確認された。一方で、Xeエキシマランプの照射においては、樹脂製品110の表面に多くの水酸基が生成したが、カルボキシル基はあまり生成しないことが確認された。さらに、この理由としては、短波長の紫外線が有する高いエネルギーによりカルボキシル基が分解されてしまうことも考えられる。いずれにせよ、カルポキシル基が少ない場合、カルボキシル基に選択的に吸着される触媒イオンが吸着されにくくなることが考えられる。
(Second modification step)
As described above, the resin product 110 may not be sufficiently modified so that the plating film 140 is deposited by electroless plating only by irradiating ultraviolet rays having a dominant wavelength of less than 184 nm. Although the detailed reason is not clear, when the present inventor irradiates ultraviolet rays having a short wavelength (the main wavelength is less than 184 nm), the resin molecule breaks up smoothly, but the subsequent oxidation reaction does not proceed. It is estimated that one of the reasons is that it does not proceed smoothly. Actually, when the XPS spectrum of the surface of the resin product 110 after the modification by ultraviolet rays is compared, the resin product 110 is oxidized until there are many carboxyl groups on the surface of the resin product 110 in the irradiation of the low-pressure mercury lamp. It was confirmed. On the other hand, in the irradiation of the Xe 2 excimer lamp, it was confirmed that many hydroxyl groups were generated on the surface of the resin product 110, but not so many carboxyl groups were generated. Furthermore, as this reason, it is also conceivable that the carboxyl group is decomposed by the high energy of the short wavelength ultraviolet rays. In any case, when the number of carboxy groups is small, it is conceivable that the catalyst ions selectively adsorbed on the carboxyl groups are difficult to be adsorbed.
 そこで、本実施形態においては、樹脂製品110に対して、第1の改質工程に加えて第2の改質工程が行われる。第2の改質工程(S220)においては、樹脂製品110に対して改質処理が行われる。すなわち、第1の改質工程において紫外線が照射された樹脂製品110に対して、さらに第2の改質処理が行われる。 Thus, in the present embodiment, the resin product 110 is subjected to the second modification step in addition to the first modification step. In the second modification step (S220), a modification process is performed on the resin product 110. That is, the second modification process is further performed on the resin product 110 irradiated with ultraviolet rays in the first modification step.
 本実施形態に係る第2の改質工程においては、第1の改質工程で紫外線が照射された部分を含む領域に対して改質処理が行われる。こうして、図1Cに示すように、第1の改質工程で生成した改質部120は、めっき工程(S230)においてめっき皮膜140が析出するように十分に改質される。一実施形態においては、第1の改質工程で紫外線が照射された部分のみに対して改質処理が行われる。しかしながら、別の実施形態においては、第1の改質工程で紫外線が照射された部分を包含しより広い領域に対して改質処理が行われる。このような構成を用いる場合、第2の改質工程において例えばマスク等を用いて改質範囲を制限することは必須ではない。 In the second reforming process according to the present embodiment, the reforming process is performed on a region including a portion irradiated with ultraviolet rays in the first reforming process. Thus, as shown in FIG. 1C, the modified portion 120 generated in the first modification step is sufficiently modified so that the plating film 140 is deposited in the plating step (S230). In one embodiment, the modification process is performed only on the portion irradiated with ultraviolet rays in the first modification step. However, in another embodiment, the reforming process is performed on a wider area including the portion irradiated with ultraviolet rays in the first reforming step. When such a configuration is used, it is not essential to limit the modification range using, for example, a mask or the like in the second modification process.
 図1Cは、樹脂製品110の全面に対して第2の改質処理を行う場合の例を示す。図1Cに示すように、改質部120が第2の改質処理によりさらに改質される一方で、第1の改質工程で紫外線が照射されなかった部分にも改質部130が生じる。しかしながら、改質部120は第1の改質工程及び第2の改質工程で改質されるのに対し、改質部130は第2の改質工程でしか改質されない。このため、改質条件及び無電解めっき条件を適宜選択することにより、改質部130にはめっき皮膜140を析出させずに、改質部120のみにめっき皮膜140を析出させることができる。 FIG. 1C shows an example in which the second reforming process is performed on the entire surface of the resin product 110. As shown in FIG. 1C, the reforming unit 120 is further reformed by the second reforming process, while the reforming unit 130 is also generated in a portion that has not been irradiated with ultraviolet rays in the first reforming process. However, the reforming unit 120 is reformed in the first reforming process and the second reforming process, whereas the reforming unit 130 is reformed only in the second reforming process. For this reason, by appropriately selecting the reforming conditions and the electroless plating conditions, the plating film 140 can be deposited only on the reforming part 120 without depositing the plating film 140 on the reforming part 130.
 改質処理とは、無電解めっきによりめっき皮膜が析出しやすくなるように樹脂製品110の表面を改質する処理のことを指し、具体例としては酸化処理が挙げられる。酸化処理の具体的な例としては、光励起アッシング処理、プラズマアッシング処理、化学薬品を用いた酸化処理、及び紫外線の照射による酸化処理、等が挙げられる。以下では、簡便に行うことのできる紫外線を用いる方法について説明する。具体的には、照射工程と同様の雰囲気下で紫外線を照射することにより、樹脂製品110はさらに改質される。一実施形態においては、紫外線の照射は、酸素とオゾンとの少なくとも一方を含む雰囲気下で行われる。 The modification treatment refers to treatment for modifying the surface of the resin product 110 so that a plating film is easily deposited by electroless plating, and specific examples include oxidation treatment. Specific examples of the oxidation treatment include photoexcitation ashing treatment, plasma ashing treatment, oxidation treatment using chemicals, and oxidation treatment by ultraviolet irradiation. Below, the method using the ultraviolet-ray which can be performed simply is demonstrated. Specifically, the resin product 110 is further modified by irradiating with ultraviolet rays in the same atmosphere as in the irradiation step. In one embodiment, irradiation with ultraviolet rays is performed in an atmosphere containing at least one of oxygen and ozone.
 一実施形態に係る第2の改質工程においては、主波長が184nm以上である紫外線を照射することで、樹脂製品110の表面が改質される。主波長が184nm以上である紫外線を照射することにより、樹脂製品表面の改質がより促進される。このような紫外線は、継続的に紫外線を放射する紫外線ランプ又は紫外線LED等を用いて照射することができる。具体的な例としては、低圧水銀ランプ及びエキシマランプ等が挙げられる。低圧水銀ランプは、波長185nm及び254nmの紫外線を照射することができる。また、KrBrエキシマランプは波長206nmの紫外線を、KrClエキシマランプは波長222nmの紫外線を、それぞれ照射することができる。 In the second modification step according to one embodiment, the surface of the resin product 110 is modified by irradiating with ultraviolet rays having a dominant wavelength of 184 nm or more. Irradiation with ultraviolet rays having a dominant wavelength of 184 nm or more further promotes modification of the resin product surface. Such ultraviolet rays can be irradiated using an ultraviolet lamp or an ultraviolet LED that continuously emits ultraviolet rays. Specific examples include a low-pressure mercury lamp and an excimer lamp. The low-pressure mercury lamp can irradiate ultraviolet rays having wavelengths of 185 nm and 254 nm. The KrBr excimer lamp can irradiate ultraviolet rays having a wavelength of 206 nm, and the KrCl excimer lamp can irradiate ultraviolet rays having a wavelength of 222 nm.
 照射される紫外線のエネルギー密度は、改質が進行するのであれば特に限定されず、例えば1.0×10-3W/cm以上であってもよく、1.0×10W/cm以下であってもよい。
てよい。
The energy density of the irradiated ultraviolet rays is not particularly limited as long as the modification proceeds, and may be, for example, 1.0 × 10 −3 W / cm 2 or more, or 1.0 × 10 2 W / cm 2. It may be 2 or less.
It's okay.
 第2の改質工程における紫外線の照射時間及び照射量は、改質部120にはめっき皮膜140が析出し、改質部130にはめっき皮膜140が析出しないように樹脂製品110を改質できるのであれば特に制限されない。例えば、一実施形態において紫外線の照射時間は1分間以上である。また、一実施形態において紫外線の照射時間は5分間以下である。また、一実施形態において紫外線の照射量は100mJ/cm以上である。また、一実施形態において紫外線の照射量は1500mJ/cm以下である。照射される紫外線のエネルギー密度は、改質が進行するのであれば特に限定されず、例えば1.0×10-3W/cm以上であってもよく、1.0×10W/cm以下であってもよい。しかしながら、第1の改質工程に関して上述したようにめっきの析出条件は変化しうるので、上記の数値を参考に、改質部120に選択的にめっきが析出するように紫外線ランプからの照射量を適宜決定することができる。 The irradiation time and irradiation amount of ultraviolet rays in the second modification step can modify the resin product 110 so that the plating film 140 is deposited on the reforming part 120 and the plating film 140 is not deposited on the reforming part 130. If it is, it will not be restrict | limited in particular. For example, in one embodiment, the irradiation time of ultraviolet rays is 1 minute or longer. Moreover, in one Embodiment, the irradiation time of an ultraviolet-ray is 5 minutes or less. Moreover, in one Embodiment, the irradiation amount of an ultraviolet-ray is 100 mJ / cm < 2 > or more. Moreover, in one Embodiment, the irradiation amount of an ultraviolet-ray is 1500 mJ / cm < 2 > or less. The energy density of the irradiated ultraviolet rays is not particularly limited as long as the modification proceeds, and may be, for example, 1.0 × 10 −3 W / cm 2 or more, or 1.0 × 10 2 W / cm 2. It may be 2 or less. However, as described above with respect to the first reforming step, the deposition conditions of the plating can change, so that the irradiation amount from the ultraviolet lamp is selected so that the plating is selectively deposited on the reforming portion 120 with reference to the above numerical values. Can be appropriately determined.
 本実施形態においては、第1の改質工程において既に改質部120がエネルギーの高い紫外線を用いてある程度改質されている。したがって、第2の改質工程における紫外線の照射時間は、第1の改質工程を用いない従来の場合よりも短くてよい。また、第1の改質工程ではエネルギーの高い紫外線が用いられるため、本実施形態における第1の改質工程での紫外線の照射時間と第2の改質工程での紫外線の照射時間との和も、第1の改質工程を用いない従来の場合より短くすることができる。第1の改質工程で波長184nm未満の紫外線、例えば波長172nmの紫外線を用いる場合、短波長の紫外線による高いエネルギーにより、急速に短時間で表面が酸化改質される。そして、第2の改質工程を行うことにより、触媒イオンが吸着されやすくなるように表面を十分に改質する。このとき、表面の十分な改質に必要な時間は、第2の改質工程を単独で用いるよりも、第1の改質工程と第2の改質工程を組みわせた方が、短くすることができる。照射時間を短くして生産効率を向上させる観点から、第1の改質工程での紫外線の照射時間と第2の改質工程での紫外線の照射時間との和は、一実施形態においては8分以下であり、別の実施形態においては5分以下であり、さらなる実施形態においては3分以下である。 In the present embodiment, the reforming unit 120 has already been modified to some extent by using high-energy ultraviolet rays in the first reforming step. Therefore, the ultraviolet irradiation time in the second modification step may be shorter than the conventional case in which the first modification step is not used. In addition, since ultraviolet rays having high energy are used in the first modification step, the sum of the irradiation time of ultraviolet rays in the first modification step and the irradiation time of ultraviolet rays in the second modification step in the present embodiment. However, it can be made shorter than the conventional case in which the first reforming step is not used. When ultraviolet rays having a wavelength of less than 184 nm, for example, ultraviolet rays having a wavelength of 172 nm, are used in the first modification step, the surface is rapidly oxidized and modified in a short time by high energy due to ultraviolet rays having a short wavelength. Then, by performing the second reforming step, the surface is sufficiently reformed so that the catalyst ions are easily adsorbed. At this time, the time required for sufficient surface modification is shorter when the first modification step and the second modification step are combined than when the second modification step is used alone. be able to. From the viewpoint of shortening the irradiation time and improving production efficiency, the sum of the ultraviolet irradiation time in the first reforming step and the ultraviolet irradiation time in the second reforming step is 8 in one embodiment. Minutes or less, in another embodiment 5 minutes or less, and in further embodiments 3 minutes or less.
 上述のように、第2の改質工程において例えばマスク等を用いて改質範囲を制限することは必須ではない。したがって、第2の改質工程における紫外線の照射時間が長く、樹脂製品110が加熱されても、得られるめっき皮膜140の形状はあまり影響を受けない。一方で、上述のように、第1の改質工程においては、紫外線の照射時間を制限することにより、精密なパターンを有するめっき皮膜140を得ることができる。このような観点から、一実施形態において、第1の改質工程における紫外線の照射時間は、第2の改質工程における紫外線の照射時間よりも短い。 As described above, it is not essential to limit the modification range using, for example, a mask or the like in the second modification step. Therefore, the ultraviolet irradiation time in the second modification step is long, and even if the resin product 110 is heated, the shape of the obtained plating film 140 is not significantly affected. On the other hand, as described above, in the first modification step, the plating film 140 having a precise pattern can be obtained by limiting the irradiation time of ultraviolet rays. From such a viewpoint, in one embodiment, the ultraviolet irradiation time in the first modification step is shorter than the ultraviolet irradiation time in the second modification step.
(めっき工程)
 めっき工程(S230)においては、図1Dに示されるように、第1の改質工程及び第2の改質工程において表面が改質された樹脂製品110に対して無電解めっきが行われる。具体的には、第1の改質工程において紫外線が照射された改質部120は、第1の改質工程及び第2の改質工程によってめっき皮膜140が析出するように改質されている。一方で、第1の改質工程における改質が行われていない改質部130は、第2の改質工程における改質が行われたものの、めっき皮膜140が析出する程度には改質されていない。したがって、樹脂製品110に対して無電解めっきを行うと、改質部120にはめっき皮膜140が析出するが、改質部130にめっき皮膜140は析出しない。このように、例えば樹脂製品110の全体を無電解めっき液に浸漬した場合であっても、所望の改質部120に選択的にめっき皮膜140が析出する。
(Plating process)
In the plating step (S230), as shown in FIG. 1D, electroless plating is performed on the resin product 110 whose surface has been modified in the first modification step and the second modification step. Specifically, the modified portion 120 irradiated with ultraviolet rays in the first modification step is modified so that the plating film 140 is deposited by the first modification step and the second modification step. . On the other hand, the modified portion 130 that has not been modified in the first reforming process has been reformed to such an extent that the plating film 140 is deposited, although the modification in the second reforming process has been performed. Not. Therefore, when electroless plating is performed on the resin product 110, the plating film 140 is deposited on the modified portion 120, but the plating film 140 is not deposited on the modified portion 130. Thus, for example, even when the entire resin product 110 is immersed in the electroless plating solution, the plating film 140 is selectively deposited on the desired modified portion 120.
 このように、一実施形態において、第1の改質工程及び第2の改質工程で改質された樹脂製品110に対してめっきを行うと、樹脂製品110の表面の一部分、例えば改質部120、にはめっき皮膜140が析出する。一方で、この一部分に隣接する領域、例えば改質部130、にはめっき皮膜140が析出しない。したがって、めっき皮膜140の形成後にフォトリソグラフィー及びエッチング等の方法でめっき皮膜140をパターニングすることは必須ではない。 Thus, in one embodiment, when plating is performed on the resin product 110 modified in the first modification step and the second modification step, a part of the surface of the resin product 110, for example, a modified portion. 120, a plating film 140 is deposited. On the other hand, the plating film 140 is not deposited in a region adjacent to this part, for example, the modified portion 130. Therefore, it is not essential to pattern the plating film 140 by a method such as photolithography and etching after the plating film 140 is formed.
 具体的な無電解めっき法については、特に限定されない。採用可能な無電解めっき法の例としては、ホルマリン系無電解めっき浴を用いた無電解めっき法、及び析出速度は遅いが取り扱いやすい次亜リン酸を還元剤として用いた無電解めっき法が挙げられる。無電解めっき法のさらなる具体例としては、無電解ニッケルめっき、無電解銅めっき、無電解銅ニッケルめっき、無電解酸化亜鉛めっき等があげられる。このように、無電解めっきにより形成されるめっき皮膜140は、金属皮膜でありうる。上述のように樹脂製品110を改質することにより、改質部120と析出しためっき皮膜140との密着性が向上する。 The specific electroless plating method is not particularly limited. Examples of electroless plating methods that can be used include an electroless plating method using a formalin-based electroless plating bath and an electroless plating method using hypophosphorous acid as a reducing agent, which is slow in deposition but easy to handle. It is done. Further specific examples of the electroless plating method include electroless nickel plating, electroless copper plating, electroless copper nickel plating, and electroless zinc oxide plating. Thus, the plating film 140 formed by electroless plating can be a metal film. By modifying the resin product 110 as described above, the adhesion between the modified portion 120 and the deposited plating film 140 is improved.
 一実施形態において、無電解めっきは以下の方法で行うことができる。
1.(アルカリ処理)樹脂製品110をアルカリ溶液に浸漬し、脱脂を行い、親水性を高める。アルカリ溶液の例としては、水酸化ナトリウム水溶液等が挙げられる。
2.(コンディショナ処理)樹脂製品110と触媒イオンとのバインダーを含有する溶液に樹脂製品110を浸漬する。バインダーの例としては、カチオンポリマー等が挙げられる。
3.(アクチベーター処理)樹脂製品110を触媒イオン入りの溶液に浸漬する。触媒イオンの例としては、塩酸酸性パラジウム錯体のようなパラジウム錯体等が挙げられる。
4.(アクセレレーター処理)還元剤を含有する溶液に樹脂製品110を浸漬し、触媒イオンを還元及び析出させる。還元剤の例としては、水素ガス、ジメチルアミンボラン及び水素化ホウ素ナトリウム等が挙げられる。
5.(無電解めっき処理)析出した触媒上にめっき皮膜140を析出させる。
In one embodiment, electroless plating can be performed by the following method.
1. (Alkali treatment) The resin product 110 is immersed in an alkali solution, degreased, and hydrophilicity is improved. Examples of the alkaline solution include an aqueous sodium hydroxide solution.
2. (Conditioner treatment) The resin product 110 is immersed in a solution containing a binder of the resin product 110 and catalyst ions. Examples of the binder include a cationic polymer.
3. (Activator treatment) The resin product 110 is immersed in a solution containing catalyst ions. Examples of the catalyst ion include a palladium complex such as an acidic palladium complex hydrochloride.
4). (Accelerator treatment) The resin product 110 is immersed in a solution containing a reducing agent to reduce and precipitate catalyst ions. Examples of the reducing agent include hydrogen gas, dimethylamine borane and sodium borohydride.
5. (Electroless plating treatment) A plating film 140 is deposited on the deposited catalyst.
 このような方法に従う無電解めっきは、例えばJCU社製Cu-Niめっき液セット「AISL」等の無電解めっき液セットを用いて行うことができる。 The electroless plating according to such a method can be performed using an electroless plating solution set such as Cu-Ni plating solution set “AISL” manufactured by JCU.
 別の実施形態においては、触媒イオンとして、改質部120に付着しやすい、少なくとも一部に正電荷を有するパラジウム錯体が用いられる。改質部120への付着性が向上するように、一実施形態においては、溶液中で正電荷を有しているパラジウム錯体イオンを含む溶液が用いられる。少なくとも一部に正電荷を有するパラジウム錯体の一例としては、アミン系の配位子が配位結合している錯体が挙げられる。また、少なくとも一部に正電荷を有するパラジウム錯体の別の例としてはパラジウムの塩基性アミノ酸錯体が挙げられる。 In another embodiment, a palladium complex that easily adheres to the reforming unit 120 and has a positive charge at least partially is used as the catalyst ion. In an embodiment, a solution containing a palladium complex ion having a positive charge in the solution is used so that adhesion to the reforming unit 120 is improved. An example of a palladium complex having a positive charge at least partially includes a complex in which an amine-based ligand is coordinated. Another example of a palladium complex having a positive charge at least in part is a basic amino acid complex of palladium.
 この場合、樹脂製品110に対してコンディショナ処理を行うことにより、樹脂製品110と触媒イオンとの親和性を高めることは必須ではない。パラジウムの塩基性アミノ酸錯体とは、パラジウムイオンと塩基性アミノ酸との錯体である。パラジウムイオンとしては、限定されるわけではないが、2価のパラジウムイオンがよく用いられる。塩基性アミノ酸は、天然アミノ酸であっても人工アミノ酸であってもよい。一実施形態において、アミノ酸はα-アミノ酸である。塩基性アミノ酸としては、側鎖にアミノ基又はグアニジル基等の塩基性置換基を有するアミノ酸が挙げられる。塩基性アミノ酸の例としては、リシン、アルギニン又はオルニチン等が挙げられる。 In this case, it is not essential to increase the affinity between the resin product 110 and the catalyst ions by performing a conditioner treatment on the resin product 110. The basic amino acid complex of palladium is a complex of palladium ion and basic amino acid. The palladium ion is not limited, but divalent palladium ions are often used. The basic amino acid may be a natural amino acid or an artificial amino acid. In one embodiment, the amino acid is an α-amino acid. Examples of basic amino acids include amino acids having a basic substituent such as an amino group or a guanidyl group in the side chain. Examples of basic amino acids include lysine, arginine, ornithine and the like.
 また、触媒イオンとして、少なくとも一部に正電荷を有するパラジウム錯体を用いることは、改質部120に選択的にめっき皮膜140が析出しやすい点で有利である。少なくとも一部に正電荷を有するパラジウム錯体イオンは、代表的な親水基である、水酸基、カルボニル基及びカルボキシル基のうち、カルボキシル基に特に選択的に吸着されやすいことが分かっている。すなわち、このような触媒を用いる場合、めっき皮膜140を設けない部分、例えば改質部130には、めっき皮膜140がより析出しにくい。一方で、改質工程で十分にカルボキシル基が形成されていないと、少なくとも一部に正電荷を有するパラジウム錯体イオンが表面に吸着されにくくなり、めっきの析出が不十分になることが考えられる。また、触媒イオンとして、少なくとも一部に正電荷を有するパラジウム錯体を用いることは、コンディショナ処理工程を省略して生産性を向上させることができる点で有利である。 Further, it is advantageous to use a palladium complex having a positive charge at least in part as the catalyst ion in that the plating film 140 is likely to be selectively deposited on the modified portion 120. It has been found that a palladium complex ion having a positive charge at least partially is particularly selectively adsorbed to a carboxyl group among hydroxyl groups, carbonyl groups and carboxyl groups, which are typical hydrophilic groups. That is, when such a catalyst is used, the plating film 140 is less likely to be deposited on a portion where the plating film 140 is not provided, for example, on the modified portion 130. On the other hand, if the carboxyl group is not sufficiently formed in the modification step, it is considered that palladium complex ions having a positive charge at least partially are not easily adsorbed on the surface, and the deposition of plating becomes insufficient. In addition, the use of a palladium complex having a positive charge at least in part as the catalyst ion is advantageous in that it can improve the productivity by omitting the conditioner treatment step.
 パラジウムの塩基性アミノ酸錯体の例としては、国際公開第2007/066460号に記載のものが挙げられる。具体的には、下式(I)に表されるものが挙げられる。
Figure JPOXMLDOC01-appb-C000001
Examples of the basic amino acid complex of palladium include those described in International Publication No. 2007/066460. Specific examples include those represented by the following formula (I).
Figure JPOXMLDOC01-appb-C000001
 上式(I)において、L及びLはそれぞれ独立に炭素数1以上10以下のアルキレン基を表し、R及びRはそれぞれ独立にアミノ基又はグアニジル基を表す。炭素数1以上10以下のアルキレン基としては、メチレン基、1,2-エタンジイル基、1,3-プロパンジイル基又はn-ブタン-1,4-ジイル基等の直鎖アルキレン基等が挙げられる。上式(I)において、2つのアミノ基はトランス位に配位しているが、2つのアミノ基がシス位に配位していてもよい。また、パラジウムの塩基性アミノ酸錯体は、シス体とトランス体との混合物であってもよい。 In the above formula (I), L 1 and L 2 each independently represent an alkylene group having 1 to 10 carbon atoms, and R 3 and R 4 each independently represent an amino group or a guanidyl group. Examples of the alkylene group having 1 to 10 carbon atoms include linear alkylene groups such as methylene group, 1,2-ethanediyl group, 1,3-propanediyl group, and n-butane-1,4-diyl group. . In the above formula (I), the two amino groups are coordinated at the trans position, but the two amino groups may be coordinated at the cis position. The basic amino acid complex of palladium may be a mixture of a cis isomer and a trans isomer.
 このようなパラジウムの塩基性アミノ酸錯体を用いる無電解めっきキットとしては、ELFSEED(JCU社製)等が挙げられる。 Examples of the electroless plating kit using such a basic amino acid complex of palladium include ELFSEED (manufactured by JCU).
 別の実施形態においては、高速無電解めっき法によりめっき皮膜140を形成しうる。高速無電解めっき法によれば、より厚いめっき膜を形成することができる。さらなる実施形態においては、無電解めっきにより形成されためっき皮膜140上に、さらに電解めっき法を用いてめっきを析出させる。この方法によれば、さらに厚いめっき皮膜140を形成することができる。電解めっきの具体的な方法は、特に限定されない。 In another embodiment, the plating film 140 can be formed by a high-speed electroless plating method. According to the high speed electroless plating method, a thicker plating film can be formed. In a further embodiment, plating is further deposited on the plating film 140 formed by electroless plating using an electrolytic plating method. According to this method, a thicker plating film 140 can be formed. The specific method of electroplating is not specifically limited.
 得られるめっき皮膜140の厚さについて、特段の制限はない。得られるめっき皮膜付樹脂製品100の用途に応じて、適切な厚さのめっき皮膜140が形成される。また、めっき皮膜140の材料についても、特段の制限はない。得られるめっき皮膜付樹脂製品100の用途に応じて、適切な材料が選択される。 There is no particular limitation on the thickness of the plating film 140 to be obtained. A plating film 140 having an appropriate thickness is formed according to the intended use of the resin product 100 with a plating film. Further, the material of the plating film 140 is not particularly limited. An appropriate material is selected according to the use of the obtained resin product 100 with a plating film.
 こうして得られためっき皮膜付樹脂製品100は、例えば配線板又は導電膜のような各種の用途に使用できる。特に、第1の改質工程及び第2の改質工程で紫外線ランプ又は紫外線LED等を用いる実施形態においては、改質の後においても樹脂製品110の表面は比較的平坦であるものと考えられる。したがって、こうして作製されためっき皮膜付樹脂製品100は、樹脂製品110とめっき皮膜140との界面が比較的平坦であることから、高周波特性に優れていることが期待される。 Thus, the resin product 100 with a plating film obtained in this way can be used for various uses, such as a wiring board or a electrically conductive film, for example. In particular, in an embodiment in which an ultraviolet lamp or an ultraviolet LED is used in the first modification step and the second modification step, the surface of the resin product 110 is considered to be relatively flat even after the modification. . Therefore, the resin product 100 with a plating film produced in this way is expected to be excellent in high-frequency characteristics since the interface between the resin product 110 and the plating film 140 is relatively flat.
[実施例1]
 樹脂製品110としては、シクロオレフィンポリマー材(日本ゼオン株式会社製,ゼオノアフィルムZF-16,膜厚100μm,表面粗さ1.01nm)を用いた。
[Example 1]
As the resin product 110, a cycloolefin polymer material (manufactured by Zeon Corporation, ZEONOR film ZF-16, film thickness 100 μm, surface roughness 1.01 nm) was used.
 まず、エキシマランプを用いて樹脂製品110の表面を改質した。エキシマランプとしては、Xe平面エキシマランプ(株式会社クォークテクノロジー製,QEF160,波長172nm)を用いた。具体的には、図3に示すように、大気中において、エキシマランプ310が有する平面状の照射面に、石英クロムマスク320を介して樹脂製品110を配置した。樹脂製品110は抑えガラス330により固定された。この状態で、エキシマランプ310から石英クロムマスク320を介して樹脂製品110に紫外線を10秒間照射した。石英クロムマスク320を介して測定したエキシマランプ310からの紫外線の強度は30mW/cmであった。また、紫外線を10秒照射する前後での樹脂製品110の表面温度の変化を3回測定したところ、平均上昇温度は0.5℃であった。 First, the surface of the resin product 110 was modified using an excimer lamp. As the excimer lamp, a Xe 2 plane excimer lamp (manufactured by Quark Technology Co., Ltd., QEF160, wavelength 172 nm) was used. Specifically, as shown in FIG. 3, the resin product 110 is disposed on the planar irradiation surface of the excimer lamp 310 through the quartz chrome mask 320 in the atmosphere. The resin product 110 was fixed by the holding glass 330. In this state, the resin product 110 was irradiated with ultraviolet rays from the excimer lamp 310 through the quartz chrome mask 320 for 10 seconds. The intensity of the ultraviolet rays from the excimer lamp 310 measured through the quartz chrome mask 320 was 30 mW / cm 2 . Moreover, when the change of the surface temperature of the resin product 110 before and after irradiating with ultraviolet rays for 10 seconds was measured three times, the average rise temperature was 0.5 ° C.
 図4に示すように、石英クロムマスク320は、クロム膜が形成された紫外線不透過部321と、クロム膜が形成されていない紫外線透過部322とを有していた。したがって、紫外線透過部322の形状に従って樹脂製品110の表面の一部が改質され、紫外線透過部322の形状に対応する改質部120が生じた。また、石英クロムマスク320は複数の帯状の紫外線透過部322を有しており、それぞれの紫外線透過部は50μm~100μm程度の幅を有していた。 As shown in FIG. 4, the quartz chrome mask 320 had an ultraviolet opaque part 321 formed with a chromium film and an ultraviolet transparent part 322 where a chromium film was not formed. Therefore, a part of the surface of the resin product 110 was modified according to the shape of the ultraviolet transmitting part 322, and the modified part 120 corresponding to the shape of the ultraviolet transmitting part 322 was generated. Further, the quartz chrome mask 320 has a plurality of band-like ultraviolet transmitting portions 322, and each ultraviolet transmitting portion has a width of about 50 μm to 100 μm.
 次に、低圧水銀ランプを用いた酸化処理により樹脂製品110の表面をさらに改質した。具体的には、大気中で、低圧水銀ランプ(サムコ株式会社製,UV-300,ピーク波長185nm及び254nm)からの紫外線を、改質部120が形成された樹脂製品110の表面全体に対して2分30秒間照射した。この際、低圧水銀ランプからの紫外線の照射範囲を制限するためのマスクは使用されなかった。照射距離3.5cmにおける低圧水銀ランプの照度は、5.40mW/cm(254nm)及び1.35mW/cm(185nm)であった。こうして、改質部120はさらに改質されるとともに、エキシマランプからの紫外線が照射されていない部分にも改質部130が形成された。 Next, the surface of the resin product 110 was further modified by an oxidation treatment using a low-pressure mercury lamp. Specifically, ultraviolet rays from a low-pressure mercury lamp (manufactured by Samco Corporation, UV-300, peak wavelengths of 185 nm and 254 nm) are applied to the entire surface of the resin product 110 on which the modified portion 120 is formed. Irradiated for 2 minutes 30 seconds. At this time, a mask for limiting the irradiation range of ultraviolet rays from the low-pressure mercury lamp was not used. The illuminance of the low-pressure mercury lamp at an irradiation distance of 3.5 cm was 5.40 mW / cm 2 (254 nm) and 1.35 mW / cm 2 (185 nm). Thus, the reforming part 120 was further reformed, and the reforming part 130 was also formed in the part not irradiated with the ultraviolet rays from the excimer lamp.
(めっき工程)
 次に、改質後の樹脂製品110に対して無電解めっきを行った。無電解めっき処理は、アルカリ処理工程と、アクチベーター処理工程と、アクセレレーター処理工程と、無電解めっき工程とを含んでいた。
(Plating process)
Next, electroless plating was performed on the modified resin product 110. The electroless plating treatment included an alkali treatment step, an activator treatment step, an accelerator treatment step, and an electroless plating step.
 アルカリ処理工程においては、アルカリ溶液で樹脂製品110を処理した。具体的には、JCU社製めっき液セット「AISL」に含まれるEC-BとAISL-ATMとを用いて処理液を調製し、50℃に加熱して樹脂製品110を2分間浸漬した。その後、樹脂製品110を水洗した。 In the alkali treatment step, the resin product 110 was treated with an alkali solution. Specifically, a treatment solution was prepared using EC-B and AISL-ATM contained in a plating solution set “AISL” manufactured by JCU, heated to 50 ° C., and the resin product 110 was immersed for 2 minutes. Thereafter, the resin product 110 was washed with water.
 アクチベーター処理工程においては、触媒イオン溶液で樹脂製品110を処理することにより、樹脂製品110の表面に触媒イオンを付与した。具体的には、JCU社製めっき液セット「ELFSEED」に含まれるアクチベーター液ES-300を用いて処理液を調製し、50℃に加熱して樹脂製品110を5分間浸漬した。その後、樹脂製品110を水洗した。 In the activator treatment step, the catalyst product was treated with a catalyst ion solution to give catalyst ions to the surface of the resin product 110. Specifically, a treatment solution was prepared using an activator solution ES-300 included in a plating solution set “ELFSEED” manufactured by JCU, and the resin product 110 was immersed for 5 minutes by heating to 50 ° C. Thereafter, the resin product 110 was washed with water.
 アクセレレーター処理工程においては、還元剤で樹脂製品110を処理することにより、樹脂製品110の表面に付与された触媒イオンを還元した。こうして、樹脂製品110の表面に触媒が析出した。具体的には、JCU社製めっき液セット「ELFSEED」に含まれるアクセレレーター液ES-400を用いて処理液を調製し、35℃に加熱して樹脂製品110を4分間浸漬した。その後、樹脂製品110を水洗した。 In the accelerator treatment step, the catalyst product applied to the surface of the resin product 110 was reduced by treating the resin product 110 with a reducing agent. Thus, the catalyst was deposited on the surface of the resin product 110. Specifically, a treatment solution was prepared using an accelerator solution ES-400 included in a plating solution set “ELFSEED” manufactured by JCU, heated to 35 ° C., and immersed in the resin product 110 for 4 minutes. Thereafter, the resin product 110 was washed with water.
 無電解めっき工程においては、無電解銅ニッケルめっき液に樹脂製品110を浸漬することにより、樹脂製品110にめっき皮膜140を析出させた。具体的には、JCU社製めっき液セット「AISL」を用いて無電解銅ニッケルめっき液を調製し、60℃に加熱して樹脂製品110を5分間浸漬した。その後、樹脂製品110を水洗した。この処理によりめっき皮膜140が樹脂製品110上に形成されているめっき皮膜付樹脂製品100が得られた。 In the electroless plating step, the plating film 140 was deposited on the resin product 110 by immersing the resin product 110 in an electroless copper nickel plating solution. Specifically, an electroless copper nickel plating solution was prepared using a plating solution set “AISL” manufactured by JCU, and the resin product 110 was immersed for 5 minutes by heating to 60 ° C. Thereafter, the resin product 110 was washed with water. By this treatment, the resin product 100 with a plating film in which the plating film 140 is formed on the resin product 110 was obtained.
 得られた樹脂製品110を観察したところ、エキシマランプからの紫外線が照射された改質部120に、めっき皮膜140が均一に析出していた。すなわち、幅50μm~100μm程度の帯状のめっき皮膜140が樹脂製品110上に形成されていた。一方で、エキシマランプからの紫外線が照射されていない改質部130には、めっき皮膜140は析出しなかった。 When the obtained resin product 110 was observed, the plating film 140 was uniformly deposited on the modified portion 120 irradiated with ultraviolet rays from the excimer lamp. That is, a strip-shaped plating film 140 having a width of about 50 μm to 100 μm was formed on the resin product 110. On the other hand, the plating film 140 was not deposited on the modified portion 130 that was not irradiated with ultraviolet rays from the excimer lamp.
[実施例2]
 エキシマランプからの紫外線の照射時間を15秒、20秒、25秒、30秒、35秒、及び40秒にしたことを除き、実施例1と同様にめっき皮膜付樹脂製品100を作製した。それぞれの場合において、エキシマランプからの紫外線が照射された改質部120に、めっき皮膜140が均一に析出していた。一方で、エキシマランプからの紫外線が照射されていない改質部130には、めっき皮膜140は析出しなかった。
[Example 2]
A resin product 100 with a plating film was produced in the same manner as in Example 1 except that the irradiation time of the ultraviolet rays from the excimer lamp was 15 seconds, 20 seconds, 25 seconds, 30 seconds, 35 seconds, and 40 seconds. In each case, the plating film 140 was uniformly deposited on the modified portion 120 irradiated with the ultraviolet rays from the excimer lamp. On the other hand, the plating film 140 was not deposited on the modified portion 130 that was not irradiated with ultraviolet rays from the excimer lamp.
[実施例3]
 エキシマランプからの紫外線の照射時間を5秒にしたことを除き、実施例1と同様にめっき皮膜付樹脂製品100を作製した。エキシマランプからの紫外線が照射された改質部120にめっき皮膜140は析出していたが、析出量の少ない箇所も見受けられた。一方で、エキシマランプからの紫外線が照射されていない改質部130には、めっき皮膜140は析出しなかった。
[Example 3]
A resin product 100 with a plating film was produced in the same manner as in Example 1 except that the irradiation time of ultraviolet rays from the excimer lamp was set to 5 seconds. Although the plating film 140 was deposited on the modified portion 120 irradiated with ultraviolet rays from the excimer lamp, a portion with a small amount of deposition was also observed. On the other hand, the plating film 140 was not deposited on the modified portion 130 that was not irradiated with ultraviolet rays from the excimer lamp.
[実施例4]
 低圧水銀ランプからの紫外線を照射しなかったことを除き、実施例1と同様にめっき皮膜付樹脂製品100を作製した。エキシマランプからの紫外線が照射された改質部120にめっき皮膜140はほとんど析出していなかった。
[Example 4]
A resin product 100 with a plating film was produced in the same manner as in Example 1 except that ultraviolet rays from a low-pressure mercury lamp were not irradiated. The plating film 140 was hardly deposited on the modified portion 120 irradiated with the ultraviolet rays from the excimer lamp.
[実施例5]
 エキシマランプを使用せず、低圧水銀ランプからの紫外線のみを使用して改質を行ったことを除き、実施例1と同様にめっき皮膜付樹脂製品100を作製した。このとき、めっき皮膜140を析出させるためには、低圧水銀ランプからの紫外線を10分間程度照射することが必要であった。
[Example 5]
A resin product 100 with a plating film was produced in the same manner as in Example 1 except that the excimer lamp was not used and only the ultraviolet rays from the low-pressure mercury lamp were used for modification. At this time, in order to deposit the plating film 140, it was necessary to irradiate ultraviolet rays from a low-pressure mercury lamp for about 10 minutes.
 本発明は上記実施の形態に制限されるものではなく、本発明の精神及び範囲から離脱することなく、様々な変更及び変形が可能である。従って、本発明の範囲を公にするために、以下の請求項を添付する。 The present invention is not limited to the above embodiment, and various changes and modifications can be made without departing from the spirit and scope of the present invention. Therefore, in order to make the scope of the present invention public, the following claims are attached.
100 めっき皮膜付樹脂製品
110 樹脂製品
140 めっき皮膜
S210 第1の改質工程
S220 第2の改質工程
S230 めっき工程
310 エキシマランプ
DESCRIPTION OF SYMBOLS 100 Resin product with plating film 110 Resin product 140 Plating film S210 1st modification process S220 2nd modification process S230 Plating process 310 Excimer lamp

Claims (14)

  1.  めっきにより表面にめっき皮膜が析出するように改質された樹脂製品の製造方法であって、
     樹脂製品に対して主波長が184nm未満である紫外線を照射することで表面を改質する第1の改質工程と、
     前記紫外線が照射された前記樹脂製品に対してさらに改質処理を行うことで表面を改質する第2の改質工程と、
     を有することを特徴とする、樹脂製品の製造方法。
    A method for producing a resin product modified so that a plating film is deposited on the surface by plating,
    A first modification step of modifying the surface by irradiating the resin product with ultraviolet light having a dominant wavelength of less than 184 nm;
    A second modification step of modifying the surface by further modifying the resin product irradiated with the ultraviolet rays;
    A method for producing a resin product, comprising:
  2.  前記第1の改質工程において、エキシマランプを用いて紫外線を照射することを特徴とする、請求項1に記載の樹脂製品の製造方法。 The method for producing a resin product according to claim 1, wherein in the first reforming step, ultraviolet rays are irradiated using an excimer lamp.
  3.  前記第2の改質工程において、主波長が184nm以上である紫外線を照射することで前記樹脂製品の表面を改質することを特徴とする、請求項1又は2に記載の樹脂製品の製造方法。 3. The method for producing a resin product according to claim 1, wherein in the second modification step, the surface of the resin product is modified by irradiating an ultraviolet ray having a dominant wavelength of 184 nm or more. 4. .
  4.  前記第2の改質工程において、低圧水銀ランプを用いて紫外線を照射することで前記樹脂製品の表面を改質することを特徴とする、請求項1又は2に記載の樹脂製品の製造方法。 The method for producing a resin product according to claim 1 or 2, wherein, in the second modification step, the surface of the resin product is modified by irradiating with ultraviolet rays using a low-pressure mercury lamp.
  5.  前記第1の改質工程における紫外線の照射時間は、前記第2の改質工程における紫外線の照射時間よりも短いことを特徴とする、請求項3又は4に記載の樹脂製品の製造方法。 The method for producing a resin product according to claim 3 or 4, wherein the ultraviolet irradiation time in the first modification step is shorter than the ultraviolet irradiation time in the second modification step.
  6.  前記第1の改質工程及び前記第2の改質工程は、酸素とオゾンとの少なくとも一方を含む雰囲気下で行われることを特徴とする、請求項1乃至5の何れか1項に記載の樹脂製品の製造方法。 6. The method according to claim 1, wherein the first reforming step and the second reforming step are performed in an atmosphere including at least one of oxygen and ozone. Manufacturing method of resin products.
  7.  前記第1の改質工程において、前記樹脂製品の温度上昇が10℃以下となるように紫外線を照射することを特徴とする、請求項1乃至6の何れか1項に記載の樹脂製品の製造方法。 The resin product production according to any one of claims 1 to 6, wherein in the first reforming step, the resin product is irradiated with ultraviolet rays so that an increase in temperature of the resin product is 10 ° C or less. Method.
  8.  前記第1の改質工程においては、前記樹脂製品の表面の一部分に紫外線を照射し、
     前記第2の改質工程においては、前記樹脂製品の表面の一部分を包含し前記一部分よりも広い領域に対する改質処理を行う
     ことを特徴とする、請求項1乃至7の何れか1項に記載の樹脂製品の製造方法。
    In the first modification step, a part of the surface of the resin product is irradiated with ultraviolet rays,
    8. The modification process according to claim 1, wherein in the second modification step, a modification process is performed on a region including a part of the surface of the resin product and wider than the part. Of resin products.
  9.  前記樹脂製品に対してめっきを行った際に、前記樹脂製品の表面の一部分にはめっき皮膜が析出し、前記一部分に隣接する領域にはめっき皮膜が析出しないことを特徴とする、請求項1乃至8の何れか1項に記載の樹脂製品の製造方法。 The plating film is deposited on a part of the surface of the resin product when the resin product is plated, and the plating film is not deposited on a region adjacent to the part. The manufacturing method of the resin product of any one of thru | or 8.
  10.  請求項1乃至9の何れか1項に記載の樹脂製品の製造方法に従って改質された樹脂製品を製造する改質工程と、
     前記改質工程において製造された樹脂製品に無電解めっきを行うめっき工程と、
     を有することを特徴とする、めっき皮膜付樹脂製品の製造方法。
    A modification step for producing a resin product modified according to the method for producing a resin product according to any one of claims 1 to 9,
    A plating step of performing electroless plating on the resin product produced in the modification step;
    The manufacturing method of the resin product with a plating film characterized by having.
  11.  前記めっき工程において、無電解めっき触媒として少なくとも一部に正電荷を有するパラジウム錯体を用いることを特徴とする、請求項10に記載のめっき皮膜付樹脂製品の製造方法。 The method for producing a resin product with a plating film according to claim 10, wherein in the plating step, a palladium complex having a positive charge at least partially is used as an electroless plating catalyst.
  12.  前記めっき工程において、無電解めっき触媒としてパラジウムの塩基性アミノ酸錯体を用いることを特徴とする、請求項10に記載のめっき皮膜付樹脂製品の製造方法。 The method for producing a resin product with a plating film according to claim 10, wherein a basic amino acid complex of palladium is used as an electroless plating catalyst in the plating step.
  13.  請求項10乃至12の何れか1項に記載の方法により製造されためっき皮膜付樹脂製品。 A resin product with a plating film produced by the method according to any one of claims 10 to 12.
  14.  主波長が184nm未満である紫外線の照射と、さらなる改質と、により形成された改質部を表面に備える樹脂製品と、
     前記改質部上に設けられためっき皮膜と、
     を備えることを特徴とするめっき皮膜付樹脂製品。
    A resin product provided with a modified portion formed on the surface by irradiation with ultraviolet light having a dominant wavelength of less than 184 nm and further modification;
    A plating film provided on the modified portion;
    A resin product with a plating film, comprising:
PCT/JP2014/006113 2014-12-08 2014-12-08 Resin product with plating film, and method for producing resin product and method for producing resin product with plating film WO2016092584A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015514257A JP5856354B1 (en) 2014-12-08 2014-12-08 Resin product with plating film, resin product, and method for producing resin product with plating film
PCT/JP2014/006113 WO2016092584A1 (en) 2014-12-08 2014-12-08 Resin product with plating film, and method for producing resin product and method for producing resin product with plating film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/006113 WO2016092584A1 (en) 2014-12-08 2014-12-08 Resin product with plating film, and method for producing resin product and method for producing resin product with plating film

Publications (1)

Publication Number Publication Date
WO2016092584A1 true WO2016092584A1 (en) 2016-06-16

Family

ID=55269232

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/006113 WO2016092584A1 (en) 2014-12-08 2014-12-08 Resin product with plating film, and method for producing resin product and method for producing resin product with plating film

Country Status (2)

Country Link
JP (1) JP5856354B1 (en)
WO (1) WO2016092584A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110517987A (en) * 2018-05-21 2019-11-29 株式会社迪思科 The processing method of chip

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017179530A (en) * 2016-03-31 2017-10-05 旭化成株式会社 Plated product and method for manufacturing the same
JP6667809B2 (en) * 2016-05-30 2020-03-18 株式会社東芝 Semiconductor device, inverter circuit, drive device, vehicle, and elevator

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03128947A (en) * 1989-10-14 1991-05-31 I S I:Kk Surface modification of material
JPH08253869A (en) * 1995-03-14 1996-10-01 Sharp Corp Method for electroless-plating resin
JP2005113236A (en) * 2003-10-09 2005-04-28 Toyota Motor Corp Plating article and plating coated member and method for manufacturing the same
JP2006057166A (en) * 2004-08-23 2006-03-02 Toyota Motor Corp Method for forming wiring by plating
WO2007066460A1 (en) * 2005-12-06 2007-06-14 Ebara-Udylite Co., Ltd. Palladium complex and catalyst-imparting treatment solution using the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4769934B2 (en) * 2005-03-30 2011-09-07 国立大学法人 宮崎大学 Plastic surface modification method, plastic surface plating method, and plastic
JP4918123B2 (en) * 2009-09-17 2012-04-18 トヨタ自動車株式会社 Method for producing electroless plating material

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03128947A (en) * 1989-10-14 1991-05-31 I S I:Kk Surface modification of material
JPH08253869A (en) * 1995-03-14 1996-10-01 Sharp Corp Method for electroless-plating resin
JP2005113236A (en) * 2003-10-09 2005-04-28 Toyota Motor Corp Plating article and plating coated member and method for manufacturing the same
JP2006057166A (en) * 2004-08-23 2006-03-02 Toyota Motor Corp Method for forming wiring by plating
WO2007066460A1 (en) * 2005-12-06 2007-06-14 Ebara-Udylite Co., Ltd. Palladium complex and catalyst-imparting treatment solution using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110517987A (en) * 2018-05-21 2019-11-29 株式会社迪思科 The processing method of chip
CN110517987B (en) * 2018-05-21 2024-03-15 株式会社迪思科 Wafer processing method

Also Published As

Publication number Publication date
JP5856354B1 (en) 2016-02-09
JPWO2016092584A1 (en) 2017-04-27

Similar Documents

Publication Publication Date Title
JP5731215B2 (en) Manufacturing method of molded circuit components
JP5022501B2 (en) Manufacturing method of molded circuit components
TWI415680B (en) Palladium complex and the use of the catalyst to impart treatment liquid
JP5856354B1 (en) Resin product with plating film, resin product, and method for producing resin product with plating film
JP6059198B2 (en) Resin product with plating film, method for producing the same, and encoder
JP2016035097A (en) Conductive film, production method thereof, resin product with plating film, and production method thereof
US20160177452A1 (en) Modification method, method for manufacturing resin article having plating layer, and resin article having plating layer
JP5558549B2 (en) Manufacturing method of plating film
JP3999696B2 (en) Electroless plating method and plated parts
US20170159182A1 (en) Resin article with plating film and method for manufacturing resin article
US20160186324A1 (en) Resin article and method of manufacturing resin article
JP2016014160A (en) Resin product with metallic film and method for manufacturing the same
JP2016121387A (en) Production method of resin product with plating film
JP5997213B2 (en) Plating method
JP4769934B2 (en) Plastic surface modification method, plastic surface plating method, and plastic
JP2023054019A (en) Method for manufacturing plated component, and die used for molding of base material
JP2016121375A (en) Plating film-attached resin product, and production method thereof
JP6158270B2 (en) Resin product with plating film and manufacturing method thereof
WO2012157135A1 (en) Method for manufacturing molded circuit board
JP6130331B2 (en) Manufacturing method of resin product with metal film
JP2018145465A (en) Method for manufacturing resin product with plating film and resin product, and resin product with plating film
CN108463576B (en) Method of forming circuit on substrate
US20160186325A1 (en) Resin article having plating layer and manufacturing method thereof, and conductive film
JP2018168407A (en) Electroless plating solution and method for producing the same, and resin product with copper nickel plating film and method for manufacturing the same
JP5615881B2 (en) Electroless plating method

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015514257

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14907934

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14907934

Country of ref document: EP

Kind code of ref document: A1