WO2023221953A1 - 一种高精度多对极磁电编码器 - Google Patents

一种高精度多对极磁电编码器 Download PDF

Info

Publication number
WO2023221953A1
WO2023221953A1 PCT/CN2023/094392 CN2023094392W WO2023221953A1 WO 2023221953 A1 WO2023221953 A1 WO 2023221953A1 CN 2023094392 W CN2023094392 W CN 2023094392W WO 2023221953 A1 WO2023221953 A1 WO 2023221953A1
Authority
WO
WIPO (PCT)
Prior art keywords
mounting base
pole
pair
magnetic
signal processing
Prior art date
Application number
PCT/CN2023/094392
Other languages
English (en)
French (fr)
Inventor
张洪国
戴琨
牛彩雯
任百峰
Original Assignee
唐山工业职业技术学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 唐山工业职业技术学院 filed Critical 唐山工业职业技术学院
Publication of WO2023221953A1 publication Critical patent/WO2023221953A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices

Definitions

  • the invention relates to a high-precision multi-pair magnetoelectric encoder, which belongs to the field of high-end equipment manufacturing, the field of high-precision servo position detection, and specifically the manufacturing of machine tool servo position sensors.
  • High-speed motors are widely used in various occasions such as high-speed machine tools, centrifugal compressors, and hydraulic pumps in air conditioners or refrigerators. With the advancement of control theory and processor technology, high-speed motors are increasingly used in high-tech fields such as hybrid vehicles and high-speed flywheel energy storage systems.
  • the control of high-precision servo is inseparable from the position detection element of the servo motor, that is, the encoder. .
  • the magnetoelectric encoder is an angle measurement sensor.
  • a magnetic steel is installed coaxially at the end of the encoder shaft.
  • the magnetic induction element on the internal circuit of the encoder can detect the size of the magnetic field generated by the magnetic steel and convert it into a voltage value.
  • the shaft and magnetic As the steel rotates, the magnetic field will change periodically, and accordingly a periodically changing electrical signal will be generated.
  • the circuit performs AD conversion, filtering, calculation and other subsequent processing on the voltage value detected by the magnetic induction element to output the corresponding angle value.
  • Magnetic encoders have many advantages such as small size, resistance to oil stains, and resistance to vibration, and are increasingly used in various industrial fields.
  • Magnetoelectric encoders are widely used in the field of measurement. With the accelerated development of industrialization, there are higher requirements for the resolution, accuracy and other indicators of angular displacement sensors.
  • a combination of single-pair-pole magnets and multi-pair magnets is used to improve the angular value resolution.
  • the multi-pair magnets rotate once to generate a multi-periodic signal magnetic field.
  • the single-pair magnets One rotation produces a single period magnetic field. Determine the current through a single period magnetic field
  • the absolute position of the angle value, the angle value signal generated by the multi-pole pair performs angle subdivision on the angle value obtained by solving the single pair of pole signal, thereby improving the angle value resolution.
  • the CN112362089A patent discloses a multi-pair magnetoelectric encoder.
  • This encoder is a common structure for common multi-pair magnetoelectric encoders.
  • all multi-pair magnetoelectric encoders are embedded, that is, the magnetoelectric encoder is built-in.
  • the tail of the motor is integrated with the motor. Once the magnetoelectric encoder is damaged, the motor end cover must be removed at the production site, which will affect the cleanliness inside the motor cavity. The positional relationship of each magnet and Hall must be consistent during the replacement process.
  • the present invention proposes a high-precision multi-pair magnetoelectric encoder.
  • the present invention provides a high-precision multi-pole magnetoelectric encoder.
  • the invention improves the environmental adaptability and replaceability of the multi-pair magnetoelectric encoder, and eliminates the replacement process.
  • the error caused by the change of the position of the magnet and Hall reduces the interference caused by the magnet ring, improves the ability to resist electromagnetic interference, thereby improving the detection accuracy of the magnetoelectric encoder and solving the above-mentioned problems in the background technology. question.
  • the technical solution of the present invention is: a high-precision multi-pair magnetoelectric encoder, including a mounting base, a rotating shaft, a single pair of pole magnetic steel ring, a single pair of pole signal processing board, a shielding shell, n pairs of pole magnetic steel rings, n Counterpole signal processing board, shell, conductive rubber pad, aviation plug, bearing, copper column, Hall element and assembly screw.
  • the single counterpole signal processing board faces the side of the single counterpole magnetic steel ring and is welded at 90-degree intervals.
  • Each set of Hall magnetic elements contains two There are two Hall elements, and the two Hall elements of each set of Hall magnetic elements are spaced apart by an integer multiple of 90/n degrees.
  • the bearing is installed in the bearing mounting holes on both sides of the mounting base.
  • the rotating shaft is installed on the bearing, and the elastic retaining ring is used to complete the axial positioning.
  • the installation The inner end face of the base is provided with a threaded hole one.
  • the copper pillar is fixedly connected to the mounting base through the threaded hole one.
  • the single-pair magnetic steel ring is installed on the first shoulder of the rotating shaft.
  • the single-pair signal processing board is connected to the first shoulder of the rotating shaft.
  • the copper pillar is connected to the threaded hole one of the mounting base through assembly screws.
  • One end of the shielding shell is provided with wire holes, through holes and two threaded holes.
  • the other end of the shielding shell is provided with internal threads one and external threads.
  • the shielding shell passes through the inner thread.
  • the thread one is fixedly connected to the mounting base
  • the n-pole magnetic steel ring is installed on the second shoulder of the rotating shaft
  • the n-pole signal processing board and the copper pillar are connected to the threaded hole two of the shielding shell through assembly screws
  • the An aviation plug mounting hole is opened at one end of the housing.
  • the aviation plug presses the conductive rubber pad into the aviation plug mounting hole opened at the end of the housing through assembly screws to complete the fixed connection of the aviation plug and provide electromagnetic shielding. Function to improve the anti-electromagnetic interference capability of the magnetoelectric encoder.
  • the other end of the housing is provided with two internal threads. The two internal threads of the housing cooperate with the external threads at the other end of the shielding shell to complete the assembly.
  • the shaft to be measured is fixedly connected to the encoder shaft.
  • the encoder shaft drives the coaxially installed single-pair magnetic steel ring and n-pair magnetic steel ring to rotate, generating a rotating magnetic field.
  • the single-pair signal processing board The Hall element on the detector detects the magnitude of the magnetic field generated by the single-pair magnetic steel ring and converts it into a voltage value.
  • the epipolar signal processing board performs AD conversion, filtering, calculation and other subsequent processing on the voltage value detected by the Hall element to output the absolute position of the current angle value determined by the single-cycle magnetic field.
  • the n-pole magnetic steel ring rotates to generate a rotating magnetic field.
  • the Hall element on the n-pole signal processing board detects the magnitude of the magnetic field generated by the n-pole magnetic steel ring and converts it into a voltage value.
  • the rotating shaft and the n-pole magnetic steel When the ring rotates, the magnetic field will change periodically, and accordingly a periodically changing electrical signal will be generated.
  • the n-polar signal processing board performs AD conversion, filtering, calculation and other subsequent processing on the voltage value detected by the Hall element to output the n times periodic magnetic field. Determine the subdivision angle value of the current angle value.
  • the single-pair signal processing board transmits the signal to the n-pair signal processing board through the signal line passing through the wire hole of the shielding shell.
  • the n-pole signal processing board subdivides the current angle value determined by the single-period magnetic field through the subdivision angle value of the current angle value determined by the n-times periodic magnetic field, thereby improving the resolution and accuracy of the angle value, and then n pairs
  • the pole signal processing board is connected to the aircraft plug through a signal line to complete the external output of the angle.
  • a further technical solution of the present invention is: when the shielding shell is fixedly connected to the mounting base through an internal thread, the contact between the end of the shielding shell and the mounting base is coated with silver-filled
  • the conductive adhesive makes the joint surface sealing performance better and further improves the electromagnetic shielding effect of the invention.
  • a further technical solution of the present invention is: when the housing is fixedly connected to the mounting base and the shielding shell through the internal thread 2, the contact between the end of the housing and the mounting base is coated with silver-filled conductive glue, so that the connection The surface sealing performance is better, further improving the electromagnetic shielding effect of the invention.
  • a further technical solution of the present invention is that the diameter of the wire hole of the shielding shell is 5 mm.
  • the single-pair signal processing board passes the signal line through the wire hole of the shielding case and then uses silver-filled conductive glue to seal the wire hole, so that the single-pair magnetic steel ring
  • the electromagnetic isolation effect with the n-counterpole magnetic steel ring is better.
  • a further technical solution of the present invention is that the mounting base, shielding shell, and housing are all made of highly magnetically permeable materials to improve the shielding ability of the magnetoelectric encoder against external electromagnetic signal interference.
  • the highly magnetically permeable material The material is a material with a magnetic permeability greater than 100H/m.
  • the mounting base and the housing are all made of the same type of high magnetic permeability material, and the shielding shell is made of other types of high magnetic permeability materials, so as to further improve the sensitivity of the magnetoelectric encoder to different external wavelengths. Shielding ability against electromagnetic signal interference.
  • a further technical solution of the present invention is that the shielding shell and the housing have a radial gap after installation, and the gap is 1-5 mm.
  • a further technical solution of the present invention is that the outer end surface of the mounting base is provided with a threaded hole to facilitate the installation of the encoder and the external bracket.
  • the beneficial effects of the present invention are: by redesigning the structure of the multi-pole encoder, the present invention improves the environmental adaptability and replacement and installation performance of the multi-pole magnetoelectric encoder, and eliminates the changes in the positions of the magnets and Hall during the replacement process.
  • the error caused by the magnetic steel ring sleeve reduces the interference caused by the magnetic steel ring sleeve and improves the ability to resist electromagnetic interference, thus improving the detection accuracy of the magnetoelectric encoder and improving the performance and competitiveness of the product.
  • Figure 1 is a schematic diagram of the present invention
  • Figure 2 is a cross-sectional view of the present invention
  • Figure 3 is an exploded view of the present invention
  • Figure 4 is an exploded view from another perspective of the present invention.
  • Embodiment 1 a high-precision multi-pair magnetoelectric encoder, including a mounting base 1, a rotating shaft 2, a single-pair magnetic steel ring 3, a single-pair signal processing board 4, and a shielding shell 5.
  • n-pole magnetic steel ring 6, n-pole signal processing board 7, housing 8, conductive rubber pad 9, aviation plug 10, bearing 11, copper column 12, Hall element 13 and assembly screws, the single pair Four Hall elements 13 are welded on the side of the polar signal processing board 4 facing the single pair of pole magnetic steel ring 3 and spaced 90 degrees apart.
  • the n pair of pole signal processing board 7 is welded on the side facing the n pair of pole magnetic steel ring 6.
  • Set of Hall magnetic elements The two sets of Hall magnetic elements are symmetrical about the center. Each set of Hall magnetic elements contains two Hall elements 13. The two Hall elements 13 of each set of Hall magnetic elements are spaced apart by an integer multiple of 90/n degrees. .
  • the bearing 11 is installed in the bearing mounting holes 101 on both sides of the mounting base 1.
  • the rotating shaft 2 is installed on the bearing 11, and the elastic retaining ring is used to complete the shaft.
  • the inner end surface of the mounting base 1 is provided with a threaded hole 102
  • the copper pillar 12 is fixedly connected to the mounting base 1 through the threaded hole 102
  • the single pair of pole magnetic steel ring 3 is installed on the third side of the rotating shaft 2
  • a shoulder 201, the single pair of pole signal processing board 4 and the copper pillar 12 are connected to the threaded hole 102 of the mounting base 1 through assembly screws.
  • One end of the shielding shell 5 is provided with wire holes, through holes 501 and threads.
  • the other end of the shielding shell is provided with an internal thread 503 and an external thread 504.
  • the shielding shell 5 is fixedly connected to the mounting base 1 through the internal thread 503.
  • the n-pole magnetic steel ring 6 is installed on the second part of the rotating shaft 2
  • the shoulder 202, the n-pole signal processing board 7 and the copper pillar 12 are connected to the threaded hole 502 of the shielding case 5 through assembly screws.
  • An aviation plug mounting hole 801 is provided at one end of the housing 8.
  • the plug 10 presses the conductive rubber pad 9 to the aviation plug installation opening at the end of the housing 8 by assembling the screw.
  • the fixed connection of the aviation plug 10 is completed, and it plays an electromagnetic shielding role to improve the anti-electromagnetic interference capability of the magnetoelectric encoder.
  • the other end of the housing 8 is provided with an internal thread 802, and the housing 8 has an internal thread 802.
  • the body 8 cooperates with the external thread 504 at the other end of the shielding shell 5 through the internal thread 802 to complete the assembly.
  • Embodiment 2 Compared with Embodiment 1, the shielding shell 5 is fixedly connected to the mounting base 1 through an internal thread 503, and the contact point between the end of the shielding shell 5 and the mounting base 1 is coated with silver-filled conductive glue.
  • the housing 8 is fixedly connected to the mounting base 1 and the shielding shell 5 through the internal thread 2802. The contact point between the end of the housing 8 and the mounting base 1 is coated with silver-filled conductive glue, and the wire passing through the shielding shell 5 The diameter of the hole is 5mm.
  • the single-pole signal processing board 4 passes the signal line through the wire hole of the shielding shell 5 and then uses silver-filled conductive glue to seal the wire hole.
  • the silver-filled conductive glue makes the joint surface sealing performance better.
  • the mounting base 1, shielding shell 5, and casing 8 are all made of high magnetic permeability materials.
  • the high magnetic permeability material is a material with a magnetic permeability greater than 100H/m.
  • Embodiment 3 Compared with Embodiment 2, the mounting base 1 and the housing 8 are made of the same high magnetic permeability material, and the shielding shell 5 is made of other kinds of high magnetic permeability materials.
  • the shielding shell 5 and the housing 8 have a radial gap after installation, and the gap is 1-5mm.
  • the high magnetic permeability material is a material with a magnetic permeability greater than 100H/m, and a threaded hole is provided on the outer end surface of the mounting base 1 .
  • the shaft to be measured is fixedly connected to the encoder shaft 2, and the encoder rotates during the rotation.
  • the shaft 2 drives the coaxially installed single-pair magnetic steel ring 3 and n-pair magnetic steel ring 6 to rotate, generating a rotating magnetic field.
  • the Hall element 13 on the single-pair signal processing board 4 detects the single-pair magnetic steel ring 3 The size of the generated magnetic field is converted into a voltage value.
  • the single-pair signal processing board has 4 pairs of Hall elements. 13.
  • the detected voltage value is subjected to subsequent processing such as AD conversion, filtering, and calculation to output the absolute position of the current angle value determined by a single-cycle magnetic field.
  • the n-pole magnetic steel ring 6 rotates to generate a rotating magnetic field.
  • the Hall element 13 on the n-pole signal processing board 7 detects the magnitude of the magnetic field generated by the n-pole magnetic steel ring 6 and converts it into a voltage value.
  • the rotating shaft 2 and When the n-pole magnetic steel ring 6 rotates, the magnetic field will change periodically, and accordingly a periodically changing electrical signal will be generated.
  • the n-pole signal processing board 7 performs AD conversion, filtering, calculation, etc. on the voltage value detected by the Hall element 13. Processing thereby outputs subdivided angle values of the current angle value determined by n times the periodic magnetic field.
  • the single-pair signal processing board 4 passes the signal wire through the wire hole of the shielding shell 5 to transmit the signal to
  • the n-pole signal processing board 7 performs angular subdivision on the current angle value determined by the single-periodic magnetic field through the subdivision angle value of the current angle value determined by the n-times periodic magnetic field, thereby improving the angle value resolution. rate and accuracy, and then the n-pole signal processing board 7 is connected to the navigation plug through a signal line to complete the external output of the angle.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

本发明涉及一种高精度多对极磁电编码器,属于高端装备制造领域,为高精度伺服位置检测领域,具体为机床伺服位置传感器制造,技术方案:包括转轴、安装座、屏蔽壳、壳体、铜柱、单对极信号处理板、单对极磁钢环、n对极信号处理板、n对极磁钢环、轴承、航插、导电橡胶垫和装配螺钉,通过重新设计多对极磁电编码器结构,提高了多对极磁电编码器的环境适应性及更换安装性,消除了更换过程中由于磁钢及霍尔位置变化带来的误差,降低了由于磁钢环套引起的干扰,提高了抗电磁干扰能力,从而提高了磁电编码器的检测精度,提高了产品的性能与竞争性。

Description

一种高精度多对极磁电编码器 技术领域
本发明涉及一种高精度多对极磁电编码器,属于高端装备制造领域,为高精度伺服位置检测领域,具体为机床伺服位置传感器制造。
背景技术
高速电机广泛应用于高速机床、空调或冰箱的离心式压缩机、液压泵等各种场合。随着控制理论和处理器技术的进步,高速电机在混合动力汽车及高速飞轮储能系统等高新领域的使用也越加广泛,高精度伺服的控制离不开伺服电机的位置检测原件即编码器。
磁电编码器是一种角度测量传感器,编码器轴端部同轴安装有磁钢,编码器内部电路上的磁感应元件能够检测磁钢产生的磁场大小并将其转化为电压值,轴和磁钢旋转,磁场会周期变化,相应的会产生周期变化的电信号,电路对磁感应元件检测得到的电压值进行AD转换、滤波、计算等后续处理从而输出相应的角度值。磁电编码器具有体积小、抗油污、抗振动等诸多优点,越来越广泛的应用于各种工业领域当中。
磁电编码器在测量领域内有着广泛的用途,随着工业化的加速发展,对于角位移传感器的分辨率,精度等指标有着较高的要求。为了提高磁电编码器角度值分辨率,采用单对极磁钢与多对极磁钢组合的方式提高角度值分辨率,多对极磁钢旋转一周产生多周期信号磁场,单对极磁钢旋转一周产生单周期磁场。通过单周期磁场确定当前 角度值的绝对位置,多对极产生的角度值信号对单对极信号解算得到的角度值进行角度细分,从而提高角度值分辨率。
CN112362089A专利公布了一种多对极磁电编码器,该编码器为常见多对极磁电编码器常用结构,目前所有多对极磁电编码器均为内嵌式,即磁电编码器内置于电机尾部与电机一体,磁电编码器一旦损坏在生产现场须拆除电机端盖,影响电机腔体内部的洁净度,且各个磁钢及霍尔在更换过程中位置关系必须保证相对位置一致,否则将产生检测误差,但生产现场的环境严重制约着安装的精度,且多对极磁钢与单对极磁钢环套安装,易产生影响,在多对极霍尔中出现低频干扰,且该种多对极磁电编码器无电磁屏蔽结构,霍尔处的磁场受到周围环境及电机轴上的磁钢的影响,不利于精度的提高。
针对以上问题,为提高多对极磁电编码器的环境适应性及更换安装性,减小更换过程中由于磁钢及霍尔位置变化带来的误差,降低由于磁钢环套引起的干扰,提高抗电磁干扰能力,从而提高磁电编码器的检测精度,本发明提出了一种高精度多对极磁电编码器。
发明内容
本发明提供了一种高精度多对极磁电编码器,本发明通过重新设计多对极编码器结构,提高了多对极磁电编码器的环境适应性及更换安装性,消除了更换过程中由于磁钢及霍尔位置变化带来的误差,降低了由于磁钢环套引起的干扰,提高了抗电磁干扰能力,从而提高了磁电编码器的检测精度,解决了背景技术中的上述问题。
本发明的技术方案是:一种高精度多对极磁电编码器,包括安装座、转轴、单对极磁钢环、单对极信号处理板、屏蔽壳、n对极磁钢环、n对极信号处理板、壳体、导电橡胶垫、航插、轴承、铜柱、霍尔元件和装配螺钉,所述单对极信号处理板面向单对极磁钢环一侧依次间隔90度焊接有四颗霍尔元件,所述n对极信号处理板面向n对极磁钢环一侧焊接有两组霍尔磁性元件,两组霍尔磁性元件中心对称,每组霍尔磁性元件包含两颗霍尔元件,每组霍尔磁性元件的两颗霍尔元件间隔90/n度的整数倍。
所述轴承安装于安装座两侧的轴承安装孔,所述转轴之上开设有两道弹性挡圈安装槽,所述转轴安装于所述轴承,利用弹性挡圈完成轴向定位,所述安装座的内端面开设有螺纹孔一,所述铜柱通过螺纹孔一与安装座固连,所述单对极磁钢环安装于转轴的第一轴肩,所述单对极信号处理板与铜柱通过装配螺钉连接于安装座的螺纹孔一,所述屏蔽壳一端端面开设有过线孔、通孔及螺纹孔二,屏蔽壳另一端开设有内螺纹一与外螺纹,屏蔽壳通过内螺纹一与安装座固连,所述n对极磁钢环安装于转轴的第二轴肩,所述n对极信号处理板与铜柱通过装配螺钉连接于屏蔽壳的螺纹孔二,所述壳体一端端部开设有航插安装孔,所述航插通过装配螺钉将导电橡胶垫压紧于壳体端部开设的航插安装孔内,完成航插的固连,并起到电磁屏蔽作用,提高磁电编码器的抗电磁干扰能力,所述壳体另一端端部开设有内螺纹二,所述壳体通过内螺纹二与屏蔽壳另一端外螺纹配合,完成装配。
工作时,待测轴与编码器转轴固连,旋转过程中编码器转轴带动同轴安装的单对极磁钢环和n对极磁钢环旋转,产生旋转的磁场,单对极信号处理板上的霍尔元件检测单对极磁钢环产生的磁场大小并将其转化为电压值,转轴和单对极磁钢环旋转,磁场会周期变化,相应的会产生周期变化的电信号,单对极信号处理板对霍尔元件检测得到的电压值进行AD转换、滤波、计算等后续处理从而输出通过单周期磁场确定的当前角度值的绝对位置。
n对极磁钢环旋转,产生旋转的磁场,n对极信号处理板上的霍尔元件检测n对极磁钢环产生的磁场大小并将其转化为电压值,转轴和n对极磁钢环旋转,磁场会周期变化,相应的会产生周期变化的电信号,n对极信号处理板对霍尔元件检测得到的电压值进行AD转换、滤波、计算等后续处理从而输出通过n倍周期磁场确定的当前角度值的细分角度值。
因为单对极磁钢环和n对极磁钢环与转轴同轴旋转,绝对位置一致,单对极信号处理板通过信号线穿过屏蔽壳的过线孔将信号传递给n对极信号处理板,n对极信号处理板通过n倍周期磁场确定的当前角度值的细分角度值对单周期磁场确定的当前角度值进行角度细分,从而提高了角度值分辨率及精度,然后n对极信号处理板通过信号线与航插连接,完成角度的对外输出。
作为优选,本发明更进一步的技术方案是:所述屏蔽壳通过内螺纹一与安装座固连时,所述屏蔽壳端部与安装座接触处涂有填银 导电胶,使得结合面密封性能更好,进一步提高了发明的电磁屏蔽效果。
作为优选,本发明更进一步的技术方案是:所述壳体通过内螺纹二与安装座、屏蔽壳固连时,所述壳体端部与安装座接触处涂有填银导电胶,使得结合面密封性能更好,进一步提高了发明的电磁屏蔽效果。
作为优选,本发明更进一步的技术方案是:所述屏蔽壳的过线孔直径为5mm。
作为优选,本发明更进一步的技术方案是:所述单对极信号处理板通过信号线穿过屏蔽壳的过线孔后利用填银导电胶封堵过线孔,使得单对极磁钢环与n对极磁钢环的电磁隔离效果更佳。
作为优选,本发明更进一步的技术方案是:所述安装座、屏蔽壳、壳体均为高导磁材料,以提高磁电编码器对外界磁电信号干扰的屏蔽能力,所述高导磁材料为磁导率大于100H/m的材料。
作为优选,本发明更进一步的技术方案是:所述安装座、壳体均为同种高导磁材料,屏蔽壳为其他种类高导磁材料,以进一步提高磁电编码器对外界不同波长的磁电信号干扰的屏蔽能力。
作为优选,本发明更进一步的技术方案是:所述屏蔽壳与壳体安装后具有径向间隙,间隙为1-5mm。
作为优选,本发明更进一步的技术方案是:所述安装座外端面开设有螺纹孔,以便编码器与外部支架安装。
本发明的有益效果是:本发明通过重新设计多对极编码器结构,提高了多对极磁电编码器的环境适应性及更换安装性,消除了更换过程中由于磁钢及霍尔位置变化带来的误差,降低了由于磁钢环套引起的干扰,提高了抗电磁干扰能力,从而提高了磁电编码器的检测精度,提高了产品的性能与竞争性。
附图说明
下面结合附图和具体实施方式对本发明作进一步详细的说明。
图1为本发明示意图;
图2为本发明剖面图;
图3为本发明爆炸图;
图4为本发明另一视角爆炸图。
图中:1-安装座、101-轴承安装孔、102-螺纹孔一、2-转轴、201-第一轴肩、202-第二轴肩、3-单对极磁钢环、4-单对极信号处理板、5-屏蔽壳、501-通孔、502-螺纹孔二、503-内螺纹一、504-外螺纹、6-n对极磁钢环、7-n对极信号处理板、8-壳体、801-航插安装孔、802-内螺纹二、9-导电橡胶垫、10-航插、11-轴承、12-铜柱、13-霍尔元件。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实 施例,都属于本发明保护的范围。
请参阅附图1-4,实施例一,一种高精度多对极磁电编码器,包括安装座1、转轴2、单对极磁钢环3、单对极信号处理板4、屏蔽壳5、n对极磁钢环6、n对极信号处理板7、壳体8、导电橡胶垫9、航插10、轴承11、铜柱12、霍尔元件13和装配螺钉,所述单对极信号处理板4面向单对极磁钢环3一侧依次间隔90度焊接有四颗霍尔元件13,所述n对极信号处理板7面向n对极磁钢环6一侧焊接有两组霍尔磁性元件,两组霍尔磁性元件中心对称,每组霍尔磁性元件包含两颗霍尔元件13,每组霍尔磁性元件的两颗霍尔元件13间隔90/n度的整数倍。
所述轴承11安装于安装座1两侧的轴承安装孔101,所述转轴2之上开设有两道弹性挡圈安装槽,所述转轴2安装于所述轴承11,利用弹性挡圈完成轴向定位,所述安装座1的内端面开设有螺纹孔一102,所述铜柱12通过螺纹孔一102与安装座1固连,所述单对极磁钢环3安装于转轴2的第一轴肩201,所述单对极信号处理板4与铜柱12通过装配螺钉连接于安装座1的螺纹孔一102,所述屏蔽壳5一端端面开设有过线孔、通孔501及螺纹孔二502,屏蔽壳另一端开设有内螺纹一503与外螺纹504,屏蔽壳5通过内螺纹一503与安装座1固连,所述n对极磁钢环6安装于转轴2的第二轴肩202,所述n对极信号处理板7与铜柱12通过装配螺钉连接于屏蔽壳5的螺纹孔二502,所述壳体8一端端部开设有航插安装孔801,所述航插10通过装配螺钉将导电橡胶垫9压紧于壳体8端部开设的航插安 装孔801内,完成航插10的固连,并起到电磁屏蔽作用,提高磁电编码器的抗电磁干扰能力,所述壳体8另一端端部开设有内螺纹二802,所述壳体8通过内螺纹二802与屏蔽壳5另一端外螺纹504配合,完成装配。
实施例二,实施例二相比于实施例一,所述屏蔽壳5通过内螺纹一503与安装座1固连,所述屏蔽壳5端部与安装座1接触处涂有填银导电胶,所述壳体8通过内螺纹二802与安装座1、屏蔽壳5固连,所述壳体8端部与安装座1接触处涂有填银导电胶,所述屏蔽壳5的过线孔直径为5mm,所述单对极信号处理板4通过信号线穿过屏蔽壳5的过线孔后利用填银导电胶封堵过线孔,通过填银导电胶使得结合面密封性能更好,进一步提高了发明的电磁屏蔽效果,所述安装座1、屏蔽壳5、壳体8均为高导磁材料,通过使用高导磁材料以提高磁电编码器对外界磁电信号干扰的屏蔽能力,所述高导磁材料为磁导率大于100H/m的材料。
实施例三,实施例三相比于实施例二,所述安装座1、壳体8为同种高导磁材料,屏蔽壳5为其他种类高导磁材料,通过使用不同高导磁材料以提高磁电编码器对外界不同波段磁电信号干扰的屏蔽能力,所述屏蔽壳5与壳体8安装后具有径向间隙,间隙为1-5mm,通过在不同高导磁材料径向设置间隙进一步提高对不同波段磁电信号干扰的屏蔽能力,所述高导磁材料为磁导率大于100H/m的材料,所述安装座1外端面开设有螺纹孔。
工作时,待测轴与编码器转轴2固连,旋转过程中编码器转 轴2带动同轴安装的单对极磁钢环3和n对极磁钢环6旋转,产生旋转的磁场,单对极信号处理板4上的霍尔元件13检测单对极磁钢环3产生的磁场大小并将其转化为电压值,转轴2和单对极磁钢环3旋转,磁场会周期变化,相应的会产生周期变化的电信号,单对极信号处理板4对霍尔元件13检测得到的电压值进行AD转换、滤波、计算等后续处理从而输出通过单周期磁场确定的当前角度值的绝对位置。
n对极磁钢环6旋转,产生旋转的磁场,n对极信号处理板7上的霍尔元件13检测n对极磁钢环6产生的磁场大小并将其转化为电压值,转轴2和n对极磁钢环6旋转,磁场会周期变化,相应的会产生周期变化的电信号,n对极信号处理板7对霍尔元件13检测得到的电压值进行AD转换、滤波、计算等后续处理从而输出通过n倍周期磁场确定的当前角度值的细分角度值。
因为单对极磁钢环3和n对极磁钢环6与转轴2同轴旋转,绝对位置一致,单对极信号处理板4通过信号线穿过屏蔽壳5的过线孔将信号传递给n对极信号处理板7,n对极信号处理板7通过n倍周期磁场确定的当前角度值的细分角度值对单周期磁场确定的当前角度值进行角度细分,从而提高了角度值分辨率及精度,然后n对极信号处理板7通过信号线与航插连接,完成角度的对外输出。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或 者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (9)

  1. 一种高精度多对极磁电编码器,所述磁电编码器包括安装座(1)、转轴(2)、单对极磁钢环(3)、单对极信号处理板(4)、屏蔽壳(5)、n对极磁钢环(6)、n对极信号处理板(7)、壳体(8)、导电橡胶垫(9)、航插(10)、轴承(11)、铜柱(12)、霍尔元件(13)和装配螺钉,所述单对极信号处理板(4)面向单对极磁钢环(3)一侧依次间隔90度焊接有四颗霍尔元件(13),所述n对极信号处理板(7)面向n对极磁钢环(6)一侧焊接有两组霍尔磁性元件,两组霍尔磁性元件中心对称,每组霍尔磁性元件包含两颗霍尔元件(13),每组霍尔磁性元件的两颗霍尔元件(13)间隔90/n度的整数倍,其特征在于:所述轴承(11)安装于安装座(1)两侧的轴承安装孔(101),所述转轴(2)之上开设有两道弹性挡圈安装槽,所述转轴(2)安装于所述轴承(11),利用弹性挡圈完成轴向定位,所述安装座(1)的内端面开设有螺纹孔一(102),所述铜柱(12)通过螺纹孔一(102)与安装座(1)固连,所述单对极磁钢环(3)安装于转轴(2)的第一轴肩(201),所述单对极信号处理板(4)与铜柱(12)通过装配螺钉连接于安装座(1)的螺纹孔一(102),所述屏蔽壳(5)一端端面开设有过线孔、通孔(501)及螺纹孔二(502),屏蔽壳另一端开设有内螺纹一(503)与外螺纹(504),屏蔽壳(5)通过内螺纹一(503)与安装座(1)固连,所述n对极磁钢环(6)安装于转轴(2)的第二轴肩(202),所述n对极信号处理板(7)与铜柱(12)通过装配螺钉连接于屏蔽壳(5)的螺纹孔二(502),所述壳体(8)一端端部开设有航插安装孔(801),所述航插(10) 通过装配螺钉将导电橡胶垫(9)压紧于壳体(8)端部开设的航插安装孔(801)内,完成航插(10)的固连,并起到电磁屏蔽作用,提高磁电编码器的抗电磁干扰能力,所述壳体(8)另一端端部开设有内螺纹二(802),所述壳体(8)通过内螺纹二(802)与屏蔽壳(5)另一端外螺纹(504)配合,完成装配,所述每组霍尔磁性元件的两颗霍尔元件(13)间隔角度为90/n度。
  2. 根据权利要求2所述的一种高精度多对极磁电编码器,其特征在于:所述屏蔽壳(5)通过内螺纹一(503)与安装座(1)固连时,所述屏蔽壳(5)端部与安装座(1)接触处涂有填银导电胶。
  3. 根据权利要求3所述的一种高精度多对极磁电编码器,其特征在于:所述壳体(8)通过内螺纹二(802)与安装座(1)、屏蔽壳(5)固连时,所述壳体(8)端部与安装座(1)接触处涂有填银导电胶。
  4. 根据权利要求4所述的一种高精度多对极磁电编码器,其特征在于:所述屏蔽壳(5)的过线孔直径为5mm。
  5. 根据权利要求5所述的一种高精度多对极磁电编码器,其特征在于:所述单对极信号处理板(4)通过信号线穿过屏蔽壳(5)的过线孔后利用填银导电胶封堵过线孔。
  6. 根据权利要求6所述的一种高精度多对极磁电编码器,其特征在于:所述安装座(1)、屏蔽壳(5)、壳体(8)均为高导磁材料,所述高导磁材料为磁导率大于100H/m的材料。
  7. 根据权利要求7所述的一种高精度多对极磁电编码器,其特征在于:所述安装座(1)、壳体(8)为同种高导磁材料,屏蔽壳(5) 为其他种类高导磁材料。
  8. 根据权利要求8所述的一种高精度多对极磁电编码器,其特征在于:所述屏蔽壳(5)与壳体(8)安装后具有径向间隙,间隙为1-5mm。
  9. 根据权利要求9所述的一种高精度多对极磁电编码器,其特征在于:所述安装座(1)外端面开设有螺纹孔。
PCT/CN2023/094392 2022-05-20 2023-05-16 一种高精度多对极磁电编码器 WO2023221953A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210547924.8A CN114659543B (zh) 2022-05-20 2022-05-20 一种高精度多对极磁电编码器
CN202210547924.8 2022-05-20

Publications (1)

Publication Number Publication Date
WO2023221953A1 true WO2023221953A1 (zh) 2023-11-23

Family

ID=82037516

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/094392 WO2023221953A1 (zh) 2022-05-20 2023-05-16 一种高精度多对极磁电编码器

Country Status (2)

Country Link
CN (1) CN114659543B (zh)
WO (1) WO2023221953A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114659543B (zh) * 2022-05-20 2022-07-29 唐山工业职业技术学院 一种高精度多对极磁电编码器
CN116222371B (zh) * 2023-03-01 2023-08-15 哈尔滨理工大学 一种磁栅式磁电编码器及其角度解算方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090072816A1 (en) * 2007-09-07 2009-03-19 Schrubbe Carl D Rotary Magnetic Encoder Assembly, Chip and Method
CN101846531A (zh) * 2010-05-28 2010-09-29 江苏斯沃特电气有限公司 多极复合式磁编码器
EP3179638A1 (de) * 2015-12-09 2017-06-14 Sick Ag Vorrichtung zur kontaktlosen übertragung von daten und zur ermittlung einer winkeländerung zwischen zwei sich relativ zueinander bewegenden gegenständen
CN108426588A (zh) * 2017-02-14 2018-08-21 日本电产三协株式会社 旋转编码器及其绝对角度位置检测方法
CN213515469U (zh) * 2020-06-04 2021-06-22 北京和光飞翼机电科技有限公司 一种基于数字信号的角度传感器
CN214040075U (zh) * 2021-02-03 2021-08-24 华北理工大学 一种屏蔽磁干扰的磁电编码器
CN114659543A (zh) * 2022-05-20 2022-06-24 唐山工业职业技术学院 一种高精度多对极磁电编码器

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011052985A (ja) * 2009-08-31 2011-03-17 Nsk Ltd 回転角検出装置
US9134123B2 (en) * 2011-12-23 2015-09-15 Asm Automation Sensorik Messtechnik Gmbh Tension element position sensor
CN103915233B (zh) * 2013-01-05 2017-02-08 江苏多维科技有限公司 一种适用于角度磁编码器的永磁体
CN106197482B (zh) * 2016-07-07 2018-06-26 航天鑫创自控装备发展股份有限公司 有限转角编码器磁钢结构及具有该磁钢结构的编码器
CN106921325A (zh) * 2017-04-24 2017-07-04 常州寻心电子科技有限公司 一种高速角位置检测系统及方法
CN108088476A (zh) * 2017-05-14 2018-05-29 张洪国 一种抑制干扰与温漂的霍尔信号采样磁电编码器
CN207881630U (zh) * 2018-03-05 2018-09-18 宁波依诺汽车电子有限公司 一种两级式磁绝对角度编码器
CN108180823A (zh) * 2018-03-05 2018-06-19 宁波依诺汽车电子有限公司 一种两级式磁绝对角度编码器
CN111521839B (zh) * 2020-06-11 2022-10-28 哈尔滨理工大学 一种基于多对极磁钢及辅助定子绕组测速磁电编码器
DE102020117041A1 (de) * 2020-06-29 2021-12-30 Valeo Schalter Und Sensoren Gmbh Sensorvorrichtung zum Erfassen eines Drehens einer Welle um eine Drehachse
CN112362089B (zh) * 2020-10-30 2022-05-27 哈尔滨理工大学 一种多对极磁电编码器及其高分辨率高可靠角度解算方法
CN214583316U (zh) * 2021-01-08 2021-11-02 杭州辰控智能控制技术有限公司 一种缝纫机用磁电编码器

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090072816A1 (en) * 2007-09-07 2009-03-19 Schrubbe Carl D Rotary Magnetic Encoder Assembly, Chip and Method
CN101846531A (zh) * 2010-05-28 2010-09-29 江苏斯沃特电气有限公司 多极复合式磁编码器
EP3179638A1 (de) * 2015-12-09 2017-06-14 Sick Ag Vorrichtung zur kontaktlosen übertragung von daten und zur ermittlung einer winkeländerung zwischen zwei sich relativ zueinander bewegenden gegenständen
CN108426588A (zh) * 2017-02-14 2018-08-21 日本电产三协株式会社 旋转编码器及其绝对角度位置检测方法
CN213515469U (zh) * 2020-06-04 2021-06-22 北京和光飞翼机电科技有限公司 一种基于数字信号的角度传感器
CN214040075U (zh) * 2021-02-03 2021-08-24 华北理工大学 一种屏蔽磁干扰的磁电编码器
CN114659543A (zh) * 2022-05-20 2022-06-24 唐山工业职业技术学院 一种高精度多对极磁电编码器

Also Published As

Publication number Publication date
CN114659543A (zh) 2022-06-24
CN114659543B (zh) 2022-07-29

Similar Documents

Publication Publication Date Title
WO2023221953A1 (zh) 一种高精度多对极磁电编码器
KR100913631B1 (ko) 다회전식 인코더
CN101846531B (zh) 多极复合式磁编码器
US8179126B2 (en) Hall rotary transformer and hall rotation angle encoder made of it
CN112113585B (zh) 编码器及编码器绝对角度的检测方法
CN104634367B (zh) 一种大中心孔结构的磁电式绝对位置传感器及测量绝对位置的方法
CN201311272Y (zh) 无接触式高精度角度传感器
US9966812B2 (en) Static vacuum shafting device for integrated rotary transformer
CN112361945A (zh) 一种电机主轴轴向窜动检测的磁电编码器
JP2014055911A (ja) 無接触型ポテンショメータ
CN113701790A (zh) 编码器及伺服系统
CN210922654U (zh) 一种基于巨磁阻效应的磁电编码器
JP2000065596A5 (ja) 磁気式エンコーダおよび磁気式エンコーダ付モータ
CN106643821B (zh) 一种角位置检测方法及角位移传感器
CN111998872A (zh) 一种通电线圈磁电编码器及其角度值温漂抑制方法
CN215639495U (zh) 编码器及伺服系统
CN106225814B (zh) 一种齿轮式磁多圈编码器
CN109450142A (zh) 一种集成磁性编码器的一体化印刷绕组电机
CN213515469U (zh) 一种基于数字信号的角度传感器
WO2018192515A1 (zh) 旋转角度检测装置、旋转角度检测系统和旋转体
CN205352419U (zh) 一种磁阻绝对式编码器
CN112344970A (zh) 一种离轴单圈单对极绝对式磁编码器
WO2006013622A1 (ja) 絶対角度センサ付軸受装置
CN201628538U (zh) 非接触式旋转角度传感器
CN220063003U (zh) 一种抗磁干扰及对外无磁干扰的磁电编码器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23806905

Country of ref document: EP

Kind code of ref document: A1