WO2016090930A1 - 一种不间断电源系统 - Google Patents

一种不间断电源系统 Download PDF

Info

Publication number
WO2016090930A1
WO2016090930A1 PCT/CN2015/085936 CN2015085936W WO2016090930A1 WO 2016090930 A1 WO2016090930 A1 WO 2016090930A1 CN 2015085936 W CN2015085936 W CN 2015085936W WO 2016090930 A1 WO2016090930 A1 WO 2016090930A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
bus
power source
unit
switching
Prior art date
Application number
PCT/CN2015/085936
Other languages
English (en)
French (fr)
Inventor
张春涛
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP15810775.5A priority Critical patent/EP3054557B1/en
Priority to US15/083,858 priority patent/US10014719B2/en
Publication of WO2016090930A1 publication Critical patent/WO2016090930A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/062Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for AC powered loads
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems
    • H02J9/061Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems for DC powered loads
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0068Battery or charger load switching, e.g. concurrent charging and load supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J9/00Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting
    • H02J9/04Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source
    • H02J9/06Circuit arrangements for emergency or stand-by power supply, e.g. for emergency lighting in which the distribution system is disconnected from the normal source and connected to a standby source with automatic change-over, e.g. UPS systems

Definitions

  • the present invention relates to the field of uninterruptible power supplies, and more particularly to an uninterruptible power supply system.
  • UPS Uninterruptible power system
  • UPS Uninterruptible Power System
  • the UPS consists of the following components: rectifier (AC/DC), inverter (DC/AC), charger (CHG), energy storage device (battery), bypass (STS), DC bus (BUS),
  • the DC bus is the output of the rectifier AC/DC circuit, and is also the DC/AC input voltage source of the inverter.
  • AC/DC rectifier
  • DC/AC inverter
  • the load is supplied with power.
  • the DC bus voltage is charged to the battery through the charger.
  • the UPS main circuit inputs a fault, the switching device is turned to the battery input terminal, and the battery is outputted to the DC bus through the DC/DC conversion to ensure the DC bus voltage. Stable, while the DC bus is powered by the DC/AC converter to ensure normal output.
  • the UPS can select the mains supply or the battery, but in the mains and battery switching, there is a certain gap period in the switching process, that is, neither the mains input nor the battery input.
  • the time is usually in the range of a few milliseconds to tens of milliseconds, the energy stored in the DC bus capacitor (1/2CU2) can keep the output voltage uninterrupted, and the load is all powered by the DC bus storage energy. Due to the long time, the load is large, the DC bus capacity requirement is large, and the UPS volume cost competitiveness is degraded.
  • an embodiment of the present invention provides an uninterruptible power supply system.
  • an object of the present invention is to provide an uninterruptible power supply system, the system comprising:
  • a first power source for supplying power to the system
  • a second power source for supplying power to the system when the first power source fails
  • a switching unit configured to switch the first power source to the second power source when the first power source fails, to supply power to the system by the second power source; or to cancel when the first power source is faulty Switching the second power source to the first power source, and powering the system by the first power source;
  • a first power processing unit configured to perform AC/DC rectification of the voltage to obtain a bus voltage of the DC bus when the first power source supplies power to the system, or to DC the current when the second power source supplies power to the system /DC conversion to get the bus voltage of the DC bus;
  • a DC bus for transmitting electrical energy, and supplying power to the system during an action blank period when the switching unit switches between the first power source and the second power source;
  • a second power processing unit configured to perform DC/AC inverter on the bus voltage of the DC bus to obtain an output voltage
  • a bidirectional power conversion unit configured to supply power to the second power source when the first power source supplies power to the system, and to perform an action when the switching unit switches between the first power source and the second power source The idle period supplies power to the system;
  • the first power source is electrically connected to the first access end of the switching unit
  • the second power source is electrically connected to the second access end of the switching unit
  • the output end of the switching unit is connected to the first
  • the first terminal of the power processing unit is electrically connected
  • the second terminal of the first power processing unit is electrically connected to one end of the bidirectional power conversion unit, and the other end of the bidirectional power conversion unit and the second power source Electrically connected
  • a second terminal of the first power processing unit is electrically connected to one end of the DC bus
  • the other end of the DC bus is electrically connected to a first terminal of the second power processing unit
  • a second terminal of the second power processing unit is electrically coupled to the system output.
  • the first power source is a main channel input bus
  • the second power source is an energy storage battery
  • the bidirectional power conversion unit includes a unidirectional charging subunit and a unidirectional electronic discharging unit, where
  • the unidirectional charging subunit is configured to charge the energy storage battery
  • the one-way electronic discharge unit is configured to discharge the energy storage battery to the system, so that the energy storage battery and the DC bus are powered together to the system during a gap period of the switching unit switching;
  • the unidirectional charging subunit and the one-way discharging unit are coupled between the DC bus and the energy storage battery.
  • the bidirectional power conversion unit is to the DC bus when the main path input bus is faulty Powering, the first power processing unit is turned off;
  • the first power conversion unit is activated when the switching unit is switched to the energy storage battery, so that the switching unit is reliably switched.
  • system further includes a bypass input bus for providing additional backup for failure The channel supplies power to the load;
  • the bypass input bus is electrically coupled to the system output.
  • the capacitance of the DC bus is a bus capacitor when the DC bus is independently powered by the system. 40% to 60%.
  • the switching unit comprises a mechanical switch or a semiconductor switch.
  • the mechanical switch comprises a relay or a contactor
  • the semiconductor switch comprises a thyristor rectifier
  • the main path input bus and the bypass The input bus is a commercial frequency AC.
  • the energy storage battery includes, but is not limited to, nickel hydrogen Battery, nickel-cadmium battery, lithium iron phosphate battery, iron battery.
  • the present invention provides an uninterruptible power supply system.
  • the switching unit switches the first power supply to the second power supply, and the second power supply discharges to the DC bus through the bidirectional power conversion unit.
  • the electric energy stored by the DC bus is also discharged.
  • the DC bus discharges the discharge current of the second power supply and the discharge current of the DC bus to the output of the system, ensuring that the output voltage of the DC bus is stable during the neutral period of the switching unit operation, due to the bidirectional power.
  • the DC bus voltage during the discharge support switching of the conversion unit can reduce the requirement of the capacitance value of the DC bus, and the DC bus discharges the stored electric energy and shares part of the DC bus voltage, so that the output voltage of the bidirectional power conversion unit is lowered, and further
  • the power of the bidirectional power conversion unit can be reduced, and the volume of the bidirectional power conversion unit can be reduced.
  • FIG. 1 is a structural diagram of an embodiment of an uninterruptible power supply system of the present invention
  • FIG. 2 is a block diagram showing another embodiment of the uninterruptible power supply system of the present invention.
  • the embodiment of the invention provides an uninterruptible power supply system for reducing the requirement of the DC bus capacitance value and reducing the output voltage of the bidirectional power conversion unit 600, thereby reducing the power of the bidirectional power conversion unit 600 and reducing The volume of the bidirectional power conversion unit 600 saves cost.
  • an embodiment of an uninterruptible power supply system provided by the present invention includes:
  • the first power source 100 is used to supply power to the system.
  • the first power source 100 can be selected from the main input bus or the energy storage battery.
  • the main input bus can be selected as alternating current or direct current.
  • the alternating current can be output to the DC bus 400 through rectification, and the DC bus 400 can filter the direct current and can be utilized.
  • the DC power is charged for its own DC bus 400.
  • the main input power supply adopts the DC input, it can be outputted to the DC bus through the DC/DC conversion step-down operation, and the DC bus is charged by DC to store energy.
  • the second power source 200 is configured to supply power to the system when the first power source 100 fails.
  • the second power source 200 can be selected from the energy storage battery or the main circuit input bus.
  • the second power source 200 can select the energy storage battery, or the first power source 100 selects the energy storage battery.
  • the second power source 200 is a main line input bus.
  • the main line input bus bar can also be selected, or the energy storage battery can be selected at the same time, which is not limited, and can be quickly supplied to the system after the switching unit switches to the second power source 200. Ensure that the output voltage of the system is uninterrupted.
  • the energy storage battery may be a nickel-hydrogen battery, a nickel-cadmium battery, a lithium iron phosphate battery, an iron battery, or other energy storage device.
  • the switching unit 300 is configured to switch the first power source 100 to the second power source 200 when the first power source 100 fails, and supply power to the system by the second power source 200; or When the first power source 100 is faulty, the second power source 200 is switched to the first power source 100, and the first power source 100 supplies power to the system.
  • the switching unit 300 includes a first access terminal, a second access terminal, and an output terminal.
  • the switching unit 300 uses a mechanical switch or a semiconductor switch.
  • the mechanical switch can use a relay, a contactor, and the semiconductor switch can adopt a thyristor rectifier.
  • the shorter the switching duty period the better, because the longer the switching action gap period, the larger the capacitance of the DC bus 400 and the voltage required by the second power source 200 to the system, and the capacitance value of the DC bus 400 is required.
  • the power of the unidirectional discharge unit 602 is also increased, which is disadvantageous for reducing the volume and cost of the DC bus 400 and the unidirectional discharge unit 602.
  • the first power processing unit 701 is configured to perform AC/DC rectification of the voltage when the first power source 100 supplies power to the system to obtain a bus voltage of the DC bus 400, or for when the second power source 200 supplies power to the system.
  • the bus voltage of the DC bus 400 is obtained by DC/DC conversion of the current.
  • the first power processing unit 701 has a function of rectifying and boosting.
  • the first power processing unit 701 rectifies the alternating current by using its own AC/DC rectification conversion to obtain a direct current.
  • the obtained direct current is output to the DC bus 400;
  • the switching unit 300 outputs the direct current from the second power supply 200, the first power processing unit 701 performs DC/DC boost conversion on the direct current, and then the boosted direct current Output to the DC bus 400.
  • the first power processing unit 701 can implement switching between the AC/DC conversion function and the DC/DC conversion function through a software algorithm, and of course, an independent AC/DC rectifier circuit and DC/
  • the AC conversion circuit is not limited herein.
  • the DC bus 400 is configured to transmit electrical energy and supply power to the system during an action gap period when the switching unit 300 switches between the first power source 100 and the second power source 200.
  • the DC bus 400 of the present invention has two functions, one is to filter the DC current, and the other is to use DC charging, and discharge to the system during the switching operation period of the switching unit 300 to support the output voltage of the DC bus 400, DC.
  • the bus bar 400 can be provided with a DC bus capacitor. According to the nature of the DC and the AC of the capacitor, the output to the DC bus capacitor must be DC. When the output of the first power source is AC, it needs to be rectified, and the DC output is obtained after rectification. To the first power source 100, when the first power source 100 is DC power, the DC power of the voltage level can be stepped down to a DC power with a low voltage level to the DC bus 400.
  • the second power processing unit 702 is configured to perform DC/AC inversion of the bus voltage of the DC bus 400 to obtain an output voltage.
  • the second power processing unit 702 has a DC/AC inverter function, which inverts the DC power received from the DC bus 400 to obtain an AC power, and outputs the AC power to the system output terminal 500 for use by the load.
  • the bidirectional power conversion unit 600 is configured to supply power to the second power source 200 during the power supply period of the first power source 100, charge the second power source 200, and switch the action slot period to the system in the switching unit 300. powered by.
  • the bidirectional power conversion unit 600 is connected to the second power source 200 and may include a charging circuit and a discharging circuit, that is, including a DC/DC circuit, and converts the current on the DC bus 400 to the second power source 200 when the first power source 100 operates normally. Charging, when the first power source 100 fails, the switching unit 300 performs switching. During the neutral period of the switching operation, that is, neither the first power source 100 nor the second power source 200 supplies power to the system, at this time, the DC bus capacitor is required to store itself. The power is discharged to the system, and the bidirectional power conversion unit 600 rapidly discharges the power of the second power source 200 to the system.
  • the bidirectional power conversion unit 600 Since the bidirectional power conversion unit 600 is directly connected to the second power source 200 and the DC bus 400, there is no need to switch through the switching unit 300.
  • the bidirectional power conversion unit 600 shorts the switching time of discharging the electric quantity of the second power source 200, and supplies power to the system through the DC bus capacitor and the bidirectional power conversion unit 600 to support the output voltage of the DC bus 400, and does not require a high power device.
  • the second power source 200 is discharged, and the DC bus capacitor with a large capacitance value is not required, which can not only reduce the DC/DC power.
  • the road volume can also reduce the cost of using DC/DC circuits.
  • the system output is used to connect the load and output the system power to the load.
  • the first power source 100 is electrically connected to the first access end of the switching unit 300, and the second power source 200 is electrically connected to the second access end of the switching unit 300, and the output end of the switching unit 300
  • the first terminal of the first power processing unit 701 is electrically connected, and the output end of the switching unit 300 is also electrically connected to one end of the bidirectional power conversion unit 600, and the other end of the bidirectional power conversion unit 600 is
  • the terminals of the second power source 200 are electrically connected, the first terminal of the first power processing unit 701 is electrically connected to the first terminal of the DC bus 400, and the other end of the DC bus 400 is
  • the first terminal of the second power processing unit 702 is electrically connected, and the second terminal of the second power processing unit 702 is electrically coupled to the system output 500.
  • the switching unit 300 switches the first power source 100 to the power supply of the second power source 200, and the second power source 200 passes through the bidirectional power conversion unit 600.
  • the DC bus 400 is discharged, and the DC bus capacitor is also discharged to the DC bus 400.
  • the DC bus 400 sends the discharge voltage of the second power supply 200 and the discharge voltage of the DC bus capacitor to the system output terminal 500, ensuring that the DC bus 400 is in the switching unit 300.
  • the output period voltage of the action is stable.
  • the discharge of the bidirectional power conversion unit 600 supports the voltage of the DC bus 400 during the switching process, the requirement of the capacitance value of the DC bus 400 can be reduced, and the stored energy of the DC bus 400 can be discharged.
  • the partial DC bus 400 voltage is shared, so that the output voltage of the bidirectional power conversion unit 600 is lowered, thereby reducing the power of the bidirectional power conversion unit 600 and reducing the volume of the bidirectional power conversion unit 600.
  • the first power source 100 adopts a main circuit input bus bar
  • the second power source 200 uses an energy storage battery.
  • the switching unit can be realized when the main circuit input bus bar is faulty.
  • the DC bus 400 and the energy storage battery are used to supply power to the system at the same time, thereby reducing the use cost of the power device and the capacitance requirement of the DC bus, and also switching the unit when the main input bus returns to normal.
  • the circuit power supply is switched from the energy storage battery to the neutral period of the main input bus, and the energy storage battery and the DC bus are used to simultaneously supply power to the system, and the voltage of the DC bus 400 is supported, so that the DC bus 400 is in the neutral period of switching. Voltage support can be obtained.
  • the uninterruptible power supply system of the present invention further provides another embodiment, which is specifically described below:
  • the bidirectional power conversion unit 600 includes a unidirectional charging subunit 601 and a unidirectional electronic discharging unit 602, where
  • the unidirectional charging subunit 601 is configured to charge the second power source 200, and charge the voltage output by the main input busbar to the second power source 200 when the system is in normal operation.
  • the unidirectional charging subunit 601 is electrically connected to the first power processing unit 701, and the second power source 200 is charged by the DC power output by the first power processing unit 701.
  • the structure of the unidirectional charging unit 601 can be configured by using a normal charging circuit. Those of ordinary skill in the art will appreciate that no description is made.
  • the direction of current flow for charging the second power source 200 by the one-way charging unit 601 is such that:
  • the one-way electronic unit 602 is configured to discharge the second power source 200 to the system, so that the second power source 200 and the DC bus 400 are stored in a blank period of the switching unit 300 switching. Power is supplied to the system together.
  • the unidirectional electron discharging unit 602 releases the electric energy in the second power source 200, and the unidirectional electronic discharging unit 602 outputs the electric energy released by the second power source 200 to the DC bus 400 for supporting the bus bar.
  • the structure of the voltage and unidirectional electron-discharging unit 602 can be configured by the structure of the discharge circuit, and the specific structure is not limited, and the discharge of the second power source 200 can be satisfied.
  • the flow direction of the circuit current is as follows:
  • the second power source 200 ⁇ the one-way electronic unit 602 ⁇ the DC bus 400 ⁇ the second power processing unit 702 ⁇ the system output 500.
  • the unidirectional charging subunit 601 and the unidirectional electronic discharging unit 602 are coupled between the output end of the first power processing unit 701 and the second power source 200.
  • the unidirectional discharge unit 602 is added to support the DC bus 400 voltage through the electrical energy stored in the unidirectional discharge unit 602 and the DC bus 400 during the switching operation of the switching unit 300 to ensure that the output voltage is stable due to the unidirectional discharge unit 602.
  • the DC bus 400 shares a part of the output voltage, so that the power level requirement of the unidirectional discharge unit 602 is reduced, and the high cost and large volume of the DC/DC conversion circuit using high power are avoided, and the DC bus 400 can also be reduced. Capacitor value requirements, you can choose DC bus 400 with lower capacitance value, saving volume and reducing cost.
  • the bidirectional power conversion unit 600 supplies power to the DC bus 400.
  • the first power processing unit 701 is first turned off, so that the DC bus is powered off.
  • the switching unit 300 has a voltage drop of 0, and then the switching unit 300 operates to switch to the second power source 200, and then starts the first power conversion unit 701, and the second power source 200 supplies power to the DC bus 400.
  • the switching unit 300 has a bidirectional power conversion unit during the switching. 600 support, can achieve switching unit
  • the zero current switching of 300 greatly improves the safety and reliability of the switching unit 300, realizes zero current switching, enables the switching unit to be reliably switched, and avoids dangerous safety problems such as sparking with load switching.
  • the failure of the first power source 100 includes high voltage, frequency conversion, flashing, phase change, and power down.
  • the DC bus 400 mentioned above can be used as the output of the first power processing unit 701 and also as the input voltage source of the second power processing unit 702.
  • the processing unit 701 is used as a rectifying circuit, and rectifies the alternating current of the first power source 100 to the direct current through the AC/DC conversion circuit of the first power processing unit 701, and the first power processing unit 701 outputs the rectified direct current output to the DC bus 400, the DC bus.
  • the 400 has a DC bus capacitor, can be filtered by the DC bus capacitor, can filter the AC high-frequency ripple current and current after AC/DC conversion, obtain a stable DC voltage, and then input to the second power processing unit 702, in addition, DC bus capacitor
  • the DC power rectified by the first power processing unit 701 is used for charging and storing energy, and some power is stored on the DC bus capacitor, so that when neither the first power source 100 nor the second power source 200 supplies power to the system. That is, when the switching unit 300 operates in the blank period, the (1/2CU2) stored in the DC bus capacitor is placed on the system.
  • the power through the DC bus 400 is maintained continuously discharging output the output voltage, the second power processing unit 702 to a stable DC voltage DC bus input 400 for DC / AC inverter alternating obtained, the AC output to a load.
  • the second power source 200 When the switching unit 300 switches the power supply of the system to the second power source 200, the second power source 200 performs DC/DC boost conversion by the first power processing unit 701 to perform boosting, and the first power processing is performed.
  • the unit 701 is used as a DC/DC boost converter.
  • the DC power obtained by rectifying the first power source 100 is defined as a first DC voltage
  • the DC power obtained by boosting the second power source 200 is defined as a second DC. The voltage is not described below.
  • the DC bus 400 is electrically connected to the first power processing unit 701, and the DC bus 400 is used as an output of the first power processing unit 701, and the first DC voltage or the second DC voltage output obtained by the first power processing unit 701 is output.
  • the DC bus 400 filters the first DC voltage or the second DC voltage to obtain a stable DC voltage to be output to the second power processing unit 702, and simultaneously utilizes the first DC voltage or the second DC voltage.
  • the capacitor of the DC bus 400 is charged, With the capacitor energy storage of the DC bus 400, the output voltage of the DC bus 400 is supported during the idle period of the switching unit 300 to ensure that the output voltage of the DC bus 400 is uninterrupted.
  • the larger the capacitance value the more stored electric energy.
  • the required DC bus capacitance value is larger, and the DC is reduced.
  • the capacitance value of the bus bar 400 can not only reduce the volume of the DC bus 400 but also greatly reduce the cost.
  • the DC bus 400 is electrically connected to the second power processing unit 702 such that the DC bus capacitance is output to the second power processing unit 702 when the DC bus capacitor is discharged during the neutral period of the switching unit 300 switching.
  • the DC/AC inverter is performed, and the second power processing unit 702 outputs the AC power obtained by the inverter to the load, and uses the DC bus capacitor energy storage to provide support for the output voltage of the DC bus 400 during the idle period of the switching unit 300.
  • the output voltage of the DC bus 400 is uninterrupted.
  • the capacitance value of the DC bus 400 can be reduced, and DC can be selected.
  • the capacitance of the bus capacitor is 40% to 60% of the bus capacitance when the DC bus is independently supplied. The preferred choice is 50%.
  • the bus capacitance is not discharged by the second power supply. Only the DC bus capacitor is used. Supporting the system voltage, the capacitance value of the DC bus capacitor is required to be large at this time, so reducing the capacitance value of the DC bus 400 can not only reduce the volume of the DC bus 400 but also greatly reduce the cost.
  • the power of the unidirectional charging subunit 601 is 10% to 20% of the rated power of the system;
  • the power of the unidirectional electronic discharge unit 602 is 10% to 20% of the rated power of the system.
  • the DC bus capacitor is also discharged to the DC bus 400 at the same time when the switching unit 300 switches the action period, and is used to support the output voltage of the DC bus 400.
  • the DC bus capacitor and the second power source 200 are simultaneously discharged to the DC bus 400.
  • the second power source 200 discharges and supports the output voltage of the DC bus 400.
  • the power requirement of the unidirectional discharge unit 602 is reduced, that is, the energy of the second power source 200 is discharged by the single unidirectional discharge unit 602, and the voltage required for the boost is greater.
  • the power requirement of the unidirectional discharge unit 602 may be high, so that the input voltage of the DC bus 400 is supported by the simultaneous discharge of the DC bus capacitor and the second power source 200, so that the power of the unidirectional discharge unit 602 can be reduced to the rated power of the system. 10% to 20%, reducing the power of the unidirectional discharge unit 602 can not only reduce the volume of the unidirectional discharge unit 602, but also reduce the use cost of the power device.
  • the system further includes a bypass input bus 800 for providing an additional backup channel for powering the load;
  • the bypass input bus bar 800 is electrically connected to the system output terminal 500.
  • the second power source 200 configured in the system is used to supply power to the system when the first power source 100 fails. When the second power source 200 is used for power supply, the system is powered. The other devices are not faulty. For example, the first power processing unit 701, the second power processing unit 702, and the DC bus 400 are all working normally. However, if these components are damaged, the system cannot work normally, and the system is guaranteed during the maintenance.
  • the output terminal 500 is normal, the bypass input bus 800 needs to be used, the bypass input bus 800 is used as the backup power source, and the bypass output bus has the same output voltage as the first power supply 100, which can satisfy the normal use of the load, and the bypass input bus 800 is directly
  • the system is connected to the system output terminal 500. It should be noted that the bypass input bus bar 800 does not pass through other devices of the system, and the standby power supply cannot be started when other components of the system are damaged. Those skilled in the art should understand that no description is given. .
  • the switching unit 300 provided in the present invention comprises a relay, a contactor or a thyristor rectifier, or adopts a mechanical switch or a semiconductor switch to achieve fast switching, and the shorter the switching duty period, the better, because the switching action
  • the longer the gap period the greater the voltage required for the DC bus capacitor and the second power source 200 to be output to the DC bus 400, the higher the capacitance value of the DC bus 400 is, and the power of the unidirectional discharge unit 602 is increased. It is advantageous to reduce the volume and cost of the DC bus 400 and the unidirectional discharge unit 602.
  • the first power source 100 is a power frequency alternating current
  • the output voltage of the first power source 100 can be selected according to requirements, for example, 200V residential power, or 380V, and the power frequency can select 50hz or 60hz power frequency alternating current, specifically not Limitations will be made by those of ordinary skill in the art and will not be described.
  • the disclosed system, apparatus, and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative
  • the division of the unit is only a logical function division, and the actual implementation may have another division manner, for example, multiple units or components may be combined or may be integrated into another system, or some features may be ignored. Or not.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the program may be stored in a computer readable storage medium, and the storage medium may include: Read Only Memory (ROM), Random Access Memory (RAM), disk or optical disk.
  • ROM Read Only Memory
  • RAM Random Access Memory

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Stand-By Power Supply Arrangements (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

一种不间断电源系统,在系统的第一电源(100)出现故障时,切换单元(300)将第一电源切换到第二电源(200)供电的过程中,第二电源通过双向功率变换单元(600)向直流母线放电,切换过程中直流母线(400)自身储存的电能也短时间进行放电,直流母线将第二电源的放电电流和直流母线的放电电流一同向系统输出端(500)输出,保证了在切换单元动作的空档期直流母线输出电压的稳定,切换装置安全可靠的切换,以及同时降低了对直流母线电容值的要求。由于双向功率变换单元只在切换装置动作的过程中短时间支撑直流母线的母线电压,因此可以降低充电器单元规格和体积。

Description

一种不间断电源系统
本申请要求于2014年12月11日提交中国专利局、申请号为201410764153.3、发明名称为“一种不间断电源系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及不间断电源领域,特别涉及一种不间断电源系统。
背景技术
目前,我国仅有少数局部地区刚刚解决了电力紧张的问题,大部分地区和大城市还面临着电力供应紧张的迫切问题,供电质量更是不能得到保证。市电无法提供敏感电子设备需要的干净、稳定的电源,用户最终为设备的健康和安全运行负责。即使是在早已实现电气化的美国和其它西方国家,电网的质量也远非可靠。由于电网本身的质量有问题与各种偶然因素的作用,再加上自然灾害的破坏,电压浪涌,电磁噪声,持续电压偏高,持续低压等电网不良现象在发达国家也是常事,甚至还可能发生长时间停电。
不间断电源系统(简称:UPS,英文:Uninterruptible Power System),就是当停电时能够接替市电持续供应电力的设备,含有储能装置(电池),在市电故障时或无中断下继续供应电力,保证客户用电安全和可靠性,避免因市电故障导致的损失。
通常UPS由以下几个部分组成:整流器(AC/DC)、逆变器(DC/AC)、充电器(CHG)、储能装置(电池)、旁路(STS)、直流母线(BUS),直流母线为整流器AC/DC电路输出,同时也是逆变器DC/AC输入电压源,UPS主路输入正常时,主路输入通过整流器(AC/DC)和逆变器(DC/AC)输出给负载供电.同时直流母线电压通过充电器给电池充电,UPS主路输入故障时,切换装置转到电池输入端,电池通过DC/DC变换,将自身储存的电能输出至直流母线,保证直流母线电压稳定,同时直流母线通过DC/AC变换给负载供电,保证正常输出。
在通常的使用中,通过控制切换装置,UPS可选择市电供电还是电池供电,但是在市电和电池切换时,切换过程中存在一定空档期,即既不是市电输入,也不是电池输入,时间通常在几毫秒至几十毫秒,直流母线电容里存储能量 (1/2CU2)可以保持输出电压不间断,负载全部由直流母线存储能量供电,由于时间长,负载大,直流母线容值要求大,UPS体积成本竞争力下降。
发明内容
有鉴于此,本发明实施例提供了一种不间断电源系统。
第一方面,本发明的一个目的是提供的不间断电源系统,所述系统包括:
第一电源,用于向系统供电;
第二电源,用于当所述第一电源故障时向系统供电;
切换单元,用于当所述第一电源故障时,将所述第一电源切换到所述第二电源,由所述第二电源为系统供电;或者,用于当所述第一电源故障消除时,将所述第二电源切换到所述第一电源,由所述第一电源为系统供电;
第一功率处理单元,用于当所述第一电源为系统供电时对电压进行AC/DC整流得到直流母线的母线电压,或者,用于当所述第二电源为系统供电时对电流进行DC/DC变换得到直流母线的母线电压;
直流母线,用于输送电能,并在所述切换单元在所述第一电源和所述第二电源之间进行切换时的动作空档期为系统供电;
第二功率处理单元,用于将所述直流母线的母线电压进行DC/AC逆变得到输出电压;
双向功率变换单元,用于当所述第一电源为系统供电时为所述第二电源供电,以及在所述切换单元在所述第一电源和所述第二电源之间进行切换时的动作空档期为系统供电;
系统输出端,用于连接负载并将系统供电输出到所述负载;
所述第一电源与所述切换单元的第一接入端电连接,所述第二电源与所述切换单元的第二接入端电连接,所述切换单元的输出端与所述第一功率处理单元的第一接线端电连接,所述第一功率处理单元的第二接线端与所述双向功率变换单元的一端电连接,所述双向功率变换单元的另一端与所述第二电源电连接,所述第一功率处理单元的第二接线端与所述直流母线的一端电连接,所述直流母线的另一端与所述第二功率处理单元的第一接线端电连接,所述第二功率处理单元的第二接线端与所述系统输出端电连接。
结合第一方面,在第一方面的第一种实现方式中,所述第一电源为主路输入母线,所述第二电源为储能电池。
结合第一方面的第一种实现方式,在第一方面的第二种实现方式中,所述双向功率变换单元包括单向充电子单元和单向放电子单元,其中,
所述单向充电子单元,用于向所述储能电池充电;
所述单向放电子单元,用于将所述储能电池向系统放电,以使得在所述切换单元切换的空档期实现所述储能电池和所述直流母线一同向系统供电;
所述单向充电子单元与所述单向放电子单元并联接于所述直流母线和所述储能电池之间。
结合第一方面的第一种实现方式或第二种实现方式,在第一方面的第三种实现方式中,在所述主路输入母线故障时,所述双向功率变换单元向所述直流母线供电,所述第一功率处理单元关闭;
所述切换单元动作切换至储能电池时启动第一功率变换单元,以使得所述切换单元可靠切换。
结合第一方面的第一种实现方式至第一方面的第三种实现方式,在第一方面的第四种实现方式中,所述系统还包括旁路输入母线,用于发生故障提供额外备用通道为负载供电;
所述旁路输入母线与所述系统输出端电连接。
结合第一方面至第一方面的第四种实现方式中任一种实现方式,在第一方面的第五种实现方式中,所述直流母线的电容值为直流母线独立为系统供电时母线电容的40%至60%。
结合第一方面至第一方面的第五种实现方式中任一种实现方式,在第一方面的第六种实现方式中,所述切换单元包括机械开关或者半导体开关。
结合第一方面的第六种实现方式,在第一方面的第七种实现方式中,所述机械开关包括继电器或接触器,所述半导体开关包括可控硅整流器。
结合第一方面的第一种实现方式至第一方面的第七种实现方式中任一种实现方式,在第一方面的第八种实现方式中,所述主路输入母线与所述旁路输入母线为工频交流电。
结合第一方面的第一种实现方式至第一方面的第八种实现方式中任一种实现方式,在第一方面的第九种实现方式中,所述储能电池包括但不限于镍氢电池、镍镉电池、磷酸铁锂电池、铁电池。
从以上技术方案可以看出,本发明实施例具有以下优点:
本发明提供了一种不间断电源系统,在系统的第一电源出现故障时,切换单元将第一电源切换到第二电源供电的过程中,第二电源通过双向功率变换单元向直流母线放电,直流母线自身储存的电能也进行放电,直流母线将第二电源的放电电流和直流母线的放电电流一同向系统输出端,保证了直流母线在切换单元动作的空档期输出电压稳定,由于双向功率变换单元的放电支撑切换过程中的直流母线电压,可以降低对直流母线的电容值的要求,并且直流母线将储存的电能放电,分担部分直流母线电压,使得双向功率变换单元的输出电压降低,进而可以降低双向功率变换单元的功率,减小双向功率变换单元的体积。
附图说明
图1本发明不间断电源系统的一种实施例的结构图;
图2是本发明不间断电源系统另一实施例的结构图。
具体实施方式
本发明实施例提供了一种不间断电源系统,用于降低对直流母线电容容值的要求,并且使得双向功率变换单元600的输出电压降低,进而可以降低双向功率变换单元600的功率,减小双向功率变换单元600的体积,节省成本。
为了使本技术领域的人员更好地理解本发明方案,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分的实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都应当属于本发明保护的范围。
本发明的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”“第四”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实 施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
结合图1所示,本发明提供的不间断电源系统一种实施例,所述系统包括:
第一电源100,用于向系统供电。
第一电源100可以在主路输入母线或储能电池中选取,主路输入母线可以选择交流电,或者直流电,交流电可以通过整流输出至直流母线400,直流母线400对直流电进行滤波处理,同时可以利用直流电为自身的直流母线400充电,当主路输入电源采用直流电输入时,可以经过DC/DC变换进行降压操作后输出至直流母线,直流母线利用直流电进行充电以存储能量。
第二电源200,用于当所述第一电源100故障时向系统供电。
第二电源200可以在储能电池或主路输入母线中选取,例如当第一电源100选择主路输入母线时,第二电源200可以选择储能电池,或者第一电源100选择储能电池,第二电源200为主路输入母线,当然也可以同样选取主路输入母线,或者同时选取储能电池,不做限定,满足可以在切换单元切换到第二电源200后迅速向系统供电即可,保证系统的输出电压不间断。
储能电池可以采用镍氢电池、镍镉电池、磷酸铁锂电池、铁电池,也可以采用其他储能装置。
切换单元300,用于当所述第一电源100故障时,将所述第一电源100切换到所述第二电源200,由所述第二电源200为系统供电;或者,用于当所述第一电源100故障消除时,将所述第二电源200切换到所述第一电源100,由所述第一电源100为系统供电。
所述切换单元300包括第一接入端、第二接入端及输出端,切换单元300采用机械开关或者半导体开关,机械开关可以采用继电器,接触器,半导体开关可以采用可控硅整流器,实现快速切换,切换工作空档期越短越好,因为切换动作空档期越长,直流母线400的电容和第二电源200的需要向系统输出的电压越大,对直流母线400的电容值要求更高,也使得单向放电子单元602的功率上升,不利于减小直流母线400和单向放电子单元602的体积和成本。
第一功率处理单元701,用于当所述第一电源100为系统供电时对电压进行AC/DC整流得到直流母线400的母线电压,或者,用于当所述第二电源200为系统供电时对电流进行DC/DC变换得到直流母线400的母线电压。
第一功率处理单元701具有整流和升压的功能,当由切换单元300输出的为来自市电的交流电时,第一功率处理单元701利用自身的AC/DC整流变换对交流电进行整流得到直流电,将得到的直流电输出至直流母线400;当有切换单元300输出的为来自第二电源200的直流电时,第一功率处理单元701对直流电进行DC/DC升压变换,再将经过升压的直流电输出至直流母线400,本实施例中第一功率处理单元701可以通过软件算法实现AC/DC变换功能与DC/DC变换功能之间的切换,当然也可以独立的AC/DC整流电路和DC/AC变换电路,在此不进行限定。
直流母线400,用于输送电能,并在所述切换单元300在所述第一电源100和所述第二电源200之间进行切换时的动作空档期为系统供电。
本发明中的直流母线400有两种作用,一是对直流电流进行滤波,二是利用直流电充电,在切换单元300切换工作空档期向系统放电,用来支撑直流母线400的输出电压,直流母线400可以设置有直流母线电容,根据电容的通直流、阻交流的性质,输出至直流母线电容的必须为直流电,当第一电源的输出为交流电时需要经过整流,在将整流后得到直流电输出至第一电源100,当第一电源100为直流电时,可以经过降压变换,将电压等级搞的直流电降压为电压等级低的直流电输出至直流母线400。
第二功率处理单元702,用于将所述直流母线400的母线电压进行DC/AC逆变得到输出电压。
在本实施例中,第二功率处理单元702具有DC/AC逆变功能,将接收来自直流母线400的直流电进行逆变得到交流电,在将交流电输出至系统输出端500供给负载使用。
双向功率变换单元600,用于在所述第一电源100向系统供电期向所述第二电源200供电,对第二电源200进行充电,以及在所述切换单元300切换动作空档期向系统供电。
双向功率变换单元600与第二电源200连接,可以包括充电电路和放电电路,即包括DC/DC电路,在第一电源100正常工作时,将直流母线400上的电流通过转换为第二电源200充电,在第一电源100故障时,切换单元300进行切换,在切换动作的空档期,即第一电源100和第二电源200均没有向系统供电,此时,需要直流母线电容将自身存储的电量向系统放电,双向功率变换单元600迅速将第二电源200的电量向系统放电,由于双向功率变换单元600直接与第二电源200和直流母线400连接,不需要经过切换单元300的切换动作,双向功率变换单元600将第二电源200的电量放电的切换时间短,通过直流母线电容和双向功率变换单元600一同向系统供电以支撑直流母线400的输出电压,既不需要大功率的功率器件实现第二电源200放电,也不需要大电容值的直流母线电容,不仅可以减小DC/DC电路体积,也可以降低DC/DC电路的使用成本。
系统输出端,用于连接负载并将系统供电输出到所述负载。
下面具体介绍各部件的连接关系:
所述第一电源100与所述切换单元300的第一接入端电连接,所述第二电源200与所述切换单元300的第二接入端电连接,所述切换单元300的输出端与所述第一功率处理单元701的第一接线端电连接,所述切换单元300的输出端还与所述双向功率变换单元600的一端电连接,所述双向功率变换单元600的另一端与所述第二电源200的接线端电连接,所述第一功率处理单元701的第一接线端与所述直流母线400的第一接线端电连接,所述直流母线400的另一端与所述第二功率处理单元702的第一接线端电连接,所述第二功率处理单元702的第二接线端与所述系统输出端500电连接。
本发明提供的不间断电源系统,在系统的第一电源100出现故障时,切换单元300将第一电源100切换到第二电源200供电的过程中,第二电源200通过双向功率变换单元600向直流母线400放电,直流母线电容也向直流母线400进行放电,直流母线400将第二电源200的放电电压和直流母线电容的放电电压一同向系统输出端500,保证了直流母线400在切换单元300动作的空档期输出电压稳定,由于双向功率变换单元600的放电支撑切换过程中的直流母线400电压,可以降低对直流母线400的电容值的要求,并且对直流母线400的存储的电能放电,分担部分直流母线400电压,使得双向功率变换单元600的输出电压降低,进而可以降低双向功率变换单元600的功率,减小双向功率变换单元600的体积。
作为一种优选的方案,在上一实施例中,第一电源100采用主路输入母线,第二电源200采用储能电池,通过采用上述结构,可以实现在主路输入母线故障时,切换单元300进行切换动作空档期时,利用直流母线400和储能电池同时向系统供电,降低功率器件的使用成本和直流母线的容值要求,并且也可以在主路输入母线恢复正常时,切换单元300将电路供电由储能电池切换至主路输入母线的空档期,利用储能电池和直流母线同时向系统供电,支撑直流母线400的电压,使得直流母线400在进行切换的空档期均可以得到电压支撑。
结合图2所示,针对双向功率变换单元600,本发明的不间断电源系统还提供了另一种实施例,下面进行具体介绍:
所述双向功率变换单元600包括单向充电子单元601和单向放电子单元602,其中,
所述单向充电子单元601,用于向所述第二电源200充电,在系统正常运行时,将主输入母线输出的电压为第二电源200充电。
单向充电子单元601与第一功率处理单元701电连接,利用第一功率处理单元701输出的直流电对第二电源200进行充电,单向充电单元601的结构可以采用通常的充电电路进行配置,本领域普通技术人员应当了解,不进行赘述。
利用单向充电单元601为第二电源200充电的电流流动方向是这样的:
第一电源100→切换单元300→第一功率处理单元701→单向充电子单元601→第二电源200。
所述单向放电子单元602,用于将所述第二电源200向系统放电,以使得在所述切换单元300切换的空档期实现所述第二电源200和所述直流母线400存储的电能一同向系统供电。
在切换单元300切换动作的过程中,单向放电子单元602将第二电源200中的电能进行释放,单向放电子单元602将第二电源200释放的电能输出至直流母线400用来支撑母线电压,单向放电子单元602的结构可以采用放电电路的结构进行配置,具体结构不进行限定,满足对第二电源200进行放电即可。
在单向放电子单元602执行放电操作时,电路电流的流动方向是这样的:
第二电源200→单向放电子单元602→直流母线400→第二功率处理单元702→系统输出端500。
所述单向充电子单元601与所述单向放电子单元602并联接于所述第一功率处理单元701的输出端和所述第二电源200之间。
通过将单向充电子单元601和单向放电子单元602分成两个独立结构,也可以避免双向功率变换单元600整体体积大的缺陷,相对于现有技术只具有单向充电单元,本发明中增加单向放电子单元602,在切换单元300切换动作空档期通过单向放电子单元602和直流母线400存储的电能放电支撑直流母线400电压,保证输出电压稳定,由于单向放电子单元602和直流母线400各分担一部分输出电压,使得单向放电子单元602的功率等级要求降低,避免了使用大功率的DC/DC变换电路成本高和体积大的缺陷,也可以降低对直流母线400的电容值的要求,可以选择电容值更低的直流母线400,节省体积,降低成本。
优选的方案,在所述第一电源100故障时,双向功率变换单元600向直流母线400供电,当第一电源100仍存在电压时,第一功率处理单元701先关闭,使得直流母线断电,切换单元300电压降为0,然后切换单元300动作切换至第二电源200,然后启动第一功率变换单元701,第二电源200向直流母线400供电,切换单元300由于切换期间有双向功率变换单元600的支撑,可以实现切换单元 300的零电流切换,大大提升切换单元300安全性与可靠性,实现零电流切换,使得切换单元可靠切换,避免带负荷切换产生打火等危害安全问题。
第一电源100故障包括高压、频率变换、闪断、相位变化以及断电等情况发生。
上文中提到的直流母线400,所述直流母线400可以作为第一功率处理单元701的输出,也作为第二功率处理单元702的输入电压源,在第一电源100正常工作时候,第一功率处理单元701作为整流电路使用,将第一电源100的交流电通过第一功率处理单元701的AC/DC变换电路整流为直流电,第一功率处理单元701将整流得到直流电输出至直流母线400,直流母线400具有直流母线电容,通过直流母线电容可以进行滤波,可以滤除AC/DC变换后电感高频纹波电流电流,得到稳定直流电压,再向第二功率处理单元702输入,另外,直流母线电容在第一电源100正常工作时将利用第一功率处理单元701整流的直流电进行充电储能,在直流母线电容上存储一些电能,使得在第一电源100和第二电源200都没有向系统供电时,即在切换单元300动作空档期,将直流母线电容里存储的(1/2CU2)向系统放电,通过直流母线400将放电输出的电量保持输出电压的不间断,第二功率处理单元702将直流母线400输入的稳定的直流电压进行DC/AC逆变得到交流电,将交流电输出至负载。
当切换单元300将系统的供电切换到第二电源200时,第二电源200将自身存储的电能通过第一功率处理单元701进行DC/DC升压变换,进行升压,此时第一功率处理单元701作为DC/DC升压变换使用,为了以示区别将来自第一电源100整流后得到的直流电定义为第一直流电压,将来自第二电源200升压后得到的直流电定义为第二直流电压,下文中不进行赘述。
所述直流母线400与所述第一功率处理单元701电连接,直流母线400作为第一功率处理单元701的输出,所述第一功率处理单元701得到的第一直流电压或者第二直流电压输出至所述直流母线400,直流母线400对第一直流电压或者第二直流电压进行滤波,得到稳定直流电压向第二功率处理单元702输出,同时利用第一直流电压或者第二直流电压对所述直流母线400的电容进行充电, 利用直流母线400的电容储能,在切换单元300动作空档期为直流母线400的输出电压提供支撑,保证直流母线400的输出电压不间断。
通过直流母线电容存储能量的公式1/2CU2可知,电容值越大,存储的电能越多,当切换单元300的切换动作空档期越长,所需要的直流母线电容值也越大,降低直流母线400的电容值,不仅可以降低直流母线400的体积,还可以大大降低成本。
优选的,所述直流母线400与所述第二功率处理单元702电连接,以使得所述直流母线电容在所述切换单元300切换的空档期放电时直流电流输出至第二功率处理单元702进行DC/AC逆变,第二功率处理单元702将逆变后得到的交流电输出至负载,利用直流母线电容储能,在切换单元300动作空档期为直流母线400的输出电压提供支撑,保证直流母线400的输出电压不间断。
通过在切换单元300切换动作空档期增加第二电源200向直流母线400放电,可以分担一部分输出电压,直流母线电容不必承担全部的输出电压,因此直流母线400的电容值可以减低,可以选择直流母线电容的电容值为直流母线独立供电时母线电容的40%至60%,优选的选择为50%,直流母线独立供电时的母线电容即为不采用第二电源放电,仅使用直流母线电容放电支撑系统电压,此时要求直流母线电容的电容值较大,所以降低直流母线400的电容值,不仅可以降低直流母线400的体积,还可以大大降低成本。
优选的方案,所述单向充电子单元601的功率为所述系统的额定功率的10%至20%;
所述单向放电子单元602的功率为所述系统的额定功率的10%至20%。
通过在切换单元300切换动作空档期直流母线电容也同时向直流母线400放电,用来支撑直流母线400的输出电压,直流母线电容和第二电源200同时向直流母线400放电,相比单个依靠第二电源200放电支撑直流母线400的输出电压,单向放电子单元602的功率要求降低,即依靠单独单向放电子单元602对第二电源200的能量放电,要求提升的电压更大,对单向放电子单元602的功率要求会很高,所以通过直流母线电容和第二电源200的同时放电支撑直流母线400的输入电压,使得单向放电子单元602的功率可以降至系统额定功率的10%至 20%,降低单向放电子单元602的功率,不仅可以减小单向放电子单元602的体积,也可以降低功率器件的使用成本。
结合图2所示,优选的方案,所述系统还包括旁路输入母线800,用于发生故障提供额外备用通道为负载供电;
所述旁路输入母线800与所述系统输出端500电连接,系统中配置的第二电源200用于在第一电源100出现故障时对系统进行供电,在使用第二电源200供电时,系统的其他设备没有出现故障,例如第一功率处理单元701、第二功率处理单元702及直流母线400都正常工作,但如果这些部件发生损坏,此时系统不能正常工作,在检修的时候为了保证系统输出端500正常,需要使用旁路输入母线800,旁路输入母线800作为备用电源,旁路输出母线与第一电源100具有相同的输出电压,可以满足负载的正常使用,旁路输入母线800直接与系统输出端500连接,需要说明的是,旁路输入母线800不经过系统的其他器件,避免在系统的其它部件损坏时不能启动备用电源的情况,本领域普通技术人员应当了解,不进行赘述。
优选的方案,本发明中提供的所述切换单元300包括继电器,接触器或者可控硅整流器,或采用机械开关或者半导体开关,实现快速切换,切换工作空档期越短越好,因为切换动作空档期越长,直流母线电容和第二电源200的需要向直流母线400输出的电压越大,对直流母线400的电容值要求更高,也使得单向放电子单元602的功率上升,不利于减小直流母线400和单向放电子单元602的体积和成本。
优选的方案,所述第一电源100为工频交流电,第一电源100的输出电压可以根据需要选择,例如,200V民用电,或者380V,工频可以选择50hz或者60hz的工频交流电,具体不进行限定,本领域普通技术人员应当了解,不进行赘述。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性 的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
本领域普通技术人员可以理解上述实施例的各种方法中的全部或部分步骤是可以通过程序来指令相关的硬件来完成,该程序可以存储于一计算机可读存储介质中,存储介质可以包括:只读存储器(ROM,Read Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁盘或光盘等。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分步骤是可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上对本发明所提供的一种不间断电源系统进行了详细介绍,对于本领域的一般技术人员,依据本发明实施例的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本发明的限制。

Claims (8)

  1. 一种不间断电源系统,其特征在于,所述系统包括:
    第一电源,用于向系统供电;
    第二电源,用于当所述第一电源故障时向系统供电;
    切换单元,用于当所述第一电源故障时,将所述第一电源切换到所述第二电源,由所述第二电源为系统供电;或者,用于当所述第一电源故障消除时,将所述第二电源切换到所述第一电源,由所述第一电源为系统供电;
    第一功率处理单元,用于当所述第一电源为系统供电时对电压进行AC/DC整流得到直流母线的母线电压,或者,用于当所述第二电源为系统供电时对电流进行DC/DC变换得到直流母线的母线电压;
    直流母线,用于输送电能,并在所述切换单元在所述第一电源和所述第二电源之间进行切换时的动作空档期为系统供电;
    第二功率处理单元,用于将所述直流母线的母线电压进行DC/AC逆变得到输出电压;
    双向功率变换单元,用于当所述第一电源为系统供电时为所述第二电源供电,以及在所述切换单元在所述第一电源和所述第二电源之间进行切换时的动作空档期为系统供电;
    系统输出端,用于连接负载并将系统供电输出到所述负载;
    所述第一电源与所述切换单元的第一接入端电连接,所述第二电源与所述切换单元的第二接入端电连接,所述切换单元的输出端与所述第一功率处理单元的第一接线端电连接,所述第一功率处理单元的第二接线端与所述双向功率变换单元的一端电连接,所述双向功率变换单元的另一端与所述第二电源电连接,所述第一功率处理单元的第二接线端与所述直流母线的一端电连接,所述直流母线的另一端与所述第二功率处理单元的第一接线端电连接,所述第二功率处理单元的第二接线端与所述系统输出端电连接。
  2. 根据权利要求1所述的不间断电源系统,其特征在于,所述第一电源为主路输入母线,所述第二电源为储能电池。
  3. 根据权利要求2所述的不间断电源系统,其特征在于,所述双向功率变换单元包括单向充电子单元和单向放电子单元,其中,
    所述单向充电子单元,用于向所述储能电池充电;
    所述单向放电子单元,用于将所述储能电池向系统放电,以使得在所述切换单元切换的空档期实现所述储能电池和所述直流母线一同向系统供电;
    所述单向充电子单元与所述单向放电子单元并联接于所述直流母线和所述储能电池之间。
  4. 根据权利要求2或3所述的不间断电源系统,其特征在于,所述系统还包括旁路输入母线,用于发生故障提供额外备用通道为负载供电;
    所述旁路输入母线与所述系统输出端电连接。
  5. 根据权利要求1至4中任一项所述的不间断电源系统,其特征在于,所述切换单元包括机械开关或者半导体开关。
  6. 根据权利要求5所述的不间断电源系统,其特征在于,所述机械开关包括继电器或接触器,所述半导体开关包括可控硅整流器。
  7. 根据权利要求2至6中任一项所述的不间断电源系统,其特征在于,所述主路输入母线与所述旁路输入母线为工频交流电。
  8. 根据权利要求2至7中任一项所述的不间断电源系统,其特征在于,所述储能电池包括但不限于镍氢电池、镍镉电池、磷酸铁锂电池、铁电池。
PCT/CN2015/085936 2014-12-11 2015-08-03 一种不间断电源系统 WO2016090930A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP15810775.5A EP3054557B1 (en) 2014-12-11 2015-08-03 Uninterruptible power system
US15/083,858 US10014719B2 (en) 2014-12-11 2016-03-29 Uninterruptible power system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410764153.3A CN104539042B (zh) 2014-12-11 2014-12-11 一种不间断电源系统
CN201410764153.3 2014-12-11

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/083,858 Continuation US10014719B2 (en) 2014-12-11 2016-03-29 Uninterruptible power system

Publications (1)

Publication Number Publication Date
WO2016090930A1 true WO2016090930A1 (zh) 2016-06-16

Family

ID=52854532

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/085936 WO2016090930A1 (zh) 2014-12-11 2015-08-03 一种不间断电源系统

Country Status (4)

Country Link
US (1) US10014719B2 (zh)
EP (1) EP3054557B1 (zh)
CN (1) CN104539042B (zh)
WO (1) WO2016090930A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110266006A (zh) * 2019-07-10 2019-09-20 广东利元亨智能装备股份有限公司 一种电源控制电路
CN113315213A (zh) * 2021-06-04 2021-08-27 上汽通用五菱汽车股份有限公司 一种可为新能源汽车和充电宝充电的电单车换电柜及电路

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2907220B8 (en) * 2012-10-11 2018-04-18 Schneider Electric IT Corporation Circuit and method for providing an uninterruptible power supply
CN104539042B (zh) 2014-12-11 2017-01-04 华为技术有限公司 一种不间断电源系统
CN104993753A (zh) * 2015-07-10 2015-10-21 常州格力博有限公司 一种交流ac和直流dc混用的空压机控制器
CN105186916A (zh) * 2015-07-13 2015-12-23 国家电网公司 用于电力检修车的新型电源电路
CN105024450B (zh) * 2015-08-10 2019-11-29 常熟开关制造有限公司(原常熟开关厂) 双电源自动转换装置及其转换控制方法、双电源供电系统
US9899834B1 (en) 2015-11-18 2018-02-20 Western Digital Technologies, Inc. Power control module using protection circuit for regulating backup voltage to power load during power fault
CN107492946A (zh) * 2016-06-12 2017-12-19 周锡卫 一种双向可控的不间断供电系统
CN107645196A (zh) * 2016-07-21 2018-01-30 阿里巴巴集团控股有限公司 分布式不间断电源系统
KR102693757B1 (ko) * 2016-08-19 2024-08-13 삼성전자주식회사 전자 장치와 이의 동작 방법
CN106208338B (zh) * 2016-08-31 2019-05-14 讯美科技股份有限公司 一种三电源双回路供电系统
TWI610164B (zh) * 2016-09-23 2018-01-01 緯創資通股份有限公司 電子裝置及其供電方法
JP6358304B2 (ja) * 2016-09-30 2018-07-18 株式会社オートネットワーク技術研究所 車両用電源装置
CN106537726B (zh) * 2016-11-04 2019-05-28 深圳市锐明技术股份有限公司 一种基于车载电源的车电与超级电容供电切换电路
CN107517001B (zh) * 2017-09-20 2024-06-14 重庆聚陆新能源有限公司 一种可重构的dc/dc变换器
CN108733611A (zh) * 2018-05-22 2018-11-02 联想(北京)有限公司 一种控制电子设备的方法、电子设备和计算机存储介质
CN109004736A (zh) * 2018-07-11 2018-12-14 佛山市众盈电子有限公司 一种大功率高频ups电源用隔离dc-dc变换电路
CN110858727A (zh) * 2018-08-24 2020-03-03 台达电子工业股份有限公司 不断电电源供应器及其操作方法
CN112986708B (zh) * 2019-12-02 2024-03-15 科华恒盛股份有限公司 一种判断母线电容需要检修或更换的方法及装置
JP2021112125A (ja) 2020-01-15 2021-08-02 ソーラーエッジ テクノロジーズ リミテッド 汎用無停電電源装置
CN110970994A (zh) * 2020-02-27 2020-04-07 湖南中车时代通信信号有限公司 应用于列车上的不间断电源系统
CN111342502B (zh) * 2020-03-31 2022-06-14 科华恒盛股份有限公司 基于双向变换器的Forsmark效应抑制方法及装置
CN112187026A (zh) * 2020-09-02 2021-01-05 安徽绿沃循环能源科技有限公司 储能电路及储能装置
CN112134251A (zh) * 2020-10-16 2020-12-25 珠海格力电器股份有限公司 电路系统、电路系统的控制方法、控制器及存储介质
CN112186732B (zh) * 2020-10-26 2023-03-31 国网江苏省电力有限公司电力科学研究院 用于低压双极供电系统的切换电路、换路装置及控制方法
IL278777A (en) * 2020-11-17 2022-06-01 Hevendrones Ltd Battery controller for drones
CN113162213A (zh) * 2021-03-05 2021-07-23 阳光电源股份有限公司 一种不间断电源及储能系统
WO2022188131A1 (en) * 2021-03-12 2022-09-15 Commscope Technologies Llc Voltage boost circuitry for radio systems
CN113178943B (zh) * 2021-05-08 2022-09-02 国网北京市电力公司 发电车电池系统的控制方法及发电车电池系统
CN113241787A (zh) * 2021-05-25 2021-08-10 国网北京市电力公司 发电车系统供电协调控制方法及装置
CN114784952B (zh) * 2022-05-27 2024-05-14 衢州杭氧气体有限公司 一种不间断电源系统
CN117375201A (zh) 2022-06-30 2024-01-09 施耐德电器工业公司 一种电源自动转换装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2904465Y (zh) * 2006-04-29 2007-05-23 华北电力大学(北京) 一种用于双路供电集成电源的主电路拓扑
JP2008283729A (ja) * 2007-05-08 2008-11-20 Fuji Electric Systems Co Ltd 無停電電源装置
CN103187789A (zh) * 2011-12-30 2013-07-03 比亚迪股份有限公司 快速不间断电源系统及其控制方法
WO2014057298A1 (en) * 2012-10-11 2014-04-17 American Power Conversion Corporation Circuit and method for providing an uninterruptible power supply
CN104539042A (zh) * 2014-12-11 2015-04-22 华为技术有限公司 一种不间断电源系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5939799A (en) * 1997-07-16 1999-08-17 Storage Technology Corporation Uninterruptible power supply with an automatic transfer switch
JP5990878B2 (ja) * 2011-07-26 2016-09-14 株式会社Gsユアサ 無停電電源装置及び電源装置
CN202978409U (zh) * 2012-11-07 2013-06-05 麦思博尔能源技术(天津)有限公司 基于超级电容的动力ups系统
CN104065157B (zh) * 2014-06-09 2017-02-15 深圳微网能源管理系统实验室有限公司 一种改进供电可靠性的不间断电源

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2904465Y (zh) * 2006-04-29 2007-05-23 华北电力大学(北京) 一种用于双路供电集成电源的主电路拓扑
JP2008283729A (ja) * 2007-05-08 2008-11-20 Fuji Electric Systems Co Ltd 無停電電源装置
CN103187789A (zh) * 2011-12-30 2013-07-03 比亚迪股份有限公司 快速不间断电源系统及其控制方法
WO2014057298A1 (en) * 2012-10-11 2014-04-17 American Power Conversion Corporation Circuit and method for providing an uninterruptible power supply
CN104539042A (zh) * 2014-12-11 2015-04-22 华为技术有限公司 一种不间断电源系统

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110266006A (zh) * 2019-07-10 2019-09-20 广东利元亨智能装备股份有限公司 一种电源控制电路
CN113315213A (zh) * 2021-06-04 2021-08-27 上汽通用五菱汽车股份有限公司 一种可为新能源汽车和充电宝充电的电单车换电柜及电路

Also Published As

Publication number Publication date
US20160211700A1 (en) 2016-07-21
EP3054557B1 (en) 2018-01-03
CN104539042A (zh) 2015-04-22
EP3054557A1 (en) 2016-08-10
EP3054557A4 (en) 2016-10-19
US10014719B2 (en) 2018-07-03
CN104539042B (zh) 2017-01-04

Similar Documents

Publication Publication Date Title
WO2016090930A1 (zh) 一种不间断电源系统
US10637284B2 (en) Power supply system and method
US8203235B2 (en) AC and DC uninterruptible online power supplies
US20140361624A1 (en) Apparatus and methods for control of load power quality in uninterruptible power systems
EP3087655B1 (en) Power supply system
CN107579591B (zh) 一种交流电源供电的备电系统
CN104748288A (zh) 软启动充电电路及其控制方法
CN101728945A (zh) 具有中性点的双向直流/直流电压转换装置
JP2017055508A (ja) 系統連系装置
CN105529746B (zh) 一种柔性配电系统
KR20060065181A (ko) 무정전 전원장치의 무순단 절체를 위한 이중화 회로구성방법
JP2004153890A (ja) 電源装置および無停電電源ユニット
US8760005B2 (en) Control method of an uninterruptible power supply for extending a discharge time under a no-load condition
RU148724U1 (ru) Устройство бесперебойного питания с автоматическим включением резервного питания
Stepanov et al. Concept of modular uninterruptible power supply system with alternative energy storages and sources
KR200300983Y1 (ko) 고효율 직류출력 무정전 전원장치
CN116760165A (zh) 不间断供电电源系统
CN114123359A (zh) 一种机架式电源系统
CN111900793A (zh) 供电系统、医疗系统及控制方法
JP2002125372A (ja) 電源装置
KR20040033227A (ko) 고효율 직류출력 무정전 전원장치
TW200425624A (en) Non-isolated AC power source apparatus and its control method

Legal Events

Date Code Title Description
REEP Request for entry into the european phase

Ref document number: 2015810775

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015810775

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15810775

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE