WO2016086601A1 - 一种探测岩体裂隙导水通道的红外试验方法 - Google Patents

一种探测岩体裂隙导水通道的红外试验方法 Download PDF

Info

Publication number
WO2016086601A1
WO2016086601A1 PCT/CN2015/078728 CN2015078728W WO2016086601A1 WO 2016086601 A1 WO2016086601 A1 WO 2016086601A1 CN 2015078728 W CN2015078728 W CN 2015078728W WO 2016086601 A1 WO2016086601 A1 WO 2016086601A1
Authority
WO
WIPO (PCT)
Prior art keywords
infrared
rock mass
rock
water
mining
Prior art date
Application number
PCT/CN2015/078728
Other languages
English (en)
French (fr)
Inventor
马立强
秦波涛
汪辉
孙海
金志远
Original Assignee
中国矿业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国矿业大学 filed Critical 中国矿业大学
Publication of WO2016086601A1 publication Critical patent/WO2016086601A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means

Definitions

  • the invention relates to an infrared test method for detecting a fractured water conduit of a rock mass, belonging to a coal water conservation technology.
  • the present invention provides an infrared test method for detecting a fractured water conduit of a rock mass with a simple process and high operability.
  • An infrared test method for detecting a fractured water conduit of a rock mass firstly, a layer of water is directly arranged on the upper part of the rock body not affected by the mining to simulate the aquifer in the upper part of the rock mass, and then the rock mass is collected by an infrared thermal imager The infrared images before and after the motion are collected. Finally, according to the phenomenon that the infrared radiation value of the water is significantly different from the infrared radiation value of the rock mass, the distribution of the water channel of the fractured rock is analyzed.
  • the invention directly places water in the upper part of the rock body, and ensures the real-time and continuity of the infiltration crack.
  • the method specifically includes the following steps:
  • the infrared image before and after mining of the rock mass is denoised by wavelet threshold denoising method.
  • the default value of noise reduction is obtained by the function ddencmp.
  • the function wdencmp is used as the guiding function of two-dimensional wavelet denoising, and the basic function of db3 is adopted.
  • the wavelet decomposes "image D" into three layers, obtains the wavelet coefficients of each layer after db3 basic wavelet decomposition, processes the wavelet coefficients larger or smaller than the threshold, and reconstructs the denoised image by using the processed wavelet coefficients;
  • the core program is as follows:
  • the parameter den represents denoising
  • wv represents wavelet
  • D represents noise-containing signal
  • the infrared test method for detecting a fractured water conduit of a rock mass uses direct water seepage into the water-conducting fissure of the rock mass, and the infrared thermography is used to directly detect the infrared radiation of the water body and the rock body, and directly The distribution of the water guiding channel is visually obvious.
  • some of the cracks in the rock mass are developed, but in practice, they do not act as water guiding channels.
  • the infrared thermal imager has this part of the crack and the water guiding channel that has been actually filled with water. The response is clearly different, making the detection of real water channels more accurate.
  • Figure 1 is a schematic view showing the connection of a device embodying the present invention
  • An infrared test method for detecting a fractured water conduit of a rock mass firstly, a layer of water is directly arranged on the upper part of the rock body not affected by the mining to simulate the aquifer in the upper part of the rock mass, and then the rock mass is collected by an infrared thermal imager The infrared images before and after the motion are collected. Finally, according to the phenomenon that the infrared radiation value of the water is significantly different from the infrared radiation value of the rock mass, the distribution of the water channel of the fractured rock is analyzed. As shown in FIG. 1 , an experimental device for detecting an infrared test method for a fractured water conduit of a rock mass is performed based on the device. The specific method includes the following steps:
  • the infrared image before and after mining of the rock mass is denoised by wavelet threshold denoising method.
  • the default value of noise reduction is obtained by the function ddencmp.
  • the function wdencmp is used as the guiding function of two-dimensional wavelet denoising, and the basic function of db3 is adopted.
  • the wavelet decomposes "image D" into three layers, obtains the wavelet coefficients of each layer after db3 basic wavelet decomposition, processes the wavelet coefficients larger or smaller than the threshold, and reconstructs the denoised image by using the processed wavelet coefficients;
  • the core program is as follows:
  • the parameter den represents denoising
  • wv represents wavelet
  • D represents noise-containing signal

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Radiation Pyrometers (AREA)

Abstract

一种探测岩体裂隙导水通道的红外试验方法,适用于研究岩体导水裂隙发育和其他固态介质内裂隙发育规律的探测。首先利用红外辐射源对监测的充水裂隙岩体进行照射,然后利用收集红外辐射装置采集受监测岩体的红外辐射信息。将上述采集的红外辐射信息通过数据线传输至电子信号处理装置,经过处理的电子信号被转化为直观可视的图像信息,直接观察岩体充水裂隙分布情况。此方法操行简单,能直观的将导水岩体裂隙信息反映在可视图像上,使得对岩体内部的裂隙发育情况探测具有可操作性,具有广泛的实用性。

Description

一种探测岩体裂隙导水通道的红外试验方法 技术领域
本发明涉及一种探测岩体裂隙导水通道的红外试验方法,属于煤炭保水开采技术。
背景技术
近年来,随着我国煤炭开采的重心向西部地区转移,煤炭开采对西部地区脆弱的生态环境造成了严重的破坏,尤其是煤炭开采造成地表沉陷导致地表水的流失,直接引起植被死亡、荒漠化加重,迫切要求采取煤炭保水开采。虽然学者对保水开采已经做了大量研究,但对岩体内部裂隙发育、导水通道的分布这些内在的诱因还没有较好的探测手段。
发明内容
发明目的:为了克服现有技术中存在的不足,本发明提供一种工序简单、可操作性强的探测岩体裂隙导水通道的红外试验方法。
技术方案:为实现上述目的,本发明采用的技术方案为:
一种探测岩体裂隙导水通道的红外试验方法,首先在未受采动影响的岩体上部直接布置一层水以模拟岩体上部的含水层,然后通过红外热像仪对该岩体采动前后的红外图像进行采集,最后根据水的红外辐射值与岩体的红外辐射值存在明显差异的现象,分析得出岩体裂隙导水通道的分布情况。
本发明在岩体上部直接置水,保证了渗入裂隙的实时性和持续性。
该方法具体包括如下步骤:
(1)在未受采动影响的岩体上部直接布置一层水以模拟岩体上部的含水层;
(2)将红外热像仪安装在支架上,调节红外热像仪的镜头,使其对准岩体的中心位置并暂时固定;
(3)连接电源和数据线,打开数据处理器、显示屏和红外热像仪;
(4)观察显示屏所显示的由红外热像仪监测到的岩体的红外图像,并根据显示的红外图像调节红外热像仪和支架的位置,直至显示屏所显示的红外图像规整、清晰,固定此时的红外热像仪和支架,并存储此时的红外图像作为岩体采动前的红外图像;
(5)对岩体进行采动影响,随着采动影响程度的加大,岩体裂隙发育,位于岩体上部的上渗流进入裂隙;存储此时的红外图像作为岩体采动后的红外图像;
(6)对岩体采动前后的红外图像进行对比,得出岩体裂隙导水通道的分布情况。
对岩体采动前后的红外图像进行对比,得出岩体裂隙导水通道的分布情况,具体包括如下步骤:
①分别对岩体采动前后的红外图像采用小波阈值降噪方法进行降噪,采用函数ddencmp获取降噪默认值,具体为:使用函数wdencmp作为二维小波降噪的导向函数,并采用db3基本小波将“图像D”分解为3层,获取db3基本小波分解后各层的小波系数,对大于或小于阈值的小波系数分别进行处理,利用处理后的小波系数重构出降噪后的图像;核心程序如下:
[thr,sorh,keepapp]=ddencmp('den','wv',D);
crit='shannon';
Z=wpdencmp(d,sorh,3,'db3',crit,thr,keepapp);
参数den代表去噪,wv代表小波,D代表含有噪声的信号
②对降噪后的岩体采动后的红外图像作出等值线,并与降噪后的岩体采动前的红外图像的等值线进行对比,得出岩体裂隙导水通道的分布情况。
有益效果:本发明提供的探测岩体裂隙导水通道的红外试验方法,运用水直接渗流进入岩体导水裂隙,利用红外热像仪对水体和岩体红外辐射探测的明显差异性,直接将导水通道的分布情况直观显现;同时,岩体中有一部分裂隙虽然发育,但在实际中却没有扮演导水通道地作用,红外热像仪对这部分裂隙和已经实际充水的导水通道的反应具有明显的差异性,使得对真实导水通道的探测更精确。
附图说明
图1为实现本发明的装置的连接示意图;
图中:1-水,2-岩体,3-支架,4-红外热像仪,5-数据处理器,6-显示屏。
具体实施方式
下面结合附图对本发明作更进一步的说明。
一种探测岩体裂隙导水通道的红外试验方法,首先在未受采动影响的岩体上部直接布置一层水以模拟岩体上部的含水层,然后通过红外热像仪对该岩体采动前后的红外图像进行采集,最后根据水的红外辐射值与岩体的红外辐射值存在明显差异的现象,分析得出岩体裂隙导水通道的分布情况。如图1所示为一种探测岩体裂隙导水通道的红外试验方法的实验装置,基于该装置进行实验,具体方法包括如下步骤:
(1)在未受采动影响的岩体上部直接布置一层水以模拟岩体上部的含水层;
(2)将红外热像仪安装在支架上,调节红外热像仪的镜头,使其对准岩体的中心位置并暂时固定;
(3)连接电源和数据线,打开数据处理器、显示屏和红外热像仪;
(4)观察显示屏所显示的由红外热像仪监测到的岩体的红外图像,并根据显示的红外 图像调节红外热像仪和支架的位置,直至显示屏所显示的红外图像规整、清晰,固定此时的红外热像仪和支架,并存储此时的红外图像作为岩体采动前的红外图像;
(5)对岩体进行采动影响,随着采动影响程度的加大,岩体裂隙发育,位于岩体上部的上渗流进入裂隙;存储此时的红外图像作为岩体采动后的红外图像;
(6)对岩体采动前后的红外图像进行对比,得出岩体裂隙导水通道的分布情况,具体为:
①分别对岩体采动前后的红外图像采用小波阈值降噪方法进行降噪,采用函数ddencmp获取降噪默认值,具体为:使用函数wdencmp作为二维小波降噪的导向函数,并采用db3基本小波将“图像D”分解为3层,获取db3基本小波分解后各层的小波系数,对大于或小于阈值的小波系数分别进行处理,利用处理后的小波系数重构出降噪后的图像;核心程序如下:
[thr,sorh,keepapp]=ddencmp('den','wv',D);
crit='shannon';
Z=wpdencmp(d,sorh,3,'db3',crit,thr,keepapp);
参数den代表去噪,wv代表小波,D代表含有噪声的信号
②对降噪后的岩体采动后的红外图像作出等值线,并与降噪后的岩体采动前的红外图像的等值线进行对比,得出岩体裂隙导水通道的分布情况。
以上所述仅是本发明的优选实施方式,应当指出:对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (3)

  1. 一种探测岩体裂隙导水通道的红外试验方法,其特征在于:首先在未受采动影响的岩体上部直接布置一层水以模拟岩体上部的含水层,然后通过红外热像仪对该岩体采动前后的红外图像进行采集,最后根据水的红外辐射值与岩体的红外辐射值存在明显差异的现象,分析得出岩体裂隙导水通道的分布情况。
  2. 根据权利要求1所述的探测岩体裂隙导水通道的红外试验方法,其特征在于:该方法具体包括如下步骤:
    (1)在未受采动影响的岩体上部直接布置一层水以模拟岩体上部的含水层;
    (2)将红外热像仪安装在支架上,调节红外热像仪的镜头,使其对准岩体的中心位置并暂时固定;
    (3)连接电源和数据线,打开数据处理器、显示屏和红外热像仪;
    (4)观察显示屏所显示的由红外热像仪监测到的岩体的红外图像,并根据显示的红外图像调节红外热像仪和支架的位置,直至显示屏所显示的红外图像规整、清晰,固定此时的红外热像仪和支架,并存储此时的红外图像作为岩体采动前的红外图像;
    (5)对岩体进行采动影响,随着采动影响程度的加大,岩体裂隙发育,位于岩体上部的上渗流进入裂隙;存储此时的红外图像作为岩体采动后的红外图像;
    (6)对岩体采动前后的红外图像进行对比,得出岩体裂隙导水通道的分布情况。
  3. 根据权利要求1所述的探测岩体裂隙导水通道的红外试验方法,其特征在于:对岩体采动前后的红外图像进行对比,得出岩体裂隙导水通道的分布情况,具体包括如下步骤:
    ①分别对岩体采动前后的红外图像采用小波阈值降噪方法进行降噪,采用函数ddencmp获取降噪默认值,具体为:使用函数wdencmp作为二维小波降噪的导向函数,并采用db3基本小波将图像分解为3层,获取db3基本小波分解后各层的小波系数,对大于或小于阈值的小波系数分别进行处理,利用处理后的小波系数重构出降噪后的图像;
    ②对降噪后的岩体采动后的红外图像作出等值线,并与降噪后的岩体采动前的红外图像的等值线进行对比,得出岩体裂隙导水通道的分布情况。
PCT/CN2015/078728 2014-12-01 2015-05-12 一种探测岩体裂隙导水通道的红外试验方法 WO2016086601A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410717895.0A CN104407006A (zh) 2014-12-01 2014-12-01 一种探测岩体裂隙导水通道的红外试验方法
CN201410717895.0 2014-12-01

Publications (1)

Publication Number Publication Date
WO2016086601A1 true WO2016086601A1 (zh) 2016-06-09

Family

ID=52644653

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/078728 WO2016086601A1 (zh) 2014-12-01 2015-05-12 一种探测岩体裂隙导水通道的红外试验方法

Country Status (2)

Country Link
CN (1) CN104407006A (zh)
WO (1) WO2016086601A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106768838A (zh) * 2016-12-08 2017-05-31 中铁十四局集团第二工程有限公司 一种复杂条件下浆‑水相界面移动追踪观测装置及方法
CN108562515A (zh) * 2018-03-27 2018-09-21 东北大学 一种裂隙岩体注浆浆液扩散多因素试验系统
CN112729890A (zh) * 2020-12-31 2021-04-30 安徽理工大学 顶板高承压水采动疏放覆岩运动模式与流场分布相似试验装置及方法
CN112965135A (zh) * 2021-01-28 2021-06-15 长安大学 一种石窟崖体裂隙空间异质分布的无损探测综合方法
CN115406582A (zh) * 2022-09-29 2022-11-29 湖南省水利水电科学研究院 一种基于红外图像的堤坝渗流识别方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104407006A (zh) * 2014-12-01 2015-03-11 中国矿业大学 一种探测岩体裂隙导水通道的红外试验方法
CN107917927A (zh) * 2017-11-21 2018-04-17 中国矿业大学(北京) 监控岩土介质水分运移状态的方法及实验装置
CN110221036B (zh) * 2018-03-01 2021-08-10 中国矿业大学 带渗流装置的保水开采“声发射-红外辐射”实验系统
CN109696354A (zh) * 2018-12-19 2019-04-30 昆明理工大学 一种裂隙岩体破坏演化过程中红外辐射监测装置及方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2344484A (en) * 1998-09-29 2000-06-07 Inst Francais Du Petrole Analysis of fluid progression in a permeable medium using infrared imaging
CN104407006A (zh) * 2014-12-01 2015-03-11 中国矿业大学 一种探测岩体裂隙导水通道的红外试验方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2344484A (en) * 1998-09-29 2000-06-07 Inst Francais Du Petrole Analysis of fluid progression in a permeable medium using infrared imaging
CN104407006A (zh) * 2014-12-01 2015-03-11 中国矿业大学 一种探测岩体裂隙导水通道的红外试验方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHANG, HUIHUI.: "The experimental study of infrared imaging detection on water-permeation of rock", JOURNAL OF QIQIHAR UNIVERSITY, vol. 30, no. 1, 31 January 2014 (2014-01-31), pages 71 - 74 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106768838A (zh) * 2016-12-08 2017-05-31 中铁十四局集团第二工程有限公司 一种复杂条件下浆‑水相界面移动追踪观测装置及方法
CN106768838B (zh) * 2016-12-08 2023-07-28 中铁十四局集团第二工程有限公司 一种复杂条件下浆-水相界面移动追踪观测装置及方法
CN108562515A (zh) * 2018-03-27 2018-09-21 东北大学 一种裂隙岩体注浆浆液扩散多因素试验系统
CN108562515B (zh) * 2018-03-27 2023-11-28 东北大学 一种裂隙岩体注浆浆液扩散多因素试验系统
CN112729890A (zh) * 2020-12-31 2021-04-30 安徽理工大学 顶板高承压水采动疏放覆岩运动模式与流场分布相似试验装置及方法
CN112965135A (zh) * 2021-01-28 2021-06-15 长安大学 一种石窟崖体裂隙空间异质分布的无损探测综合方法
CN112965135B (zh) * 2021-01-28 2023-08-15 长安大学 一种石窟崖体裂隙空间异质分布的无损探测综合方法
CN115406582A (zh) * 2022-09-29 2022-11-29 湖南省水利水电科学研究院 一种基于红外图像的堤坝渗流识别方法

Also Published As

Publication number Publication date
CN104407006A (zh) 2015-03-11

Similar Documents

Publication Publication Date Title
WO2016086601A1 (zh) 一种探测岩体裂隙导水通道的红外试验方法
CN204627586U (zh) 基于中深孔内孔洞裂隙的检查和测量装置
CN107677372B (zh) 一种基于双目视觉的隧道检测方法
WO2019051961A1 (zh) 一种管道检测方法、装置以及存储介质
WO2012154320A8 (en) System and method for detecting and repairing defects in an electrochromic device using thermal imaging
WO2014201052A3 (en) Medical image processing method
JP2011244058A5 (zh)
GB201117905D0 (en) Method for processing an image and an image photographing apparatus applying the same
CN102279081A (zh) 一种隧道渗水的检测方法及装置
CN102410908B (zh) 一种二氧化碳地质封存泄漏的监测系统
EP3565237A3 (en) Method and apparatus for capturing images
CN103821126A (zh) 一种基坑三维变形的监测方法
CN203824928U (zh) 一种基于机器视觉的产品外表面缺陷图像采集装置
WO2012121969A3 (en) Visual pairing in an interactive display system
EA202190644A1 (ru) Способ и система для определения стресса растений и полива на этой основе
CN104155297A (zh) 一种基于无人机的工业水体污染源检测方法
CN108626580A (zh) 一种管道故障自主定位检测的设备、方法及系统
WO2014170670A3 (en) Imaging apparatus and method
EP2669649A3 (en) Electro-scan integration into video pipe inspection vehicle
CN106855492A (zh) 矿井煤尘浓度动态检测系统及煤尘浓度动态监测方法
CN104013424A (zh) 一种基于深度信息的超声宽景成像方法
CN103775830A (zh) 一种高温蒸汽泄漏检测定位系统及方法
CN107489420B (zh) 无底柱分段崩落法矿岩块度分布远程实时监测系统及方法
KR101357810B1 (ko) 관내 점검을 위한 캡슐형 점검시스템
CN205422816U (zh) 煤矿回采工作面煤壁影像及温度场同步采集系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15866020

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15866020

Country of ref document: EP

Kind code of ref document: A1