WO2016090582A1 - 反射式辐射散热的基板及发光件 - Google Patents

反射式辐射散热的基板及发光件 Download PDF

Info

Publication number
WO2016090582A1
WO2016090582A1 PCT/CN2014/093510 CN2014093510W WO2016090582A1 WO 2016090582 A1 WO2016090582 A1 WO 2016090582A1 CN 2014093510 W CN2014093510 W CN 2014093510W WO 2016090582 A1 WO2016090582 A1 WO 2016090582A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
reflective
layer
heat dissipation
substrate
Prior art date
Application number
PCT/CN2014/093510
Other languages
English (en)
French (fr)
Inventor
陈智成
钟明吉
蔡俊钦
吴俊毅
Original Assignee
远东科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 远东科技大学 filed Critical 远东科技大学
Priority to PCT/CN2014/093510 priority Critical patent/WO2016090582A1/zh
Publication of WO2016090582A1 publication Critical patent/WO2016090582A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems

Definitions

  • the present invention relates to a reflective radiation-dissipating substrate and a light-emitting member, and more particularly to a substrate for mounting an illuminant and using far-infrared radiation as a heat-dissipating means, and a illuminating member including the substrate.
  • Light-emitting diodes have been widely used in recent years, and they have high photoelectric conversion efficiency, use of direct current, small size, long life, fixed wavelength and low heat. Several advantages have been greatly improved with the advancement of photoelectric technology. LEDs are widely used in the field of lighting and are also used in many types of lamps. In the application of the embedded/applied luminaire, due to the limitation of the thickness of the wall, the heat dissipation fins of the existing heat dissipation technology are limited in space. Furthermore, the embedded/applied luminaire is embedded/attached to the wall body, and the working heat energy radiated by the heat dissipation fins is not released by the wall covering, and cannot be effectively dissipated.
  • Taiwanese Patent No. M461754 LED lamp with good heat dissipation effect
  • a main body which is integrally formed of a metal material having good heat conduction characteristics, and has at least one inside thereof.
  • a control circuit module ; an insulating heat conducting layer disposed on a top surface of the body, wherein the top surface is provided with a plurality of holes; a copper circuit layer is disposed on the insulating heat conducting layer, and is a wire set disposed in the hole is electrically connected to the control circuit module;
  • a solder resist layer covers the copper circuit layer, wherein the solder resist layer is provided with a plurality of soldering windows for exposing a plurality of soldering metal pads of the copper circuit layer; and a plurality of LED components disposed on the solder resist layer and soldered to the plurality of solder metal pads of the copper circuit layer through the plurality of soldering windows
  • the LED components emit light
  • the heat generated by the LED components is transmitted to the main body through
  • the conventional technology can effectively solve the heat dissipation problem of the LED lamp, when it is applied to the embedded/applied lamp, there is still a limitation on the thickness of the wall body, which is limited when the body is disposed, and the heat discharged by the body is Due to the surrounding of the wall, it cannot be effectively dissipated, resulting in poor heat dissipation.
  • the present invention provides a reflective radiation-dissipating substrate and a light-emitting member.
  • the reflective radiation-dissipating substrate of the present invention comprises: a light-transmitting substrate comprising a first surface and a second surface opposite to the first surface, and defining the second surface to point to the first surface
  • the direction is a projection direction; a reflective layer is disposed on the second surface; and a far infrared radiation heat dissipation layer is disposed on the second surface and located between the transparent substrate and the reflective layer.
  • the light transmissive substrate is one of the following: quartz, sapphire, glass, alumina, aluminum nitride, aluminum oxynitride, magnesium oxide, zirconium oxide, spinel, yttria, yttrium aluminum garnet (YAG), Transparent ceramic or lead zirconate titanate ceramic (PLZT).
  • the material of the reflective layer is aluminum.
  • the present invention further provides a light-emitting member including the reflective radiation-dissipating substrate, further comprising: at least one light-emitting diode disposed on the first surface; thereby, the light source generated by the light-emitting diode is directed toward the projection Projecting a direction, and projecting toward the reflective layer, and reflecting the light source toward the projection direction by the reflective layer; the working heat generated by the LED is conducted to the far infrared radiation heat dissipation layer via the transparent substrate, and The far-infrared radiation heat dissipation layer is radiated by far-infrared rays, and is reflected by the reflective layer to dissipate heat in the projection direction.
  • circuit layer disposed on the first surface and connected to the light emitting diode.
  • a power supply unit is connected to the foregoing circuit layer.
  • the effect of the reflective radiation-dissipating substrate of the present invention is that it is used to fit a plurality of illuminants.
  • heat dissipation is performed by means of heat conduction and heat convection.
  • the reflective radiation-dissipating substrate of the present invention radiates heat toward the projection direction by heat radiation; therefore, the existing heat dissipation fins are required to occupy In a large space, the reflective radiation-dissipating substrate of the present invention is arranged in a plurality of layers, and is generally plate-shaped, and has a small thickness in the depth, and can be applied to a space-limited place, and the working heat is projected toward the foregoing.
  • the heat is dissipated in the direction, and it is not blocked by the wall body, so it can not be effectively dissipated, resulting in poor heat dissipation.
  • the efficacy of the illuminating member of the present invention is:
  • the light-emitting member according to the present invention is capable of effectively projecting a light source generated by the light-emitting diode into the projection direction, and the working heat generated by the light-emitting diode can also be radiated from the far-infrared radiation manner toward the projection direction;
  • the thickness required in the depth is small, and it can be applied to places where space is limited, especially as an embedded/applied luminaire.
  • the illuminating member according to the present invention further comprises a power supply unit connected to the circuit layer, so that the illuminating member of the present invention can be disposed at a desired position according to the needs of the user; for example, being fixed on a wall set by a user.
  • the working heat energy generated by the light-emitting diode is conducted from the light-transmitting substrate to the far-infrared radiation heat-dissipating layer, and is radiated by the far-infrared radiation heat-dissipating layer by far-infrared rays, and is reflected by the reflective layer to dissipate heat toward the projection direction.
  • the illuminating member of the invention is also fixed on the wall body and has a good heat dissipation effect, and avoids the phenomenon of high temperature light decay or shortened due to high temperature life.
  • Figure 1 is a perspective view of a light-emitting member of the present invention
  • Figure 2 is a cross-sectional view of a light-emitting member of the present invention.
  • FIG. 3 is a schematic diagram of heat dissipation of a light-emitting member of the present invention.
  • Figure 4 is a perspective view showing an embodiment of the light-emitting member of the present invention.
  • Figure 5 is a cross-sectional view showing an embodiment of a light-emitting member of the present invention.
  • the reflective radiation-dissipating substrate of the present invention comprises: a light-transmitting substrate 1, a reflective layer 2, and a far-infrared radiation heat-dissipating layer 3, wherein;
  • the light-transmitting substrate 1 is a light-transmitting material having thermal conductivity, and is one of the following: quartz, sapphire, glass, alumina, aluminum nitride, aluminum oxynitride, magnesium oxide, zirconium oxide, spinel, oxidation. ⁇ , ⁇ aluminum Garnet, transparent ceramic or lead zirconate titanate ceramic, this embodiment is a sapphire.
  • the transparent substrate 1 includes a first surface 1 1 and a second surface 12 opposite to the first surface 11 and defines a direction in which the second surface 12 is directed toward the first surface 11 Direction 1 3.
  • the reflective layer 2 is disposed on the second surface 12 and has the property of reflecting light.
  • the reflective layer 2 is made of aluminum.
  • the far-infrared radiation heat dissipation layer 3 is applied to the second surface 12 and located between the light-transmitting substrate 1 and the reflective layer 2, and has light transmissivity.
  • the far-infrared radiation heat-dissipating coating is produced by the following steps: Step A. using a solution of an inorganic metal salt such as a chloride salt, a sulfate or a nitrate or an alkoxy compound such as tetraethoxysilane as a first material; B.
  • the first material is mixing the first material with water, an acidic solution such as ammonium hydroxide, hydrochloric acid, acetic acid or nitric acid, and adjusting the pH to less than 3, and then forming a gel by a sol-gel method; or, the first material is It is mixed with water, an alkaline solution such as sodium hydroxide, and adjusted to a pH of 8 to 10, and then gelled by a sol-gel method. Applying the obtained gel to the second surface 12, and calcining the light-transmitting substrate 1, wherein the calcination temperature is between 500 and 900 ° C, so that the gel forms minute crystal grains, and after cooling, The far infrared radiation radiating coating is formed.
  • an acidic solution such as ammonium hydroxide, hydrochloric acid, acetic acid or nitric acid
  • the first material is It is mixed with water, an alkaline solution such as sodium hydroxide, and adjusted to a pH of 8 to 10, and then gelled by a sol-gel method
  • the reflective radiation-dissipating substrate of the present invention is arranged in a plurality of layers, and has a plate shape as a whole, and has a small thickness in the depth, and can be applied to a space-limited place; and can be equipped with different illuminants,
  • the heat radiation method dissipates heat in the aforementioned projection direction 13 , so that it is different from the prior art in heat conduction and heat convection, and the heat dissipation fins used need to occupy a large space, and cannot be applied to a space-limited place. .
  • a light emitting device including the reflective radiation heat dissipation substrate according to the present invention further includes at least one light emitting diode 4 and a circuit layer 5 , which is a
  • the light emitting diode 4 is disposed on the first surface 1 1
  • the circuit layer 5 is disposed on the first surface 1 1 and connected to the light emitting diode 4 , wherein the circuit layer 5 includes a positive circuit 51 and a negative circuit 52.
  • the LED 4 has a positive pin 4 1 and a negative pin 42, and the positive pin 41 is electrically coupled to the positive electrode 51.
  • the negative electrode 42 is electrically coupled to the negative electrode 52, and further includes a power supply unit 6 connected to the positive electrode circuit 51 and the negative electrode 52 to provide power required for the light source 4 to generate a light source.
  • the power supply unit 6 is implemented by a lithium battery or a household electric appliance.
  • the embodiment is implemented by a lithium battery, and a switch 61 is provided for controlling opening and closing.
  • the light source generated by the light-emitting diode 4 is projected toward the projection direction 13 and also projected toward the reflective layer 2, and the light source is directed toward the projection direction by the reflective layer 2 Reflecting; the working heat generated by the light-emitting diode 4 is conducted to the far-infrared radiation heat dissipation layer 3 via the light-transmitting substrate 1, and is radiated by the far-infrared radiation heat-dissipating layer 3 by far-infrared rays, and reflected by the reflective layer 2 The heat is radiated toward the aforementioned projection direction 13 .
  • FIG. 4 and FIG. 5 it is an implementation state diagram of the light-emitting member provided on the wall body A according to the present invention.
  • the light-emitting member of the present invention can be fixed to the wall body by adhesion or by screws.
  • the present invention since the present invention dissipates heat by means of heat radiation, unlike conventional techniques, heat is dissipated by heat conduction and heat convection.
  • the installation requires a large space for the heat dissipation fins, and is limited by the wall body.
  • the light source generated by the light-emitting diode 4 can be projected through the reflective layer 2 in the projection direction 13 to improve the illuminance of the light-emitting diode 4, and the working heat generated by the photodiode can be transmitted through the transparent light.
  • the light substrate 1 is radiated to the far-infrared radiation heat dissipation layer 3, and is radiated by the far-infrared radiation heat-dissipation layer 3 by far-infrared rays, and is reflected by the reflection layer 2 toward the projection direction 13 to solve the heat dissipation fins of the prior art.
  • the heat dissipation has a problem that the heat convection path is blocked by the wall body A, so that the light-emitting member of the present invention is fixed on the wall body A, and has a good heat dissipation effect, thereby avoiding the phenomenon of high-temperature light decay or shortening due to high-temperature life.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)

Abstract

一种反射式辐射散热的基板及发光件,用以解决现有散热技术于应用上受空间限制的问题;所述的发光件包含:一透光基材(1),该透光基材(1)包含有一第一表面(11)及相对该第一表面(11)的一第二表面(12),并定义该第二表面(12)指向该第一表面(11)的方向为一投射方向(13);一反射层(2),设置于前述第二表面(12);一远红外线辐射散热层(3),设置于前述第二表面(12),并位于该透光基材(1)与该反射层(2)之间;至少一发光二极管(4),设置于前述第一表面(11);由此,所述发光二极管(4)所产生的工作热能,经由该透光基材(1)传导至该远红外线辐射散热层(3),并以远红外线辐射朝前述投射方向(13)散热。

Description

反射式辐射散热的基板及发光件 技术领域
本发明是有关于一种反射式辐射散热的基板及发光件,尤指一种用以装设发光体,并以远红外线辐射作为散热手段的基板,及包含该基板的发光件。
背景技术
发光二极管近年来大量的被使用,其具有高光电转换效率、使用直流电、体积小、寿命长、波长固定与低发热等几项优点,随着光电技术的进步大幅提升了发光二极管的亮度与效率,让发光二极管广泛使用于照明领域,也应用于诸多灯种之中。其中有关嵌/贴壁式的灯具在应用时,由于受壁体厚度的限制,因此现有的散热技术的散热鳍片于使用上受到空间的限制。再者,嵌/贴壁式的灯具是嵌/贴于壁体中,散热鳍片所散发的工作热能受壁体包覆无从释放,而无法有效的进行散热。
如现有技术的中国台湾新型专利第M461754号「具有良好散热效果之LED灯具」专利案,是包括:一主体,是由具有良好导热特性的金属材料一体成型而成,且其内部具有至少一控制电路模块;一绝缘导热层,其设置于该主体的一顶部表面之上,其中该顶部表面是设有复数个孔洞;一铜线路层,是设置于该绝缘导热层之上,且是由穿设于该孔洞之中的一导线组而与该控制电路模块电性连接;一防焊层,是覆盖该铜线路层,其中该防焊层之上开设有复数个焊接窗,用以露出该铜线路层的复数个焊接金属垫;以及复数个LED组件,是设置于该防焊层之上,并透过该复数个焊接窗而与该铜线路层的该复数个焊接金属垫相互焊接;其中,当该些LED组件发光时,其所发出的热会透过绝缘导热层而被传导至该主体,进而透过主体排除该些LED组件所发出的热。
虽然习知技术能有效解决LED灯具的散热问题,但运用于嵌/贴壁式的灯具时,仍然存在受壁体厚度影响,于设置前述主体时受到限制,并且由前述主体所排出的热,因受壁体包围而无法有效散去,导致散热效果不佳。
发明内容
因此,为解决现有散热技术于应用上受空间限制的问题,本发明提出一种反射式辐射散热的基板及发光件。
本发明反射式辐射散热的基板包括有:一透光基材,该透光基材包含有一第一表面及相对该第一表面的一第二表面,并定义该第二表面指向该第一表面的方向为一投射方向;一反射层,是设置于前述第二表面;一远红外线辐射散热层,是设置于前述第二表面,并位于该透光基材与该反射层之间。
其中该透光基材是为下列之一:石英、蓝宝石、玻璃、氧化铝、氮化铝、氮氧化铝、氧化镁、氧化锆、尖晶石、氧化钇、钇铝石榴石(YAG)、透明陶瓷或锆钛酸铅镧陶瓷(PLZT)。
其中该反射层的材质是为铝。
本发明另外提出一种包含所述的反射式辐射散热的基板的发光件,进一步包含有:至少一发光二极管,是设置于前述第一表面;藉以,所述发光二极管所产生的光源朝该投射方向投射,也朝该反射层投射,并由该反射层将光源朝前述投射方向反射;所述发光二极管所产生的工作热能,经由该透光基材传导至该远红外线辐射散热层,并由该远红外线辐射散热层以远红外线辐射,经前述反射层反射朝前述投射方向散热。
进一步包含一电路层,是设置于前述第一表面,并连接前述发光二极管。
进一步包含一供电单元连接前述电路层。
本发明反射式辐射散热的基板的功效在于:是用以配合装设多种发光体实 施,有别于现有技术以热传导及热对流的方式散热,本发明反射式辐射散热的基板,是以热辐射方式朝前述投射方向进行散热;因此有现有的散热鳍片所需占据较大的空间,本发明反射式辐射散热的基板是呈复数层状排列,而整体呈板状,于纵深所需的厚度较小,而能适用于空间受限的地方,而且工作热能朝前述投射方向进行散热,并不会因受壁体阻挡而无法有效散去,而导致散热效果不佳。
本发明的发光件的功效在于:
1.由本发明所述的发光件是能将发光二极管所产生的光源有效地往前述投射方向投射,并且该发光二极管所产生的工作热能也能由远红外线辐射方式朝前述投射方向散热;而有别现有技术,于纵深所需的厚度较小,而能适用于空间受限的地方,特别是作为嵌/贴壁式的灯具。
2.由本发明所述的发光件进一步包含一供电单元连接前述电路层,方便本发明的发光件能依使用者的需求,设置于所需的位置;如固定于使用者设定的壁体上,该发光二极管所产生的工作热能由所述透光基材传导至该远红外线辐射散热层,并由该远红外线辐射散热层以远红外线辐射,经前述反射层反射朝前述投射方向散热,使本发明所述的发光件固定于壁体上同样具有良好的散热效果,而避免因高温光衰或是因高温寿命缩短的现象。
附图说明
图1是本发明发光件的立体图;
图2是本发明发光件的剖面图;
图3是本发明发光件的散热示意图;
图4是本发明发光件的实施状态立体图;
图5是本发明发光件的实施状态剖面图。
说明书附图中标记说明如下:
1       透光基材
1 1    第一表面
1 2    第二表面
1 3    投射方向
2       反射层
3       远红外线辐射散热层
4       发光二极管
4 1    正极接脚
4 2    负极接脚
5       电路层
5 1    正极电路
5 2    负极电路
6       供电单元
6 1    开关
A       壁体
具体实施方式
综合上述技术特征,本发明反射式辐射散热的基板及发光件的主要功效将可于下述实施例清楚呈现。
请参阅图1及图2所示,本发明反射式辐射散热的基板,包含:一透光基材1、一反射层2及一远红外线辐射散热层3,其中;
该透光基材1是为具有导热性的透光材料,是为下列之一:石英、蓝宝石、玻璃、氧化铝、氮化铝、氮氧化铝、氧化镁、氧化锆、尖晶石、氧化钇、钇铝 石榴石、透明陶瓷或锆钛酸铅镧陶瓷,本实施例是为蓝宝石。且该透光基材1包含有一第一表面1 1及相对该第一表面1 1的一第二表面1 2,并定义该第二表面1 2指向该第一表面1 1的方向为一投射方向1 3。
该反射层2设置于前述第二表面1 2,是为具反射光的特性,本实施例中该反射层2的材质是为铝。
该远红外线辐射散热层3是涂布于前述第二表面1 2,并位于该透光基材1与该反射层2之间,且具有透光性。其中该远红外线幅射散热涂层是以下列步骤制造:步骤A.以无机金属盐例如氯化盐、硫酸盐或硝酸盐或烷氧化合物例如四乙氧基硅烷的溶液为第一材料;步骤B.将上述第一材料与水、酸性溶液例如氢氧化铵、盐酸、醋酸或硝酸混合,并调整pH值小于3,再以溶胶凝胶法使其形成凝胶;或者,将上述第一材料与水、碱性溶液例如氢氧化钠混合,并调整pH值介于8~10,再以溶胶凝胶法使其形成凝胶。将所得的上述凝胶涂布于前述第二表面1 2,锻烧该透光基材1,其中锻烧温度介于500-900℃,使得所述凝胶形成微小结晶粒,经冷却后即形成该远红外线幅射散热涂层。
本发明反射式辐射散热的基板是呈复数层状排列,而整体呈板状,于纵深所需的厚度较小,而能适用于空间受限的地方;能配合装设不同发光体,是以热辐射方式朝前述投射方向1 3进行散热,因此有别于现有技术以热传导及热对流的方式散热,其使用的散热鳍片所需占据较大的空间,无法适用于空间受限的地方。
请参阅图1所示,是为本发明所述的一种包含所述的反射式辐射散热的基板的发光件,进一步包含有至少一个发光二极管4及一电路层5,本实施例是以一个发光二极管4实施,该发光二极管4是设置于前述第一表面1 1,该电路层5是设置于前述第一表面1 1,并连接前述发光二极管4,其中该电路层 5包括有一正极电路5 1及一负极电路5 2,该发光二极管4具有一正极接脚4 1及一负极接脚4 2,且该正极接脚4 1电性链接前述正极电路5 1,而该负极接脚4 2电性链接前述负极电路5 2,进一步包含一供电单元6连接前述正极电路5 1及前述负极电路5 2,用以提供所述发光二极管4产生光源所需的电力,其中该供电单元6是以锂电池或连接家用电实施,本实施例是以锂电池实施,并设有一开关6 1用以控制启闭。
请参阅图1及图3所示,以所述发光二极管4所产生的光源朝该投射方向1 3投射,也朝该反射层2投射,并由该反射层2将光源朝前述投射方向1 3反射;所述发光二极管4所产生的工作热能,经由该透光基材1传导至该远红外线辐射散热层3,并由该远红外线辐射散热层3以远红外线辐射,经前述反射层2反射朝前述投射方向1 3散热。
请参阅图4及图5所示,是为本发明所述的发光件设置于壁体A上的实施状态图,实施时能以黏贴方式或以螺丝将本发明的发光件固定于壁体A上,由于本发明是以热辐射方式进行散热,有别于习知技术以热传导及热对流的方式散热,安装上因散热鳍片所需占据较大的空间,而有受限于壁体A厚度(嵌壁式)或安装后灯具过于凸出壁体A(贴壁式)的问题。再者透过前述反射层2能将前述发光二极管4所产生的光源皆朝该投射方向1 3投射,提高该发光二极管4的照度,且能将该光二极管所产生的工作热能,经由该透光基材1传导至该远红外线辐射散热层3,并由该远红外线辐射散热层3以远红外线辐射,经前述反射层2反射朝前述投射方向1 3散热,解决现有技术以散热鳍片散热,有热对流途径受壁体A阻挡的问题,使本发明所述的发光件固定于壁体A上同样具有良好的散热效果,而避免因高温光衰或是因高温寿命缩短的现象。
虽然本发明已以较佳实施例揭露如上,然其并非用以限定本发明,任何熟 习此技艺者,在不脱离本发明的精神和范围内,当可作些许的更动与润饰,因此本发明的保护范围当视后附的申请专利范围所界定者为准。

Claims (6)

  1. 一种反射式辐射散热的基板,其特征在于,包含:
    一透光基材,该透光基材包含有一第一表面及相对该第一表面的一第二表面,并定义该第二表面指向该第一表面的方向为一投射方向;
    一反射层,是设置于前述第二表面;
    一远红外线辐射散热层,是设置于前述第二表面,并位于该透光基材与该反射层之间。
  2. 根据权利要求1所述的反射式辐射散热的基板,其特征在于:该透光基材是为下列之一:石英、蓝宝石、玻璃、氧化铝、氮化铝、氮氧化铝、氧化镁、氧化锆、尖晶石、氧化钇、钇铝石榴石、透明陶瓷或锆钛酸铅镧陶瓷。
  3. 根据权利要求1所述的反射式辐射散热的基板,其特征在于:该反射层的材质是为铝。
  4. 一种包含如申请专利范围第1项至第3项任一项所述的反射式辐射散热的基板的发光件,进一步包含有:
    至少一发光二极管,是设置于前述第一表面;
    藉以,所述发光二极管所产生的光源朝该投射方向投射,也朝该反射层投射,并由该反射层将光源朝前述投射方向反射;所述发光二极管所产生的工作热能,经由该透光基材传导至该远红外线辐射散热层,并由该远红外线辐射散热层以远红外线辐射,经前述反射层反射朝前述投射方向散热。
  5. 根据权利要求4所述的反射式辐射散热的发光体,其特征在于:包含一电路层,是设置于前述第一表面,并连接前述发光二极管。
  6. 根据权利要求5所述的反射式辐射散热的发光体,其特征在于:包含一供电单元连接前述电路层。
PCT/CN2014/093510 2014-12-10 2014-12-10 反射式辐射散热的基板及发光件 WO2016090582A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/093510 WO2016090582A1 (zh) 2014-12-10 2014-12-10 反射式辐射散热的基板及发光件

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/093510 WO2016090582A1 (zh) 2014-12-10 2014-12-10 反射式辐射散热的基板及发光件

Publications (1)

Publication Number Publication Date
WO2016090582A1 true WO2016090582A1 (zh) 2016-06-16

Family

ID=56106451

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/093510 WO2016090582A1 (zh) 2014-12-10 2014-12-10 反射式辐射散热的基板及发光件

Country Status (1)

Country Link
WO (1) WO2016090582A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010002179A2 (ko) * 2008-06-30 2010-01-07 Park Kyo Yang 방열 조명 램프
CN102305387A (zh) * 2011-06-01 2012-01-04 厦门昰能机电科技有限公司 Led灯具的效能提升装置、方法及具有该装置的led灯具
CN202613103U (zh) * 2012-03-06 2012-12-19 陈德忠 可放射远红外线的led照明灯
CN102856312A (zh) * 2011-06-28 2013-01-02 株式会社小糸制作所 平面发光组件
CN103883974A (zh) * 2012-12-19 2014-06-25 松下电器产业株式会社 发光模块以及使用该发光模块的照明用光源

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010002179A2 (ko) * 2008-06-30 2010-01-07 Park Kyo Yang 방열 조명 램프
CN102305387A (zh) * 2011-06-01 2012-01-04 厦门昰能机电科技有限公司 Led灯具的效能提升装置、方法及具有该装置的led灯具
CN102856312A (zh) * 2011-06-28 2013-01-02 株式会社小糸制作所 平面发光组件
CN202613103U (zh) * 2012-03-06 2012-12-19 陈德忠 可放射远红外线的led照明灯
CN103883974A (zh) * 2012-12-19 2014-06-25 松下电器产业株式会社 发光模块以及使用该发光模块的照明用光源

Similar Documents

Publication Publication Date Title
RU2578198C2 (ru) Электрическая лампа, имеющая рефлектор для переноса тепла от источника света
JP2010034546A (ja) 発光素子ランプ及び照明器具
JP2010231913A (ja) 電球型ランプ
JP5330985B2 (ja) 照明器具
WO2009111905A1 (zh) 半导体固态照明灯具及其照明方法
JP2015079644A (ja) 照明装置
TW201326667A (zh) Led球泡燈及led照明燈具
KR101232940B1 (ko) 엘이디 모듈
JP5575624B2 (ja) 照明ユニット及び照明装置
CN103703308B (zh) 具有载体和封壳的照射设备
TWI566444B (zh) 反射式輻射散熱之基板及發光件
WO2016123789A1 (zh) 导热辐射基板及反射式辐射散热发光件
WO2016090582A1 (zh) 反射式辐射散热的基板及发光件
TWM570533U (zh) 增強散熱效果的發光二極體陣列封裝結構
TWM498842U (zh) 導熱輻射基板及反射式輻射散熱發光件
WO2018129858A1 (zh) 一种新型led灯泡
TWI566677B (zh) 導熱輻射基板及反射式輻射散熱發光件
TWM493635U (zh) 燈具
TWM497742U (zh) 反射式輻射散熱之基板及發光件
KR101836066B1 (ko) 크롬(Chromium)을 이용한 LED 반사 방열 기판
JP2013008582A (ja) ランプ装置
KR100887401B1 (ko) 발광 다이오드 모듈
TWI553920B (zh) 多向式之發光散熱板材及燈具
JP2011029065A (ja) Led照明器具
WO2019114194A1 (zh) 一种led聚光灯

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14907888

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14907888

Country of ref document: EP

Kind code of ref document: A1