WO2016092176A1 - Mélange adsorbant à capacité thermique améliorée - Google Patents

Mélange adsorbant à capacité thermique améliorée Download PDF

Info

Publication number
WO2016092176A1
WO2016092176A1 PCT/FR2015/053210 FR2015053210W WO2016092176A1 WO 2016092176 A1 WO2016092176 A1 WO 2016092176A1 FR 2015053210 W FR2015053210 W FR 2015053210W WO 2016092176 A1 WO2016092176 A1 WO 2016092176A1
Authority
WO
WIPO (PCT)
Prior art keywords
adsorbent
thermal
principle
microparticles
psa
Prior art date
Application number
PCT/FR2015/053210
Other languages
English (en)
Inventor
Patrick Le Bot
Christian Monereau
Pluton Pullumbi
Guillaume Rodrigues
Original Assignee
L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude filed Critical L'air Liquide, Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude
Priority to CN201580065986.3A priority Critical patent/CN106999908A/zh
Priority to US15/534,908 priority patent/US20180264437A1/en
Priority to EP15808735.3A priority patent/EP3229954A1/fr
Publication of WO2016092176A1 publication Critical patent/WO2016092176A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28002Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their physical properties
    • B01J20/28004Sorbent size or size distribution, e.g. particle size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/0407Constructional details of adsorbing systems
    • B01D53/0423Beds in columns
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/02Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography
    • B01D53/04Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by adsorption, e.g. preparative gas chromatography with stationary adsorbents
    • B01D53/047Pressure swing adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/041Oxides or hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • B01J20/08Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04 comprising aluminium oxide or hydroxide; comprising bauxite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/103Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate comprising silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/18Synthetic zeolitic molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/18Synthetic zeolitic molecular sieves
    • B01J20/186Chemical treatments in view of modifying the properties of the sieve, e.g. increasing the stability or the activity, also decreasing the activity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/20Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising free carbon; comprising carbon obtained by carbonising processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/223Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material containing metals, e.g. organo-metallic compounds, coordination complexes
    • B01J20/226Coordination polymers, e.g. metal-organic frameworks [MOF], zeolitic imidazolate frameworks [ZIF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28023Fibres or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/2803Sorbents comprising a binder, e.g. for forming aggregated, agglomerated or granulated products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28042Shaped bodies; Monolithic structures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/32Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating
    • B01J20/3231Impregnating or coating ; Solid sorbent compositions obtained from processes involving impregnating or coating characterised by the coating or impregnating layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/102Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/104Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/106Silica or silicates
    • B01D2253/108Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/112Metals or metal compounds not provided for in B01D2253/104 or B01D2253/106
    • B01D2253/1124Metal oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/20Organic adsorbents
    • B01D2253/202Polymeric adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/20Organic adsorbents
    • B01D2253/204Metal organic frameworks (MOF's)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/25Coated, impregnated or composite adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/30Physical properties of adsorbents
    • B01D2253/302Dimensions
    • B01D2253/304Linear dimensions, e.g. particle shape, diameter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/30Physical properties of adsorbents
    • B01D2253/34Specific shapes
    • B01D2253/342Monoliths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/42Materials comprising a mixture of inorganic materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Definitions

  • the invention relates to a composite adsorbent mixture intended essentially for the separation or purification of gases by PSA process, its manufacturing process, the adsorbents obtained after forming said mixture, the adsorbers using such adsorbents and the adsorption units. comprising these adsorbers.
  • the invention relates more particularly to a means of reducing the thermal effects experienced by a thermocyclic short-time phase adsorption process, typically less than 30 seconds so as to improve its performance.
  • Thermocyclic adsorption process is any cyclic process in which certain stages are exothermic, that is to say accompanied by a release of heat, while some other stages are endothermic, that is to say with ie with heat consumption.
  • PSA process designates, except otherwise stipulated, any pressure-swing adsorption gas separation process, implementing a cyclic variation of the pressure between a high pressure, so-called adsorption pressure, and a low pressure, called regeneration pressure. Therefore, the generic name PSA method is used interchangeably to designate all the cyclic processes mentioned above, the methods of which are specified below the respective operating conditions:
  • the VPSA or MPSA processes in which the adsorption is carried out at a high pressure substantially greater than atmospheric pressure, generally between 1.6 and 8 bara, preferably between 2 and 6 bara, and the low pressure is below the pressure atmospheric, typically between 30 and 800 mbara, preferably between 100 and 600 mbara.
  • the PSA processes in which the adsorption is carried out at a high pressure clearly above atmospheric pressure, typically between 1.6 and 50 bara, preferably between 2 and 35 bara, and the low pressure is greater than or substantially equal to the atmospheric pressure, therefore between 1 and 9 bara, preferably between 1.2 and 2.5 bara.
  • a PSA process makes it possible to separate one or more gas molecules from a gaseous mixture containing them, by exploiting the difference in affinity of an adsorbent (or, if appropriate, of several adsorbents) towards these different molecules. gas.
  • the affinity of an adsorbent for a gaseous molecule depends on the structure and composition of the adsorbent, as well as the properties of the molecule, including its size, electronic structure and multipolar moments.
  • An adsorbent may be, for example, a zeolite, an activated carbon, an activated alumina, a silica gel, a resin, a carbon-based or non-carbon molecular sieve, a metallo-organic structure, an alkali or alkaline oxide or hydroxide or hydroxides. earth, or a porous structure containing a substance capable of reacting reversibly with one or more gas molecules, such as amines, physical solvents, metal complexing agents, metal oxides or hydroxides for example.
  • phase time makes it possible to maintain the performances while reducing the quantity of adsorbent to be put into play as soon as the kinetics of mass is sufficient.
  • the adsorbent used is generally in the form of particles filled with an adsorber. These particles can be in the form of granules, rods, balls, crushed. The characteristic dimensions of these particles generally range from 0.5 mm to 5 mm.
  • the structured adsorbents have (in comparison with granulated adsorbents) the peculiarity of allowing very good kinetics and very low pressure losses without having a known limit of attrition. ..
  • parallel passage contactors is meant a subgroup of structured adsorbents in which the fluid passes through channels whose walls contain adsorbent, which channels in this case are essentially free of obstacles and allow the fluid to flow from an input to an output of the contactor. These channels can be rectilinear connecting directly the input to the output of the contactor or have some changes of direction.
  • the fluid is in contact with at least one adsorbent present at said walls.
  • the adsorbent is generally deposited on a sheet-like support. These sheets can be folded, rolled, stacked to create regular passages for gas.
  • Adsorbent fibers installed for example in parallel may also constitute a contactor.
  • the thermal effects result from the adsorption enthalpy or the reaction enthalpy and generally lead to the propagation, at each cycle, of a heat wave at the adsorption limiting adsorption. adsorption capacities and a desorption cold wave limiting desorption.
  • a particular case covered in the context of the present patent is the storage / removal of gas in a reactor or adsorber containing at least partly one or more adsorbents.
  • This is also a thermo-cyclic process using an adsorbent material with heat release during storage (pressure increase) and release of cold during destocking (pressure reduction).
  • at least one of the storage steps or destocking is done quickly and leads to a temperature variation (heating or cooling) decreasing the useful capacity of the storage.
  • a solution that makes it possible to reduce the amplitude of the thermal beats, or even to eliminate them almost completely consists in adding to the adsorbent bed a phase change material (PCM), as described by document US Pat. A-4, 971,605 under the name of TARM (Thermal Absorption / Release Material).
  • PCM phase change material
  • TARM Thermal Absorption / Release Material
  • the hydrocarbon contained in the ball absorbs heat and stores it.
  • the hydrocarbon contained in the ball restores latent heat stored by changing phase, liquid to solid.
  • the temperature remains approximately constant (according to the composition of the wax) and allows the temperature to be regulated at levels well determined by the nature of the hydrocarbon (or hydrocarbons when it comes to mixture) and in particular by the length of the chain and the number of carbon atoms.
  • phase change material For reasons of heat transfer through the phase change material itself, it should generally be in the form of small particles, generally less than 100 microns. Subsequently, we speak of micro particle or micro capsule to designate this basic particle.
  • micro encapsulated MCPs can not be introduced as such into an adsorbent bed because it would be difficult to control the distribution. In addition, they would be driven by the flow of gas flowing in the adsorber.
  • adsorbents can not be integrated directly into the adsorbent because it is known that the vast majority of adsorbents must be brought to high temperature before use in industrial processes to achieve the required performance in terms of strength mechanical and / or adsorption. In this last In this case, it is the step known under the name of activation which consists inter alia in removing from the adsorbent the water molecules which preferentially occupy the most active sites and prevent or limit the adsorption of the other constituents. .
  • the required temperature level is generally above 200 ° C, often in the range of 300 to 450 ° C. These temperature levels are not compatible with the mechanical strength, or even the integrity of the MCP.
  • a candidate could be an activated carbon shaped with a low temperature binder, that is to say less than 150 ° C and preferably around 100 ° C.
  • Activation under high vacuum (less than 1 mbar) and / or by scanning with an ultra-dry gas (water content less than 1 ppm, preferably less than 50 ppb mol) at a temperature of less than or equal to 100 ° C. can activate a majority of adsorbent but at a high cost (energy, ultra-dry gas consumption, duration of activation ).
  • the solution adopted industrially in the case of MCP is therefore to make apart agglomerates of MCP whose size is of the order of magnitude of the adsorbent particles and to use them in a mixture with the latter, making mixed beds adsorbent / MCP in the required ratio.
  • the advantages of this solution are that the standard commercial adsorbents are used, which can very significantly increase the heat capacity of the bed making the process almost isothermal.
  • the disadvantages are the difficulty of ensuring the stability in composition of the agglomerate mixture of MCP / adsorbent particles over time (filling, operation), the not very fast kinetics of the heat transfer with a scale of length characteristic of the order of size of the particle size and the non-adaptation of this system when one seeks only a limited increase in heat capacity.
  • MCP / Adsorbent ratios around one percent, there will be only one MCP particle surrounded by a large number of adsorbent particles and the effects will be localized without being able to produce a real change in the overall conditions of the thermal operation. .
  • mixed adsorbent bed / particle of agglomerated MCP will be effective when one seeks an almost isothermal operation with kinetics thermal not too high.
  • a solution of the present invention is a composite adsorbent mixture of at least one adsorbent active ingredient in the form of microparticles and a non-adsorbent thermal principle in the form of microparticles, characterized in that the average characteristic dimension Di of the microparticles of the thermal principle is lower than to the average characteristic dimension Da of the microparticles of the active principle.
  • Microparticles of the thermal principle means particles of any shape with a characteristic dimension of at least an order of magnitude less than the size of the adsorbent material constituted by all the microparticles (for example a ball, an adsorbent layer). ). According to one characteristic of the invention, the characteristic dimension of these microparticles will be less than about 100 microns, preferentially less than or equal to 25 microns and generally greater than 0.1 micron, preferably greater than or equal to 0.5 micron.
  • characteristic dimension is meant, for isometric micro particles, that is to say having no clearly predominant dimension in a particular direction and therefore of approximately spherical or cubic shape, the common dimension that can be obtained by sieving, visual observation or image processing.
  • characteristic dimension will then be the thickness. This dimension is obtained by visual analysis or image processing.
  • the characteristic dimension will be identically the diameter for balls, more generally the common dimension for isometric shapes, the diameter for rods or fibers, the thickness of the adsorbent layer when deposited on a support, the half thickness in the case of an adsorbent wall in contact with the fluid by its two sides ...
  • This dimension is not exactly the same of a particle - or even from one system - to another but has a certain dispersion.
  • the value retained here is the average value such as can be obtained for example via an image processing software or a series of measurements ...
  • the equivalent or average diameter Di of a population of balls is the diameter of identical balls which for the same bed volume would give the same total area.
  • a particle of the adsorbent material according to the invention contains several hundred microparticles (active principle and thermal principle) and generally several thousand. In the case of a deposit, there will usually be more than ten micro particles in the thickness of the layer.
  • the adsorbent mixture according to the invention may have one or more of the following characteristics:
  • said melan e comprises a volume fraction X of thermal principle and a fraction (1 -
  • the microparticles of the thermal principle are greater in number than the microparticles of the active principle.
  • the microparticles of the thermal principle have a mean characteristic dimension of between 0.1 and 100 microns, preferably between 0.5 and 25 microns.
  • the constituent forming the thermal principle has an internal porosity of less than 20% by volume, preferably less than 10%, more preferably less than 1%.
  • the thermal principle has a thermal capacity greater than 1200 KJ / m / K, preferably greater than 1500 KJ / m / K and still more preferably 2000 KJ / m / K.
  • the volume ratio of the thermal principle to the active ingredient can range from 1/3 to 1/30, preferably from 1/5 to 1/9.
  • the thermal principle represents 5% to 90% of the adsorbent mixture, preferably 15 to 50%.
  • the adsorbent active principle is chosen from the group formed by zeolites, activated carbons, activated aluminas, silica gels, resins, carbon-based or non-carbon molecular sieves, metallo-organic structures, metal oxides or hydroxides alkali or alkaline earth, the porous structures containing a substance capable of reacting reversibly with one or more gas molecules, such as amines, physical solvents, metal complexing agents, oxides or metal hydroxides.
  • the thermal principle is taken from the group formed by metals or metal compounds, in particular metal oxides, glass, rocks, porcelains or ceramics.
  • the two types of microparticles will generally be agglomerated by a binder as is usual with standard adsorbents.
  • This binder can represent about 5 to 25% of the volume of the particle, the current trend being to use high performance binders in small amounts.
  • This binder is not taken into account in the volume ratios of active principle and thermal principle for the sake of simplification.
  • the essential point is to obtain a heat transfer between the adsorbent principle and the heat sink (inert, MCP), whatever it may be, fast enough not to delay the transfer of material.
  • MCP heat sink
  • This is a problem known to laboratory people when one wants to access by a test the mass kinetics of an adsorbent. Whether by analysis of the evolution over time of the pressure curve following an injection of an adsorbable component in a closed chamber containing the adsorbent or by analysis of the breakthrough curve in a dynamic test, it is difficult to de-correlate the mass transfer and heat transfer effects, ie whether the curves obtained are solely due to the speed of the mass transfer or in part to the thermal effects.
  • the use of trace components in a non-adsorbable carrier gas makes it possible to overcome this problem, but it is far from the operating conditions of an industrial PSA.
  • Figure la corresponds to a bed 1 composed on the one hand of particles of adsorbent (2, 3, 4, ...) and particles of inert-or MPC- (10, 11, 12 ”) mixed in the appropriate proportions, say 10% volume of inert and 90% volume of adsorbent.
  • the reduction of warming in the adsorption phase is obtained by transferring the adsorption heat released in the adsorbent particle to the inert.
  • the heat released within the particle 5 for example will go up to the surface of the particle, essentially by conduction, pass into the gas 20, go by convection to the particle of inert 11, pass on the periphery of 11 and spread within this particle. It is obvious that the transfer will depend on the adsorbents and particles used as well as the operating conditions (nature, speed ... of the gas) but it can be retained that the two predominant thermal resistances - which may be close to each other - are the diffusion in the particle adsorbent and film resistance (transfer to gas or gas to the particle). If the material chosen for the inert is a good conductor of heat, the transfer into the inert can be substantially faster than the others.
  • Figure lb corresponds to the case envisaged in document FR 2 794 993.
  • Particle 1 comprises an inert core 2 surrounded by an adsorbent layer 3.
  • Thermal design is much faster than in the previous case.
  • the main resistance is the transfer through the adsorbent layer.
  • a layer thickness of 500 microns is obtained. Compared to the previous solution, we can hope to gain an order of magnitude.
  • FIG. 1c can correspond to one of the cases of US Pat. No. 4,999,208 which does not specify the respective dimensions to be respected for the adsorbent and inert particles, using what is commercially available; that is, a priori particles of a similar size, the inert particles 1 possibly being of greater diameter (for example 50 microns) to the adsorbent particles 2 (for example 30 microns). Still for 10% by volume of inert, there will be approximately 50 times less micro particles of inert than adsorbent microparticles. The thermal transfer is again improved compared to the previous case and it is likely that for not too fast PSA cycles, such as those used in the 1980s, the full effect of increase in thermal capacity.
  • Figure l.d corresponds to the invention.
  • Micro-particles of adsorbent 1 of 30 microns will be associated with inert particles 2 of 10 microns. Instead of having 50 times less particles of inert, we will now have about 3 times more than micro particles of adsorbent.
  • each micro particle of adsorbent will have several direct contacts with the thermal principle.
  • the thermal path to be traveled will correspond to only a fraction of a micro particle of adsorbent.
  • the points of contact are multiplied and there is no longer, on average at least, transfer through several microparticles in series. We can therefore consider taking full advantage of the additional thermal capacity even for cycles of significantly reduced duration.
  • the thermal principle is as already said, non-adsorbent that is to say inert vis-à-vis the adsorption.
  • inert it is meant that the constituent does not have any particular affinity for the molecules of the fluid that it is desired to treat via this composite material.
  • the adsorption capacity of the thermal principle expressed for example in Ncm / g, will be less than 5%, or even less than 1% of the adsorption capacity of the adsorbent active ingredient to saturation under the conditions service and for the constituent to be stopped.
  • adsorbents used in gas purification or separation processes are for practical reasons in the form of millimetric particles, balls or rods generally constituted by agglomeration of powder or adsorbent crystals. This agglomeration is often done via a binder, which is used in proportions of 5 to 25% by weight. Seen at the microscopic scale, the usual adsorbents are therefore already in the form of a homogeneous composite with an active ingredient and a binder essentially inert since it has not undergone any transformations transmitting a certain capacity to it. adsorption.
  • One way to limit the thermal effects is to use a rate of binder greater than strictly necessary. In doing so, the active ingredient generating heat is reduced within the particle and the inert portion is increased. This modification is not very effective because the binders used are porous or very porous to facilitate the transport of material within the particle, and the relative increase in the ratio of the heat capacity to the heat of adsorption is mainly due to the decrease. the amount of active adsorbent.
  • the thermal principle used in the context of the invention will be essentially non-porous (internal porosity less than 20% by volume, preferably less than 10%, more preferably with porosity close to 0 (ie say less than 1%).
  • the thermal principle comprises a volume thermal capacity (CTV) greater than 1200 KJ / m / K, preferably greater than 1500 KJ / m / K and still more preferably 2000 KJ / m / K.
  • a value of 1000 to 1200 KJ / m / K corresponds to the thermal capacity of the adsorbent or binder estimated on the same bases. It is therefore preferable for components of higher heat capacity than the basic adsorbent.
  • the mixture of microparticles of the active ingredient and the thermal principle must be homogeneous in order to ensure the multiple contacts and the very short heat transfer distances within the entire particle.
  • the various constituents of the material such as the adsorbent active ingredient (zeolite crystals, activated carbon powder, resin fragments, etc.), the thermal active ingredient (metal powder, sand, etc.). ), the binder (kaolin, attapulgite, bentonite, polymer ...), the optional porogen (sodium cellulose, paraffin %) are intimately mixed during the manufacture of the material, in particular during its shaping.
  • the mixture itself can be done in several ways, the constituents being mixed in pairs, all together or added one by one in a sequence chosen to facilitate the operation. This mixing step will essentially depend on the selected shaping process.
  • the final product obtained after activation is therefore a material in which the active principle and the thermal principle are regularly distributed within it, the local fluctuations in composition being due solely to the random distribution or to the differences in the characteristics of the base materials coupled with the process. formatting.
  • Such a manufacturing process is therefore very different from that which consists of for example to coat or cover a thermal principle (sand, core ...) with an adsorbent material to obtain the type of materials described above.
  • the form of the finished adsorbent product may be a ball, rod, pellet, sheet, fiber or monolith particle according to the shaping process.
  • Figure 2 for clarity shows composite adsorbent materials (2. a, b, c, d) falling within the scope of the invention.
  • 1 corresponds to the adsorbent
  • 3 corresponds to the binder, the glue or the polymer used to agglomerate the microparticles.
  • 2. a is then the cut of a ball or a stick;
  • 2.b is adsorbent deposited on a sheet 4;
  • 2.c corresponds to a pellet obtained by pressure;
  • 2.d corresponds to a ball having an inert core in order to increase mass kinetics.
  • the heat capacity of the adsorbent material comprising the inert principle will preferably be at least 20% greater than the thermal capacity of the adsorbent of the same volume not comprising this thermal principle. It appears that for such values, we start to obtain significant gains in returns (case of PSA H2 and 02).
  • the thermal principle may advantageously be a metal, an alloy, a metal compound, in particular a metal oxide (iron, steel, aluminum, copper, zinc.) But also quartz, granite, non-porous glass, amorphous graphite, porcelain or ceramic ...
  • a very particular case is a hydrophobic adsorbent material treating a wet gas.
  • the thermal principle could then be a hydrophilic adsorbent, such as a zeolite which would be inert with respect to the adsorption taking into account the presence of water but which would have a high thermal capacity precisely because of the trapped water.
  • the density and heat capacity to be taken into account would be those of the saturated adsorbent in water which would act vis-à-vis the process as an inert. Crystals of zeolite 3A could have this function, the active ingredient then being a hydrophobic adsorbent of the activated carbon type or certain silicalites.
  • the constituent retained as a thermal principle will remain preferentially solid at the activation temperature or at least the particle will retain sufficient mechanical strength so that its shape and its adsorption properties remain satisfactory for its use in separation or purification processes.
  • This means that generally its melting temperature is at least 200 ° C, preferably greater than 400 ° C.
  • MCP-type thermal principles can be used.
  • the microcapsules of MCP must then be of smaller size than the microparticles of adsorbent to ensure the desired heat transfer.
  • the adsorbent and inert microcrystals will generally be agglomerated by means of a binder, glue or polymer.
  • the binder necessary for shaping the composite material, whatever the shape retained, may be converted, in part or in full, by a suitable treatment into an adsorbent product. This transformation which makes it possible, among other things, to obtain so-called "unbonded” adsorbents, is well known to those skilled in the art and will not be more detailed here.
  • ingredients can be added to the dough before shaping and activation such as porogens which create macro porosities in the particle thus improving its mass transfer kinetics, pore-protecting agents that avoid clogging or blocking of the particles. pores by the binder or shaping agents that facilitate the shaping of the dough.
  • the microparticles of the active principle and the thermal principle are of diameter (characteristic dimension) of between 0.10 and 100 microns, preferably between 0.5 and 25 microns, the microparticles of inert being of smaller dimension than those of the adsorbent .
  • the diameter can be obtained by sieving or by photographic recognition using a microscope. This is a mean diameter, the populations of micro particles having a priori size dispersions inherent to processes used to obtain them (grinding, crystallization, etc.). If the 3 dimensions of these microparticles are generally close, however, it is not excluded according to the invention to use a thermal principle in the form of fibers with a diameter of between 0.1 and 5 microns for example and length of 1 at 100 microns.
  • the density for example, may be substantially higher, to limit the risk of attrition or fluidization.
  • the new material may also have ferromagnetic properties allowing an easier separation of the particles (case of a mixture or multi beds) by magnetization or allowing a contribution of energy by electric effect (in the broad sense: current, waves ... ).
  • the subject of the present invention is also a process for the production of an adsorbent mixture according to the invention, comprising the addition of microparticles of the thermal principle to the particles of the active ingredient during a step of a manufacturing process of the material comprising the adsorbent active principle.
  • the method for manufacturing a material according to the invention consists in that an inert constituent with a heat capacity greater than 1200 KJ / m / K is added in the form of microparticles with a mean diameter smaller than that of the microparticles.
  • adsorbent during a step of the usual process of manufacturing the adsorbent constituting the active principle.
  • the thermal principle being of minimal cost (sand, metal powder %) and its integration into the material very easy and requiring only slight modifications to the production line, it is conceivable that the extra cost for such a material with thermal capacity increased is practically negligible.
  • the gains obtained on the purification or separation of the treated fluids using the material according to the invention have no real negative counterpart.
  • the thermal principle is incorporated in the paste, more or less liquid, containing the adsorbent microparticles before or during its shaping, said shaping using for example a die (extruded, monoliths, fibers ...), a column (balls), a rolling mill or rotating roller system (sheets), an injection nozzle depositing a spray on a support (sheets), a system of brushes depositing a thin layer on a mobile support, a press (pellets, plates) or any other process of shaping from a liquid or pasty (deformable) mixture ...
  • the thermal principle is injected at the nodulizer bowl, alone or premixed with one or more usual constituents (water, gel, binder, porogen ). This is a conventional method of obtaining beads.
  • the adsorbent beads may also be formed in columns as indicated above, the sufficiently fluid paste being introduced at a perforated plate at the top.
  • the so-called oil drop method can be hooked up to this type of process.
  • the thermal principle is injected into the reactor (fluidization tower) used for the growth and the shaping of the particles (agglomerate, ball)
  • the desired rate of inert so that the latter is deposited regularly with the active ingredient.
  • Monoliths or sheets are prepared from more or less consistent pasta in which it is possible to integrate a few percent or even a few tens of percent of a thermal principle before shaping (that is to say in the dough itself) or during this shaping (for example in spray on the sheet simultaneously with the active ingredient).
  • the thermal principle is mixed with the adsorbent powder and resin or polymer before pressing to obtain pellets or plates.
  • the invention also relates to the shaped adsorbent as will be used in an adsorption unit. It will be first of all conventional forms of adsorbents that are found industrially and already mentioned
  • these may be particles having a substantially spherical shape with a mean diameter ranging from 0.5 to 3 mm or a rod shape with a mean diameter ranging from 0.3 to 3 mm and an average length having a ratio of 1/1 to 6/1 in relation to the diameter.
  • These particles may have an inert central core.
  • the particles can also be in the form of essentially cubic crushed with edges of length ranging from 0.5 to 3 mm on average.
  • the adsorbent according to the invention may also be in the form of a monolith with a wall thickness of less than or equal to 4 mm, more preferably less than 2 mm, for example equal to 1 mm.
  • the monoliths can be any section (square, hexagonal, circular ...) and height ranging from a few centimeters to several tens of centimeters.
  • the other characteristics such as wall thickness, spacing ... are not modified by the addition of the thermal principle and depend mainly on the production machinery.
  • the material according to the invention will be particularly interesting for fast mass transfer systems.
  • a monolith made according to the invention is shown in Figure 3 where we can see a piece of monolith with its adsorbent walls 6 and channels for the passage of fluids 5.
  • the wall whose thickness is shown 4 consists of microcrystals of zeolite 1 and microparticles of an inert component with respect to adsorption 2.
  • the microparticles have not been shown on the walls except in zone 3 for the sake of clarity. In this figure also, microparticles and wall thickness are not to scale.
  • - Contactor with parallel passages other than a monolith comprising an adsorbent mixture according to the invention, generally deposited on a support, preferably in a layer less than 1 mm, more preferably in a lower layer at 500 microns, or
  • adsorbent fibers of diameter ranging from 20 microns to 2 millimeters and comprising an adsorbent mixture.
  • the active ingredient and the thermal principle are agglomerated with at least one polymer.
  • the fibers may also undergo a surface treatment, for example the deposition of a thickness layer of the order of one micron of a polymer, without departing from the scope of the invention. the invention.
  • the microparticles may be smaller in size than in the case of particulate adsorbents, for example 3 microns for the active ingredient and 1 micron for the thermal principle, respectively.
  • FIG. 4 represents such an adsorbent fiber 3 with the outer layer 4 of polymer without microparticles and the main section 5 with active ingredient 1 and thermal principle 2 intimately mixed.
  • the present invention finally relates to an adsorber employing an adsorbent mixture according to the invention and an adsorption unit of PSA H2, PSA CO2, PSA 02, PSA N2, PSA CO, PSA CH4 or PSA helium type comprising at least one such adsorber.
  • PSAs with fast cycle times, i.e. less than or equal to one minute, are particularly concerned.
  • the first example relates to a PSA H2 for producing ultra pure hydrogen from a synthesis gas containing as major impurity CO2.
  • a PSA H2 for producing ultra pure hydrogen from a synthesis gas containing as major impurity CO2.
  • the aim is to limit the thermal effects in PSA type operation and overall to increase the performance of the adsorption unit.
  • the target gain of 0.5% on the extraction efficiency of a H2 PSA of 150 000 Nm3 / h corresponds to an additional annual production of more than 7 million Nm3, the equivalent of the production total of a small unit.
  • the activated carbons used in these applications are products resulting from the thermal and / or chemical activation (phosphoric acid %) of carbon raw materials (wood, core, shell, coal, peat ).
  • the purpose of the activation is to give them a high porosity and adsorbent power.
  • a simple crushing of the activated product makes it possible to obtain directly usable particles, in other cases the final adsorbent is obtained by grinding and then agglomeration.
  • the modified adsorbent according to the invention is part of this second manufacturing process.
  • the agglomeration process will then comprise the following steps:
  • the determination of the optimum quantity of inert can be approximated by a simple calculation.
  • the adsorbed capacity is determined in equilibrium taking into account the temperature rise resulting from the adsorption. This calculation is made for 100% adsorbent and for various levels of inert.
  • the addition of inert results in two opposite effects. The slightest rise in temperature goes in the direction of increasing the adsorption capacity, but the decrease in the amount of active ingredient obviously has an opposite effect.
  • an optimum can be found. This approach is often too simplistic and it is generally necessary to take into account the residual quantity adsorbed after regeneration which modifies the thermal balances.
  • a laboratory test on a true PSA cycle can be useful for confirming or adapting the choice of the inert content and verifying that we obtain the desired gains.
  • the size of the quartz particles Di will be determined according to that of the active carbon Da and the volume fraction X of inert. For particles of substantially isometric shape that can be likened to spheres or cubes, we will determine a dimension such that there are at least as many quartz microparticles as active carbon particles.
  • the second example relates to a zeolite for the production of oxygen from atmospheric air.
  • the final adsorbent will be a LiLSX and it is assumed here that the basic process to make this LiLSX is to first get the LSX, put it in the form of beads 1mm in diameter, exchange lithium in column and then activate.
  • the addition of the thermal principle is done here in the shaping step performed on turntable. (or nodulizer bowl according to the technical term dedicated).
  • the beads of selected diameter are formed by accretion, usually around a nucleus facilitating the start of growth of the particle.
  • the usual system comprises a number of injection nozzles above the turntable.
  • Zeolite crystals, organic additives, binder powder, aerosols of water or aqueous gel are thus introduced continuously, the settings of the respective flow rates of these products, the speed of rotation of the plate and the mixer arms that it optionally supports, the orientation in the space of said plate, the position of the outlet orifice allows to obtain beads of size, diameter distribution, composition and consistency required.
  • the ball thus obtained makes it possible to increase the productivity of the adsorption unit by several percent and to reduce the specific energy consumption accordingly. If the gain is less than it can be obtained using phase change materials, the investment is meanwhile much less This is particularly true for VSA 02 with phase times less than 10 seconds because, as already stated, one of the interests of the proposed solution is that the scale of the heat transfer is that of the powder or crystal, that is to say very much lower than that corresponding to the other solutions for reducing the effects. thermals for which the scale of heat transfer is approximately that of the particle: the use of a mixed bed comprising adsorbent particles and particles of MCP or the use of adsorbent beads with an inert core.
  • thermal transfer is obtained much faster, at least an order of magnitude and much more regular than in the cases mentioned above. This effect will become predominant with the RPSA or URPSA.
  • the exit zone of the adsorber which only sees the impurity front and is therefore subjected to moderate temperature fluctuations can only comprise 7.5% of quartz sand by volume. This makes it possible to increase the adsorption capacity of this zone without penalizing itself at the thermal level.
  • a bed of adsorbent material according to the invention can be used together with beds of different composition located upstream or downstream.
  • a bed according to the invention may be used together with one or more beds comprising phase change materials.
  • phase change materials for example, in the case of a VSA 02, it may be advantageous to use on the first 60 to 85% of the zeolite bed a mixture of LiLSX and MCP particles and on the remaining 40 to 15% a following material. the invention. In this case, the latter material is only used in the frontal zone where the thermal kinetics must be particularly fast whereas the thermal beats in themselves are more limited.
  • the material according to the invention could itself be mixed with adsorbent particles to form a bed of lower heat capacity. This could for example make it possible to use two layers of different heat capacity with a single type of modified particles.
  • a first bed of material according to the invention comprising 80% of zeolite and 20% of metal powder and a second bed consisting of half of these same particles and half of zeolite, the two types of particles being intimately mixed.
  • an adsorption unit comprising a plurality of parallel-passage contactors, in particular a plurality of monoliths, installed in series, each contactor having a volume fraction of thermal material adapted to its position between inlet and outlet of the adsorber .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

Mélange adsorbant composite d'au moins un principe actif adsorbant sous forme de microparticules et un principe thermique non-adsorbant sous forme de microparticules caractérisé en ce que la dimension caractéristique moyenne Di des microparticules du principe thermique est inférieure à la dimension caractéristique moyenne Da des microparticules du principe actif.

Description

MELANGE ADSORBANT A CAPACITE THERMIQUE AMELIOREE
L'invention concerne un mélange adsorbant composite destiné essentiellement à la séparation ou purification des gaz par procédé P. S.A., son procédé de fabrication, les adsorbants obtenus après mise en forme dudit mélange, les adsorbeurs mettant en uvre de tels adsorbants et les unités d'adsorption comprenant ces adsorbeurs.
L'invention concerne plus particulièrement un moyen de réduire les effets thermiques que subit un procédé thermo-cyclique d'adsorption à temps de phase court, typiquement inférieur à 30 secondes de manière à améliorer ainsi ses performances.
On appelle procédé thermo-cyclique d'adsorption tout procédé cyclique au cours duquel certaines étapes sont exothermiques, c'est-à-dire s'accompagnant d'un dégagement de chaleur, alors que certaines autre étapes sont endothermiques, c'est-à-dire s'accompagnant d'une consommation de chaleur. Ceci est en particulier le cas des procédés de séparation de gaz par adsorption modulée en pression, comme le PSA (Pressure swing adsorption = adsorption avec variation de pression), le VSA (Vacuum Swing Adsorption = adsorption sous oscillation de vide), le VPSA (Vacuum Pressure Swing Adsorption= adsorption avec variation de pression et mise sous vide) et le MPSA (Mixed Pressure Swing Adsorption).
Dans le cadre de la présente invention, on désigne, sauf stipulation autre, par les termes « procédé PSA », tout procédé de séparation de gaz par adsorption modulée en pression, mettant en uvre une variation cyclique de la pression entre une pression haute, dite pression d'adsorption, et une pression basse, dite pression de régénération. Par conséquent, l'appellation générique procédé PSA est employée indifféremment pour désigner tous les procédés cycliques mentionnés plus haut, procédés dont on précise ci-dessous les conditions opératoires respectives:
- les procédés VSA dans lesquels l'adsorption s'effectue sensiblement à la pression atmosphérique, dite « pression haute », c'est-à-dire entre 1 bara et 1,6 bara (bara = bar absolu), préférentiellement entre 1,1 et 1,5 bara, et la pression de désorption, dite « pression basse », est inférieure à la pression atmosphérique, typiquement entre 30 et 800 mbara, de préférence entre 100 et 600 mbara. - les procédés VPSA ou MPSA dans lesquels l'adsorption s'effectue à une pression haute sensiblement supérieure à la pression atmosphérique, généralement entre 1,6 et 8 bara, préférentiellement entre 2 et 6 bara, et la pression basse est inférieure à la pression atmosphérique, typiquement entre 30 et 800 mbara, de préférence entre 100 et 600 mbara.
- les procédés PSA dans lesquels l'adsorption s'effectue à une pression haute nettement supérieure à la pression atmosphérique, typiquement entre 1,6 et 50 bara, préférentiellement entre 2 et 35 bara, et la pression basse est supérieure ou sensiblement égale à la pression atmosphérique, donc entre 1 et 9 bara, de préférence entre 1,2 et 2,5 bara.
De manière générale, un procédé PSA permet de séparer une ou plusieurs molécules de gaz d'un mélange gazeux les contenant, en exploitant la différence d'affinité d'un adsorbant (ou, le cas échéant, de plusieurs adsorbants) envers ces différentes molécules de gaz.
L'affinité d'un adsorbant pour une molécule gazeuse dépend de la structure et de la composition de l'adsorbant, ainsi que des propriétés de la molécule, notamment sa taille, sa structure électronique et ses moments multipolaires.
Un adsorbant peut être par exemple une zéolite, un charbon actif, une alumine activée, un gel de silice, une résine, un tamis moléculaire carboné ou non, une structure métallo- organique, un ou des oxydes ou des hydroxydes de métaux alcalins ou alcalino terreux, ou une structure poreuse contenant une substance capable de réagir réversiblement avec une ou plusieurs molécules de gaz, telle que aminés, solvants physiques, complexants métalliques, oxydes ou hydroxydes métalliques par exemple.
Il a été réalisé à ce jour des milliers de PSA industriels pour des applications diverses et depuis l'origine, de nombreuses améliorations ont déjà été apportées à ces unités que ce soit en termes de facilité d'exploitation, de fiabilité ou de performances. Ainsi, pour ce qui est de l'amélioration des performances, à savoir en particulier du rendement ou de la productivité, différentes approches ont été menées, en particulier :
- Adjonction d'équipements permettant de régénérer l'adsorbant à plus basse pression, comme une pompe à vide ou un éjecteur, ou pour effectuer des recyclages d'une partie du gaz, comme par exemple l'ajout d'un compresseur pour recycler une partie du gaz résiduaire. - Choix d'adsorbants plus efficaces, plus nombreux et de ce fait mieux adaptés à l'évolution des compositions au sein même de l'adsorbeur, mis en uvre sous forme de lits multiples successifs.
- Utilisation d'une pluralité d'adsorbeurs permettant des cycles plus performants par adjonction de nouvelles étapes, par arrangement différent des étapes...,
Dans le cadre de l'invention, on s'intéresse à deux autres approches également connues pour permettre des gains importants à la fois en termes d'investissement (augmentation de la productivité par exemple) et de performances (augmentation du rendement d'extraction, baisse de la consommation énergétique...) :
- le raccourcissement du temps de cycle en allant même vers des procédés RPSA (Rapide PSA) ou URPSA (Ultra Rapide PSA) qui correspondent à des procédés PSA de cycle très court, en général inférieur à la minute, voire de l'ordre de quelques secondes pour les derniers cités.
- le contrôle des effets thermiques au cours de l'adsorption et la régénération.
Le raccourcissement du temps de phase permet en théorie de maintenir les performances tout en diminuant la quantité d'adsorbant à mettre en jeu à partir du moment où la cinétique de masse est suffisante.
L'adsorbant utilisé se présente généralement sous forme de particules dont on remplit un adsorbeur. Ces particules peuvent se trouver sous forme de granulés, de bâtonnets, de billes, de concassés. Les dimensions caractéristiques de ces particules vont généralement de 0.5 mm à 5 mm.
Utiliser des particules plus petites permet dans une grande majorité d'unités PSA d'améliorer la cinétique d'adsorption, c'est-à-dire d'accélérer le transfert de matière, et par là de pouvoir réduire la durée de phase et finalement le volume d'adsorbant à mettre en jeu. En contre partie, elles créent sur la phase fluide des pertes de charge plus importantes et pour contrebalancer cet effet, on utilise par exemple des adsorbeurs présentant une grande section de passage au fluide tels que les adsorbeurs cylindriques à axe horizontal ou les adsorbeurs radiaux.
Une autre solution préconisée dans la recherche de l'augmentation de la cinétique dans le transfert de matière a conduit à utiliser des particules pour lesquelles le principe actif a été déposé autour d'un noyau central. Ainsi peut- on avoir de faibles épaisseurs d'adsorbant tout en conservant des particules, généralement des billes, de diamètre conséquent et continuer d'utiliser de la sorte des adsorbeurs classiques... Pour illustrer ce procédé, on pourra se référer en particulier au document FR 2 794 993.
Cependant, lorsqu'on veut aller plus loin dans l'amélioration de la perte de charge et/ ou de la cinétique, cette technologie conduit à des géométries d'adsorbeurs non industrielles.
C'est par exemple le cas lorsqu'on veut traiter d'importants débits gazeux en basse pression comme pour la capture du C02 dans des effluents à pression atmosphérique ou lorsqu'on veut réaliser des cycles très rapides, en particulier les cycles RPSA ou URPSA mentionnés plus haut. Dès 1996, Ruthven et Thaeron -in Gas Sep. Purif. Vol. 10, p.63- montrent qu'une telle amélioration peut être obtenue en utilisant des adsorbants structurés et plus particulièrement des contacteurs à passages parallèles.
Il s'agit de systèmes de géométrie plus complexe qui offrent un passage plus important ou plus aisé au fluide. Par opposition aux adsorbants particulaires (billes, bâtonnets, concassés) de dimension inférieure au cm, qu'on dépose en vrac dans un adsorbeur, le fluide circulant alors autour des particules, les adsorbants structurés sont des matériaux solides de dimension allant de quelques centimètres à quelques mètres et présentant des passages libres au gaz. Ce type de mise en forme d'adsorbant est notamment décrite dans le document F. Rezaei, P. Webley / Séparation and Purification Technology 0(2010) 243-256.
Les adsorbants structurés présentent (en comparaison des adsorbants granulés) la particularité de permettre une très bonne cinétique et de très faibles pertes de charges sans présenter de limite d'attrition connue. .. Il existe de nombreux brevets ou publications sur ce sujet, tels que par exemple le document FR 2952553 dont les figures présentent un certain nombre de possibilité de réalisation de contacteurs à passage parallèle. Par contacteurs à passages parallèles, on entend un sous groupe des adsorbants structurés dans lequel le fluide passe dans des canaux dont les parois contiennent de l'adsorbant, canaux qui dans ce cas sont essentiellement libres d'obstacles et permettent au fluide de circuler d'une entrée à une sortie du contacteur. Ces canaux peuvent être rectilignes reliant directement l'entrée à la sortie du contacteur ou présenter quelques changements de direction. Au cours de sa circulation, le fluide est en contact avec au moins un adsorbant présent au niveau des dites parois. Dans ce cas, l'adsorbant est généralement déposé sur un support de type feuille. Ces feuilles peuvent être pliées, roulées, empilées afin de créer des passages réguliers pour le gaz.
Des fibres adsorbantes installées par exemple en parallèle peuvent également constituer un contacteur.
Il est également possible d'obtenir directement par extrusion des formes géométriques creuses qui forment alors des systèmes comportant à la fois des parois adsorbantes et des passages pour le fluide. On appelle couramment ce genre d'adsorbeur des monolithes. On parle souvent alors de géométrie en nid d'abeilles, même si la forme des canaux n'est pas hexagonale mais carré, rectangulaire, triangulaire...
On peut donc retenir qu'il existe des moyens divers d'améliorer le transfert de masse d'un procédé PSA et donc d'aller efficacement vers des cycles rapides. La littérature correspondante ne traite pas des moyens d'apporter simultanément des améliorations thermiques aux unités PSA pouvant mettre en uvre ces systèmes à cinétique de masse améliorée.
Les effets thermiques quant à eux résultent de l'enthalpie d'adsorption ou de l'enthalpie de réaction et conduisent, d'une manière générale, à la propagation, à chaque cycle, d'une onde de chaleur à l'adsorption limitant les capacités d'adsorption et d'une onde de froid à la désorption limitant la désorption.
Ce phénomène cyclique local de battements en température a un impact non- négligeable sur les performances de séparation et l'énergie spécifique de séparation comme le rappelle le document EP-A-1188470 qui divulgue par ailleurs des moyens de réduire ces battements de température en mélangeant de façon graduelle par exemple des adsorbants à forte et faible capacité d'adsorption ou encore d'une part de l'adsorbant et d'autre part des particules de capacité calorifique élevée.
Un cas particulier couvert dans le cadre du présent brevet est le stockage/ déstockage de gaz dans un réacteur ou adsorbeur contenant au moins en partie un ou des adsorbants. Il s'agit là également d'un procédé thermo cyclique mettant en œuvre un matériau adsorbant avec libération de chaleur lors du stockage (augmentation de pression) et libération de froid lors du déstockage (diminution de pression) .En général, au moins une des étapes de stockage ou déstockage se fait rapidement et conduit à une variation de température (échauffement ou refroidissement) diminuant la capacité utile du stockage.
Dans tous ces cas, une solution permettant de diminuer l'amplitude des battements thermiques, voire de les supprimer quasi totalement, consiste à ajouter dans le lit d'adsorbant un matériau à changement de phase (MCP), comme décrit par le document US-A-4, 971,605 sous la dénomination de T.A.R.M. (Thermal Absorption/ Release Material). De cette manière, la chaleur d'adsorption et de désorption, ou une partie de cette chaleur, est adsorbée sous forme de chaleur latente par le MCP, à la température, ou dans le domaine de températures, du changement de phase du MCP. Il est alors possible d'opérer l'unité PSA dans un mode plus proche de l'isotherme. Autour de la température ambiante, un hydrocarbure -ou un mélange d'hydrocarbures- peut être avantageusement utilisé comme MCP. Quand la température augmente, l'hydrocarbure contenu dans la bille absorbe la chaleur et la stocke. Quand la température diminue, l'hydrocarbure contenu dans la bille restitue la chaleur latente emmagasinée en changeant de phase, de liquide au solide. Durant la période de changement de phase, la température demeure approximativement constante (suivant la composition de la cire) et permet de réguler la température à des niveaux bien déterminés par la nature de l'hydrocarbure (ou des hydrocarbures lorsqu'il s'agit de mélange) et en particulier par la longueur de la chaîne et le nombre d'atomes de carbone.
Pour des raisons de transfert thermique à travers le matériau à changement de phase lui-même, celui-ci doit généralement être sous la forme de particules de petite taille, généralement inférieure à 100 microns. On parle par la suite de micro particule ou micro capsule pour désigner cette particule de base.
Ces MCP micro encapsulés ne peuvent pas être introduits tels quels dans un lit d'adsorbant car il serait difficile d'en contrôler la répartition. En outre, ils seraient entraînés par les flux de gaz circulant dans l'adsorbeur.
Sauf éventuellement cas très particulier, ils ne peuvent pas être intégrés directement à l'adsorbant car il est en effet connu que la grande majorité des adsorbants doivent être portés à température élevée avant utilisation dans les procédés industriels pour atteindre les performances requises en termes de résistance mécanique et /ou d' adsorption. Dans ce dernier cas, c'est l'étape connue sous le nom d'activation qui consiste entre autres à retirer de l'adsorbant les molécules d'eau qui occupent préférentiellement les sites les plus actifs et empêchent -ou limitent- l'adsorption des autres constituants. Le niveau de température nécessaire est généralement supérieur à 200°C, souvent de l'ordre de 300 à 450°C. Ces niveaux de température ne sont pas compatibles avec la tenue mécanique, voire l'intégrité des MCP. On peut cependant imaginer que par un procédé de mise en forme adéquat, des microparticules de MCP soit intégrées à un principe actif, la particule ainsi obtenue étant séchée seulement à moyenne température et utilisée dans un procédé compatible avec ce traitement. Un candidat pourrait être un charbon actif mis en forme avec un liant basse température, c'est-à-dire inférieure à 150°C et préférentiellement autour de 100°C. Une activation sous vide poussée (inférieur 1 mbar) et/ ou par balayage avec un gaz ultra-sec (teneur en eau inférieure à lppm mole, préférentiellement inférieure à 50 ppb mole) à une température inférieure ou égale à 100°C peut permettre d'activer une majorité d'adsorbant mais à un coût élevé (énergie, consommation de gaz ultra-sec, durée de l'activation...).
La solution retenue industriellement dans le cas des MCP est donc de réaliser à part des agglomérats de MCP dont la taille est de l'ordre de grandeur des particules d'adsorbant et de les utiliser en mélange avec ces dernières, faisant des lits mixtes adsorbant / MCP dans le ratio requis. Les avantages de cette solution sont qu'on utilise les adsorbants commerciaux standards, que l'on peut accroître de façon très importante la capacité calorifique du lit rendant le procédé quasi isotherme. Les inconvénients sont la difficulté d'assurer la stabilité en composition du mélange agglomérat de MCP / particules d'adsorbant dans le temps (remplissage, fonctionnement), la cinétique pas très rapide du transfert thermique avec une échelle de longueur caractéristique de l'ordre de grandeur de la taille des particules et la non adaptation de ce système dès lors que l'on cherche seulement une augmentation limitée de la capacité thermique. Avec des ratios MCP/Adsorbant autour du un pourcent, on n'aura plus qu'une particule de MCP entourée d'un grand nombre de particules d'adsorbant et les effets seront localisés sans pouvoir produire de modification réelle des conditions globales du fonctionnement thermique. L'utilisation de lit mixte adsorbant/particule de MCP agglomérée va être efficace dès lors qu'on recherche un fonctionnement quasi isotherme avec une cinétique thermique pas trop élevée. Comme on l'a dit, il reste néanmoins des contraintes de dimensions respectives, de densités respectives, de procédure de mélange, de remplissage, de conditions opératoires pour que le lit mixte reste de composition homogène au cours de son utilisation.
Partant de là, un problème qui se pose est de fournir un matériau adsorbant amélioré réduisant les effets thermiques et ceci en particulier pour des unités dont les étapes d'adsorption et/ou de régénération sont rapides.
Une solution de la présente invention est un mélange adsorbant composite d'au moins un principe actif adsorbant sous forme de microparticules et un principe thermique non- adsorbant sous forme de microparticules caractérisé en ce que la dimension caractéristique moyenne Di des microparticules du principe thermique est inférieure à la dimension caractéristique moyenne Da des microparticules du principe actif.
On pourra également parler de principe thermique inerte pour le principe thermique non-adsorbant ou même par simplification seulement de "principe thermique".
Par microparticules du principe thermique, on entend des particules de forme quelconque, de dimension caractéristique d'au moins un ordre de grandeur inférieur à la dimension du matériau adsorbant constitué par l'ensemble des microparticules (par exemple une bille, une couche d'adsorbant...). Selon une caractéristique de l'invention, la dimension caractéristique de ces microparticules sera inférieure à environ 100 microns, préférentiellement inférieure ou égale à 25 microns et généralement supérieure à 0.1 micron, préférentiellement supérieure ou égale à 0.5 micron.
Par dimension caractéristique, on entend, pour les micro particules isométriques, c'est-à-dire n'ayant pas de dimension nettement prépondérante dans une direction particulière et donc de forme approximativement sphérique ou cubique, la dimension commune que l'on peut obtenir par tamisage, par observation visuelle ou via un traitement d'images. Pour les particules, telles les fibres, les bâtonnets, ayant une dimension prépondérante que l'on appellera la longueur, la dimension caractéristique sera alors l'épaisseur. Cette dimension s'obtient par analyse visuelle ou traitement d'images.
Pour le matériau adsorbant formé à partir de ces particules, la dimension caractéristique sera de façon identique le diamètre pour des billes, plus généralement la dimension commune pour des formes isométriques, le diamètre pour des bâtonnets ou des fibres, l'épaisseur de la couche d'adsorbant en cas de dépôt sur un support, la demi épaisseur dans le cas d'une paroi adsorbante en contact avec le fluide par ses deux côtés...Cette dimension n'est pas parfaitement identique d'une particule -ou même d'un système- à l'autre mais comporte une certaine dispersion. La valeur retenue ici est la valeur moyenne telle qu'on peut l'obtenir par exemple via un logiciel de traitement d'images ou par une série de mesures... Sans entrer dans les détails, pour une population de particules isométriques que l'on peut assimiler en première approximation à des billes essentiellement sphériques mais dont les diamètres présentent une dispersion inhérente au procédé industriel de fabrication, on retient une définition classique : le diamètre équivalent ou moyen Di d'une population de billes est le diamètre de billes identiques qui pour le même volume de lit donneraient la même surface totale. En effet, dès lors qu'on a déterminé la distribution en diamètre (c'est-à-dire qu'on a déterminé les différentes fractions Xi de diamètre di, avec de préférence i supérieur ou égal à 5 pour obtenir une précision suffisante, par exemple par tamisage ou à partir d'appareils de traitement d'images ),on obtient le diamètre moyen équivalent par la formule : 1 / Di =∑i (Xi / di)
Pour les particules plus irrégulières, forme sous laquelle on peut en particulier trouver certaines poudres, par exemple de charbons actifs, on assimile néanmoins les particules à des sphères dont on détermine la distribution en diamètre par tamisage par exemple, puis on applique la formule de calcul précédente.
En pratique, une particule du matériau adsorbant selon l'invention contient plusieurs centaines de microparticules (principe actif et principe thermique) et généralement plusieurs milliers. Dans le cas d'un dépôt, il y aura généralement plus de dix micro particules dans l'épaisseur de la couche.
Selon le cas le mélange adsorbant selon l'invention peut présenter une ou plusieurs des caractéristiques ci-dessous :
- ledit mélan e comprend une fraction volumique X de principe thermique et une fraction (1 -
Figure imgf000011_0001
les microparticules du principe thermique sont supérieures en nombre aux microparticules d rincipe actif. - les microparticules du principe thermique sont de dimension caractéristique moyenne comprise entre 0,1 et 100 microns, préférentiellement entre 0,5 et 25 microns.
- le constituant formant le principe thermique a une porosité interne inférieure à 20% en volume, préférentiellement inférieure à 10%, encore plus préférentiellement inférieure à 1%. - le principe thermique possède une capacité thermique volumique supérieure à 1200 KJ/m /K, préférentiellement supérieure à 1500 KJ/m /K et encore préférentiellement à 2000 KJ/m /K.
- le ratio en volume du principe thermique sur le principe actif peut aller de 1/3 jusqu'à 1/30, de préférence de 1/5 à 1/9.
- en masse, le principe thermique représente 5% à 90% du mélange adsorbant, de préférence 15 à 50%.
- le principe actif adsorbant est choisi dans le groupe formé par les zéolites, les charbons actifs, les alumines activées, les gels de silice, les résines, les tamis moléculaires carbonés ou non, les structures métallo-organique, les oxydes ou hydroxydes de métaux alcalins ou alcalino terreux, les structures poreuses contenant une substance capable de réagir réversiblement avec une ou plusieurs molécules de gaz, telle que les aminés, les solvants physiques, les complexants métalliques, les oxydes ou les hydroxydes métalliques.
- le principe thermique est pris dans le groupe formé par les métaux ou les composés métalliques, en particulier les oxydes métalliques, le verre, les roches, les porcelaines ou céramiques.
On notera que les deux types de microparticules, principe actif et principe thermique, seront généralement agglomérés par un liant comme il est habituel de procéder avec les adsorbants standards. Ce liant peut représenter de 5 à 25% environ du volume de la particule, la tendance actuelle étant d'utiliser des liants performants en petite quantité. Ce liant n'est pas pris en compte dans les ratios volumiques de principe actif et principe thermique par souci de simplification.
Le point essentiel est d'obtenir un transfert thermique entre le principe adsorbant et le puits thermique (inerte, MCP), quel qu'il soit, suffisamment rapide pour ne pas retarder le transfert de matière. Il s'agit là d'un problème connu des gens de laboratoire dès lors qu'on veut accéder par un test à la cinétique de masse d'un adsorbant. Que ce soit par analyse de l'évolution dans le temps de la courbe de pression suite à une injection d'un constituant adsorbable dans une enceinte fermée contenant l'adsorbant ou par analyse de la courbe de percée dans un test dynamique, il est difficile de dé-corréler les effets de transfert de masse et de transfert thermique, c'est-à-dire de savoir si les courbes obtenues sont uniquement dues à la vitesse du transfert de masse ou en partie aux effets thermiques. L'utilisation de constituant en traces dans un gaz porteur non adsorbable permet de s'affranchir éventuellement d'un tel problème mais on est loin alors des conditions de fonctionnement d'un PSA industriel.
Les schémas de la Figure 1 vont alors expliciter l'intérêt de l'invention.
La Figure l.a correspond à un lit 1 composé d'une part de particules d'adsorbant (2, 3, 4,...) et de particules d'inerte -ou de MPC- (10, 11, 12...) mélangées dans les proportions adéquate, mettons 10% volume d'inerte et 90% volume d'adsorbant. La réduction de réchauffement en phase d'adsorption s'obtient grâce au transfert de la chaleur d'adsorption libérée dans la particule d'adsorbant vers l'inerte.
Plus en détail, la chaleur libérée au sein de la particule 5 par exemple va aller jusqu'à la surface de la particule, essentiellement par conduction, passer dans le gaz 20, aller par convection jusqu'à la particule d'inerte 11, passer à la périphérie de 11 et se propager au sein de cette particule. Il est évident que le transfert va dépendre des adsorbants et particules utilisées ainsi que des conditions opératoire (nature, vitesse...du gaz) mais on peut retenir que les deux résistances thermiques prépondérantes -qui peuvent être voisines- sont la diffusion dans la particule d'adsorbant et la résistance de film (transfert vers le gaz ou du gaz vers la particule). Si le matériau choisi pour l'inerte est un bon conducteur de la chaleur, le transfert dans l'inerte peut être sensiblement plus rapide que les autres.
Avec un tel système, on a un couplage entre le transfert de matière et le transfert thermique et on ne bénéficie que d'une partie des gains potentiels si on raccourcit de trop les temps de cycle. La Figure l.b correspond au cas envisagé dans le document FR 2 794 993. La particule 1 comporte un noyau inerte 2 entouré d'une couche adsorbante 3. On conçoit thermique est beaucoup plus rapide que dans le cas précédent. La résistance principale est le transfert à travers la couche adsorbante. Pour une particule de 2mm de diamètre ayant un noyau central de diamètre 1mm, on obtient une épaisseur de couche de 500 microns. Par rapport à la solution précédente, on peut espérer gagner un ordre de grandeur.
La Figure l.c peut correspondre à un cas parmi d'autres du document US 4, 499,208 qui ne précise pas de dimensions respectives à respecter pour les particules d'adsorbant et d'inerte, utilisant ce qui est disponible dans le commerce, c'est-à-dire à priori des particules de taille similaire, les particules d'inerte 1 pouvant être éventuellement de diamètre supérieur (50 microns par exemple) aux particules d'adsorbant 2 (30 microns par exemple). Toujours pour 10% en volume d'inerte, on aura approximativement 50 fois moins de micro particules d'inerte que de microparticules d'adsorbant. On améliore à nouveau le transfert thermique par rapport au cas précédent et il est probable que pour des cycles PSA pas trop rapides, tels que ceux qui étaient utilisés dans les années 1980, on profite alors de la totalité de l'effet lié à l'augmentation de la capacité thermique.
La Figure l.d correspond à l'invention. On va associer à des micro particules d'adsorbant 1 de 30 microns des particules inertes 2 de 10 microns. Au lieu d'avoir 50 fois moins de particules d'inerte, on va maintenant en avoir environ 3 fois plus que de micro particules d'adsorbant. En moyenne, chaque micro particule d'adsorbant aura plusieurs contacts directs avec le principe thermique. Le chemin thermique à parcourir correspondra seulement à une fraction d'une micro particule d'adsorbant. Les points de contact sont multipliés et il n'y a plus, en moyenne du moins, de transfert à travers plusieurs micro particules en série. On peut donc envisager de profiter pleinement de la capacité thermique additionnelle même pour des cycles de durée sensiblement réduite.
Le principe thermique est comme déjà dit, non-adsorbant c'est-à-dire inerte vis-à-vis de l'adsorption.
Par inerte, on veut dire que le constituant ne présente pas d'affinité particulière pour les molécules du fluide que l'on veut traiter par l'intermédiaire de ce matériau composite. En pratique, on peut dire que la capacité d'adsorption du principe thermique, exprimée par exemple en Ncm /g, sera inférieure à 5%, voire inférieure à 1% de la capacité d'adsorption du principe actif adsorbant à saturation dans les conditions de service et pour le constituant à arrêter. On verra plus bas que le fait de choisir un constituant inerte permet d'utiliser un constituant non poreux, de densité importante ce qui n'est pas compatible avec les constituants habituels d'un adsorbant (cristaux, liant...)
On notera à ce sujet que la majorité des adsorbants utilisés dans les procédés de purification ou de séparation des gaz sont pour des raisons pratiques sous forme de particules millimétriques, billes ou bâtonnets généralement, constituées par agglomération de poudre ou de cristaux d'adsorbant. Cette agglomération se fait souvent par l'intermédiaire d'un liant, qu'on utilise dans des proportions de 5 à 25 % masse environ. Vus à l'échelle microscopique, les adsorbants usuels se présentent donc déjà sous la forme de composite homogène avec un principe actif et un liant essentiellement inerte dès lors qu'il n'a pas subi d'éventuelles transformations lui transmettant une certaine capacité d'adsorption.
Un moyen évoqué pour limiter les effets thermiques à bon compte est d'utiliser un taux de liant supérieur à celui strictement nécessaire. Ce faisant on diminue au sein de la particule le principe actif générateur de chaleur et on augmente la partie inerte. Cette modification est peu efficace car les liants utilisés sont poreux, voire très poreux pour faciliter le transport de matière au sein de la particule, et l'augmentation relative du ratio de la capacité calorifique sur la chaleur d'adsorption est due essentiellement à la diminution de la quantité d'adsorbant actif.
En supposant qu'une particule ait des propriétés mécaniques suffisantes avec seulement 5% de liant (et 95% d'adsorbant), on modifie effectivement le comportement thermique de cette particule en utilisant par exemple 35% de liant et seulement 65% d'adsorbant. On va pouvoir augmenter ce faisant le ratio capacité thermique sur chaleur d'adsorption d'une quarantaine de pourcents mais au détriment d'une baisse égale de capacité d'adsorption. On suppose de plus ici que le liant a une capacité calorifique volumique voisine de celle de l'adsorbant, ce qui est généralement optimiste.
Par opposition au liant, le principe thermique utilisé dans le cadre de l'invention va être essentiellement non poreux (porosité interne inférieure à 20% volume, préférentiellement inférieure à 10%, préférentiellement encore de porosité voisine de 0 (c'est-à-dire inférieure à 1%). Nous avons indiqué précédemment que le principe thermique comprend une capacité thermique volumique (CTV) supérieure à 1200 KJ/m /K, préférentiellement supérieure à 1500 KJ/m /K et encore préférentiellement à 2000 KJ/m /K.
On notera qu'il s'agit de la masse volumique de la micro particule elle même et non de la poudre (ensemble de micro particules).
Pour une micro particule qui serait néanmoins poreuse par essence, cette porosité est bien entendu prise en compte dans le volume de base qui sert de référence à la détermination de la CTV mais, comme déjà dit, les particules du principe thermique seront préférentiellement non poreuse...
On notera qu'une valeur de 1000 à 1200 KJ/m /K correspond à la capacité thermique de l'adsorbant ou du liant estimée sur les mêmes bases. On optera donc à priori pour des constituants de capacité thermique volumique plus élevée que celle de l'adsorbant de base. On a vu que pour être pleinement efficace, le mélange des microparticules du principe actif et du principe thermique doit être homogène afin d'assurer les multiples contacts et les très courtes distances de transfert thermique au sein de la totalité de la particule.
Par homogène, on entend plus précisément ici que les différents constituants du matériau tels que le principe actif adsorbant (cristaux de zéolite, poudre de charbon actif, fragments de résine...), le principe actif thermique (poudre métallique, sable...), le liant (kaolin, attapulgite, bentonite, polymère...), le porogène éventuel (cellulose sodium, paraffine...) sont intimement mélangés lors de la fabrication du matériau, en particulier lors de sa mise en forme. S'agissant de plusieurs constituants, le mélange en lui-même peut se faire de plusieurs manières, les constituants étant mélangés deux par deux, tous ensembles ou rajoutés un par un dans un ordre choisi pour faciliter l'opération. Cette étape de mélange va essentiellement dépendre du procédé de mise en forme retenu. Le produit final obtenu après activation est donc un matériau dans lequel principe actif et principe thermique sont régulièrement distribués en son sein, les fluctuations locales de composition étant dues seulement au hasard de la répartition ou aux différences de caractéristiques des matériaux de base couplées avec le procédé de mise en forme. Un tel procédé de fabrication se différencie donc très nettement de celui qui consiste par exemple à enrober ou à recouvrir un principe thermique (sable, noyau...) par un matériau adsorbant pour obtenir le type de matériaux décrits plus haut.
La forme du produit adsorbant fini pourra être une particule - bille, bâtonnet, pastille- une feuille, une fibre ou un monolithe selon le procédé de mise en forme. La Figure 2 pour plus de clarté montre des matériaux adsorbant composites (2. a, b, c, d) entrant dans le cadre de l'invention. Pour toutes les figures, 1 correspond à l'adsorbant, 2 à l'inerte, et 3 correspond au liant, à la colle ou au polymère utilisé pour agglomérer les microparticules. 2. a correspond alors à la coupe d'une bille ou d'un bâtonnet ; 2.b correspond à de l'adsorbant déposé sur une feuille 4 ; 2.c correspond à une pastille obtenue par pression ; 2.d correspond à une bille comportant un noyau inerte dans le but d'augmenter la cinétique de masse.
La capacité thermique du matériau adsorbant comprenant le principe inerte sera préférentiellement supérieure d'au moins 20% à la capacité thermique de l'adsorbant de même volume ne comportant pas ce principe thermique. Il apparaît que pour de telles valeurs, on commence à obtenir des gains sensibles sur les rendements (cas des PSA H2 et 02).
Le principe thermique pourra avantageusement être un métal, un alliage, un composé métallique, en particulier un oxyde métallique (fer, acier, aluminium, cuivre, zinc.) mais aussi du quartz, du granité, du verre non poreux, du graphite amorphe, de la porcelaine ou de la céramique...
Un cas très particulier correspond à un matériau adsorbant hydrophobe traitant un gaz humide. Le principe thermique pourrait alors être un adsorbant hydrophile, telle une zéolite qui serait inerte vis-à-vis de l'adsorption compte tenu de la présence d'eau mais qui aurait une capacité thermique élevée justement à cause de l'eau piégée. Dans ce cas, la masse volumique et la capacité thermique à prendre en compte seraient celles de l'adsorbant saturé en eau qui agirait vis-à-vis du procédé comme un inerte. Des cristaux de zéolite 3 A pourraient avoir cette fonction, le principe actif étant alors un adsorbant hydrophobe du type charbon actif ou certaines silicalites.
Le constituant retenu comme principe thermique restera préférentiellement solide à la température d'activation ou du moins la particule conservera suffisamment de tenue mécanique pour que sa forme et ses propriétés d'adsorption demeurent satisfaisantes pour son utilisation dans les procédés de séparation ou purification. Cela signifie que généralement sa température de fusion est d'au moins 200°C, préférentiellement supérieure à 400°C.
Néanmoins, même si c'est peu industrialisé, il est possible d'activer un bon nombre d'adsorbant à des températures inférieures, en particulier en mettant en uvre le vide et/ou des balayages avec un gaz très sec. Cela signifie que pour certaines applications, des principes thermiques de type MCP peuvent être utilisés. Les microcapsules de MCP devront être alors de dimension inférieure aux microparticules d'adsorbant pour assurer le transfert thermique recherché.
Comme déjà discuté, les microcristaux d'adsorbant et d'inerte vont être généralement agglomérés au moyen d'un liant, d'une colle ou d'un polymère. Le liant nécessaire à la mise en forme du matériau composite quelque soit la forme retenue peut être transformé-en partie ou en totalité- par un traitement adéquat en un produit adsorbant. Cette transformation qui permet entre autres d'obtenir des adsorbants dits "sans liant" est bien connu de l'Homme de l'Art et ne sera pas plus détaillée ici.
D'autres ingrédients peuvent être rajoutés à la pâte avant mise en forme et activation tel que des agents porogènes qui créent des macro porosités dans la particule améliorant ainsi sa cinétique de transfert de masse, des agents protecteurs de pores qui évitent le bouchage ou blocage des pores par le liant ou des agents de mise en forme qui facilitent la mise en forme de la pâte.
Pour les liants, comme pour les divers agents cités au dessus, la littérature indique des dizaines de constituants possibles dont le choix va dépendre des caractéristiques de l'adsorbant, de la forme désirée et des procédés de fabrication mis en uvre.
Comme déjà précisé, les microparticules du principe actif et du principe thermique sont de diamètre (dimension caractéristique) compris entre 0.10 et 100 microns, préférentiellement entre 0.5et 25 microns, les microparticules d'inerte étant de dimension plus faible que celles de l'adsorbant.
Comme précisé plus haut, pour les poudres obtenues généralement par broyage et les micro cristaux, le diamètre (dimension caractéristique) peut être obtenu par tamisage ou par reconnaissance photographique utilisant un microscope. Il s'agit ici de diamètre moyen, les populations de micro particules présentant à priori les dispersions de taille inhérentes aux procédés mis en uvre pour leur obtention (broyage, cristallisation...). Si les 3 dimensions de ces micro particules sont généralement voisines, il n'est cependant pas exclu selon l'invention d'utiliser un principe thermique se présentant sous forme de fibres de diamètre compris entre 0.1 et 5 microns par exemple et de longueur de 1 à 100 microns.
Les autres caractéristiques physiques que l'on est amené à demander à un adsorbant, telles la résistance à l'attrition, la résistance à l'écrasement, la cinétique relative au transfert de matière, la résistance chimique à certains constituants, la tenue mécanique vis-à-vis des variations de température...peuvent être atteintes dans le cadre de la solution proposée en adaptant la qualité et la quantité de liant, en choisissant les adjuvants éventuels, le procédé de mise en forme, les prétraitements amont ou aval ( broyage, cristallisation, séchage, traitement de surface, activation...). Le choix de ces paramètres est connu de l'homme de l'art et ne constitue pas une amélioration potentielle du principe de l'invention. Il convient d'ailleurs de noter que l'adjonction du principe thermique peut en elle-même modifier certaines des caractéristiques physiques ou mécaniques des particules.
La densité, par exemple, pourra être sensiblement plus élevée, permettant de limiter les risques d'attrition ou de fluidisation.
Le nouveau matériau pourra également présenter des propriétés ferromagnétiques permettant une séparation plus aisée des particules (cas d'un mélange ou de multi lits) par aimantation ou permettant un apport d'énergie par effet électrique (au sens large : courant, ondes...).
Mais cette adjonction va pouvoir également renforcer la résistance mécanique, l'état de surface (diminution de l'attrition)...
La présente invention a également pour objet un procédé de fabrication d'un mélange adsorbant selon l'invention, comprenant l'ajout de microparticules du principe thermique aux particules du principe actif au cours d'une étape d'un procédé de fabrication du matériau comprenant le principe actif adsorbant.
Plus précisément, le procédé de fabrication d'un matériau selon l'invention consiste en ce qu'un constituant inerte de capacité thermique supérieure à 1200 KJ/m /K est rajouté sous forme de microparticules de diamètre moyen inférieur à celui des microparticules d'adsorbant au cours d'une étape du processus de fabrication usuel de Γ adsorbant constituant le principe actif. Le principe thermique étant d'un coût minime (sable, poudre métallique...) et son intégration dans le matériau très aisée et ne nécessitant que de légères modifications à la chaîne de production, on conçoit que le surcoût pour un tel matériau à capacité thermique augmentée soit pratiquement négligeable.
Contrairement à des procédés éventuellement plus efficaces, tels l'utilisation de matériaux à changement de phase, pour lesquels il faut prendre en compte les surcoûts induits, les gains obtenus sur la purification ou la séparation des fluides traités en utilisant le matériau selon l'invention sont sans véritable contrepartie négative.
Les légères modifications nécessaires à l'introduction du principe thermique vont dépendre du processus retenu pour la fabrication de l'adsorbant de base constituant le principe actif du matériau composite.
Selon les cas, le principe thermique est incorporé à la pâte, plus ou moins liquide, contenant les microparticules d'adsorbant avant ou pendant sa mise en forme, la dite mise en forme mettant en uvre par exemple une filière (extrudés, monolithes, fibres...), une colonne (billes), un laminoir ou système à rouleau tournant (feuilles), une buse d'injection déposant un spray sur un support (feuilles) , un système de pinceaux déposant une fine couche sur un support mobile, une presse (pastilles, plaques) ou tout autre procédé de mise en forme à partir d'un mélange liquide ou pâteux (déformable)...
On notera qu'il pourra être nécessaire de modifier la quantité ou la qualité des adjuvants (liant, porogène, protecteur de pores..) utilisés habituellement afin d'obtenir un produit fini satisfaisant.
Le principe thermique est injecté au niveau du noduliseur à cuvette, seul ou pré-mélangé avec un ou plusieurs constituants usuels (eau, gel, liant, porogène...). Il s'agit là d'un procédé classique d'obtention de billes.
Les billes d'adsorbant peuvent également être formées dans des colonnes comme indiqué ci- dessus, la pâte suffisamment fluide étant introduite au niveau d'une plaque perforée en partie supérieure. La méthode dite de la goutte d'huile peut être raccrochée à ce type de procédé. Le principe thermique est injecté dans le réacteur (tour de fluidisation) utilisé pour la croissance et la mise en forme des particules (agglomérat, bille) Ainsi dans le cas de particules formées dans des tours de fluidisation, il conviendra juste d'introduire le débit souhaité d'inerte pour que ce dernier se dépose régulièrement avec le principe actif. Il pourra être judicieux de choisir la taille des micro particules du principe thermique et leur densité de telle sorte qu'elles soient parfaitement fluidisées dans les conditions normales de fonctionnement de la tour de fluidisation. On notera qu'étant plus lourdes, les microparticules d'inerte devront être plus petites, ce qui entre bien dans le cadre du brevet.
On peut également sécher et activer la pâte sous forme de blocs qui vont être ensuite broyés.
On obtient de la sorte des concassés.
A côté de ces procédés industriels très utilisés, se développent des mises en forme d'adsorbant de type plus nouveau, comme monolithe ou feuille dont on a parlé plus haut.
Les monolithes ou les feuilles sont préparés à partir de pâtes plus ou moins consistantes dans lesquelles il est possible d'intégrer quelques pourcents, voire quelques dizaines de pourcents d'un principe thermique avant la mise en forme (c'est-à-dire dans la pâte elle-même) ou pendant cette mise en forme (par exemple en spray sur la feuille simultanément au principe actif).
Le principe thermique est mélangé avec la poudre d'adsorbant et de résine ou polymère avant pressage afin d'obtenir des pastilles ou des plaques.
En plus du mélange adsorbant composite proprement dit, des procédés de mise en forme d'un tel matériau composite, l'invention porte également sur l'adsorbant mis en forme tel qu'il va être utilisé dans une unité d'adsorption. Il va s'agir d'abord des formes classiques d'adsorbants que l'on trouve industriellement et déjà évoquées
Comme mentionné précédemment il peut s'agir de particules présentant une forme essentiellement sphérique de diamètre moyen allant de 0,5 à 3 mm ou une forme de bâtonnet de diamètre moyen allant de 0,3 à 3 mm et de longueur moyenne présentant un ratio de 1/1 à 6/1 par rapport au diamètre. Ces particules peuvent présenter un noyau central inerte.
Les particules peuvent également sous forme de concassé essentiellement cubique avec des arêtes de longueur allant en moyenne de 0,5 à 3 mm. L'adsorbant selon l'invention peut également se présenter sous forme de monolithe, d'épaisseur de paroi inférieure ou égale à 4 mm, encore préférentiellement inférieure à 2 mm, par exemple égale à 1mm. Les monolithes peuvent être de section quelconque (carré, hexagonale, circulaire...) et de hauteur allant de quelques centimètres à plusieurs dizaines de centimètres. Les autres caractéristiques telles qu'épaisseur des parois, espacement...ne sont pas modifiées par l'adjonction du principe thermique et dépendent essentiellement des machines de production. Le matériau selon l'invention sera particulièrement intéressant pour des systèmes à transfert de masse rapide.
On notera que l'on suppose ici que la majorité des parois comportant le matériau adsorbant voit circuler le fluide des deux côtés. Compte tenu de la symétrie, les épaisseurs réelles à pénétrer par les composés adsorbables ne sont que la moitié des valeurs indiquées ci-dessus pour les parois. Un monolithe réalisé selon l'invention est représenté sur la Figure 3 où l'on peut voir un morceau de monolithe avec ses parois adsorbantes 6 et ses canaux pour le passage des fluides 5. La paroi dont l'épaisseur est représentée 4 est constituée de microcristaux de zéolite 1 et de microparticules d'un constituant inerte vis-à-vis de l'adsorption 2. Les microparticules n'ont pas été représentées sur les parois sauf dans la zone 3 par souci de clarté. Dans cette figure également, microparticules et épaisseur de paroi ne sont pas à l'échelle.
Il peut également s'agir de :
- contacteur à passages parallèles autre qu'un monolithe (bobine, roue, empilage de feuilles...) comportant un mélange adsorbant selon l'invention, généralement déposé sur un support, préférentiellement en couche inférieure à 1 mm, encore préférentiellement en couche inférieure à 500 microns, ou de
- fibres adsorbantes de diamètre allant de 20 microns à 2 millimètres et comportant un mélange adsorbant.
Pour les contacteurs à passages parallèles, on pourra se référer au document FR 2952553 déjà cité pour plus de détails sur les formes qu'il est possible d'utiliser.
Pour les fibres adsorbantes le principe actif et le principe thermique sont agglomérés par au moins un polymère. Les fibres peuvent également subir un traitement de surface, par exemple le dépôt d'une couche d'épaisseur de l'ordre du micron d'un polymère, sans sortir du cadre de l'invention. A noter que les microparticules pourront être de dimension plus faible que dans le cas d'adsorbant particulaire, par exemple respectivement 3 microns pour le principe actif et 1 micron pour le principe thermique. La Figure 4 représente une telle fibre adsorbante 3 avec la couche extérieure 4 en polymère sans microparticules et la section principale 5 avec principe actif 1 et principe thermique 2 intimement mélangés.
La présente invention porte enfin sur un adsorbeur mettant en uvre un mélange adsorbant selon l'invention et une unité d'adsorption de type PSA H2, PSA C02, PSA 02, PSA N2, PSA CO, PSA CH4 ou PSA Hélium comprenant au moins un tel adsorbeur. Comme déjà noté, les PSA avec des durées de cycle rapide, c'est-à-dire inférieures ou égales à la minute, sont particulièrement concernés.
L'invention va être à présent décrite en détail depuis la fabrication de l'adsorbant composite jusqu'à son utilisation dans des unités de séparation de gaz.
Exemple 1
Le premier exemple concerne un PSA H2 destiné à produire de l'hydrogène ultra pur à partir d'un gaz de synthèse contenant comme impureté majoritaire du C02. Afin d'améliorer les performances de l'unité, on veut limiter les effets thermiques dans le lit de charbon actif sur lequel s'arrête l'essentiel du gaz carbonique. Plus précisément, on veut augmenter d'au moins 25% la capacité calorifique volumétrique d'un lit de charbon actif destiné à arrêter des quantités importantes de dioxyde de carbone. Le but est de limiter les effets thermiques en fonctionnement de type PSA et globalement d'augmenter les performances de l'unité d'adsorption.
On notera qu'avec un tel adsorbant modifié, on est encore éloigné d'un fonctionnement parfaitement isotherme qu'on pourrait approcher en utilisant comme décrit par ailleurs des lits composites contenant des quantités notables de particules de MCP mais on recherche ici une amélioration modérée mais néanmoins sensible sur le procédé global avec un surcoût de fabrication de l'adsorbant très faible. A titre d'exemple, le gain visé de 0.5 % sur le rendement d'extraction d'un PSA H2 de 150 000 Nm3/h correspond à une production supplémentaire annuelle de plus de 7 millions de Nm3, soit l'équivalent de la production totale d'une petite unité.
Les charbons actifs utilisés dans ces applications sont des produits résultant de l'activation thermique et/ou chimique (acide phosphorique...) de matières premières carbonés (bois, noyau, coque, houille, tourbe...). Le but de l'activation est de leur conférer une forte porosité et un grand pouvoir adsorbant.
Dans certains cas, un simple concassage du produit activé permet d'obtenir des particules directement utilisables, dans d'autres cas l'adsorbant final est obtenu par broyage puis agglomération.
L'adsorbant modifié selon l'invention s'inscrit dans le cadre de ce second procédé de fabrication.
Suivant un mode de réalisation, le procédé d'agglomération va alors comprendre les étapes suivantes :
- Broyage du charbon actif de sorte à obtenir des particules de l'ordre du micron, plus précisément comprises entre 0.1 et 50 microns.
- Mélange de la poudre de charbon avec un agent liquide tel que de l'eau, un gel aqueux à base d'argile (bentonite...), un gel organique (pectine...)
- Addition de quartz dans les proportions souhaitées par rapport à la quantité de charbon, ici d'environ 10 % en volume.
- Mélange avec un liant (résine, goudron...) avec chauffage éventuel pour obtenir les caractéristiques mécaniques nécessaire à la mise en forme (viscosité...) et addition éventuelle d'un adjuvant de mise en forme (carboxy methylcellulose...)
- Agglomération, par exemple par extrusion à travers une filière
- Séchage
On notera qu'il existe un grand nombre de procédé de production de charbon actif sous forme de bâtonnet selon les matières premières et les fabricants. La description ci-dessus ne se veut évidemment pas limitative mais a essentiellement pour but d'illustrer la simplicité de la modification proposée selon l'invention. Le principe thermique a été rajouté dans l'exemple ci-dessus dans le mélange pulvérulent poudre de charbon et agent liquide. Il aurait pu être rajouté simultanément ou mélangé préalablement avec la poudre de charbon actif. De même le principe actif peut être avantageusement mélangé au préalable avec le liant et être intégré avec lui au charbon actif. Il peut être introduit dans la pâte finale, à la température optimale, juste avant le passage dans la filière. La solution retenue va être celle qui conduit à moindre coût à des particules dans lesquelles principe actif et principe thermique seront parfaitement répartis tout en conservant les caractéristiques mécaniques nécessaires.
La détermination de la quantité optimale d'inerte peut être approchée par un calcul simple. On détermine la capacité adsorbée à l'équilibre en prenant en compte l'élévation de température résultant de l'adsorption. Ce calcul est fait pour 100% d'adsorbant et pour diverses teneurs en inerte. L'adjonction d'inerte se traduit par deux effets opposés. La moindre élévation de température va dans le sens d'augmenter la capacité d'adsorption mais la diminution de la quantité de principe actif a évidemment un effet inverse. Suivant les séparations envisagées (composition, adsorbant, conditions opératoires), on peut trouver un optimum. Cette approche est souvent trop simpliste et il faut généralement tenir compte de la quantité résiduelle adsorbée après régénération qui modifie les bilans thermiques. Un test laboratoire sur un véritable cycle PSA peut être utile pour confirmer ou adapter le choix de la teneur en inerte et de vérifier qu'on obtient bien les gains recherchés.
La taille des particules de quartz Di va être déterminée en fonction de celle du charbon actif Da et de la fraction volume X d'inerte. S'agissant de particules de forme essentiellement isométrique que l'on peut assimiler à des sphères ou des cubes, on va déterminer une dimension telle qu'il y ait au moins autant de microparticules de quartz que de particules de charbon actif.
On obtient la relation : Di< (X/ (1-X) puissance 1/3) * Da
Les particules de charbon étant en moyenne de 30 microns, on utilisera des cristaux de quartz de 14 microns au maximum. Des cristaux de 10 microns seront donc parfaitement adaptés. Il y en aura alors largement plus que de microparticules de charbon, multipliant ainsi les contacts pour un transfert thermique quasi instantané. Exemple 2
Le second exemple concerne une zéolite destinée à la production d'oxygène à partir d'air atmosphérique.
Après une première couche destinée à arrêter l'humidité et l'essentiel du C02, l'adsorbant final sera une LiLSX et on suppose ici que le procédé de base pour fabriquer cette LiLSX consiste à obtenir d'abord de la LSX, de la mettre en forme de billes de 1mm de diamètre , de l'échanger au lithium en colonne puis de l'activer. L'adjonction du principe thermique se fait ici dans l'étape de mise en forme réalisée sur plateau tournant. (ou noduliseur à cuvette suivant le terme technique consacré). Les billes de diamètre sélectionné se forment par accrétion, généralement autour d'un nucléus facilitant le démarrage de la croissance de la particule.
Schématiquement, le système habituel comporte un certain nombre de buses d'injection au dessus du plateau tournant. On introduit ainsi en continu les cristaux de zéolite, des additifs organiques, de la poudre de liant, des aérosols d'eau ou de gel aqueux... es réglages des débits respectifs de ces produits, de la vitesse de rotation du plateau et des bras mélangeurs qu'il supporte éventuellement, de l'orientation dans l'espace du dit plateau, de la position de l'orifice de sortie permet d'obtenir des billes de dimension, répartition en diamètre, composition et consistance requise.
Les étapes suivantes qui vont consister à sécher les billes puis à modifier éventuellement le liant en le transformant en zéolite, à échanger les particules (échange de cations) puis à les activer, ne sont pas modifiées par l'adjonction du principe thermique.
L'injection du principe thermique, ici des micro cristaux de quartz, va se faire par adjonction de buses complémentaires au niveau du plateau tournant.
L'adjonction de 15% volume de sable conduit à une augmentation sensible de la masse finale de la particule et les réglages mentionnés précédemment doivent être adaptés à ces nouvelles conditions. On notera que le principe thermique pourrait être mélangé au préalable aux cristaux de zéolite et injecté simultanément.
La bille ainsi obtenue permet d'augmenter la productivité de l'unité d'adsorption de plusieurs pourcents et de diminuer d'autant la consommation d'énergie spécifique. Si le gain est moindre que ce qu'il peut être obtenu en utilisant des matériaux à changement de phase, l'investissement est quant à lui bien moindre Ceci est particulièrement vrai pour les VSA 02 avec des temps de phase inférieurs à 10 secondes car , comme déjà énoncé, un des intérêts de la solution proposée est en effet que l'échelle du transfert thermique est celui de la poudre ou du cristal, c'est-à-dire très largement inférieur à celui correspondant aux autres solutions de réduction des effets thermiques pour lesquels l'échelle du transfert thermique est approximativement celui de la particule : l'utilisation d'un lit mixte comportant des particules d'adsorbant et des particules de MCP ou bien l'utilisation de billes d'adsorbant avec un noyau inerte.
.On obtient selon l'invention des transferts thermiques beaucoup plus rapide, d'au moins un ordre de grandeur et beaucoup plus régulier que dans les cas cités au dessus. Cet effet va devenir prépondérant avec les RPSA ou URPSA.
Pour cette application, comme pour d'autres, il pourra être intéressant de mettre en uvre plusieurs couches différentes comportant des matériaux adsorbants selon l'invention mais avec un taux de principe thermique différent. La zone de sortie de l'adsorbeur qui ne voit que le front d'impuretés et n'est donc soumise qu'à des fluctuations de température modérées ne pourra comprendre que 7.5% de sable de quartz en volume. Cela permet d'augmenter la capacité d'adsorption de cette zone sans se pénaliser au niveau thermique.
On notera qu'un lit de matériau adsorbant selon l'invention peut être utilisé conjointement avec des lits de composition différente situés à l'amont ou à l'aval. En particulier, un lit selon l'invention peut être utilisé conjointement avec un ou des lits comportant des matériaux à changement de phase. Par exemple, dans le cas d'un VSA 02, il pourra être intéressant d'utiliser sur les premiers 60 à 85% du lit de zéolite un mélange de particules de LiLSX et de MCP et sur les 40 à 15% restant un matériau suivant l'invention. Dans ce cas, on n'utilise ce dernier matériau que dans la zone frontale où la cinétique thermique doit être particulièrement rapide alors que les battements thermiques en eux-mêmes sont plus limités.
On notera que le matériau selon l'invention pourrait être lui-même mélangé avec des particules d'adsorbant afin de former un lit de capacité thermique moindre. Ceci pourrait par exemple permettre d'utiliser deux couches de capacité thermique différente avec un seul type de particules modifiées. Par exemple, un premier lit de matériau selon l'invention comportant 80% de zéolite et 20% de poudre métallique et un deuxième lit constitué pour moitié de ces mêmes particules et pour moitié de zéolite, les deux types de particules étant mélangés intimement. On pourra également réaliser une unité d'adsorption comportant une pluralité de contacteurs à passages parallèle, en particulier une pluralité de monolithes, installés en série, chaque contacteur ayant une fraction volumique de matériau thermique adaptée à sa position entre entrée et sortie de l'adsorbeur.

Claims

Revendications
1. Mélange adsorbant composite d'au moins un principe actif adsorbant sous forme de microparticules et un principe thermique non-adsorbant sous forme de microparticules caractérisé en ce que la dimension caractéristique moyenne Di des microparticules du principe thermique est inférieure à la dimension caractéristique moyenne Da des microparticules du principe actif, ledit mélange comprenant une fraction volumique X de principe thermique et une
1
fraction (1 - X) de principe actif avec X < 0,5 et Di < ( ~)3 * Da, et les microparticules du principe thermique étant supérieures en nombre aux microparticules du principe actif.
2. Mélange adsorbant selon la revendication 1, caractérisé en ce que les microparticules du principe thermique sont de dimension caractéristique moyenne comprise entre 0,1 et 100 microns, préférentiellement entre 0,5 et 25 microns.
3. Mélange adsorbant selon l'une des revendications 1 ou 2, caractérisé en ce que le constituant formant le principe thermique ait une porosité interne inférieure à 20% en volume, préférentiellement inférieure à 10%, encore plus préférentiellement inférieure à 1%.
4. Mélange adsorbant selon l'une des revendications 1 à 3, caractérisé en ce que le principe thermique possède une capacité thermique volumique supérieure à 1200 KJ/m /K, préférentiellement supérieure à 1500 KJ/m /K et encore préférentiellement à 2000 KJ/m /K.
5. Mélange adsorbant selon l'une des revendications 1 à 4, caractérisé en ce que le ratio en volume du principe thermique sur le principe actif peut aller de 1/3 jusqu'à 1/30, de préférence de 1/5 à 1/9.
6. Mélange adsorbant selon la revendication 5, caractérisé en ce que, en masse, le principe thermique représente 5% à 90% du mélange adsorbant, de préférence 15 à 50%.
7. Mélange adsorbant selon l'une des revendications 1 à 6, caractérisé en ce que le principe actif adsorbant est choisi dans le groupe formé par les zéolites, les charbons actifs, les alumines activées, les gels de silice, les résines, les tamis moléculaires carbonés ou non, les structures métallo-organique, les oxydes ou hydroxydes de métaux alcalins ou alcalino terreux, les structures poreuses contenant une substance capable de réagir réversiblement avec une ou plusieurs molécules de gaz, telle que les aminés, les solvants physiques, les complexants métalliques, les oxydes ou les hydroxydes métalliques.
8. Mélange adsorbant selon l'une des revendications 1 à 7, caractérisé en ce que le principe thermique est pris dans le groupe formé par les métaux ou les composés métalliques, en particulier les oxydes métalliques, le verre, les roches, les porcelaines ou céramiques.
9. Particules adsorbantes constituées d'un mélange adsorbant tel que défini selon l'une des revendications 1 à 10, présentant une forme essentiellement sphérique de diamètre moyen allant de 0,5 à 3 mm ou une forme de bâtonnet de diamètre moyen allant de 0,3 à 3 mm et de longueur moyenne présentant un ratio de 1/1 à 6/1 par rapport au diamètre.
10. Monolithe comportant un mélange adsorbant tel que défini selon l'une des revendications 1 à 10, d'épaisseur de paroi inférieure ou égale à 4mm, préférentiellement inférieure à 2 mm.
11. Contacteur à passages parallèles comportant, en dépôt sur un support, un mélange adsorbant tel que défini selon l'une des revendications 1 à 8, préférentiellement en couche inférieure à 1 mm, encore préférentiellement en couche inférieure à 500 microns.
12. Fibres adsorbantes de diamètre allant de 20 microns à 2 millimètres et comportant un mélange adsorbant tel que défini selon l'une des revendications 1 à 8.
13. Adsorbeur mettant en œuvre un mélange adsorbant tel que défini selon l'une des revendications 1 à 8.
14. Unité d'adsorption de type PSA H2, PSA C02, PSA 02, PSA N2, PSA CO, PSA CH4 ou PSA Hélium comprenant au moins un adsorbeur selon la revendication 13.
15. Unité d'adsorption selon la revendication 14 mettant en œuvre un temps de cycle inférieur à 1 minute.
PCT/FR2015/053210 2014-12-11 2015-11-25 Mélange adsorbant à capacité thermique améliorée WO2016092176A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580065986.3A CN106999908A (zh) 2014-12-11 2015-11-25 具有改善的热容量的吸附剂混合物
US15/534,908 US20180264437A1 (en) 2014-12-11 2015-11-25 Adsorbent mixture having improved thermal capacity
EP15808735.3A EP3229954A1 (fr) 2014-12-11 2015-11-25 Mélange adsorbant à capacité thermique améliorée

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1462222A FR3029803B1 (fr) 2014-12-11 2014-12-11 Melange adsorbant a capacite thermique amelioree
FR1462222 2014-12-11

Publications (1)

Publication Number Publication Date
WO2016092176A1 true WO2016092176A1 (fr) 2016-06-16

Family

ID=52627387

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2015/053210 WO2016092176A1 (fr) 2014-12-11 2015-11-25 Mélange adsorbant à capacité thermique améliorée

Country Status (5)

Country Link
US (1) US20180264437A1 (fr)
EP (1) EP3229954A1 (fr)
CN (1) CN106999908A (fr)
FR (1) FR3029803B1 (fr)
WO (1) WO2016092176A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018117691A1 (de) * 2018-07-23 2020-01-23 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Filtereinrichtung
US11471857B2 (en) 2018-08-16 2022-10-18 Commonwealth Scientific And Industrial Research Organisation Metal organic framework based water capture apparatus

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6863732B2 (ja) * 2016-12-26 2021-04-21 株式会社マーレ フィルターシステムズ ハニカム吸着材ならびにその製造方法およびキャニスタ
US11571651B2 (en) * 2017-12-22 2023-02-07 Praxair Technology, Inc. Core-shell composite adsorbent for use in hydrogen and helium PSA processes
JP6632005B1 (ja) * 2018-08-29 2020-01-15 株式会社西部技研 ガス吸着体とその製法及び二酸化炭素ガス濃縮装置
CA3157349A1 (fr) * 2019-11-08 2021-05-14 Wei Liu Traitement de fluide dans des structures poreuses encapsulees

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4499208A (en) 1983-05-13 1985-02-12 Union Carbide Corporation Activated carbon adsorbent with increased heat capacity and the production thereof
EP0325392A2 (fr) * 1988-01-20 1989-07-26 The BOC Group, Inc. Méthode de garnissage de lits d'adsorption avec des tamis moleculaires dans un système d'adsorption à pression alternée
US4971605A (en) 1989-09-18 1990-11-20 Institute Of Gas Technology Isothermal thermo-cyclic processing
FR2794993A1 (fr) 1999-06-18 2000-12-22 Air Liquide Utilisation d'un adsorbant particulaire non homogene dans un procede de separation de gaz
EP1188470A2 (fr) 2000-09-15 2002-03-20 Praxair Technology, Inc. Procédé d'adsorption à pression alternée comprenant une couche d'adsorbant mixte
WO2002087307A2 (fr) * 2001-05-01 2002-11-07 Flair Corporation Adsorbants a utiliser dans des colonnes de fractionnement a adsorbants regeneratifs et procedes de production correspondants
WO2004050789A1 (fr) * 2002-11-27 2004-06-17 Centre National De La Recherche Scientifique Materiau composite, son utilisation pour la gestion des effets thermiques dans un processus physico-chimique
EP1536128A1 (fr) * 2002-06-18 2005-06-01 Osaka Gas Co., Ltd. Adsorbant de type a stockage de chaleur latente destine a une boite metallique et son procede de production
US20080282892A1 (en) * 2007-05-18 2008-11-20 Deckman Harry W Low mesopore adsorbent contactors for use in swing adsorption processes
WO2009134543A1 (fr) * 2008-04-30 2009-11-05 Exxonmobil Upstream Research Company Procédé et appareil pour l’élimination d’huile d’un courant gazeux utilitaire
FR2952553A1 (fr) 2009-11-19 2011-05-20 Air Liquide Procede de purification d'un flux gazeux mettant en oeuvre un contacteur a passages paralleles presentant une conservation de ses performances
WO2012136913A1 (fr) * 2011-04-08 2012-10-11 L'air Liquide,Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Mélange d'un adsorbant et d'un matériau à changement de phase à densité adaptée
WO2014044968A1 (fr) * 2012-09-21 2014-03-27 L'air Liquide,Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Mélange adsorbant comprenant des particules d'adsorbant et des particules de matériau à changement de phase

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2198946B8 (fr) * 2008-12-22 2019-08-07 Glatt Systemtechnik GmbH Bille absorbante composite, son procédé de production et procédé de séparation des gaz

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4499208A (en) 1983-05-13 1985-02-12 Union Carbide Corporation Activated carbon adsorbent with increased heat capacity and the production thereof
EP0325392A2 (fr) * 1988-01-20 1989-07-26 The BOC Group, Inc. Méthode de garnissage de lits d'adsorption avec des tamis moleculaires dans un système d'adsorption à pression alternée
US4971605A (en) 1989-09-18 1990-11-20 Institute Of Gas Technology Isothermal thermo-cyclic processing
FR2794993A1 (fr) 1999-06-18 2000-12-22 Air Liquide Utilisation d'un adsorbant particulaire non homogene dans un procede de separation de gaz
EP1188470A2 (fr) 2000-09-15 2002-03-20 Praxair Technology, Inc. Procédé d'adsorption à pression alternée comprenant une couche d'adsorbant mixte
WO2002087307A2 (fr) * 2001-05-01 2002-11-07 Flair Corporation Adsorbants a utiliser dans des colonnes de fractionnement a adsorbants regeneratifs et procedes de production correspondants
EP1536128A1 (fr) * 2002-06-18 2005-06-01 Osaka Gas Co., Ltd. Adsorbant de type a stockage de chaleur latente destine a une boite metallique et son procede de production
WO2004050789A1 (fr) * 2002-11-27 2004-06-17 Centre National De La Recherche Scientifique Materiau composite, son utilisation pour la gestion des effets thermiques dans un processus physico-chimique
US20080282892A1 (en) * 2007-05-18 2008-11-20 Deckman Harry W Low mesopore adsorbent contactors for use in swing adsorption processes
WO2009134543A1 (fr) * 2008-04-30 2009-11-05 Exxonmobil Upstream Research Company Procédé et appareil pour l’élimination d’huile d’un courant gazeux utilitaire
FR2952553A1 (fr) 2009-11-19 2011-05-20 Air Liquide Procede de purification d'un flux gazeux mettant en oeuvre un contacteur a passages paralleles presentant une conservation de ses performances
WO2012136913A1 (fr) * 2011-04-08 2012-10-11 L'air Liquide,Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Mélange d'un adsorbant et d'un matériau à changement de phase à densité adaptée
WO2014044968A1 (fr) * 2012-09-21 2014-03-27 L'air Liquide,Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Mélange adsorbant comprenant des particules d'adsorbant et des particules de matériau à changement de phase

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
F. REZAEI; P. WEBLEY, SEPARATION AND PURIFICATION TECHNOLOGY, vol. 0, 2010, pages 243 - 256
RUTHVEN; THAERON, GAS SEP. PURIF., vol. 10, 1996, pages 63

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018117691A1 (de) * 2018-07-23 2020-01-23 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Filtereinrichtung
CN110743311A (zh) * 2018-07-23 2020-02-04 保时捷股份公司 过滤装置
DE102018117691B4 (de) 2018-07-23 2022-04-28 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Filtereinrichtung
US11471857B2 (en) 2018-08-16 2022-10-18 Commonwealth Scientific And Industrial Research Organisation Metal organic framework based water capture apparatus
US11565236B2 (en) 2018-08-16 2023-01-31 Commonwealth Scientific And Industrial Research Organisation Metal organic framework based water capture apparatus
US11779903B2 (en) 2018-08-16 2023-10-10 Commonwealth Scientific And Industrial Research Organisation Metal organic framework based water capture apparatus

Also Published As

Publication number Publication date
FR3029803A1 (fr) 2016-06-17
FR3029803B1 (fr) 2019-09-27
EP3229954A1 (fr) 2017-10-18
US20180264437A1 (en) 2018-09-20
CN106999908A (zh) 2017-08-01

Similar Documents

Publication Publication Date Title
FR3029803B1 (fr) Melange adsorbant a capacite thermique amelioree
EP2073913B1 (fr) Procédé psa à lit d&#39;adsorption composite formé d&#39;un adsorbant et d&#39;agglomérats de mcp
CA2830170C (fr) Melange d&#39;un adsorbant et d&#39;un materiau a changement de phase a densite adaptee
CA2735969C (fr) Fabrication d&#39;agglomerat compose de materiau a changement phase et presentant des proprietes controlees
WO2012136912A1 (fr) Particule d&#39;un matériau à changement de phase avec couche d&#39;enrobage
EP2931417B1 (fr) Adsorbants zéolithiques et leurs utilisations
EP2958650B1 (fr) Procédé de séparation des xylènes en lit mobile simulé au moyen d&#39;un solide adsorbant zéolithique de granulométrie comprise entre 150 et 500 microns
FR3010402A1 (fr) Adsorbants zeolithiques de haute surface externe, leur procede de preparation et leurs utilisations
FR2891159A1 (fr) Procede psa a lit d&#39;adsorption composite forme d&#39;un adsorbant et d&#39;agglomerats de mcp
FR2792850A1 (fr) Adsorbant a macroporosite elevee utilisable dans un procede d&#39;adsorption de gaz, notamment un procede psa
FR2935616A3 (fr) Dispositif pour le traitement d&#39;un gaz, en particulier pour le sechage de gaz naturel ou de biogaz
EP3177381A1 (fr) Adsorbants zéolithiques à faible taux de liant et à haute surface externe, leur procédé de préparation et leurs utilisations
FR2891160A1 (fr) Procede psa a lit d&#39;adsorption composite forme d&#39;un adsorbant et d&#39;agglomerats de mcp a conductivite thermique elevee
EP2897725A1 (fr) Mélange adsorbant comprenant des particules d&#39;adsorbant et des particules de matériau à changement de phase
WO2014108568A1 (fr) Média réactif comprenant un support poreux imprégné d&#39;un composé organique capable de former des clathrates de gaz, et son utilisation pour la séparation et le stockage de co2
CA3153854C (fr) Separation des gaz de l&#39;air
FR3013236A1 (fr) Materiau granulaire zeolithique a structure connexe
FR3105020A1 (fr) Adsorbant zéolithique pour la séparation d’isomères d’hydrocarbures
FR2973807A1 (fr) Melange d&#39;un adsorbant et d&#39;un materiau a changement de phase a densite adaptee
FR2973719A1 (fr) Melange d&#39;un materiau adsorbant et d&#39;un materiau a changement de phase separables par aimantation
FR3105021A1 (fr) Adsorbant zéolithique pour la séparation d’isomères d’hydrocarbures
FR2974519A1 (fr) Procede de purification d&#39;un gaz humide contant des cov par adsorption faisant appel a une phase de regeneration par chauffage par micro-ondes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15808735

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015808735

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15534908

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE