WO2016091132A1 - 用于集装箱或车辆检查系统的对准系统和对准方法 - Google Patents

用于集装箱或车辆检查系统的对准系统和对准方法 Download PDF

Info

Publication number
WO2016091132A1
WO2016091132A1 PCT/CN2015/096537 CN2015096537W WO2016091132A1 WO 2016091132 A1 WO2016091132 A1 WO 2016091132A1 CN 2015096537 W CN2015096537 W CN 2015096537W WO 2016091132 A1 WO2016091132 A1 WO 2016091132A1
Authority
WO
WIPO (PCT)
Prior art keywords
detector
module
container
collimator
detector module
Prior art date
Application number
PCT/CN2015/096537
Other languages
English (en)
French (fr)
Inventor
李荐民
李玉兰
李元景
于昊
宗春光
顾菁宇
喻卫丰
宋全伟
王伟珍
孙尚民
刘以农
李君利
唐传祥
Original Assignee
清华大学
同方威视技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学, 同方威视技术股份有限公司 filed Critical 清华大学
Publication of WO2016091132A1 publication Critical patent/WO2016091132A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V5/00Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity
    • G01V5/20Detecting prohibited goods, e.g. weapons, explosives, hazardous substances, contraband or smuggled objects
    • G01V5/22Active interrogation, i.e. by irradiating objects or goods using external radiation sources, e.g. using gamma rays or cosmic rays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V5/00Prospecting or detecting by the use of ionising radiation, e.g. of natural or induced radioactivity
    • G01V5/20Detecting prohibited goods, e.g. weapons, explosives, hazardous substances, contraband or smuggled objects
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21KTECHNIQUES FOR HANDLING PARTICLES OR IONISING RADIATION NOT OTHERWISE PROVIDED FOR; IRRADIATION DEVICES; GAMMA RAY OR X-RAY MICROSCOPES
    • G21K1/00Arrangements for handling particles or ionising radiation, e.g. focusing or moderating
    • G21K1/02Arrangements for handling particles or ionising radiation, e.g. focusing or moderating using diaphragms, collimators

Definitions

  • the present invention relates to the field of X or gamma ray safety inspection, and more particularly to X or Gamma ray inspection systems and their alignment systems and alignment methods for containers or vehicles as objects to be inspected.
  • Three points and one line is the general name of the accelerator target, the center line of the detector end, and the center line of the collimator.
  • the purpose of adjusting the “three points and one line” is to require the accelerator target, the center line of the detector, and the collimation.
  • the centerline of the device (sometimes including the centerline of the calibration device, etc.) resides in a datum plane, as shown in Figure 1.
  • the current measurement method uses a laser theodolite to manually measure the alignment of the accelerator target, the collimator centerline, and the centerline of the detector tip.
  • the vertical line of the theodolite crosshair coincides with the center line of the upper and lower detectors of the detector arm, and the vertical line of the theodolite crosshair is aligned with the center of the target.
  • This method is judged by the human eye, which is not objective and accurate, and has a great relationship with the placement and debugging of the instrument and the measurement of the human visual sense.
  • detector arm brackets that require a quick deployment of the brackets to carry out work after reaching a new inspection site.
  • the detector arm bracket needs to be further adjusted as a mechanical structure such that the source, collimator and detector are in one plane. Accordingly, there is a need for an alignment system and method that achieves both accurate alignment and fast and reliable alignment.
  • an alignment system for a container or vehicle inspection system comprising a measurement module, the measurement module being a sensor array of a plurality of sensors, each sensor being configured to measure a ray intensity;
  • An array of sensors is arranged on the longitudinal centerline of the detector module of the container or vehicle inspection system, when the measurement module is arranged in the detector
  • the ray alignment detector module is determined.
  • an alignment system for a container or vehicle inspection system comprising a measurement module, the measurement module being a sensor row of a plurality of sensors, each sensor being configured to measure a radiation intensity;
  • One of the measurement modules is disposed on a longitudinal centerline of the detector module of the container or vehicle inspection system, and the ray intensity value measured by the one sensor when the measurement module is disposed on the longitudinal centerline of the detector module is a ray
  • the ray alignment detector module is determined.
  • an inspection system for a container or a vehicle comprising a source of radiation, a collimator, a detector arm, and a detector module mounted on the detector arm, a source of radiation, a collimator, and a detection
  • the modules are arranged to form an inspection channel, the radiation emitted by the radiation source being incident on the object to be inspected by the collimator is collected by the detector module to complete the inspection, and the alignment system described above is also included.
  • an alignment method for an inspection system of a container or a vehicle the alignment system being arranged on a longitudinal centerline of a detector module located on a detector arm of a container or vehicle inspection system Configuring a radiation source, a collimator, and a detector module of the container or vehicle inspection system as an inspection channel, the radiation source emitted by the radiation source being received by the measurement module and the detector module of the alignment system through the collimator;
  • the maximum value of the ray intensity fed back by each sensor determines the position of the main beam of the ray; calculates the deviation of the position of the ray main beam incident on the detector module from the position of the longitudinal centerline of the detector module; adjusts the ray source, collimator or detection
  • the position of the module is such that the position of the main beam of the beam onto the detector module coincides with the longitudinal centerline of the detector module.
  • Figure 1 shows the plane in which the source of the radiation source, the collimator and the detector module distributed over the detector arm are expected to be located;
  • FIG 2 is another view of the detector of the radiation source, the collimator, and the detector module distributed over the detector arm;
  • Figure 3a is a measurement module laterally disposed on a detector module in accordance with one embodiment of the present invention.
  • Figure 3b is a measurement module according to an embodiment of the present invention, which is laterally disposed on the detector module;
  • Figure 5 is a ray intensity distribution measured by the measuring module when the collimator is aligned with the center position of the detector module;
  • Figures 6 and 7 are the ray intensity distributions measured by the measurement module when the collimator is offset from the center position of the detector module.
  • the X or Gamma ray container or vehicle inspection system includes a ray source 1, a collimator 2, and a detector module 3 mounted on the detector arm.
  • the ray source 1 may be an X-ray accelerator or a gamma ray accelerator.
  • a collimator 2 can be provided at the exit of the accelerator.
  • the detector module 3 is arranged on the detector arm 4.
  • the detector arm 4 includes a detector cross arm 41 and a detector arm 42.
  • the detector cross arm 41 and the detector 3 on the detector arm 42 receive the collimation via the collimator 2
  • Application to an X or Gamma ray container or vehicle inspection system includes an alignment system for aligning the source 1, collimator 2 and detector module 3.
  • the alignment system includes a measurement module 5.
  • the measuring module 5 is arranged on the detector module 3.
  • the measurement module 5 is disposed on the arm 4 or the frame 4 of the detector module 3.
  • the measuring module 5 is arranged to receive the radiation emitted by the radiation source 1. As shown in Fig. 3, the measuring module 5 extends in the lateral direction, and the detector module 3 extends in the longitudinal direction.
  • the measurement module 5 in order to determine the position of the detector module 3, the measurement module 5 is provided It is placed at the position of the detector module 3 of the inspection system in order to measure the orientation of the collimator 2, ie the position of the drop of the ray, by the measuring module 5 and to adjust the collimator 2 towards the detector module 3 by means of the measurement.
  • the measuring module 5 is arranged on the detector arm 4 provided with the detector module 3, and ensures the center line of the detector module 3 or the center line of the detector arm 4 in the lateral direction and the measuring module 5 A known part corresponds, for example to the midpoint of the measuring module 5.
  • the center line of the detector module 3 and the center line of the detector arm 4 or the frame 4 of the detector module 3 have the same meaning, that is, the detector is arranged in the vertical direction, and the detector arm 4 is divided into the center line in the vertical direction. Equal two halves.
  • the measurement module 5 is placed on the detector arm 4 as shown in FIG.
  • the measuring module 5 consists of a plurality of detector crystals 6, which may be smaller than the detector crystal 6 of the imaging detector module 3 of the inspection system or with respect to the detector crystal 6 of the imaging detector module of the inspection system. It can be a small detector.
  • the width of each small detector crystal 6 in the measurement module 5 may be 1/n of the measurement module 5, as shown in Figure 3a.
  • N is an integer and can be selected as needed. That is to say, the measuring module 5 can be arranged side by side by a number of small detector crystals 6 combined to form a strip or elongated block body 6.
  • the total width of the measuring module 5 is greater than the width of the system detector module 3, as shown in FIG.
  • the length direction of the measuring module 5 extends in the lateral direction of the detector module 3.
  • the measuring module 5 is mechanically positioned on the detector module 3, and the elongated measuring module 5 can be arranged such that its midpoint lies on the center line of the detector arm 4, the length of the elongated measuring module 5 extends and detects The length of the arm 4 extends perpendicularly. Thereby, the specific position of the beam center can be measured finely and quantitatively.
  • the data measured by each measurement module 5 can be transmitted to a computer for analysis.
  • the total width of the measurement module 5 is 4 to 5 times the width of the system detector module 3.
  • the width of the detector module 3 is 10 mm
  • the width of each small detector crystal 6 in the measuring module 5 is 1.5 mm
  • the radiation source 1 emits radiation and is collimated by the collimator 2
  • the radiation beam illuminates the measurement module 5, and the collimated radiation is incident on the plurality of detector crystals 6 of the measurement module 5, wherein the detector crystal 6 is incident on the radiation
  • the received ray intensity is the largest, and the probe near the normal incident detector crystal 6
  • the energy of the radiation received by the detector crystal 6 is gradually reduced, i.e., the intensity of the radiation measured by the detector crystal 6 decreases as their distance from the detector crystal 6 at the normal incidence increases.
  • Fig. 5 shows a curve formed by the intensity values of the beam beams measured by the 32 detector crystals 6 when the center of the measuring module 5 is located on the center line of the detector arm 4.
  • the ray intensity detected by the detector crystal 6 in the middle of the measuring module 5 is the strongest, that is, the highest point of the curve in the figure (Fig.
  • the middle Y-axis is the normalized value of the measured ray intensity).
  • the intensity of the ray measured by the detector crystal 6 leaving the midpoint of the measuring module 5 decreases as the distance from the midpoint increases.
  • the operator can intuitively judge the position of the peak of the ray according to the position of the curve, and intuitively grasp the direction to be adjusted.
  • the present invention can display the deviation of the collimator 2 or the X-ray by using the peak of the intensity curve deviating from the Y-axis (it can also be considered as the misalignment of the detector module, and those skilled in the art should understand that the misalignment is relative, that is, as the transmitting side X-ray and collimator combination and as a detector module on the receiving side), and by adjusting the direction of the collimator 2 such that the intensity peak is adjusted to the Y-axis to adjust the direction of the collimator 2 to the detector arm 4. Midline. Since this parabolic-like curve is used, the operator can intuitively judge the deviation, and the deviation of the peak of the curve from the Y-axis can be approximated, making the alignment operation easy.
  • the technical solution of the invention avoids the uncertainty and randomness of the manual adjustment and the influence of the randomness on the subsequent inspection, and the method of the invention is simple and clear, the adjustment process is intuitive and rapid, and the operator can quickly complete the inspection. Preparation before the work.
  • the detector module can be adjusted to the right. If the bracket in which the detector module is located is fixed, the X-ray and collimator can be adjusted, either as a beam or beam to the left. In actual operation, the operator judges the intuitiveness by observing the curve without groping the direction of the adjustment. Make preparation for inspection easy and fast.
  • adjustment means may be provided to adjust the orientation of the collimator 2.
  • a motor and a pivoting device can be provided, the motor driving the pivoting device pivoting the collimator 2 to adjust the orientation of the collimator 2.
  • a method for aligning an accelerator and a detector with an X or Gamma ray container or vehicle inspection system comprises: 1) emitting radiation using an accelerator; 2) measuring a ray intensity distribution using the measurement module 5; 3) determining The relative positions of the ray source 1, the collimator 2 and the arm 4 are adjusted; 4) the steps 2 and 3 are repeated until the beam passing through the collimator 2 is aligned with the detector module 3.
  • the operator can adjust the collimator 2 to the right, and the intensity peak of the curve in FIG. 6 is shifted to the Y-axis.
  • the operator can adjust the collimator 2 to the left, and the intensity peak of the curve in Fig. 7 is shifted to the Y axis.
  • the signal intensity of the X or Gamma rays received by each detector crystal 6 in each measurement module 5 should be as shown in FIG. That is, the center of the beam can be hit in the middle of each measurement module 5, that is, the center line of the pen end of each detector module 3.
  • the relative positional relationship between the ray source 1, the collimator 2, and the arm 4 or the rack 4 can be determined, and the position offset and angle can be calculated.
  • the deflection amount is corrected for the system, and finally the intensity distribution measured by all the detector modules 3 is a parabolic curve as shown in FIG.
  • a certain detector crystal 6 of the measuring module 5 is positioned on the center line of the detector module 3. Since the detector crystal 6 is known to be located on the center line, it is only necessary to adjust the orientation of the collimator 2 such that the maximum detected ray intensity appears at the position of the known detector crystal 6 to know the collimator. 2 Align the center line of the detector module 3. That is, in the present embodiment, the center of the measuring module 5 is not on the center line of the detector module 3.
  • the measurement module 5 is a unitary body.
  • the measurement module 5 is an elongated measurement module 5, which may be an array of sensors, the position of each of which is determined and known.
  • the intensity of the beam received by each sensor is known.
  • the intensity of the beam received at each location is already Known.
  • the orientation of the collimator 2 can be determined by observing the position of the peak of the beam intensity. Similar to the embodiment described above, the orientation of the collimator 2 can be adjusted such that the beam of radiation emitted by the collimator 2 is directed towards a desired position, for example towards the centerline of the detector module 3.
  • an alignment system for a container or vehicle inspection system includes a measurement module 5, which is a sensor array of multiple sensors, each sensor configuration Into the measured ray intensity.
  • a column of sensors in the measurement module is placed on the longitudinal centerline of the detector module of the container or vehicle inspection system.
  • the measurement module is arranged in the column on the longitudinal centerline of the detector module (when the small sensor volume of the measurement module is much smaller than the detector module, it can be a plurality of small sensors) the measured ray intensity value is When the maximum value of the ray intensity value curve is determined, it is determined that the ray is aligned with the detector module.
  • the detector crystal 6 can have a certain volume, and the measuring module 5 is arranged along the lateral direction of the detector arm 4, and the angle formed between the measuring module 5 and the detector arm 4 is close to 90 degrees.
  • the technical solution of the present invention is still achievable within the scope.
  • an alignment method for an inspection system of a quasi-container or vehicle comprises a radiation source 1, a collimator 2 and a detector module 3 mounted on the detector arm 4, the radiation source 1, the collimator 2 and the detector module 3 being arranged to form an inspection channel, the radiation emitted by the radiation source 1
  • the object that is incident on the object to be inspected through the collimator 2 is collected by the detector module 3 to complete the inspection.
  • the alignment method comprises setting a measurement module 5 arranged to receive radiation emitted from the source 1 and passing through the collimator 2.
  • the alignment method also includes determining the position of the main beam of the radiation by the peak of the ray intensity measured by the measurement module 5.
  • the measurement module 5 measures the maximum intensity of the beam detected at the longitudinal centerline of the detector module 3 (ie, the main beam of the ray), it is determined that the ray from the source 1 is aligned with the ray main beam of the collimator 2 Module 3.
  • the X-ray and gamma ray sources referred to in the present invention may be other sources of radiation.
  • the beam referred to in the present invention refers to any form of radiation used for illumination, which may be a pencil beam, may be a fan beam, or any other desired form of radiation.

Landscapes

  • Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Geophysics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Measurement Of Radiation (AREA)

Abstract

一种用于集装箱或车辆检查系统的对准系统、检查系统和对准方法。检查系统包括射线源(1)、准直器(2)以及安装在探测器臂上的探测器模块(3),射线源(1)、准直器(2)以及探测器模块(3)布置成形成检查通道,射线源(1)发射的射线束经过准直器(2)入射到被检查物体,由探测器模块(3)收集被衰减的射线束以完成检查。对准系统包括测量模块(5),所述测量模块(5)布置成接收从准直器(2)发出的射线束并通过测量射线束确定射线源(1)和准直器(2)的位置和方向。该对准方法可以更加准确地测量射线源(1)中心点、探测器笔端中心线及准直器(2)中心线的对准程度。

Description

用于集装箱或车辆检查系统的对准系统和对准方法 技术领域
本发明涉及X或Gamma射线安全检查领域,特别是用于以集装箱或车辆为被检物件的X或Gamma射线检查系统及其对准系统和对准方法。
背景技术
“三点一线”是加速器靶点、探测器笔端中心线、准直器中心线共面的总称,调整“三点一线”的目的就是要求加速器靶点、探测器笔端中心线、准直器中心线(有时还包括校准装置的中心线等)都居于一个基准面内,如图1。
现有的测量方法是使用激光经纬仪手动测量加速器靶点、准直器中心线和探测器笔端中心线的对准情况。经纬仪十字线的竖线与探测器竖臂上、下端探测器中心线重合,并使经纬仪十字线的竖线尽量对正靶点中心。该种方法通过人眼进行判断,不够客观准确,与仪器的放置、调试,以及测量人的视觉感官有很大关系。
并且,现在许多可移动的检查系统使用探测器臂支架,这些可移动的检查系统在到达新的检查地点后需要迅速展开支架以便开展工作。然而,探测器臂支架作为机械结构需要进一步调整,使得射线源、准直器与探测器位于一个平面内。因此,需要一种既准确实现对准又能够快速可靠地完成对准的对准系统和方法。
发明内容
鉴于此,本发明的目的在于解决上述问题,实现检查系统的射线束与探测器模块的快速对准。
本发明的第一方面,提供一种用于集装箱或车辆检查系统的对准系统,包括测量模块,测量模块是多个传感器构成的传感器阵列,每个传感器配置成测量射线强度;测量模块中的一列传感器布置在集装箱或车辆检查系统的探测器模块的纵向中心线上,当测量模块的布置在探测器 模块的纵向中心线上的所述一列传感器测量的射线强度值是射线强度值曲线的最大值时,确定射线对准探测器模块。
本发明的第一方面,提供一种用于集装箱或车辆检查系统的对准系统,包括测量模块,所述测量模块是多个传感器构成的一个传感器排,每个传感器配置成测量射线强度;所述测量模块中的一个传感器布置在集装箱或车辆检查系统的探测器模块的纵向中心线上,当测量模块的布置在探测器模块的纵向中心线上的所述一个传感器测量的射线强度值是射线强度值曲线的最大值时,确定射线对准探测器模块。
本发明的第一方面,提供一种用于集装箱或车辆的检查系统,包括射线源、准直器、探测器臂以及安装在探测器臂上的探测器模块,射线源、准直器以及探测器模块布置成形成检查通道,射线源发射的射线经过准直器入射到被检查物体由探测器模块收集以完成检查,还包括上述的对准系统。
本发明的第一方面,提供一种用于集装箱或车辆的检查系统的对准方法,在位于集装箱或车辆检查系统的探测器臂上的探测器模块的纵向中心线上设置上述的对准系统,将集装箱或车辆检查系统的射线源、准直器以及探测器模块布置成检查通道,射线源发射射线经过准直器被所述对准系统的测量模块和探测器模块接收;通过测量模块上各传感器反馈的射线强度最大值确定射线主束的位置;计算所述射线主束射到探测器模块上的位置与探测器模块的纵向中心线位置的偏差;调整射线源、准直器或探测器模块的位置,使射线主束射到探测器模块上的位置与探测器模块的纵向中心线重合。
附图说明
图1示出射线源、准直器以及探测器模块在探测器臂上分布的探测器期望所处的平面;
图2是射线源、准直器以及探测器模块在探测器臂上分布的探测器另一视图;
图3a是根据本发明一个实施例的测量模块,其横向布置在探测器模块上;
图3b是是根据本发明一个实施例的测量模块,其横向布置在探测器模块上;
图4是根据本发明一个实施例的测量模块的具体尺寸;
图5是准直器对准探测器模块中线位置时测量模块测量的射线强度分布;
图6和7是准直器偏离探测器模块中线位置时测量模块测量的射线强度分布。
具体实施方式
现在对本发明的实施例提供详细参考,其范例在附图中说明,图中相同的数字全部代表相同的元件。为解释本发明下述实施例将参考附图被描述。
在本发明的一个实施例中,应用于X或Gamma射线集装箱或车辆检查系统包括射线源1、准直器2以及安装在探测器臂上的探测器模块3。射线源1可以是X射线加速器或伽马射线加速器。而为了获得更好的准直射线,可以在加速器出射口处设置准直器2。本领域技术人员应该知道,也可以使用其他装置以便获得想要的射线,例如直接发射准直射线的装置。探测器模块3设置在探测器臂4上。探测器臂4包括探测器横臂41和探测器竖臂42,当探测器臂4展开,探测器横臂41和探测器竖臂42上的探测器3接收经由准直器2准直后的透射过被检查物体的射线束,从而实现检查的目的。也就是说,在使用时,射线源1、准直器2以及探测器模块3构成了检查通道,如图2所示。
应用于X或Gamma射线集装箱或车辆检查系统包括对准系统,对准系统用以对准射线源1、准直器2和探测器模块3。
对准系统包括测量模块5。测量模块5布置在探测器模块3上。在一个实施例中,测量模块5设置在探测器模块3臂4或架4上。测量模块5布置成接收射线源1发出的射线。如图3所示,测量模块5沿横向延伸,探测器模块3沿纵向延伸。
在本发明的实施例中,为了确定探测器模块3的位置,测量模块5设 置在检查系统的探测器模块3的位置处,以便通过测量模块5测量准直器2的取向,即射线的落点位置,并通过测量结果调节准直器2朝向探测器模块3。在本实施例中,测量模块5布置在设置有探测器模块3的探测器臂4上,并且保证探测器模块3横向的中线或探测器臂4的横向方向上的中线与测量模块5的某一已知的部位对应,例如与测量模块5的中点对应。此处所说的探测器模块3的中线以及探测器模块3的探测器臂4或架4的中线意义相同,即探测器沿竖直方向布置,沿竖直方向的中线将探测器臂4分为相等的两半。
在本发明的实施例中,将测量模块5放置在探测器臂4上,如图2所示。测量模块5由多个探测器晶体6构成,这些探测器晶体6可以比检查系统的成像探测器模块3的探测器晶体6尺寸小,或者相对于检查系统的成像探测器模块的探测器晶体6而言可以是小型探测器。优选地,测量模块5中每块小的探测器晶体6的宽度可以为测量模块5的1/n,如图3a所示。N是整数,可以根据需要进行选择。也就是说,测量模块5可以由若干个小探测器晶体6并排地排列,组合形成一个长条或细长的块形体6。测量模块5的总宽度大于系统探测器模块3的宽度,如图4所示。测量模块5的长度方向沿探测器模块3的横向延伸。
测量模块5通过机械方式定位在探测器模块3上,并且长条形的测量模块5可以布置成使得其中点位于探测器臂4的中线上,长条形的测量模块5的长度延伸方向与探测器臂4的长度延伸方向垂直。由此,可以精细地、定量地测量束流中心的具体位置。
每个测量模块5测得的数据可传输到电脑上进行分析。
在本发明的一个实施例中,测量模块5的总宽度为系统探测器模块3的宽度的4至5倍。例如,探测器模块3宽度为10mm,测量模块5中每块小探测器晶体6的宽度为1.5mm,整个测量模块5由32块小探测器晶体6组成,宽度为32*1.5=48mm,如图4所示。
当射线源1发射射线,经过准直器2准直后,射线束照射测量模块5,准直后的射线入射到测量模块5的多个探测器晶体6,其中射线正入射的探测器晶体6接收到的射线强度最大,在正入射的探测器晶体6附近的探 测器晶体6接收到的射线的能量逐渐减小,即,探测器晶体6测量的射线强度随着它们离开正入射处的探测器晶体6的距离增大而减小。图5示出当测量模块5的中心位于探测器臂4中线上的时候,32个探测器晶体6分别测量的射线束的强度值形成的曲线。
由图5可以看到,由于准直后的射线对准探测器臂4的中线,因而在测量模块5中间的探测器晶体6探测到的射线强度最强,即图中曲线的最高点(图中Y轴是测量的射线强度归一化的值)。离开测量模块5中点的探测器晶体6测量到的射线强度随离开中点处的距离增大而减小。根据本发明的实施例,使用如图5所示的曲线判断对准时具有有利的优点,例如,操作者根据曲线的位置可以直观地判断射线的峰值的位置,直观地掌握将要调整的方向。
当准直器2没有对准测量模块5的中点,即探测器臂4的中线时,图5中的曲线的最高点将偏离位于测量模块5的中心(因为探测器晶体6的位置已经被固定,中心的探测器晶体6的位置是已知的,并且其测量的射线强度值落在Y轴上)。
图6和图7分别示出准直器2偏离探测器臂4中线时测量到的强度曲线。本发明利用强度曲线的峰值偏离Y轴即可以显示准直器2或X射线的偏离(也可以认为是探测器模块的不对准,本领域技术人员应该理解不对准是相对的,即作为发射侧的X射线和准直器组合和作为接收侧的探测器模块),并且通过调节准直器2的方向使得强度峰值被调节至Y轴以将准直器2的方向调节至探测器臂4的中线。由于使用这种类似抛物线的曲线,操作者可以直观地判断偏离,通过曲线的顶峰偏离Y轴可以大约估计偏离程度,使得对准操作容易。
由此,本发明的技术方案避免了手动调节的不确定性和随机性以及这种随机性对后续检查的影响,并且本发明的方法简单明了,调节过程直观迅速,方便操作者快速地完成检查前的准备工作。当操作者观察到,曲线峰值在Y轴右侧,即可以将探测器模块向右侧调整。如果探测器模块所处的支架被固定,则可以调节X射线和准直器,是射线束或射线束向左。在实际操作中,操作者通过观察曲线判断直观,而不用摸索调整的方向, 使得检查的准备工作容易且快速。
为了调节准直器2的取向,可以设置调节装置以调节准直器2的取向。例如,可以设置马达和枢转装置,马达带动枢转装置枢转准直器2调节准直器2的朝向。由此,实现自动化调节。
根据本发明的实施例,应用于X或Gamma射线集装箱或车辆检查系统对准加速器和探测器的方法,包括:1)利用加速器发射射线;2)利用测量模块5测量射线强度分布;3)判断射线源1、准直器2和臂4的相对位置,进行调节;4)重复2、3步骤,直至经过准直器2的射线束对准探测器模块3。
具体地,例如,当显示图6的曲线时,操作者可以将准直器2向右调节,图6中的曲线的强度峰值被移至Y轴。当显示图7的曲线时,操作者可以将准直器2向左调节,图7中的曲线的强度峰值被移至Y轴。
当加速器靶点、探测器笔端中心线、准直器2中心线完全对准时,每个测量模块5中各个探测器晶体6接收到的X或Gamma射线的信号强度都应如图5所示,即射线束中心可以打到在每个测量模块5的最中间,即每个探测器模块3的笔端中心线。
根据臂4或架4上各个探测器模块3测量得到的射线强度分布,可以判断出射线源1、准直器2以及臂4或架4的相对位置关系,并计算出位置偏移量和角度的偏转量,对系统进行修正,最终所有探测器模块3测量得到的强度分布为如图5所示的抛物线形的曲线。
在根据本发明的另一实施例中,测量模块5的某个探测器晶体6定位在探测器模块3的中线上。由于已知该探测器晶体6位于中线上,因此,只需要调节准直器2的取向使得探测到的射线强度最大值出现在该已知的探测器晶体6的位置上即可以知道准直器2对准探测器模块3的中线。即,在本实施例中,测量模块5的中心并不在探测器模块3的中线上。
在根据本发明的另一实施例中,测量模块5是一个整体。测量模块5是个长条形的测量模块5,可以是一组传感器的阵列,传感器阵列中的每个传感器的位置是确定的并且是已知的。由此,每个传感器接收到的射线束强度是已知的。也就是说,每个位置上接收到的射线束的强度是已 知的。由此,通过观察射线束强度的峰值的位置,可以确定准直器2的取向。与上述的实施例类似,可以调整准直器2的取向,使得准直器2发射的射线束朝向想要的位置,例如朝向探测器模块3的中线。
在根据本发明的另一实施例中,如图3b所示,用于集装箱或车辆检查系统的对准系统,包括测量模块5,测量模块5是多个传感器构成的传感器阵列,每个传感器配置成测量射线强度。测量模块中的一列传感器布置在集装箱或车辆检查系统的探测器模块的纵向中心线上。当测量模块的布置在探测器模块的纵向中心线上的所述一列(当测量模块的小的传感器体积比探测器模块小得多时,可以是多列小的传感器)传感器测量的射线强度值是射线强度值曲线的最大值时,确定射线是对准探测器模块。
本领域技术人员应该知道,探测器晶体6可以具有一定的体积,测量模块5沿探测器臂4的大体横向布置,当测量模块5与探测器臂4之间形成的角度在接近90度的一定范围内时,本发明的技术方案仍然是可以实现的。
根据本发明的一个实施例,提供用于准集装箱或车辆的检查系统的对准方法。检查系统包括射线源1、准直器2以及安装在探测器臂4上的探测器模块3,射线源1、准直器2以及探测器模块3布置成形成检查通道,射线源1发射的射线经过准直器2入射到被检查物体由探测器模块3收集以完成检查。对准方法包括,设置测量模块5,所述测量模块5布置成接收从射线源1发出并经过准直器2的射线。对准方法还包括通过测量模块5测量的射线强度峰值确定射线主束的位置。当测量模块5测量显示位于探测器模块3纵向中心线处检测到的射线束强度最大(即射线主束)时,确定射线源1发出的射线经过准直器2的射线主束对准了探测器模块3。
本领域技术人员应该理解,本发明所提到的X射线和伽马射线源可以是其他射线源。本发明所提到射线束指的是任何形式用于照射的射线形式,可以是笔状束,可以是扇形射线,也可以是其他任何所需的射线形式。
尽管已经参考本发明的典型实施例,具体示出和描述了本发明,但 本领域普通技术人员应当理解,在不脱离所附权利要求所限定的本发明的精神和范围的情况下,可以对这些实施例进行形式和细节上的多种改变。

Claims (9)

  1. 一种用于集装箱或车辆检查系统的对准系统,其特征在于,
    包括测量模块,测量模块是多个传感器构成的传感器阵列,每个传感器配置成测量射线强度;
    测量模块中的一列传感器布置在集装箱或车辆检查系统的探测器模块的纵向中心线上,当测量模块的布置在探测器模块的纵向中心线上的所述一列传感器测量的射线强度值是射线强度值曲线的最大值时,确定射线对准探测器模块。
  2. 如权利要求1所述的用于集装箱或车辆检查系统的对准系统,其特征在于,
    所述传感器阵列与集装箱或车辆检查系统的探测器模块相对于彼此大致垂直地排列布置。
  3. 一种用于集装箱或车辆检查系统的对准系统,其特征在于,
    包括测量模块,所述测量模块是多个传感器构成的一个传感器排,每个传感器配置成测量射线强度;
    所述测量模块中的一个传感器布置在集装箱或车辆检查系统的探测器模块的纵向中心线上,当测量模块的布置在探测器模块的纵向中心线上的所述一个传感器测量的射线强度值是射线强度值曲线的最大值时,确定射线对准探测器模块。
  4. 如权利要求3所述的用于集装箱或车辆检查系统的对准系统,其特征在于,
    所述传感器排与集装箱或车辆检查系统的探测器模块相对于彼此大致垂直排列布置。
  5. 如权利要求3或4所述的用于集装箱或车辆检查系统的对准系统,其特征在于,
    所述传感器是小型探测器,所述小型探测器的尺寸小于集装箱或车辆检查系统的探测器模块的探测器晶体尺寸,所述测量模块中的一个小型探测器设置在集装箱或车辆检查系统的探测器模块的纵向中心线上。
  6. 如权利要求3至5任一项所述的用于集装箱或车辆检查系统的对准系统,其特征在于,
    设置在集装箱或车辆检查系统的探测器模块的纵向中心线上的所述传感器是所述测量模块中点的传感器。
  7. 如权利要求6所述的用于集装箱或车辆检查系统的对准系统,其特征在于,
    当测量模块上的位于探测器模块中点处的传感器测量的射线强度值最大时确定通过准直器的射线已经对准探测器模块。
  8. 一种用于集装箱或车辆的检查系统,包括射线源、准直器、探测器臂以及安装在探测器臂上的探测器模块,射线源、准直器以及探测器模块布置成形成检查通道,射线源发射的射线经过准直器入射到被检查物体由探测器模块收集以完成检查,其特征在于,
    还包括上述权利要求中任一项所述的对准系统。
  9. 一种用于集装箱或车辆的检查系统的对准方法,
    在位于集装箱或车辆检查系统的探测器臂上的探测器模块的纵向中心线上设置权利要求1至7之一所述的对准系统;
    将集装箱或车辆检查系统的射线源、准直器以及探测器模块布置成检查通道,射线源发射射线经过准直器,被所述对准系统的测量模块和探测器模块接收;
    通过测量模块上各传感器反馈的射线强度最大值确定射线主束的位置;
    计算所述射线主束射到探测器模块上的位置与探测器模块的纵向中心线位置的偏差;
    调整射线源、准直器或探测器模块的位置,使射线主束射到探测器模块上的位置与探测器模块的纵向中心线重合。
PCT/CN2015/096537 2014-12-11 2015-12-07 用于集装箱或车辆检查系统的对准系统和对准方法 WO2016091132A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410767544.0A CN104634796B (zh) 2014-12-11 2014-12-11 用于集装箱或车辆检查系统的对准系统和对准方法
CN201410767544.0 2014-12-11

Publications (1)

Publication Number Publication Date
WO2016091132A1 true WO2016091132A1 (zh) 2016-06-16

Family

ID=53213788

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/096537 WO2016091132A1 (zh) 2014-12-11 2015-12-07 用于集装箱或车辆检查系统的对准系统和对准方法

Country Status (5)

Country Link
US (1) US9910184B2 (zh)
EP (1) EP3032288B1 (zh)
CN (1) CN104634796B (zh)
PL (1) PL3032288T3 (zh)
WO (1) WO2016091132A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104634796B (zh) * 2014-12-11 2017-12-12 清华大学 用于集装箱或车辆检查系统的对准系统和对准方法
CN106290419A (zh) * 2016-08-31 2017-01-04 同方威视技术股份有限公司 可移动分体式检查系统及方法
CN106442585A (zh) * 2016-10-17 2017-02-22 北京君和信达科技有限公司 背散射辐射成像系统
CN109683204B (zh) * 2017-10-19 2020-07-28 北京君和信达科技有限公司 辐射成像装置调整方法
CN110057848A (zh) * 2019-04-17 2019-07-26 苏州曼德克光电有限公司 一种用于探测器阵列与射线源对准的系统及方法
BR112022001465A2 (pt) * 2019-08-16 2022-03-22 John Bean Technologies Corp Calibração e monitoramento automatizados por raio-x
CN113406710A (zh) * 2020-03-17 2021-09-17 同方威视技术股份有限公司 探测器模块、探测器设备和检查设备
CN113945989A (zh) * 2021-09-08 2022-01-18 浙江华视智检科技有限公司 射线源微调系统及方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1133440A (zh) * 1995-03-31 1996-10-16 清华大学 自扫描式大型物体辐射检测系统
CN2890902Y (zh) * 2005-11-09 2007-04-18 清华同方威视技术股份有限公司 射线束中心对准装置
CN200993644Y (zh) * 2006-12-30 2007-12-19 清华同方威视技术股份有限公司 一种用于大型集装箱的χ、γ射线束流检测装置
US20080298546A1 (en) * 2007-05-31 2008-12-04 General Electric Company Cargo container inspection method
CN101813642A (zh) * 2009-12-31 2010-08-25 苏州和君科技发展有限公司 具有三自由度运动控制的显微ct成像设备及其校准方法
CN204314235U (zh) * 2014-12-11 2015-05-06 清华大学 用于集装箱或车辆的检查系统和用于该检查系统的对准系统
CN104634796A (zh) * 2014-12-11 2015-05-20 清华大学 用于集装箱或车辆检查系统的对准系统和对准方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1123482A (ja) * 1997-06-30 1999-01-29 Advantest Corp ビームの照射位置調整方法、レーザビームを用いた異物検出装置、走査型電子顕微鏡及び組成分析装置
US7783004B2 (en) * 2002-07-23 2010-08-24 Rapiscan Systems, Inc. Cargo scanning system
US7963695B2 (en) * 2002-07-23 2011-06-21 Rapiscan Systems, Inc. Rotatable boom cargo scanning system
US6995372B2 (en) * 2003-02-12 2006-02-07 Voith Paper Patent Gmbh Nuclear gauge for measuring a characteristic of a sheet material with sheet position and alignment compensation
CN1963476A (zh) * 2005-11-09 2007-05-16 清华同方威视技术股份有限公司 一种射线束中心对准装置
US7742568B2 (en) * 2007-06-09 2010-06-22 Spectrum San Diego, Inc. Automobile scanning system
CN102023306B (zh) * 2009-09-11 2013-10-09 同方威视技术股份有限公司 加速器剂量监测装置及校正方法、加速器靶点p偏移监测方法
US10393915B2 (en) * 2010-02-25 2019-08-27 Rapiscan Systems, Inc. Integrated primary and special nuclear material alarm resolution
WO2011137504A1 (en) * 2010-05-05 2011-11-10 Nauchno-Proizvodstvennoe Chastnoe Uniternoe Predpriyatie Adani Cargo and vehicle inspection system
CN103185891B (zh) * 2011-12-30 2016-06-08 同方威视技术股份有限公司 加速器射线束精确测量设备
CN104903708B (zh) * 2013-01-04 2019-09-10 美国科技工程公司 X射线检查中的动态剂量减小

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1133440A (zh) * 1995-03-31 1996-10-16 清华大学 自扫描式大型物体辐射检测系统
CN2890902Y (zh) * 2005-11-09 2007-04-18 清华同方威视技术股份有限公司 射线束中心对准装置
CN200993644Y (zh) * 2006-12-30 2007-12-19 清华同方威视技术股份有限公司 一种用于大型集装箱的χ、γ射线束流检测装置
US20080298546A1 (en) * 2007-05-31 2008-12-04 General Electric Company Cargo container inspection method
CN101813642A (zh) * 2009-12-31 2010-08-25 苏州和君科技发展有限公司 具有三自由度运动控制的显微ct成像设备及其校准方法
CN204314235U (zh) * 2014-12-11 2015-05-06 清华大学 用于集装箱或车辆的检查系统和用于该检查系统的对准系统
CN104634796A (zh) * 2014-12-11 2015-05-20 清华大学 用于集装箱或车辆检查系统的对准系统和对准方法

Also Published As

Publication number Publication date
US20160170074A1 (en) 2016-06-16
US9910184B2 (en) 2018-03-06
PL3032288T3 (pl) 2022-05-09
CN104634796B (zh) 2017-12-12
EP3032288B1 (en) 2022-01-12
EP3032288A1 (en) 2016-06-15
CN104634796A (zh) 2015-05-20

Similar Documents

Publication Publication Date Title
WO2016091132A1 (zh) 用于集装箱或车辆检查系统的对准系统和对准方法
CN101957451B (zh) 放射线检查设备
CN105277579B (zh) 荧光x射线分析装置
CN105423917B (zh) 位置敏感探测器定位误差的标定方法
US5359640A (en) X-ray micro diffractometer sample positioner
CN106840023B (zh) 大口径复杂曲面光学参数精确测试和标定装置及方法
CN109520425B (zh) 一种精跟踪误差测试装置及测试方法
CN102893177A (zh) 大气湿度或温度或者云高测量方法和设备
CN110887637A (zh) 一种同轴平行光管光轴引出装置及方法
CN204314235U (zh) 用于集装箱或车辆的检查系统和用于该检查系统的对准系统
CN109029718B (zh) 具备自校准功能的太赫兹源发散角测量装置及测量方法
CN106441371B (zh) 数字水准仪专用检定/校准装置
CN102813525B (zh) Dr中心校准装置及其校准的方法
US10012628B2 (en) Multifunctional particle analysis device and method of calibrating the same
US20080210853A1 (en) Medical apparatus and procedure for positioning a patient in an isocenter
CN104614155B (zh) 角反射器指向精度测量设备及测试方法
CN108362276A (zh) 一种空间大跨度多光轴校轴系统及其调校装置和方法
EP0390478A1 (en) X-ray apparatus for measuring film thickness
CN209673043U (zh) 一种安装距离可自适应调节的激光位移传感器
CN202486335U (zh) 用于集装箱成像的物理模型系统调整系统
RU2012134961A (ru) Способ определения географических координат области наблюдения перемещаемой относительно космического аппарата аппаратуры наблюдения, система для его осуществления и устройство размещения излучателей на аппаратуре наблюдения
US7651270B2 (en) Automated x-ray optic alignment with four-sector sensor
CN105509706A (zh) 一种可变角度的光学测量装置和测量方法
CN105486236A (zh) 一种点光源尺寸测量装置和尺寸测量方法
CN105403537B (zh) 消除bsdf测量中激光光源功率变化误差的系统和方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15867888

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15867888

Country of ref document: EP

Kind code of ref document: A1