WO2016084965A1 - Method for creating virus-free plant individual - Google Patents

Method for creating virus-free plant individual Download PDF

Info

Publication number
WO2016084965A1
WO2016084965A1 PCT/JP2015/083501 JP2015083501W WO2016084965A1 WO 2016084965 A1 WO2016084965 A1 WO 2016084965A1 JP 2015083501 W JP2015083501 W JP 2015083501W WO 2016084965 A1 WO2016084965 A1 WO 2016084965A1
Authority
WO
WIPO (PCT)
Prior art keywords
ralsv
infected
plant individual
alsv
virus
Prior art date
Application number
PCT/JP2015/083501
Other languages
French (fr)
Japanese (ja)
Inventor
吉川 信幸
紀子 山岸
Original Assignee
国立大学法人岩手大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人岩手大学 filed Critical 国立大学法人岩手大学
Priority to JP2016561973A priority Critical patent/JP6698999B2/en
Publication of WO2016084965A1 publication Critical patent/WO2016084965A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G2/00Vegetative propagation
    • A01G2/30Grafting
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01HNEW PLANTS OR NON-TRANSGENIC PROCESSES FOR OBTAINING THEM; PLANT REPRODUCTION BY TISSUE CULTURE TECHNIQUES
    • A01H1/00Processes for modifying genotypes ; Plants characterised by associated natural traits
    • A01H1/12Processes for modifying agronomic input traits, e.g. crop yield
    • A01H1/122Processes for modifying agronomic input traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance
    • A01H1/1245Processes for modifying agronomic input traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, e.g. pathogen, pest or disease resistance
    • A01H1/126Processes for modifying agronomic input traits, e.g. crop yield for stress resistance, e.g. heavy metal resistance for biotic stress resistance, e.g. pathogen, pest or disease resistance for virus resistance

Definitions

  • the present invention relates to a technique for producing a plant individual having a trait of a recombinant ALSV (rALSV) -infected plant individual and being virus-free.
  • rALSV recombinant ALSV
  • the present inventors have obtained from a propagation host (quinoa) infected with a recombinant apple small spherical latent virus (ALSV) expressing the flowering promoting gene FLOWERINGERLOCUS T (AtFT) of Arabidopsis thaliana (At).
  • ALSV-AtFT concentrated virus
  • ALSV is symptomatically infected without causing illness in apples and maintains stable systemic infection, but the seed transmission rate is low, so the recombinant ALSV expressing AtFT gene (ALSV-AtFT) It is possible to select virus-free individuals from the next generation of Rosaceae fruit trees whose flowering has been promoted by infection with concentrated RNA, and the selected virus-free individuals will be different from fruit trees that have not been transfected It can be used as it is as a breeding material (Patent Document 1).
  • JP 2010-183891 JP 2014-183754 A Yamagishi N. et al. 2011. Promotion of flowering and reduction of a generation time in apple seedlings by ectopical expression of the Arabidopsis thaliana FT gene using the Apple latent spherical virus vector. Plant Mol193 Biol 75 -204. Sasaki S. et al. 2011. Efficient virus-induced gene silencing in apple, pear and Japanese pear using Apple latent spherical virus vectors. Plant Methods. 7:15.
  • Non-Patent Documents 3 and 4 As a technique for making a virus-infected plant virus-free, a growth point culture or a method combining growth point culture and high-temperature treatment is also known (for example, Non-Patent Documents 3 and 4).
  • the virus-free part is very small and it is not easy to produce a 100% virus-free strain.
  • it takes time and labor for tissue culture and individual regeneration, and further, it takes 6 to 12 years to grow to fruit trees.
  • the present invention has been made in view of the circumstances as described above, and it is possible to obtain a virus-free plant individual (fruit tree) having a trait of an rALSV-infected plant individual in a simple and short period of time. It aims at providing the production method of a plant individual.
  • a method for producing a plant individual of the present invention is a method for producing a plant individual having a trait of a recombinant ALSV (rALSV) -infected plant individual and being virus-free.
  • the temperature during the growth period in step (1) is preferably 35 ° C. to 42 ° C.
  • the growing method of the present invention is a growing method for extending a rALSV non-existing site from a plant individual infected with recombinant ALSV (rALSV), (1) A step of growing an rALSV-infected plant individual at a temperature higher than the optimum temperature of the rALSV-infected plant individual and at which rALSV is inactivated for 2 to 6 weeks; (2) The method includes a step of growing an rALSV-infected plant individual at the optimum temperature and extending a rALSV-free site from the rALSV-infected plant individual.
  • rALSV recombinant ALSV
  • the temperature during the growth period in step (1) is preferably 35 ° C. to 42 ° C.
  • the rALSV-infected plant individual of the present invention is an rALSV-infected plant individual grown by the above-described growing method, and has an extended rALSV non-existing site.
  • the “plant individual” is a multicellular organism generated from a seed, and means the whole plant composed of a plurality of organs (roots, trunks, branches, leaves, etc.).
  • Virus-free in the present invention means a state in which at least rALSV is not present in a plant individual.
  • the “rALSV non-existing site” in an rALSV-infected plant individual is a site where ALSV genomic RNA is not detected by molecular biological techniques such as hybridization and PCR.
  • a virus-free plant individual having a trait of an rALSV-infected plant individual can be obtained easily and in a short period of time.
  • a rALSV non-existing site can be easily extended.
  • the rALSV-infected plant individual of the present invention it has an extended rALSV-free site, and by using this rALSV-free site as a graft for grafting, it has a trait of the rALSV-infected plant individual, and a virus A free plant individual (fruit tree) can be obtained.
  • (A) is a photograph showing apple seedlings grown at room temperature (25 ° C.) for 2 months after high temperature (37 ° C.) treatment.
  • (B) is a diagram showing the results of dot hybridization using RNA extracted from each leaf shown in (A) and a probe for detecting ALSV-RNA.
  • (C) is a diagram showing the results of virus testing by RT-PCR using primers for detecting ALSV and ACLSV.
  • the first to fifth and eighth leaves indicate the leaves that were developed before the high temperature treatment. NC indicates non-infected leaves and PC indicates infected samples. It is a figure which shows the result of the virus test by real-time RT-PCR from the apple seedling grown at normal temperature (25 degreeC) for 2 months after high temperature (37 degreeC) treatment.
  • NC indicates an uninfected leaf
  • PC indicates an infected sample
  • ⁇ Rn indicates fluorescence intensity amplified by PCR
  • Ct indicates a cycle value.
  • NC indicates non-infected leaves and PC indicates infected samples.
  • the present invention is a production method for producing a plant individual having a trait of a recombinant ALSV (rALSV) -infected plant individual and being virus-free.
  • rALSV recombinant ALSV
  • the rALSV-infected plants are not specifically limited, but are preferably fruit trees of the Rosaceae family, particularly apples and pears that belong to the Rosaceae family of Maloideae.
  • the polynucleotide to be incorporated into rALSV may be various genes or fragments thereof according to the purpose (introduction of foreign genes, induction of silencing of endogenous genes, etc.).
  • AtFT gene and MdTFL1 gene for promoting flowering can be preferably exemplified.
  • a foreign gene to be incorporated into rALSV as described in Non-Patent Document 5, as described in Non-patent Document 5, as a foreign gene to be incorporated into rALSV, a phytoene desaturase (PDS) gene, a sulfur (SU) gene, and a proliferating cell nuclear An antigen (PCNA) gene etc. can be illustrated.
  • PDS phytoene desaturase
  • SU sulfur
  • PCNA proliferating cell nuclear An antigen
  • the method of infecting plant individuals with rALSV is not limited, but for example, particle gun inoculation (for example, Patent Documents 1 and 2, Non-Patent Documents 1 and 2) is suitable.
  • the growing method of the present invention includes the following steps: (1) A process of growing an rALSV-infected plant individual at a temperature higher than the optimum temperature and at which rALSV is inactivated for 2 to 6 weeks; (2) After the step (1), a step of growing an rALSV-infected plant individual at the optimum temperature and extending a rALSV-free site from the rALSV-infected plant individual is included.
  • step (1) an rALSV-infected plant individual is grown for 2 to 6 weeks at a temperature higher than the optimum temperature and at which rALSV is inactivated (high temperature treatment).
  • Optimum temperature refers to the normal growth temperature range suitable for plant growth. The optimum temperature varies depending on the type and variety of the plant, but for example, in the case of apples and pears, a temperature range of about 15 ° C. to 30 ° C. can be exemplified.
  • the temperature at which rALSV is inactivated is preferably in the range of 35 ° C. to 42 ° C., more preferably in the range of 36 ° C. to 39 ° C., particularly preferably about 37 ° C. (36.5 ° C. to 37.4 ° C.). Can be illustrated. For example, rALSV may not be inactivated when the temperature is lower than 35 ° C., and if it is higher than 42 ° C.
  • the temperature of the high-temperature treatment is about 37 ° C. (36.5 ° C. to 37.4 ° C.) in order to achieve both inactivation of rALSV and plant survival. Is preferred.
  • the growth of rALSV-infected plant individuals at such a temperature can be performed in a room maintained at a predetermined temperature.
  • the growth period (high temperature treatment period) of rALSV-infected plants in step (1) is 2 to 6 weeks, and the progress of inactivation of rALSV, plant type, growth rate, temperature of high temperature treatment, etc. It can be set as appropriate in consideration. If the growing period (high temperature treatment period) is shorter than 2 weeks, the inactivation of rALSV may be insufficient. In addition, if the growth period (high temperature treatment period) is 6 weeks at the maximum, rALSV is surely inactivated, so it is impractical to set a longer growth period and it is difficult to survive the plant. There is a fear.
  • the high temperature treatment period is 4 weeks when the temperature of the high temperature treatment is 36 ° C. or more and less than 37 ° C.
  • the temperature of the high-temperature treatment is 37 ° C. or more and 39 ° C. or less for 6 weeks from the beginning, it can be set in the range of 3 weeks to 6 weeks.
  • the high temperature treatment period is particularly preferably about 37 ° C. (36.5 ° C. to 37.4 ° C.) and about 4 weeks (25 days to 31 days).
  • the rALSV-infected plant individual is raised at a temperature higher than the optimum temperature and at which rALSV is inactivated for 2 to 6 weeks, so that the movement of rALSV within the plant individual stops. For this reason, the rALSV-infected plant individual may not have rALSV moved to the part extended during the growing period of step (1). In this case, in step (1), a rALSV-infected plant individual has a site where rALSV is not present (rALSV non-existing site).
  • step (2) an rALSV-infected plant individual is grown at the optimum temperature, and a rALSV-free site is extended from the rALSV-infected plant individual.
  • the rALSV-infected plant individual that has undergone the step (1) is deactivated due to inactivation of rALSV in the plant individual due to the high temperature treatment.
  • the state in which the movement of rALSV is stopped by such high-temperature treatment is considered irreversible. Even if the rALSV-infected plant individual is grown at the optimum temperature in the subsequent step (2), the movement of rALSV once stopped. Will not resume movement within the plant. This phenomenon has not been confirmed with other viruses, and is a phenomenon peculiar to ALSV (rALSV) newly found by the present inventors.
  • the rALSV-infected plant individual that has undergone the steps (1) and (2) has a site where rALSV exists (a site developed before step (1)) and a site that does not have rALSV extended from that site. It has a completely new feature.
  • the growing period of the step (2) is not particularly limited, and can be appropriately set in consideration of, for example, fruit setting or a size as a hogi described later. Specifically, the growing period of the step (2) can be exemplified by a period of about 3 to 24 months as a guide.
  • a rALSV-free site can be extended from a plant individual infected with rALSV. For this reason, the plant individual which has the character of a rALSV infection plant individual, and is virus free can be created using a rALSV absence site.
  • the plant individual production method of the present invention includes the following steps: (1) A process of growing an rALSV-infected plant individual at a temperature higher than the optimum temperature and at which rALSV is inactivated for 2 to 6 weeks; (2) After step (1), a rALSV-infected plant individual is grown at the optimum temperature, and a rALSV-free site is extended from the rALSV-infected plant individual; and (3) is extended in step (2). It includes a step of grafting and growing a non-existing portion of rALSV as a spike.
  • steps (1) and (2) have been described above as a method for extending the rALSV non-existing site, description thereof is omitted.
  • step (3) the rALSV non-existing portion extended in step (2) is grafted and grown as a scion.
  • a rALSV nonexisting site extended to an appropriate length as a hogi is collected from an rALSV-infected plant individual, and is adhered to a cut surface of a desired rootstock to grow as one plant individual.
  • the rALSV non-existing site of the current rALSV-infected plant individual infected with rALSV is grafted, regardless of the selection of next-generation seeds, etc., the trait of the rALSV-infected plant individual, and Virus-free plant individuals (fruit trees) that are not infected with rALSV can be obtained easily and quickly.
  • a virus-free plant individual (fruit tree) can be obtained easily and much faster than conventional methods such as growth point culture.
  • step (1) for the rALSV-infected plant individual infected with rALSV incorporating AtFT gene, MdTFL1 gene, etc. and early flowering (1.5 to 3 months after germination)
  • step (2) for the rALSV-infected plant individual infected with rALSV incorporating AtFT gene, MdTFL1 gene, etc. and early flowering (1.5 to 3 months after germination)
  • step (3) a virus-free plant individual that is not infected with rALSV in a very short time can be obtained from an rALSV-infected plant individual that has been confirmed to flower early.
  • the method for producing an individual plant of the present invention is not limited to the above embodiment.
  • Example 1 Materials and Methods (1) Virus Apple small spherical latent virus (ALSV) vector and apple chlorotic leaf spot virus (ACLSV) were tested.
  • ALSV Virus Apple small spherical latent virus
  • ACLSV apple chlorotic leaf spot virus
  • Test plant Apple seeds were wrapped in a paper towel moistened with water and germinated by placing them at 4 ° C for about 3 months, and the germinated seeds were inoculated with ALSV vector.
  • RNA was prepared as follows. Seven to ten days after inoculation of quinoa with the ALSV vector, the inoculated leaves and the upper leaves showing disease symptoms were sampled. To 10 g of this infected leaf, 30 ml of extraction buffer (0.1 M Tris-HCl (pH 7.8), 0.1 M NaCl, 5 mM MgCl, 1% mercaptoethanol) was added and ground, and then filtered through double gauze. And centrifuged at 9,000 rpm for 10 minutes (4 ° C.).
  • extraction buffer 0.1 M Tris-HCl (pH 7.8), 0.1 M NaCl, 5 mM MgCl, 1% mercaptoethanol
  • the concentrated virus RNA and apple chlorotic leaf spot virus (ACLSV) RNA were coated on gold particles, and apple seedlings were inoculated with a particle gun by the following method.
  • RNA 5 ⁇ g / gold particles; 0.4 mg / shot
  • RNA 5 ⁇ g / gold particles; 0.4 mg / shot
  • a gold coated tube (BIO-RAD) was set in a tubing prep station (BIO-RAD), and pure nitrogen gas was passed for 20 minutes to completely dry the inside of the gold coated tube. Subsequently, the gold particle suspension is filled uniformly in the gold coat tube and left for 5 minutes to deposit the gold particles in the gold coat tube. Then, 99.5% ethanol of the supernatant is placed in the gold coat tube. Removed from. Subsequently, the tubing prep station was rotated, and pure gold gas was passed through the gold coat tube while uniformly diffusing the gold particles into the gold coat tube, thereby completely drying the gold particles.
  • the gold-coated tube was cut into 20 pieces using a tube cutter (BIO-RAD), and introduced into a plant using a particle gun.
  • the seed coat of the apple seed immediately after germination was removed with a scalpel and inoculated into its cotyledons. Inoculation was performed with 4 shots per individual using Helios Gene Gun System (BIO-RAD) at a helium pressure of 400 psi.
  • RNA extraction buffer [2% CTAB, 2% PVP K-30, 0.1 M Tris-HCl (pH 8.0), 25 mM EDTA (pH 8.0), 2 M NaCl, 2% mercaptoethanol] and mix well. And then kept warm at 65 ° C. for 20 minutes with occasional mixing.
  • the reverse transcription reaction was performed as follows. 1 ⁇ l RNA solution, 0.5 ⁇ l 10 ⁇ M Oligo (dT) 18 primer, 4 ⁇ l 2.5 mM dNTP mixture (TaKaRa), 2 ⁇ l 5 X RT Buffer (TOYOBO), 0.5 ⁇ l ReverTra Ace (TOYOBO), 2 ⁇ l sterile water The mixture was mixed to 10 ⁇ l, and reacted with TaKaRa Thermal Cycler Dice (TaKaRa) at 42 ° C. for 60 minutes, 99 ° C. for 5 minutes, and finally at 4 ° C. for 5 minutes.
  • TaKaRa Thermal Cycler Dice
  • PCR primers amplify ALSV ALSR2 3687 (+) [5'-gccacttcagtgcaactctg-3 '] (SEQ ID NO: 1)
  • ALSR2 3802 (-) [5'-gaaaggactcaaagatagcag-3 '] (SEQ ID NO: 2)
  • ACLSV (+) [5'-agatctgaaagcgttcctg-3 ']
  • a combination of ACLSV ( ⁇ ) [5′-ctaaatgcaaagatcagttgtaac-3 ′] (SEQ ID NO: 4) was used.
  • RNA denaturation buffer (10xSSC, 50% formaldehyde solution)
  • RNA denaturation treatment at 65 ° C for 20 minutes, quench in ice water for dot blot hybridization.
  • a sample was provided.
  • the denatured RNA solution was dot blotted onto a nylon membrane Hybond-N + (GE Healthcare), and the membrane after the dot blot was treated with 20 ⁇ SSC, followed by UV irradiation to fix the RNA to the membrane.
  • the membrane is immersed in a hybridization solution (50% formamide, 5xSSC, 0.1% N-lauroyl sarcosine sodium, 0.02% SDS, 2% Blocking reagent (Roche)), prehybridized at 68 ° C for 1 hour, and then the ALSV genome.
  • Hybridization was performed at 68 ° C. for 18 hours using a Vp20 ( ⁇ ) probe, which is a digoxigenin (DIG) -labeled RNA probe having a complementary sequence in the upper Vp20 region.
  • the membrane was washed twice with washing solution 1 (2xSSC, 0.1% SDS) for 5 minutes (room temperature) and then twice with washing solution 2 (0.1xSSC, 0.1% SDS) for 15 minutes (68 ° C). .
  • the membrane was washed twice with washing solution 3 (buffer 1 containing 0.45% Tween 20) for 20 minutes (room temperature) and further in buffer 4 (0.1 MTris-HCl, 0.1 M NaCl, 50 mM MgCl 2 , pH 9.5). Gently shaken twice for 3 minutes (room temperature). Subsequently, CDP-Star Detection Reagent (GE Healthcare) was reacted on the membrane for 5 minutes, wrapped in the membrane, and a signal was detected by ImageQuantLAS4000 (GE Healthcare).
  • washing solution 3 buffer 1 containing 0.45% Tween 20
  • buffer 4 0.1 MTris-HCl, 0.1 M NaCl, 50 mM MgCl 2 , pH 9.5
  • Example 2 Since high-temperature treatment is also a great stress for plants, in order to obtain virus-free plant tissue by high-temperature treatment, it is necessary to set a high-temperature treatment period in which virus growth is stopped and the temperature at which plants can survive is compatible. is there. Therefore, the high temperature treatment period necessary to form a site where no ALSV is present (ALSV non-existing site) was examined. Specifically, in the case of apples, at 37 ° C., individuals that die when grown for 4 weeks or more appear, so the high temperature treatment period was set to 4 weeks. 37 ° C is a temperature near the limit for survival of apples and pears, and there is a risk that it will die at temperatures higher than this. Subsequently, the treatment period at 37 ° C.
  • FIG. 4 the highest leaf at that time was sampled from each individual for each week of high temperature treatment, and ALSV test was performed by RT-PCR. ALSV was found in all samples after 1 week and 2 weeks of high temperature treatment. was detected. This is thought to be the result of the leaf primordium that ALSV invaded before the high temperature treatment developed as leaves during the high temperature treatment. Furthermore, when high temperature treatment was continued, ALSV was not detected from 4 out of 7 individuals at 3 weeks and from 5 out of 7 individuals at 4 weeks. This is thought to be because ALSV was removed from the shoot apical meristem by high-temperature treatment and could not enter the leaf primordium.
  • Example 1 the apples were subjected to a high-temperature treatment at 37 ° C., but the temperature is not limited to this. 35 to 42 ° C. (preferably depending on the type of plant) In the range of 36 ° C. to 39 ° C.), an individual having a site where no ALSV is present (ALSV non-existing site) can be produced.
  • a high-temperature treatment at 37 ° C., but the temperature is not limited to this. 35 to 42 ° C. (preferably depending on the type of plant) In the range of 36 ° C. to 39 ° C.), an individual having a site where no ALSV is present (ALSV non-existing site) can be produced.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Environmental Sciences (AREA)
  • Organic Chemistry (AREA)
  • Developmental Biology & Embryology (AREA)
  • Biomedical Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Botany (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Plant Pathology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Virology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

A method for creating a virus-free plant individual, said method comprising: step (1) for growing an rALSV-infected plant individual for 2 to 6 weeks at a temperature which is higher than the optimum temperature thereof and at which rALSV is inactivated; step (2) for, after step (1), growing the rALSV-infected plant individual at the optimum temperature thereof and thus allowing the elongation of an rALSV-absent site from the rALSV-infected plant individual; and step (3) for grafting the rALSV-absent site elongated in step (2) as a scion and growing the same.

Description

ウイルスフリー植物個体の作出方法Production method of virus-free plant
 本発明は、組換えALSV(rALSV)感染植物個体の形質を有し、かつ、ウイルスフリーである植物個体を作出する技術に関する。 The present invention relates to a technique for producing a plant individual having a trait of a recombinant ALSV (rALSV) -infected plant individual and being virus-free.
 本発明者らは、シロイヌナズナ(Arabidopsis thaliana:At)の開花促進遺伝子FLOWERING LOCUS T(AtFT)を発現する組換えリンゴ小球形潜在ウイルス(Apple latent spherical virus:ALSV)に感染した増殖宿主(キノア)から濃縮したウイルス(ALSV-AtFT)のRNAを、発根直後のバラ科果樹実生の子葉にパーティクルガン法を用いて接種することによって、例えばリンゴの場合は発芽後6~12年を要する開花までの期間を1.5~3ヶ月へと大幅に短縮することに成功している(特許文献1、非特許文献1)。 The present inventors have obtained from a propagation host (quinoa) infected with a recombinant apple small spherical latent virus (ALSV) expressing the flowering promoting gene FLOWERINGERLOCUS T (AtFT) of Arabidopsis thaliana (At). By inoculating the concentrated virus (ALSV-AtFT) RNA into the cotyledons of rose fruit fruit seedlings immediately after rooting using the particle gun method, for example, in the case of apples until flowering that requires 6-12 years after germination The period has been successfully shortened to 1.5 to 3 months (Patent Document 1, Non-Patent Document 1).
 ALSVはリンゴに病気を引き起こすことなく無病徴感染し、安定して全身感染を維持するが、その種子伝染率は低率であることから、AtFT遺伝子を発現する組換えALSV(ALSV-AtFT)の濃縮RNAの感染によって開花促進がなされたバラ科果樹の次世代からはウイルスフリーの個体を選抜することが可能であり、その選抜したウイルスフリー個体は、遺伝子導入がなされていない果樹個体となんら変わることがなく、そのまま育種素材として使用することできる(特許文献1)。 ALSV is symptomatically infected without causing illness in apples and maintains stable systemic infection, but the seed transmission rate is low, so the recombinant ALSV expressing AtFT gene (ALSV-AtFT) It is possible to select virus-free individuals from the next generation of Rosaceae fruit trees whose flowering has been promoted by infection with concentrated RNA, and the selected virus-free individuals will be different from fruit trees that have not been transfected It can be used as it is as a breeding material (Patent Document 1).
 さらに、本発明者らは、AtFTを発現するとともに、バラ科の開花抑制遺伝子MdTFL1のジーンサイレンシングを誘導するrALSVを感染させた種子を育成し、開花した花に受粉して、播種から12ヵ月以内に次世代種子を含む果実を結実させることにも成功している(特許文献2)。 Furthermore, the present inventors grew seeds that were infected with rALSV that expresses AtFT and induces gene silencing of the Rosaceae flowering suppression gene MdTFL1, and then pollinated the flowered flowers for 12 months after sowing. Has succeeded in fruiting fruits containing next-generation seeds (Patent Document 2).
特開2010-183891号公報JP 2010-183891 特開2014-183754号公報JP 2014-183754 A
 以上の通り、組み換えALSV(rALSV)の感染によって開花促進がなされたバラ科果樹の次世代からはウイルスフリーの個体を選抜することが可能であるものの、選抜したウイルスフリーの個体を果実の収穫などが可能な果樹にまで成長させるためには6~12年の期間を要する。また、リンゴやナシは他家受精植物であるため、受粉によって得られた次世代種子から発芽した植物個体の場合、当代の植物個体とは異なる形質を有している場合がある。そこで、リンゴやナシなどの果樹植物では、好ましい形質を執する個体を増殖させる手段として「接ぎ木」が用いられている。しかしながら、rALSV感染によって好ましい形質を有する個体が得られたとしても、この個体の一部を用いた接ぎ木によって増殖させた新たな植物個体は、rALSVが全身に感染しているため、たとえ安全性が確保されていても、生産者や消費者には受け入れられ難く、実際上は販売や出荷することは難しい。 As described above, it is possible to select virus-free individuals from the next generation of Rosaceae fruit trees whose flowering has been promoted by infection with recombinant ALSV (rALSV). It takes six to twelve years to grow to a fruit tree that can. In addition, since apples and pears are cross-fertilized plants, plant individuals germinated from next-generation seeds obtained by pollination may have different traits from the plant individuals of the present generation. Therefore, in fruit tree plants such as apples and pears, “grafting” is used as a means for growing individuals having favorable traits. However, even if an individual having a favorable trait is obtained by rALSV infection, a new plant individual grown by grafting using a part of this individual is safe even if rALSV is infected systemically. Even if secured, it is difficult for producers and consumers to accept, and in practice it is difficult to sell or ship.
 このため、好ましい形質を有するrALSV感染植物個体の少なくとも一部をウイルスフリーとすることができれば、その部分を穂木として接ぎ木することによって新品種の作出が可能となる。 For this reason, if at least a part of rALSV-infected plant individuals having favorable traits can be made virus-free, it is possible to produce a new variety by grafting the part as a spike.
 ウイルスに感染した植物をウイルスフリー化する技術としては、成長点培養や、成長点培養と高温処理を組み合わせた方法も知られている(例えば、非特許文献3、4など)。しかしながら、成長点培養の場合、ウイルスフリーの部分は非常に小さく100%ウイルスフリー株を作ることは容易ではない。さらに、成長点培養の場合、組織培養と個体再生に時間と手間がかかり、さらに果樹までの成長に6~12年の期間を要する。 As a technique for making a virus-infected plant virus-free, a growth point culture or a method combining growth point culture and high-temperature treatment is also known (for example, Non-Patent Documents 3 and 4). However, in the case of growth point culture, the virus-free part is very small and it is not easy to produce a 100% virus-free strain. In addition, in the case of growth point culture, it takes time and labor for tissue culture and individual regeneration, and further, it takes 6 to 12 years to grow to fruit trees.
 本発明は、以上のとおりの事情に鑑みてなされたものであり、簡便かつ短期間で、rALSV感染植物個体の形質を有し、かつ、ウイルスフリーの植物個体(果樹)を得ることが可能な植物個体の作出方法を提供することを課題としている。 The present invention has been made in view of the circumstances as described above, and it is possible to obtain a virus-free plant individual (fruit tree) having a trait of an rALSV-infected plant individual in a simple and short period of time. It aims at providing the production method of a plant individual.
 上記の課題を解決するために、本発明の植物個体の作出方法は、組換えALSV(rALSV)感染植物個体の形質を有し、かつ、ウイルスフリーである植物個体の作出方法であって、以下の工程:
(1)rALSV感染植物個体を、その至適温度より高く、かつ、rALSVが不活性化する温度で、2週間から6週間育成する工程;
(2)工程(1)の後、rALSV感染植物個体をその至適温度にて育成して、rALSV感染植物個体からrALSV非存在部位を伸長させる工程;および
(3)工程(2)で伸長させたrALSV非存在部位を穂木として接ぎ木して育成する工程
を含むことを特徴としている。
In order to solve the above problems, a method for producing a plant individual of the present invention is a method for producing a plant individual having a trait of a recombinant ALSV (rALSV) -infected plant individual and being virus-free. Process of:
(1) A process of growing an rALSV-infected plant individual at a temperature higher than the optimum temperature and at which rALSV is inactivated for 2 to 6 weeks;
(2) After step (1), a rALSV-infected plant individual is grown at the optimum temperature, and a rALSV-free site is extended from the rALSV-infected plant individual; and (3) is extended in step (2). It is characterized by including a step of grafting and growing a non-existing portion of rALSV as a spike.
 この作出方法では、工程(1)の育成期間の温度は、35℃~42℃であることが好ましい。 In this production method, the temperature during the growth period in step (1) is preferably 35 ° C. to 42 ° C.
 本発明の育成方法は、組換えALSV(rALSV)を感染させた植物個体から、rALSV非存在部位を伸長させるための育成方法であって、
(1)rALSV感染植物個体を、rALSV感染植物個体の至適温度より高く、かつ、rALSVが不活性化する温度で、2週間から6週間育成する工程;
(2)rALSV感染植物個体をその至適温度にて生育させて、rALSV感染植物個体からrALSV非存在部位を伸長させる工程
を含むことを特徴としている。
The growing method of the present invention is a growing method for extending a rALSV non-existing site from a plant individual infected with recombinant ALSV (rALSV),
(1) A step of growing an rALSV-infected plant individual at a temperature higher than the optimum temperature of the rALSV-infected plant individual and at which rALSV is inactivated for 2 to 6 weeks;
(2) The method includes a step of growing an rALSV-infected plant individual at the optimum temperature and extending a rALSV-free site from the rALSV-infected plant individual.
 この育成方法では、工程(1)の育成期間の温度は、35℃~42℃であることが好ましい。 In this growth method, the temperature during the growth period in step (1) is preferably 35 ° C. to 42 ° C.
 本発明のrALSV感染植物個体は、前記育成方法によって成長させたrALSV感染植物個体であって、伸長したrALSV非存在部位を有することを特徴としている。 The rALSV-infected plant individual of the present invention is an rALSV-infected plant individual grown by the above-described growing method, and has an extended rALSV non-existing site.
 なお、本発明において「植物個体」とは種子から発生した多細胞生物体であり、複数の器官(根、幹、枝、葉など)からなる植物全体を意味する。本発明における「ウイルスフリー」とは、植物個体に少なくともrALSVが存在しない状態を意味する。またrALSV感染植物個体における「rALSV非存在部位」とは、例えば、ハイブリダイゼーション法やPCR法などの分子生物学的手法によってALSVのゲノムRNAが検出されない部位である。 In the present invention, the “plant individual” is a multicellular organism generated from a seed, and means the whole plant composed of a plurality of organs (roots, trunks, branches, leaves, etc.). “Virus-free” in the present invention means a state in which at least rALSV is not present in a plant individual. The “rALSV non-existing site” in an rALSV-infected plant individual is a site where ALSV genomic RNA is not detected by molecular biological techniques such as hybridization and PCR.
 本発明の植物個体の作出方法によれば、簡便かつ短期間でrALSV感染植物個体の形質を有し、かつ、ウイルスフリーの植物個体(果樹)を得ることができる。本発明の育成方法によれば、簡便にrALSV非存在部位を伸長させることができる。本発明のrALSV感染植物個体によれば、伸長したrALSV非存在部位を有し、このrALSV非存在部位を穂木として接ぎ木に利用することで、rALSV感染植物個体の形質を有し、かつ、ウイルスフリーの植物個体(果樹)を得ることができる。 According to the plant individual production method of the present invention, a virus-free plant individual (fruit tree) having a trait of an rALSV-infected plant individual can be obtained easily and in a short period of time. According to the growing method of the present invention, a rALSV non-existing site can be easily extended. According to the rALSV-infected plant individual of the present invention, it has an extended rALSV-free site, and by using this rALSV-free site as a graft for grafting, it has a trait of the rALSV-infected plant individual, and a virus A free plant individual (fruit tree) can be obtained.
高温(37℃)処理前および処理後の感染リンゴ実生(ALSV,ACLSV)からのRT-PCRによるウイルス検定の結果を示した図である。各実生(実生番号1~9)の最上位葉(高温処理前では第7葉~第10葉、高温処理後の実生では第11葉~第14葉、さらに常温で2か月処理した実生では第16葉~第20葉)を検定した。NCは非感染葉、PCはALSV感染葉、Mは100bpラダーDNAマーカーを表している。It is the figure which showed the result of the virus test by RT-PCR from the infected apple seedling (ALSV, ACLSV) before and after a high temperature (37 degreeC) process. The most significant leaf of each seedling (seedling number 1-9) (7th to 10th leaves before high temperature treatment, 11th to 14th leaves after high temperature treatment, and a seedling treated at room temperature for 2 months) The 16th to 20th leaves were tested. NC represents an uninfected leaf, PC represents an ALSV infected leaf, and M represents a 100 bp ladder DNA marker. 高温(37℃)処理後に常温(25℃)で2か月育成したリンゴ実生からのドット・ハイブリダイゼーションおよびRT-PCRによるウイルス検定の結果を示す図である。(A)は、高温(37℃)処理後に常温(25℃)で2か月育成したリンゴ実生を示した写真である。(B)は、(A)に示した各葉からRNAを抽出し、ALSV-RNA検出用のプローブを用いたドット・ハイブリダイゼーションの結果を示した図である。(C)は、ALSV、ACLSV検出用のプライマーを用いたRT-PCRによるウイルスの検定結果を示した図である。第1葉~第5葉、第8葉は、高温処理前に展開していた葉を示している。NCは非感染葉、PCは感染試料を示している。It is a figure which shows the result of the virus test by dot hybridization and RT-PCR from the apple seedling which grew at normal temperature (25 degreeC) for 2 months after high temperature (37 degreeC) treatment. (A) is a photograph showing apple seedlings grown at room temperature (25 ° C.) for 2 months after high temperature (37 ° C.) treatment. (B) is a diagram showing the results of dot hybridization using RNA extracted from each leaf shown in (A) and a probe for detecting ALSV-RNA. (C) is a diagram showing the results of virus testing by RT-PCR using primers for detecting ALSV and ACLSV. The first to fifth and eighth leaves indicate the leaves that were developed before the high temperature treatment. NC indicates non-infected leaves and PC indicates infected samples. 高温(37℃)処理後に常温(25℃)で2か月育成したリンゴ実生からのリアルタイムRT-PCRによるウイルス検定の結果を示す図である。NCは非感染葉、PCは感染試料、ΔRnは、PCRにより増幅した蛍光強度、Ctはサイクル値を示している。It is a figure which shows the result of the virus test by real-time RT-PCR from the apple seedling grown at normal temperature (25 degreeC) for 2 months after high temperature (37 degreeC) treatment. NC indicates an uninfected leaf, PC indicates an infected sample, ΔRn indicates fluorescence intensity amplified by PCR, and Ct indicates a cycle value. 高温(37℃)で1~4週間処理したリンゴについて、1週間目、2週間目、3週間目および4週間目の各時点における最上葉からのRT-PCRによるALSV検定の結果を示す図である。NCは非感染葉、PCは感染試料を示している。The figure which shows the result of the ALSV test by RT-PCR from the highest leaf in each time point of the 1st week, the 2nd week, the 3rd week, and the 4th week about the apple processed for 1 to 4 weeks at high temperature (37 degreeC). is there. NC indicates non-infected leaves and PC indicates infected samples.
 本発明は、組換えALSV(rALSV)感染植物個体の形質を有し、かつ、ウイルスフリーである植物個体を作出するための作出方法である。 The present invention is a production method for producing a plant individual having a trait of a recombinant ALSV (rALSV) -infected plant individual and being virus-free.
 rALSVの感染植物は具体的に限定されないが、好ましくはバラ科果樹、特にバラ科ナシ亜科(Maloideae)に属する植物であるリンゴ、ナシなどである。 The rALSV-infected plants are not specifically limited, but are preferably fruit trees of the Rosaceae family, particularly apples and pears that belong to the Rosaceae family of Maloideae.
 rALSVに組み込むポリヌクレオチドは、その目的(外来遺伝子の導入や、内在遺伝子のサイレンシングの誘導など)に応じた各種の遺伝子やその断片であってよい。具体的には、本発明者らが既に提案しているように、例えば、開花促進のためのAtFT遺伝子やMdTFL1遺伝子を好ましく例示することができる。また、これ以外にも、rALSVに組み込む外来遺伝子として、例えば、非特許文献5に記載されているように、タバコ内在性遺伝子であるphytoene desaturase(PDS)遺伝子、sulfer(SU)遺伝子およびproliferating cell nuclear antigen(PCNA)遺伝子などを例示することができる。 The polynucleotide to be incorporated into rALSV may be various genes or fragments thereof according to the purpose (introduction of foreign genes, induction of silencing of endogenous genes, etc.). Specifically, as already proposed by the present inventors, for example, AtFT gene and MdTFL1 gene for promoting flowering can be preferably exemplified. In addition to this, as described in Non-Patent Document 5, for example, as described in Non-patent Document 5, as a foreign gene to be incorporated into rALSV, a phytoene desaturase (PDS) gene, a sulfur (SU) gene, and a proliferating cell nuclear An antigen (PCNA) gene etc. can be illustrated.
 また、rALSVを植物個体に感染させる方法も限定されないが、例えばパーティクルガン接種(例えば、特許文献1、2、非特許文献1、2)が適している。 Further, the method of infecting plant individuals with rALSV is not limited, but for example, particle gun inoculation (for example, Patent Documents 1 and 2, Non-Patent Documents 1 and 2) is suitable.
 本発明の作出方法では、rALSVに感染させた植物個体から、rALSV非存在部位を伸長させることが重要である。したがって、まずは、rALSVを感染させた植物個体から、rALSV非存在部位を伸長させるための育成方法について説明する。 In the production method of the present invention, it is important to extend a rALSV non-existing site from a plant individual infected with rALSV. Therefore, first, a growing method for extending a rALSV-free site from a plant individual infected with rALSV will be described.
 本発明の育成方法は、以下の工程:
(1)rALSV感染植物個体を、その至適温度より高く、かつ、rALSVが不活性化する温度で、2週間から6週間育成する工程;
(2)工程(1)の後、rALSV感染植物個体をその至適温度にて生育させて、rALSV感染植物個体からrALSV非存在部位を伸長させる工程
を含む。
The growing method of the present invention includes the following steps:
(1) A process of growing an rALSV-infected plant individual at a temperature higher than the optimum temperature and at which rALSV is inactivated for 2 to 6 weeks;
(2) After the step (1), a step of growing an rALSV-infected plant individual at the optimum temperature and extending a rALSV-free site from the rALSV-infected plant individual is included.
 以下、各工程について詳しく説明する。 Hereinafter, each process will be described in detail.
 工程(1)では、rALSV感染植物個体を、その至適温度より高く、かつ、rALSVが不活性化する温度で、2週間から6週間育成する(高温処理)。 In step (1), an rALSV-infected plant individual is grown for 2 to 6 weeks at a temperature higher than the optimum temperature and at which rALSV is inactivated (high temperature treatment).
 「至適温度」とは、植物個体の生育に適した通常の生育温度範囲をいう。至適温度は、植物の種類や品種などによっても異なるが、例えば、リンゴやナシでは、15℃~30℃程度の温度範囲を例示することができる。そして、rALSVが不活性化する温度は、好ましくは、35℃~42℃の範囲、より好ましくは36℃~39℃の範囲、特に好ましくは37℃程度(36.5℃~37.4℃)を例示することができる。例えば、35℃より低温の場合はrALSVが不活性化しない恐れがあり、42℃(植物種によっては37℃程度)より高温の場合は、植物の生存が難しくなる恐れがある。具体的には、例えばリンゴやナシの場合、rALSVの不活性化と植物の生存を両立するためには、高温処理の温度は37℃程度(36.5℃~37.4℃)であることが好ましい。また、このような温度でのrALSV感染植物個体の育成は、所定の温度に維持された室内で行うことができる。 “Optimum temperature” refers to the normal growth temperature range suitable for plant growth. The optimum temperature varies depending on the type and variety of the plant, but for example, in the case of apples and pears, a temperature range of about 15 ° C. to 30 ° C. can be exemplified. The temperature at which rALSV is inactivated is preferably in the range of 35 ° C. to 42 ° C., more preferably in the range of 36 ° C. to 39 ° C., particularly preferably about 37 ° C. (36.5 ° C. to 37.4 ° C.). Can be illustrated. For example, rALSV may not be inactivated when the temperature is lower than 35 ° C., and if it is higher than 42 ° C. (about 37 ° C. depending on the plant species), survival of the plant may be difficult. Specifically, for example, in the case of apples and pears, the temperature of the high-temperature treatment is about 37 ° C. (36.5 ° C. to 37.4 ° C.) in order to achieve both inactivation of rALSV and plant survival. Is preferred. In addition, the growth of rALSV-infected plant individuals at such a temperature can be performed in a room maintained at a predetermined temperature.
 また、工程(1)におけるrALSV感染植物個体の育成期間(高温処理期間)は、2週間から6週間であり、rALSVの不活性化の進行、植物の種類、成長速度、高温処理の温度などを考慮して適宜設定することができる。育成期間(高温処理期間)が2週間より短い場合は、rALSVの不活性化が不十分になる恐れがある。また、育成期間(高温処理期間)は、最大で6週間あれば確実にrALSVが不活性化するため、これ以上の育成期間を設定することは実際的でなく、また、植物の生存が難しくなる恐れがある。より具体的には、例えばリンゴやナシなどでは、rALSVの不活性化と植物の生存を両立するために、高温処理期間は、高温処理の温度が36℃以上37℃未満である場合は4週間から6週間、高温処理の温度が37℃以上39℃以下である場合は3週間から6週間の範囲に設定することができる。特に、リンゴやナシの場合、高温処理期間は37℃程度(36.5℃~37.4℃)で4週間程度(25日~31日)であることが特に好ましい。 The growth period (high temperature treatment period) of rALSV-infected plants in step (1) is 2 to 6 weeks, and the progress of inactivation of rALSV, plant type, growth rate, temperature of high temperature treatment, etc. It can be set as appropriate in consideration. If the growing period (high temperature treatment period) is shorter than 2 weeks, the inactivation of rALSV may be insufficient. In addition, if the growth period (high temperature treatment period) is 6 weeks at the maximum, rALSV is surely inactivated, so it is impractical to set a longer growth period and it is difficult to survive the plant. There is a fear. More specifically, for example, in apples and pears, in order to achieve both inactivation of rALSV and survival of the plant, the high temperature treatment period is 4 weeks when the temperature of the high temperature treatment is 36 ° C. or more and less than 37 ° C. When the temperature of the high-temperature treatment is 37 ° C. or more and 39 ° C. or less for 6 weeks from the beginning, it can be set in the range of 3 weeks to 6 weeks. Particularly in the case of apples and pears, the high temperature treatment period is particularly preferably about 37 ° C. (36.5 ° C. to 37.4 ° C.) and about 4 weeks (25 days to 31 days).
 rALSV感染植物個体は、至適温度より高く、かつ、rALSVが不活性化する温度で、2週間から6週間育成することで、rALSVの植物個体内での移動が停止する。このため、rALSV感染植物個体は、工程(1)の育成期間に伸長した部分には、rALSVが移動していない可能性がある。この場合は、工程(1)において、rALSV感染植物個体にrALSVが存在しない部位(rALSV非存在部位)が形成されていることになる。 The rALSV-infected plant individual is raised at a temperature higher than the optimum temperature and at which rALSV is inactivated for 2 to 6 weeks, so that the movement of rALSV within the plant individual stops. For this reason, the rALSV-infected plant individual may not have rALSV moved to the part extended during the growing period of step (1). In this case, in step (1), a rALSV-infected plant individual has a site where rALSV is not present (rALSV non-existing site).
 工程(2)では、rALSV感染植物個体をその至適温度にて育成して、rALSV感染植物個体からrALSV非存在部位を伸長させる。 In step (2), an rALSV-infected plant individual is grown at the optimum temperature, and a rALSV-free site is extended from the rALSV-infected plant individual.
 工程(1)を経たrALSV感染植物個体は、高温処理によって、植物個体内におけるrALSVが不活性化して移動が停止している。このような高温処理によってrALSVの移動が停止した状態は不可逆的であると考えられ、その後の工程(2)でrALSV感染植物個体をその至適温度で育成しても、一旦移動を停止したrALSVが植物個体内の移動を再開することはない。この現象は、その他のウイルスでは確認されておらず、本発明者らによって新たに見出されたALSV(rALSV)に特有の現象である。 The rALSV-infected plant individual that has undergone the step (1) is deactivated due to inactivation of rALSV in the plant individual due to the high temperature treatment. The state in which the movement of rALSV is stopped by such high-temperature treatment is considered irreversible. Even if the rALSV-infected plant individual is grown at the optimum temperature in the subsequent step (2), the movement of rALSV once stopped. Will not resume movement within the plant. This phenomenon has not been confirmed with other viruses, and is a phenomenon peculiar to ALSV (rALSV) newly found by the present inventors.
 したがって、工程(2)でrALSV感染植物個体をその至適温度にて育成することで、この期間内にrALSV感染植物個体から伸長した部位にはrALSVが移動しない。このため、工程(2)での育成によって、rALSV感染植物個体からrALSVが存在しない部位(rALSV非存在部位)が伸長する。したがって、工程(1)(2)を経たrALSV感染植物個体は、rALSVが存在する部位(工程(1)の前に展開していた部位)と、その部位から伸長したrALSV非存在部位とが存在するという全く新しい特徴を有している。 Therefore, by growing the rALSV-infected plant individual at the optimum temperature in step (2), rALSV does not move to the site extended from the rALSV-infected plant individual within this period. For this reason, the site | part (rALSV non-existing site | part) in which rALSV does not exist expand | extends from a rALSV infection plant individual by the growth in a process (2). Therefore, the rALSV-infected plant individual that has undergone the steps (1) and (2) has a site where rALSV exists (a site developed before step (1)) and a site that does not have rALSV extended from that site. It has a completely new feature.
 なお、工程(2)の育成期間は特に限定されず、例えば果実の結実や後述する穂木としてのサイズなどを考慮して適宜設定することができる。具体的には、工程(2)の育成期間は、一応の目安として3ヵ月~24ヵ月程度の期間を例示することができる。 It should be noted that the growing period of the step (2) is not particularly limited, and can be appropriately set in consideration of, for example, fruit setting or a size as a hogi described later. Specifically, the growing period of the step (2) can be exemplified by a period of about 3 to 24 months as a guide.
 以上の通り、工程(1)(2)を経ることで、rALSVを感染させた植物個体から、rALSV非存在部位を伸長させることができる。このため、rALSV非存在部位を利用して、rALSV感染植物個体の形質を有し、かつ、ウイルスフリーである植物個体を作出することができる。 As described above, by passing through steps (1) and (2), a rALSV-free site can be extended from a plant individual infected with rALSV. For this reason, the plant individual which has the character of a rALSV infection plant individual, and is virus free can be created using a rALSV absence site.
 すなわち、本発明の植物個体の作出方法は、以下の工程:
(1)rALSV感染植物個体を、その至適温度より高く、かつ、rALSVが不活性化する温度で、2週間から6週間育成する工程;
(2)工程(1)の後、rALSV感染植物個体をその至適温度にて育成して、rALSV感染植物個体からrALSV非存在部位を伸長させる工程;および
(3)工程(2)で伸長させたrALSV非存在部位を穂木として接ぎ木して育成する工程
を含む。
That is, the plant individual production method of the present invention includes the following steps:
(1) A process of growing an rALSV-infected plant individual at a temperature higher than the optimum temperature and at which rALSV is inactivated for 2 to 6 weeks;
(2) After step (1), a rALSV-infected plant individual is grown at the optimum temperature, and a rALSV-free site is extended from the rALSV-infected plant individual; and (3) is extended in step (2). It includes a step of grafting and growing a non-existing portion of rALSV as a spike.
 工程(1)(2)については、rALSV非存在部位を伸長させる方法として上述したので説明は省略する。 Since steps (1) and (2) have been described above as a method for extending the rALSV non-existing site, description thereof is omitted.
 工程(3)では、工程(2)で伸長させたrALSV非存在部位を穂木として接ぎ木して育成する。 In step (3), the rALSV non-existing portion extended in step (2) is grafted and grown as a scion.
 具体的には、穂木として適当な長さに伸長したrALSV非存在部位をrALSV感染植物個体から採取し、所望の台木の切断面に接着することで1つの植物個体として育成する。この方法によれば、rALSVに感染した当代のrALSV感染植物個体のrALSV非存在部位を接ぎ木しているため、次世代種子の選抜などによらず、rALSV感染植物個体の形質を有し、かつ、rALSVに感染していないウイルスフリーな植物個体(果樹)を簡便かつ早期に得ることができる。また、成長点培養などの従来の方法と比較しても、簡便かつ格段に早くウイルスフリーな植物個体(果樹)を得ることができる。 Specifically, a rALSV nonexisting site extended to an appropriate length as a hogi is collected from an rALSV-infected plant individual, and is adhered to a cut surface of a desired rootstock to grow as one plant individual. According to this method, since the rALSV non-existing site of the current rALSV-infected plant individual infected with rALSV is grafted, regardless of the selection of next-generation seeds, etc., the trait of the rALSV-infected plant individual, and Virus-free plant individuals (fruit trees) that are not infected with rALSV can be obtained easily and quickly. In addition, a virus-free plant individual (fruit tree) can be obtained easily and much faster than conventional methods such as growth point culture.
 そして、本発明の植物個体の作出方法として、AtFT遺伝子やMdTFL1遺伝子などを組み込んだrALSVを感染させて早期開花(発芽後1.5~3ヶ月)させたrALSV感染植物個体について上記の工程(1)(2)(3)を行う場合には、早期に開花が確認されたrALSV感染植物個体から、極めて短期間にrALSVに感染していないウイルスフリーの植物個体を得ることができる。 Then, as a method for producing a plant individual of the present invention, the above-described step (1) (for the rALSV-infected plant individual infected with rALSV incorporating AtFT gene, MdTFL1 gene, etc. and early flowering (1.5 to 3 months after germination) ( 2) When performing (3), a virus-free plant individual that is not infected with rALSV in a very short time can be obtained from an rALSV-infected plant individual that has been confirmed to flower early.
 本発明の植物個体の作出方法などは、上記の実施形態に限定されるものではない。 The method for producing an individual plant of the present invention is not limited to the above embodiment.
 以下、実施例を示して本発明をさらに詳細かつ具体的に説明するが、本発明は以下の例によって限定されるものではない。
(実施例1)
<1>材料と方法
(1)ウイルス
 リンゴ小球形潜在ウイルス(ALSV)ベクターおよびリンゴクロロティックリーフスポットウイルス(ACLSV)を供試した。
Hereinafter, the present invention will be described in more detail and specifically with reference to examples, but the present invention is not limited to the following examples.
(Example 1)
<1> Materials and Methods (1) Virus Apple small spherical latent virus (ALSV) vector and apple chlorotic leaf spot virus (ACLSV) were tested.
 (2)供試植物
 リンゴ種子は水で湿らせたペーパータオルに包み4℃に約3ヶ月置いて催芽し、発芽してきたものにALSVベクターの接種を行った。
(2) Test plant Apple seeds were wrapped in a paper towel moistened with water and germinated by placing them at 4 ° C for about 3 months, and the germinated seeds were inoculated with ALSV vector.
 (3)濃縮ウイルスRNAの調製
 濃縮ウイルスRNAは以下のとおり準備した。ALSVベクターをキノアに接種後7~10日に接種葉と病徴の現れた上葉をサンプリングした。この感染葉10gに対し、30mlの抽出緩衝液(0.1M Tris-HCl(pH7.8), 0.1M NaCl, 5mM MgCl, 1%メルカプトエタノール)を加えて磨砕した後、2重ガーゼでろ過し、9,000rpmで10分間(4℃)遠心分離した。得られた溶液に、ベントナイト溶液(30mg/ml)600μlを攪拌しながら静かに加え、9,000rpmで10分間(4℃)遠心分離し、清澄化した。次に、上清にポリエチレングリコール6000を8%になるように加え、氷中で1時間攪拌した。10分間(4℃)遠心分離した後、沈殿を5mlの抽出緩衝液に溶解して10分間(4℃)遠心分離した後、上清を新しいチューブに移した。続いて上清に3mlの水飽和フェノールと3mlのクロロホルムを加えて激しく攪拌した。10分間(4℃)遠心分離後、水層をエタノール沈殿し、濃縮ウイルスRNAを得た。この濃縮ウイルスRNAとリンゴクロロティックリーフスポットウイルス(ACLSV)のRNAを金粒子にコーティングし、以下の方法でリンゴ実生にパーティクルガン接種した。
(3) Preparation of concentrated viral RNA Concentrated viral RNA was prepared as follows. Seven to ten days after inoculation of quinoa with the ALSV vector, the inoculated leaves and the upper leaves showing disease symptoms were sampled. To 10 g of this infected leaf, 30 ml of extraction buffer (0.1 M Tris-HCl (pH 7.8), 0.1 M NaCl, 5 mM MgCl, 1% mercaptoethanol) was added and ground, and then filtered through double gauze. And centrifuged at 9,000 rpm for 10 minutes (4 ° C.). To the resulting solution, 600 μl of bentonite solution (30 mg / ml) was gently added while stirring, and centrifuged at 9,000 rpm for 10 minutes (4 ° C.) to clarify. Next, polyethylene glycol 6000 was added to the supernatant to 8%, and the mixture was stirred in ice for 1 hour. After centrifugation for 10 minutes (4 ° C.), the precipitate was dissolved in 5 ml of extraction buffer and centrifuged for 10 minutes (4 ° C.), and then the supernatant was transferred to a new tube. Subsequently, 3 ml of water-saturated phenol and 3 ml of chloroform were added to the supernatant and vigorously stirred. After centrifugation for 10 minutes (4 ° C.), the aqueous layer was ethanol precipitated to obtain concentrated virus RNA. The concentrated virus RNA and apple chlorotic leaf spot virus (ACLSV) RNA were coated on gold particles, and apple seedlings were inoculated with a particle gun by the following method.
 (4)パーティクルガン接種(Helios Gene Gun System(BIO-RAD))によるALSVベクター接種
 マイクロキャリア(RNA;5μg/金粒子;0.4 mg/shot)の調製は以下の手順で行った。まず、1.5ml容チューブに金粒子(0.6μm)を8 mg量り取り、滅菌水40μlを加えボルテックスミキサーで十分に混和した。超音波洗浄機にチューブを入れ、5分間ソニケーションした。ボルテックスミキサーにチューブをセットし撹拌しながら100μlの濃縮ALSV RNA溶液(1μg/μl)と60μlの ACLSVゲノムの転写RNA溶液(1μg/μl)を静かに加えた。同様に、5M 酢酸アンモニウムを20μl、続いてイソプロパノールを440μl静かに加えた。しばらく撹拌した後、-20℃で1時間以上静置した。上清を取り除き金粒子の沈殿をボルテックスミキサーで一瞬撹拌した。金粒子の沈殿に1mlの100%エタノールを加え、沈殿を崩さないように静かに振盪し、その後上清を取り除いた。この作業を4回繰り返した後に15ml容チューブに100%エタノールを用いて金粒子を移し取り、最終的に1200μlの100%エタノールに金粒子を懸濁し、ゴールドコートチューブの調製に使用した。チュービングプレップステーション(BIO-RAD)にゴールドコートチューブ(BIO-RAD)をセットし、純窒素ガスを20分間通してゴールドコートチューブの内部を完全に乾燥させた。続いて金粒子の懸濁液を、均一になるようゴールドコートチューブ内に充填し、5分間放置して金粒子をゴールドコートチューブに沈着させた後、上清の99.5%エタノールをゴールドコートチューブ内から取り除いた。続いてチュービングプレップステーションを回転させ、金粒子をゴールドコートチューブ内部に均一に拡散させながらゴールドコートチューブ内に純チッソガスを通し、金粒子を完全に乾燥させた。続いてゴールドコートチューブを、チューブカッター(BIO-RAD)を用いて20個に裁断し、パーティクルガンを用いて植物への導入を行った。発芽直後のリンゴ種子の種皮をメスで取り除き、その子葉に接種した。接種はヘリウム圧400psiでHelios Gene Gun System(BIO-RAD)を用いて1個体あたり4shot行った。
(4) ALSV vector inoculation by particle gun inoculation (Helios Gene Gun System (BIO-RAD)) Microcarriers (RNA; 5 μg / gold particles; 0.4 mg / shot) were prepared by the following procedure. First, 8 mg of gold particles (0.6 μm) were weighed into a 1.5 ml tube, added with 40 μl of sterilized water, and thoroughly mixed with a vortex mixer. The tube was placed in an ultrasonic cleaner and sonicated for 5 minutes. The tube was set in a vortex mixer, and 100 μl concentrated ALSV RNA solution (1 μg / μl) and 60 μl ACLSV genome transcription RNA solution (1 μg / μl) were gently added while stirring. Similarly, 20 μl of 5M ammonium acetate was added gently followed by 440 μl of isopropanol. After stirring for a while, the mixture was allowed to stand at -20 ° C for 1 hour or longer. The supernatant was removed and the gold particle precipitate was stirred for a moment with a vortex mixer. To the gold particle precipitate, 1 ml of 100% ethanol was added, and gently shaken so as not to break the precipitate, and then the supernatant was removed. After this operation was repeated 4 times, the gold particles were transferred to a 15 ml tube using 100% ethanol, and finally the gold particles were suspended in 1200 μl of 100% ethanol and used for the preparation of a gold coated tube. A gold coated tube (BIO-RAD) was set in a tubing prep station (BIO-RAD), and pure nitrogen gas was passed for 20 minutes to completely dry the inside of the gold coated tube. Subsequently, the gold particle suspension is filled uniformly in the gold coat tube and left for 5 minutes to deposit the gold particles in the gold coat tube. Then, 99.5% ethanol of the supernatant is placed in the gold coat tube. Removed from. Subsequently, the tubing prep station was rotated, and pure gold gas was passed through the gold coat tube while uniformly diffusing the gold particles into the gold coat tube, thereby completely drying the gold particles. Subsequently, the gold-coated tube was cut into 20 pieces using a tube cutter (BIO-RAD), and introduced into a plant using a particle gun. The seed coat of the apple seed immediately after germination was removed with a scalpel and inoculated into its cotyledons. Inoculation was performed with 4 shots per individual using Helios Gene Gun System (BIO-RAD) at a helium pressure of 400 psi.
 (5)接種個体の育成
 接種個体は湿度を保ち、4℃暗黒下で2日置いた後、25℃(明期16時間-暗期8時間)で育成した。育苗培土(タキイ種苗)に植え替え、7-10葉期になるまで生育させた。
(5) Breeding of inoculated individuals The inoculated individuals were kept for 2 days in the dark at 4 ° C, and then grown at 25 ° C (16 hours light period-8 hours dark period). The seedlings were replanted with seedling culture soil (Takii seedlings) and grown until the 7-10 leaf stage.
 (6)ALSVベクターを感染させたALSV感染植物個体から、ALSV非存在部位を伸長させる方法
 高温(37℃)処理がALSV 感染リンゴ実生植物個体におけるウイルスの増殖や分布に及ぼす影響について調べるため、ALSVとACLSVが共感染したリンゴ植物個体を次の条件で育成した。
(6) Method of extending ALSV-free site from ALSV-infected plant individuals infected with ALSV vector In order to investigate the effect of high temperature (37 ° C) treatment on the growth and distribution of viruses in ALSV-infected apple seedlings, ALSV And apple plants infected with ACLSV were grown under the following conditions.
 ALSVとACLSVを共感染させたリンゴ実生苗(7-10葉期)を25℃のインキュベータ(明期16時間-暗期8時間)で1週間生育させたのち、37℃のインキュベータ(明期16時間-暗期8時間)で4週間育成した。その後、25℃(至適温度の範囲内)のインキュベータ(明期16時間-暗期8時間)に移して生育させ、処理前、処理終了直後、処理後2ヵ月のそれぞれの葉についてウイルス検定を行った。 After growing apple seedlings (7-10 leaves) co-infected with ALSV and ACLSV for 1 week in a 25 ° C incubator (light period 16 hours-dark period 8 hours), a 37 ° C incubator (light period 16) Time-dark period 8 hours) and nurtured for 4 weeks. After that, it is transferred to an incubator at 25 ° C (within the optimum temperature range) (16 hours light period-8 hours dark period) and grown, and virus tests are performed on each leaf before treatment, immediately after treatment, and 2 months after treatment. went.
 (7)RT-PCRによるALSVならびにACLSV検定
 リンゴのRNAの抽出は以下のように行った。-80℃で凍結させた葉(0.05g)と4.8mmサイズのステンレスビーズ(トミー精工)を2.0mlサンプルチューブ(アシスト)に入れ、Micro Smash MS-100R(トミー精工)を用いて破砕した。750μlのRNA抽出緩衝液[2% CTAB, 2% PVP K-30, 0.1M Tris-HCl(pH8.0),25mM EDTA(pH8.0),2M NaCl, 2% メルカプトエタノール]を加え、よく混和した後、65℃で20分間、ときどき混和しながら保温した。処理後、750μlのクロロホルムを加え、2分間攪拌したあと、14,000rpm、4℃で10分間遠心分離し、水層を新しい1.5ml容チューブに移し、1/3容の7.5M LiClを加えて完全に混和した。-20℃に1時間静置後、14,000rpm、4℃で20分間遠心分離し、得られた沈殿に1mlの70%エタノールを加えて洗浄した。70%エタノールをほぼ完全に取り除いた後、15μlのRNase free H2Oに沈殿を溶解し、分光光度計(ND-1000 v3.1.2)で定量した。
(7) ALSV and ACLSV assay by RT-PCR Apple RNA was extracted as follows. Leaves (0.05 g) frozen at −80 ° C. and stainless steel beads of 4.8 mm size (Tomy Seiko) were placed in a 2.0 ml sample tube (Assist) and crushed using Micro Smash MS-100R (Tommy Seiko). Add 750 μl of RNA extraction buffer [2% CTAB, 2% PVP K-30, 0.1 M Tris-HCl (pH 8.0), 25 mM EDTA (pH 8.0), 2 M NaCl, 2% mercaptoethanol] and mix well. And then kept warm at 65 ° C. for 20 minutes with occasional mixing. After treatment, add 750 μl of chloroform, stir for 2 minutes, centrifuge at 14,000 rpm, 4 ° C. for 10 minutes, transfer the aqueous layer to a new 1.5 ml tube, and add 1/3 volume of 7.5 M LiCl to complete the treatment. Was mixed. After standing at −20 ° C. for 1 hour, the mixture was centrifuged at 14,000 rpm and 4 ° C. for 20 minutes, and the resulting precipitate was washed with 1 ml of 70% ethanol. After almost completely removing 70% ethanol, the precipitate was dissolved in 15 μl of RNase free H 2 O and quantified with a spectrophotometer (ND-1000 v3.1.2).
 逆転写反応は以下のようにして行った。1μl のRNA溶液、0.5μl の10μM Oligo(dT)18プライマー、4μl の2.5mM dNTP mixture(TaKaRa)、2μl の5 X RT Buffer (TOYOBO)、0.5μl のReverTra Ace (TOYOBO)、2μlの滅菌水を混合して10μlとし、TaKaRa Thermal Cycler Dice(TaKaRa)を用いて42℃で60分間、99℃で5分間、最後に4℃で5分間反応させた。 The reverse transcription reaction was performed as follows. 1 μl RNA solution, 0.5 μl 10 μM Oligo (dT) 18 primer, 4 μl 2.5 mM dNTP mixture (TaKaRa), 2 μl 5 X RT Buffer (TOYOBO), 0.5 μl ReverTra Ace (TOYOBO), 2 μl sterile water The mixture was mixed to 10 μl, and reacted with TaKaRa Thermal Cycler Dice (TaKaRa) at 42 ° C. for 60 minutes, 99 ° C. for 5 minutes, and finally at 4 ° C. for 5 minutes.
 PCRのプライマーには、ALSVを増幅する
ALSR2 3687(+)[5'-gccacttcagtgcaactctg-3'](配列番号1)と
ALSR2 3802(-)[5'-gaaaaggactcaaagatagcag-3'](配列番号2)を用い、
ACLSVを増幅するプライマーには、
ACLSV(+)[5'-agatctgaaagcgttcctg-3'] (配列番号3)と
ACLSV(-)[5'-ctaaatgcaaagatcagttgtaac-3'] (配列番号4)の組み合わせを用いた。
PCR primers amplify ALSV
ALSR2 3687 (+) [5'-gccacttcagtgcaactctg-3 '] (SEQ ID NO: 1)
ALSR2 3802 (-) [5'-gaaaaggactcaaagatagcag-3 '] (SEQ ID NO: 2)
For primers that amplify ACLSV,
ACLSV (+) [5'-agatctgaaagcgttcctg-3 '] (SEQ ID NO: 3) and
A combination of ACLSV (−) [5′-ctaaatgcaaagatcagttgtaac-3 ′] (SEQ ID NO: 4) was used.
 1μlのcDNA溶液、各4μMの合成プライマー(2μl)、2μl の10 X PCR buffer(TaKaRa)、1.6μl の2.5mM dNTP mixture(TaKaRa)、0.2μlのEx-Taq(2.5U/μl TaKaRa)、13.2μlの滅菌水を混合し、TaKaRa Thermal Cycler Dice(TaKaRa)にセットした。初め94℃で5分間熱変性し、続いて94℃で20秒、アニ-リングを55℃で10秒、DNA相補鎖の伸長を72℃で1分という過程を1サイクルとして、30サイクル行い、その後72℃で7分間処理した。PCR終了後、10μlの反応液と1μlの10Xloading Buffer(1%SDS,50%グリセロ-ル,0.05%ブロモフェノールブルー)を混合し、2.5%アガロ-スゲルで電気泳動(100V)してPCR産物の有無を確認した。 1 μl cDNA solution, each 4 μM synthetic primer (2 μl), 2 μl 10 μX PCR buffer (TaKaRa), 1.6 μl 2.5 mM dNTP mix (TaKaRa), 0.2 μl Ex-Taq (2.5 U / μl TaKaRa), 13.2 μl of sterilized water was mixed and set in TaKaRa Thermal Cycler Dice (TaKaRa). First, heat denaturation at 94 ° C for 5 minutes, followed by 30 cycles of 94 ° C for 20 seconds, annealing at 55 ° C for 10 seconds, and DNA complementary strand extension at 72 ° C for 1 minute. Thereafter, it was treated at 72 ° C. for 7 minutes. After completion of PCR, mix 10 μl of the reaction solution and 1 μl of 10X loading buffer (1% SDS, 50% glycerol, 0.05% bromophenol blue), and then perform electrophoresis (100V) on 2.5% agarose gel. The presence or absence was confirmed.
 (8)ドットブロットハイブリダイゼーション法によるALSVの検出
 高温処理後2ヵ月が経過した26葉期のリンゴの各葉位から上記の方法でRNAを抽出した。270ngのRNAを含む3μlのRNA溶液に、RNA変性バッファー(10xSSC、50%ホルムアルデヒド液)を加えて混合し、65℃で20分間変性処理のあと、氷水中にて急冷し、ドットブロットハイブリダイゼーションに供するサンプルとした。ナイロンメンブランHybond-N+(GEヘルスケア)に変性RNA溶液をドットブロットし、ドットブロットが終了したメンブランを20xSSCで処理したのち紫外線照射することによってRNAをメンブランに固定した。メンブランはハイブリダイゼーション溶液(50%ホルムアミド、5xSSC、0.1%N-ラウロイルサルコシンナトリウム、0.02%SDS、2%Blocking reagent(Roche))に浸し、68℃で1時間プレハイブリダイゼーションを行った後、ALSVゲノム上のVp20領域に相補配列を持つジゴキシゲニン(DIG)標識RNAプローブであるVp20(-)プローブを用いて68℃で18時間ハイブリダイズさせた。ハイブリダイゼーション終了後、メンブランは洗浄液1(2xSSC、0.1%SDS)で5分間(室温)2回洗浄した後、さらに洗浄液2(0.1xSSC、0.1%SDS)で15分間(68℃)2回洗浄した。次にメンブランをバッファー1(0.1Mマレイン酸、0.15MNaCl、pH7.5)で5分間(室温)処理した後、ブロッキングバッファー(10%Blocking reagent:バッファー1=1:9)で1時間(室温)処理し、メンブランのブロッキングを行った。ブロッキング終了後、メンブランはAnti-Digoxigenin.AP.Fab fragments(Roche)をブロッキングバッファーで1/10000に希釈した抗体液中で30分間(室温)反応させた。抗体反応終了後、メンブランを洗浄液3(0.45%Tween20を含むバッファー1)で20分間(室温)2回洗浄し、さらにバッファー4(0.1MTris-HCl、0.1MNaCl、50mMMgCl2、pH9.5)中で3分間(室温)2回静かに振盪した。続いてCDP-Star Detection Reagent(GEヘルスケア)をメンブラン上で5分間反応させ、メンブランをに包み、ImageQuantLAS4000(GEヘルスケア)によりシグナルを検出した。
(8) Detection of ALSV by dot blot hybridization RNA was extracted by the above method from each leaf position of the apple at the 26th leaf stage after 2 months from the high temperature treatment. To 3 μl RNA solution containing 270 ng RNA, add RNA denaturation buffer (10xSSC, 50% formaldehyde solution), mix, and after denaturation treatment at 65 ° C for 20 minutes, quench in ice water for dot blot hybridization. A sample was provided. The denatured RNA solution was dot blotted onto a nylon membrane Hybond-N + (GE Healthcare), and the membrane after the dot blot was treated with 20 × SSC, followed by UV irradiation to fix the RNA to the membrane. The membrane is immersed in a hybridization solution (50% formamide, 5xSSC, 0.1% N-lauroyl sarcosine sodium, 0.02% SDS, 2% Blocking reagent (Roche)), prehybridized at 68 ° C for 1 hour, and then the ALSV genome. Hybridization was performed at 68 ° C. for 18 hours using a Vp20 (−) probe, which is a digoxigenin (DIG) -labeled RNA probe having a complementary sequence in the upper Vp20 region. After completion of hybridization, the membrane was washed twice with washing solution 1 (2xSSC, 0.1% SDS) for 5 minutes (room temperature) and then twice with washing solution 2 (0.1xSSC, 0.1% SDS) for 15 minutes (68 ° C). . Next, the membrane was treated with buffer 1 (0.1 M maleic acid, 0.15 M NaCl, pH 7.5) for 5 minutes (room temperature) and then with blocking buffer (10% Blocking reagent: buffer 1 = 1: 9) for 1 hour (room temperature). Processed and blocked the membrane. After the blocking, the membrane was reacted for 30 minutes (room temperature) in an antibody solution in which Anti-Digoxigenin.AP.Fab fragments (Roche) was diluted 1/10000 with a blocking buffer. After completion of the antibody reaction, the membrane was washed twice with washing solution 3 (buffer 1 containing 0.45% Tween 20) for 20 minutes (room temperature) and further in buffer 4 (0.1 MTris-HCl, 0.1 M NaCl, 50 mM MgCl 2 , pH 9.5). Gently shaken twice for 3 minutes (room temperature). Subsequently, CDP-Star Detection Reagent (GE Healthcare) was reacted on the membrane for 5 minutes, wrapped in the membrane, and a signal was detected by ImageQuantLAS4000 (GE Healthcare).
 (9)リアルタイムRT-PCRによるALSVの検出
 高温(37℃)処理終了直後11-14葉期のリンゴの最上葉から抽出したRNAを用いて以下の方法でリアルタイムRT-PCRを行った。検定試料からのRNA溶液を1μl(100ng)、10μM Oligo(dT)18 0.5μl、2.5mM dNTP mixture(TaKaRa) 4μl、5×RT Buffer(TOYOBO) 2μl、ReverTra Ace(TOYOBO) 0.5μl、滅菌水2μlを混合して10μlとし、TaKaRa Thermal Cycler Dice VersionIII(TaKaRa)を用いて42℃で60分間、99℃で5分間、最後に4℃で5分間反応させ、次のqPCR法に用いるcDNA溶液とした。SYBR法による増幅には、ALSV-RNA1の6150~6279間の配列を増幅する事ができる
primer4F 6150(+)[5'‐cgatgaatctccctgataga‐3'](配列番号5)と、
primer4R 6279(-)[5'‐ agagtagtggtctccagcaa‐3'] (配列番号6)をそれぞれプラス鎖プライマーおよびマイナス鎖プライマーとして用いた。逆転写反応により得られたcDNA溶液10μlのうち1μlに、15μMプラス鎖プライマーと15μMマイナス鎖プライマーをそれぞれ0.2μl、滅菌水を8.6μl、SYBR(R) Premix Ex TaqTM(TaKaRa)を10μl混合し、ECO TM Real-Time PCR System(Illmina)を用いて95℃で30秒間処理した後、[95℃,5秒→60℃,30秒]の反応を35サイクル行い、続いて[95℃,15秒→55℃,15秒→95℃,15秒]を1サイクルで処理し、qPCRを終了した。
<2>結果
(1)高温処理前、処理直後、処理後2ヵ月のウイルス感染リンゴ実生苗からのALSVおよびACLSVの検出
 ALSVおよびACLSVを混合接種したリンゴ実生苗(個体番号1~9)の最上位葉(第7葉~第10葉)をRT-PCR検定したところ、全ての実生苗からALSVとACLSVが検出され(図1)、両ウイルスがリンゴ実生苗に全身感染していることが明らかになった。これらの苗を高温処理(37℃、4週間)後に、最上位葉(第11葉~第14葉)をRT-PCR検定すると、ALSVおよびACLSV共に全く検出されなかった(図1)。これは高温処理により両ウイルスの複製が阻害されたためと考えられた。これらを常温(25℃)に移して生育させ、2ヵ月経過したところで、最上位葉をRT-PCR検定したところ、ACLSVは全個体から検出されたが、ALSVはどの個体からも全く検出されなかった(図1)。
(2)高温処理後常温で2ヶ月育成したリンゴ実生苗でのALSVおよびACLSVの分布
 高温処理後常温で2ヵ月育成した実生苗でのウイルスの分布を調べるために、図2Aに示したように、第1葉から最上位葉までをサンプリングし、ドットブロットハイブリダイゼーション法とRT-PCRでウイルス検定した。その結果、図2Bで示したように、ドット・ハイブリダイゼーション法では第1葉から第5葉でALSV感染を示すシグナルが検出されたが、第10葉以上の葉からはALSVは検出されなかった。RT-PCRによる検定では、ACLSVが第1葉から第10葉および第15葉以上の葉全てから強く検出されたのに対して、ALSVは第1葉から第8葉で弱く(薄く)検出されたが、第10葉より上位の葉では全く検出されなかった(図2C)。以上から、高温処理前に展開していた第1葉から第8葉には低濃度のALSVが存在しているが、高温処理後に展開した上位の葉にはALSVは存在していないことが明らかになった。
(3)高温処理後常温で2ヶ月育成したリンゴ実生苗からのリアルタイムRT-PCRによるALSVの検出
 RT-PCRによる検定結果をさらに確認するために、RT-PCRより1000倍程度検出感度の高いリアルタイムRT-PCRによりリンゴ実生苗のALSV検定を行った。その結果、図3に示したように、感染リンゴ試料が10サイクルから蛍光シグナルが増加し始めるのに対して、高温処理後常温で2ヵ月育成した実生苗では蛍光シグナルの増加は認められず、ALSVが感染していないことが証明された。
<3>結論
 ALSVベクタ―に感染したリンゴ苗を高温処理(37℃)すると、処理後に成長した枝・葉にはALSVは認められず、ALSVが存在しない部位(ALSV非存在部位)を有する個体を作出することができる。したがって、組換えALSV(rALSV)感染植物個体を利用して伸長させたALSV非存在部位を穂木として接ぎ木することで、組換えALSV(rALSV)感染植物個体の形質を有し、かつ、ウイルスフリーである植物個体を容易に増殖することが可能である。
(9) Detection of ALSV by real-time RT-PCR Real-time RT-PCR was performed by the following method using RNA extracted from the top leaves of 11-14 leaf apples immediately after the high temperature (37 ° C) treatment. 1 μl (100 ng) of RNA solution from the test sample, 10 μM Oligo (dT) 1 8 0.5 μl, 2.5 mM dNTP mixture (TaKaRa) 4 μl, 5 × RT Buffer (TOYOBO) 2 μl, ReverTra Ace (TOYOBO) 0.5 μl, sterile water Mix 2 μl to 10 μl, react with TaKaRa Thermal Cycler Dice Version III (TaKaRa) at 42 ° C. for 60 minutes, 99 ° C. for 5 minutes, and finally at 4 ° C. for 5 minutes to obtain the cDNA solution used for the next qPCR method. did. For amplification by SYBR method, the sequence between 6150-6279 of ALSV-RNA1 can be amplified.
primer4F 6150 (+) [5'-cgatgaatctccctgataga-3 '] (SEQ ID NO: 5),
primer4R 6279 (−) [5′-agagtagtggtctccagcaa-3 ′] (SEQ ID NO: 6) was used as a positive strand primer and a negative strand primer, respectively. Mix 1 μl of 10 μl of cDNA solution obtained by reverse transcription reaction with 0.2 μl of 15 μM plus strand primer and 15 μM minus strand primer, 8.6 μl of sterilized water, and 10 μl of SYBR (R) Premix Ex Taq TM (TaKaRa). , ECO Real-Time PCR System (Illmina) was used for 30 seconds at 95 ° C, followed by 35 cycles of [95 ° C, 5 seconds → 60 ° C, 30 seconds], followed by [95 ° C, 15 Second → 55 ° C., 15 seconds → 95 ° C., 15 seconds] was processed in one cycle to complete qPCR.
<2> Results (1) Detection of ALSV and ACLSV from virus-infected apple seedlings before, immediately after, and 2 months after treatment The highest of apple seedlings (individual numbers 1 to 9) inoculated with ALSV and ACLSV When RT-PCR test was performed on the upper leaves (7th to 10th leaves), ALSV and ACLSV were detected from all seedlings (Fig. 1), and it was clear that both viruses were systemically infected into apple seedlings Became. When these seedlings were treated with high temperature (37 ° C., 4 weeks) and the topmost leaves (11th to 14th leaves) were subjected to RT-PCR assay, neither ALSV nor ACLSV was detected (FIG. 1). This was thought to be because the replication of both viruses was inhibited by high-temperature treatment. When these plants were grown at room temperature (25 ° C) and grown for 2 months, the topmost leaf was subjected to RT-PCR test. ACLSV was detected in all individuals, but ALSV was not detected in any individuals. (FIG. 1).
(2) Distribution of ALSV and ACLSV in apple seedlings grown at room temperature for 2 months after high-temperature treatment To investigate the virus distribution in seedlings grown at room temperature for 2 months after high-temperature treatment, as shown in Figure 2A From the first leaf to the top leaf, the virus was assayed by dot blot hybridization and RT-PCR. As a result, as shown in FIG. 2B, in the dot hybridization method, a signal indicating ALSV infection was detected in the first to fifth leaves, but no ALSV was detected in the leaves of the tenth and higher leaves. . In the RT-PCR assay, ACLSV was strongly detected in all leaves from the 1st to 10th and 15th and higher leaves, whereas ALSV was detected weakly (thinly) in the 1st to 8th leaves. However, it was not detected at all in the leaves higher than the 10th leaf (FIG. 2C). From the above, it is clear that low concentration of ALSV is present in the 1st to 8th leaves developed before the high temperature treatment, but ALSV is not present in the upper leaves developed after the high temperature treatment. Became.
(3) ALSV detection by real-time RT-PCR from apple seedlings grown at room temperature for 2 months after high-temperature treatment To further confirm the RT-PCR assay results, real-time detection sensitivity about 1000 times that of RT-PCR The ALSV assay of apple seedlings was performed by RT-PCR. As a result, as shown in FIG. 3, the fluorescence signal of the infected apple sample started to increase from 10 cycles, whereas the increase in the fluorescence signal was not observed in the seedlings grown for 2 months at room temperature after the high temperature treatment, It was proved that ALSV was not infected.
<3> Conclusion When an apple seedling infected with an ALSV vector is treated at high temperature (37 ° C), no ALSV is found in the branches and leaves grown after the treatment, and the individual has a site where ALSV is not present (ALSV non-existing site) Can be created. Therefore, by grafting the ALSV-free site, which is extended using a recombinant ALSV (rALSV) -infected plant individual, as a spikelet, it has the characteristics of a recombinant ALSV (rALSV) -infected plant individual and is virus-free. It is possible to easily grow a plant individual.
(実施例2)
 高温処理は植物にとっても大きなストレスとなるため、高温処理によってウイルスフリーの植物組織を得るためには、ウイルスの増殖停止と、植物が生存可能な温度とが両立する高温処理期間を設定する必要がある。そこで、ALSVが存在しない部位(ALSV非存在部位)を形成させるために必要な高温処理期間についての検討を行った。
 具体的には、リンゴの場合、37℃では、4週間以上生育させると枯死する個体が出るため、高温処理期間は4週間に設定した。37℃はリンゴやナシなどの生存にとって限界付近の温度で、これ以上の温度では枯死してしまう恐れがある。
 続いて、37℃条件下での処理期間とALSVの消長について調査した(図4)。具体的には、高温処理1週間毎にそのときの最上葉を各個体からそれぞれサンプリングし、RT-PCRによりALSV検定を行ったところ、高温処理1週間および2週間後のサンプルでは全てからALSVが検出された。これは、高温処理前にALSVが侵入した葉原基が、高温処理中に葉として展開した結果であると考えられる。
 さらに高温処理を続けると、3週間目には7個体中4個体から、4週間目には7個体中5個体からALSVが検出されなくなった。これは、高温処理によりALSVが茎頂分裂組織から除去され、葉原基に侵入できなくなったからと考えられる。また、これら個体を37℃4週間処理後に、25℃に移して2カ月間生育させ、展開してきた最上葉を検定したところ、高温処理4週間目でALSVが検出された2個体を含め、全ての個体でALSVは検出されなかった。このことは、高温処理を4週間行うことにより、ALSVがリンゴの茎頂分裂組織から除去され、結果としてその後に展開してくる組織にはALSVが存在しないことを意味している。
(Example 2)
Since high-temperature treatment is also a great stress for plants, in order to obtain virus-free plant tissue by high-temperature treatment, it is necessary to set a high-temperature treatment period in which virus growth is stopped and the temperature at which plants can survive is compatible. is there. Therefore, the high temperature treatment period necessary to form a site where no ALSV is present (ALSV non-existing site) was examined.
Specifically, in the case of apples, at 37 ° C., individuals that die when grown for 4 weeks or more appear, so the high temperature treatment period was set to 4 weeks. 37 ° C is a temperature near the limit for survival of apples and pears, and there is a risk that it will die at temperatures higher than this.
Subsequently, the treatment period at 37 ° C. and the fluctuation of ALSV were investigated (FIG. 4). Specifically, the highest leaf at that time was sampled from each individual for each week of high temperature treatment, and ALSV test was performed by RT-PCR. ALSV was found in all samples after 1 week and 2 weeks of high temperature treatment. was detected. This is thought to be the result of the leaf primordium that ALSV invaded before the high temperature treatment developed as leaves during the high temperature treatment.
Furthermore, when high temperature treatment was continued, ALSV was not detected from 4 out of 7 individuals at 3 weeks and from 5 out of 7 individuals at 4 weeks. This is thought to be because ALSV was removed from the shoot apical meristem by high-temperature treatment and could not enter the leaf primordium. In addition, after treatment for 4 weeks at 37 ° C, these individuals were transferred to 25 ° C and grown for 2 months, and the developed uppermost leaves were tested, including 2 individuals in which ALSV was detected in the 4th week of high temperature treatment, ALSV was not detected in the individual. This means that after high-temperature treatment for 4 weeks, ALSV is removed from the apple shoot apical meristem, and as a result, there is no ALSV in the tissue that develops thereafter.
 なお、上記実施例1、2では、リンゴに対して37℃での高温処理を行っているが、この温度に限定されることはなく、植物の種類などによっては、35℃~42℃(好ましくは36℃~39℃)の範囲においてもALSVが存在しない部位(ALSV非存在部位)を有する個体を作出することができる。 In Examples 1 and 2, the apples were subjected to a high-temperature treatment at 37 ° C., but the temperature is not limited to this. 35 to 42 ° C. (preferably depending on the type of plant) In the range of 36 ° C. to 39 ° C.), an individual having a site where no ALSV is present (ALSV non-existing site) can be produced.

Claims (5)

  1.  組換えALSV(rALSV)感染植物個体の形質を有し、かつ、ウイルスフリーである植物個体の作出方法であって、以下の工程:
    (1)rALSV感染植物個体を、その至適温度より高く、かつ、rALSVが不活性化する温度で、2週間から6週間育成する工程;
    (2)工程(1)の後、rALSV感染植物個体をその至適温度にて育成して、rALSV感染植物個体からrALSV非存在部位を伸長させる工程;および
    (3)工程(2)で伸長させたrALSV非存在部位を穂木として接ぎ木して育成する工程
    を含むことを特徴とする作出方法。
    A method for producing a plant individual having a trait of a recombinant ALSV (rALSV) -infected plant and virus-free, comprising the following steps:
    (1) A process of growing an rALSV-infected plant individual at a temperature higher than the optimum temperature and at which rALSV is inactivated for 2 to 6 weeks;
    (2) After step (1), a rALSV-infected plant individual is grown at the optimum temperature, and a rALSV-free site is extended from the rALSV-infected plant individual; and (3) is extended in step (2). A production method comprising the step of grafting and growing a non-existing portion of rALSV as a spike.
  2.  工程(1)の育成期間の温度は、35℃~42℃であることを特徴とする請求項1の作出方法。 2. The production method according to claim 1, wherein the temperature during the growth period of step (1) is 35 to 42 ° C.
  3.  組換えALSV(rALSV)を感染させた植物個体から、rALSV非存在部位を伸長させるための育成方法であって、
    (1)rALSV感染植物個体を、その至適温度より高く、かつ、rALSVが不活性化する温度で、2週間から6週間育成する工程;
    (2)rALSV感染植物個体をその至適温度にて育成して、rALSV感染植物個体からrALSV非存在部位を伸長させる工程を含むことを特徴とする育成方法。
    From a plant individual infected with recombinant ALSV (rALSV), a growth method for extending a rALSV-free site,
    (1) A process of growing an rALSV-infected plant individual at a temperature higher than the optimum temperature and at which rALSV is inactivated for 2 to 6 weeks;
    (2) A growing method comprising a step of growing an rALSV-infected plant individual at the optimum temperature and extending a rALSV-free site from the rALSV-infected plant individual.
  4.  工程(1)の育成期間の温度は、35℃~42℃であることを特徴とする請求項3の方法。 4. The method according to claim 3, wherein the temperature during the growth period in step (1) is 35 ° C. to 42 ° C.
  5.  請求項3の育成方法によって成長させたrALSV感染植物個体であって、伸長したrALSV非存在部位を有することを特徴とするrALSV感染植物個体。 An rALSV-infected plant individual grown by the method according to claim 3, wherein the plant has an extended rALSV-free site.
PCT/JP2015/083501 2014-11-28 2015-11-27 Method for creating virus-free plant individual WO2016084965A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016561973A JP6698999B2 (en) 2014-11-28 2015-11-27 Method for producing virus-free plant individuals

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014241474 2014-11-28
JP2014-241474 2014-11-28

Publications (1)

Publication Number Publication Date
WO2016084965A1 true WO2016084965A1 (en) 2016-06-02

Family

ID=56074510

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/083501 WO2016084965A1 (en) 2014-11-28 2015-11-27 Method for creating virus-free plant individual

Country Status (2)

Country Link
JP (1) JP6698999B2 (en)
WO (1) WO2016084965A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109644711A (en) * 2018-11-30 2019-04-19 杨桂平 A kind of peach stump is short to connect new varieties swap method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010183891A (en) * 2009-02-13 2010-08-26 Iwate Univ Method for promoting flowering of rose family fruit tree using apple latent spherical virus vector
JP2014110803A (en) * 2014-02-27 2014-06-19 Iwate Univ Method for obtaining apple pollen
JP2014183754A (en) * 2013-03-22 2014-10-02 Iwate Univ Method for shortening one breeding cycle of rosaceae fruit tree

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010183891A (en) * 2009-02-13 2010-08-26 Iwate Univ Method for promoting flowering of rose family fruit tree using apple latent spherical virus vector
JP2014183754A (en) * 2013-03-22 2014-10-02 Iwate Univ Method for shortening one breeding cycle of rosaceae fruit tree
JP2014110803A (en) * 2014-02-27 2014-06-19 Iwate Univ Method for obtaining apple pollen

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109644711A (en) * 2018-11-30 2019-04-19 杨桂平 A kind of peach stump is short to connect new varieties swap method

Also Published As

Publication number Publication date
JPWO2016084965A1 (en) 2017-09-07
JP6698999B2 (en) 2020-05-27

Similar Documents

Publication Publication Date Title
Krügel et al. Agrobacterium-mediated transformation of Nicotiana attenuata, a model ecological expression system
AU2016212529B2 (en) A method for site-directed modification of whole plant through gene transient expression
Hily et al. Stability of gene silencing-based resistance to Plum pox virus in transgenic plum (Prunus domestica L.) under field conditions
CN103805632B (en) Preparation method of transgenic eggplant
Ravelonandro et al. The efficiency of RNA interference for conferring stable resistance to Plum pox virus
KR20170061159A (en) Event-Specific Detection Methods
CN103333901A (en) Liriodendron hybrid LhWOX1 gene and application thereof
CN107267526A (en) Pseudo-ginseng myb transcription factor gene PnMYB2 and its application
JP6698999B2 (en) Method for producing virus-free plant individuals
CN111690660A (en) Rice transcription factor gene OsMYBS1 and encoding protein and application thereof
Kasajima et al. Apple latent spherical virus (ALSV) vector as a tool for reverse genetic studies and non-transgenic breeding of a variety of crops
Kumari et al. PRSV resistance in papaya (Carica papaya L.) through genetic engineering: A review.
CN115976050A (en) Kiwi fruit infectious disease gene and applicable VIGS silencing system construction
KR101206928B1 (en) RNA interference cassette against a self-incompatibility factor of Brassica genus, vector comprising the same and transgenic Brassica plant comprising the same
CN105316297B (en) A kind of blackberry, blueberry CAD genoids and its improved application to prickle
CN114438056A (en) CasF2 protein, CRISPR/Cas gene editing system and application thereof in plant gene editing
CN104004072B (en) The application in regulating growth of plants of DUF994 albumen and encoding gene thereof
JP6161353B2 (en) One generation shortening method of Rosaceae fruit tree
CN104611335A (en) Specific peanut promoter AhRSP and application thereof
CN104988176B (en) Method for improving gum content of eucommia ulmoides
CN117025834B (en) Flanking sequence of exogenous insert fragment of transgenic corn VB15 and application thereof
JP3960902B2 (en) How to identify plant varieties
CN103993033B (en) Dual anti-iris cymbidium mosaic virus and the RNAi carrier of odontoglossum ring spot virus and application thereof
CN109762833B (en) Leymus mutabilis phenylalanine ammonia lyase gene and application thereof
CN106978419A (en) Petunia flower pesticide early stage specific expression promoter pPhGRP identification and its application

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15862723

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016561973

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15862723

Country of ref document: EP

Kind code of ref document: A1