WO2016091257A1 - Druckmesseinrichtung und kupplungsaktoreinrichtung mit einer hydraulischen strecke - Google Patents

Druckmesseinrichtung und kupplungsaktoreinrichtung mit einer hydraulischen strecke Download PDF

Info

Publication number
WO2016091257A1
WO2016091257A1 PCT/DE2015/200527 DE2015200527W WO2016091257A1 WO 2016091257 A1 WO2016091257 A1 WO 2016091257A1 DE 2015200527 W DE2015200527 W DE 2015200527W WO 2016091257 A1 WO2016091257 A1 WO 2016091257A1
Authority
WO
WIPO (PCT)
Prior art keywords
measuring
pressure
measuring device
range
channel
Prior art date
Application number
PCT/DE2015/200527
Other languages
English (en)
French (fr)
Inventor
Markus Dietrich
Original Assignee
Schaeffler Technologies AG & Co. KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schaeffler Technologies AG & Co. KG filed Critical Schaeffler Technologies AG & Co. KG
Priority to CN201580074508.9A priority Critical patent/CN107209079B/zh
Priority to DE112015005509.6T priority patent/DE112015005509A5/de
Priority to JP2017530654A priority patent/JP6625640B2/ja
Publication of WO2016091257A1 publication Critical patent/WO2016091257A1/de

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means
    • G01L9/02Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in ohmic resistance, e.g. of potentiometers, electric circuits therefor, e.g. bridges, amplifiers or signal conditioning
    • G01L9/04Measuring steady of quasi-steady pressure of fluid or fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material, by electric or magnetic means by making use of variations in ohmic resistance, e.g. of potentiometers, electric circuits therefor, e.g. bridges, amplifiers or signal conditioning of resistance-strain gauges
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D48/00External control of clutches
    • F16D48/06Control by electric or electronic means, e.g. of fluid pressure
    • F16D48/066Control of fluid pressure, e.g. using an accumulator
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L15/00Devices or apparatus for measuring two or more fluid pressure values simultaneously
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2300/00Special features for couplings or clutches
    • F16D2300/18Sensors; Details or arrangements thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D25/00Fluid-actuated clutches
    • F16D25/08Fluid-actuated clutches with fluid-actuated member not rotating with a clutching member
    • F16D25/088Fluid-actuated clutches with fluid-actuated member not rotating with a clutching member the line of action of the fluid-actuated members being distinctly separate from the axis of rotation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D25/00Fluid-actuated clutches
    • F16D25/12Details not specific to one of the before-mentioned types

Definitions

  • the invention relates to a pressure measuring device comprising a pressure sensor and a sensor electronics, wherein the sensor electronics has a first measuring channel for the pressure measurement and a clutch actuator device.
  • pressure measuring devices having a pressure sensor having a measuring bridge and sensor electronics having two measuring channels.
  • Analog / digital converters which are part of the measuring channels, are set so that both cover the total measuring range of the pressure measuring device (FIG. 4).
  • the measuring bridge comprises center taps at which the analog / digital converters pick up a bridge voltage.
  • redundancy is required, as shown in FIG. 5, by using two measuring channels which are led to two analog / digital converters of the sensor electronics, these two measuring channels each having a resolution over the entire measuring range of the sensor electronics Own pressure measuring device.
  • a method for controlling and / or regulating an automated clutch is known from DE 10 2007 008 977 A1, in which two different parameters in different ranges of the clutch torque of the clutch are considered in order to realize a higher accuracy for the control.
  • the clutch actuated actuator is actuated according to a characteristic which in a first range of the clutch torque, the clutch torque in dependence on the position of the actuator and in a second range of the clutch torque, the clutch torque as a function of the, applied by the actuator to the clutch force. This requires an increased computing power in the signal evaluation.
  • the invention has for its object to provide a pressure measuring device with improved accuracy, although the signal evaluation is performed time-saving.
  • the object is achieved in that the measuring electronics has a second measuring channel for the pressure measurement, the first measuring channel having a first measuring range and the second measuring channel having a second measuring range, the first and the second measuring range each comprising at least a part of a total measuring range ,
  • the measuring electronics has a second measuring channel for the pressure measurement, the first measuring channel having a first measuring range and the second measuring channel having a second measuring range, the first and the second measuring range each comprising at least a part of a total measuring range ,
  • the first measuring channel comprises the entire measuring range and the second measuring channel comprises a lower part of the total measuring range.
  • pressure signals which are detected by both measuring channels can be plausibilized against each other, since a certain pressure value is expected in each measuring range. If the expected pressure value does not occur, it can be concluded that the pressure measuring device has an error.
  • the first measuring channel comprises an upper part of the total measuring range and the second measuring channel the lower part of the total measuring range.
  • a signal is emitted only from a measuring channel in the presence of a specific pressure signal, since the other measuring range can not detect the present pressure signal.
  • This embodiment is particularly important whenever pressure signals at the edges of the total measuring range of the pressure measuring device are of particular importance. The part of the total measuring range between the upper and the lower part of the total measuring range does not need to be considered in more detail since no pressure signals are evaluated in this area.
  • the first measuring channel has a first analog / digital converter spanning the first measuring range and the second measuring channel has a second analog / digital converter spanning the second measuring range, which are connected to a digital signal processor of the sensor electronics.
  • the use of two analog / digital converters with different resolutions makes it possible to create a pressure measuring device in a particularly simple manner in terms of hardware, which at the same time makes it possible to check the plausibility of the two output signals of the measuring channels relative to one another for pressure measurement.
  • a measuring bridge of the pressure sensor is connected to the two analog / digital converters of the sensor electronics. Both analog / digital converters evaluate the same bridge voltage output from the measuring bridge, which enables a particularly simple plausibility check.
  • the pressure sensor has two measuring bridges, wherein in each case one of the measuring bridges is connected to one of the analog / digital converters. The use of two measuring bridges allows conclusions about the operation of the entire pressure measuring device.
  • the plausibility measuring section also includes the measuring bridges. This means that faults of the measuring bridges can also be detected by this evaluation option.
  • Plausibilmaschine the output from the two analog / digital converters signals to a plausibility device out. Since the plausibility check device is arranged outside the measuring bridge and sensor electronics, it can thus draw conclusions about the operation of the entire pressure measuring device and detect any errors.
  • a development of the invention relates to a clutch actuator device having a hydraulic path, comprising a pressure measuring device for detecting predetermined states of an actuator and / or a clutch.
  • Clutch actuator device in which particularly accurate measurement signals are achieved, the pressure measuring device is designed according to at least one feature described in this patent application.
  • a further development of the invention relates to a method for checking the plausibility of output signals emitted by a pressure measuring device, wherein the output signals output by the at least two measuring channels with different measuring ranges are respectively compared with a predetermined output signal via the two measuring channels Pressure measuring device is closed when at least one output from the pressure measuring device output signal deviates from the predetermined output signal.
  • each measuring channel is connected to a measuring bridge, wherein an error of one of the measuring bridges is concluded when an output from the pressure measuring device output signal deviates from the predetermined output signal.
  • FIG. 1 shows a schematic structure of a hydraulic coupling system
  • Fig. 2 shows a first embodiment of the pressure measuring device according to the invention
  • FIG. 3 shows a second embodiment of the pressure measuring device according to the invention
  • Fig. 4 shows an embodiment of the pressure measuring device according to the prior
  • FIG. 5 shows a second embodiment of the pressure measuring device according to the
  • Fig. 1 the structure of a hydraulic coupling system 1 is shown schematically using the example of a hydrostatic clutch actuator.
  • This schematic illustration shows only the structure for operating one of two double clutches of a Dual clutch transmission system.
  • the actuation of the second clutch of the double clutch transmission system is analogous and will not be further explained here.
  • the hydrostatic clutch system comprises a control unit 2, which has a
  • Clutch actuator 3 controls. In a change in position of the clutch actuator 3, a piston 4 of a master cylinder 5 is moved along the Aktorweges to the right, whereby the volume changed in the master cylinder 5 and a pressure p in the master cylinder 5 is constructed. This pressure p is transmitted via a hydraulic fluid 6, which serves as a pressure medium, via a hydraulic line 7 to a slave cylinder 8, which actuates the clutch 9 via a preload spring 12.
  • the pressure p of the hydraulic fluid 6 causes a change in the path in the slave cylinder 8, which is reflected in the actuation of the clutch 9.
  • the pressure p is determined in the master cylinder 5 by means of a pressure measuring device 10, which is connected to the control unit 2.
  • the path traveled by the clutch actuator 3 along the actuator path is determined by a displacement sensor 11. The one of the
  • Clutch actuator 3 traveled path is equated below with the path of the clutch 9.
  • the pressure measuring device 10 consists of a measuring bridge 13, preferably a Wheatstone resistance bridge, which is arranged on a strain-sensitive carrier element 14.
  • This support member 14 may be made of steel or ceramic and has a sidecut.
  • This measuring bridge 13 is connected on the one hand to a supply voltage Vss and on the other hand to a ground GND.
  • the center taps 15 and 16 of the measuring bridge 13 are guided to a sensor electronics 17.
  • the sensor electronics 17 has measuring channels 20, 21, each with an analog / digital converter 18, 19, which are connected to a digital signal processor 22, which outputs an output signal 21 to the control unit 2.
  • the analog / digital converters 18, 19 have different resolutions for this purpose.
  • the analog / digital converter 18 includes a resolution over the entire measuring range of the pressure measuring device 10 of 50 bar.
  • the second analog / digital converter 19 comprises a resolution between 0 and 5 bar, which corresponds to the lower part of the total measuring range. At pressures of> 5 bar, the second analog / digital converter 19 enters a clamping state, which means that in principle a signal is output which corresponds to a pressure of 5 bar.
  • the measuring bridge 13 outputs at the center taps 16, 17, a bridge voltage, which results from how much the individual resistors of the measuring bridge 13 are stretched or compressed.
  • a pressure of ⁇ 5 bar is output by the measuring bridge 13
  • the same output signals must be output by the two analog / digital converters 18, 19 when the electronic sensor 17 is operational. If this is not the case, then an error in the sensor electronics 17 is closed.
  • the control unit 2 must receive a signal of 48 bar from the analog / digital converter 18 and a signal from the analog / digital converter 19 5 bar. If the analog / digital converter indicates a signal ⁇ 5 bar, it can be concluded that it is not intact.
  • the electronics is redundant.
  • the illustrated in Fig. 3 second embodiment is a pressure measuring device 10, which has two measuring bridges 13 and 24.
  • Each measuring bridge 13, 24 leads with its center taps to one of the analog / digital converters 18, 19. Also in this sensor electronics 17, the idea of using two different measuring ranges in the different analog / digital converters 18, 19 remains. However, with this embodiment, in addition, the function of the measuring bridges 13, 24 are monitored. Again, the controller receives 2 of the two Analog / digital converters 18, 19 each have an output signal, which is evaluated in the manner described above.
  • the pressure measuring device 10 is not limited to a total measuring range of 50 bar and the proposed partial measuring ranges, but can also be applied to other applications to other pressures.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Measuring Fluid Pressure (AREA)
  • Hydraulic Clutches, Magnetic Clutches, Fluid Clutches, And Fluid Joints (AREA)

Abstract

Die Erfindung betrifft eine Druckmesseinrichtung, umfassend einen Drucksensor (13, 24) mit einer Sensorelektronik (17), wobei die Sensorelektronik (17) einen ersten Messkanal (20) für die Druckmessung aufweist. Bei einer Druckmesseinrichtung, bei welcher besonders genaue Messsignale erhalten werden, weist die Sensorelektronik (17) einen zweiten Messkanal (21) für die Druckmessung auf, wobei der erste Messkanal (20) einen ersten Messbereich und der zweite Messkanal (21) einen zweiten Messbereich aufweist, wobei der erste und der zweite Messbereich jeweils zumindest einen Teil eines Gesamtmessbereiches umfassen.

Description

Druckmesseinrichtung und Kupplungsaktoreinrichtung mit einer hydraulischen
Strecke
Die Erfindung betrifft eine Druckmesseinrichtung, umfassend einen Drucksensor und eine Sensorelektronik, wobei die Sensorelektronik einen ersten Messkanal für die Druckmessung aufweist sowie eine Kupplungsaktoreinrichtung.
Aus der DE 10 201 1 014 931 A1 ist ein Verfahren zum Steuern einer automatisierten Kupplung bekannt, die über ein hydraulisches Kupplungsbetatigungssystem mit einem hydrostatischen Aktor betätigt wird. Um den Zustand des hydraulischen Kupplungsbe- tätigungssystems genau erfassen zu können, wird der Druck des hydrostatischen Aktors mit einem Drucksensor erfasst.
Bei solchen Aktoren mit hydraulischer Strecke ist es notwendig, dass in einzelnen Abschnitten des Messbereiches des Drucksensors sehr genaue Messergebnisse gelie- fert werden, da in diesen einzelnen Messbereichen Rückschlüsse auf den Zustand des Kupplungsaktors oder der Kupplung gezogen werden.
Wie aus Fig. 4 und 5 hervorgeht, sind Druckmesseinrichtungen mit einem, eine Messbrücke aufweisenden Drucksensor und einer, zwei Messkanäle aufweisenden Sensorelektronik bekannt. Analog/Digital-Wandler, welche Bestandteil der Messkanäle sind, sind dabei so eingestellt, dass beide den Gesamtmessbereich der Druckmesseinrichtung abdecken (Fig. 4). Die Messbrücke umfasst Mittel abgriffe, an denen die Analog/Digital-Wandler eine Brückenspannung abgreifen. Für eine Erhöhung der Sicherheitseinstufung wird, wie in Fig. 5 gezeigt, eine Redundanz benötigt, indem zwei Messkanäle benutzt werden, die an zwei Analog/Digital-Wandler der Sensor- elektronik geführt sind, wobei diese beiden Messkanäle jeweils eine Auflösung über den Gesamtmessbereich der Druckmesseinrichtung besitzen.
Aus der DE 10 2007 008 977 A1 ist ein Verfahren zum Steuern und/oder Regeln einer automatisierten Kupplung bekannt, bei welchem zur Realisierung einer höheren Genauigkeit für die Steuerung zwei verschiedene Parameter in unterschiedlichen Berei- chen des Kupplungsmomentes der Kupplung betrachtet werden. Das, die Kupplung betätigende Betätigungsglied wird entsprechend einer Kennlinie betätigt, die in einem ersten Bereich des Kupplungsmomentes das Kupplungsmoment in Abhängigkeit von der Stellung des Betätigungsgliedes und in einem zweiten Bereich des Kupplungsmomentes das Kupplungsmoment in Abhängigkeit von der, vom Betätigungsglied auf die Kupplung aufgebrachten Kraft angibt. Dies erfordert eine erhöhte Rechenleistung bei der Signalauswertung.
Der Erfindung liegt die Aufgabe zugrunde, eine Druckmesseinrichtung mit einer verbesserten Messgenauigkeit anzugeben, obwohl die Signalauswertung zeitsparend ausgeführt wird.
Erfindungsgemäß ist die Aufgabe dadurch gelöst, dass die Messelektronik einen zwei- ten Messkanal für die Druckmessung aufweist, wobei der erste Messkanal einen ersten Messbereich und der zweite Messkanal einen zweiten Messbereich aufweisen, wobei der erste und der zweite Messbereich jeweils zumindest einen Teil eines Gesamtmessbereiches umfassen. Durch die Aufteilung des Gesamtmessbereiches in Teilmessbereiche der beiden Messkanäle wird erreicht, dass jeweils der Messbereich, in welchem ein Drucksignal erwartet wird, eine hohe Messgenauigkeit aufweist. Deshalb werden die Messbereiche so eingestellt, dass sie den zu erwartenden Druckwerten des verwendeten Drucksensors entsprechen.
Vorteilhafterweise umfasst der erste Messkanal den Gesamtmessbereich und der zweite Messkanal einen unteren Teil des Gesamtmessbereiches. Somit lassen sich Drucksignale, die von beiden Messkanälen detektiert werden, einfach gegeneinander plausibilisieren, da in jedem Messbereich ein bestimmter Druckwert erwartet wird. Tritt der erwartete Druckwert nicht auf, kann auf einen Fehler der Druckmesseinrichtung geschlossen werden.
In einer Alternative umfasst der erste Messkanal einen oberen Teil des Gesamtmess- bereiches und der zweite Messkanal den unteren Teil des Gesamtmessbereiches. Bei dieser Ausgestaltung wird nur von einem Messkanal bei Vorliegen eines bestimmten Drucksignales ein Signal abgegeben, da der andere Messbereich das vorliegende Drucksignal nicht erfassen kann. Diese Ausführung ist insbesondere immer dann von Bedeutung, wenn Drucksignale an den Rändern des Gesamtmessbereiches der Druckmesseinrichtung von besonderer Bedeutung sind. Der Teil des Gesamtmessbereiches, der zwischen dem oberen und dem unteren Teil des Gesamtmessbereiches liegt, muss dabei nicht näher betrachtet werden, da in diesem Bereich keine Drucksignale ausgewertet werden.
In einer Ausgestaltung weist der erste Messkanal einen ersten, den ersten Messbereich aufspannenden Analog/Digital-Wandler und der zweite Messkanal einen zwei- ten, den zweiten Messbereich aufspannenden Analog/Digital-Wandler auf, welche mit einem digitalen Signalprozessor der Sensorelektronik verbunden sind. Durch die Verwendung von zwei Analog/Digital-Wandlern mit unterschiedlichen Auflösungen lässt sich hardwaremäßig auf besonders einfache Art und Weise eine Druckmesseinrichtung erstellen, die gleichzeitig zur Druckmessung eine Plausibilisierung der beiden Ausgangssignale der Messkanäle zueinander ermöglicht.
In einer Variante ist eine Messbrücke des Drucksensors mit den beiden Analog/Digital-Wandlern der Sensorelektronik verbunden. Dabei wird von beiden Analog/Digital-Wandlern dieselbe, von der Messbrücke ausgegebene Brückenspannung ausgewertet, was eine besonders einfache Plausibilisierung ermöglicht. Alternativ weist der Drucksensor zwei Messbrücken auf, wobei jeweils eine der Messbrücken mit je einem der Analog/Digital-Wandler verbunden ist. Die Verwendung von zwei Messbrücken erlaubt Rückschlüsse über die Arbeitsweise der gesamten Druckmesseinrichtung, Dabei sind in die Plausibilisierungstrecke auch die Messbrücken einbezogen. Somit können durch diese Auswertemöglichkeit auch Fehler der Mess- brücken detektiert werden.
In einer Ausführungsform ist ein Ausgangssignal der Sensorelektronik zur
Plausibilisierung der von den beiden Analog/Digital-Wandlern abgegebenen Signale an eine Plausibilisierungseinrichtung geführt. Da die Plausibilisierungseinrichtung außerhalb von Messbrücke und Sensorelektronik angeordnet ist, kann sie somit Rück- Schlüsse auf die Arbeitsweise der gesamten Druckmesseinrichtung führen und eventuelle Fehler erkennen.
Eine Weiterbildung der Erfindung betrifft eine Kupplungsaktoreinrichtung mit einer hydraulischen Strecke, umfassend eine Druckmesseinrichtung zur Erfassung von vorgegebenen Zuständen eines Aktors und/oder einer Kupplung. Bei einer
Kupplungsaktoreinrichtung, bei welcher besonders genaue Messsignale erreicht werden, ist die Druckmesseinrichtung nach mindestens einem in dieser Schutzrechtsanmeldung beschriebenen Merkmal ausgebildet. Eine weitere Weiterbildung der Erfindung betrifft ein Verfahren zur Plausibilisierung von, von einer Druckmesseinnchtung abgegebenen Ausgangssignalen, wobei die, von der mindestens zwei Messkanäle mit unterschiedlichen Messbereichen aufweisenden Druckmesseinrichtung über die beiden Messkanäle ausgegebenen Ausgangssignale jeweils mit einem vorgegebenen Ausgangssignal verglichen werden, wobei auf einen Fehler der Druckmesseinrichtung geschlossen wird, wenn mindestens ein von der Druckmesseinrichtung abgegebenes Ausgangssignal von dem vorgegebenen Ausgangssignal abweicht. Dadurch ist eine besonders einfache und kostengünstige Fehlerüberwachung der Druckmesseinrichtung möglich. In einer Ausgestaltung ist jeder Messkanal mit einer Messbrücke verbunden, wobei auf einen Fehler einer der Messbrücken geschlossen wird, wenn ein von der Druckmesseinrichtung abgegebenes Ausgangssignal von dem vorgegebenen Ausgangssignal abweicht. Durch die Verwendung einer Messbrücke für jeweils einen Messkanal wird gleichzeitig die Messbrücke in die Überwachung mit eingeschlossen, weshalb ei- ne Verschiebung der Messbrücke zuverlässig detektiert werden kann.
Die Erfindung lässt mehrere Ausführungsformen zu. Zwei davon sollen anhand der in der Zeichnung dargestellten Figuren näher erläutert werden.
Es zeigen:
Fig. 1 einen schematischen Aufbau eines hydraulischen Kupplungssystems, Fig. 2 ein erstes Ausführungsbeispiel der erfindungsgemäßen Druckmesseinrichtung,
Fig. 3 ein zweites Ausführungsbeispiel der erfindungsgemäßen Druckmesseinrichtung,
Fig. 4 ein Ausführungsbeispiel der Druckmesseinrichtung nach dem Stand der
Technik,
Fig. 5 ein zweites Ausführungsbeispiel der Druckmesseinrichtung nach dem
Stand der Technik.
In Fig. 1 ist schematisch der Aufbau eines hydraulischen Kupplungssystems 1 am Beispiel eines hydrostatischen Kupplungsaktors dargestellt. Diese schematische Dar- Stellung zeigt nur den Aufbau zur Betätigung einer von zwei Doppelkupplungen eines Doppelkupplungsgetriebesystems. Die Betätigung der zweiten Kupplung des Doppel- kupplungsgetriebesystems erfolgt analog und wird hier nicht weiter erläutert.
Das hydrostatische Kupplungssystem umfasst ein Steuergerät 2, das einen
Kupplungsaktor 3 ansteuert. Bei einer Lageveränderung des Kupplungsaktors 3 wird ein Kolben 4 eines Geberzylinders 5 entlang des Aktorweges nach rechts bewegt, wodurch das Volumen im Geberzylinder 5 verändert und ein Druck p in dem Geberzylinder 5 aufgebaut wird. Dieser Druck p wird über eine Hydraulikflüssigkeit 6, welche als Druckmittel dient, über eine Hydraulikleitung 7 zu einem Nehmerzylinder 8 übertragen, der die Kupplung 9 über eine Vorlastfeder 12 betätigt. Der Druck p der Hy- draulikflüssigkeit 6 verursacht dabei in dem Nehmerzylinder 8 eine Wegänderung, was sich in der Betätigung der Kupplung 9 niederschlägt. Der Druck p wird in dem Geberzylinder 5 mittels einer Druckmesseinrichtung 10 ermittelt, die mit dem Steuergerät 2 verbunden ist. Die von dem Kupplungsaktor 3 zurückgelegte Wegstrecke entlang des Aktorweges wird von einem Wegsensor 1 1 bestimmt. Der von dem
Kupplungsaktor 3 zurückgelegte Weg wird im Weiteren mit dem Weg der Kupplung 9 gleichgesetzt.
In Fig. 2 ist ein erstes Ausführungsbeispiel der Druckmesseinrichtung 10 dargestellt. Die Druckmesseinrichtung 10 besteht aus einer Messbrücke 13, vorzugswiese einer Wheatstone'schen Widerstandsbrücke, die auf einem dehnungsempfindlichen Träger- element 14 angeordnet ist. Dieses Trägerelement 14 kann aus Stahl oder Keramik bestehen und weist eine Taillierung auf. Diese Messbrücke 13 ist einerseits an eine Versorgungsspannung Vss und andererseits an eine Masse GND angeschlossen. Die Mittelabgriffe 15 und 16 der Messbrücke 13 sind an eine Sensorelektronik 17 geführt. Die Sensorelektronik 17 weist Messkanäle 20, 21 mit jeweils einem Analog/Digital- Wandler 18, 19 auf, die mit einem digitalen Signalprozessor 22 verbunden sind, welcher ein Ausgangssignal 21 an das Steuergerät 2 ausgibt.
Im vorliegenden Beispiel sollen aus einzelnen Messbereichen der Druckmesseinrichtung 10 Rückschlüsse auf den Zustand des Kupplungsaktors 3 oder der Kupplung 9 gezogen werden. So dient ein Drucksensormesswert, welcher kleiner als 5 bar ist, zur Sicher-Offen-Erkennung der Kupplung 9. Wird ein Gesamtmessbereich der Druckmesseinrichtung 10 von 50 bar angenommen, so entspricht dieser Druckbereich dem unteren Teil des Gesamtmessbereiches. In einer Alternative muss im oberen Teil des Gesamtmessbereiches, etwa bei 48 bar, ebenfalls ein hochgenaues Drucksignal de- tektiert werden, da dieses eine zuverlässige Aussage darüber ausgibt, ob der
Kupplungsaktor 3 noch zuverlässig geschützt ist.
Die Analog/Digital-Wandler 18, 19 weisen zu diesem Zweck unterschiedliche Auflösungen auf. Der Analog/Digital-Wandler 18 umfasst eine Auflösung über den Ge- samtmessbereich der Druckmesseinrichtung 10 von 50 bar. Der zweite Analog/Digital- Wandler 19 umfasst eine Auflösung zwischen 0 und 5 bar, was dem unteren Teil des Gesamtmessbereiches entspricht. Bei Drücken von >5 bar geht der zweite Analog/Digital-Wandler 19 in einen Klemmzustand über, was bedeutet, dass grundsätzlich ein Signal ausgegeben wird, welches einem Druck von 5 bar entspricht. Die Messbrücke 13 gibt an den Mittelabgriffen 16, 17 eine Brückenspannung ab, die sich daraus ergibt, wie stark die einzelnen Widerstände der Messbrücke 13 gedehnt oder gestaucht werden. Die Brückenspannung wird von beiden Analog/Digital- Wandlern 18, 19 detektiert. Diese Ausgangssignale der Analog/Digital-Wandler 18, 19 werden an das Steuergerät 2 weitergeleitet, welches als Plausibilisierungseinrich- tung dient und diese Drücke auswertet.
Wird von der Messbrücke 13 ein Druck von <5 bar ausgegeben, so müssen von beiden Analog/Digital-Wandlern 18, 19 bei vorliegender Funktionstüchtigkeit der Sensorelektronik 17 die gleichen Ausgangssignale ausgegeben werden. Ist dies nicht der Fall, so wird auf einen Fehler in der Sensorelektronik 17 geschlossen. Gibt die Mess- brücke 13 aber eine Brückenspannung aus, welche einem Drucksignal von etwa 48 bar entspricht, muss das Steuergerät 2 von dem Analog/Digital-Wandler 18 ein Signal über 48 bar erhalten und von dem Analog/Digital-Wandler 19 ein Signal von 5 bar. Zeigt der Analog/Digital-Wandler ein Signal <5 bar an, so kann darauf geschlossen werden, dass dieser nicht intakt ist. Bei dem in Fig. 2 gezeigten Ausführungsbeispiel ist die Elektronik redundant ausgeführt. Das in Fig. 3 dargestellte zweite Ausführungsbeispiel stellt eine Druckmesseinrichtung 10 dar, welche zwei Messbrücken 13 und 24 aufweist. Jede Messbrücke 13, 24 führt mit ihren Mittelabgriffen an einen der Analog/Digital-Wandler 18, 19. Auch bei dieser Sensorelektronik 17 bleibt der Gedanke der Verwendung von zwei verschiede- nen Messbereichen in den unterschiedlichen Analog/Digital-Wandlern 18, 19 bestehen. Allerdings kann mit dieser Ausgestaltung zusätzlich die Funktion der Messbrücken 13, 24 überwacht werden. Auch hier erhält das Steuergerät 2 von den beiden Analog/Digital-Wandlern 18, 19 jeweils ein Ausgangssignal, was in der zuvor beschriebenen Art und Weise ausgewertet wird.
Die Druckmesseinrichtung 10 ist dabei nicht auf einen Gesamtmessbereich von 50 bar sowie die vorgeschlagenen Teilmessbereiche eingeschränkt, sondern kann auch für andere Anwendungsmöglichkeiten auf andere Druckwerte appliziert werden. Durch die Anpassung der Sensorelektronik 17 an den speziellen Messbereich, ist eine gute Plausibilisierung möglich, was zu einer sehr hohe AS IL- Integrität führt, wodurch die Sicherheit der Funktion der Druckmesseinrichtung 10 erhöht.
Bezuqszeichenliste Kupplungssystem
Steuergerät
Kupplungsaktor
Kolben
Geberzylinder
Hydraulikflüssigkeit
Hydraulikleitung
Nehmerzylinder
Kupplung
Druckmesseinnchtung
Wegsensor
Vorlastfeder
Messbrücke
Trägerelement
Mittelabgriff
Mittelabgriff
Sensorelektronik
Analog/Digital-Wandler
Analog/Digital-Wandler
Messkanal
Messkanal
Signalprozessor
Ausgangssignal
Messbrücke

Claims

Patentansprüche
1 . Druckmesseinnchtung, umfassend einen Drucksensor (13, 24) mit einer Sensorelektronik (17), wobei die Sensorelektronik (17) einen ersten Messkanal (20) für die Druckmessung aufweist, dadurch gekennzeichnet, dass die Sensorelektronik (17) einen zweiten Messkanal (21 ) für die Druckmessung aufweist, wobei der erste Messkanal (20) einen ersten Messbereich und der zweite Messkanal (21 ) einen zweiten Messbereich aufweist, wobei der erste und der zweite Messbereich jeweils zumindest einen Teil eines Gesamtmessbereiches umfassen.
2. Druckmesseinrichtung, dadurch gekennzeichnet, dass der erste Messkanal (20) den Gesamtmessbereich und der zweite Messkanal (21 ) einen unteren Teil des Gesamtmessbereiches umfasst.
3. Druckmesseinrichtung nach Anspruch 1 , dadurch gekennzeichnet, dass der erste Messkanal (20) einen oberen Teil des Gesamtmessbereich und der zweite Messkanal (21 ) den unteren Teil des Gesamtmessbereiches umfasst.
4. Druckmesseinrichtung nach Anspruch 1 , 2 oder 3, dadurch gekennzeichnet, dass der erste Messkanal (20) einen ersten, den ersten Messbereich aufspannenden Analog/Digital-Wandler(18) und der zweite Messkanal (21 ) einen zweiten, den zweiten Messbereich aufspannenden Analog/Digital-Wandler (19) aufweist, welche mit einem digitalen Signalprozessor (20) der Sensorelektronik (17) verbunden sind.
5. Druckmesseinrichtung nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass eine Messbrücke (13) des Drucksensors mit den beiden Analog/Digital-Wandlern (18, 19) der Sensorelektronik (17) verbunden ist.
6. Druckmesseinrichtung nach mindestens einem der vorhergehenden Ansprüche 1 bis 4, dadurch gekennzeichnet, dass der Drucksensor zwei Messbrücken (13, 24) aufweist, wobei jeweils eine der Messbrücken (13, 24) mit einem der Analog/Digital-Wandler (18, 19) verbunden ist.
7. Druckmesseinrichtung nach mindestens einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein Ausgangssignal der Sensorelektronik (17) zur Plausibilisierung der von den beiden Analog/Digital-Wandlern (18, 19) abgegebenen Signale an eine Plausibilisierungseinrichtung (2) geführt ist.
8. Kupplungsaktoreinrichtung mit einer hydraulischen Strecke, umfassend eine Druckmesseinrichtung (10) zur Erfassung von vorgegebenen Zuständen eines Kupplungsaktors (3) und/oder einer Kupplung (9), dadurch gekennzeichnet, dass die Druckmesseinrichtung (10) nach mindestens einem der vorhergehenden Ansprüche ausgebildet ist.
9. Verfahren zur Plausibilisierung von, von einer Druckmesseinrichtung abgegebenen Ausgangssignalen, wobei die, von der mindestens zwei Messkanäle (20, 21 ) mit unterschiedlichen Messbereichen aufweisenden Druckmesseinrichtung (10) über die beiden Messkanäle (20, 21 ) ausgegebenen Ausgangssignale jeweils mit einem vorgegebenen Ausgangssignal verglichen werden, wobei auf einen Fehler der Druckmesseinrichtung (10) geschlossen wird, wenn mindestens ein von der Druckmesseinrichtung (10) abgegebenes Ausgangssignal von dem vorgegebenen Ausgangssignal abweicht.
10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass jeder Messkanal (20, 21 ) mit einer Messbrücke (13, 20) verbunden ist, wobei auf einen Fehler einer der Messbrücken 813, 20) geschlossen wird, wenn ein von der Druckmesseinrichtung (10) abgegebenes Ausgangssignal von dem vorgegebenen Ausgangssignal abweicht.
PCT/DE2015/200527 2014-12-08 2015-12-07 Druckmesseinrichtung und kupplungsaktoreinrichtung mit einer hydraulischen strecke WO2016091257A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580074508.9A CN107209079B (zh) 2014-12-08 2015-12-07 压力测量装置和具有液压线路的离合器执行器装置
DE112015005509.6T DE112015005509A5 (de) 2014-12-08 2015-12-07 Druckmesseinrichtung und Kupplungsaktoreinrichtung mit einer hydraulischen Strecke
JP2017530654A JP6625640B2 (ja) 2014-12-08 2015-12-07 圧力測定装置、および液圧区間を備えるクラッチアクチュエータ装置

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE102014225109 2014-12-08
DE102014225109.5 2014-12-08
DE102015202472 2015-02-12
DE102015202472.5 2015-02-12

Publications (1)

Publication Number Publication Date
WO2016091257A1 true WO2016091257A1 (de) 2016-06-16

Family

ID=55272205

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2015/200527 WO2016091257A1 (de) 2014-12-08 2015-12-07 Druckmesseinrichtung und kupplungsaktoreinrichtung mit einer hydraulischen strecke

Country Status (4)

Country Link
JP (1) JP6625640B2 (de)
CN (1) CN107209079B (de)
DE (1) DE112015005509A5 (de)
WO (1) WO2016091257A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107449535B (zh) * 2017-10-11 2023-11-07 珠海华粤传动科技有限公司 一种离合器检测设备用的液控检测装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE9316005U1 (de) * 1993-10-20 1994-02-10 Ifas Ingges Vorrichtung zur elektronischen Bestimmung von Drücken und Druckdifferenzen in einem fluiden Medium
WO1999030215A1 (en) * 1997-12-05 1999-06-17 Rosemount Inc. Multiple range transition method and apparatus for process control sensors
DE102007008977A1 (de) 2006-03-09 2007-09-13 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Verfahren und Vorrichtung zum Steuern und/oder Regeln einer automatisierten Kupplung
EP1907811A1 (de) * 2005-07-22 2008-04-09 STMicroelectronics S.r.l. Integrierter drucksensor mit doppelmessskala und hohem vollausschlagwert
US20100024517A1 (en) * 2008-08-04 2010-02-04 Cary Ratner Pressure Gauge
DE102011014931A1 (de) 2010-04-12 2011-10-13 Schaeffler Technologies Gmbh & Co. Kg Verfahren zum Steuern einer automatisierten Kupplung
EP2568270A1 (de) * 2011-09-06 2013-03-13 Honeywell International Inc. Paketsensor mit mehreren Sensorelementen
DE102013206646A1 (de) * 2013-04-15 2014-10-16 Siemens Aktiengesellschaft Messumformer zur Prozessinstrumentierung und Verfahren zu dessen Diagnose

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3325826B2 (ja) * 1998-02-27 2002-09-17 三菱電機株式会社 ガス圧力計測装置
JP4337627B2 (ja) * 2004-05-12 2009-09-30 株式会社デンソー タイヤ空気圧検出装置
JP2006090789A (ja) * 2004-09-22 2006-04-06 Denso Corp 圧力センサ
JP2007278725A (ja) * 2006-04-03 2007-10-25 Denso Corp 物理量センサ
JP2008037225A (ja) * 2006-08-04 2008-02-21 Fujitsu Ten Ltd 制御装置
DE102012204940A1 (de) * 2011-04-15 2012-10-18 Schaeffler Technologies AG & Co. KG Verfahren zur Adaption von Parametern einer Kupplung
CH707338B1 (fr) * 2011-10-05 2017-10-31 Canon Anelva Corp Manomètre à membrane.

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE9316005U1 (de) * 1993-10-20 1994-02-10 Ifas Ingges Vorrichtung zur elektronischen Bestimmung von Drücken und Druckdifferenzen in einem fluiden Medium
WO1999030215A1 (en) * 1997-12-05 1999-06-17 Rosemount Inc. Multiple range transition method and apparatus for process control sensors
EP1907811A1 (de) * 2005-07-22 2008-04-09 STMicroelectronics S.r.l. Integrierter drucksensor mit doppelmessskala und hohem vollausschlagwert
DE102007008977A1 (de) 2006-03-09 2007-09-13 Luk Lamellen Und Kupplungsbau Beteiligungs Kg Verfahren und Vorrichtung zum Steuern und/oder Regeln einer automatisierten Kupplung
US20100024517A1 (en) * 2008-08-04 2010-02-04 Cary Ratner Pressure Gauge
DE102011014931A1 (de) 2010-04-12 2011-10-13 Schaeffler Technologies Gmbh & Co. Kg Verfahren zum Steuern einer automatisierten Kupplung
EP2568270A1 (de) * 2011-09-06 2013-03-13 Honeywell International Inc. Paketsensor mit mehreren Sensorelementen
DE102013206646A1 (de) * 2013-04-15 2014-10-16 Siemens Aktiengesellschaft Messumformer zur Prozessinstrumentierung und Verfahren zu dessen Diagnose

Also Published As

Publication number Publication date
JP6625640B2 (ja) 2019-12-25
CN107209079B (zh) 2020-11-03
DE112015005509A5 (de) 2017-11-23
CN107209079A (zh) 2017-09-26
JP2018505391A (ja) 2018-02-22

Similar Documents

Publication Publication Date Title
EP2111512B1 (de) Kupplungssystem und verfahren zur steuerung eines kupplungssystems
DE102013007535B3 (de) Kraft-Messvorrichtung
EP2877866B1 (de) Schaltungsanordnung zur erfassung einer art eines magnetventils
EP2184507B1 (de) Verfahren und Anordnung zum Bestimmen des Verschleißzustandes einer Schaltkupplung
WO2008009703A1 (de) Vorrichtung und verfahren zur bestimmung von vertikalpositionen
EP1847719A2 (de) Verfahren zur Bestimmung eines Betätigungsdruckes eines Druckmittelzylinders
EP3473907A1 (de) Diagnoseverfahren für ein stellgerät und stellgerät mit einer diagnosevorrichtung
EP1770313B1 (de) Verfahren und Vorrichtung zum Betreiben einer Antriebseinrichtung
DE10244393A1 (de) Verfahren und Vorrichtung zur Bestimmung des Eingriffspunkts einer hydraulisch betätigten Kupplung
DE19927372C2 (de) Verfahren und Vorrichtung zum Erkennen einer Fehlfunktion von Stellantrieben
WO2016091257A1 (de) Druckmesseinrichtung und kupplungsaktoreinrichtung mit einer hydraulischen strecke
DE10163438A1 (de) Verfahren zur Ermittlung des Kupplungsanlegepunktes
WO2018050156A1 (de) Verfahren zur einrichtung eines sensorsystems mit einem multiturnsensor
DE102011002900A1 (de) Druckmessumformer
EP0567155A1 (de) Verschleissüberwachungsvorrichtung für eine Gleitsattel-Scheibenbremse
EP2543979A2 (de) Druckmessumformer
DE102012012386A1 (de) Verfahren zur Bestimmung mechanischer Endanschläge zwischen einer Eingangswelle und einer Ausgangswelle eines Lenksystems und Lenksystem
EP2616300A2 (de) Verfahren zum betreiben eines positionsgebers für ein mechanisches bewegteil und positionsgeber für ein mechanisches bewegteil
DE102011101348A1 (de) Stellvorrichtung, insbesondere Stellvorrichtung für ein Luftfahrzeug
EP3067604A1 (de) Rückschlagventil
EP2122207A1 (de) Vorrichtung und verfahren zur steuerung eines getriebes
WO2009021531A1 (de) Diagnoseeinrichtung zur überwachung der bewegung eines aktorglieds
DE10331628A1 (de) Potentiometerdiagnose
EP3404431B1 (de) Verfahren zur überwachung eines betriebs einer binären schnittstelle und entsprechende binäre schnittstelle
WO2016131581A1 (de) Vorrichtung und verfahren zur messung eines fluiddrucks und zur verifizierung des gemessenen fluiddrucks

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15830773

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017530654

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112015005509

Country of ref document: DE

REG Reference to national code

Ref country code: DE

Ref legal event code: R225

Ref document number: 112015005509

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15830773

Country of ref document: EP

Kind code of ref document: A1