WO2016086662A1 - 电涡流传感器 - Google Patents

电涡流传感器 Download PDF

Info

Publication number
WO2016086662A1
WO2016086662A1 PCT/CN2015/083398 CN2015083398W WO2016086662A1 WO 2016086662 A1 WO2016086662 A1 WO 2016086662A1 CN 2015083398 W CN2015083398 W CN 2015083398W WO 2016086662 A1 WO2016086662 A1 WO 2016086662A1
Authority
WO
WIPO (PCT)
Prior art keywords
probe
eddy current
current sensor
housing
radial
Prior art date
Application number
PCT/CN2015/083398
Other languages
English (en)
French (fr)
Inventor
胡余生
黄伟才
耿继青
刘志昌
Original Assignee
珠海格力节能环保制冷技术研究中心有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力节能环保制冷技术研究中心有限公司 filed Critical 珠海格力节能环保制冷技术研究中心有限公司
Priority to EP15865847.6A priority Critical patent/EP3228975B1/en
Priority to US15/514,981 priority patent/US10209095B2/en
Publication of WO2016086662A1 publication Critical patent/WO2016086662A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L13/00Electric propulsion for monorail vehicles, suspension vehicles or rack railways; Magnetic suspension or levitation for vehicles
    • B60L13/10Combination of electric propulsion and magnetic suspension or levitation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/02Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness
    • G01B7/023Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness for measuring distance between sensor and object
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/90Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/72Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables
    • G01N27/82Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws
    • G01N27/90Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents
    • G01N27/904Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating magnetic variables for investigating the presence of flaws using eddy currents with two or more sensors

Definitions

  • the present invention relates to the field of test sensors, and in particular to an eddy current sensor.
  • the prior art eddy current sensor especially the integrated eddy current sensor, can be applied to the monitoring of the motion state of the magnetic suspension motor spindle.
  • the eddy current displacement sensor is mainly used for real-time detection. Therefore, the accuracy and stability of the eddy current sensor directly affect the efficiency and reliability of the magnetic levitation motor.
  • the eddy current sensors currently used in magnetic levitation motors on the market generally have the following problems:
  • the probe protrudes out of the housing of the eddy current sensor, so the housing of the eddy current sensor has less protection effect on the probe, which is liable to cause damage to the probe;
  • the eddy current sensor is not provided with a compensation probe.
  • the eddy current sensor is greatly affected by the ambient temperature and cannot be applied to places with harsh environments such as high temperature and high pressure.
  • the front-end device (sensor control and processing circuit) is integrated into the housing of the eddy current sensor, which puts higher requirements on the temperature stability and pressure stability of the control circuit components.
  • the main object of the present invention is to provide an eddy current sensor to solve the problem that the probe is easily damaged and the service life of the sensor is short due to the protrusion of the outer surface of the housing.
  • the present invention provides an eddy current sensor comprising: a housing; a probe having a plurality of probes, a plurality of probes disposed inside the housing, and the probe ends of the probes are on the outer surface of the housing.
  • the inside of the cover prevents the probe end of the probe from protruding beyond the outer surface of the housing.
  • the plurality of probes comprise a plurality of radial probes
  • the housing has an inner annular surface
  • the inner annular surface has a radial detecting hole for avoiding the radial probe
  • the detecting end of the radial probe is corresponding to the radial detecting hole
  • the diameter is The probe end of the probe is tangent to the inner annulus.
  • the housing has an annular structure, and the inside of the housing has an annular groove.
  • the inner side wall of the annular groove forms an inner side wall of the housing with the inner annular surface of the housing, and the inner side wall has a radial direction along the housing.
  • a radial detection hole is provided through the through hole.
  • an outer side wall of the casing is formed between the outer groove wall of the annular groove and the outer ring surface of the casing, and the outer side wall has a wire hole penetrating through the axial direction of the radial detecting hole.
  • an outer side wall of the casing is formed between the outer groove wall of the annular groove and the outer annular surface of the casing, and the outer side wall further has a wire opening communicating with the annular groove.
  • the eddy current sensor further includes a package portion that fills a gap in the housing to form the housing into a solid annular cylinder.
  • the plurality of probes includes at least one axial probe, the housing having an inner annulus and a radial end surface perpendicular to the inner annulus, the detection end of the axial probe being flush with the radial end surface of the housing.
  • the plurality of probes comprise: a radial probe, the plurality of radial probes are arranged, the plurality of radial probes are arranged at equal intervals around the circumference of the housing; the axial probe, the axial probe is one, and the axial probe is located at the phase Adjacent to the line connecting the two radial probes on the vertical line.
  • the eddy current sensor further includes a front end, the front end is electrically connected to the probe, and the front end is located outside the housing and is disposed independently of the housing.
  • the plurality of probes further include: a metal member disposed on the housing and in contact with the external environment; and the compensation probe, the detecting end of the compensation probe being disposed on the metal member.
  • the eddy current sensor further includes a range adjusting portion, and the detecting end of the compensating probe is in contact with the metal member through the range adjusting portion.
  • the housing has an annular structure, and the inside of the housing has an annular groove, and the housing further has a stepped hole provided through the bottom of the annular groove, and the hole in the stepped hole adjacent to the side of the annular groove is larger than the side away from the annular groove.
  • the aperture, the compensation probe and the metal member are disposed in the stepped hole, and the metal member is stopped at the stepped surface of the stepped hole.
  • the metal member is the same material as the shaft to be detected.
  • a plurality of probes are disposed inside the casing, and the detecting ends of the probes are all located inside the outer surface of the casing. Since the detecting ends of the plurality of probes are all on the inner side of the outer surface of the housing, when the external force hits the eddy current sensor, the housing protects the probe, thereby preventing the probe from being damaged due to the impact. The failure rate of the probe is lowered, the reliability of the eddy current sensor is improved, and the service life of the eddy current sensor is prolonged.
  • Figure 1 is a schematic view showing the structure of an eddy current sensor in the present invention
  • Figure 2 is a schematic view showing the mounting relationship of the housing and the probe in the present invention
  • Figure 3 is a schematic view showing the mounting relationship of the housing and the radial probe in the present invention.
  • Figure 4 is a schematic view showing the mounting relationship of the housing and the axial probe in the present invention.
  • Figure 5 is a schematic view showing the mounting relationship of the housing and the compensation probe in the present invention.
  • Fig. 6 is a diagram showing the compensation principle of the compensation probe in the present invention.
  • the eddy current sensor includes a housing 10 and a probe.
  • the probes are plural, and the plurality of probes are disposed inside the housing 10, and the detecting ends of the probes are all located on the outer surface of the housing 10.
  • the casing 10 protects the probe, thereby preventing the probe from being damaged by the impact and reducing the malfunction of the probe. The rate improves the reliability of the eddy current sensor and prolongs the service life of the eddy current sensor.
  • the housing 10 is fabricated from a weakly magnetically oriented aluminum alloy or stainless steel.
  • the shell 10 made of aluminum alloy or stainless steel with weak magnetic permeability can effectively reduce the interference of the strong magnetic metal shell on the eddy current field of the probe and improve the test accuracy.
  • the plurality of probes in the present invention comprise a plurality of radial probes 20, the housing 10 having an inner annulus 11 having a radial detection aperture 11a for escaping the radial probe 20, the detection end and diameter of the radial probe 20.
  • the probe hole 11a is correspondingly disposed, and the probe end of the radial probe 20 is tangent to the inner ring surface 11 (please refer to FIGS. 2 and 3). Since the detecting end of the radial probe 20 is tangent to the inner annular surface 11, the radial probe 20 is protected by the inner annular surface 11 while ensuring the accuracy of the radial probe 20, avoiding the radial probe 20 The problem of lowering the test accuracy is caused by being too trapped inside the casing 10.
  • the housing 10 has an annular structure, and the inside of the housing 10 has an annular groove 12, and the inner groove wall 12a of the annular groove 12 and the inner annular surface 11 of the housing 10
  • the inner side wall 13 of the casing 10 is formed, and the inner side wall 13 has a radial detecting hole 11a penetratingly provided in the radial direction of the casing 10. Since the inner side wall 13 of the housing 10 has the radial detecting hole 11a penetratingly disposed in the radial direction of the housing 10, the mounting of the radial probe 20 can be ensured after the radial probe 20 is mounted in the radial detecting hole 11a. Stability, thus ensuring the test accuracy of the eddy current sensor.
  • the outer side wall 12b of the annular groove 12 and the outer annular surface 14 of the housing 10 form an outer side wall 15 of the housing 10, the outer side wall 15 having a radial detection
  • a through hole 15a is formed in the axial direction of the hole 11a. Since the wire hole 15a is provided in the outer side wall 15 of the casing 10, the signal line connected to the radial probe 20 can be passed out to the outside of the casing 10 through the wire hole 15a.
  • the signal wire can be ensured to pass out to the outside of the casing 10 at the shortest distance, thereby effectively reducing the material of the signal wire and reducing the manufacture of the eddy current sensor. cost.
  • the outer side wall 15b of the annular groove 12 and the outer annular surface 14 of the casing 10 of the present invention form an outer side wall 15 of the casing 10, and the outer side wall 15 also has a line opening 15b communicating with the annular groove 12 (please refer to Figure 2 and Figure 3). Since the line opening 15b is provided, the signal line connected to the probe can also pass out to the outside of the casing 10 through the line opening 15b, thereby ensuring the reliability of signal transmission of the eddy current sensor.
  • the eddy current sensor further includes a package portion 30 that fills a gap in the housing 10 to form the housing 10 into a solid annular cylinder.
  • the housing 10 and the probe are integrally molded by a plastic sealing method. Since the encapsulation portion 30 fills the gap in the casing 10, the probe can be fixed in the casing 10, thereby ensuring the mounting stability of the probe and ensuring the detection stability of the eddy current sensor.
  • the encapsulation portion 30 is a plastic. The inner air of the casing 10 and the various solder joints on the probe are integrally potted with a plastic mating mold.
  • the filling and sealing can completely fill the gaps in the casing 10, thereby improving the reliability of the use of the eddy current sensor. Since the casing 10 of the eddy current sensor after the plastic sealing, the respective probes, cables, joints, and the like are integrated, the test stability and signal transmission stability of the vortex flu device can be greatly improved.
  • the plurality of probes of the present invention include at least one axial probe 40 having an inner annulus 11 and a radial end face 16 perpendicular to the inner annulus 11, the probe end of the axial probe 40 and the diameter of the housing 10. It is flush to the end face 16. Since the axial probe 40 is provided, the axial movement state of the detected rotating shaft 80 can be detected in real time, thereby ensuring the detection diversity and comprehensiveness of the eddy current sensor.
  • the probe end of the axial probe 40 is flush with the radial end face 16 of the housing 10, which effectively ensures the accuracy of the axial probe 40.
  • the axial probe 40 is disposed within the annular groove 12 and the groove bottom 12c of the annular groove 12 has an axially disposed mounting bore therethrough in which the axial probe 40 is disposed.
  • the plurality of probes in the present invention include a radial probe 20 and an axial probe 40.
  • the plurality of radial probes 20 are plural, and the plurality of radial probes 20 are equally spaced around the circumference of the housing 10; the axial probe 40 is a
  • the axial probe 40 is located on the mid-perpendicular line of the line connecting the two adjacent radial probes 20. That is, the distance between the axial probe 40 and one of the two radial probes 20 disposed adjacently is equal to the distance between the axial probe 40 and the other radial probe 20. Since the plurality of radial probes 20 are disposed at equal intervals around the circumference of the casing 10, the reliability of the radial detection can be effectively ensured.
  • the axial probe 40 is located on the mid-perpendicular line of the line connecting the two adjacent radial probes 20, the mutual interference between the two radial probes 20 can be effectively eliminated, and the axial probe 40 is prevented from being biased.
  • the test error ensures the detection accuracy of the eddy current sensor.
  • one axial probe 40 can meet the test requirements, and of course, a plurality of axial probes 40 can also be provided.
  • radial probes 20 there are four radial probes 20 that are 90 degrees between adjacent two radial probes 20. That is, the four radial probes 20 are perpendicular to each other. Of course, six or eight radial probes 20 can also be used.
  • the eddy current sensor of the present invention further includes a front end, the front end is electrically connected to the probe, and the front end is located outside the housing 10 and disposed separately from the housing 10. Since the front device is disposed independently of the housing 10 and located outside the housing 10, the front end device can be kept away from the test environment as much as possible, and the components of the front end device are protected from the use environment (pressure field, temperature field, electromagnetic field, The influence of the vibration field, etc., thereby improving the detection accuracy and reliability of the eddy current sensor. At the same time, the volume of the eddy current sensor can also be reduced.
  • the preamplifier comprises a control, processing circuit of the sensor. Further, the front end is mounted on the main control board or placed separately.
  • the plurality of probes further include a metal member 50 and a compensation probe 60 disposed on the housing 10 and in contact with the external environment, and the detection end of the compensation probe 60 is disposed on the metal member 50 (please refer to FIG. 5).
  • the metal member 50 is in contact with the external environment, the metal member can sense the temperature change of the external environment to generate its own deformation, and the compensation probe 60 detects the deformation as the compensation correction amount of the radial probe 20 and the axial probe 40.
  • the compensation probe 60 can detect the influence of temperature and pressure changes on the probe output signal in real time, thereby compensating the test results of other probes, reducing the influence of environmental factors on the eddy current sensor test, and effectively improving the accuracy of the test.
  • the compensation probe 60 is also an eddy current probe.
  • the metal member 50 is a metal spacer.
  • the metal member 50 is the same material as the shaft 80 to be detected.
  • the eddy current sensor of the present invention further includes a range adjusting portion 70, and the detecting end of the compensating probe 60 is in contact with the metal member 50 through the range adjusting portion 70. Since the range adjustment unit 70 is provided, the test range of the compensation probe 60 can be adjusted to match the range of the other probes.
  • the range adjusting portion 70 is a plastic spacer.
  • the plastic gasket mainly makes the compensation probe 60 in the intermediate range position. Because the actual operation of the unit, all other probes mainly work in the intermediate range position, which is equivalent to padding the compensation probe 60.
  • the housing 10 has an annular structure, and the inside of the housing 10 has an annular groove 12, and the housing 10 further has a stepped hole 17 provided through the groove bottom 12c of the annular groove 12, and the step The aperture in the hole 17 near the side of the annular groove 12 is larger than the aperture away from the side of the annular groove 12, the compensation probe 60 and the metal member 50 are disposed in the stepped hole 17, and the metal member 50 is stopped at the stepped surface 17a of the stepped hole 17. . Since the compensation probe 60 and the metal member 50 are disposed in the stepped hole 17, and the metal member 50 stops at the stepped surface 17a of the stepped hole 17, the mounting stability of the compensation probe 60 and the metal member 50 is ensured, thereby ensuring the electric power. Test reliability of eddy current sensors.
  • the four radial probes 20 are labeled T1, T2, T4, T5, respectively.
  • 180 degrees symmetrically placed T1, T4 can test the rotation axis 80X direction displacement
  • another pair of 180 degrees symmetrically placed T2, T5 can test the rotation axis 80Y direction displacement.
  • the axial probe 40 is labeled T3 and is located intermediate the two adjacent radial probes 20, that is, between T2 and T4.
  • the compensation probe 60 is labeled T6 and is located intermediate the two adjacent radial probes 20, that is, between T1 and T5. In the design of the structure, the compensation probe 60 detects a constant displacement, and theoretically outputs a constant value V1.
  • the output value of the compensation probe 60 may drift and compensate.
  • Probe 60 is output in real time
  • the value V2 minus the previous constant value V1 is the drift amount V3, and the drift amount can be used to perform real-time compensation correction for the output of other probes in the environment.
  • the eddy current sensor of the present invention has the characteristics of high test reliability and high test accuracy.
  • the eddy current sensor of the present invention has the functions of temperature drift compensation and pressure drift compensation, and thus can be applied to a complicated test environment such as high temperature and high voltage.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)

Abstract

一种电涡流传感器,包括:壳体(10);探头(20),探头(20)为多个,多个探头(20)均设置在壳体(10)的内部,且探头(20)的探测端均处于壳体(10)的外表面的内侧,以避免探头(20)的探测端突出于壳体(10)的外表面。由于多个探头(20)的探测端均处于壳体(10)的外表面的内侧,因而外力撞击电涡流传感器时,壳体(10)会对探头(20)起到保护作用,从而避免探头(20)因撞击被损坏,降低了探头(20)的故障率,提高了电涡流传感器的使用可靠性、延长了电涡流传感器的使用寿命。

Description

电涡流传感器 技术领域
本发明涉及测试传感器技术领域,具体而言,涉及一种电涡流传感器。
背景技术
现有技术中的电涡流传感器,特别是集成式电涡流传感器,可应用于磁悬浮电机主轴运动状态监测中。
现有技术中对磁悬浮电机主轴运动状态进行监测时,主要采用电涡流位移传感器进行实时检测,因此,电涡流传感器的精度与稳定性直接影响到磁悬浮电机的效率与可靠性。
目前市场上应用于磁悬浮电机的电涡流传感器普遍存在以下问题:
1.探头多凸出于电涡流传感器的壳体之外,因此电涡流传感器的壳体对探头的保护作用较小,容易导致探头损坏;
2.电涡流传感器上未设置有补偿探头,电涡流传感器受环境温度影响较大,不能适用于高温、高压等恶劣环境的场所;
3.前置器(传感器的控制、处理电路)多集成到电涡流传感器的壳体内,对控制电路元器件的温度稳定性、压力稳定性提出更高的要求。
发明内容
本发明的主要目的在于提供一种电涡流传感器,以解决现有技术中探头因凸出壳体外表面设置而导致探头易损坏、传感器使用寿命短的问题。
为了实现上述目的,本发明提供了一种电涡流传感器,包括:壳体;探头,探头为多个,多个探头均设置在壳体的内部,且探头的探测端均处于壳体的外表面的内侧,以避免探头的探测端突出于壳体的外表面。
进一步地,多个探头包括多个径向探头,壳体具有内环面,内环面具有避让径向探头的径向探测孔,径向探头的探测端与径向探测孔对应设置,且径向探头的探测端与内环面相切。
进一步地,壳体为环形结构,且壳体的内部具有环形槽,环形槽的内侧槽壁与壳体的内环面之间形成壳体的内侧壁,内侧壁具有沿壳体的径向方向贯通设置的径向探测孔。
进一步地,环形槽的外侧槽壁与壳体的外环面之间形成壳体的外侧壁,外侧壁具有沿径向探测孔的轴向贯通设置的过线孔。
进一步地,环形槽的外侧槽壁与壳体的外环面之间形成壳体的外侧壁,外侧壁还具有与环形槽连通的过线开口。
进一步地,电涡流传感器还包括封装部,封装部填充壳体内的空隙以使壳体形成实心环形圆柱体。
进一步地,多个探头包括至少一个轴向探头,壳体具有内环面和与内环面相垂直的径向端面,轴向探头的探测端与壳体的径向端面平齐。
进一步地,多个探头包括:径向探头,径向探头为多个,多个径向探头绕壳体的周向等间隔地设置;轴向探头,轴向探头为一个,轴向探头位于相邻设置的两个径向探头的连线的中垂线上。
进一步地,电涡流传感器还包括前置器,前置器与探头电连接,且前置器位于壳体的外部且与壳体独立设置。
进一步地,多个探头还包括:金属件,金属件设置在壳体上且与外界环境接触;补偿探头,补偿探头的探测端设置在金属件上。
进一步地,电涡流传感器还包括量程调节部,补偿探头的探测端通过量程调节部与金属件接触。
进一步地,壳体为环形结构,且壳体的内部具有环形槽,壳体还具有贯通环形槽的槽底设置的阶梯孔,且阶梯孔内靠近环形槽一侧的孔径大于远离环形槽一侧的孔径,补偿探头和金属件设置在阶梯孔内,且金属件止挡在阶梯孔的阶梯面处。
进一步地,金属件与被检测的转轴的材料相同。
应用本发明的技术方案,多个探头均设置在壳体的内部,且探头的探测端均处于壳体的外表面的内侧。由于多个探头的探测端均处于壳体的外表面的内侧,因而外力撞击电涡流传感器时,壳体会对探头起到保护作用,从而避免探头因撞击被损坏,降 低了探头的故障率,提高了电涡流传感器的使用可靠性、延长了电涡流传感器的使用寿命。
附图说明
构成本申请的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1示出了本发明中的电涡流传感器的结构示意图;
图2示出了本发明中的壳体和探头的安装关系示意图;
图3示出了本发明中的壳体与径向探头的安装关系示意图;
图4示出了本发明中的壳体与轴向探头的安装关系示意图;
图5示出了本发明中的壳体与补偿探头的安装关系示意图;以及
图6示出了本发明中的补偿探头的补偿原理图。
其中,上述附图包括以下附图标记:
10、壳体;11、内环面;11a、径向探测孔;12、环形槽;12a、内侧槽壁;12b、外侧槽壁;12c、槽底;13、内侧壁;14、外环面;15、外侧壁;15a、过线孔;15b、过线开口;16、径向端面;17、阶梯孔;17a、阶梯面;20、径向探头;30、封装部;40、轴向探头;50、金属件;60、补偿探头;70、量程调节部;80、转轴。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本发明。
本发明提供了一种电涡流传感器。如图1至图6所示,电涡流传感器包括壳体10和探头,探头为多个,多个探头均设置在壳体10的内部,且探头的探测端均处于壳体10的外表面的内侧。由于多个探头的探测端均处于壳体10的外表面的内侧,因而外力撞击电涡流传感器时,壳体10会对探头起到保护作用,从而避免探头因撞击被损坏,降低了探头的故障率,提高了电涡流传感器的使用可靠性、延长了电涡流传感器的使用寿命。
优选地,壳体10采用弱导磁的铝合金或不锈钢制造。采用弱导磁的铝合金或不锈钢制造的壳体10,可有效降低强导磁金属壳体对探头涡流场的干扰,提高测试精度。
本发明中的多个探头包括多个径向探头20,壳体10具有内环面11,内环面11具有避让径向探头20的径向探测孔11a,径向探头20的探测端与径向探测孔11a对应设置,且径向探头20的探测端与内环面11相切(请参考图2和图3)。由于径向探头20的探测端与内环面11相切,因而在保证径向探头20受到内环面11的保护的同时,还保证了径向探头20的测试精度,避免因径向探头20过于陷入壳体10内而造成测试精度降低的问题。
如图1至图3所示的优选实施方式中,壳体10为环形结构,且壳体10的内部具有环形槽12,环形槽12的内侧槽壁12a与壳体10的内环面11之间形成壳体10的内侧壁13,内侧壁13具有沿壳体10的径向方向贯通设置的径向探测孔11a。由于壳体10的内侧壁13具有沿壳体10的径向方向贯通设置的径向探测孔11a,因而当径向探头20安装在径向探测孔11a内后,能够保证径向探头20的安装稳定性,从而保证了电涡流传感器的测试准确性。
如图1至图3所示的优选实施方式中,环形槽12的外侧槽壁12b与壳体10的外环面14之间形成壳体10的外侧壁15,外侧壁15具有沿径向探测孔11a的轴向贯通设置的过线孔15a。由于在壳体10的外侧壁15设置过线孔15a,因而与径向探头20连接的信号线可通过过线孔15a穿出至壳体10的外部。由于过线孔15a与径向探测孔11a同轴设置,因而可以保证信号线以最短的距离穿出至壳体10的外部,从而有效减少了信号线的用料,降低了电涡流传感器的制造成本。
本发明中的环形槽12的外侧槽壁12b与壳体10的外环面14之间形成壳体10的外侧壁15,外侧壁15还具有与环形槽12连通的过线开口15b(请参考图2和图3)。由于设置有过线开口15b,因而与探头连接的信号线也可以通过该过线开口15b穿出至壳体10的外部,从而保证了电涡流传感器的信号传输可靠性。
如图1所示,电涡流传感器还包括封装部30,封装部30填充壳体10内的空隙以使壳体10形成实心环形圆柱体。优选地,可通过塑封的方法将壳体10与探头整体塑封。由于采用封装部30填充壳体10内的空隙,因而可以将探头固定在壳体10内,从而保证了探头的安装稳定性,且保证了电涡流传感器的检测稳定性。优选地,封装部30为塑料。壳体10的内部空气及探头上各个焊点均用塑料配合模具进行整体灌封。采用灌封可以将壳体10内的缝隙等全部填满,从而提高电涡流传感器的使用可靠性。 由于塑封后的电涡流传感器的壳体10、各个探头、线缆、接头等成为一体式,因而可大大提高了电涡流感器的测试稳定性及信号传输稳定性。
本发明中的多个探头包括至少一个轴向探头40,壳体10具有内环面11和与内环面11相垂直的径向端面16,轴向探头40的探测端与壳体10的径向端面16平齐。由于设置有轴向探头40,因而可以实时检测被检测转轴80的轴向运动状态,从而保证了电涡流传感器的检测多样性和全面性。
如图4所示的优选实施方式中,轴向探头40的探测端与壳体10的径向端面16平齐,这样能够有效保证轴向探头40的测试精度。在该具体实施例中,轴向探头40设置在环形槽12内,且环形槽12的槽底12c具有贯通设置的轴向安装孔,轴向探头40设置在该轴向安装孔内。
本发明中的多个探头包括径向探头20和轴向探头40,径向探头20为多个,多个径向探头20绕壳体10的周向等间隔地设置;轴向探头40为一个,轴向探头40位于相邻设置的两个径向探头20的连线的中垂线上。也就是该轴向探头40与相邻设置的两个径向探头20中的一个径向探头20之间的距离等于该轴向探头40与另一个径向探头20之间的距离。由于多个径向探头20绕壳体10的周向等间隔地设置,因而能够有效保证径向检测的可靠性。由于轴向探头40位于相邻设置的两个径向探头20的连线的中垂线上,因而能够有效消除两个径向探头20之间的相互干扰,避免轴向探头40偏置引起的测试误差,从而保证了电涡流传感器的检测精度。
优选地,一个轴向探头40即可满足测试要求,当然,也可以设置多个轴向探头40。
如图4所示的优选实施方式中,径向探头20为四个,相邻两个径向探头20之间呈90度。也就是四个径向探头20彼此垂直。当然,还可以选用6个或8个径向探头20。
本发明中的电涡流传感器还包括前置器,前置器与探头电连接,且前置器位于壳体10的外部且与壳体10独立设置。由于前置器与壳体10独立设置且位于壳体10的外部,因而能使前置器尽可能地远离测试环境,避免前置器各元器件受使用环境(压力场、温度场、电磁场、振动场等)的影响,从而提高了电涡流传感器的检测精度和可靠性。同时,还可降低电涡流传感器的体积。
优选地,前置器包括传感器的控制、处理电路。进一步地,前置器安装于主控板上或单独放置。
优选地,多个探头还包括金属件50和补偿探头60,金属件50设置在壳体10上且与外界环境接触,补偿探头60的探测端设置在金属件50上(请参考图5)。由于金属件50与外界环境接触,因而金属件能够感知外界环境的温度变化而产生自身的形变,而补偿探头60检测该种形变以作为径向探头20和轴向探头40的补偿修正量。利用补偿探头60可实时检测温度、压力变化对探头输出信号的影响,从而对其它探头的测试结果进行补偿,降低环境因素对电涡流传感器测试的影响,有效提高测试的准确性。
优选地,补偿探头60也是电涡流探头。
进一步地,金属件50为金属垫片。
优选地,金属件50与被检测的转轴80的材料相同。
本发明中的电涡流传感器还包括量程调节部70,补偿探头60的探测端通过量程调节部70与金属件50接触。由于设置有量程调节部70,因而能够对补偿探头60的测试量程进行调节,使其与其他探头的量程相一致。
优选地,量程调节部70为塑料垫片。塑料垫片主要是使补偿探头60处在中间量程位置,因为机组实际工作中,其它所有探头都主要工作在中间量程位置,相当于将补偿探头60垫起来。
如图5所示的优选实施方式中,壳体10为环形结构,且壳体10的内部具有环形槽12,壳体10还具有贯通环形槽12的槽底12c设置的阶梯孔17,且阶梯孔17内靠近环形槽12一侧的孔径大于远离环形槽12一侧的孔径,补偿探头60和金属件50设置在阶梯孔17内,且金属件50止挡在阶梯孔17的阶梯面17a处。由于补偿探头60和金属件50设置在阶梯孔17内,且金属件50止挡在阶梯孔17的阶梯面17a处,因而保证了补偿探头60和金属件50的安装稳固性,从而保证了电涡流传感器的测试可靠性。
如图2和图6所示的优选实施方式中,四个径向探头20分别标记为T1、T2、T4、T5。其中,180度对称放置的T1、T4可测试转轴80X方向位移,而另一对180度对称放置的T2、T5可测试转轴80Y方向位移。轴向探头40标记为T3,且位于相邻两个径向探头20的中间位置,也就是T2和T4之间。补偿探头60标记为T6且位于相邻两个径向探头20的中间位置,也就是T1和T5之间。在结构的设计中,补偿探头60检测的是一个恒定位移,理论上输出的是一个恒定值V1,当电涡流传感器周围的温度、压力发生变化时,补偿探头60的输出值会出现漂移,补偿探头60实时输出的 值V2减去之前的恒定值V1即为漂移量V3,用此漂移量即可对该环境下的其它探头的输出进行实时补偿修正。
从以上的描述中,可以看出,本发明上述的实施例实现了如下技术效果:
1.本发明中的电涡流传感器具有测试可靠性高、测试精度高的特点。
2.本发明中的电涡流传感器具有温度漂移补偿、压力漂移补偿的功能,因而能够应用在高温、高压等复杂的测试环境中。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (13)

  1. 一种电涡流传感器,其特征在于,包括:
    壳体(10);
    探头,所述探头为多个,多个所述探头均设置在所述壳体(10)的内部,且所述探头的探测端均处于所述壳体(10)的外表面的内侧,以避免所述探头的探测端突出于所述壳体(10)的外表面。
  2. 根据权利要求1所述的电涡流传感器,其特征在于,多个所述探头包括多个径向探头(20),所述壳体(10)具有内环面(11),所述内环面(11)具有避让所述径向探头(20)的径向探测孔(11a),所述径向探头(20)的探测端与所述径向探测孔(11a)对应设置,且所述径向探头(20)的探测端与所述内环面(11)相切。
  3. 根据权利要求1所述的电涡流传感器,其特征在于,所述壳体(10)为环形结构,且所述壳体(10)的内部具有环形槽(12),所述环形槽(12)的内侧槽壁(12a)与所述壳体(10)的内环面(11)之间形成所述壳体(10)的内侧壁(13),所述内侧壁(13)具有沿所述壳体(10)的径向方向贯通设置的径向探测孔(11a)。
  4. 根据权利要求3所述的电涡流传感器,其特征在于,所述环形槽(12)的外侧槽壁(12b)与所述壳体(10)的外环面(14)之间形成所述壳体(10)的外侧壁(15),所述外侧壁(15)具有沿所述径向探测孔(11a)的轴向贯通设置的过线孔(15a)。
  5. 根据权利要求3所述的电涡流传感器,其特征在于,所述环形槽(12)的外侧槽壁(12b)与所述壳体(10)的外环面(14)之间形成所述壳体(10)的外侧壁(15),所述外侧壁(15)还具有与所述环形槽(12)连通的过线开口(15b)。
  6. 根据权利要求3所述的电涡流传感器,其特征在于,所述电涡流传感器还包括封装部(30),所述封装部(30)填充所述壳体(10)内的空隙以使所述壳体(10)形成实心环形圆柱体。
  7. 根据权利要求1所述的电涡流传感器,其特征在于,多个所述探头包括至少一个轴向探头(40),所述壳体(10)具有内环面(11)和与所述内环面(11)相 垂直的径向端面(16),所述轴向探头(40)的探测端与所述壳体(10)的所述径向端面(16)平齐。
  8. 根据权利要求1所述的电涡流传感器,其特征在于,多个所述探头包括:
    径向探头(20),所述径向探头(20)为多个,多个所述径向探头(20)绕所述壳体(10)的周向等间隔地设置;
    轴向探头(40),所述轴向探头(40)为一个,所述轴向探头(40)位于相邻设置的两个所述径向探头(20)的连线的中垂线上。
  9. 根据权利要求1所述的电涡流传感器,其特征在于,所述电涡流传感器还包括前置器,所述前置器与所述探头电连接,且所述前置器位于所述壳体(10)的外部且与所述壳体(10)独立设置。
  10. 根据权利要求1所述的电涡流传感器,其特征在于,多个所述探头还包括:
    金属件(50),所述金属件(50)设置在所述壳体(10)上且与外界环境接触;
    补偿探头(60),所述补偿探头(60)的探测端设置在所述金属件(50)上。
  11. 根据权利要求10所述的电涡流传感器,其特征在于,所述电涡流传感器还包括量程调节部(70),所述补偿探头(60)的探测端通过所述量程调节部(70)与所述金属件(50)接触。
  12. 根据权利要求10所述的电涡流传感器,其特征在于,所述壳体(10)为环形结构,且所述壳体(10)的内部具有环形槽(12),所述壳体(10)还具有贯通所述环形槽(12)的槽底(12c)设置的阶梯孔(17),且所述阶梯孔(17)内靠近所述环形槽(12)一侧的孔径大于远离所述环形槽(12)一侧的孔径,所述补偿探头(60)和所述金属件(50)设置在所述阶梯孔(17)内,且所述金属件(50)止挡在所述阶梯孔(17)的阶梯面(17a)处。
  13. 根据权利要求10所述的电涡流传感器,其特征在于,所述金属件(50)与被检测的转轴(80)的材料相同。
PCT/CN2015/083398 2014-12-04 2015-07-06 电涡流传感器 WO2016086662A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP15865847.6A EP3228975B1 (en) 2014-12-04 2015-07-06 Eddy current sensor
US15/514,981 US10209095B2 (en) 2014-12-04 2015-07-06 Eddy current sensor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410738356.5 2014-12-04
CN201410738356.5A CN105716515A (zh) 2014-12-04 2014-12-04 电涡流传感器

Publications (1)

Publication Number Publication Date
WO2016086662A1 true WO2016086662A1 (zh) 2016-06-09

Family

ID=56090941

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/083398 WO2016086662A1 (zh) 2014-12-04 2015-07-06 电涡流传感器

Country Status (4)

Country Link
US (1) US10209095B2 (zh)
EP (1) EP3228975B1 (zh)
CN (1) CN105716515A (zh)
WO (1) WO2016086662A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105987657B (zh) * 2015-02-12 2018-12-07 珠海格力电器股份有限公司 用于转轴的电涡流传感器和转轴装置
CN106197245A (zh) * 2016-09-26 2016-12-07 南京磁谷科技有限公司 一种磁轴承传感器安装结构
CN106505800A (zh) * 2016-12-19 2017-03-15 南京磁谷科技有限公司 一种磁悬浮电机的径向传感器安装结构
CN107014406B (zh) * 2017-03-16 2020-06-12 北京航空航天大学 一种用于磁悬浮轴承系统的自差分式电涡流位移传感器
CN107421433A (zh) * 2017-08-01 2017-12-01 深圳麦格动力技术有限公司 一种电涡流传感器及其加工工艺
CN110987244B (zh) * 2019-10-08 2021-01-29 珠海格力电器股份有限公司 一种扁平盘式六维力传感器、检测方法及智能设备
CN112034032A (zh) * 2020-09-29 2020-12-04 绵阳铭宇电子有限公司 水分传感器
CN113686941A (zh) * 2021-08-10 2021-11-23 朱浩奇 一种化学传感器

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006017536A (ja) * 2004-06-30 2006-01-19 Ntn Corp 回転検出センサおよびこれを用いたセンサ付軸受
CN1800773A (zh) * 2006-01-25 2006-07-12 北京航空航天大学 径向/轴向六位集成一体化电涡流传感器
CN1987367A (zh) * 2006-12-14 2007-06-27 北京航空航天大学 一种一体化、五自由度电涡流传感器
CN101920470A (zh) * 2010-08-02 2010-12-22 西安交通大学 一种机床主轴集成监测环装置
CN102501137A (zh) * 2011-11-03 2012-06-20 西安交通大学 一种主轴径向回转精度在线监测装置
CN102829709A (zh) * 2012-08-01 2012-12-19 北京海斯德电机技术有限公司 磁悬浮高速电机用径向磁轴承电涡流传感器一体化结构
CN104154853A (zh) * 2014-08-26 2014-11-19 上海瑞视仪表电子有限公司 一种采用电涡流传感器测量风力发电机气隙的方法
CN204240938U (zh) * 2014-12-04 2015-04-01 珠海格力节能环保制冷技术研究中心有限公司 电涡流传感器
CN204388770U (zh) * 2015-02-12 2015-06-10 珠海格力节能环保制冷技术研究中心有限公司 用于转轴的电涡流传感器和转轴装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2951097C2 (de) * 1979-12-19 1982-07-22 Wieland-Werke Ag, 7900 Ulm Verfahren und Vorrichtung zur Regelung der Gießspiegelhöhe in Stranggießkokillen
US5307691A (en) * 1990-06-30 1994-05-03 Kubota Corporation Torque transducer
DE4107101A1 (de) * 1991-03-06 1992-09-10 Zentralinstitut Fuer Kernforsc Wirbelstromsensor zur erfassung von winkeln oder wegen
US5509310A (en) * 1994-03-18 1996-04-23 Reliance Electric Industrial Company Bearing assemblies including proximity probes
JPH08145956A (ja) * 1994-11-24 1996-06-07 Hitachi Building Syst Eng & Service Co Ltd 渦電流センサ
US6914427B2 (en) * 2003-03-14 2005-07-05 The Boeing Company Eddy current probe having sensing elements defined by first and second elongated coils and an associated inspection method
EP1674835A1 (de) * 2004-12-27 2006-06-28 Siemens Aktiengesellschaft Sondenhalterungssystem, Verfahren zum Befestigen eines Sondenhalterungssystems und Verfahren zum Justieren einer Sonde
US7295004B2 (en) * 2006-03-03 2007-11-13 Gary Kroner Eddy current probe and method of manufacture thereof
US7550965B2 (en) * 2006-11-14 2009-06-23 Raytheon Company Angular position measurement device
CN100538282C (zh) * 2007-08-06 2009-09-09 北京航空航天大学 一种电涡流传感器的数字化动态标定系统
CN100554887C (zh) * 2007-10-12 2009-10-28 上海大学 径向磁轴承集成式差动电感传感装置
JP4748231B2 (ja) * 2009-02-24 2011-08-17 トヨタ自動車株式会社 渦流計測用センサおよびそれによる検査方法
WO2011101813A1 (en) * 2010-02-18 2011-08-25 Eric Chevalier A multimodal catheter
US9244145B2 (en) * 2011-06-30 2016-01-26 Amber Precision Instruments, Inc. System and method for measuring near field information of device under test
US9134141B2 (en) * 2012-12-06 2015-09-15 Industrial Technology Research Institute Measurement device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006017536A (ja) * 2004-06-30 2006-01-19 Ntn Corp 回転検出センサおよびこれを用いたセンサ付軸受
CN1800773A (zh) * 2006-01-25 2006-07-12 北京航空航天大学 径向/轴向六位集成一体化电涡流传感器
CN1987367A (zh) * 2006-12-14 2007-06-27 北京航空航天大学 一种一体化、五自由度电涡流传感器
CN101920470A (zh) * 2010-08-02 2010-12-22 西安交通大学 一种机床主轴集成监测环装置
CN102501137A (zh) * 2011-11-03 2012-06-20 西安交通大学 一种主轴径向回转精度在线监测装置
CN102829709A (zh) * 2012-08-01 2012-12-19 北京海斯德电机技术有限公司 磁悬浮高速电机用径向磁轴承电涡流传感器一体化结构
CN104154853A (zh) * 2014-08-26 2014-11-19 上海瑞视仪表电子有限公司 一种采用电涡流传感器测量风力发电机气隙的方法
CN204240938U (zh) * 2014-12-04 2015-04-01 珠海格力节能环保制冷技术研究中心有限公司 电涡流传感器
CN204388770U (zh) * 2015-02-12 2015-06-10 珠海格力节能环保制冷技术研究中心有限公司 用于转轴的电涡流传感器和转轴装置

Also Published As

Publication number Publication date
US20170211948A1 (en) 2017-07-27
US10209095B2 (en) 2019-02-19
CN105716515A (zh) 2016-06-29
EP3228975B1 (en) 2020-09-02
EP3228975A4 (en) 2018-05-23
EP3228975A1 (en) 2017-10-11

Similar Documents

Publication Publication Date Title
WO2016086662A1 (zh) 电涡流传感器
US10160276B2 (en) Contactless sensing of a fluid-immersed electric motor
US10466265B2 (en) Eddy current sensor for a rotary shaft and rotary shaft apparatus
CN104977423B (zh) 一种磁电式转速传感器
US10705039B2 (en) Sensor for detecting magnetic powders in a lubricant
WO2016052242A1 (ja) モータ
CN204240938U (zh) 电涡流传感器
JP2014029326A (ja) 力覚センサ及び力覚センサを備えたロボットアーム
CN102401628B (zh) 旋转角度检测单元
CN112564400B (zh) 磁悬浮轴承、电机、压缩机和空调器
CN107152937A (zh) 轴集成角度感测设备
CN204388770U (zh) 用于转轴的电涡流传感器和转轴装置
CN103944344A (zh) 4极无刷直流电机位置传感器及其检测方法
US11079253B2 (en) Wiegand module and methods of forming the same
WO2023221953A1 (zh) 一种高精度多对极磁电编码器
JP5976261B1 (ja) 回転角検出装置
CN105277117B (zh) 位置检测装置
CN107655648B (zh) 一种常规吸合式传感器防护罩装置
US20190360838A1 (en) Magnetic sensor device
US20160298690A1 (en) Capped Bearing with Vibration Sensor
RU189082U1 (ru) Датчик положения угловой
JP5729727B2 (ja) 磁気式回転センサ内蔵モータ
JP2013047636A (ja) 回転検出装置及び車輪軸受装置
CN103956878A (zh) 2极无刷直流电机位置传感器及其检测方法
KR101551468B1 (ko) 홀 센서가 구비된 브러시 홀더 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15865847

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15514981

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015865847

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015865847

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE