WO2016090796A1 - 一种柔性电极、其制作方法、电子皮肤及柔性显示装置 - Google Patents

一种柔性电极、其制作方法、电子皮肤及柔性显示装置 Download PDF

Info

Publication number
WO2016090796A1
WO2016090796A1 PCT/CN2015/076633 CN2015076633W WO2016090796A1 WO 2016090796 A1 WO2016090796 A1 WO 2016090796A1 CN 2015076633 W CN2015076633 W CN 2015076633W WO 2016090796 A1 WO2016090796 A1 WO 2016090796A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive polymer
flexible electrode
flexible
metal material
electrode
Prior art date
Application number
PCT/CN2015/076633
Other languages
English (en)
French (fr)
Inventor
王家恒
白峰
杨久霞
刘建涛
Original Assignee
京东方科技集团股份有限公司
北京京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 北京京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to EP15795098.1A priority Critical patent/EP3232487A4/en
Priority to US14/892,543 priority patent/US9698367B2/en
Publication of WO2016090796A1 publication Critical patent/WO2016090796A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • H10K30/82Transparent electrodes, e.g. indium tin oxide [ITO] electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/82Cathodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/60Forming conductive regions or layers, e.g. electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2004Light-sensitive devices characterised by the electrolyte, e.g. comprising an organic electrolyte
    • H01G9/2013Light-sensitive devices characterised by the electrolyte, e.g. comprising an organic electrolyte the electrolyte comprising ionic liquids, e.g. alkyl imidazolium iodide
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/311Flexible OLED
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/331Nanoparticles used in non-emissive layers, e.g. in packaging layer
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a flexible electrode, a method of fabricating the same, an electronic skin, and a flexible display device.
  • Flexible display technology mainly uses flexible electronic technology to mount flexible display medium electronic components and materials on a flexible or flexible substrate, so that the display has the characteristics of being able to bend or curl into any shape, and is light, thin and convenient to carry.
  • the electrodes used in the current flexible display are single-layer metal conductive oxide materials, and ITO materials are generally selected, and the conductive properties of the materials are affected by the bendable, folded and extensible properties required for flexible display. Therefore, how to realize the ductility and elasticity of the electrode to meet the flexibility requirement of the flexible display on the basis of ensuring the conductivity of the electrode is a technical problem that a person skilled in the art needs to solve.
  • the present invention provides a flexible electrode, a manufacturing method thereof, an electronic skin and a flexible display device for realizing a flexible electrode having certain flexibility and electrical conductivity, which can be applied to a flexible display device, and can also be applied to The sensing electrode in which the electronic device is in contact with the human body acts as an electronic skin.
  • a flexible electrode according to an embodiment of the present invention includes a body made of a conductive polymer material in which a nano metal material is dispersed.
  • the conductive polymer material comprises: polyacetylene, polythiophene, polypyrrole, polyaniline, polyphenylene, polyphenylene acetylene, poly One or a combination of diacetylenes.
  • the nano metal material comprises: one or a combination of a nano gold ball, a nano silver ball, and a nano copper ball.
  • the nano metal material has a particle diameter of 10 nm to 50 nm.
  • the weight ratio of the nano metal material and the conductive polymer material is 1:15 to 1:5.
  • the conductive polymer material is an ionic liquid-treated conductive polymer material.
  • the ionic liquid comprises: 1-ethyl-3-methylimidazolium hexafluorophosphate, 1-butyl-3-methyl Imidazolium hexafluorophosphate, 1-octyl-3-methylimidazolium hexafluorophosphate, 1-ethyl-3-methylimidazolium tetrafluoroborate, 1-butyl-3-methylimidazole trifluoromethyl One or a combination of a sulfonate, a 1-butyl-3-methylimidazolium chloride.
  • the weight ratio of the ionic liquid to the conductive polymer material is 5:1 to 15:1.
  • the conductive polymer is subjected to solution treatment using an ionic liquid
  • the dispersion is transferred to a substrate for curing treatment to obtain a flexible electrode.
  • the transferring the dispersion onto the substrate comprises:
  • a carrier carrying the dispersion is transferred onto the substrate.
  • a surface of the carrier has a predetermined pattern.
  • the conductive polymer comprises: polyacetylene, polythiophene, polypyrrole, polyaniline, polyphenylene, polyphenylene One or a combination of acetylene and polydiacetyl.
  • the ionic liquid comprises: 1-ethyl-3-methylimidazolium hexafluorophosphate, 1-butyl- 3-methylimidazolium hexafluorophosphate, 1-octyl-3-methylimidazolium hexafluorophosphate, 1-ethyl-3-methylimidazole One or a combination of tetrafluoroborate, 1-butyl-3-methylimidazolium trifluoromethanesulfonate, 1-butyl-3-methylimidazolium chloride.
  • a weight ratio of the ionic liquid to the conductive polymer is 5:1 to 15:1.
  • the nano metal material comprises: one or a combination of a nano gold ball, a nano silver ball, and a nano copper ball.
  • a weight ratio of the nano metal material to the conductive polymer is 1:15 to 1:5.
  • the nano metal material has a particle diameter of 10 nm to 50 nm.
  • a flexible display device comprising a flexible substrate, a first electrode, a light emitting layer and a second electrode, which are sequentially disposed on the flexible substrate, the first electrode and the first
  • the two electrodes are the above flexible electrodes as provided in the embodiments of the present invention.
  • An embodiment of the present invention further provides a display device comprising the above flexible display device provided by an embodiment of the present invention.
  • An embodiment of the present invention also provides an electronic skin comprising the above flexible electrode provided by an embodiment of the present invention.
  • the invention provides a flexible electrode, a manufacturing method thereof, an electronic skin and a flexible display device, which use an ionic liquid to dissolve a conductive polymer; and a nano metal material is added into the conductive polymer after the solution treatment to form a nanometer-containing material.
  • a dispersion of a conductive polymer of a metal material transferring the dispersion onto a substrate for curing treatment to obtain a flexible electrode made of a conductive polymer material, wherein the conductive polymer material is dispersed with a nano metal material.
  • the flexible electrode utilizes the flexibility energy of the conductive polymer, can make the formed flexible electrode have good ductility and elasticity, and disperses the nano metal material in the conductive polymer during the process of manufacturing the flexible electrode, and compensates by using the nano metal material.
  • the conductive polymer material has a low electrical conductivity defect, so that the flexible electrode has good electrical conductivity. Therefore, the flexible electrode described above has both good flexibility and excellent electrical conductivity, and has wide application fields, and can be applied to an optical device as an electrode or as an electronic skin for human body detection. use.
  • FIG. 1 is a schematic flow chart of a method for fabricating a flexible electrode according to an embodiment of the present invention.
  • One embodiment of the present invention provides a flexible electrode comprising a body made of a conductive polymer material in which a nano metal material is dispersed.
  • the flexible electrode provided by one embodiment of the present invention utilizes the flexibility energy of the conductive polymer, can make the formed flexible electrode have good ductility and elasticity, and disperses the nano metal material in the conductive polymer, and utilizes the nano metal material. It compensates for the defects of low conductivity of the conductive polymer material, and the flexible electrode has good conductivity. Therefore, the flexible electrode described above has both good flexibility and excellent electrical conductivity, and has wide application fields, and can be applied to an optical device as an electrode or as an electronic skin for human body detection. use.
  • the conductive polymer material generally needs to use a transparent material, specifically, a conductive polymer material. It may include one or a combination of polyacetylene, polythiophene, polypyrrole, polyaniline, polyphenylene, polyphenylene acetylene, polydiacetylene.
  • the nano metal material selected in the flexible electrode provided by one embodiment of the present invention may include one or a combination of nano gold balls, nano silver balls, and nano copper balls.
  • a nano gold ball material can be selected.
  • the nano metal material in order to ensure that the produced flexible electrode has good light transmittance and conductivity, the nano metal material generally has a particle diameter ranging from 10 nm to 50 nm.
  • the weight ratio of the nano metal material and the conductive polymer is generally in the range of 1:15 to 1:5, preferably, when the nano metal material is selected from the nano gold ball.
  • the weight ratio of the nano gold sphere to the conductive polymer is 1:10, the fabricated flexible electrode has the best electrical conductivity.
  • Table 1 shows the test results of conductivity, ductility and transmittance of a flexible electrode formed by mixing nano-gold spheres and conductive polymers of different particle sizes.
  • the adhesion of the above conductive polymer material is generally strong. If the nano metal material is directly placed therein for dispersion, the nano material in the obtained flexible electrode is easily aggregated in the conductive polymer material, and the conductive property cannot be enhanced.
  • the conductive polymer material in the above flexible electrode provided by the embodiment of the present invention is generally an ionic liquid-treated conductive polymer material in order to make the nano metal material more easily dispersed in the conductive polymer material.
  • the ionic liquid may include: 1-ethyl-3-methylimidazolium hexafluorophosphate, 1-butyl-3-methylimidazolium hexafluorophosphate, 1-octyl-3-methylimidazolium hexafluorophosphate Phosphate, 1-ethyl-3-methylimidazolium tetrafluoroborate, 1-butyl-3-methylimidazolium trifluoromethanesulfonate, 1-butyl-3-methylimidazolium chloride One or a combination.
  • the weight ratio of the ionic liquid to the conductive polymer is generally in the range of 5:1 to 15:1, and the dispersibility of the nanometal material in the conductive polymer material after the ionic liquid treatment can be made better.
  • Table 2 shows the results of dispersing nano-metal materials after treatment of different conductive polymers with different materials.
  • the test results of measuring the average particle diameter (D50) of the nano metal ions in the dispersion by the above Table 2 show that the test results of the dispersion of the 20 nm nanometal material by the conductive polymer treated with the ionic liquid are compared and the ionic liquid treatment is not used.
  • Conductive polymer for 20nm nano gold As a result of the test of the dispersion of the material, it can be seen that the average particle diameter of the former is much smaller than the average particle diameter of the latter.
  • the dispersing effect of dispersing the nano metal after dissolving the conductive polymer with 10:1 1-butyl-3-methylimidazolium trifluoromethanesulfonate as the ionic liquid is the best. It is worth noting that the smaller the data of the above test results, the better the dispersion effect.
  • An embodiment of the present invention further provides a method for fabricating a flexible electrode, as shown in FIG. 1, comprising the following steps:
  • the flexible electrode obtained by the above manufacturing method provided by one embodiment of the present invention utilizes the flexibility of the conductive polymer to make the formed flexible electrode have good ductility and elasticity, and in the process of fabricating the flexible electrode in the conductive polymer
  • the nano metal material is dispersed, and the nano metal material is used to make up for the defect that the conductive property of the conductive polymer material is low, so that the flexible electrode has good conductivity. Therefore, the flexible electrode produced by the above method has good flexibility and excellent electrical conductivity, and has wide application fields, and can be applied to an optical device as an electrode or an electronic device for human body detection. Used as an electronic skin.
  • the main body material for manufacturing the flexible electrode in the above manufacturing method provided by one embodiment of the present invention is a conductive polymer material, and since the flexible electrode after the fabrication is completed, it is possible to apply to the flexible display device, and the flexibility required for fabrication is required.
  • the electrode has a high light transmittance. Therefore, the conductive polymer material generally needs to adopt a transparent material.
  • the conductive polymer may include: polyacetylene, polythiophene, polypyrrole, polyaniline, polyphenylene, polyphenylene. One or a combination of acetylene and polydiyne.
  • the adhesion of the above conductive polymer material is generally strong. If the nano metal material is directly placed therein for dispersion, the nano metal material is easily aggregated in the conductive polymer material, and the effect of enhancing the conductive property cannot be achieved.
  • the step S101 is required to first perform the solution treatment on the conductive polymer by using the ionic liquid, so that the nano metal material added later is more easily dispersed in the solution.
  • the ionic liquid used in the solubilization treatment may include: 1-ethyl-3-methylimidazolium hexafluorophosphate, 1-butyl-3-methylimidazolium hexafluorophosphate, 1-octyl group -3-methylimidazolium hexafluorophosphate, 1-ethyl-3-methylimidazolium tetrafluoroborate, 1-butyl-3-methylimidazolium trifluoromethanesulfonic acid One or a combination of a salt, 1-butyl-3-methylimidazolium chloride.
  • the weight ratio of the ionic liquid to the conductive polymer used in the solubilization treatment is generally in the range of 5:1 to 15:1.
  • the solution obtainable by using a weight ratio of 8:1 to 10:1 is advantageous for the dispersion of the nano metal material thereafter.
  • the step S102 in the above manufacturing method adds a nano metal material to the conductive polymer after the solution treatment to form a dispersion of the conductive polymer containing the nano metal material;
  • the nano metal material generally includes one or a combination of nano gold balls, nano silver balls, and nano copper balls.
  • a nano gold ball material can be selected.
  • the nano metal material in order to ensure that the produced flexible electrode has good light transmittance and conductivity, the nano metal material generally has a particle diameter ranging from 10 nm to 50 nm.
  • the weight ratio of the nano metal material and the conductive polymer added in the above step S102 is generally in the range of 1:15 to 1:5.
  • the nano metal material is selected from the nano gold sphere, the nano gold sphere and
  • the weight ratio of the conductive polymer is 1:10, the fabricated flexible electrode has the best electrical conductivity.
  • the dispersion liquid needs to be transferred to the substrate through the step S103 to be cured, and then the flexible electrode is obtained.
  • the dispersion can be transferred to the substrate by first transferring the dispersion onto the carrier; and then transferring the carrier carrying the dispersion onto the substrate.
  • the surface of the carrier may have a predetermined pattern, and when the dispersion is transferred to the carrier, only a region having a pattern on the carrier adsorbs a certain dispersion, so that the carrier is transferred during the substrate transfer process.
  • a dispersion of a predetermined pattern is formed on the substrate, and then a flexible electrode having a predetermined pattern can be directly obtained by curing.
  • the surface of the carrier may be relatively smooth, so that the entire surface of the dispersion is formed on the substrate after the carrier is transferred, and then the flexible electrode obtained by curing is also disposed on the entire surface. It is necessary to fabricate a flexible electrode having a set pattern, and an etching process is also required.
  • an embodiment of the present invention further provides an electronic skin, including the flexible electrode provided by the embodiment of the present invention. Since the principle of the electronic skin solving problem is similar to the foregoing flexible electrode, the electronic skin is The implementation can be referred to the implementation of the flexible electrode, and the repeated description will not be repeated.
  • an embodiment of the present invention further provides a flexible display device. Since the principle of solving the problem of the flexible display device is similar to that of the foregoing flexible electrode, the implementation of the flexible display device can be referred to the implementation of the flexible electrode, and the repeated description is omitted.
  • a flexible display device includes: a flexible substrate, a first electrode, a light emitting layer, and a second electrode, which are sequentially disposed on the flexible substrate, the first electrode and/or the first
  • the two electrodes are the above flexible electrode structures provided by the embodiments of the present invention. It should be noted that the flexible display substrate is improved on the basis of the existing OLED display device, and therefore the basic components thereof are substantially the same as those of the existing OLED display device, and will not be described in detail herein.
  • an embodiment of the present invention further provides a display device. Since the principle of solving the problem is similar to the foregoing flexible display device, the implementation of the display device can be referred to the implementation of the flexible display device. It will not be repeated here.
  • the display device can be any product or component having a display function, such as a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigator, and the like.
  • the invention provides a flexible electrode, a manufacturing method thereof, an electronic skin and a flexible display device, which use an ionic liquid to dissolve a conductive polymer; and a nano metal material is added into the conductive polymer after the solution treatment to form a nanometer-containing material.
  • a dispersion of a conductive polymer of a metal material transferring the dispersion onto a substrate for curing treatment to obtain a flexible electrode made of a conductive polymer material, wherein the conductive polymer material is dispersed with a nano metal material.
  • the flexible electrode utilizes the flexibility energy of the conductive polymer, can make the formed flexible electrode have good ductility and elasticity, and disperses the nano metal material in the conductive polymer during the process of manufacturing the flexible electrode, and compensates by using the nano metal material.
  • the conductive polymer material has a low electrical conductivity defect, so that the flexible electrode has good electrical conductivity. Therefore, the flexible electrode described above has both good flexibility and excellent electrical conductivity, and has wide application fields, and can be applied to an optical device as an electrode or as an electronic skin for human body detection. use.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种柔性电极、其制作方法、电子皮肤及柔性显示装置,采用离子液对导电聚合物进行溶液化处理;在溶液化处理后的导电聚合物内加入纳米金属材料,形成含有纳米金属材料的导电聚合物的分散液;将分散液转移到基板上进行固化处理后得到柔性电极。该柔性电极利用了导电聚合物的柔韧性能,可以使形成的柔性电极具有良好的延展性和弹性,并且,在导电聚合物中分散了纳米金属材料,利用纳米金属材料弥补了导电聚合物材料的导电性能较低的缺陷,使柔性电极具有良好的导电性。因此,柔性电极既具有较好的柔韧性又具有优异的导电性能,可以应用于柔性显示装置作为电极使用,也可以应用于人体检测的电子器件作为电子皮肤使用。

Description

一种柔性电极、其制作方法、电子皮肤及柔性显示装置 技术领域
本发明涉及显示技术领域,尤其涉及一种柔性电极、其制作方法、电子皮肤及柔性显示装置。
背景技术
柔性显示技术主要应用柔性电子技术,是将柔性显示介质电子元件与材料安装在有柔性或可弯曲的基板上,使得显示器具有能够弯曲或卷曲成任意形状的特性,有轻、薄且方便携带等特点。
而目前的柔性显示器中采用的电极为单层的金属导电氧化物材料,一般选用ITO材料,该种材料在柔性显示所需求的可弯曲、折叠以及可延展的特性下其导电性能均会受到影响,因此,如何在保证电极导电性能的基础上,实现电极的可延展性和弹性,以满足柔性显示的柔性需求,是本领域技术人员亟需解决的技术问题。
并且,随着智能技术的普及和推广,远程医疗技术日益成为一种医疗新技术,因此相应的智能器件的开发和应用已经逐步进入市场,而用于人体检测的电子器件需要与人体紧密配合,这就要求电子器件的感测电极即电子皮肤具有一定的柔韧性且可实现与人体的较好配合,因此,如何得到一种具有柔韧性且能满足导电性能的感测电极,是本领域技术人员亟需解决的技术问题。
发明内容
有鉴于此,本发明提供了一种柔性电极、其制作方法、电子皮肤及柔性显示装置,用以实现具有一定柔韧性和导电性能的柔性电极,其可应用于柔性显示装置,也可应用于电子器件与人体接触的感测电极作为电子皮肤。
因此,根据本发明一个实施例提供的一种柔性电极,包括由导电聚合物材料制作的本体,所述导电聚合物材料内分散有纳米金属材料。
在一种可能的实现方式中,本发明实施例提供的上述柔性电极中,所述导电聚合物材料包括:聚乙炔、聚噻吩、聚吡咯、聚苯胺、聚苯撑、聚苯撑乙炔、聚双炔中的一种或组合。
在一种可能的实现方式中,本发明实施例提供的上述柔性电极中,所述纳米金属材料包括:纳米金球、纳米银球、纳米铜球中的一种或组合。
在一种可能的实现方式中,本发明实施例提供的上述柔性电极中,所述纳米金属材料的粒径为10nm~50nm。
在一种可能的实现方式中,本发明实施例提供的上述柔性电极中,所述纳米金属材料和所述导电聚合物材料的重量比为1∶15~1∶5。
在一种可能的实现方式中,本发明实施例提供的上述柔性电极中,所述导电聚合物材料为经过离子液处理的导电聚合物材料。
在一种可能的实现方式中,本发明实施例提供的上述柔性电极中,所述离子液包括:1-乙基-3-甲基咪唑六氟磷酸盐、1-丁基-3-甲基咪唑六氟磷酸盐、1-辛基-3-甲基咪唑六氟磷酸盐、1-乙基-3-甲基咪唑四氟硼酸盐、1-丁基-3-甲基咪唑三氟甲基磺酸盐、氯化1-丁基-3-甲基咪唑盐中一种或组合。
在一种可能的实现方式中,本发明实施例提供的上述柔性电极中,所述离子液与所述导电聚合物材料的重量比为5∶1~15∶1。
根据本发明一个实施例提供的一种柔性电极的制作方法,包括:
采用离子液对导电聚合物进行溶液化处理;
在溶液化处理后的导电聚合物内加入纳米金属材料,形成含有纳米金属材料的导电聚合物的分散液;
将所述分散液转移到基板上进行固化处理后得到柔性电极。
在一种可能的实现方式中,根据本发明一个实施例提供的上述柔性电极的制作方法中,将所述分散液转移到基板上,具体包括:
将所述分散液转移到载体上;
将承载有所述分散液的载体转印到所述基板上。
在一种可能的实现方式中,本发明一个实施例提供的上述柔性电极的制作方法中,所述载体的表面具有预设图案。
在一种可能的实现方式中,本发明一个实施例提供的上述柔性电极的制作方法中,所述导电聚合物包括:聚乙炔、聚噻吩、聚吡咯、聚苯胺、聚苯撑、聚苯撑乙炔、聚双炔中一种或组合。
在一种可能的实现方式中,本发明一个实施例提供的上述柔性电极的制作方法中,所述离子液包括:1-乙基-3-甲基咪唑六氟磷酸盐、1-丁基-3-甲基咪唑六氟磷酸盐、1-辛基-3-甲基咪唑六氟磷酸盐、1-乙基-3-甲基咪唑 四氟硼酸盐、1-丁基-3-甲基咪唑三氟甲基磺酸盐、氯化1-丁基-3-甲基咪唑盐中一种或组合。
在一种可能的实现方式中,本发明一个实施例提供的上述柔性电极的制作方法中,所述离子液与所述导电聚合物的重量比为5∶1~15∶1。
在一种可能的实现方式中,本发明一个实施例提供的上述柔性电极的制作方法中,所述纳米金属材料包括:纳米金球、纳米银球、纳米铜球中的一种或组合。
在一种可能的实现方式中,本发明一个实施例提供的上述柔性电极的制作方法中,所述纳米金属材料和所述导电聚合物的重量比为1∶15~1∶5。
在一种可能的实现方式中,本发明一个实施例提供的上述柔性电极的制作方法中,所述纳米金属材料的粒径为10nm~50nm。
根据本发明一个实施例还提供了一种柔性显示装置,包括柔性衬底基板,依次设置在柔性衬底基板上的第一电极、发光层和第二电极,所述第一电极和所述第二电极为如本发明实施例提供的上述柔性电极。
本发明一个实施例还提供了一种显示装置,包括本发明一个实施例提供的上述柔性显示装置。
本发明一个实施例还提供了一种电子皮肤,包括本发明一个实施例提供的上述柔性电极。
本发明实施例的有益效果包括:
本发明提供的一种柔性电极、其制作方法、电子皮肤及柔性显示装置,采用离子液对导电聚合物进行溶液化处理;在溶液化处理后的导电聚合物内加入纳米金属材料,形成含有纳米金属材料的导电聚合物的分散液;将分散液转移到基板上进行固化处理后得到由导电聚合物材料制作成本体的柔性电极,该导电聚合物材料内分散有纳米金属材料。该柔性电极利用了导电聚合物的柔韧性能,可以使形成的柔性电极具有良好的延展性和弹性,并且,在制作柔性电极过程中在导电聚合物中分散了纳米金属材料,利用纳米金属材料弥补了导电聚合物材料的导电性能较低的缺陷,使柔性电极具有良好的导电性。因此,采用上述柔性电极既具有较好的柔韧性又具有优异的导电性能,其应用领域广泛,既可以应用于柔性显示装置中作为电极使用,也可以应用于人体检测的电子器件中作为电子皮肤使用。
附图说明
图1为本发明一个实施例提供的柔性电极的制作方法的流程示意图。
具体实施方式
下面结合附图,对本发明提供的柔性电极、其制作方法、电子皮肤及柔性显示装置的具体实施方式进行详细地说明。
本发明一个实施例提供的一种柔性电极,包括由导电聚合物材料制作的本体,该导电聚合物材料内分散有纳米金属材料。
本发明一个实施例提供的上述柔性电极利用了导电聚合物的柔韧性能,可以使形成的柔性电极具有良好的延展性和弹性,并且,在导电聚合物中分散了纳米金属材料,利用纳米金属材料弥补了导电聚合物材料的导电性能较低的缺陷,使柔性电极具有良好的导电性。因此,采用上述柔性电极既具有较好的柔韧性又具有优异的导电性能,其应用领域广泛,既可以应用于柔性显示装置中作为电极使用,也可以应用于人体检测的电子器件中作为电子皮肤使用。
在具体实施时,由于上述柔性电极有可能应用于柔性显示装置,因此需要柔性电极具有较高的光透过率,因此,该导电聚合物材料一般需要采用透明材料,具体地,导电聚合物材料可以包括:聚乙炔、聚噻吩、聚吡咯、聚苯胺、聚苯撑、聚苯撑乙炔、聚双炔中的一种或组合。
在具体实施时,在本发明一个实施例提供的上述柔性电极中选用的纳米金属材料可以包括:纳米金球、纳米银球、纳米铜球中的一种或组合。较佳地,可以选用纳米金球材料。并且,为了保证制作出的柔性电极具有良好的光透过率和导电性,纳米金属材料一般选取的粒径范围在10nm~50nm为佳。
具体地,在本发明一个实施例提供的上述柔性电极中,纳米金属材料和导电聚合物的重量比一般在1∶15~1∶5范围内,较佳地,当纳米金属材料选用纳米金球时,纳米金球和导电聚合物的重量比为1∶10时,制作出的柔性电极具有最佳的导电性能。
下表1列出了采用对不同粒径的纳米金球和导电聚合物混合后形成的柔性电极进行导电性能、延展性和透过率的测试结果。
表1
Figure PCTCN2015076633-appb-000001
从表1中的测试结果可知,采用当采用粒径为10nm的纳米金球与导电聚合物采用1∶10的重量比制作出的柔性电极具有最好的透过率。
进一步地,上述导电聚合物材料的粘着性一般较强,若直接将纳米金属材料放置于其中进行分散,得到的柔性电极中的纳米材料容易在导电聚合物材料中聚集,不能起到增强导电性能的效果,因此,在本发明实施例提供的上述柔性电极中的导电聚合物材料一般是经过离子液处理的导电聚合物材料,以便使纳米金属材料更容易分散于导电聚合物材料中。
具体地,离子液可以包括:1-乙基-3-甲基咪唑六氟磷酸盐、1-丁基-3-甲基咪唑六氟磷酸盐、1-辛基-3-甲基咪唑六氟磷酸盐、1-乙基-3-甲基咪唑四氟硼酸盐、1-丁基-3-甲基咪唑三氟甲基磺酸盐、氯化1-丁基-3-甲基咪唑盐中一种或组合。
并且,离子液与导电聚合物的重量比一般在5∶1~15∶1范围内,可以使离子液处理后的导电聚合物材料中纳米金属材料的分散性较好。
下表2列出了采用对不同材料的离子液对不同导电聚合物处理后,分散纳米金属材料的测试结果。
表2
Figure PCTCN2015076633-appb-000002
通过上述表2测量分散液中纳米金属离子的平均粒径(D50)的测试结果可知,通过比较采用离子液处理后的导电聚合物对20nm纳米金属材料进行分散的测试结果和未采用离子液处理的导电聚合物对20nm纳米金 属材料进行分散的测试结果,可以看出,前者的平均粒径远小于后者的平均粒径。且在在选用10∶1的1-丁基-3-甲基咪唑三氟甲基磺酸盐作为离子液对导电聚合物溶解后分散纳米金属的分散效果最好。值得注意的是,上述测试结果的数据越小表明其分散效果越好。
本发明一个实施例还提供了一种柔性电极的制作方法,如图1所示,包括以下步骤:
S101、采用离子液对导电聚合物进行溶液化处理;
S102、在溶液化处理后的导电聚合物内加入纳米金属材料,形成含有纳米金属材料的导电聚合物的分散液;
S103、将分散液转移到基板上进行固化处理后得到柔性电极。
本发明一个实施例提供的上述制作方法得到的柔性电极,利用了导电聚合物的柔韧性能,可以使形成的柔性电极具有良好的延展性和弹性,并且,在制作柔性电极过程中在导电聚合物中分散了纳米金属材料,利用纳米金属材料弥补了导电聚合物材料的导电性能较低的缺陷,使柔性电极具有良好的导电性。因此,采用上述方法制作得到的柔性电极既具有较好的柔韧性又具有优异的导电性能,其应用领域广泛,既可以应用于柔性显示装置中作为电极使用,也可以应用于人体检测的电子器件中作为电子皮肤使用。
在具体实施时,本发明一个实施例提供的上述制作方法中制作柔性电极的主体材料为导电聚合物材料,并且,由于制作完成后的柔性电极有可能应用于柔性显示装置,需要制作完成的柔性电极具有较高的光透过率,因此,该导电聚合物材料一般需要采用透明材料,具体地,导电聚合物可以包括:聚乙炔、聚噻吩、聚吡咯、聚苯胺、聚苯撑、聚苯撑乙炔、聚双炔中一种或组合。
并且,上述导电聚合物材料的粘着性一般较强,若直接将纳米金属材料放置于其中进行分散,容易使纳米金属材料在导电聚合物材料中聚集,不能起到增强导电性能的效果,因此,在本发明实施例提供的上述制作方法中需要执行步骤S101采用离子液先对导电聚合物进行溶液化处理,以便使之后加入的纳米金属材料更容易分散于溶液中。
具体地,在溶液化处理过程中采用的离子液可以包括:1-乙基-3-甲基咪唑六氟磷酸盐、1-丁基-3-甲基咪唑六氟磷酸盐、1-辛基-3-甲基咪唑六氟磷酸盐、1-乙基-3-甲基咪唑四氟硼酸盐、1-丁基-3-甲基咪唑三氟甲基磺酸 盐、氯化1-丁基-3-甲基咪唑盐中一种或组合。
具体地,在溶液化处理过程中所用到的离子液与导电聚合物的重量比一般在5∶1~15∶1范围内。较佳地,采用8∶1~10∶1的重量比可以得到的溶液较利于之后纳米金属材料的分散。
具体地,本发明一个实施例提供的上述制作方法中的步骤S102在溶液化处理后的导电聚合物内加入纳米金属材料,形成含有纳米金属材料的导电聚合物的分散液;其中,所选用的纳米金属材料一般包括:纳米金球、纳米银球、纳米铜球中的一种或组合。较佳地,可以选用纳米金球材料。并且,为了保证制作出的柔性电极具有良好的光透过率和导电性,纳米金属材料一般选取的粒径范围在10nm~50nm为佳。
具体地,在上述步骤S102中加入的纳米金属材料和导电聚合物的重量比一般在1∶15~1∶5范围内,较佳地,当纳米金属材料选用纳米金球时,纳米金球和导电聚合物的重量比为1∶10时,制作出的柔性电极具有最佳的导电性能。
具体地,在本发明一个实施例提供的上述制作方法中,在形成含有纳米金属材料的导电聚合物的分散液之后,需要通过步骤S103将分散液转移到基板上进行固化处理后得到柔性电极,具体地,可以通过下述步骤将分散液转移到基板上:首先将分散液转移到载体上;然后将承载有分散液的载体转印到基板上。
其中,在具体实施时,上述载体的表面可以具有预设图案,在将分散液转移到载体上时,仅在载体上具有图案的区域吸附一定的分散液,使载体在基板转印的过程中在基板上形成预设图案的分散液,之后通过固化可直接获得具有预设图案的柔性电极。
当然,在具体实施时,上述载体的表面也可以相对光滑,这样经过载体转印后的基板上形成整面设置的分散液,之后通过固化得到的柔性电极也为整面设置,此时,若需要制作具有设定图案的柔性电极,还需要进行刻蚀处理。
基于同一发明构思,本发明一个实施例还提供了一种电子皮肤,包括本发明实施例提供的上述柔性电极,由于该电子皮肤解决问题的原理与前述一种柔性电极相似,因此该电子皮肤的实施可以参见柔性电极的实施,重复之处不再赘述。
基于同一发明构思,本发明一个实施例还提供了一种柔性显示装置, 由于该柔性显示装置解决问题的原理与前述一种柔性电极相似,因此该柔性显示装置的实施可以参见柔性电极的实施,重复之处不再赘述。
具体地,本发明一个实施例提供的一种柔性显示装置,包括:柔性衬底基板,依次设置在柔性衬底基板上的第一电极、发光层和第二电极,第一电极和/或第二电极为本发明实施例提供的上述柔性电极结构。值得注意的是,该柔性显示基板是在现有的OLED显示器件的基础上进行改进,因此其基本部件和现有的OLED显示器件大致相同,在此不作详述。
基于同一发明构思,本发明一个实施例还提供了一种显示装置,由于该显示装置解决问题的原理与前述一种柔性显示装置相似,因此该显示装置的实施可以参见柔性显示装置的实施,重复之处不再赘述。该显示装置可以为:手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。
本发明提供的一种柔性电极、其制作方法、电子皮肤及柔性显示装置,采用离子液对导电聚合物进行溶液化处理;在溶液化处理后的导电聚合物内加入纳米金属材料,形成含有纳米金属材料的导电聚合物的分散液;将分散液转移到基板上进行固化处理后得到由导电聚合物材料制作成本体的柔性电极,该导电聚合物材料内分散有纳米金属材料。该柔性电极利用了导电聚合物的柔韧性能,可以使形成的柔性电极具有良好的延展性和弹性,并且,在制作柔性电极过程中在导电聚合物中分散了纳米金属材料,利用纳米金属材料弥补了导电聚合物材料的导电性能较低的缺陷,使柔性电极具有良好的导电性。因此,采用上述柔性电极既具有较好的柔韧性又具有优异的导电性能,其应用领域广泛,既可以应用于柔性显示装置中作为电极使用,也可以应用于人体检测的电子器件中作为电子皮肤使用。
显然,本领域的技术人员可以对本发明进行各种改动和变型而不脱离本发明的精神和范围。这样,倘若本发明的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (20)

  1. 一种柔性电极,其特征在于,包括由导电聚合物材料制作的本体,所述导电聚合物材料内分散有纳米金属材料。
  2. 如权利要求1所述的柔性电极,其特征在于,所述导电聚合物材料包括:聚乙炔、聚噻吩、聚吡咯、聚苯胺、聚苯撑、聚苯撑乙炔、聚双炔中的一种或组合。
  3. 如权利要求1所述的柔性电极,其特征在于,所述纳米金属材料包括:纳米金球、纳米银球、纳米铜球中的一种或组合。
  4. 如权利要求3所述的柔性电极,其特征在于,所述纳米金属材料的粒径为10nm~50nm。
  5. 如权利要求1所述的柔性电极,其特征在于,所述纳米金属材料和所述导电聚合物材料的重量比为1∶15~1∶5。
  6. 如权利要求1-5任一项所述的柔性电极,其特征在于,所述导电聚合物材料为经过离子液处理的导电聚合物材料。
  7. 如权利要求6所述的柔性电极,其特征在于,所述离子液包括:1-乙基-3-甲基咪唑六氟磷酸盐、1-丁基-3-甲基咪唑六氟磷酸盐、1-辛基-3-甲基咪唑六氟磷酸盐、1-乙基-3-甲基咪唑四氟硼酸盐、1-丁基-3-甲基咪唑三氟甲基磺酸盐、氯化1-丁基-3-甲基咪唑盐中一种或组合。
  8. 如权利要求7所述的柔性电极,其特征在于,所述离子液与所述导电聚合物材料的重量比为5∶1~15∶1。
  9. 一种柔性电极的制作方法,其特征在于,包括:
    采用离子液对导电聚合物进行溶液化处理;
    在溶液化处理后的导电聚合物内加入纳米金属材料,形成含有纳米金属材料的导电聚合物的分散液;
    将所述分散液转移到基板上进行固化处理后得到柔性电极。
  10. 如权利要求9所述的制作方法,其特征在于,将所述分散液转移到基板上,具体包括:
    将所述分散液转移到载体上;
    将承载有所述分散液的载体转印到所述基板上。
  11. 如权利要求10所述的制作方法,其特征在于,所述载体的表面具有预设图案。
  12. 如权利要求9-11任一项所述的制作方法,其特征在于,所述导电聚合物包括:聚乙炔、聚噻吩、聚吡咯、聚苯胺、聚苯撑、聚苯撑乙炔、聚双炔中一种或组合。
  13. 如权利要求12所述的制作方法,其特征在于,所述离子液包括:1-乙基-3-甲基咪唑六氟磷酸盐、1-丁基-3-甲基咪唑六氟磷酸盐、1-辛基-3-甲基咪唑六氟磷酸盐、1-乙基-3-甲基咪唑四氟硼酸盐、1-丁基-3-甲基咪唑三氟甲基磺酸盐、氯化1-丁基-3-甲基咪唑盐中一种或组合。
  14. 如权利要求13所述的制作方法,其特征在于,所述离子液与所述导电聚合物的重量比为5∶1~15∶1。
  15. 如权利要求9-11任一项所述的制作方法,其特征在于,所述纳米金属材料包括:纳米金球、纳米银球、纳米铜球中的一种或组合。
  16. 如权利要求15所述的制作方法,其特征在于,所述纳米金属材料和所述导电聚合物的重量比为1∶15~1∶5。
  17. 如权利要求15所述的制作方法,其特征在于,所述纳米金属材料的粒径为10nm~50nm。
  18. 一种柔性显示装置,包括柔性衬底基板,依次设置在柔性衬底基板上的第一电极、发光层和第二电极,其特征在于,所述第一电极和所述第二电极为如权利要求1-8所述的柔性电极。
  19. 一种显示装置,其特征在于,包括如权利要求18所述的柔性显示装置。
  20. 一种电子皮肤,其特征在于,包括如权利要求1-8任一项所述的柔性电极。
PCT/CN2015/076633 2014-12-10 2015-04-15 一种柔性电极、其制作方法、电子皮肤及柔性显示装置 WO2016090796A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP15795098.1A EP3232487A4 (en) 2014-12-10 2015-04-15 Flexible electrode, fabrication method thereof, electronic skin and flexible display device
US14/892,543 US9698367B2 (en) 2014-12-10 2015-04-15 Flexible electrode and method for manufacturing the same, electronic skin and flexible display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410759065.4A CN104393194A (zh) 2014-12-10 2014-12-10 一种柔性电极、其制作方法、电子皮肤及柔性显示装置
CN201410759065.4 2014-12-10

Publications (1)

Publication Number Publication Date
WO2016090796A1 true WO2016090796A1 (zh) 2016-06-16

Family

ID=52611063

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/076633 WO2016090796A1 (zh) 2014-12-10 2015-04-15 一种柔性电极、其制作方法、电子皮肤及柔性显示装置

Country Status (4)

Country Link
US (1) US9698367B2 (zh)
EP (1) EP3232487A4 (zh)
CN (1) CN104393194A (zh)
WO (1) WO2016090796A1 (zh)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102013112253A1 (de) * 2013-11-07 2015-05-07 Osram Oled Gmbh Optoelektronisches Bauelement, Verfahren zum Betreiben eines optoelektronischen Bauelementes und Verfahren zum Herstellen eines optoelektronischen Bauelementes
CN104393194A (zh) 2014-12-10 2015-03-04 京东方科技集团股份有限公司 一种柔性电极、其制作方法、电子皮肤及柔性显示装置
WO2016165202A1 (zh) * 2015-04-17 2016-10-20 北京天恒盛通科技发展有限公司 可弯曲透明导电电极及其制备方法
CN105140408B (zh) * 2015-08-02 2018-03-23 北京天恒盛通科技发展有限公司 柔性透明复合离子液体凝胶导电电极的制备方法
CN110364559B (zh) * 2015-10-09 2022-03-29 Tcl科技集团股份有限公司 Qled显示屏及制备方法
CN105671962B (zh) * 2016-01-15 2018-08-10 武汉纺织大学 一种柔性纳米纤维基电子皮肤及其制备方法
CN106384566B (zh) * 2016-09-18 2019-05-17 京东方科技集团股份有限公司 像素结构、像素电极及其制备方法
CN106293253B (zh) * 2016-09-23 2019-05-28 京东方科技集团股份有限公司 触控传感器及其制作方法和触控传感器单元
CN106693077A (zh) * 2017-01-22 2017-05-24 包磊 电子皮肤基底及其制备方法和电子皮肤
CN107778480B (zh) * 2017-11-13 2020-07-24 深圳大学 一种柔性电子皮肤传感器及其制备方法
CN110246862B (zh) * 2018-03-09 2021-11-30 上海和辉光电股份有限公司 一种柔性显示面板和柔性电子设备
CN109297515B (zh) * 2018-09-12 2021-07-06 常州大学 一种可用于电子皮肤的柔性电极
CN111244307B (zh) * 2018-11-29 2021-10-22 Tcl科技集团股份有限公司 一种量子点发光二极管及其制备方法
CN109638043A (zh) * 2018-12-03 2019-04-16 武汉华星光电半导体显示技术有限公司 柔性有机发光二极管(oled)显示基板及其制作方法
CN111289158B (zh) * 2018-12-07 2022-09-27 深圳大学 一种柔性压力传感器与柔性压力传感阵列
CN109709695B (zh) * 2019-01-10 2021-12-24 京东方科技集团股份有限公司 显示基板及其制造方法、显示装置
CN110635066A (zh) * 2019-09-26 2019-12-31 京东方科技集团股份有限公司 一种透明显示基板及其制作方法、透明显示装置
CN112531128A (zh) * 2020-11-26 2021-03-19 中国乐凯集团有限公司 一种可伸缩柔性oled照明器件及其制备方法
CN113267276B (zh) * 2021-05-18 2022-07-01 电子科技大学 一种柔性电子材料及其制备方法和应用
CN114023511B (zh) * 2021-11-11 2023-10-31 中国有色桂林矿产地质研究院有限公司 一种基于有机磷盐制备高温电子浆料的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101085857A (zh) * 2006-06-07 2007-12-12 三星Sdi株式会社 导电聚合物组合物、使用其的导电膜和含该膜的电子器件
US20130285041A1 (en) * 2010-12-13 2013-10-31 Konica Minolta, Inc. Transparent surface electrode, organic electronic element, and method for manufacturing transparent surface electrode
CN103493145A (zh) * 2010-08-20 2014-01-01 罗地亚管理公司 聚合物组合物、聚合物膜、聚合物凝胶和聚合物泡沫、以及含有所述膜、凝胶和泡沫的电子装置
CN104393194A (zh) * 2014-12-10 2015-03-04 京东方科技集团股份有限公司 一种柔性电极、其制作方法、电子皮肤及柔性显示装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7317047B2 (en) * 2002-09-24 2008-01-08 E.I. Du Pont De Nemours And Company Electrically conducting organic polymer/nanoparticle composites and methods for use thereof
US7438832B2 (en) * 2005-03-29 2008-10-21 Eastman Kodak Company Ionic liquid and electronically conductive polymer mixtures
CA2636662C (en) 2006-01-17 2011-08-16 Ppg Industries Ohio, Inc. Method of producing particles by physical vapor deposition in an ionic liquid
KR101163789B1 (ko) * 2006-02-07 2012-07-09 삼성전자주식회사 투명전극 및 그의 제조방법
WO2008000045A1 (en) * 2006-06-30 2008-01-03 University Of Wollongong Nanostructured composites
US8018563B2 (en) * 2007-04-20 2011-09-13 Cambrios Technologies Corporation Composite transparent conductors and methods of forming the same
KR101229867B1 (ko) 2010-06-25 2013-02-05 주식회사 코리아일레콤 화기 장착용 범용 레이저 발사기
KR101302786B1 (ko) 2011-05-27 2013-09-03 포항공과대학교 산학협력단 높은 일함수를 가지는 고분자 전극을 채용한 단순화된 유기 전자 소자
US8466366B2 (en) * 2011-06-28 2013-06-18 Innova Dynamics, Inc. Transparent conductors incorporating additives and related manufacturing methods
CN102953137B (zh) 2011-08-18 2014-08-27 香港理工大学 高弹性导电纤维及其制备方法
AU2012298650A1 (en) 2011-08-24 2014-03-27 Tpk Holding Co., Ltd. Patterned transparent conductors and related manufacturing methods
EP2570846A1 (en) * 2011-09-19 2013-03-20 Hydro-Québec Flexible transparent electrochromic device
EP3202317B1 (en) * 2011-11-17 2022-06-01 Nippon Telegraph and Telephone Corporation Conductive polymer fibers, method and device for producing conductive polymer fibers, biological electrode, device for measuring biological signals, implantable electrode, and device for measuring biological signals
FR2996358B1 (fr) 2012-10-03 2016-01-08 Hutchinson Electrode transparente et procede de fabrication associe
KR101516474B1 (ko) 2013-05-07 2015-05-20 국립대학법인 울산과학기술대학교 산학협력단 은나노입자들을 포함하는 전도성 고분자 전극 기반의 플라즈몬 유기 광전자 디바이스
US9807847B2 (en) * 2014-08-21 2017-10-31 Nanyang Technological University Flexible and/or stretchable electronic device and method of manufacturing thereof
US9908178B2 (en) * 2014-10-28 2018-03-06 Kookmin University Industry Academy Cooperation Foundation Method for preparing ultrathin silver nanowires, and transparent conductive electrode film product thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101085857A (zh) * 2006-06-07 2007-12-12 三星Sdi株式会社 导电聚合物组合物、使用其的导电膜和含该膜的电子器件
CN103493145A (zh) * 2010-08-20 2014-01-01 罗地亚管理公司 聚合物组合物、聚合物膜、聚合物凝胶和聚合物泡沫、以及含有所述膜、凝胶和泡沫的电子装置
US20130285041A1 (en) * 2010-12-13 2013-10-31 Konica Minolta, Inc. Transparent surface electrode, organic electronic element, and method for manufacturing transparent surface electrode
CN104393194A (zh) * 2014-12-10 2015-03-04 京东方科技集团股份有限公司 一种柔性电极、其制作方法、电子皮肤及柔性显示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3232487A4 *

Also Published As

Publication number Publication date
US20160359133A1 (en) 2016-12-08
CN104393194A (zh) 2015-03-04
EP3232487A1 (en) 2017-10-18
EP3232487A4 (en) 2018-09-26
US9698367B2 (en) 2017-07-04

Similar Documents

Publication Publication Date Title
WO2016090796A1 (zh) 一种柔性电极、其制作方法、电子皮肤及柔性显示装置
Lee et al. Standalone real-time health monitoring patch based on a stretchable organic optoelectronic system
Kim et al. Interactive skin display with epidermal stimuli electrode
Jang et al. Self-assembled three dimensional network designs for soft electronics
Yin et al. Highly sensitive and transparent strain sensors with an ordered array structure of AgNWs for wearable motion and health monitoring
Akter et al. Reversibly stretchable transparent conductive coatings of spray-deposited silver nanowires
Chen et al. Stretchable conductive elastomer for wireless wearable communication applications
WO2016095428A1 (zh) 柔性电极结构、其制作方法及柔性显示基板
US9253890B2 (en) Patterned conductive film, method of fabricating the same, and application thereof
Wang et al. Highly stretchable, sensitive, and transparent strain sensors with a controllable in-plane mesh structure
CN105405492B (zh) 具备高热稳定性的柔性透明导电薄膜的制备方法及其产品
Zhang et al. Highly stretchable and conductive fibers enabled by liquid metal dip-coating
US20170079135A1 (en) Wavy interconnect for bendable and stretchable devices
Kim et al. Three-dimensional writing of highly stretchable organic nanowires
Joh et al. Surface design of nanocrystals for high-performance multifunctional sensors in wearable and attachable electronics
CN104934551A (zh) 一种柔性电极层及其制备方法、显示基板、显示装置
US20150029411A1 (en) Touch panel, conductive film and method for manufacturing the same
Tybrandt et al. Multilayer patterning of high resolution intrinsically stretchable electronics
Hwang et al. Computational characterization and control of electrical conductivity of nanowire composite network under mechanical deformation
Kang et al. Metal nanowire–polymer matrix hybrid layer for triboelectric nanogenerator
CN104575698A (zh) 透明导电膜结构
Entifar et al. Simultaneously enhanced optical, electrical, and mechanical properties of highly stretchable transparent silver nanowire electrodes using organic surface modifier
US10976852B2 (en) Touch panel, manufacturing method thereof, and display device
Chen et al. Silver nanowire/polymer composite soft conductive film fabricated by large-area compatible coating for flexible pressure sensor array
Han et al. Structural design of wearable electronics suitable for highly-stretched joint areas

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14892543

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015795098

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015795098

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15795098

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE