WO2016084676A1 - Liquid crystal display device and light control member - Google Patents

Liquid crystal display device and light control member Download PDF

Info

Publication number
WO2016084676A1
WO2016084676A1 PCT/JP2015/082399 JP2015082399W WO2016084676A1 WO 2016084676 A1 WO2016084676 A1 WO 2016084676A1 JP 2015082399 W JP2015082399 W JP 2015082399W WO 2016084676 A1 WO2016084676 A1 WO 2016084676A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
liquid crystal
display device
crystal display
control member
Prior art date
Application number
PCT/JP2015/082399
Other languages
French (fr)
Japanese (ja)
Inventor
康 浅岡
昇平 勝田
奨 越智
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2016084676A1 publication Critical patent/WO2016084676A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors

Definitions

  • the present invention relates to a liquid crystal display device and a light control member.
  • Liquid crystal display devices are widely used as portable electronic devices such as smartphones, or displays for televisions, personal computers, and the like.
  • the display has become particularly high-definition, and the development of a display that supports a super high-definition video (7680 Pixel ⁇ 4320 Pixel) having a resolution that is four times the width and width of the conventional full high-definition video (1920 Pixel ⁇ 1080 Pixel) is progressing.
  • a liquid crystal display device exhibits excellent display characteristics when a display screen is viewed from the front.
  • the contrast is lowered and the visibility is likely to deteriorate. For this reason, various methods have been proposed to widen the viewing angle range in which the screen can be observed with good visibility.
  • Patent Document 1 discloses a VA (Vertically Alignment) mode liquid crystal display device and a MVA (Multi-domain Vertical Alignment) mode liquid crystal display device having good viewing angle characteristics.
  • VA Very Alignment
  • MVA Multi-domain Vertical Alignment
  • the transmittance is improved and the structure in the cell is simplified.
  • the number of domains is two, the average direction of the major axis of the liquid crystal molecules contained in each domain is different from each other by 180 ° when a voltage is applied.
  • a direction parallel to the major axis of the liquid crystal molecules is referred to as a director.
  • the display is not as good as when the liquid crystal display device is viewed from the front. There is no big change in the image.
  • this liquid crystal display device is viewed obliquely from above and below, the color change of the display image is larger than when the liquid crystal display device is viewed from the front. That is, the VA mode liquid crystal display device having two domains in one pixel has a problem that the viewing angle characteristic has a high azimuth angle and the viewing angle characteristic has a large azimuth angle dependency.
  • One embodiment of the present invention is a liquid crystal display device having a small viewing angle dependency, and provides a light control member used for reducing the viewing angle dependency of the liquid crystal display device.
  • a liquid crystal display device includes a first substrate having a first alignment film, a second substrate having a second alignment film, the first alignment film, and the second alignment film.
  • the absorption axis of the first polarizing plate and the absorption axis of the second polarizing plate are orthogonal to each other and form an angle that is not parallel to the first direction
  • the light control member includes a light-transmitting base material, a light shielding portion provided on the first surface of the base material, A light diffusing portion having a light emitting end surface in a region where the light shielding portion of the first surface of the base material is not formed, and a position partially overlapping with the light shielding portion when viewed from the normal direction of the base material
  • a light incident end face located on the side, and an inclined face located between the light exit end face and the light incident end face, and the planar shape of the light shielding part viewed from the normal direction of the substrate is A first straight portion intersecting the first direction is included
  • the azimuth distribution of the light diffusion intensity of the light control member viewed from the normal direction of the substrate may be two-fold symmetric.
  • the first linear portion is larger than 45 ° and smaller than 90 ° with respect to the first direction when viewed from the normal direction of the substrate. An angle may be formed.
  • the first linear portion when viewed from the normal direction of the base material, is one of the first polarizing plate and the second polarizing plate. It may intersect with the absorption axis of the plate.
  • At least a part of the first linear portion may be provided with a non-forming portion where the light shielding portion is not formed.
  • a portion of the light diffusing portion that faces the non-forming portion may have a rounded shape.
  • a portion of the first linear portion that faces the non-forming portion has a rounded shape, and the light diffusing portion has a light incident end face side.
  • the portion that faces the non-forming portion may have a larger radius of curvature than the portion that faces the non-forming portion of the first straight portion.
  • a portion corresponding to the first straight portion of the outer peripheral edge of the light shielding portion is defined as a straight edge, and the first When the portion corresponding to the portion facing the non-forming portion among the straight portions is a curved edge, the total length of the straight edges may be longer than the total length of the curved edges.
  • At least one non-formation portion may be disposed in the pixel.
  • the planar shape includes the first straight portion and an intersecting portion that intersects the first direction and intersects the first straight portion. And a second straight line portion.
  • the first angles facing each other across the intersection may be equal to each other.
  • the second angle adjacent to the first angle may be different from the first angle.
  • the first angle may be oriented in the first direction and an obtuse angle.
  • a portion of the light diffusing portion that faces the intersecting portion may have a rounded shape.
  • a portion of the first straight portion and the second straight portion that faces the intersecting portion has a rounded shape, and the light diffusion portion
  • the portion facing the intersecting portion on the light incident end face side may have a larger radius of curvature than the portion facing the intersecting portion of the first straight portion and the second straight portion.
  • portions corresponding to the first straight line portion and the second straight line portion of the outer peripheral edge of the light shielding portion when viewed from the normal direction of the base material.
  • the total length of the straight edges is It may be longer than the total length of the second curved edges.
  • At least one intersection may be disposed in the pixel.
  • At least one of the intersecting portions may be disposed in a pixel having a relatively high visibility transmittance among the pixels.
  • the pixel may include a plurality of sub-pixels, and the same number of the intersections may be disposed in the plurality of sub-pixels.
  • the pixel may have two domains, and the intersections may be arranged in the same number in each of the two domains.
  • the light-shielding portion may include a plurality of X-shaped light-shielding layers that are scattered on the first surface.
  • the planar shape may have a polygonal line shape having a bent portion at least partially.
  • At least one bent portion may be disposed in the pixel.
  • the planar shape may include a plurality of the first straight portions extending linearly in parallel with each other.
  • the width of the first straight line portion may be constant.
  • the interval between the two adjacent first linear portions may be random.
  • the planar shape may have a connecting portion that connects between the two adjacent first straight portions.
  • the liquid crystal display device further includes a lighting device disposed on a light incident side of the liquid crystal panel, and the lighting device has the first direction as viewed from the normal direction of the base material.
  • the amount of light emitted in a direction perpendicular to the first direction may be larger than the amount of light emitted in a direction parallel to the first direction.
  • the first of the plurality of luminance curves indicating the luminance distribution of light emitted from the illumination device in the azimuth angle direction viewed from the normal direction of the base material.
  • the first luminance curve showing the luminance distribution of light emitted in a direction parallel to the first direction and the second luminance curve showing the luminance distribution of light emitted in a direction perpendicular to the first direction It may have a two-fold symmetrical shape.
  • the light control member may include a sealing member that covers an outer peripheral portion of a region where the light shielding portion exists.
  • the sealing member may be disposed in a region other than the display region of the liquid crystal display device.
  • the index indicating the position of the light control member relative to the liquid crystal panel may be provided on the outer peripheral portion of the region where the light shielding portion exists.
  • the sealing member may be formed of the same material as the light diffusion portion.
  • the light control member of one aspect of the present invention includes a light-transmitting base material, a light shielding portion provided on the first surface of the base material, and the light shielding portion on the first surface of the base material.
  • a light diffusing portion having a region where no light is formed as a light exit end surface, and a refractive index lower than the refractive index of the light diffusing portion, provided at a position partially overlapping with the light shielding portion when viewed from the normal direction of the base material
  • a low-refractive-index part having a refractive index, and the light diffusion part includes the light emission end face located on the substrate side, a light incident end face located on the side opposite to the substrate side, and the light emission end face And the inclined surface located between the light incident end face, and the planar shape of the light shielding portion viewed from the normal direction of the substrate is relative to one side of the planar shape of the substrate
  • a sealing member having a first linear portion that intersects and covering an outer peripheral portion of a region where the light shield
  • the light control member of one aspect of the present invention includes a light-transmitting base material, a light shielding portion provided on the first surface of the base material, and the light shielding portion on the first surface of the base material.
  • a light diffusing portion having a region where no light is formed as a light exit end surface, and a refractive index lower than the refractive index of the light diffusing portion, provided at a position partially overlapping with the light shielding portion when viewed from the normal direction of the base material
  • a low-refractive-index part having a refractive index, and the light diffusion part includes the light emission end face located on the substrate side, a light incident end face located on the side opposite to the substrate side, and the light emission end face And a tilted surface positioned between the light incident end face, and the planar shape of the light shielding portion viewed from the normal direction of the base material is disposed on the side opposite to the base material side
  • a sealing member that covers the outer periphery of the region where the light shielding portion exists
  • the light control member of one aspect of the present invention includes a light-transmitting base material, a light shielding portion provided on the first surface of the base material, and the light shielding portion on the first surface of the base material.
  • a light diffusing portion having a region where no light is formed as a light exit end surface, and a refractive index lower than the refractive index of the light diffusing portion, provided at a position partially overlapping with the light shielding portion when viewed from the normal direction of the base material
  • a low-refractive-index part having a refractive index, and the light diffusion part includes the light emission end face located on the substrate side, a light incident end face located on the side opposite to the substrate side, and the light emission end face And the inclined surface located between the light incident end face, and the planar shape of the light shielding portion viewed from the normal direction of the substrate is relative to one side of the planar shape of the substrate
  • the light control member of one aspect of the present invention includes a light-transmitting base material, a light shielding portion provided on the first surface of the base material, and the light shielding portion on the first surface of the base material.
  • a light diffusing portion having a region where no light is formed as a light exit end surface, and a refractive index lower than the refractive index of the light diffusing portion, provided at a position partially overlapping with the light shielding portion when viewed from the normal direction of the base material
  • a low-refractive-index part having a refractive index, and the light diffusion part includes the light emission end face located on the substrate side, a light incident end face located on the side opposite to the substrate side, and the light emission end face And the inclined surface located between the light incident end face, and the planar shape of the light shielding portion viewed from the normal direction of the substrate is relative to one side of the planar shape of the substrate A first straight portion that intersects, and a second straight portion that has a cross portion that intersects the first straight portion,
  • the present invention it is possible to provide a liquid crystal display device having a small viewing angle dependency without applying a complicated circuit structure.
  • a light control member used for reducing the viewing angle dependency of the liquid crystal display device.
  • (A) to (F) are views for explaining the action of the planar shape of the light shielding layer of the first embodiment.
  • FIG. 41 is a diagram for explaining a method for measuring the strong scattering direction of the light control member, and includes a cross section taken along line A1-A1 of FIG. It is a graph which shows the relationship between the azimuth angle and light reception intensity in the light reception angle of 30 degrees. It is a figure which shows orientation distribution of the light-diffusion intensity
  • FIG. 1 is a cross-sectional view of the liquid crystal display device of the present embodiment.
  • the liquid crystal display device 1 of this embodiment includes a liquid crystal panel 2, a backlight 8, and a light control member 9.
  • the liquid crystal panel 2 includes a first polarizing plate 3, a first retardation film 4, a liquid crystal cell 5, a second retardation film 6, and a second polarizing plate 7.
  • the liquid crystal cell 5 is schematically illustrated, but the detailed structure thereof will be described later.
  • the backlight 8 of the present embodiment corresponds to the lighting device in the claims.
  • the observer views the display image of the liquid crystal display device 1 through the light control member 9.
  • the side on which the light control member 9 is disposed is referred to as the viewing side.
  • the side on which the backlight 8 is disposed is referred to as the back side.
  • the x axis is defined as the horizontal direction of the screen of the liquid crystal display device 1.
  • the y axis is defined as the vertical direction of the screen of the liquid crystal display device 1.
  • the z axis is defined as the thickness direction of the liquid crystal display device 1.
  • the horizontal direction of the screen corresponds to the left-right direction when the observer views the liquid crystal display device 1 facing the front.
  • the vertical direction of the screen corresponds to the up-down direction when the observer views the liquid crystal display device 1 facing the front.
  • the light emitted from the backlight 8 is modulated by the liquid crystal panel 2, and a predetermined image, character, or the like is displayed by the modulated light. Further, when the light emitted from the liquid crystal panel 2 passes through the light control member 9, the light distribution of the emitted light becomes wider than before entering the light control member 9, and the light is emitted from the light control member 9. .
  • liquid crystal panel 2 an active matrix transmissive liquid crystal panel will be described as an example.
  • the liquid crystal panel applicable to the present embodiment is not limited to an active matrix transmissive liquid crystal panel.
  • the liquid crystal panel 2 applicable to the present embodiment may be, for example, a transflective (transmission / reflection type) liquid crystal panel.
  • a simple matrix type liquid crystal panel in which each pixel does not include a switching thin film transistor may be used.
  • a thin film transistor is abbreviated as TFT.
  • FIG. 2 is a longitudinal sectional view of the liquid crystal panel 2.
  • the liquid crystal cell 5 includes a TFT substrate 10, a color filter substrate 12, and a liquid crystal layer 11.
  • the TFT substrate 10 functions as a switching element substrate.
  • the color filter substrate 12 is disposed to face the TFT substrate 10.
  • the liquid crystal layer 11 is sandwiched between the TFT substrate 10 and the color filter substrate 12.
  • the TFT substrate 10 of this embodiment corresponds to the first substrate in the claims.
  • the color filter substrate 12 of this embodiment corresponds to the second substrate in the claims.
  • the liquid crystal layer 11 is sealed in a space surrounded by the TFT substrate 10, the color filter substrate 12, and a frame-shaped seal member (not shown).
  • the sealing member bonds the TFT substrate 10 and the color filter substrate 12 at a predetermined interval.
  • the liquid crystal panel 2 of the present embodiment performs display in a VA (Vertical Alignment) mode.
  • a liquid crystal having a negative dielectric anisotropy is used for the liquid crystal layer 11.
  • a spacer 13 is disposed between the TFT substrate 10 and the color filter substrate 12.
  • the spacer 13 is a spherical or columnar member. The spacer 13 keeps the distance between the TFT substrate 10 and the color filter substrate 12 constant.
  • a TFT 19 having a semiconductor layer 15, a gate electrode 16, a source electrode 17, a drain electrode 18 and the like is formed on the surface of the transparent substrate 14 constituting the TFT substrate 10 on the liquid crystal layer 11 side.
  • the transparent substrate 14 for example, a glass substrate can be used.
  • the TFT 19 of this embodiment functions as a switching element provided in each pixel.
  • a semiconductor layer 15 is formed on the transparent substrate 14.
  • the semiconductor layer 15 is made of a quaternary mixed crystal semiconductor material containing, for example, indium (In), gallium (Ga), zinc (Zn), and oxygen (O).
  • a quaternary mixed crystal semiconductor material containing, for example, indium (In), gallium (Ga), zinc (Zn), and oxygen (O).
  • ⁇ -Si AmorphousconSilicon
  • a gate insulating film 20 is formed on the transparent substrate 14 so as to cover the semiconductor layer 15.
  • a material of the gate insulating film 20 for example, a silicon oxide film, a silicon nitride film, or a laminated film thereof is used.
  • a gate electrode 16 is formed on the gate insulating film 20 so as to face the semiconductor layer 15.
  • a laminated film of W (tungsten) / TaN (tantalum nitride), Mo (molybdenum), Ti (titanium), Al (aluminum), Cu (copper), or the like is used.
  • a first interlayer insulating film 21 is formed on the gate insulating film 20 so as to cover the gate electrode 16.
  • a material of the first interlayer insulating film 21 for example, a silicon oxide film, a silicon nitride film, or a laminated film thereof is used.
  • a source electrode 17 and a drain electrode 18 are formed on the first interlayer insulating film 21.
  • a contact hole 22 and a contact hole 23 are formed through the first interlayer insulating film 21 and the gate insulating film 20 in the first interlayer insulating film 21 and the gate insulating film 20.
  • the source electrode 17 is connected to the source region of the semiconductor layer 15 through the contact hole 22.
  • the drain electrode 18 is connected to the drain region of the semiconductor layer 15 through the contact hole 23.
  • a second interlayer insulating film 24 is formed on the first interlayer insulating film 21 so as to cover the source electrode 17 and the drain electrode 18.
  • the same material as the first interlayer insulating film 21 described above or an organic insulating material is used.
  • a pixel electrode 25 is formed on the second interlayer insulating film 24.
  • a contact hole 26 is formed through the second interlayer insulating film 24 in the second interlayer insulating film 24.
  • the pixel electrode 25 is connected to the drain electrode 18 through the contact hole 26.
  • the pixel electrode 25 is connected to the drain region of the semiconductor layer 15 using the drain electrode 18 as a relay electrode.
  • a transparent conductive material such as ITO (Indium Tin Oxide) or IZO (Indium Zinc Oxide) is used.
  • the image signal supplied to the source electrode 17 through the source bus line passes through the semiconductor layer 15 and the drain electrode 18 to form a pixel electrode. 25.
  • the form of the TFT 19 may be the top gate type TFT shown in FIG. 2 or the bottom gate type TFT.
  • a first alignment film 27 is formed on the entire surface of the second interlayer insulating film 24 so as to cover the pixel electrode 25.
  • the first alignment film 27 has an alignment regulating force for vertically aligning liquid crystal molecules constituting the liquid crystal layer 11.
  • the alignment process is performed on the first alignment film 27 using a photo-alignment technique. That is, in this embodiment, a photo-alignment film is used as the first alignment film 27.
  • a black matrix 30, a color filter 31, a planarizing layer 32, a counter electrode 33, and a second alignment film 34 are sequentially formed on the surface of the transparent substrate 29 constituting the color filter substrate 12 on the liquid crystal layer 11 side.
  • the black matrix 30 has a function of blocking light transmission in the inter-pixel region.
  • the black matrix 30 is formed of, for example, a metal such as Cr (chromium) or a Cr / Cr oxide multilayer film, or a photoresist in which carbon particles are dispersed in a photosensitive resin.
  • the color filter 31 includes one of red (R), green (G), and blue (B) pigments for each sub-pixel having a different color that constitutes one pixel.
  • One color filter 31 of R, G, and B is disposed to face one pixel electrode 25 on the TFT substrate 10.
  • the color filter 31 may have a multicolor configuration of three or more colors of R, G, and B. For example, a four-color configuration in which yellow (Y) is added, a four-color configuration in which white (W) is added, or yellow (Y), cyan (C), and magenta (M) are added 6 A color configuration may be used.
  • the planarization layer 32 is composed of an insulating film that covers the black matrix 30 and the color filter 31.
  • the planarization layer 32 has a function of relaxing and leveling the level difference formed by the black matrix 30 and the color filter 31.
  • a counter electrode 33 is formed on the planarization layer 32.
  • a transparent conductive material similar to that of the pixel electrode 25 is used.
  • a second alignment film 34 is formed on the entire surface of the counter electrode 33.
  • the second alignment film 34 has an alignment regulating force that vertically aligns the liquid crystal molecules constituting the liquid crystal layer 11.
  • the alignment process is performed on the second alignment film 34 using a photo-alignment technique. That is, in this embodiment, a photo-alignment film is used as the second alignment film 34.
  • the backlight 8 which is an illumination device includes a light source 36 and a light guide 37.
  • the light source 36 is disposed on the end face of the light guide 37.
  • As the light source 36 for example, a light emitting diode, a cold cathode tube, or the like is used.
  • the backlight 8 of the present embodiment is an edge light type backlight.
  • the light guide 37 has a function of guiding the light emitted from the light source 36 to the liquid crystal panel 2.
  • a resin material such as acrylic resin is used.
  • the light incident on the end face of the light guide 37 from the light source 36 is totally reflected inside the light guide 37 and propagates, and is emitted from the upper surface (light emission surface) of the light guide 37 with a substantially uniform intensity.
  • a scattering sheet and a prism sheet are disposed on the upper surface of the light guide 37, and a scattering sheet is disposed on the lower surface of the light guide 37.
  • the light emitted from the upper surface of the light guide 37 is scattered by the scattering sheet, then condensed by the prism sheet, and is emitted after being substantially parallelized.
  • White PET may be used as the scattering sheet.
  • a BEF sheet (trade name) manufactured by Sumitomo 3M may be used.
  • the backlight 8 may not have directivity.
  • a backlight in which the direction of light emission is controlled and the directivity is set somewhat moderately is used.
  • the backlight 8 may have directivity.
  • a first polarizing plate 3 is provided between the backlight 8 and the liquid crystal cell 5.
  • the first polarizing plate 3 functions as a polarizer that controls the polarization state of light incident on the liquid crystal cell 5.
  • a second polarizing plate 7 is provided between the liquid crystal cell 5 and the light control member 9.
  • the second polarizing plate 7 functions as a polarizer that controls the transmission state of light emitted from the liquid crystal cell 5.
  • the transmission axis of the first polarizing plate 3 and the transmission axis of the second polarizing plate 7 are in a crossed Nicols arrangement.
  • a first retardation film 4 is provided between the first polarizing plate 3 and the liquid crystal cell 5 to compensate for the phase difference of light.
  • a second retardation film 6 is provided between the second polarizing plate 7 and the liquid crystal cell 5 to compensate for the phase difference of light.
  • a TAC film is used as the retardation film (first retardation film 4, second retardation film 6) of the present embodiment.
  • FIG. 3 is a block diagram illustrating a configuration of a driving circuit of the liquid crystal display device, and illustrates a schematic wiring diagram of a driver and a timing controller (TCON) of the liquid crystal display device 1.
  • the liquid crystal display device 1 of the present embodiment has four TCONs 80, and the four TCONs 80 are input to the source driver 81 and the gate driver 82 in the upper right region, upper left region, lower right region, and lower left region of the screen 83, respectively. The signal is controlled.
  • FIG. 4 is a diagram showing gate bus lines and source bus lines of the liquid crystal display device 1, and is an enlarged view of an image display area of the liquid crystal display device 1.
  • the TFT substrate 10 has a plurality of pixels PX arranged in a matrix.
  • the pixel PX is a basic unit of display.
  • a plurality of source bus lines SB are formed on the TFT substrate 10 so as to extend in parallel to each other.
  • a plurality of gate bus lines GB are formed on the TFT substrate 10 so as to extend in parallel to each other.
  • the plurality of gate bus lines GB are orthogonal to the plurality of source bus lines SB.
  • a plurality of source bus lines SB and a plurality of gate bus lines GB are formed in a lattice pattern.
  • a rectangular area defined by the adjacent source bus line SB and the adjacent gate bus line GB is one pixel PX.
  • the source bus line SB is connected to the source electrode 17 of the TFT 19.
  • the gate bus line GB is connected to the gate electrode 16 of the TFT 19.
  • two source bus lines SB1, SB2 are formed for one column of pixels PX, and the first source bus line SB1 has an odd row (Line 1, 3,). ) Of pixels PX are connected, and pixels PX of even-numbered rows (Lines 2, 4,...) Are connected to the second source bus line SB2.
  • two gate bus lines GB are selected, and signals are written to the pixels PX two rows at a time.
  • the video signal When a video signal is input from the outside, the video signal is divided into four and supplied to four TCONs 80, and two gate bus lines GB are simultaneously selected. Therefore, at the first timing, the video is displayed on the first row, the second row, the 2161th row, the 2162th row, and then the fourth row, the fourth row, the 2163th row, the 2164th row, and so on. Is displayed, and after the last gate bus line GB in the 4320th row is selected, the next video signal is written again from above.
  • the driving method is not limited to the simultaneous writing of the four lines, and scanning may be performed line by line when the wiring capacity is sufficiently small and the response speed of the liquid crystal is sufficiently high.
  • FIG. 5 is a perspective view of the light control member 9 as viewed from the viewing side.
  • FIG. 6 is a plan view of the light control member 9 and a cross-sectional view from two directions.
  • FIG. 7 is a plan view including the outer periphery of the light control member 9.
  • FIG. 8 is a plan view showing the intersection 103 of the light shielding layer 40 of the light control member 9.
  • a sealing member 150 described later is indicated by a two-dot chain line.
  • FIG. 5 is a perspective view of the light control member 9 as viewed from the viewing side.
  • FIG. 6 is a plan view of the light control member 9 and a cross-sectional view from two directions.
  • FIG. 7 is a plan view including the outer periphery of the light control member 9.
  • FIG. 8 is a plan view showing the intersection 103 of the light shielding layer 40 of the light control member 9.
  • a sealing member 150 described later is indicated by a two-dot chain line.
  • the upper left side is a plan view of the light control member 9
  • the lower left side is a cross-sectional view along the line AA of the upper left side plan view
  • the upper right side is along the BB line of the upper left side plan view. It is sectional drawing.
  • the light control member 9 includes a base material 39, a light shielding layer 40, a light diffusion portion 41, and a hollow portion 42.
  • the light shielding layer 40 is formed on the first surface 39 a (surface opposite to the viewing side) of the base material 39.
  • the light diffusion portion 41 is formed in a region other than the region where the light shielding layer 40 is formed on the first surface 39 a of the base material 39.
  • the light shielding layer 40 is provided on the first surface 39 a at a position that does not overlap the light diffusion portion 41 when viewed from the normal direction of the base material 39.
  • the hollow portion 42 is provided at a position that partially overlaps the light shielding layer 40 when viewed from the normal direction of the substrate 39.
  • the light shielding layer 40 of the present embodiment corresponds to the light shielding portion in the claims.
  • the light control member 9 is disposed on the second polarizing plate 7 with the light diffusion portion 41 facing the second polarizing plate 7 and the base material 39 facing the viewing side.
  • the light control member 9 is fixed to the second polarizing plate 7 through the adhesive layer 43.
  • the base material 39 examples include transparent resin base materials such as triacetyl cellulose (TAC) film, polyethylene terephthalate (PET), polycarbonate (PC), polyethylene naphthalate (PEN), and polyethersulfone (PES) film.
  • TAC triacetyl cellulose
  • PET polyethylene terephthalate
  • PC polycarbonate
  • PEN polyethylene naphthalate
  • PES polyethersulfone
  • the base material 39 becomes a base when the material for the light shielding layer 40 and the light diffusion portion 41 is applied later in the manufacturing process.
  • the base material 39 needs to have heat resistance and mechanical strength in a heat treatment step during the manufacturing process. Therefore, as the base material 39, a glass base material or the like may be used in addition to the resin base material. However, it is preferable that the thickness of the base material 39 is as thin as possible without impairing the heat resistance and mechanical strength.
  • the total light transmittance of the base material 39 is preferably 90% or more as defined in JIS K7361-1. When the total light transmittance is 90% or more, sufficient transparency can be obtained.
  • a transparent resin substrate having a thickness of, for example, 100 ⁇ m is used as the substrate 39.
  • the light shielding layer 40 is formed in a lattice pattern as viewed from the normal direction of the first surface 39a of the base material 39.
  • the planar shape of the light shielding layer 40 viewed from the normal direction of the base material 39 is a first linear portion 101 that extends linearly in one direction and a second shape that intersects the first linear portion 101.
  • the first straight line portion 101 and the second straight line portion 102 are portions having a certain width in the light shielding layer 40.
  • a crossing portion 103 is formed at a portion where the first straight portion 101 and the second straight portion 102 intersect in the light shielding layer 40.
  • the light shielding layer 40 is made of an organic material having light absorptivity and photosensitivity, such as carbon black that absorbs visible light, a black resist including a pigment and a dye, and black ink.
  • a metal film such as Cr (chromium) or a Cr / Cr oxide multilayer film may be used.
  • the light diffusing unit 41 is made of an organic material having optical transparency and photosensitivity such as acrylic resin and epoxy resin. Further, the total light transmittance of the light diffusing portion 41 is preferably 90% or more in accordance with JIS K7361-1. When the total light transmittance is 90% or more, sufficient transparency can be obtained.
  • the light diffusing portion 41 has a light exit end face 41a, a light incident end face 41b, and a reflecting face 41c.
  • the light diffusing unit 41 uses a region of the first surface 39a of the base 39 where the light shielding layer 40 is not formed as a light emission end surface 41a.
  • the light emission end surface 41 a is a surface in contact with the base material 39.
  • the light incident end surface 41b is a surface facing the light emitting end surface 41a.
  • the reflection surface 41 c is a tapered inclined surface of the light diffusion portion 41.
  • the reflection surface 41c is a surface that reflects light incident from the light incident end surface 41b.
  • the area of the light incident end face 41b is larger than the area of the light exit end face 41a.
  • the light diffusion part 41 is a part that contributes to the transmission of light in the light control member 9. As shown in the lower left part of FIG. 6, among the light incident on the light diffusing portion 41, the light L1 is emitted from the light emitting end face 41a without being reflected by the reflecting surface 41c. Of the light incident on the light diffusing unit 41, the light L2 is totally reflected by the reflecting surface 41c of the light diffusing unit 41 and guided in a state of being substantially confined inside the light diffusing unit 41, and the light emitting end surface 41a. Is injected from.
  • the light control member 9 is arranged so that the base material 39 faces the viewing side. Therefore, of the two opposing surfaces of the light diffusing portion 41, the surface with the smaller area becomes the light emission end surface 41a. On the other hand, the surface with the larger area becomes the light incident end surface 41b.
  • the inclination angle of the reflection surface 41c of the light diffusing portion 41 (the angle ⁇ c formed between the light incident end surface 41b and the reflection surface 41c) is, for example, about 80 ° ⁇ 5 °.
  • the angle of inclination ⁇ c of the reflection surface 41c of the light diffusing portion 41 allows the incident light from the left and right directions to be emitted substantially in the vertical direction when emitted from the light control member 9, and the incident light can be sufficiently diffused. If it is a proper angle, it will not be specifically limited.
  • the inclination angle of the reflection surface 41c of the light diffusing unit 41 is constant.
  • the height t1 from the light incident end surface 41b of the light diffusion portion 41 to the light emitting end surface 41a is set to be larger than the layer thickness t2 of the light shielding layer 40.
  • the thickness t2 of the light shielding layer 40 is about 150 nm as an example.
  • the height t1 from the light incident end face 41b to the light emitting end face 41a of the light diffusing portion 41 is, for example, about 10 to 20 ⁇ m.
  • a portion surrounded by the reflection surface 41 c of the light diffusion portion 41 and the light shielding layer 40 is a hollow portion 42. In the hollow portion 42, an inert gas such as nitrogen and argon, or a gas such as air is present.
  • the refractive index of the base material 39 and the refractive index of the light diffusion portion 41 are substantially equal.
  • the reason is as follows. For example, consider a case where the refractive index of the base material 39 and the refractive index of the light diffusion portion 41 are greatly different. In this case, when light incident from the light incident end surface 41 b exits from the light diffusion portion 41, unnecessary light refraction or reflection may occur at the interface between the light diffusion portion 41 and the base material 39. In this case, there is a possibility that problems such as failure to obtain a desired viewing angle and a decrease in the amount of emitted light may occur.
  • the light diffusion portion 41 is formed of, for example, a transparent acrylic resin
  • the reflection surface 41c of the light diffusion portion 41 is an interface between the transparent acrylic resin and air.
  • the hollow portion 42 may be filled with another low refractive index material.
  • the critical angle is the smallest, and the incident angle range in which the light is totally reflected by the reflection surface 41c of the light diffusion portion 41 is the widest. As a result, light loss is further suppressed, and high luminance can be obtained.
  • the hollow portion 42 of the present embodiment corresponds to the low refractive index portion in the claims.
  • the light shielding layer 40 is formed in a lattice pattern as viewed from the normal direction of the base material 39.
  • the planar shape around the intersection 103 seen from the normal direction of the base material 39 is an X shape that is long in the x-axis direction. That is, the light shielding layer 40 exhibits an anisotropic shape.
  • the first angle K1 formed by the first straight line portion 101 and the second straight line portion 102 at the intersecting portion 103 of the light shielding layer 40 is an obtuse angle, for example, 100 to 120 °. .
  • the second angle K2 adjacent to the first angle K1 is different from the first angle K1.
  • the second angle K2 is an acute angle, for example, 60 to 80 °.
  • the first angles K1 that face each other across the intersection 103 are substantially equal to each other, and the second angles K2 that face each other across the intersection 103 are also substantially equal to each other.
  • the planar shape of the light shielding layer 40 viewed from the normal direction of the base material 39 is two-fold symmetric.
  • At least one intersection 103 is arranged in one pixel of the liquid crystal panel 2.
  • one pixel PX of the liquid crystal panel 2 includes three subpixels of red (R), green (G), and blue (B).
  • At least one intersection 103 is arranged in a green G pixel having a relatively high visibility transmittance among the pixels PX.
  • the same number of intersections 103 are arranged in each of the three subpixels. Note that when the pixel PX includes a yellow pixel, at least one intersection 103 may be arranged in the yellow pixel.
  • the width W1 of the first straight portion 101 is substantially constant, and the width W2 of the second straight portion 102 is also substantially constant.
  • the width W1 of the first straight line portion 101 and the width W2 of the second straight line portion 102 are substantially equal to each other (W1 ⁇ W2), for example, 10 ⁇ m.
  • the widths W1 and W2 of the linear portion are too small, the light incident end face side of the light diffusing portion having an inversely tapered shape may stick to each other in the exposure process described later, and the hollow portion may not be formed. If the hollow portion cannot be formed, the light diffusion performance with respect to the area ratio (aperture ratio) of the region where the light shielding layer is not formed may be deteriorated. Moreover, even if the width W1 and W2 of the straight portion are too large, the opening on the light incident end face side of the light diffusing portion having an inversely tapered shape may become larger than necessary, and the light diffusing performance with respect to the aperture ratio may be deteriorated. .
  • the interval Wa between the two adjacent first linear portions 101 is random, and the interval Wb between the two adjacent second linear portions 102 is also random.
  • the interval Wa between the two adjacent first linear portions 101 and the interval Wb between the two adjacent second linear portions 102 are, for example, 6 to 40 ⁇ m.
  • the ratio of the occupied area of the light shielding layer 40 to the total area of the first surface 39a of the base 39 is, for example, 30% ⁇ 10%.
  • a portion corresponding to the lower part of the light shielding layer 40 is a hollow part 42.
  • the light control member 9 has a hollow portion 42 corresponding to the light shielding layer 40.
  • a light diffusion portion 41 is provided in a portion other than the hollow portion 42.
  • the light diffusing portions 41 are provided in a scattered manner on one surface 39 a of the base material 39.
  • the planar shape of the light diffusing portion 41 viewed from the normal direction of the base material 39 is an elongated rhombus extending in the x-axis direction, or a parallelogram having long sides inclined at an acute angle with the x-axis direction.
  • the major axis direction of the rhombus that is the planar shape is substantially aligned with the x-axis direction
  • the minor axis direction of the rhombus that is the planar shape are aligned in the y-axis direction.
  • planar shape of the light diffusing unit 41 may not be a long rhombus extending in the x-axis direction or a parallelogram having a long side inclined at an acute angle with the x-axis direction in all the light diffusing units 41.
  • Other shapes such as a circle, an ellipse, a polygon, and a semicircle may be included.
  • the openings of the light diffusion portion 41 may be formed so as to overlap each other.
  • the first linear portion 101 forming a part of the planar shape of the light shielding layer 40 is inclined at an acute angle with the x-axis direction, and from the lower left to the upper right in the plan view of FIG. It extends toward.
  • the second straight line portion 102 forming a part of the planar shape of the light shielding layer 40 is inclined at an acute angle with the x-axis direction and extends from the upper left to the lower right in the plan view of FIG.
  • the first straight line portion 101 and the second straight line portion 102 are arranged so as to be inclined closer to the x-axis direction than the y-axis direction.
  • the bisector Dk1 of the first angle K1 is arranged to face the y-axis direction
  • the bisector Dk2 of the second angle K2 is arranged to face the x-axis direction.
  • a plurality of source bus lines SB extending in parallel with each other and a plurality of gate bus lines GB extending in parallel with each other are orthogonal to each other.
  • the bisector Dk1 having the first angle K1 and the bisector Dk2 having the second angle K2 shown in FIG. It may be arranged so as to face the extending direction.
  • the reflection surface 41 c of the light diffusion portion 41 corresponds to the first straight portion 101 and the second straight portion 102 of the light shielding layer 40. From this, when the direction of the reflection surface 41c of the light diffusion portion 41 is considered, the ratio of the reflection surface 41c parallel to the x-axis direction and the y-axis direction in the reflection surface 41c of the light diffusion portion 41 is extremely small. Most of the reflection surface 41c forms an angle with the direction and the y-axis direction.
  • the traveling direction of light is projected onto the xy plane
  • the light Lx incident from the x-axis direction and reflected by the reflecting surface 41c travels in the y-axis direction, enters from the y-axis direction, and is reflected from the reflecting surface 41c.
  • the light Ly reflected at has a high rate of traveling in the x-axis direction.
  • the light Lx diffused from the x-axis direction to the y-axis direction is lighter than the light Ly diffused from the y-axis direction to the x-axis direction. large.
  • planar shape of the light shielding layer 40 may partially include shapes such as a circle, an ellipse, a polygon, and a semicircle. Further, a part of the light shielding layer 40 may be formed to overlap.
  • the light control member 9 includes a sealing member 150 that covers the outer peripheral portion of the region where the light shielding layer 40 exists.
  • the sealing member 150 is disposed in a region other than the display region of the liquid crystal display device 1.
  • the sealing member 150 has a rectangular frame shape in plan view of FIG. 7, and is disposed, for example, in a frame portion of the liquid crystal display device 1.
  • the sealing member 150 is formed of the same material as that of the light diffusion portion 41. Note that the sealing member 150 may be formed of a material different from that of the light diffusion portion 41.
  • an index 134 indicating the position of the light control member 9 with respect to the liquid crystal panel 2 is provided in the region where the sealing member 150 is disposed in the light control member 9.
  • the indicator 134 indicating the position of the light control member 9 with respect to the liquid crystal panel 2 is provided on the outer periphery of the region where the light shielding layer 40 exists.
  • the indicators 134 are arranged at the four corners of the sealing member 150 having a rectangular frame shape in plan view of FIG. Note that the position and number of the indicators 134 may be changed as necessary.
  • a portion 41 r (hereinafter referred to as a curved portion of the light diffusion portion) of the light diffusion portion 41 that faces the intersection portion 103 has a rounded shape that protrudes toward the hollow portion 42. .
  • a portion 103 r of the light shielding layer 40 facing the intersecting portion 103 (hereinafter referred to as “curved portion of the intersecting portion”) of the first straight portion 101 and the second straight portion 102 is recessed toward the light diffusion portion 41. It has a rounded shape.
  • the curved portion 41 r on the light incident end face side of the light diffusing portion 41 has a larger radius of curvature than the curved portion 103 r of the intersecting portion 103.
  • the curved portion 41r on the light emission end face side of the light diffusing portion 41 has a radius of curvature substantially equal to the curved portion 103r of the intersecting portion 103. Therefore, the curved portion 41 r on the light incident end face side of the light diffusing portion 41 has a larger radius of curvature than the curved portion 41 r on the light exit end face side of the light diffusing portion 41. Note that light can be reflected in various directions by the reflecting surface formed on the curved portion 41r of the light diffusion portion 41, and the change in viewing angle characteristics can be smoothed.
  • portions of the outer peripheral edge of the light shielding layer 40 corresponding to the first straight portion 101 and the second straight portion 102 are defined as straight edges 111 and 112, and the curve of the intersecting portion 103.
  • a portion corresponding to the portion 103r is defined as a curved edge 113.
  • the total length of all the straight edges 111 and 112 is longer than the total length of all the curved edges 113.
  • the curved edge 113 of the present embodiment corresponds to the second curved edge in the claims.
  • FIGS. 9 and 10 are schematic views showing the arrangement direction of the light shielding layer 40 with respect to the light control member 9.
  • a light control member manufacturing base material 86 that is larger than the size of the formation region 9E of one light control member 9 is prepared in advance, and thereafter Alternatively, the light control member manufacturing base material 86 may be cut and divided to cut out the light control member 9 having a desired size.
  • the light control member manufacturing base material 86 including the formation regions 9E of the plurality of light control members 9 is prepared in advance, and then the light control member manufacturing base material 86 is cut and divided to form a plurality of light control members 9. You may produce it collectively.
  • the light control member manufacturing base material 86 includes at least one light control member 9 formation region 9E.
  • the light control member manufacturing base material 86 shown in FIGS. 9 and 10 is a part of a roll-shaped raw fabric used in the Roll to Roll method.
  • the bisector Dk2 of the second angle K2 of the light shielding layer 40 is the edge of the light control member manufacturing base material 86.
  • the light control member manufacturing base material 86 may be divided by a straight line that is aligned in parallel with 86F and parallel to the edge 86F.
  • the bisector Dk2 having the second angle K2 of the light shielding layer 40 forms an angle of 45 ° with the edge 86F of the base material 86 for manufacturing the light control member.
  • the light control member manufacturing base material 86 may be divided by a straight line that forms an angle of 45 ° with the edge 86F of the base material 86.
  • the angle formed by the bisector Dk2 of the second angle K2 of the light shielding layer 40 and the edge 86F of the base material 86 for manufacturing the light control member does not necessarily need to be 45 °, and may be about 45 ° ⁇ 15 °. Good.
  • the absorption axis or the transmission axis of the polarizing plate has the light control member manufacturing base material 86 for convenience of the manufacturing process. Often coincides with the longitudinal direction. Therefore, the bisector of the second angle K2 of the light shielding layer 40 is set so that the bisector Dk2 of the second angle K2 of the light shielding layer 40 is inclined 45 ° with respect to the absorption axis or transmission axis of the polarizing plate. It is desirable to employ the arrangement shown in FIG. 10 in which the line Dk2 forms an angle of 45 ° with the edge 86F of the light control member manufacturing base material 86.
  • FIG. 11 is a diagram for explaining the definition of the polar angle and the azimuth angle.
  • the angle formed by the observer's line-of-sight direction F with respect to the normal line direction E of the screen of the liquid crystal display device 1 is defined as a polar angle ⁇ .
  • the angle formed by the direction of the line segment G when the line-of-sight direction F of the observer is projected on the screen with reference to the positive direction (0 ° direction) of the x-axis is defined as an azimuth angle ⁇ .
  • FIG. 12 is a front view of the liquid crystal display device 1.
  • the horizontal direction (x-axis direction) is the azimuth angle ⁇ : 0 ° -180 ° direction.
  • the vertical direction (y-axis direction) is the azimuth angle ⁇ : 90 ° -270 ° direction.
  • the transmission axis P1 of the first polarizing plate 3 is arranged in the direction of azimuth angle ⁇ : 45 ° -225 °
  • the transmission axis P2 of the second polarizing plate 7 is set to have an azimuth angle ⁇ : 135 °- It is arranged in the 315 ° direction.
  • FIG. 13 is a schematic diagram showing an arrangement relationship between the light control member 9 and the pixel 50 including the VA mode liquid crystal included in the liquid crystal display device 1.
  • the light control member 9 is arranged on the pixel 50.
  • the pixel 50 and the light control member 9 are shown in parallel in FIG.
  • the transmission axis P1 of the first polarizing plate 3 and the transmission axis P2 of the second polarizing plate 7 are shown.
  • the direction D of the director of the liquid crystal molecules 51, the transmission axis P1 of the first polarizing plate 3, and the transmission axis P2 of the second polarizing plate 7 are illustrated as appropriate.
  • the pixel 50 in this embodiment employs a VA structure in which one pixel 50 is divided into two domains, a first domain 50a and a second domain 50b, a so-called two-domain VA structure.
  • a rectangular pixel is divided into two by a straight line parallel to the longitudinal direction to form a vertically long domain.
  • the liquid crystal molecules 51 included in the pixel 50 are aligned substantially vertically when no voltage is applied.
  • the liquid crystal molecules 51 are illustrated in a conical shape.
  • the vertex of the cone means the end of the liquid crystal molecule 51 on the back side.
  • the bottom surface of the cone indicates the end of the liquid crystal molecule 51 on the viewing side.
  • the direction of the director of the liquid crystal molecules 51 means the major axis direction of the liquid crystal molecules 51, and the direction of the director of the liquid crystal molecules 51 is from the end on the back side of the liquid crystal molecules 51 to the end on the viewing side. Defined as heading.
  • the direction of the director of the liquid crystal molecules 51 is indicated by an arrow D.
  • the direction D of the director of the liquid crystal molecules 51 coincides with the long side direction of the pixel or the long side direction of the domain.
  • the liquid crystal molecules 51 included in the first domain 50a and the liquid crystal molecules 51 included in the second domain 50b are inclined in directions different from each other by 180 ° in the azimuth angle ⁇ : 90 ° -270 ° direction. Oriented. Specifically, the liquid crystal molecules 51 included in the first domain 50a are inclined such that the polar angle ⁇ at the azimuth angle ⁇ : 90 ° is larger than 0 °. The liquid crystal molecules 51 included in the second domain 50b are inclined such that the polar angle ⁇ at the azimuth angle ⁇ : 270 ° is larger than 0 °.
  • the liquid crystal molecules 51 By aligning the liquid crystal molecules 51 in this way, in the first domain 50a, the liquid crystal molecules 51 have an azimuth angle ⁇ of 90 ° and a polar angle of 90 ° at the center in the thickness direction of the liquid crystal layer 11 when a voltage is applied. Tilt down closer to °. In the second domain 50b, at the central portion in the thickness direction of the liquid crystal layer 11 when a voltage is applied, the liquid crystal molecules 51 are tilted so that the azimuth angle ⁇ is 270 ° and the polar angle approaches 90 °.
  • the liquid crystal molecules 51 included in the first domain 50a and the liquid crystal molecules 51 included in the second domain 50b have an azimuth angle ⁇ : 90 ° -270. In the ° direction, they fall down in directions different from each other by 180 °. Note that the liquid crystal molecules 51 in the vicinity of the first alignment film 27 and the second alignment film 34 are regulated by the first alignment film 27 and the second alignment film 34, so that even when a voltage is applied. It remains vertical.
  • the liquid crystal molecules 51 included in the first domain 50a and the liquid crystal molecules 51 included in the second domain 50b do not necessarily need to be tilted in directions different from each other by 180 °, and may be tilted in directions different from each other by about 180 ° ⁇ 10 °. That's fine.
  • the liquid crystal molecules 51 included in the first domain 50a and the liquid crystal molecules 51 included in the second domain 50b are tilted in a direction greatly deviated from 180 °, the first domain 50a and the second domain 50b are transmitted. Rate balance may be lost.
  • the liquid crystal molecules 51 included in the first domain 50a and the liquid crystal molecules 51 included in the second domain 50b are tilted in a direction shifted by several degrees from 180 °. Also good.
  • the same number of intersections 103 are arranged in each of the first domain 50a and the second domain 50b.
  • FIG. 14 is a diagram illustrating gamma characteristics when the polar angle ⁇ is changed in a liquid crystal display device of a comparative example that does not include the light control member 9.
  • the horizontal axis indicates the polar angle (°)
  • the vertical axis indicates the gamma value at each polar angle.
  • a curve Cx shows gamma characteristics when the polar angle ⁇ is changed in the direction of azimuth angle ⁇ : 0 ° -180 °
  • a curve Cy changes the polar angle ⁇ in the direction of azimuth angle 90 ° -270 °.
  • the gamma characteristic is shown.
  • the direction D of the director of the liquid crystal molecules 51 is 90 ° -270 ° as shown in FIG.
  • the gamma value is adjusted to be maximum at a polar angle of 0 ° and 2.2.
  • the input (gradation) is Gr
  • the output (normalized luminance at each angle) is Br
  • the viewing angle characteristics in the azimuth angle ⁇ : 0 ° -180 ° direction and the viewing angle characteristics in the azimuth angle ⁇ : 90 ° -270 ° direction The difference is due to the fact that the liquid crystal molecules are aligned so as to tilt only in the direction of the azimuth angle ⁇ : 90 ° -270 °.
  • the viewpoint moves in the minor axis direction of the liquid crystal molecules, so the birefringence difference of the liquid crystal molecules is so large Absent.
  • the viewpoint is moved in the major axis direction of the liquid crystal molecules, and further along the direction in which the liquid crystal molecules are tilted.
  • the birefringence difference of the liquid crystal molecules is large.
  • D is substantially equal. That is, the direction in which the liquid crystal molecules 51 are tilted when a voltage is applied, that is, the direction D of the director of the liquid crystal molecules 51 intersects the first straight portion 101 and the second straight portion 102 of the light shielding layer 40 of the light control member 9.
  • a light control member 9 is disposed on the surface.
  • the first straight portion 101 and the second straight portion 102 When viewed from the normal direction of the substrate 39, the first straight portion 101 and the second straight portion 102 have an angle larger than 45 ° and smaller than 90 ° with respect to the direction D of the director of the liquid crystal molecules 51.
  • the planar shape of the light shielding layer 40 viewed from the normal direction of the base material 39 forms an angle larger than 0 ° and smaller than 45 ° with respect to the direction perpendicular to the direction D of the director of the liquid crystal molecules 51. It has a first straight line portion 101 and a second straight line portion 102.
  • the angle formed by the first straight line portion 101 and the second straight line portion 102 with respect to the direction perpendicular to the direction D of the director of the liquid crystal molecules 51 is about 33.7 °.
  • the first straight line of the light shielding layer 40 of the light control member 9 is used.
  • the portion 101 and the second linear portion 102 and the absorption axes P1 and P2 of the first polarizing plate 3 and the second polarizing plate 7 form an acute angle.
  • the planar shape of the light shielding layer 40 viewed from the normal direction of the base material 39 is 45 ° with respect to the absorption axes P1 and P2 of one of the first polarizing plate 3 and the second polarizing plate 7.
  • the first straight portion 101 and the second straight portion 102 are formed at an angle of less than.
  • the traveling direction of the light when the traveling direction of the light is projected onto the xy plane, the light Lx incident from the x-axis direction and reflected by the reflecting surface 41c travels in the y-axis direction, enters from the y-axis direction, and is reflected by the reflecting surface.
  • the light Ly reflected by 41c has a high rate of traveling in the x-axis direction.
  • the amount of light Lx that enters from the x-axis direction and travels in the y-axis direction is compared with the amount of light Ly that enters from the y-axis direction and travels in the x-axis direction, it enters from the x-axis direction.
  • the amount of light Lx traveling in the y-axis direction is larger than the light Ly entering from the y-axis direction and traveling in the x-axis direction. The reason for this will be described below with reference to FIG.
  • FIGS. 15A to 15F show light-shielding layers having various shapes and arrangements and light reflection states.
  • the traveling direction of light is indicated by an arrow, and this arrow is a projection of the traveling direction of light on the xy plane.
  • the direction has a component in the z-axis direction.
  • the angles ⁇ 1 to ⁇ 6 are angles formed by the light incident direction and the light emitting direction when projected onto the xy plane.
  • a reflecting surface having an angle larger than 0 ° and smaller than 90 ° with respect to the x-axis may be used.
  • FIG. 15A consider a planar light shielding layer 40X obtained by rotating the first straight line portion and the second straight line portion by 45 ° with respect to the x axis and the y axis.
  • the reflection surface 41Xc makes an angle of 45 ° with respect to the x-axis.
  • the reflection surface 41Xc is arranged in the direction perpendicular to the formation surface of the light shielding layer 40X toward the back side of the paper surface of FIG.
  • the light L1 incident on the reflecting surface 41Xc from the negative side to the positive side of the x axis is reflected by the reflecting surface 41Xc, changes its direction by 90 ° on the xy plane, and travels in a direction parallel to the y axis. . That is, the angle ⁇ 1 formed by the incident direction and the emission direction of the light L1 projected onto the xy plane is 90 °.
  • the reflection surface 41Xc is not arranged in the vertical direction with respect to the light shielding layer 40X, but as shown in FIG. It inclines diagonally toward the broken line (outside shape of hollow part) shown inside the solid line which shows the external shape of the light shielding layer 40X toward the back side.
  • the angle ⁇ 2 is smaller than 90 °, and the light L2 incident on the reflecting surface 41Xc from the negative side of the x axis toward the positive side is reflected by the reflecting surface 41Xc and then in a direction parallel to the y axis. It does not advance, but proceeds in a direction inclined to the negative side of the x axis from the direction parallel to the y axis.
  • the first straight line portion 101 and the second straight line portion 102 are viewed from the normal direction of the base material 39 as in the present embodiment. Are arranged so as to form an angle larger than 45 ° and smaller than 90 ° with respect to the direction D of the director of the liquid crystal molecules 51. In this case, as shown in FIG.
  • the reflection surface 41c is arranged in a direction perpendicular to the formation surface of the light shielding layer 40, the angle ⁇ 3 is larger than 90 °, and the negative x-axis
  • the light L3 incident on the reflection surface 41c from the side toward the positive side is reflected by the reflection surface 41c and does not travel in the direction parallel to the y axis, but is closer to the positive side of the x axis than the direction parallel to the y axis. Proceed in a tilted direction.
  • the actual reflecting surface 41 c is inclined obliquely toward the broken line (outer shape of the hollow portion) shown inside the solid line indicating the outer shape of the light shielding layer 40.
  • the angle ⁇ 4 can be set to 90 °, and the light L4 incident on the reflecting surface 41c from the negative side of the x axis toward the positive side is reflected by the reflecting surface 41c and then in a direction parallel to the y axis. move on.
  • the first straight portion and the second straight portion are liquid crystal molecules.
  • a light-shielding layer 40A arranged to form an angle larger than 0 ° and smaller than 45 ° with respect to the direction D of 51 directors.
  • the angle ⁇ 5 is smaller than 90 ° and the negative value of the x axis is negative.
  • the light L5 incident on the reflecting surface 41Ac from the side toward the positive side is reflected by the reflecting surface 41Ac, and does not travel in the direction parallel to the y axis, but is closer to the negative side of the x axis than the direction parallel to the y axis. Proceed in a tilted direction.
  • the angle ⁇ 6 is further smaller than the angle ⁇ 5, and the reflecting surface is directed from the negative side of the x axis toward the positive side.
  • the light L6 incident on 41Ac is reflected by the reflecting surface 41Ac, and then travels in a direction tilted to the negative side of the x axis from the direction parallel to the y axis.
  • the first straight line portion 101 and the second straight line portion 102 are arranged so as to form an angle larger than 45 ° and smaller than 90 ° with respect to the direction D of the director of the liquid crystal molecules 51 when viewed from the normal direction.
  • the first straight line portion and the second straight line portion are larger than 0 ° with respect to the direction D of the director of the liquid crystal molecules 51.
  • the light shielding layer 40A arranged so as to form an angle smaller than 45 °, when comparing the three cases, light entering the reflecting surface from a direction parallel to the x axis and traveling in a direction parallel to the y axis (2) when viewed from the normal direction of the base material 39, the amount of the first straight portion 10
  • the light shielding layer 40 has the first and second linear portions 102 arranged so as to form an angle larger than 45 ° and smaller than 90 ° with respect to the director direction D of the liquid crystal molecules 51.
  • the light is incident from the x-axis direction.
  • the amount of light traveling in the y-axis direction is larger than the light traveling from the y-axis direction and traveling in the x-axis direction.
  • the light incident on the light control member 9 from the direction of the azimuth angle ⁇ : 0 ° -180 ° is greater than 45 ° with respect to the direction D of the director of the liquid crystal molecules in the light shielding layer 40 and Reflected by the reflecting surface 41c of the light diffusing portion 41 arranged corresponding to the first straight line portion 101 and the second straight line portion 102 that form an angle smaller than 90 °, the azimuth angle ⁇ : 90 ° -270 ° direction Is injected into.
  • the inclination angle ⁇ c of the light diffusing portion 41 is smaller than 90 ° (see FIG.
  • the polar angle ⁇ in the light traveling direction changes in a direction larger than that before entering the light control member 9. .
  • the light control member 9 is used to intentionally move light traveling in the direction of azimuth angle ⁇ : 0 ° -180 ° in the direction of azimuth angle ⁇ : 90 ° -270 ° having inferior viewing angle characteristics. What is necessary is just to mix. Thereby, the difference of the viewing angle characteristic for every direction is relieved. Thereby, the variation of the luminance change is averaged, and the change of the gamma characteristic depending on the polar angle ⁇ in the direction of the azimuth angle ⁇ : 90 ° -270 ° can be improved.
  • the azimuth angle ⁇ which is the direction D of the director of the liquid crystal molecules 51: 90 ° -270
  • the viewing angle characteristics in the ° direction are improved.
  • the viewing angle characteristics in the direction of the azimuth angle ⁇ : 0 ° -180 ° perpendicular to the direction in which the liquid crystal molecules are tilted are good.
  • the light control member 9 it is possible to further improve the viewing angle characteristics in the direction of the azimuth angle ⁇ : 90 ° to 270 ° and to reduce the difference in viewing angle characteristics depending on the azimuth angle.
  • the viewing angle characteristics can be improved while maintaining a high transmittance without complicating the structure in the cell.
  • a liquid crystal panel that performs display in a TN (TwistedwNematic) mode may be used, or a liquid crystal panel that performs display in other liquid crystal modes may be used.
  • a liquid crystal panel that performs display in the TN mode includes a configuration in which a negative-type liquid crystal layer having a hybrid alignment in which the left-right characteristics are superior to the vertical characteristics is used as the viewing angle compensation layer.
  • a WV film (trade name) manufactured by Fuji Film may be used as the negative liquid crystal layer.
  • the first alignment film has an alignment regulating force that horizontally aligns the liquid crystal molecules constituting the liquid crystal layer
  • the second alignment film includes the liquid crystal molecules that constitute the liquid crystal layer.
  • the planar shape of the light shielding layer 40 viewed from the normal direction of the base material 39 is the direction of the director of the liquid crystal molecules, the first polarizing plate 3 and It has the 1st linear part 101 and the 2nd linear part 102 which cross
  • (Manufacturing method of liquid crystal display device) 16 to 19 are perspective views showing the manufacturing process of the light control member 9 step by step.
  • the manufacturing method of the light control member 9 constituting the liquid crystal display device 1 having the above configuration will be mainly described.
  • the outline of the manufacturing process of the liquid crystal panel 2 will be described first. First, the TFT substrate 10 and the color filter substrate 12 are respectively produced. Thereafter, the surface of the TFT substrate 10 on which the TFT 19 is formed and the surface of the color filter substrate 12 on which the color filter 31 is formed are arranged to face each other. Thereafter, the TFT substrate 10 and the color filter substrate 12 are bonded together via a seal member. Thereafter, liquid crystal is injected into a space surrounded by the TFT substrate 10, the color filter substrate 12, and the seal member. The first retardation film 4, the first polarizing plate 3, the second retardation film 6, and the second polarizing plate 7 are attached to both surfaces of the liquid crystal cell 5 thus formed using an optical adhesive or the like. Match. The liquid crystal panel 2 is completed through the above steps.
  • the manufacturing method of the TFT substrate 10 and the color filter substrate 12 may be a conventional method, and the description thereof is omitted.
  • a polyethylene terephthalate base material 39 having a thickness of 100 ⁇ m is prepared.
  • a black negative resist containing carbon as a light shielding layer material is applied to one surface of the substrate 39 using a slit coater.
  • the coating film 45 with a film thickness of 150 nm is formed.
  • the substrate 39 on which the coating film 45 is formed is heated with a heater, and the coating film 45 is pre-baked at a temperature of 90 ° C. Thereby, the solvent in the black negative resist is volatilized.
  • the coating film 45 is irradiated with light L through a photomask 47 in which an opening pattern 46 having a lattice shape, for example, a lattice shape, is exposed.
  • an exposure apparatus using a mixed line of i-line having a wavelength of 365 nm, h-line having a wavelength of 404 nm, and g-line having a wavelength of 436 nm is used.
  • the exposure dose is 100 mJ / cm 2 .
  • the coating film 45 made of black negative resist is developed using a dedicated developer, dried at 100 ° C., and the planar shape is as shown in FIG.
  • the lattice-shaped light shielding layer 40 is formed on one surface of the base material 39.
  • the transparent negative resist is exposed using the light shielding layer 40 made of a black negative resist as a mask to form the hollow portion 42. Therefore, the position of the opening pattern 46 of the photomask 47 corresponds to the position where the hollow portion 42 is formed.
  • the planar light-shielding layer 40 having a lattice shape corresponds to a non-formation region (hollow portion 42) of the light diffusion portion 41 in the next step.
  • the opening pattern 46 is a lattice pattern, and the width of the straight line portion is constant.
  • the arrangement (interval) (pitch) between two adjacent linear portions in the opening pattern 46 is neither regular nor periodic.
  • the interval (pitch) between the opening patterns 46 is preferably smaller than the interval (pitch, for example, 60 ⁇ m) between the pixels of the liquid crystal panel 2.
  • the light shielding layer 40 is formed by a photolithography method using a black negative resist, but the present invention is not limited to this. In addition to this, if a photomask in which the opening pattern 46 and the light shielding pattern of the present embodiment are reversed is used, a positive resist having light absorption can also be used. Alternatively, the light shielding layer 40 may be directly formed using a vapor deposition method, a printing method, or the like.
  • the light shielding layer 140F when the light shielding layer is formed by using a printing method such as an ink jet method, the light shielding layer 140F includes a plurality of dot-like portions 140a as shown in FIG.
  • the dotted portion 140a is a minimum unit dot constituting a pattern formed by the printing apparatus.
  • the light shielding layer is not limited to a uniform film, and may be composed of an assembly of a plurality of minute regions.
  • a transparent negative resist made of an acrylic resin is applied to the upper surface of the light shielding layer 40 as a light diffusion portion material using a slit coater.
  • the coating film 48 with a film thickness of 20 ⁇ m is formed.
  • the base material 39 on which the coating film 48 is formed is heated with a heater, and the coating film 48 is pre-baked at a temperature of 95 ° C. Thereby, the solvent in the transparent negative resist is volatilized.
  • the coating film 48 is irradiated with diffused light F from the base material 39 side using the light shielding layer 40 as a mask to perform exposure.
  • an exposure apparatus using a mixed line of i-line having a wavelength of 365 nm, h-line having a wavelength of 404 nm, and g-line having a wavelength of 436 nm is used.
  • the exposure amount is 500 mJ / cm 2 .
  • the substrate 39 on which the coating film 48 is formed is heated with a heater, and post-exposure baking (PEB) of the coating film 48 is performed at a temperature of 95 ° C.
  • PEB post-exposure baking
  • the coating film 48 made of a transparent negative resist is developed using a dedicated developer, post-baked at 100 ° C., and a transparent resin layer (light diffusion portion 41) having a hollow portion 42 as shown in FIG. Is formed on one surface of the substrate 39.
  • the transparent negative resist constituting the coating film 48 is radially spread so as to spread outward from the non-formation region of the light shielding layer 40. To be exposed. Thereby, the forward tapered hollow portion 42 is formed.
  • the light diffusion portion 41 has a reverse tapered shape. The inclination angle of the reflection surface 41 c of the light diffusion portion 41 can be controlled by the degree of diffusion of the diffused light F.
  • the transparent negative resist constituting the coating film 48 is exposed radially so as to spread outward from the non-formation region of the light shielding layer 40, so that the light diffusion portion 41.
  • the diffused light F is larger than the curved portion 41r on the light emitting end face side of the light diffusing portion 41.
  • the outline of the irradiation area can be blurred.
  • the radius of curvature of the curved portion 41r on the light incident end face side of the light diffusing portion 41 can be controlled.
  • the radius of curvature of the curved portion 41r on the light incident end face side of the light diffusing portion 41 can be made larger than the radius of curvature of the curved portion 41r on the light exit end face side of the light diffusing portion 41.
  • the sealing member 150 is indicated by a two-dot chain line. When the sealing member 150 is formed of the same material as that of the light diffusion portion 41, the sealing member 150 may be formed in the same process as the light diffusion portion 41 formation process.
  • the light F used here parallel light, diffused light, or light whose intensity at a specific emission angle is different from that at another emission angle, that is, light having strength at a specific emission angle can be used.
  • the inclination angle of the reflection surface 41c of the light diffusing unit 41 becomes a single inclination angle of, for example, about 60 ° to 90 °.
  • the tilt angle changes continuously, and the cross-sectional shape becomes a curved inclined surface.
  • an inclined surface having a slope angle corresponding to the strength is obtained.
  • the inclination angle of the reflection surface 41c of the light diffusing unit 41 can be adjusted.
  • the curved portion 41r on the light incident end face side of the light diffusing portion 41 which is a portion away from the light shielding layer 40 in the light diffusing portion 41 has a light diffusion.
  • the curvature radius of the curved portion 41r on the light incident end face side of the light diffusing portion 41 can be controlled by blurring the outline of the irradiation region of the diffused light F rather than the curved portion 41r on the light emitting end face side of the portion 41,
  • the radius of curvature of the curved portion 41r on the light incident end face side of the light diffusing portion 41 can be made larger than the radius of curvature of the curved portion 41r on the light exit end face side of the light diffusing portion 41. Thereby, it becomes possible to adjust the light diffusibility of the light control member 9 so that the target visibility can be obtained.
  • a diffusion plate having a haze of about 50 is arranged on the optical path of the light emitted from the exposure apparatus. You may irradiate light through. Further, when developing with a developer, the developer may be pressurized and sprayed onto a transparent negative resist to promote removal of unnecessary resist.
  • the total light transmittance of the light control member 9 is preferably 90% or more. When the total light transmittance is 90% or more, sufficient transparency can be obtained, and the optical performance required for the light control member can be sufficiently exhibited.
  • the total light transmittance is as defined in JIS K7361-1. In the present embodiment, an example in which a liquid resist is used has been described, but a film resist may be used instead of this configuration.
  • the completed light control member 9 is placed with the adhesive layer 43 in a state where the base material 39 faces the viewing side and the light diffusion portion 41 faces the second polarizing plate 7. To the liquid crystal panel 2.
  • a heat and pressure treatment may be performed.
  • a part of the adhesive layer 43 enters a part of the hollow portion 42 during the heat and pressure.
  • the adhesive layer 43 that has entered the hollow portion 42 is cured.
  • the cured adhesive layer 43 is caught on the light incident end face side of the light diffusing portion 41 having a reverse taper shape. Therefore, the adhesion of the light control member 9 to the liquid crystal panel 2 is improved.
  • the thickness of the adhesive layer 43 is preferably smaller than the height t1 (see FIG. 6) of the light diffusion portion 41 so that the hollow portion 42 is not filled with the adhesive layer 43.
  • the heat and pressure treatment By applying the heat and pressure treatment, the adhesion of the light control member 9 to the liquid crystal panel 2 is improved, and depending on the pressure, the inclination angle of the reflection surface 41c of the light diffusing portion 41 is reduced, and the light diffusibility is increased. it can.
  • a method for the heat and pressure treatment for example, an autoclave device, a warming laminator, or the like can be used. Through the above steps, the liquid crystal display device 1 of the present embodiment is completed.
  • the viewing angle characteristics are obtained by mixing light of different directions by the light control member 9.
  • the orientation dependency of is relaxed.
  • light in the left-right direction that is excellent in viewing angle characteristics is preferentially mixed in the vertical direction that is inferior in viewing angle characteristics. Therefore, even if the observer tilts the line of sight from the front direction (normal direction) of the liquid crystal display device 1 to any direction, a good display can be visually recognized, and the liquid crystal display device has excellent viewing angle characteristics. 1 can be provided.
  • an interference fringe pattern is visually recognized when the period of each pattern is slightly shifted.
  • a light control member in which a plurality of light diffusion portions are arranged in a matrix and a liquid crystal panel in which a plurality of pixels are arranged in a matrix are overlapped, the periodic pattern by the light diffusion portions of the light control members and the liquid crystal panel.
  • the interval Wa between the two first linear portions 101 adjacent to each other in the light shielding layer 40 and the interval Wb between the second linear portions 102 are random.
  • the light diffusing portion 41 is formed in a region other than the region where the light shielding layer 40 is formed. Therefore, moire due to light interference does not occur with the regular arrangement of the pixels of the liquid crystal panel 2, and the display quality can be maintained.
  • the interval Wa between the two first linear portions 101 adjacent to each other in the light shielding layer 40 and the interval Wb between the second linear portions 102 are random. However, not all the intervals are necessarily random. . If a plurality of intervals are aperiodic, the occurrence of moire can be suppressed. Furthermore, when some moiré is allowed depending on the situation and application, the interval Wa between the two first linear portions 101 adjacent to each other in the light shielding layer 40 and the interval Wb between the second linear portions 102 are determined. It may be arranged periodically.
  • the width W1 of the first straight portion 101 is substantially constant, and the width W2 of the second straight portion 102 is also substantially constant. Therefore, the width of the hollow portion 42 arranged corresponding to the first straight portion 101 and the second straight portion 102 is also constant, and it is difficult for the adjacent light diffusion portions 41 to contact each other with the hollow portion 42 interposed therebetween. Can do.
  • the curved portion 41 r that is a portion facing the intersecting portion 103 in the light diffusing portion 41 has a rounded shape that protrudes toward the hollow portion 42. Therefore, the light incident on the reflection surface 41c along the curved portion 41r of the light diffusion portion 41 is reflected in a different direction from the light incident on the reflection surface 41c along the first straight line portion 101 and the second straight line portion 102.
  • light Lx1 incident on the reflective surface 41c along the first straight line portion 101 and the second straight line portion 102 from the negative side to the positive side of the x-axis is reflected by the reflective surface 41c.
  • the process proceeds in a direction parallel to the y-axis.
  • the light Lx2 incident on the reflection surface 41c along the curved portion 41r of the light diffusion portion 41 from the negative side to the positive side of the x axis is reflected by the reflection surface 41c and then travels in a direction parallel to the y axis.
  • the process proceeds in a direction inclined to the positive side of the x axis from the direction parallel to the y axis.
  • the light diffusibility can be enhanced by making the curved portion 41r of the light diffusion portion 41 into a rounded shape.
  • At least one intersection 103 is disposed in the pixel PX. Therefore, it is possible to reduce variations in luminance characteristics in each pixel PX, compared to the case where the intersection 103 is arranged only in some pixels PX.
  • At least one intersection 103 is arranged in a green G pixel having a relatively high visibility transmittance among the pixels PX.
  • the human eye has different sensitivity depending on the wavelength of light, and the wavelength of green light (495 nm to 570 nm) is relatively sensitive and appears bright.
  • the intersection 103 By arranging the intersection 103 in the green G pixel, the influence on the sensitivity of the human eye compared to the case where the intersection 103 is arranged in a pixel having a relatively low visibility transmittance among the pixels PX. Therefore, the effect of improving the viewing angle characteristics of the liquid crystal display device can be enhanced.
  • one pixel PX of the liquid crystal panel 2 is composed of three sub-pixels of red (R), green (G), and blue (B).
  • the same number of units 103 are arranged in three subpixels. For this reason, it is possible to reduce variations in luminance characteristics in each sub-pixel as compared with a case where different numbers of intersections 103 are arranged in three sub-pixels.
  • the same number of intersections 103 are arranged in the first domain 50a and the second domain 50b. Therefore, it is possible to reduce variations in luminance characteristics in each domain, compared to a case where different numbers of intersections 103 are arranged in two domains.
  • the light control member 9 includes a sealing member 150 that covers the outer peripheral portion of the region where the light shielding layer 40 exists. Therefore, the light shielding layer 40 is not exposed to the outside, and the hollow portion 42 disposed corresponding to the light shielding layer 40 is not exposed to the outside. Therefore, it is possible to prevent water or the like from entering the hollow portion 42 from the outside. If a liquid such as water enters the hollow portion 42, the reflectance at the tapered inclined surface of the light diffusing portion 41 is lowered, and visibility may be impaired.
  • the sealing member 150 is disposed in a region other than the display region of the liquid crystal display device 1. Therefore, even when an observer views the display image of the liquid crystal display device 1, the sealing member 150 is not visually recognized in the display area of the liquid crystal display device 1. Accordingly, display quality can be maintained.
  • the sealing member 150 is formed of the same material as the light diffusion portion 41. Therefore, compared with the case where the sealing member 150 is formed of a material different from that of the light diffusion portion 41, it is not necessary to prepare a material dedicated to the sealing member 150, and the material cost can be reduced.
  • a sealing member 150 that has a second straight portion 102 and covers the outer periphery of the region where the light shielding layer 40 exists.
  • the planar shape of the light shielding layer 40 viewed from the normal direction of the base material 39 is the absorption axis of the polarizing plate disposed on the side opposite to the base material 39 side (for example, the light incident end face 41b side of the light diffusion portion 41)
  • the light control member 9 used for reducing the viewing angle dependency of the liquid crystal display device 1 can be provided. Further, in the light control member 9, it is possible to prevent water or the like from entering the hollow portion 42 from the outside.
  • a second linear portion 102 having an intersection 103 that intersects the first linear portion 101, and the curved portion 41 r on the light incident end face side of the light diffusing portion 41 is a curved portion 103 r of the intersecting portion 103. Larger radius of curvature. Therefore, the light can be reflected in various directions by the reflecting surface formed on the curved portion 41r of the light diffusing portion 41, and the change in viewing angle characteristics can be smoothed.
  • the total length of all of the lengths of the straight edges 111 and 112 when viewed from the normal direction of the base material 39 is the length of the curve edge 113. It is longer than the total length of all.
  • the azimuth distribution of the light diffusion intensity of the light control member 9 viewed from the normal direction of the substrate 39 is two-fold symmetric.
  • the first straight portion 101 forms 33.7 ° with respect to the long side of the base material 39
  • the second straight portion 102 has 146.
  • the direction in which the light diffusion intensity is relatively increased in the light control member 9 (hereinafter referred to as “strong scattering direction”) is a direction V1 orthogonal to the first straight line portion 101 and the second straight line portion 102.
  • the direction V2 is orthogonal to the direction.
  • FIG. 22 is a diagram showing the azimuth distribution of the light diffusion intensity of the light control member 9 as viewed from the normal direction of the base material 39.
  • FIG. 22 shows an azimuth distribution of light diffusion intensity at a polar angle of 30 ° as an example.
  • the azimuth distribution of the light diffusion intensity of the light control member 9 viewed from the normal direction of the substrate 39 is two-fold symmetric.
  • the light diffusion intensity of the light control member 9 viewed from the normal direction of the base material 39 is as follows: azimuth angle 33.7 °, azimuth angle 146.3 °, azimuth angle 213.7 °, azimuth angle 326 at a polar angle of 30 °. Maximum value at 3 °.
  • the direction of the azimuth angle at these maximum values coincides with the strong scattering direction shown in FIG.
  • the intensity of the light diffusion intensity of the light control member 9 as viewed from the normal direction of the base material 39 (intensity strength shown in FIG. 22, medium intensity weakness) will be described later (see FIG. 41).
  • FIG. 23 is a plan view of the light control member 209 of the second embodiment. As shown in FIG. 23, the light control member 209 of this embodiment differs in the structure of a light shielding layer with respect to the light control member 9 of 1st Embodiment.
  • the light shielding layer 40 is formed in a lattice pattern as viewed from the normal direction of the first surface 39a of the base material 39.
  • the light control member 209 of the present embodiment includes a plurality of X-shaped light shielding layers 240 that are scattered on the first surface 39 a of the base material 39.
  • the plurality of light shielding layers 240 are randomly arranged as viewed from the normal direction of the first surface 39 a of the base material 39.
  • the planar shape of the light shielding layer 240 viewed from the normal direction of the base material 39 includes a first straight line portion 201 that extends linearly in one direction and a second straight line portion 202 that intersects the first straight line portion 201. And have. In the light shielding layer 240, an intersection 203 is formed at a portion where the first straight portion 201 and the second straight portion 202 intersect. The first straight line portion 201 and the second straight line portion 202 form an angle larger than 45 ° and smaller than 90 ° with respect to the direction D of the director of the liquid crystal molecules when viewed from the normal direction of the substrate 39. .
  • the planar shape of the light shielding layer 240 viewed from the normal direction of the substrate 39 is an X shape that is long in the x-axis direction.
  • the width W1 of the first straight line portion 201 is substantially constant, and the width W2 of the second straight line portion 202 is also substantially constant.
  • the width W1 of the first straight line portion 201 and the width W2 of the second straight line portion 202 are substantially equal to each other (W1 ⁇ W2).
  • a portion (corresponding to the curved portion 41r of the light diffusion portion shown in FIG. 8) of the light diffusion portion facing the intersection portion 203 has a rounded shape that protrudes toward the hollow portion.
  • the portion of the first straight portion 201 and the second straight portion 202 of the light shielding layer 240 that faces the intersecting portion 203 (corresponding to the intersecting curved portion 103r shown in FIG.
  • the curved portion on the light incident end face side of the light diffusion portion has a larger radius of curvature than the curved portion of the intersecting portion 203.
  • the curved portion on the light emission end face side of the light diffusing portion has a radius of curvature substantially equal to the curved portion of the intersecting portion 203. Therefore, the curved part on the light incident end face side of the light diffusing part has a larger radius of curvature than the curved part on the light emitting end face side of the light diffusing part.
  • a portion corresponding to the first straight portion 201 and the second straight portion 202 in the outer peripheral edge of the light shielding layer 240 is a straight edge (the straight edge 111 shown in FIG. 8). , 112), and a portion corresponding to the curved portion of the intersection 203 is defined as a curved edge (corresponding to the curved edge 113 shown in FIG. 8).
  • the total length of all the lengths of the straight edges is longer than the total length of all the lengths of the curved edges.
  • FIG. 24 is a plan view showing one light shielding layer 240 among the plurality of light shielding layers 240.
  • the length of the light shielding layer 240 in the left-right direction (hereinafter referred to as “left-right length”) is B1.
  • the length of the light shielding layer 240 in the vertical direction (hereinafter referred to as “vertical length”) is B2.
  • the light shielding layer 240 has an anisotropic shape in which the left-right length B1 and the vertical length B2 are different.
  • the ratio (B1 / B2) of the left and right length B1 to the vertical length B2 of the light shielding layer 240 is, for example, 1 or more and 3 or less.
  • the left and right length B1 of the light shielding layer 240 is, for example, 10 to 20 ⁇ m
  • the vertical length B2 of the light shielding layer 240 is, for example, 5 to 10 ⁇ m.
  • the ratio of the horizontal length B1 to the vertical length B2 is different.
  • the left-right direction (direction along the left-right length B1) of all the light shielding layers 240 is arranged in the azimuth angle ⁇ : 0 ° -180 ° direction.
  • FIG. 25 is a graph showing the relationship between human visual acuity and the size of an object that can be recognized by human eyes.
  • the size of the light shielding layer 240 in plan view should be reduced to some extent. The reason is that if the size of the light shielding layer 240 in plan view is too large, the light shielding layer 240 may be recognized as a dot when an observer views the display image of the liquid crystal display device.
  • the left and right length B1 of the light shielding layer 240 is preferably 100 ⁇ m or less.
  • a method for guiding the left and right length B1 of the light shielding layer 240 will be described.
  • a range AR1 above the curve C shown in FIG. 25 is a range in which an object can be recognized by human eyes.
  • the range AR2 below the curve C is a range in which an object cannot be recognized by human eyes.
  • This curve C is defined by equation (3) derived from the following equation.
  • the visual acuity ⁇ is derived from the following equation (1) when the minimum viewing angle is ⁇ (minutes).
  • the minimum viewing angle ⁇ is derived from the following equation (2), where V (mm) is the size of an object that can be recognized by the human eye, and W (m) is the distance from the human eye to the object.
  • V [ ⁇ W ⁇ 2 ⁇ / (360/60) ⁇ ⁇ 1000] / ⁇ (4)
  • the distance W from the human eye to the object is about 20 to 30 cm.
  • the distance W from the human eye to the object is 25 cm.
  • the minimum visual acuity for obtaining a driving license is 0.7.
  • the size V of the object that can be recognized by the human eye is 100 ⁇ m. If the size V of the object is 100 ⁇ m or less, it will be difficult to recognize the object with human eyes. That is, the left-right length B1 of the light shielding layer 240 is preferably 100 ⁇ m or less. Thereby, it is suppressed that the light shielding layer 240 is recognized as a dot on the display screen of the liquid crystal display device. In this case, the vertical length B2 of the light shielding layer 240 is set shorter than the left and right length B1 of the light shielding layer 240 and 100 ⁇ m or less.
  • 85V type Super Hi-Vision compatible display is about 103Pixel / Inch
  • 60V type is about 146Pixel / Inch.
  • the color filter is composed of three colors of R, G, and B
  • the pixel size is about 82 ⁇ m ⁇ 246 ⁇ m for the 85V type and 58 ⁇ m ⁇ 174 ⁇ m for the 60V type.
  • the size of the light shielding layer 240 is 40 ⁇ m or less, it is not visually recognized as a dot. However, when many light shielding layers 240 are arranged over a plurality of pixels, light emitted from different pixels is mixed, resulting in a decrease in resolution.
  • the left and right length B1 of the light shielding layer 240 is 1/3 to 1/2 with respect to the width of the pixel.
  • the left and right length B1 of the light shielding layer 240 is, for example, 19 ⁇ m or less.
  • the height t1 (see FIG. 6) of the light diffusion portion 41 is equal to or less than the widths W1 and W2 of the linear portions of the light shielding layer 240.
  • FIG. 26 is a plan view of the light shielding layer 240X of the comparative example.
  • FIG. 27 is a diagram for explaining the operation of the planar shape of the light shielding layer 240 of the second embodiment. 26 and 27, the light diffused from the x-axis direction toward the y-axis direction is denoted by a symbol Lx, and the light diffused from the y-axis direction toward the x-axis direction is denoted by a symbol Ly.
  • the light shielding layer 240X of the comparative example a light shielding layer having a diamond shape in plan view is considered.
  • the light incident on the light control member is reflected by the reflection surface of the light diffusing portion arranged corresponding to the four sides of the rhombus.
  • the reflection surfaces of the light diffusion portions are arranged at a total of four locations (two-dot chain line portions shown in FIG. 26).
  • the light incident on the light control member 209 is a light diffusion that is arranged corresponding to the first straight line portion 201 and the second straight line portion 202 of the light shielding layer 240. It is reflected by the reflection surface of the part. Focusing on the upper half with respect to the intersection 203 of the X-shaped light shielding layer 240, the reflection surface of the light diffusing portion includes two locations on the upper left side and the lower right side of the first linear portion 201, and the second straight line. It is arranged at a total of four locations (two-dot chain line portion shown in FIG. 27), two locations on the upper right side and lower left side of the portion 202.
  • the reflection surface of the light diffusing portion is also arranged in a total of four locations (not shown) in the lower half of the X-shaped light shielding layer 240. Therefore, the X-shaped light shielding layer 240 as a whole is a reflective surface of the light diffusing portion. Are arranged in a total of eight locations. Therefore, in the case of the X-shaped light shielding layer 240 of the present embodiment, the number of reflection surfaces of the light diffusion portion is larger than that in the case of the diamond-shaped light shielding layer 240X. If the layer 240X has the same area, the amount of light Lx incident from the x-axis direction and traveling in the y-axis direction can be increased. That is, if the same aperture ratio is used in the present embodiment and the comparative example, the present embodiment has higher light reflection performance than the comparative example.
  • the display screen is excellent in viewing angle characteristics by suppressing a change in gamma characteristics when the display screen is viewed obliquely in any orientation. An image can be realized.
  • FIGS. 28 to 31 are plan views showing light control members 209A, 209B, 209C, and 209D of the present modification. As shown in FIGS. 28 to 31, the light control members 209A, 209B, 209C, and 209D of the present modification are different from the light control member 209 of the second embodiment in the configuration of the light shielding layer.
  • the light control members 209A, 209B, 209C, and 209D of the present modification also have the width of the first straight line portion in the light shielding layer (the first line shown in FIG. 23), similarly to the light control member 209 of the second embodiment. (Corresponding to the width W1 of the straight line portion) is substantially constant, and the width of the second straight line portion (corresponding to the width W2 of the second straight line portion shown in FIG. 23) is also substantially constant. The width of the first straight line portion and the width of the second straight line portion are substantially equal to each other.
  • a portion (corresponding to the curved portion 41r of the light diffusion portion shown in FIG.
  • the portion of the light shielding layer that faces the intersection (corresponding to the curved portion 103r of the intersection shown in FIG. 8) of the first straight portion and the second straight portion is rounded toward the light diffusion portion.
  • the curved portion on the light incident end face side of the light diffusing portion has a larger radius of curvature than the curved portion at the intersection.
  • the curved portion on the light emission end face side of the light diffusion portion has a radius of curvature that is substantially equal to the curved portion of the intersection.
  • the curved part on the light incident end face side of the light diffusing part has a larger radius of curvature than the curved part on the light emitting end face side of the light diffusing part.
  • portions corresponding to the first straight portion and the second straight portion of the outer peripheral edge of the light shielding layer are straight edges (corresponding to the straight edges 111 and 112 shown in FIG. 8).
  • a portion corresponding to the curved portion of the intersection is defined as a curved edge (corresponding to the curved edge 113 shown in FIG. 8).
  • the total length of all the straight edge lengths is longer than the total length of all the curved edge lengths.
  • the ratio of the left and right length B1 to the vertical length B2 is substantially equal in all the light shielding layers 240.
  • the light control member 209A of the first modified example of the second embodiment includes a light shielding layer 240A having a different ratio of the left and right length B1 to the vertical length B2. . It is desirable that the ratio of the left and right length B1 to the vertical length B2 is different within a range of 1 or more and 3 or less.
  • the left and right directions of all the light shielding layers 240 are arranged in the direction of the azimuth angle ⁇ : 0 ° -180 °.
  • the left-right direction of a part of the plurality of light shielding layers 240B is the other light shielding.
  • the direction is different from the horizontal direction of the layer 240B.
  • the left-right direction of some of the light shielding layers 240B is deviated from the direction of the azimuth angle ⁇ : 0 ° -180 °.
  • all the light shielding layers 240 are scattered on the base material 39.
  • a part of the light shielding layers 240C among the plurality of light shielding layers 240C is one of the other light shielding layers 240C. Connected to the department.
  • the planar shape of all the light shielding layers 240 was X-shaped.
  • the planar shape of a part of the plurality of light shielding layers 240D is circular or elliptical. It is. In addition to circular and elliptical shapes, for example, other planar light shielding layers such as hexagons may be mixed.
  • FIGS. 32 and 33 a third embodiment of the present invention will be described with reference to FIGS. 32 and 33.
  • the basic configuration of the liquid crystal display device of this embodiment is the same as that of the first embodiment, and the configuration of the light shielding layer in the light control member is different from that of the first embodiment. Therefore, in this embodiment, the description of the basic configuration of the liquid crystal display device is omitted, and the light control member is described.
  • FIG. 32 is a plan view of the light control member 309 of the third embodiment.
  • FIG. 33 is a plan view showing a non-forming portion 304 of the light shielding layer 340 of the third embodiment.
  • the light control member 309 of this embodiment differs in the structure of a light shielding layer with respect to the light control member 9 of 1st Embodiment.
  • the width of the first straight portion 301 in the light shielding layer 340 (the width of the first straight portion shown in FIG. 8) is the same as that of the light control member 9 of the first embodiment. (Corresponding to W1) is substantially constant, and the width of the second straight line portion 302 (corresponding to the width W2 of the second straight line portion shown in FIG. 8) is also substantially constant.
  • the width of the first straight line portion 301 and the width of the second straight line portion 302 are substantially equal to each other.
  • a portion (corresponding to the curved portion 41r of the light diffusing portion shown in FIG. 8) of the light diffusing portion 341 facing the intersecting portion 303 has a rounded shape that protrudes toward the hollow portion 42.
  • a portion of the first straight portion 301 and the second straight portion 302 of the light shielding layer 340 that faces the intersecting portion 303 is directed toward the light diffusion portion 341. It has a concave rounded shape.
  • the curved portion on the light incident end face side of the light diffusion portion 341 has a larger radius of curvature than the curved portion of the intersecting portion 303.
  • the curved portion on the light emission end face side of the light diffusing portion 341 has a radius of curvature substantially equal to the curved portion of the intersecting portion 303.
  • the curved portion on the light incident end face side of the light diffusing portion 341 has a larger radius of curvature than the curved portion on the light exit end face side of the light diffusing portion 341.
  • portions corresponding to the first straight portion 301 and the second straight portion 302 in the outer peripheral edge of the light shielding layer 340 are straight edges (the straight edges 111 shown in FIG. 8). , 112), and a portion corresponding to the curved portion of the intersecting portion 303 is defined as a curved edge (corresponding to the curved edge 113 shown in FIG. 8).
  • the total length of all the lengths of the straight edges is longer than the total length of all the lengths of the curved edges.
  • the light shielding layer 40 is formed continuously without the first straight portion 101 and the second straight portion 102 being interrupted.
  • the non-forming part 304 in which the light shielding layer 340 is not formed on at least a part of the first straight part 301 and the second straight part 302. Is provided.
  • a plurality of non-forming portions 304 are randomly arranged as viewed from the normal direction of the first surface 39a of the base 39.
  • the non-forming portion 304 is at least one of the first straight portion 301, the second straight portion 302, and the intersecting portion 303 in the light shielding layer 340 when viewed from the normal direction of the first surface 39 a of the base material 39.
  • the department Provided in the department.
  • a portion 341r facing the non-forming portion 304 of the light diffusing portion 341 (hereinafter referred to as “curved portion of the light diffusing portion”) has a rounded shape that is concave toward the hollow portion 42.
  • a portion 304 r (hereinafter referred to as “curved portion of the non-formed portion”) of the light shielding layer 340 facing the non-formed portion 304 among the first straight portion 301 and the second straight portion 302 is directed toward the light diffusion portion 341. And has a rounded and convex shape.
  • the curved portion 341r on the light incident end face side of the light diffusion portion 341 has a larger radius of curvature than the curved portion 304r of the non-forming portion 304.
  • the curved portion 341r on the light emission end face side of the light diffusing portion 341 has a radius of curvature substantially equal to the curved portion 304r of the non-forming portion 304. Therefore, the curved portion 341r on the light incident end face side of the light diffusing portion 341 has a larger radius of curvature than the curved portion 341r on the light exit end face side of the light diffusing portion 341.
  • the portions corresponding to the first straight portion 301 and the second straight portion 302 are defined as straight edges 311, 312, and the non-forming portion 304.
  • a portion corresponding to the curved portion 304r is defined as a curved edge 314.
  • the total length of all the straight edges 311, 312 is added to be longer than the total length of all the curved edges 314.
  • the curved edge 314 of the present embodiment corresponds to the curved edge in the claims.
  • the curved portion 341 r that is a portion facing the non-forming portion 304 of the light diffusing portion 341 has a rounded shape that is concave toward the hollow portion 42. Therefore, the light incident on the reflection surface along the curved portion 341r of the light diffusion portion 341 is reflected in a direction different from the light incident on the reflection surfaces along the first straight line portion 301 and the second straight line portion 302. For example, as shown in FIG. 33, the light Lx1 incident on the reflecting surface along the second straight line portion 302 from the negative side to the positive side of the x-axis is reflected by the reflecting surface and then parallel to the y-axis.
  • the light Lx3 incident on the reflecting surface along the curved portion 341r of the light diffusing unit 341 from the negative side to the positive side of the x axis is reflected by the reflecting surface and does not travel in the direction parallel to the y axis.
  • the process proceeds in a direction inclined to the positive side of the x axis from the direction parallel to the y axis and a direction inclined to the negative side of the x axis from the direction parallel to the y axis.
  • FIG. 34 is a plan view of the light control member 409 of the fourth embodiment. As shown in FIG. 34, the light control member 409 of this embodiment differs in the structure of a light shielding layer with respect to the light control member 309 of 3rd Embodiment.
  • the width of the first straight portion 401 in the light shielding layer 440 (the width of the first straight portion shown in FIG. 8). (Corresponding to W1) is substantially constant, and the width of the second straight line portion 402 (corresponding to the width W2 of the second straight line portion shown in FIG. 8) is also substantially constant.
  • the width of the first straight line portion 401 and the width of the second straight line portion 402 are substantially equal to each other.
  • a portion (corresponding to the curved portion 41r of the light diffusing portion shown in FIG. 8) of the light diffusing portion 441 facing the intersection 403 has a rounded shape that protrudes toward the hollow portion 42. .
  • a portion of the first straight portion 401 and the second straight portion 402 of the light shielding layer 440 that faces the intersecting portion 403 is directed toward the light diffusion portion 441. It has a concave rounded shape.
  • the curved portion on the light incident end face side of the light diffusion portion 441 has a larger radius of curvature than the curved portion of the intersecting portion 403.
  • the curved portion on the light emission end face side of the light diffusion portion 441 has a radius of curvature substantially equal to the curved portion of the intersecting portion 403.
  • the curved portion on the light incident end face side of the light diffusing portion 441 has a larger radius of curvature than the curved portion on the light exit end face side of the light diffusing portion 441.
  • a portion corresponding to the first straight portion 401 and the second straight portion 402 in the outer peripheral edge of the light shielding layer 440 is a straight edge (the straight edge 111 shown in FIG. 8). , 112), and a portion corresponding to the curved portion of the intersection 403 is defined as a curved edge (corresponding to the curved edge 113 shown in FIG. 8).
  • the total length of all the lengths of the straight edges is longer than the total length of all the lengths of the curved edges.
  • a portion corresponding to the first straight portion 401 and the second straight portion 402 in the outer peripheral edge of the light shielding layer 440 is defined as a straight edge (a straight edge 311 shown in FIG. 32). , 312), and a portion corresponding to the curved portion of the non-forming portion 404 is a curved edge (corresponding to the curved edge 314 shown in FIG. 33).
  • the total length of all the lengths of the straight edges is longer than the total length of all the lengths of the curved edges.
  • a plurality of non-formed portions 304 are randomly arranged as viewed from the normal direction of the first surface 39a of the base 39.
  • at least one non-forming part 404 is arranged in the pixel PX.
  • the non-forming portion 404 of the present embodiment is arranged in a plurality in a random manner when viewed from the normal direction of the first surface 39a of the base material 39, and in addition, the first straight portion 401 and the first linear portion 401 in the light shielding layer 440 are arranged.
  • the two straight portions 402 and the intersecting portion 403 are all provided.
  • At least one non-forming part 404 is arranged in the pixel PX. Therefore, it is possible to reduce variation in luminance characteristics in each pixel PX, compared to the case where the non-formation part 404 is arranged only in some pixels PX.
  • FIG. 35 is a plan view of a light control member 509 according to the fifth embodiment.
  • FIG. 36 is a plan view showing a bent portion 505 of the light shielding layer 540 of the fifth embodiment. As shown in FIG. 35, the light control member 509 of the present embodiment is different from the light control member 9 of the first embodiment in the configuration of the light shielding layer.
  • the planar shape of the light shielding layer 40 includes the first straight portion 101 and the second straight portion 102 that are linear.
  • the planar shape of the light shielding layer 540 has a polygonal line shape having a bent portion 505 at least partially.
  • a plurality of the bent portions 505 are randomly arranged as viewed from the normal direction of the first surface 39a of the base 39. That is, the bent portion 505 is irregularly provided on at least a part of the light shielding layer 540 when viewed from the normal direction of the first surface 39 a of the base material 39. At least one bent portion 505 is disposed in the pixel PX.
  • a portion 541v of the light diffusion portion 541 facing the bent portion 505 has a polygonal line shape along the bent portion 505 of the light shielding layer 540.
  • the bent part 541v of the light diffusion part 541 has a polygonal line shape that is concave toward the hollow part 42 and a polygonal line shape that is convex toward the hollow part 42.
  • the bent portion 505 of the light shielding layer 540 has a polygonal line shape that is convex toward the light diffusion portion 541 and a polygonal line shape that is concave toward the light diffusion portion 541.
  • the bent portion 541v on the light incident end face side of the light diffusion portion 541 has a larger radius of curvature than the bent portion 505 of the light shielding layer 540.
  • the bent portion 541v on the light emission end face side of the light diffusion portion 541 has a radius of curvature substantially equal to the bent portion 505 of the light shielding layer 540. Therefore, the bent portion 541v on the light incident end face side of the light diffusion portion 541 has a larger radius of curvature than the bent portion 541v on the light emission end face side of the light diffusion portion 541.
  • the planar shape of the light shielding layer 540 has a polygonal line shape having a bent portion 505 at least partially.
  • the bent portion 541v of the light diffusion portion 541 has a polygonal line shape along the bent portion 505 of the light shielding layer 540. Therefore, the light incident on the reflection surface of the light diffusion portion 541 is reflected in different directions depending on the degree of bending of the reflection surface. For example, as shown in FIG. 36, the light Lx4 incident on the reflecting surface of the light diffusing unit 541 from the negative side to the positive side of the x axis is reflected by the reflecting surface and then travels in a direction parallel to the y axis.
  • the reflection surface having a different degree of bending does not advance in the direction parallel to the y-axis, but proceeds in a direction inclined more to the negative side of the x-axis than the direction parallel to the y-axis.
  • the planar shape of the light shielding layer 540 into a polygonal line shape, the light diffusibility can be enhanced, and the effect of improving the viewing angle characteristics of the liquid crystal display device can be enhanced.
  • At least one bent portion 505 is disposed in the pixel PX. Therefore, it is possible to reduce variations in luminance characteristics in each pixel PX, compared to the case where the bent portion 505 is arranged only in some pixels PX.
  • FIG. 37 is a plan view of a light control member 609 according to the sixth embodiment.
  • FIG. 38 is a plan view showing the bent portion 605 and the non-formed portion 604 of the light shielding layer 640 of the sixth embodiment.
  • the light control member 609 of this embodiment differs in the structure of the light shielding layer from the light control member 9 of the fifth embodiment.
  • the bent portion 641v on the light incident end face side of the light diffusing portion 641 is more than the bent portion 605 of the light shielding layer 640, similarly to the light control member 509 of the fifth embodiment.
  • the bent portion 641v on the light emission end face side of the light diffusing portion 641 has a radius of curvature substantially equal to the bent portion 605 of the light shielding layer 640. Therefore, the bent portion 641v on the light incident end face side of the light diffusing portion 641 has a larger radius of curvature than the bent portion 641v on the light exit end face side of the light diffusing portion 641.
  • the light shielding layer 540 is continuously formed without interruption.
  • the non-forming part 604 in which the light shielding layer 640 is not formed is provided in at least a part of the light shielding layer 640.
  • a plurality of non-formed portions 604 are randomly arranged as viewed from the normal direction of the first surface 39 a of the base material 39.
  • a portion 641r facing the non-forming portion 604 of the light diffusion portion 641 has a rounded shape that is concave toward the hollow portion.
  • Have A portion 604r of the light shielding layer 640 facing the non-forming portion 604 has a rounded shape that is convex toward the light diffusion portion 641.
  • the curved portion 641r on the light incident end face side of the light diffusion portion 641 has a larger radius of curvature than the curved portion 604r of the non-forming portion 604.
  • the curved portion 641r on the light emission end face side of the light diffusing portion 641 has a radius of curvature substantially equal to the curved portion 604r of the non-forming portion 604. Therefore, the curved portion 641r on the light incident end face side of the light diffusing portion 641 has a larger radius of curvature than the curved portion 641r on the light exit end face side of the light diffusing portion 641.
  • the planar shape of the light shielding layer 640 has a polygonal line shape having a bent portion 605 at least partially.
  • the bent portion 641v of the light diffusion portion 641 has a polygonal line shape along the bent portion 605 of the light shielding layer 640. Therefore, the light incident on the reflection surface of the light diffusing unit 641 is reflected in different directions depending on the degree of bending of the reflection surface. For example, as shown in FIG. 38, the light Lx4 incident on the reflecting surface of the light diffusing unit 641 from the negative side to the positive side of the x axis is reflected by the reflecting surface and then travels in a direction parallel to the y axis.
  • the reflection surface having a different degree of bending does not advance in the direction parallel to the y-axis, but proceeds in a direction inclined more to the negative side of the x-axis than the direction parallel to the y-axis.
  • the planar shape of the light shielding layer 640 into a polygonal line shape, the light diffusibility can be enhanced, and the effect of improving the viewing angle characteristics of the liquid crystal display device can be enhanced.
  • the curved portion 641r that is the portion facing the non-forming portion 604 in the light diffusion portion 641 has a rounded shape that is concave toward the hollow portion. Therefore, the light incident on the reflection surface along the curved portion 641r of the light diffusion portion 641 is reflected in a direction different from the light incident on the reflection surface along the straight line portion. For example, as shown in FIG. 38, the light Lx1 incident on the reflecting surface along the straight portion from the negative side of the x axis toward the positive side is reflected by the reflecting surface and then travels in a direction parallel to the y axis.
  • the light Lx3 incident on the reflecting surface along the curved portion 641r of the light diffusing unit 641 from the negative side to the positive side of the x axis is reflected by the reflecting surface and does not travel in the direction parallel to the y axis.
  • the process proceeds in a direction inclined to the positive side of the x axis from the direction parallel to the y axis and a direction inclined to the negative side of the x axis from the direction parallel to the y axis.
  • a seventh embodiment of the present invention will be described below with reference to FIGS. 39 to 43.
  • the basic configuration of the liquid crystal display device of this embodiment is the same as that of the first embodiment, and the configuration of the light shielding layer in the light control member is different from that of the first embodiment. Therefore, in this embodiment, the description of the basic configuration of the liquid crystal display device is omitted, and the light control member is described.
  • FIG. 39 is a plan view of a light control member 709 according to the seventh embodiment.
  • the light control member 709 of this embodiment differs in the structure of a light shielding layer with respect to the light control member 9 of 1st Embodiment.
  • a sealing member that covers the outer periphery of the region where the light shielding layer 740 exists (the seal shown in FIG. 7). Equivalent to the stop member 150).
  • the planar shape of the light shielding layer 40 is formed in a lattice pattern having a first straight portion 101 and a second straight portion 102.
  • the light control member 709 of the present embodiment has a plurality of first straight portions 701 in which the planar shape of the light shielding layer 740 extends linearly in parallel with each other.
  • the first straight line portion 701 is a portion having a certain width in the light shielding layer 740.
  • the width W1 of the first straight portion 701 is substantially constant.
  • the interval Wa between two adjacent first linear portions 701 is random.
  • the first straight line portion 701 When viewed from the normal direction of the base material 39, the first straight line portion 701 forms an angle larger than 45 ° and smaller than 90 ° with respect to the direction D of the director of the liquid crystal molecules. Since the direction D of the director of the liquid crystal molecules 51 and the absorption axes P1 and P2 of the first polarizing plate 3 and the second polarizing plate 7 form an angle of 45 °, the first straight line is formed in the light shielding layer 740 of the light control member 709. An angle J1 formed by the portion 701 and the absorption axis P2 of the second polarizing plate 7 has an angle larger than 45 °.
  • the planar shape of the light shielding layer 740 viewed from the normal direction of the base material 39 has the first linear portion 701 that forms an angle larger than 45 ° with respect to the absorption axis P2 of the second polarizing plate 7. is doing.
  • the planar shape of the light diffusion portion 741 viewed from the normal direction of the substrate 39 is also at an angle larger than 45 ° with respect to the absorption axis P2 of the second polarizing plate 7.
  • the planar shape of the light shielding layer 740 includes a plurality of first linear portions 701 extending linearly in parallel with each other, and thus the planar shape of the light shielding layer 40 is the first linear portion.
  • the pattern of the light shielding layer 740 is simple as compared with the case where it is formed in a lattice pattern having 101 and the second straight portion 102. Therefore, the pattern of the light shielding layer 740 can be easily produced by a method such as printing.
  • the azimuth distribution of the light diffusion intensity of the light control member 709 viewed from the normal direction of the base material 39 is two-fold symmetric.
  • the first straight portion 701 forms 33.7 ° with respect to the long side of the substrate 39 as shown in FIG. That is, consider a case where the first straight line portion 701 forms 33.7 ° with respect to the direction perpendicular to the direction D of the director of the liquid crystal molecules 51.
  • the direction in which the light diffusion intensity is relatively increased in the light control member 709 (hereinafter referred to as “strong scattering direction”) is a direction V 1 orthogonal to the first straight line portion 701.
  • FIG. 41 is a diagram for explaining a method for measuring the strong scattering direction of the light control member 709, and includes a cross section taken along line A1-A1 of FIG.
  • FIG. 42 is a graph showing the relationship between the azimuth angle and the light reception intensity at a light reception angle of 30 °.
  • the horizontal axis represents the azimuth angle (°)
  • the vertical axis represents the received light intensity.
  • the normal line of the base material 39 in the light control member 709 is ⁇ 11 .
  • the light source 731 irradiates the light control member 709 with the parallel light LA.
  • an angle (light projection angle) between the normal ⁇ 11 and the parallel light LA is ⁇ 11 .
  • the parallel light LA that has entered the light control member 709 (light diffusion unit 741) is scattered by the light control member 709, and reflected light LB on the side opposite to the incident side of the parallel light LA with respect to the light control member 709. A part is emitted and received by the light receiver 732.
  • the angle (light receiving angle) of the normal alpha 11 and the reflected light LB to beta 12.
  • the intensity of the light received by the light receiver 732 is defined as the received light intensity.
  • the intensity of the parallel light LA emitted from the light source 731, the light projection angle ⁇ 11, and the light reception angle ⁇ 12 of the reflected light LB received by the light receiver 732 are fixed, and the light control member 709 is changed to the normal ⁇
  • the direction in which the received light intensity is relatively strong is the strong scattering direction
  • the direction in which the received light intensity is relatively weak is the weak scattering direction.
  • the light control member 709 is an anisotropic light control member having a strong scattering direction and a weak scattering direction when viewed from the normal direction of the substrate 39.
  • the direction in which the light receiver 732 receives the reflected light LB (light receiving direction) is arranged on the same plane (on the same A1-A1 cross section).
  • FIG. 43 is a diagram illustrating the azimuth distribution of the light diffusion intensity of the light control member 709 viewed from the normal direction of the base material 39.
  • FIG. 43 shows an azimuth distribution of light diffusion intensity at a polar angle of 30 ° as an example.
  • the azimuth distribution of the light diffusion intensity of the light control member 709 viewed from the normal direction of the substrate 39 is two-fold symmetric.
  • the light diffusion intensity of the light control member 709 viewed from the normal direction of the base material 39 is maximum at an azimuth angle of 146.3 ° and an azimuth angle of 326.3 ° at a polar angle of 30 °.
  • the direction of the azimuth angle at these maximum values coincides with the direction V1 shown in FIG. 40 and the strong scattering direction shown in FIG.
  • the light reception intensity in the strong scattering direction shown in FIG. Light intensity is weak
  • the received light intensity in the middle between the strong scattering direction and the weak scattering direction is the light intensity.
  • the angle J2 formed by the first linear portion 701A and the absorption axis P2 of the second polarizing plate 7 is less than 45 °. It may be an angle.
  • the planar shape of the light shielding layer 740A viewed from the normal direction of the substrate 39 has the first straight portion 701A that forms an angle of less than 45 ° with the absorption axis P2 of the second polarizing plate 7. Also good.
  • the planar shape of the light diffusion portion 741 ⁇ / b> A viewed from the normal direction of the substrate 39 also forms an angle of less than 45 ° with the absorption axis P ⁇ b> 2 of the second polarizing plate 7.
  • FIG. 7 The basic configuration of the liquid crystal display device of the present modification is the same as that of the seventh embodiment, and the configuration of the light shielding layer in the light control member is different from that of the seventh embodiment. Therefore, in this modification, the description of the basic configuration of the liquid crystal display device is omitted, and the light control member will be described.
  • FIGS. 45 to 47 are plan views showing light control members 709B, 709C, and 709D of the present modification. As shown in FIGS. 45 to 47, the light control members 709B, 709C, and 709D of the present modification are different from the light control member 709 of the seventh embodiment in the configuration of the light shielding layer.
  • the light control members 709B, 709C, and 709D of this modification also have the width of the first straight line portion in the light shielding layer (the first straight line portion shown in FIG. 39), similarly to the light control member 709 of the seventh embodiment. (Corresponding to the width W1) is substantially constant.
  • the interval between two adjacent first linear portions in the light shielding layer (corresponding to the interval Wa between the two adjacent first linear portions shown in FIG. 39) is random.
  • a portion corresponding to the first straight portion of the outer peripheral edge of the light shielding layer is defined as a straight edge (corresponding to the straight edge 311 shown in FIG. 32), and the non-forming portion 704 is formed.
  • a portion corresponding to the curved portion is defined as a curved edge (corresponding to the curved edge 314 shown in FIG. 33).
  • the total length of all the lengths of the straight edges is longer than the total length of all the lengths of the curved edges.
  • the light shielding layer 740 is formed continuously without the first straight portion 701 being interrupted.
  • the non-forming portion 704 in which the light shielding layer 740B is not formed on at least a part of the first linear portion 701B. Is provided.
  • a plurality of non-forming portions 704 are randomly arranged as viewed from the normal direction of the base material 39.
  • the light diffusion portion 741B is connected in the non-forming portion 704.
  • the light diffusion portion 741 is disposed between all the two first linear portions 701 adjacent to each other in the light shielding layer 740.
  • the planar shape of the light shielding layer 740C is a connection that connects two adjacent first linear portions 701C. Part 706. That is, a non-formation region where the light diffusion unit 741C is not formed is provided in at least a part of the light diffusion unit 741C, and the connecting portion 706 is disposed in this non-formation region.
  • a non-forming portion 704 in which the light shielding layer 740D is not formed is provided in at least a part of the first linear portion 701D.
  • the planar shape of the light shielding layer 740D has a connecting portion 706 that connects two adjacent first linear portions 701D.
  • FIGS. 48 and 49 are sectional views of light control members 809A and 809B of the eighth embodiment. As shown in FIGS. 48 and 49, the light control members 809A and 809B of the present embodiment are different from the light control member 9 of the first embodiment in the configuration of the reflection surfaces 841Ac and 841Bc of the light diffusion portions 841A and 841B. .
  • the inclination angle of the reflection surface 41c of the light diffusion portion 41 is constant.
  • the inclination angles of the reflection surfaces 841Ac and 841Bc of the light diffusion portions 841A and 841B continuously change.
  • the cross-sectional shapes of the reflection surfaces 841Ac and 841Bc of the light diffusion portions 841A and 841B are curved inclined surfaces.
  • the reflection surface 841Ac of the light diffusion portion 841A is curved toward the hollow portion 842A, and the portion of the hollow portion 842A on the reflection surface 841Ac side is concave.
  • the reflection surface 841Bc of the light diffusion portion 841B is curved toward the hollow portion 842B, and the portion of the hollow portion 842B on the reflection surface 841Bc side is convex.
  • FIG. FIG. 50 is a diagram illustrating the relationship between the inclination angle of the reflection surface of the light diffusion portion and the area ratio when the distribution of the inclination angle of the reflection surface of the light diffusion portion is the same between the first reflection surface and the second reflection surface. It is.
  • FIG. 51 is a diagram showing the relationship between the inclination angle of the reflection surface of the light diffusion portion and the area ratio when the distribution of the inclination angle of the reflection surface of the light diffusion portion is different between the first reflection surface and the second reflection surface. It is.
  • the horizontal axis represents the inclination angle of the reflection surface of the light diffusion portion.
  • the vertical axis represents the area ratio of the reflection surface of the light diffusion portion.
  • the area ratio is the ratio of the area of a portion having a certain inclination angle to the area of the entire reflection surface when the reflection surface of the light diffusion portion is viewed from the side.
  • the inclination angle is an angle formed by a tangent line at a predetermined position of the curved portion of the reflection surface and the light incident end surface of the light diffusion portion.
  • the tilt angle ⁇ 1 of the first reflecting surface is larger than the tilt angle ⁇ 2 of the second reflecting surface will be described.
  • the inclination angle of the reflection surface of the light diffusing portion has a width in the angle distribution around the main inclination angle.
  • the distribution of the inclination angle of the reflection surface of the light diffusing section may be the same distribution for the inclination angle ⁇ 1 of the first reflection surface and the inclination angle ⁇ 2 of the second reflection surface.
  • different inclination distributions may be used for the inclination angle ⁇ 1 of the first reflecting surface and the inclination angle ⁇ 2 of the second reflecting surface.
  • the inclination angle ⁇ 1 of the first reflecting surface contributes more to the symmetry of the luminance distribution than the inclination angle ⁇ 2 of the second reflecting surface. Therefore, in order to improve the symmetry of the luminance distribution, the distribution of the inclination angle ⁇ 1 of the first reflecting surface is preferably narrow.
  • the ninth embodiment of the present invention will be described below with reference to FIGS.
  • the basic configuration of the liquid crystal display device of the present embodiment is the same as that of the eighth embodiment, and the configuration of the reflection surface of the light diffusion portion in the light control member is different from that of the eighth embodiment. Therefore, in this embodiment, description of the basic structure of a liquid crystal display device is abbreviate
  • FIGS. 52 and 53 are cross-sectional views of the light control members 909A and 909B of this embodiment. As shown in FIGS. 52 and 53, the light control members 909A and 909B of the present embodiment are different from the light control members 809A and 809B of the eighth embodiment in the configuration of the reflection surface of the light diffusion portion.
  • the inclination angles of the reflection surfaces of the light diffusion portions 841A and 841B continuously change, and the cross sections of the reflection surfaces of the light diffusion portions 841A and 841B
  • the shape was a curved inclined surface.
  • the reflecting surfaces 941Ac and 941Bc of the light diffusion portions 941A and 941B have a plurality of different inclination angles.
  • the cross-sectional shapes of the reflection surfaces 941Ac and 941Bc of the light diffusion portions 941A and 941B are polygonal inclined surfaces.
  • the reflection surface 941Ac of the light diffusion portion 941A has three inclined surfaces with different inclination angles, and the portion of the hollow portion 942A on the reflection surface 941Ac side is concave.
  • the reflection surface 941Bc of the light diffusion portion 941B has three inclined surfaces having different inclination angles, and the portion of the hollow portion 942B on the reflection surface 941Bc side is convex.
  • FIG. 54 is an exploded perspective view of the liquid crystal display device of the present embodiment.
  • the light shielding layers 240 are randomly arranged in the plane, and the density of the light shielding layers 240 is not different depending on the location.
  • the light shielding layer 1040 has a high density directly above the black matrix 30 of the liquid crystal panel 2 and a low density directly above the color filter 31. It is arranged to be.
  • illustration of individual light shielding layers is omitted.
  • the light control member 1009 when the light control member 1009 is present, the light control member 1009 is absent.
  • the amount of light transmitted in the front direction (azimuth angle ⁇ : 0 °, polar angle ⁇ : 0 ° direction) is smaller. This tendency becomes more prominent as more light shielding layers 1040 are arranged.
  • the light shielding layer 1040 is disposed in a region where light traveling in the vertical direction is absorbed by the black matrix 30 from the beginning, the amount of light in the front direction is not reduced.
  • the light that is transmitted obliquely through the color filter 31 and is incident on the light control member 1009 immediately above the black matrix 30 is reflected by the reflection surface of the light diffusing portion immediately below the light shielding layer 1040.
  • by increasing the light shielding layer 1040 immediately above the black matrix 30 light diffusibility can be enhanced without reducing the amount of light in the front direction, and the effect of improving the viewing angle characteristics of the liquid crystal display device can be enhanced.
  • FIG. 55 is a perspective view showing another example of the liquid crystal display device of the present embodiment.
  • the orientation of the liquid crystal molecules is disturbed, and the display image when viewed through the polarizing plate is locally darkened linearly. Therefore, in addition to the black matrix 30, by increasing the light shielding layer 1040 immediately above the domain boundary G, the light diffusibility is improved without reducing the amount of light in the front direction, and the effect of improving the viewing angle characteristics of the liquid crystal display device is enhanced. be able to.
  • any of the methods in order to align the high density area of the light shielding layer 1040 with the position of the black matrix 30 or the domain boundary G, it is necessary to align the positions of the liquid crystal panel 2 and the light diffusion member 1009 and bond them together.
  • a marker 1032 for alignment is formed on the liquid crystal panel 2
  • a marker 1034 for alignment is formed on the light control member 1009
  • the positions of the corresponding markers 1032 and 1034 are
  • the liquid crystal panel 2 and the light control member 1009 may be bonded together while confirming with a camera so as to match.
  • the alignment marker 1034 in the light control member 1009 is provided in the outer peripheral portion of the region where the sealing member 150 is arranged, that is, the region where the light shielding layer 40 exists, as in the light control member 9 shown in FIG. It may be done.
  • the eleventh embodiment of the present invention will be described below with reference to FIGS.
  • the basic configuration of the light control member of this embodiment is the same as that of the first embodiment, and the configuration of the backlight is different from that of the first embodiment. Therefore, in this embodiment, description of a liquid crystal panel and a light control member is abbreviate
  • the light control member 9 of the first embodiment preferentially mixes light emitted from the azimuth angle ⁇ : 0-180 ° direction of the liquid crystal panel 2 with light emitted from the azimuth angle ⁇ : 90-270 ° direction. It has a function to make it. Therefore, as the amount of light originally emitted from the backlight in the direction of azimuth ⁇ : 0 to 180 ° increases, the amount of light reflected in the direction of azimuth ⁇ : 90 to 270 ° increases. As a result, the effect of improving the viewing angle characteristic with respect to the azimuth angle ⁇ : 90-270 ° direction is increased.
  • the amount of light emitted in the azimuth angle ⁇ : 0-180 ° direction which is the azimuth of the liquid crystal panel excellent in viewing angle characteristics, is emitted in the azimuth angle ⁇ : 90-270 ° direction. It is desirable to have more light than the amount of light.
  • the backlight 1108 shown in FIG. 57 has a characteristic that the amount of light emitted in the azimuth angle ⁇ : 0-180 ° direction is larger than the amount of light emitted in the azimuth angle ⁇ : 90-270 ° direction.
  • the backlight 1108 has a structure for increasing the amount of light emitted in the direction of azimuth angle ⁇ : 0 to 180 ° more than the amount of light emitted in the direction of azimuth angle ⁇ : 90 to 270 °. I have.
  • the backlight 1108 is configured so that the amount of light emitted in a direction perpendicular to the director direction D of the liquid crystal molecules 51 is parallel to the director direction D of the liquid crystal molecules 51 when viewed from the normal direction of the substrate 39. More than the amount of light emitted in the direction.
  • the backlight 1108 includes a light guide 1137, a light source 36, and a prism sheet 1190.
  • the light source 36 is the same as the backlight 8 of the first embodiment.
  • the prism sheet 1190 is cut as a structure on a surface facing the light guide 1137 on a plane (yz plane) perpendicular to the end surface 1137c of the light guide 1137 and perpendicular to the light exit surface 1137b of the light guide 1137.
  • the cross section is triangular, and includes a plurality of convex portions 1190S extending in a direction parallel to the end surface 1137c.
  • the prism sheet 1190 is called a so-called turning lens sheet.
  • FIG. 58 is a diagram showing the relationship between the polar angle and the luminance of the backlight in the azimuth angle ⁇ : 0 ° -180 ° direction and the azimuth angle ⁇ : 90 ° -270 ° direction of the liquid crystal display device.
  • the horizontal axis indicates the polar angle (°)
  • the vertical axis indicates the luminance.
  • a curve Ux shows the luminance characteristics in the direction of azimuth angle ⁇ : 0 ° -180 °
  • a curve Uy shows the luminance characteristics in the direction of azimuth angle 90 ° -270 °.
  • the direction D of the director of the liquid crystal molecules 51 is 90 ° -270 ° as shown in FIG.
  • the curve Ux and the curve Uy have a two-fold symmetrical shape. Specifically, in the azimuth angle direction viewed from the normal direction of the base material 39, among a plurality of luminance curves indicating the luminance distribution of light emitted from the backlight 1108, at least parallel to the director direction D of the liquid crystal molecules 51.
  • a curve Uy (first luminance curve) indicating the luminance distribution of light emitted in a specific direction
  • a curve Ux (second luminance) indicating the luminance distribution of light emitted in a direction perpendicular to the direction D of the director of the liquid crystal molecules 51.
  • Brightness curve has a two-fold symmetrical shape.
  • the backlight 1108 of the present embodiment since the amount of light emitted in the direction of the azimuth angle ⁇ : 0 to 180 ° is relatively large, the viewing angle characteristics of the light control member The improvement effect can be further enhanced.
  • FIG. 59 is a cross-sectional view showing a backlight 1108A of another example of the eleventh embodiment.
  • the basic configuration of the backlight 1108A illustrated in FIG. 59 is the same as that of the above-described backlight 1108, and the configuration of the prism sheet in the backlight is different from that of the above-described backlight 1108. Therefore, in the following, description of the basic configuration of the backlight will be omitted, and the prism sheet will be described.
  • the prism sheet 1190 has a structure, as shown in FIG. 57, on the surface facing the light guide 1137, perpendicular to the end surface 1137c of the light guide 1137, and the light guide 1137.
  • the cross section cut by a plane (yz plane) perpendicular to the light exit surface 1137b is triangular, and has a plurality of convex portions 1190S extending in a direction parallel to the end surface 1137c.
  • the prism sheet 1190A is a plane that is perpendicular to the end surface 1137c of the light guide 1137 and perpendicular to the light exit surface 1137b of the light guide 1137 (yz plane).
  • the cross-section cut in FIG. 3 is triangular and extends in a direction parallel to the end face 1137c, and faces the liquid crystal panel 2 (see FIG. 1) and faces the opposite side (opposite to the protruding direction of the protrusion 1190S).
  • a plurality of convex portions 1190AS are provided.
  • a 3M BEF sheet (trade name) is used as the prism sheet 1190A.
  • the amount of light emitted in the direction of the azimuth angle ⁇ : 0 to 180 ° is relatively large, so that the effect of improving the viewing angle characteristics by the light control member is further enhanced. be able to.
  • the light incident end surface 41b of the light diffusing portion 41 is larger than the light emitting end surface 41a.
  • the light diffusing part 41 has a larger area of the light incident end face 41b than the area of the light emitting end face 41a.
  • the light diffusion part 1241 in which the area of the light incident end face 1241b is smaller than the area of the light exit end face 1241a is partially mixed.
  • the inclination angle ⁇ c of the reflection surface 41c of the light diffusion portion 41 is smaller than 90 °
  • the inclination angle ⁇ c ′ of the reflection surface 1241c of the light diffusion portion 1241 is larger than 90 °. Due to the difference in configuration, the function of the light diffusing unit 41 and the function of the light diffusing unit 1241 are different.
  • the light is incident on the reflection surface 1241c of the light diffusing unit 1241, the light is reflected in a direction in which the angle of the light beam becomes smaller with respect to the normal direction of the base material 39, and a part of the light is in the normal direction (front direction) of the liquid crystal display device. ) Is injected.
  • the difference in viewing angle characteristics between the front direction and the oblique direction is alleviated.
  • the viewing angle characteristic in the oblique direction is improved when the image adjustment in the front direction is performed.
  • the difference in viewing angle characteristics between the azimuth angle ⁇ : 0-180 ° direction and the ⁇ : 90-270 ° direction similar to the first embodiment is alleviated.
  • the effect of alleviating the difference in viewing angle characteristics between the normal direction of the liquid crystal display device, that is, the front direction and the oblique direction of the screen functions.
  • the difference in display quality between the front direction and the diagonal direction when the screen is viewed from an oblique direction is improved.
  • FIG. 61 is a schematic diagram of an exposure process in the manufacturing process of the light control member 1209 of the present embodiment.
  • the exposure process is divided into two times, as shown in FIG.
  • the photomask 1210 is used to shield a part of the resist 1211 from being exposed, and in the second exposure step, the photomask 1210 is removed so that the entire surface of the resist 1211 is exposed.
  • the controllability of the tilt angle can be changed by changing the light diffusion degree in the first and second exposure steps.
  • the light control member 1209 including the light diffusing portion 1241 having the inclination angle of the reflection surface 1241c larger than 90 ° reflects the light in the oblique direction to the front direction, thereby outputting the characteristic in the front direction, for example, the input gradation.
  • the brightness and chromaticity of the image to be performed may be different from the state without the light control member 1209. In this case, either image adjustment is performed after the light control member 1209 is bonded, or different image adjustments are performed in advance on the assumption that the luminance and chromaticity are changed by the light control member 1209. Can be solved.
  • the liquid crystal display devices of the first to twelfth embodiments described above can be applied to various electronic devices.
  • electronic devices including the liquid crystal display devices of the first to twelfth embodiments will be described with reference to FIGS. 62 to 64.
  • FIG. The liquid crystal display devices according to the first to twelfth embodiments described above can be applied to, for example, a thin television shown in FIG.
  • a thin television 1350 illustrated in FIG. 62 includes a display portion 1351, a speaker 1352, a cabinet 1353, a stand 1354, and the like.
  • the liquid crystal display devices of the first to twelfth embodiments described above can be suitably applied.
  • the liquid crystal display devices of the first to twelfth embodiments described above can be applied to, for example, the smartphone 1360 shown in FIG.
  • a smartphone 1360 illustrated in FIG. 63 includes a voice input unit 1361, a voice output unit 1362, an operation switch 1364, a display unit 1365, a touch panel 1363, a housing 1366, and the like.
  • the display unit 1365 the liquid crystal display devices of the first to twelfth embodiments described above can be suitably applied.
  • the liquid crystal display devices of the first to twelfth embodiments described above can be applied to, for example, a notebook computer 1370 shown in FIG.
  • a notebook computer 1370 illustrated in FIG. 64 includes a display portion 1371, a keyboard 1372, a touch pad 1373, a main switch 1374, a camera 1375, a recording medium slot 1376, a housing 1377, and the like.
  • the display unit 1371 the liquid crystal display devices of the first to twelfth embodiments described above can be suitably applied.
  • an image with a small viewing angle dependency can be displayed.
  • the azimuth angle direction where the gamma characteristic change depending on the polar angle of the liquid crystal panel is large and the vertical direction of the X-shaped light shielding layer of the light control member are completely It is not necessary to match, and it is only necessary that they match.
  • the technique in the aspect of the present invention includes in the range. From this, in the liquid crystal display device according to one aspect of the present invention, the liquid crystal panel has a liquid crystal molecule director in a middle region of the thickness of the liquid crystal layer when a voltage is applied in the first direction and in different directions.
  • the light transmittance When it deviates from 45 ° by 5 °, the light transmittance is expected to decrease by about 10%, but when it deviates greatly by more than 5 °, the rate of decrease in the transmittance increases significantly, affecting the display performance. It is to do.
  • At least one of an antireflection structure, a polarizing filter layer, an antistatic layer, an antiglare treatment layer, and an antifouling treatment layer is provided on the viewing side of the base material of the light control member. May be. According to this configuration, it is possible to add a function to reduce external light reflection, a function to prevent the adhesion of dust and dirt, a function to prevent scratches, and the like according to the type of layer provided on the viewing side of the substrate. Further, it is possible to prevent deterioration of viewing angle characteristics with time.
  • the antireflection structure a configuration in which an antiglare layer is provided on the viewing side of the base material of the light control member may be used.
  • the antiglare layer for example, a dielectric multilayer film that cancels external light using light interference is used.
  • a so-called moth-eye structure may be provided on the viewing side of the base material of the light control member.
  • the moth-eye structure includes the following structures and shapes.
  • the moth-eye structure is a concavo-convex shape with a period equal to or less than the wavelength of visible light, and is a shape or structure using the principle of a so-called “Moth-eye” configuration.
  • the two-dimensional size of the convex portions constituting the concavo-convex pattern is 10 nm or more and less than 500 nm. Reflection is suppressed by continuously changing the refractive index for light incident on the base material from the refractive index of the incident medium (air) to the refractive index of the base material along the depth direction of the unevenness.
  • the shape of the hollow part or the light-diffusion part was made into the shape of a quadrangular pyramid, other shapes may be sufficient.
  • the inclination angle of the reflection surface of the light diffusing portion is not necessarily symmetric about the optical axis.
  • the shape of the hollow part or the light diffusing part is a quadrangular pyramid shape as in the above embodiment, the inclination angle of the reflecting surface of the light diffusing part is axisymmetric about the optical axis. A line-symmetric angular distribution is obtained as the center.
  • the inclination angle of the reflection surface of the light diffusing unit may be asymmetric.
  • the areas of the two domains may be different, and the director direction of the liquid crystal molecules may not be completely different by 180 °.
  • the present invention is applied when there are at least two domains in a pixel, and there may be three or more domains.
  • the vertical direction of the light shielding layer of the light control member may be arranged in accordance with the azimuth direction in which the viewing angle characteristics are desired to be improved.
  • one pixel PX of the liquid crystal panel 2 has three sub-pixels of red (R), green (G), and blue (B) having a rectangular shape.
  • An example in which the three sub-pixels are configured by pixels and arranged in the horizontal direction (arrow H direction) with the long-side direction directed in the vertical direction (arrow V direction) of the screen is shown.
  • the arrangement of the sub-pixels is not limited to this example.
  • the three sub-pixels R, G, B are oriented in the horizontal direction (arrow H direction) on the long side. May be arranged in the vertical direction (arrow V direction).
  • one pixel of the liquid crystal panel 2 is a rectangular sub-pixel of red (R), green (G), blue (B), and yellow (Y).
  • the four subpixels may be arranged in the horizontal direction (arrow H direction) with the long side direction directed in the vertical direction (arrow V direction) of the screen.
  • the four sub-pixels R, G, B, and Y are oriented in the horizontal direction (arrow H direction) and the long side direction in the vertical direction (arrow V direction). It may be arranged.
  • one pixel of the liquid crystal panel is composed of four square R, G, B, and Y sub-pixels, and 2 pixels in the horizontal and vertical directions of the screen. They may be arranged in two rows and two columns.
  • Some embodiments of the present invention can be used for a liquid crystal display device and a light control member.

Abstract

This liquid crystal display device (1) is provided with a liquid crystal panel (2) and a light control member (9) which is arranged on the light emission side of the liquid crystal panel (2). The liquid crystal panel (2) is provided with multiple pixels in which the director of the liquid crystal molecules in an intermediary region in the thickness direction of the liquid crystal layer (11) points in a first direction when a voltage is applied. The absorption axis of a first polarizer plate (3) and the absorption axis of the second polarizer plate (7) are perpendicular to one another and form a nonparallel angle with respect to the first direction. The light control member (9) is provided with a substrate (39), light blocking units (40), light diffusion units (41) and low-refractive index units (42). The planar shape of the light blocking units (40), seen from the normal direction of the substrate (39), has a first straight-line portion which intersects with the first direction.

Description

液晶表示装置及び光制御部材Liquid crystal display device and light control member
 本発明は、液晶表示装置及び光制御部材に関する。
 本願は、2014年11月25日に、日本に出願された特願2014-237717号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a liquid crystal display device and a light control member.
This application claims priority based on Japanese Patent Application No. 2014-237717 filed in Japan on November 25, 2014, the contents of which are incorporated herein by reference.
 スマートフォン等をはじめとする携帯型電子機器、もしくはテレビジョン、パーソナルコンピューター等のディスプレイとして、液晶表示装置が広く用いられている。昨今は特にディスプレイの高精細化が進み、従来のフルハイビジョン映像(1920Pixel×1080Pixel)に対し、縦横4倍の解像度を有するスーパーハイビジョン映像(7680Pixel×4320Pixel)に対応したディスプレイの開発が進んでいる。一般に、液晶表示装置は、表示画面を正面から見たときに優れた表示特性を発揮する。一方、表示画面を斜め方向から見たときにはコントラストが低下し、視認性が悪くなりやすい。このため、良好な視認性で画面を観察可能な視野角範囲を広げる様々な手法が提案されている。 Liquid crystal display devices are widely used as portable electronic devices such as smartphones, or displays for televisions, personal computers, and the like. In recent years, the display has become particularly high-definition, and the development of a display that supports a super high-definition video (7680 Pixel × 4320 Pixel) having a resolution that is four times the width and width of the conventional full high-definition video (1920 Pixel × 1080 Pixel) is progressing. Generally, a liquid crystal display device exhibits excellent display characteristics when a display screen is viewed from the front. On the other hand, when the display screen is viewed from an oblique direction, the contrast is lowered and the visibility is likely to deteriorate. For this reason, various methods have been proposed to widen the viewing angle range in which the screen can be observed with good visibility.
 例えば、特許文献1は、視野角特性が良好なVA(Vertically Alignment)モードの液晶表示装置及びMVA(Multi-domain Vertical Alignment)モードの液晶表示装置を開示している。 For example, Patent Document 1 discloses a VA (Vertically Alignment) mode liquid crystal display device and a MVA (Multi-domain Vertical Alignment) mode liquid crystal display device having good viewing angle characteristics.
特開2006-113208号公報JP 2006-113208 A
 特許文献1のように、1つの画素内を4つ以上の多数のドメインに分割する場合、視野角範囲を広げることができる一方、ドメイン間に生じる暗線、ドメインの分割のために必要な配線等の影響により液晶セルの透過率が低下し、セル内の構造が複雑になる、という欠点がある。暗線の幅や配線の幅は画素のサイズによって大きくは変わらないため、画素のサイズが小さくなる高精細ディスプレイでは、結果的にその影響が大きくなる。その一方、1つの画素におけるドメインの数を減らした場合、例えばドメインの数を2個としたVAモードの液晶表示装置の場合、ドメインの数が4個以上である場合と比べれば、液晶セルの透過率は向上し、セル内の構造は簡単になる。ドメインの数が2個の場合、それぞれのドメインに含まれる液晶分子の長軸の平均的な方向は、電圧印加時において互いに180°異なる方向である。以下、本明細書では、液晶分子の長軸に平行な方向のことをダイレクタと称する。 As in Patent Document 1, when one pixel is divided into four or more domains, the viewing angle range can be expanded, while dark lines generated between domains, wiring necessary for domain division, etc. As a result, the transmittance of the liquid crystal cell is lowered by the influence of the above, and the structure in the cell is complicated. Since the width of the dark line and the width of the wiring do not change greatly depending on the size of the pixel, the influence is increased as a result in a high-definition display with a small pixel size. On the other hand, when the number of domains in one pixel is reduced, for example, in the case of a VA mode liquid crystal display device having two domains, the number of domains in the liquid crystal cell is larger than that in the case where the number of domains is four or more. The transmittance is improved and the structure in the cell is simplified. When the number of domains is two, the average direction of the major axis of the liquid crystal molecules contained in each domain is different from each other by 180 ° when a voltage is applied. Hereinafter, in this specification, a direction parallel to the major axis of the liquid crystal molecules is referred to as a director.
 電圧印加時に液晶分子が液晶表示装置の画面の上下方向に倒れると仮定すると、液晶表示装置を左右方向から斜めに見た場合は、液晶表示装置を正面から見た場合と比較しても、表示画像に大きな変化はない。その一方、この液晶表示装置を上下方向から斜めに見た場合は、液晶表示装置を正面から見た場合と比較して、表示画像の色変化が大きい。つまり、1つの画素に2個のドメインを有するVAモード液晶表示装置は、視野角依存性の高い方位角を有しており、視野角特性の方位角依存性が大きい、という問題がある。 Assuming that liquid crystal molecules are tilted in the vertical direction of the screen of the liquid crystal display device when a voltage is applied, when the liquid crystal display device is viewed diagonally from the left-right direction, the display is not as good as when the liquid crystal display device is viewed from the front. There is no big change in the image. On the other hand, when this liquid crystal display device is viewed obliquely from above and below, the color change of the display image is larger than when the liquid crystal display device is viewed from the front. That is, the VA mode liquid crystal display device having two domains in one pixel has a problem that the viewing angle characteristic has a high azimuth angle and the viewing angle characteristic has a large azimuth angle dependency.
 本発明の一つの態様は、視野角依存性が小さい液晶表示装置であって、液晶表示装置の視野角依存性を小さくするために用いる光制御部材を提供するものである。 One embodiment of the present invention is a liquid crystal display device having a small viewing angle dependency, and provides a light control member used for reducing the viewing angle dependency of the liquid crystal display device.
 本発明の一つの態様の液晶表示装置は、第1の配向膜を有する第1の基板と、第2の配向膜を有する第2の基板と、前記第1の配向膜と前記第2の配向膜との間に挟持された液晶層と、前記液晶層の光入射側に配置された第1の偏光板と、前記液晶層の光射出側に配置された第2の偏光板と、を含む液晶パネルと、前記液晶パネルの光射出側に配置された光制御部材と、を備え、前記液晶パネルは、電圧印加時の前記液晶層の厚みの中間領域における液晶分子のダイレクタが第1の方向を向く複数の画素を備え、前記第1の偏光板の吸収軸と前記第2の偏光板の吸収軸とが、互いに直交するとともに、前記第1の方向に対して非平行の角度をなし、前記光制御部材は、光透過性を有する基材と、前記基材の第1の面に設けられた遮光部と、前記基材の前記第1の面の前記遮光部が形成されていない領域を光射出端面とする光拡散部と、前記基材の法線方向から見て前記遮光部と一部重なる位置に設けられ、前記光拡散部の屈折率よりも低い屈折率を有する低屈折率部と、を備え、前記光拡散部は、前記基材側に位置する前記光射出端面と、前記基材側と反対側に位置する光入射端面と、前記光射出端面と前記光入射端面との間に位置する傾斜面と、を有し、前記基材の法線方向から見た前記遮光部の平面形状は、前記第1の方向に対して交差する第1の直線部分を有する。 A liquid crystal display device according to one aspect of the present invention includes a first substrate having a first alignment film, a second substrate having a second alignment film, the first alignment film, and the second alignment film. A liquid crystal layer sandwiched between the film, a first polarizing plate disposed on the light incident side of the liquid crystal layer, and a second polarizing plate disposed on the light emission side of the liquid crystal layer. A liquid crystal panel; and a light control member disposed on a light emission side of the liquid crystal panel, wherein the liquid crystal panel has a first direction of directors of liquid crystal molecules in an intermediate region of the thickness of the liquid crystal layer when a voltage is applied. The absorption axis of the first polarizing plate and the absorption axis of the second polarizing plate are orthogonal to each other and form an angle that is not parallel to the first direction, The light control member includes a light-transmitting base material, a light shielding portion provided on the first surface of the base material, A light diffusing portion having a light emitting end surface in a region where the light shielding portion of the first surface of the base material is not formed, and a position partially overlapping with the light shielding portion when viewed from the normal direction of the base material A low refractive index portion having a lower refractive index than the refractive index of the light diffusing portion, the light diffusing portion being opposite to the base material side and the light emitting end surface located on the base material side A light incident end face located on the side, and an inclined face located between the light exit end face and the light incident end face, and the planar shape of the light shielding part viewed from the normal direction of the substrate is A first straight portion intersecting the first direction is included.
 本発明の一つの態様の液晶表示装置において、前記基材の法線方向から見た前記光制御部材の光拡散強度の方位分布は、2回転対称であってもよい。 In the liquid crystal display device according to one aspect of the present invention, the azimuth distribution of the light diffusion intensity of the light control member viewed from the normal direction of the substrate may be two-fold symmetric.
 本発明の一つの態様の液晶表示装置において、前記基材の法線方向から見て、前記第1の直線部分は、前記第1の方向に対して45°よりも大きく且つ90°よりも小さい角度をなしていてもよい。 In the liquid crystal display device according to one aspect of the present invention, the first linear portion is larger than 45 ° and smaller than 90 ° with respect to the first direction when viewed from the normal direction of the substrate. An angle may be formed.
 本発明の一つの態様の液晶表示装置において、前記基材の法線方向から見て、前記第1の直線部分は、前記第1の偏光板及び前記第2の偏光板のうちの一方の偏光板の吸収軸と交差していてもよい。 In the liquid crystal display device according to one aspect of the present invention, when viewed from the normal direction of the base material, the first linear portion is one of the first polarizing plate and the second polarizing plate. It may intersect with the absorption axis of the plate.
 本発明の一つの態様の液晶表示装置において、前記第1の直線部分の少なくとも一部には、前記遮光部が形成されない非形成部が設けられていてもよい。 In the liquid crystal display device according to one aspect of the present invention, at least a part of the first linear portion may be provided with a non-forming portion where the light shielding portion is not formed.
 本発明の一つの態様の液晶表示装置において、前記光拡散部のうち前記非形成部に臨む部分は、丸みを帯びた形状を有していてもよい。 In the liquid crystal display device according to one aspect of the present invention, a portion of the light diffusing portion that faces the non-forming portion may have a rounded shape.
 本発明の一つの態様の液晶表示装置において、前記第1の直線部分のうち前記非形成部に臨む部分は、丸みを帯びた形状を有し、前記光拡散部のうち前記光入射端面側の前記非形成部に臨む部分は、前記第1の直線部分のうち前記非形成部に臨む部分よりも大きい曲率半径を有していてもよい。 In the liquid crystal display device according to one aspect of the present invention, a portion of the first linear portion that faces the non-forming portion has a rounded shape, and the light diffusing portion has a light incident end face side. The portion that faces the non-forming portion may have a larger radius of curvature than the portion that faces the non-forming portion of the first straight portion.
 本発明の一つの態様の液晶表示装置において、前記基材の法線方向から見て、前記遮光部の外周縁のうち、前記第1の直線部分に対応する部分を直線縁とし、前記第1の直線部分のうち前記非形成部に臨む部分に対応する部分を曲線縁としたとき、前記直線縁の長さの合計は、前記曲線縁の長さの合計よりも長くてもよい。 In the liquid crystal display device according to one aspect of the present invention, when viewed from the normal direction of the base material, a portion corresponding to the first straight portion of the outer peripheral edge of the light shielding portion is defined as a straight edge, and the first When the portion corresponding to the portion facing the non-forming portion among the straight portions is a curved edge, the total length of the straight edges may be longer than the total length of the curved edges.
 本発明の一つの態様の液晶表示装置において、前記非形成部は、前記画素に少なくとも1つ配置されていてもよい。 In the liquid crystal display device according to one aspect of the present invention, at least one non-formation portion may be disposed in the pixel.
 本発明の一つの態様の液晶表示装置において、前記平面形状は、前記第1の直線部分と、前記第1の方向に対して交差し且つ前記第1の直線部分に対して交差する交差部を有する第2の直線部分と、を有していてもよい。 In the liquid crystal display device according to one aspect of the present invention, the planar shape includes the first straight portion and an intersecting portion that intersects the first direction and intersects the first straight portion. And a second straight line portion.
 本発明の一つの態様の液晶表示装置において、前記交差部を挟んで対向する第1の角度は、互いに等しくてもよい。 In the liquid crystal display device according to one aspect of the present invention, the first angles facing each other across the intersection may be equal to each other.
 本発明の一つの態様の液晶表示装置において、前記第1の角度と隣り合う第2の角度は、前記第1の角度と異なっていてもよい。 In the liquid crystal display device according to one aspect of the present invention, the second angle adjacent to the first angle may be different from the first angle.
 本発明の一つの態様の液晶表示装置において、前記第1の角度は、前記第1の方向を向き且つ鈍角をなしていてもよい。 In the liquid crystal display device according to one aspect of the present invention, the first angle may be oriented in the first direction and an obtuse angle.
 本発明の一つの態様の液晶表示装置において、前記光拡散部のうち前記交差部に臨む部分は、丸みを帯びた形状を有していてもよい。 In the liquid crystal display device according to one aspect of the present invention, a portion of the light diffusing portion that faces the intersecting portion may have a rounded shape.
 本発明の一つの態様の液晶表示装置において、前記第1の直線部分及び前記第2の直線部分のうち前記交差部に臨む部分は、丸みを帯びた形状を有し、前記光拡散部のうち前記光入射端面側の前記交差部に臨む部分は、前記第1の直線部分及び前記第2の直線部分のうち前記交差部に臨む部分よりも大きい曲率半径を有していてもよい。 In the liquid crystal display device according to one aspect of the present invention, a portion of the first straight portion and the second straight portion that faces the intersecting portion has a rounded shape, and the light diffusion portion The portion facing the intersecting portion on the light incident end face side may have a larger radius of curvature than the portion facing the intersecting portion of the first straight portion and the second straight portion.
 本発明の一つの態様の液晶表示装置において、前記基材の法線方向から見て、前記遮光部の外周縁のうち、前記第1の直線部分及び前記第2の直線部分に対応する部分を直線縁とし、前記第1の直線部分及び前記第2の直線部分のうち前記交差部に臨む部分に対応する部分を第2の曲線縁としたとき、前記直線縁の長さの合計は、前記第2の曲線縁の長さの合計よりも長くてもよい。 In the liquid crystal display device according to one aspect of the present invention, portions corresponding to the first straight line portion and the second straight line portion of the outer peripheral edge of the light shielding portion when viewed from the normal direction of the base material. When a straight edge and a portion corresponding to the portion facing the intersecting portion of the first straight portion and the second straight portion are the second curved edges, the total length of the straight edges is It may be longer than the total length of the second curved edges.
 本発明の一つの態様の液晶表示装置において、前記交差部は、前記画素に少なくとも1つ配置されていてもよい。 In the liquid crystal display device according to one aspect of the present invention, at least one intersection may be disposed in the pixel.
 本発明の一つの態様の液晶表示装置において、前記交差部は、前記画素のうち視感度透過率が相対的に高い色の画素に少なくとも1つ配置されていてもよい。 In the liquid crystal display device according to one aspect of the present invention, at least one of the intersecting portions may be disposed in a pixel having a relatively high visibility transmittance among the pixels.
 本発明の一つの態様の液晶表示装置において、前記画素は、複数の副画素を有し、前記交差部は、前記複数の副画素にそれぞれ同じ数ずつ配置されていてもよい。 In the liquid crystal display device according to one aspect of the present invention, the pixel may include a plurality of sub-pixels, and the same number of the intersections may be disposed in the plurality of sub-pixels.
 本発明の一つの態様の液晶表示装置において、前記画素は、二つのドメインを有し、前記交差部は、前記二つのドメインにそれぞれ同じ数ずつ配置されていてもよい。 In the liquid crystal display device according to one aspect of the present invention, the pixel may have two domains, and the intersections may be arranged in the same number in each of the two domains.
 本発明の一つの態様の液晶表示装置において、前記遮光部は、前記第1の面に点在して配置される複数のX字形状の遮光層を備えていてもよい。 In the liquid crystal display device according to one aspect of the present invention, the light-shielding portion may include a plurality of X-shaped light-shielding layers that are scattered on the first surface.
 本発明の一つの態様の液晶表示装置において、前記平面形状は、少なくとも一部に屈曲部を有する折れ線形状を有していてもよい。 In the liquid crystal display device according to one aspect of the present invention, the planar shape may have a polygonal line shape having a bent portion at least partially.
 本発明の一つの態様の液晶表示装置において、前記屈曲部が、前記画素に少なくとも1つ配置されていてもよい。 In the liquid crystal display device according to one aspect of the present invention, at least one bent portion may be disposed in the pixel.
 本発明の一つの態様の液晶表示装置において、前記平面形状は、互いに平行に直線状に延びる複数の前記第1の直線部分を有していてもよい。 In the liquid crystal display device according to one aspect of the present invention, the planar shape may include a plurality of the first straight portions extending linearly in parallel with each other.
 本発明の一つの態様の液晶表示装置において、前記第1の直線部分の幅は、一定であってもよい。 In the liquid crystal display device according to one aspect of the present invention, the width of the first straight line portion may be constant.
 本発明の一つの態様の液晶表示装置において、隣り合う2つの前記第1の直線部分の間隔は、ランダムであってもよい。 In the liquid crystal display device according to one aspect of the present invention, the interval between the two adjacent first linear portions may be random.
 本発明の一つの態様の液晶表示装置において、前記平面形状は、隣り合う2つの前記第1の直線部分の間を繋ぐ連結部を有していてもよい。 In the liquid crystal display device according to one aspect of the present invention, the planar shape may have a connecting portion that connects between the two adjacent first straight portions.
 本発明の一つの態様の液晶表示装置において、前記液晶パネルの光入射側に配置された照明装置をさらに備え、前記照明装置は、前記基材の法線方向から見て、前記第1の方向に垂直な方向に射出される光の量を、前記第1の方向に平行な方向に射出される光の量よりも多くしてもよい。 The liquid crystal display device according to one aspect of the present invention further includes a lighting device disposed on a light incident side of the liquid crystal panel, and the lighting device has the first direction as viewed from the normal direction of the base material. The amount of light emitted in a direction perpendicular to the first direction may be larger than the amount of light emitted in a direction parallel to the first direction.
 本発明の一つの態様の液晶表示装置において、前記基材の法線方向から見た方位角方向において、前記照明装置から射出される光の輝度分布を示す複数の輝度曲線のうち、少なくとも前記第1の方向に平行な方向に射出される光の輝度分布を示す第1の輝度曲線と、前記第1の方向に垂直な方向に射出される光の輝度分布を示す第2の輝度曲線とは、2回転対称の形状を有していてもよい。 In the liquid crystal display device of one aspect of the present invention, at least the first of the plurality of luminance curves indicating the luminance distribution of light emitted from the illumination device in the azimuth angle direction viewed from the normal direction of the base material. The first luminance curve showing the luminance distribution of light emitted in a direction parallel to the first direction and the second luminance curve showing the luminance distribution of light emitted in a direction perpendicular to the first direction It may have a two-fold symmetrical shape.
 本発明の一つの態様の液晶表示装置において、前記光制御部材は、前記遮光部が存在する領域の外周部を覆う封止部材を備えていてもよい。 In the liquid crystal display device according to one aspect of the present invention, the light control member may include a sealing member that covers an outer peripheral portion of a region where the light shielding portion exists.
 本発明の一つの態様の液晶表示装置において、前記封止部材は、前記液晶表示装置の表示領域以外の領域に配置されていてもよい。 In the liquid crystal display device according to one aspect of the present invention, the sealing member may be disposed in a region other than the display region of the liquid crystal display device.
 本発明の一つの態様の液晶表示装置において、前記液晶パネルに対する前記光制御部材の位置を示す指標は、前記遮光部が存在する領域の前記外周部に設けられていてもよい。 In the liquid crystal display device according to one aspect of the present invention, the index indicating the position of the light control member relative to the liquid crystal panel may be provided on the outer peripheral portion of the region where the light shielding portion exists.
 本発明の一つの態様の液晶表示装置において、前記封止部材は、前記光拡散部と同じ材料により形成されていてもよい。 In the liquid crystal display device according to one aspect of the present invention, the sealing member may be formed of the same material as the light diffusion portion.
 本発明の一つの態様の光制御部材は、光透過性を有する基材と、前記基材の第1の面に設けられた遮光部と、前記基材の前記第1の面の前記遮光部が形成されていない領域を光射出端面とする光拡散部と、前記基材の法線方向から見て前記遮光部と一部重なる位置に設けられ、前記光拡散部の屈折率よりも低い屈折率を有する低屈折率部と、を備え、前記光拡散部は、前記基材側に位置する前記光射出端面と、前記基材側と反対側に位置する光入射端面と、前記光射出端面と前記光入射端面との間に位置する傾斜面と、を有し、前記基材の法線方向から見た前記遮光部の平面形状が、前記基材の平面形状の一つの辺に対して交差する第1の直線部分を有し、前記遮光部が存在する領域の外周部を覆う封止部材を備える。 The light control member of one aspect of the present invention includes a light-transmitting base material, a light shielding portion provided on the first surface of the base material, and the light shielding portion on the first surface of the base material. A light diffusing portion having a region where no light is formed as a light exit end surface, and a refractive index lower than the refractive index of the light diffusing portion, provided at a position partially overlapping with the light shielding portion when viewed from the normal direction of the base material A low-refractive-index part having a refractive index, and the light diffusion part includes the light emission end face located on the substrate side, a light incident end face located on the side opposite to the substrate side, and the light emission end face And the inclined surface located between the light incident end face, and the planar shape of the light shielding portion viewed from the normal direction of the substrate is relative to one side of the planar shape of the substrate A sealing member having a first linear portion that intersects and covering an outer peripheral portion of a region where the light shielding portion exists is provided.
 本発明の一つの態様の光制御部材は、光透過性を有する基材と、前記基材の第1の面に設けられた遮光部と、前記基材の前記第1の面の前記遮光部が形成されていない領域を光射出端面とする光拡散部と、前記基材の法線方向から見て前記遮光部と一部重なる位置に設けられ、前記光拡散部の屈折率よりも低い屈折率を有する低屈折率部と、を備え、前記光拡散部は、前記基材側に位置する前記光射出端面と、前記基材側と反対側に位置する光入射端面と、前記光射出端面と前記光入射端面との間に位置する傾斜面と、を有し、前記基材の法線方向から見た前記遮光部の平面形状が、前記基材側と反対側に配置される偏光板の吸収軸と交差する第1の直線部分を有し、前記遮光部が存在する領域の外周部を覆う封止部材を備える。 The light control member of one aspect of the present invention includes a light-transmitting base material, a light shielding portion provided on the first surface of the base material, and the light shielding portion on the first surface of the base material. A light diffusing portion having a region where no light is formed as a light exit end surface, and a refractive index lower than the refractive index of the light diffusing portion, provided at a position partially overlapping with the light shielding portion when viewed from the normal direction of the base material A low-refractive-index part having a refractive index, and the light diffusion part includes the light emission end face located on the substrate side, a light incident end face located on the side opposite to the substrate side, and the light emission end face And a tilted surface positioned between the light incident end face, and the planar shape of the light shielding portion viewed from the normal direction of the base material is disposed on the side opposite to the base material side And a sealing member that covers the outer periphery of the region where the light shielding portion exists.
 本発明の一つの態様の光制御部材は、光透過性を有する基材と、前記基材の第1の面に設けられた遮光部と、前記基材の前記第1の面の前記遮光部が形成されていない領域を光射出端面とする光拡散部と、前記基材の法線方向から見て前記遮光部と一部重なる位置に設けられ、前記光拡散部の屈折率よりも低い屈折率を有する低屈折率部と、を備え、前記光拡散部は、前記基材側に位置する前記光射出端面と、前記基材側と反対側に位置する光入射端面と、前記光射出端面と前記光入射端面との間に位置する傾斜面と、を有し、前記基材の法線方向から見た前記遮光部の平面形状が、前記基材の平面形状の一つの辺に対して交差する第1の直線部分と、前記第1の直線部分に対して交差する交差部を有する第2の直線部分と、を有し、前記第1の直線部分及び前記第2の直線部分のうち前記交差部に臨む部分は、丸みを帯びた形状を有し、前記光拡散部のうち前記光入射端面側の前記交差部に臨む部分は、前記第1の直線部分及び前記第2の直線部分のうち前記交差部に臨む部分よりも大きい曲率半径を有する。 The light control member of one aspect of the present invention includes a light-transmitting base material, a light shielding portion provided on the first surface of the base material, and the light shielding portion on the first surface of the base material. A light diffusing portion having a region where no light is formed as a light exit end surface, and a refractive index lower than the refractive index of the light diffusing portion, provided at a position partially overlapping with the light shielding portion when viewed from the normal direction of the base material A low-refractive-index part having a refractive index, and the light diffusion part includes the light emission end face located on the substrate side, a light incident end face located on the side opposite to the substrate side, and the light emission end face And the inclined surface located between the light incident end face, and the planar shape of the light shielding portion viewed from the normal direction of the substrate is relative to one side of the planar shape of the substrate A first straight portion that intersects, and a second straight portion that has a cross portion that intersects the first straight portion, and Of the first linear portion and the second linear portion, the portion facing the intersecting portion has a rounded shape, and the portion facing the intersecting portion on the light incident end face side of the light diffusing portion is: The first straight portion and the second straight portion have a larger radius of curvature than the portion facing the intersecting portion.
 本発明の一つの態様の光制御部材は、光透過性を有する基材と、前記基材の第1の面に設けられた遮光部と、前記基材の前記第1の面の前記遮光部が形成されていない領域を光射出端面とする光拡散部と、前記基材の法線方向から見て前記遮光部と一部重なる位置に設けられ、前記光拡散部の屈折率よりも低い屈折率を有する低屈折率部と、を備え、前記光拡散部は、前記基材側に位置する前記光射出端面と、前記基材側と反対側に位置する光入射端面と、前記光射出端面と前記光入射端面との間に位置する傾斜面と、を有し、前記基材の法線方向から見た前記遮光部の平面形状が、前記基材の平面形状の一つの辺に対して交差する第1の直線部分と、前記第1の直線部分に対して交差する交差部を有する第2の直線部分と、を有し、前記基材の法線方向から見て、前記遮光部の外周縁のうち、前記第1の直線部分及び前記第2の直線部分に対応する部分を直線縁とし、前記第1の直線部分及び前記第2の直線部分のうち前記交差部に臨む部分に対応する部分を第2の曲線縁としたとき、前記直線縁の長さの合計は、前記第2の曲線縁の長さの合計よりも長い光制御部材。 The light control member of one aspect of the present invention includes a light-transmitting base material, a light shielding portion provided on the first surface of the base material, and the light shielding portion on the first surface of the base material. A light diffusing portion having a region where no light is formed as a light exit end surface, and a refractive index lower than the refractive index of the light diffusing portion, provided at a position partially overlapping with the light shielding portion when viewed from the normal direction of the base material A low-refractive-index part having a refractive index, and the light diffusion part includes the light emission end face located on the substrate side, a light incident end face located on the side opposite to the substrate side, and the light emission end face And the inclined surface located between the light incident end face, and the planar shape of the light shielding portion viewed from the normal direction of the substrate is relative to one side of the planar shape of the substrate A first straight portion that intersects, and a second straight portion that has a cross portion that intersects the first straight portion, and A portion corresponding to the first straight portion and the second straight portion of the outer peripheral edge of the light shielding portion as viewed from the normal direction of the material is defined as a straight edge, and the first straight portion and the second straight portion. When the portion corresponding to the portion facing the intersection is the second curved edge, the total length of the straight edges is longer than the total length of the second curved edges. Control member.
 本発明の一つの態様によれば、複雑な回路構造を適用することなく、視野角依存性の小さい液晶表示装置を提供することができる。又、本発明の一つの態様によれば、液晶表示装置の視野角依存性を小さくするために用いる光制御部材を提供することができる。 According to one aspect of the present invention, it is possible to provide a liquid crystal display device having a small viewing angle dependency without applying a complicated circuit structure. In addition, according to one aspect of the present invention, it is possible to provide a light control member used for reducing the viewing angle dependency of the liquid crystal display device.
第1実施形態の液晶表示装置の断面図である。It is sectional drawing of the liquid crystal display device of 1st Embodiment. 第1実施形態の液晶パネルの縦断面図である。It is a longitudinal cross-sectional view of the liquid crystal panel of 1st Embodiment. 液晶表示装置の駆動回路の構成を示すブロック図である。It is a block diagram which shows the structure of the drive circuit of a liquid crystal display device. 液晶表示装置のゲートバスライン及びソースバスラインを示す図である。It is a figure which shows the gate bus line and source bus line of a liquid crystal display device. 光制御部材を視認側から見た斜視図である。It is the perspective view which looked at the light control member from the visual recognition side. 光制御部材の平面図及び2方向からの断面図である。It is the top view of a light control member, and sectional drawing from two directions. 光制御部材の外周部を含む平面図である。It is a top view including the outer peripheral part of a light control member. 光制御部材の遮光層の交差部を示す平面図である。It is a top view which shows the cross | intersection part of the light shielding layer of a light control member. 光制御部材作製用母材の一つの例を示す平面図である。It is a top view which shows one example of the base material for light control member production. 光制御部材作製用母材の他の例を示す平面図である。It is a top view which shows the other example of the preform | base_material for light control member production. 極角と方位角の定義を説明するための図である。It is a figure for demonstrating the definition of a polar angle and an azimuth. 液晶表示装置の正面図である。It is a front view of a liquid crystal display device. 画素内の各ドメインの液晶分子のダイレクタ方向と、光制御部材及び偏光板との配置関係を示す模式図である。It is a schematic diagram which shows the arrangement | positioning relationship between the director direction of the liquid crystal molecule | numerator of each domain in a pixel, a light control member, and a polarizing plate. 光制御部材を備えていない比較例の液晶表示装置において、極角を変化させた場合のガンマ特性を示す図である。It is a figure which shows the gamma characteristic at the time of changing a polar angle in the liquid crystal display device of the comparative example which is not provided with the light control member. (A)~(F)第1実施形態の遮光層の平面形状の作用を説明するための図である。(A) to (F) are views for explaining the action of the planar shape of the light shielding layer of the first embodiment. 第1実施形態の光制御部材の製造方法の一工程の様子を示す斜視図である。It is a perspective view which shows the mode of 1 process of the manufacturing method of the light control member of 1st Embodiment. 図16に続く、一工程の様子を示す斜視図である。It is a perspective view which shows the mode of one process following FIG. 図17に続く、一工程の様子を示す斜視図である。It is a perspective view which shows the mode of one process following FIG. 図18に続く、一工程の様子を示す斜視図である。It is a perspective view which shows the mode of one process following FIG. 遮光層を拡大して示す平面図である。It is a top view which expands and shows a light shielding layer. 基材の法線方向から見た光制御部材の強散乱方向を説明するための図である。It is a figure for demonstrating the strong scattering direction of the light control member seen from the normal line direction of the base material. 基材の法線方向から見た光制御部材の光拡散強度の方位分布を示す図である。It is a figure which shows orientation distribution of the light-diffusion intensity | strength of the light control member seen from the normal line direction of the base material. 第2実施形態の光制御部材の平面図である。It is a top view of the light control member of a 2nd embodiment. 第2実施形態の複数の遮光層のうち一つの遮光層を示す平面図である。It is a top view which shows one light shielding layer among the several light shielding layers of 2nd Embodiment. 人間の視力と人間の眼で認識できる物体の大きさとの関係を示すグラフである。It is a graph which shows the relationship between human eyesight and the size of the object which can be recognized with a human eye. 比較例の遮光層の平面図である。It is a top view of the light shielding layer of a comparative example. 第2実施形態の遮光層の平面形状の作用を説明するための図である。It is a figure for demonstrating the effect | action of the planar shape of the light shielding layer of 2nd Embodiment. 第2実施形態の第1変形例の光制御部材を示す平面図である。It is a top view which shows the light control member of the 1st modification of 2nd Embodiment. 第2実施形態の第2変形例の光制御部材を示す平面図である。It is a top view which shows the light control member of the 2nd modification of 2nd Embodiment. 第2実施形態の第3変形例の光制御部材を示す平面図である。It is a top view which shows the light control member of the 3rd modification of 2nd Embodiment. 第2実施形態の第4変形例の光制御部材を示す平面図である。It is a top view which shows the light control member of the 4th modification of 2nd Embodiment. 第3実施形態の遮光層の平面図である。It is a top view of the light shielding layer of 3rd Embodiment. 第3実施形態の遮光層の非形成部を示す平面図である。It is a top view which shows the non-formation part of the light shielding layer of 3rd Embodiment. 第4実施形態の遮光層の平面図である。It is a top view of the light shielding layer of 4th Embodiment. 第5実施形態の遮光層の平面図である。It is a top view of the light shielding layer of 5th Embodiment. 第5実施形態の遮光層の屈曲部を示す平面図である。It is a top view which shows the bending part of the light shielding layer of 5th Embodiment. 第6実施形態の遮光層の平面図である。It is a top view of the light shielding layer of 6th Embodiment. 第6実施形態の遮光層の屈曲部及び非形成部を示す平面図である。It is a top view which shows the bending part and non-formation part of the light shielding layer of 6th Embodiment. 第7実施形態の遮光層の平面図である。It is a top view of the light shielding layer of 7th Embodiment. 基材の法線方向から見た光制御部材の強散乱方向を説明するための図である。It is a figure for demonstrating the strong scattering direction of the light control member seen from the normal line direction of the base material. 光制御部材の強散乱方向の測定方法を説明するための図であり、図40のA1-A1断面を含む図である。FIG. 41 is a diagram for explaining a method for measuring the strong scattering direction of the light control member, and includes a cross section taken along line A1-A1 of FIG. 受光角度30°における方位角と受光強度との関係を示すグラフである。It is a graph which shows the relationship between the azimuth angle and light reception intensity in the light reception angle of 30 degrees. 基材の法線方向から見た光制御部材の光拡散強度の方位分布を示す図である。It is a figure which shows orientation distribution of the light-diffusion intensity | strength of the light control member seen from the normal line direction of the base material. 第7実施形態の遮光層の他の例を示す平面図である。It is a top view which shows the other example of the light shielding layer of 7th Embodiment. 第7実施形態の第1変形例の遮光層を示す平面図である。It is a top view which shows the light shielding layer of the 1st modification of 7th Embodiment. 第7実施形態の第2変形例の遮光層を示す平面図である。It is a top view which shows the light shielding layer of the 2nd modification of 7th Embodiment. 第7実施形態の第3変形例の遮光層を示す平面図である。It is a top view which shows the light shielding layer of the 3rd modification of 7th Embodiment. 第8実施形態の光制御部材の断面図である。It is sectional drawing of the light control member of 8th Embodiment. 第8実施形態の光制御部材の他の例を示す断面図である。It is sectional drawing which shows the other example of the light control member of 8th Embodiment. 光拡散部の反射面の傾斜角度の分布が第1の反射面と第2の反射面とで同じ場合における光拡散部の反射面の傾斜角度と面積率との関係を示す図である。It is a figure which shows the relationship between the inclination angle of the reflective surface of a light-diffusion part, and an area ratio in case the distribution of the inclination angle of the reflective surface of a light-diffusion part is the same with a 1st reflective surface and a 2nd reflective surface. 光拡散部の反射面の傾斜角度の分布が第1の反射面と第2の反射面とで異なる場合における光拡散部の反射面の傾斜角度と面積率との関係を示す図である。It is a figure which shows the relationship between the inclination angle of the reflective surface of a light-diffusion part, and an area ratio in case the distribution of the inclination angle of the reflective surface of a light-diffusion part differs in the 1st reflective surface and the 2nd reflective surface. 第9実施形態の光制御部材の断面図である。It is sectional drawing of the light control member of 9th Embodiment. 第9実施形態の光制御部材の他の例を示す断面図である。It is sectional drawing which shows the other example of the light control member of 9th Embodiment. 第10実施形態の光制御部材の斜視図である。It is a perspective view of the light control member of 10th Embodiment. 第10実施形態の光制御部材の他の例を示す斜視図である。It is a perspective view which shows the other example of the light control member of 10th Embodiment. 光制御部材のアライメント方法を説明するための図である。It is a figure for demonstrating the alignment method of a light control member. 第11実施形態のバックライトの断面図である。It is sectional drawing of the backlight of 11th Embodiment. 液晶表示装置の方位角φ:0°-180°方向及び方位角φ:90°-270°方向における極角とバックライトの輝度との関係を示す図である。It is a figure which shows the relationship between the polar angle and the brightness | luminance of a backlight in the azimuth | direction angle | corner: 0 degree-180 degree direction and azimuth | direction angle | corner: 90 degree-270 degree direction of a liquid crystal display device. 第11実施形態の他の例のバックライトの他の例を示す断面図である。It is sectional drawing which shows the other example of the backlight of the other example of 11th Embodiment. 第12実施形態の光制御部材の断面図である。It is sectional drawing of the light control member of 12th Embodiment. 第12実施形態の光制御部材の製造方法を説明するための図である。It is a figure for demonstrating the manufacturing method of the light control member of 12th Embodiment. 液晶表示装置の一適用例である薄型テレビを示す外観図である。It is an external view which shows the thin television which is one application example of a liquid crystal display device. 液晶表示装置の一適用例であるスマートフォンを示す外観図である。It is an external view which shows the smart phone which is one application example of a liquid crystal display device. 液晶表示装置の一適用例であるノートパソコンを示す外観図である。It is an external view which shows the notebook personal computer which is one application example of a liquid crystal display device. (A)~(E)液晶表示装置を構成するカラーフィルターの色配置の例を示す図である。(A) to (E) are diagrams showing examples of color arrangements of color filters constituting a liquid crystal display device.
[第1実施形態]
 以下、本発明の第1実施形態について、図1~図22を用いて説明する。
 本実施形態では、透過型の液晶パネルを備えた、スーパーハイビジョン(7680Pixel×4320Pixel)映像の表示に対応した液晶表示装置の例を挙げて説明する。
 尚、以下の全ての図面においては、各構成要素を見やすくするため、構成要素によって寸法の縮尺を異ならせて示すことがある。
[First Embodiment]
A first embodiment of the present invention will be described below with reference to FIGS.
In the present embodiment, an example of a liquid crystal display device that includes a transmissive liquid crystal panel and is compatible with super high-definition (7680 pixel × 4320 pixel) video display will be described.
In all of the following drawings, in order to make each component easy to see, the scale of the size may be varied depending on the component.
 図1は、本実施形態の液晶表示装置の断面図である。
 図1に示すように、本実施形態の液晶表示装置1は、液晶パネル2と、バックライト8と、光制御部材9と、を備えている。液晶パネル2は、第1の偏光板3と、第1位相差フィルム4と、液晶セル5と、第2位相差フィルム6と、第2の偏光板7と、を備えている。図1では、液晶セル5を模式的に図示しているが、その詳細な構造については後述する。
 本実施形態のバックライト8は、特許請求の範囲の照明装置に対応する。
FIG. 1 is a cross-sectional view of the liquid crystal display device of the present embodiment.
As shown in FIG. 1, the liquid crystal display device 1 of this embodiment includes a liquid crystal panel 2, a backlight 8, and a light control member 9. The liquid crystal panel 2 includes a first polarizing plate 3, a first retardation film 4, a liquid crystal cell 5, a second retardation film 6, and a second polarizing plate 7. In FIG. 1, the liquid crystal cell 5 is schematically illustrated, but the detailed structure thereof will be described later.
The backlight 8 of the present embodiment corresponds to the lighting device in the claims.
 観察者は、光制御部材9を介して液晶表示装置1の表示画像を見る。以下の説明では、光制御部材9が配置された側を視認側と称する。バックライト8が配置された側を背面側と称する。又、以下の説明において、x軸は、液晶表示装置1の画面の水平方向と定義する。y軸は、液晶表示装置1の画面の垂直方向と定義する。z軸は、液晶表示装置1の厚さ方向と定義する。さらに、画面の水平方向は、観察者が液晶表示装置1を正対して見たときの左右方向に対応する。画面の垂直方向は、観察者が液晶表示装置1を正対して見たときの上下方向に対応する。 The observer views the display image of the liquid crystal display device 1 through the light control member 9. In the following description, the side on which the light control member 9 is disposed is referred to as the viewing side. The side on which the backlight 8 is disposed is referred to as the back side. In the following description, the x axis is defined as the horizontal direction of the screen of the liquid crystal display device 1. The y axis is defined as the vertical direction of the screen of the liquid crystal display device 1. The z axis is defined as the thickness direction of the liquid crystal display device 1. Further, the horizontal direction of the screen corresponds to the left-right direction when the observer views the liquid crystal display device 1 facing the front. The vertical direction of the screen corresponds to the up-down direction when the observer views the liquid crystal display device 1 facing the front.
 本実施形態の液晶表示装置1においては、バックライト8から射出された光を液晶パネル2で変調し、変調した光によって所定の画像や文字等を表示する。又、液晶パネル2から射出された光が光制御部材9を透過すると、射出光の配光分布が光制御部材9に入射する前より広がった状態となり、光制御部材9から光が射出される。 In the liquid crystal display device 1 of the present embodiment, the light emitted from the backlight 8 is modulated by the liquid crystal panel 2, and a predetermined image, character, or the like is displayed by the modulated light. Further, when the light emitted from the liquid crystal panel 2 passes through the light control member 9, the light distribution of the emitted light becomes wider than before entering the light control member 9, and the light is emitted from the light control member 9. .
 以下、液晶パネル2の具体的な構成について説明する。
 ここでは、アクティブマトリクス方式の透過型液晶パネルを一例に挙げて説明する。但し、本実施形態に適用可能な液晶パネルはアクティブマトリクス方式の透過型液晶パネルに限るものではない。本実施形態に適用可能な液晶パネル2は、例えば半透過型(透過・反射兼用型)液晶パネルであっても良い。さらには、各画素がスイッチング用薄膜トランジスタを備えていない単純マトリクス方式の液晶パネルであっても良い。以下、薄膜トランジスタ(Thin Film Transistor)をTFTと略記する。
Hereinafter, a specific configuration of the liquid crystal panel 2 will be described.
Here, an active matrix transmissive liquid crystal panel will be described as an example. However, the liquid crystal panel applicable to the present embodiment is not limited to an active matrix transmissive liquid crystal panel. The liquid crystal panel 2 applicable to the present embodiment may be, for example, a transflective (transmission / reflection type) liquid crystal panel. Furthermore, a simple matrix type liquid crystal panel in which each pixel does not include a switching thin film transistor may be used. Hereinafter, a thin film transistor is abbreviated as TFT.
 図2は、液晶パネル2の縦断面図である。
 図2に示すように、液晶セル5は、TFT基板10と、カラーフィルター基板12と、液晶層11と、を有している。TFT基板10は、スイッチング素子基板として機能する。カラーフィルター基板12は、TFT基板10に対向して配置されている。液晶層11は、TFT基板10とカラーフィルター基板12との間に挟持されている。
 本実施形態のTFT基板10は、特許請求の範囲の第1の基板に対応する。本実施形態のカラーフィルター基板12は、特許請求の範囲の第2の基板に対応する。
FIG. 2 is a longitudinal sectional view of the liquid crystal panel 2.
As illustrated in FIG. 2, the liquid crystal cell 5 includes a TFT substrate 10, a color filter substrate 12, and a liquid crystal layer 11. The TFT substrate 10 functions as a switching element substrate. The color filter substrate 12 is disposed to face the TFT substrate 10. The liquid crystal layer 11 is sandwiched between the TFT substrate 10 and the color filter substrate 12.
The TFT substrate 10 of this embodiment corresponds to the first substrate in the claims. The color filter substrate 12 of this embodiment corresponds to the second substrate in the claims.
 液晶層11は、TFT基板10と、カラーフィルター基板12と、枠状のシール部材(図示せず)と、によって囲まれた空間内に封入されている。シール部材は、TFT基板10とカラーフィルター基板12とを所定の間隔をおいて貼り合わせる。 The liquid crystal layer 11 is sealed in a space surrounded by the TFT substrate 10, the color filter substrate 12, and a frame-shaped seal member (not shown). The sealing member bonds the TFT substrate 10 and the color filter substrate 12 at a predetermined interval.
 本実施形態の液晶パネル2は、VA(Vertical Alignment:垂直配向)モードで表示を行う。液晶層11には誘電率異方性が負の液晶が用いられる。TFT基板10とカラーフィルター基板12との間には、スペーサー13が配置されている。スペーサー13は球状あるいは柱状の部材である。スペーサー13は、TFT基板10とカラーフィルター基板12との間の間隔を一定に保持する。 The liquid crystal panel 2 of the present embodiment performs display in a VA (Vertical Alignment) mode. A liquid crystal having a negative dielectric anisotropy is used for the liquid crystal layer 11. A spacer 13 is disposed between the TFT substrate 10 and the color filter substrate 12. The spacer 13 is a spherical or columnar member. The spacer 13 keeps the distance between the TFT substrate 10 and the color filter substrate 12 constant.
 TFT基板10を構成する透明基板14の液晶層11側の面には、半導体層15、ゲート電極16、ソース電極17、ドレイン電極18等を有するTFT19が形成されている。透明基板14としては、例えばガラス基板を用いることができる。
 本実施形態のTFT19は、各画素に設けられるスイッチング素子として機能する。
A TFT 19 having a semiconductor layer 15, a gate electrode 16, a source electrode 17, a drain electrode 18 and the like is formed on the surface of the transparent substrate 14 constituting the TFT substrate 10 on the liquid crystal layer 11 side. As the transparent substrate 14, for example, a glass substrate can be used.
The TFT 19 of this embodiment functions as a switching element provided in each pixel.
 透明基板14上には、半導体層15が形成されている。半導体層15は、例えばインジウム(In)、ガリウム(Ga)、亜鉛(Zn)、酸素(O)を含む4元混晶半導体材料で構成されている。半導体層15の材料としては、In-Ga-Zn-O系4元混晶半導体の他、CGS(Continuous Grain Silicon:連続粒界シリコン)、LPS(Low-temperature Poly-Silicon:低温多結晶シリコン)、α-Si(Amorphous Silicon:非結晶シリコン)等の半導体材料が用いられる。 A semiconductor layer 15 is formed on the transparent substrate 14. The semiconductor layer 15 is made of a quaternary mixed crystal semiconductor material containing, for example, indium (In), gallium (Ga), zinc (Zn), and oxygen (O). As the material of the semiconductor layer 15, in addition to an In—Ga—Zn—O-based quaternary mixed crystal semiconductor, CGS (Continuous Grain Silicon), LPS (Low-temperature Poly-Silicon) A semiconductor material such as α-Si (AmorphousconSilicon) is used.
 透明基板14上には、半導体層15を覆うようにゲート絶縁膜20が形成されている。
 ゲート絶縁膜20の材料としては、例えばシリコン酸化膜、シリコン窒化膜、もしくはこれらの積層膜等が用いられる。
A gate insulating film 20 is formed on the transparent substrate 14 so as to cover the semiconductor layer 15.
As a material of the gate insulating film 20, for example, a silicon oxide film, a silicon nitride film, or a laminated film thereof is used.
 ゲート絶縁膜20上には、半導体層15と対向するようにゲート電極16が形成されている。ゲート電極16の材料としては、例えばW(タングステン)/TaN(窒化タンタル)の積層膜、Mo(モリブデン)、Ti(チタン)、Al(アルミニウム)、Cu(銅)等が用いられる。 A gate electrode 16 is formed on the gate insulating film 20 so as to face the semiconductor layer 15. As the material of the gate electrode 16, for example, a laminated film of W (tungsten) / TaN (tantalum nitride), Mo (molybdenum), Ti (titanium), Al (aluminum), Cu (copper), or the like is used.
 ゲート絶縁膜20上には、ゲート電極16を覆うように第1層間絶縁膜21が形成されている。第1層間絶縁膜21の材料としては、例えばシリコン酸化膜、シリコン窒化膜、もしくはこれらの積層膜等が用いられる。 A first interlayer insulating film 21 is formed on the gate insulating film 20 so as to cover the gate electrode 16. As a material of the first interlayer insulating film 21, for example, a silicon oxide film, a silicon nitride film, or a laminated film thereof is used.
 第1層間絶縁膜21上には、ソース電極17及びドレイン電極18が形成されている。
 第1層間絶縁膜21とゲート絶縁膜20とには、コンタクトホール22及びコンタクトホール23が、第1層間絶縁膜21とゲート絶縁膜20とを貫通して形成されている。
 ソース電極17は、コンタクトホール22を介して半導体層15のソース領域に接続されている。ドレイン電極18は、コンタクトホール23を介して半導体層15のドレイン領域に接続されている。ソース電極17及びドレイン電極18の材料としては、上述のゲート電極16と同様の導電性材料が用いられる。
A source electrode 17 and a drain electrode 18 are formed on the first interlayer insulating film 21.
A contact hole 22 and a contact hole 23 are formed through the first interlayer insulating film 21 and the gate insulating film 20 in the first interlayer insulating film 21 and the gate insulating film 20.
The source electrode 17 is connected to the source region of the semiconductor layer 15 through the contact hole 22. The drain electrode 18 is connected to the drain region of the semiconductor layer 15 through the contact hole 23. As a material for the source electrode 17 and the drain electrode 18, the same conductive material as that for the gate electrode 16 is used.
 第1層間絶縁膜21上には、ソース電極17及びドレイン電極18を覆うように第2層間絶縁膜24が形成されている。第2層間絶縁膜24の材料としては、上述の第1層間絶縁膜21と同様の材料、もしくは有機絶縁性材料が用いられる。 A second interlayer insulating film 24 is formed on the first interlayer insulating film 21 so as to cover the source electrode 17 and the drain electrode 18. As the material of the second interlayer insulating film 24, the same material as the first interlayer insulating film 21 described above or an organic insulating material is used.
 第2層間絶縁膜24上には、画素電極25が形成されている。第2層間絶縁膜24には、コンタクトホール26が第2層間絶縁膜24を貫通して形成されている。画素電極25は、コンタクトホール26を介してドレイン電極18に接続されている。画素電極25は、ドレイン電極18を中継用電極として半導体層15のドレイン領域に接続されている。
 画素電極25の材料としては、例えばITO(Indium Tin Oxide:インジウム錫酸化物)、IZO(Indium Zinc Oxide:インジウム亜鉛酸化物)等の透明導電性材料が用いられる。
A pixel electrode 25 is formed on the second interlayer insulating film 24. A contact hole 26 is formed through the second interlayer insulating film 24 in the second interlayer insulating film 24. The pixel electrode 25 is connected to the drain electrode 18 through the contact hole 26. The pixel electrode 25 is connected to the drain region of the semiconductor layer 15 using the drain electrode 18 as a relay electrode.
As the material of the pixel electrode 25, for example, a transparent conductive material such as ITO (Indium Tin Oxide) or IZO (Indium Zinc Oxide) is used.
 この構成により、ゲートバスラインを通じて走査信号が供給され、TFT19がオン状態となったときに、ソースバスラインを通じてソース電極17に供給された画像信号が、半導体層15、ドレイン電極18を経て画素電極25に供給される。尚、TFT19の形態としては、図2に示したトップゲート型TFTであってもよいし、ボトムゲート型TFTであってもよい。 With this configuration, when the scanning signal is supplied through the gate bus line and the TFT 19 is turned on, the image signal supplied to the source electrode 17 through the source bus line passes through the semiconductor layer 15 and the drain electrode 18 to form a pixel electrode. 25. The form of the TFT 19 may be the top gate type TFT shown in FIG. 2 or the bottom gate type TFT.
 画素電極25を覆うように、第2層間絶縁膜24上の全面に第1の配向膜27が形成されている。第1の配向膜27は、液晶層11を構成する液晶分子を垂直配向させる配向規制力を有している。本実施形態では、光配向技術を用いて第1の配向膜27に配向処理を施している。つまり、本実施形態では、第1の配向膜27として光配向膜を用いている。 A first alignment film 27 is formed on the entire surface of the second interlayer insulating film 24 so as to cover the pixel electrode 25. The first alignment film 27 has an alignment regulating force for vertically aligning liquid crystal molecules constituting the liquid crystal layer 11. In the present embodiment, the alignment process is performed on the first alignment film 27 using a photo-alignment technique. That is, in this embodiment, a photo-alignment film is used as the first alignment film 27.
 一方、カラーフィルター基板12を構成する透明基板29の液晶層11側の面には、ブラックマトリクス30、カラーフィルター31、平坦化層32、対向電極33、第2の配向膜34が順次形成されている。 On the other hand, a black matrix 30, a color filter 31, a planarizing layer 32, a counter electrode 33, and a second alignment film 34 are sequentially formed on the surface of the transparent substrate 29 constituting the color filter substrate 12 on the liquid crystal layer 11 side. Yes.
 ブラックマトリクス30は、画素間領域において光の透過を遮断する機能を有する。ブラックマトリクス30は、例えば、Cr(クロム)やCr/酸化Crの多層膜等の金属、もしくはカーボン粒子を感光性樹脂に分散させたフォトレジストで形成されている。 The black matrix 30 has a function of blocking light transmission in the inter-pixel region. The black matrix 30 is formed of, for example, a metal such as Cr (chromium) or a Cr / Cr oxide multilayer film, or a photoresist in which carbon particles are dispersed in a photosensitive resin.
 カラーフィルター31には、1個の画素を構成する色の異なる副画素毎に、赤色(R)、緑色(G)、青色(B)のいずれかの色素が含まれている。TFT基板10上の一つの画素電極25に対して、R,G,Bのいずれか一つのカラーフィルター31が対向して配置されている。尚、カラーフィルター31は、R、G、Bの3色以上の多色構成としてもよい。例えば、黄色(Y)を加えた4色構成としてもよいし、白色(W)を加えた4色構成としてもよいし、黄色(Y)、シアン(C)、マゼンタ(M)を加えた6色構成としてもよい。 The color filter 31 includes one of red (R), green (G), and blue (B) pigments for each sub-pixel having a different color that constitutes one pixel. One color filter 31 of R, G, and B is disposed to face one pixel electrode 25 on the TFT substrate 10. The color filter 31 may have a multicolor configuration of three or more colors of R, G, and B. For example, a four-color configuration in which yellow (Y) is added, a four-color configuration in which white (W) is added, or yellow (Y), cyan (C), and magenta (M) are added 6 A color configuration may be used.
 平坦化層32は、ブラックマトリクス30及びカラーフィルター31を覆う絶縁膜で構成されている。平坦化層32は、ブラックマトリクス30及びカラーフィルター31によってできる段差を緩和して平坦化する機能を有している。 The planarization layer 32 is composed of an insulating film that covers the black matrix 30 and the color filter 31. The planarization layer 32 has a function of relaxing and leveling the level difference formed by the black matrix 30 and the color filter 31.
 平坦化層32上には対向電極33が形成されている。対向電極33の材料としては、画素電極25と同様の透明導電性材料が用いられる。 A counter electrode 33 is formed on the planarization layer 32. As the material of the counter electrode 33, a transparent conductive material similar to that of the pixel electrode 25 is used.
 対向電極33上の全面に第2の配向膜34が形成されている。第2の配向膜34は、液晶層11を構成する液晶分子を垂直配向させる配向規制力を有している。本実施形態では、光配向技術を用いて第2の配向膜34に配向処理を施している。つまり、本実施形態では、第2の配向膜34として光配向膜を用いている。 A second alignment film 34 is formed on the entire surface of the counter electrode 33. The second alignment film 34 has an alignment regulating force that vertically aligns the liquid crystal molecules constituting the liquid crystal layer 11. In the present embodiment, the alignment process is performed on the second alignment film 34 using a photo-alignment technique. That is, in this embodiment, a photo-alignment film is used as the second alignment film 34.
 図1に戻り、照明装置であるバックライト8は、光源36と、導光体37と、を備えている。光源36は、導光体37の端面に配置されている。光源36としては、例えば、発光ダイオード、冷陰極管等が用いられる。
 本実施形態のバックライト8は、エッジライト型のバックライトである。
Returning to FIG. 1, the backlight 8 which is an illumination device includes a light source 36 and a light guide 37. The light source 36 is disposed on the end face of the light guide 37. As the light source 36, for example, a light emitting diode, a cold cathode tube, or the like is used.
The backlight 8 of the present embodiment is an edge light type backlight.
 導光体37は、光源36から射出された光を液晶パネル2に導く機能を有する。導光体37の材料としては、例えば、アクリル樹脂等の樹脂材料が用いられる。 The light guide 37 has a function of guiding the light emitted from the light source 36 to the liquid crystal panel 2. As the material of the light guide 37, for example, a resin material such as acrylic resin is used.
 光源36から導光体37の端面に入射した光は、導光体37の内部を全反射して伝播し、導光体37の上面(光射出面)から概ね均一な強度で射出される。本実施形態では図示はしないが、導光体37の上面には、散乱シート及びプリズムシートが配置されており、導光体37の下面には、散乱シートが配置されている。導光体37の上面から射出された光は、散乱シートにより散乱した後、プリズムシートによって集光され、概ね平行化されて射出される。散乱シートとしては、白色PETを用いてもよい。プリズムシートとしては、例えば、住友3M社製のBEFシート(商品名)を用いてもよい。 The light incident on the end face of the light guide 37 from the light source 36 is totally reflected inside the light guide 37 and propagates, and is emitted from the upper surface (light emission surface) of the light guide 37 with a substantially uniform intensity. Although not shown in the present embodiment, a scattering sheet and a prism sheet are disposed on the upper surface of the light guide 37, and a scattering sheet is disposed on the lower surface of the light guide 37. The light emitted from the upper surface of the light guide 37 is scattered by the scattering sheet, then condensed by the prism sheet, and is emitted after being substantially parallelized. White PET may be used as the scattering sheet. As the prism sheet, for example, a BEF sheet (trade name) manufactured by Sumitomo 3M may be used.
 本実施形態において、バックライト8は指向性を有していなくてもよい。本実施形態のバックライト8としては、光の射出方向を制御して、指向性がある程度緩やかに設定されたバックライトを用いる。尚、本実施形態において、バックライト8が指向性を有していても構わない。 In the present embodiment, the backlight 8 may not have directivity. As the backlight 8 of the present embodiment, a backlight in which the direction of light emission is controlled and the directivity is set somewhat moderately is used. In the present embodiment, the backlight 8 may have directivity.
 バックライト8と液晶セル5との間には、第1の偏光板3が設けられている。第1の偏光板3は、液晶セル5に入射する光の偏光状態を制御する偏光子として機能する。液晶セル5と光制御部材9との間には、第2の偏光板7が設けられている。第2の偏光板7は、液晶セル5から射出された光の透過状態を制御する偏光子として機能する。後述するように、第1の偏光板3の透過軸と第2の偏光板7の透過軸とは、クロスニコルの配置となっている。 A first polarizing plate 3 is provided between the backlight 8 and the liquid crystal cell 5. The first polarizing plate 3 functions as a polarizer that controls the polarization state of light incident on the liquid crystal cell 5. A second polarizing plate 7 is provided between the liquid crystal cell 5 and the light control member 9. The second polarizing plate 7 functions as a polarizer that controls the transmission state of light emitted from the liquid crystal cell 5. As will be described later, the transmission axis of the first polarizing plate 3 and the transmission axis of the second polarizing plate 7 are in a crossed Nicols arrangement.
 第1の偏光板3と液晶セル5との間には、光の位相差を補償するための第1位相差フィルム4が設けられている。第2の偏光板7と液晶セル5との間には、光の位相差を補償するための第2位相差フィルム6が設けられている。
 本実施形態の位相差フィルム(第1位相差フィルム4、第2位相差フィルム6)としては、例えばTACフィルムが用いられる。
A first retardation film 4 is provided between the first polarizing plate 3 and the liquid crystal cell 5 to compensate for the phase difference of light. A second retardation film 6 is provided between the second polarizing plate 7 and the liquid crystal cell 5 to compensate for the phase difference of light.
As the retardation film (first retardation film 4, second retardation film 6) of the present embodiment, for example, a TAC film is used.
 続いて、本実施形態の液晶表示装置1の駆動方法について説明する。
 本実施形態の液晶表示装置1はスーパーハイビジョンの映像を表示するため、水平方向:7680Pixel×垂直方向:4320Pixelの画素を有している。
 図3は、液晶表示装置の駆動回路の構成を示すブロック図であり、液晶表示装置1のドライバー及びタイミングコントローラー(TCON)の配線模式図を表している。
 本実施形態の液晶表示装置1は4個のTCON80を有しており、4つのTCON80はそれぞれ画面83の右上領域、左上領域、右下領域、左下領域のソースドライバー81及びゲートドライバー82への入力信号を制御している。
Next, a driving method of the liquid crystal display device 1 of the present embodiment will be described.
The liquid crystal display device 1 of the present embodiment has pixels of horizontal direction: 7680 pixels × vertical direction: 4320 pixels in order to display Super Hi-Vision images.
FIG. 3 is a block diagram illustrating a configuration of a driving circuit of the liquid crystal display device, and illustrates a schematic wiring diagram of a driver and a timing controller (TCON) of the liquid crystal display device 1.
The liquid crystal display device 1 of the present embodiment has four TCONs 80, and the four TCONs 80 are input to the source driver 81 and the gate driver 82 in the upper right region, upper left region, lower right region, and lower left region of the screen 83, respectively. The signal is controlled.
 図4は、液晶表示装置1のゲートバスライン及びソースバスラインを示す図であり、液晶表示装置1の画像表示領域の拡大図である。
 図4に示すように、TFT基板10には、複数の画素PXがマトリクス状に配置されている。画素PXは、表示の基本単位である。TFT基板10には、複数のソースバスラインSBが、互いに平行に延在するように形成されている。TFT基板10には、複数のゲートバスラインGBが、互いに平行に延在するように形成されている。複数のゲートバスラインGBは、複数のソースバスラインSBと直交している。TFT基板10上には、複数のソースバスラインSBと複数のゲートバスラインGBとが格子状に形成されている。
 隣接するソースバスラインSBと隣接するゲートバスラインGBとによって区画された矩形状の領域が一つの画素PXとなる。ソースバスラインSBは、TFT19のソース電極17に接続されている。ゲートバスラインGBは、TFT19のゲート電極16に接続されている。
FIG. 4 is a diagram showing gate bus lines and source bus lines of the liquid crystal display device 1, and is an enlarged view of an image display area of the liquid crystal display device 1.
As shown in FIG. 4, the TFT substrate 10 has a plurality of pixels PX arranged in a matrix. The pixel PX is a basic unit of display. A plurality of source bus lines SB are formed on the TFT substrate 10 so as to extend in parallel to each other. A plurality of gate bus lines GB are formed on the TFT substrate 10 so as to extend in parallel to each other. The plurality of gate bus lines GB are orthogonal to the plurality of source bus lines SB. On the TFT substrate 10, a plurality of source bus lines SB and a plurality of gate bus lines GB are formed in a lattice pattern.
A rectangular area defined by the adjacent source bus line SB and the adjacent gate bus line GB is one pixel PX. The source bus line SB is connected to the source electrode 17 of the TFT 19. The gate bus line GB is connected to the gate electrode 16 of the TFT 19.
 本実施形態の液晶表示装置1では、1列の画素PXに対して2本のソースバスラインSB1,SB2が形成されており、1本目のソースバスラインSB1に奇数行目(Line1,3,…)の画素PXが接続され、2本目のソースバスラインSB2に偶数行目(Line2,4,…)の画素PXが接続されている。スキャンする際にゲートバスラインGBは2本ずつ選択され、2行ずつ同時に画素PXへ信号が書き込まれる。 In the liquid crystal display device 1 of the present embodiment, two source bus lines SB1, SB2 are formed for one column of pixels PX, and the first source bus line SB1 has an odd row ( Line 1, 3,...). ) Of pixels PX are connected, and pixels PX of even-numbered rows ( Lines 2, 4,...) Are connected to the second source bus line SB2. When scanning, two gate bus lines GB are selected, and signals are written to the pixels PX two rows at a time.
 外部から映像信号が入力されると、映像信号は4つに分かれて4つのTCON80に供給され、かつゲートバスラインGBは2本ずつ同時選択される。そのため、最初のタイミングで1行目、2行目、2161行目、2162行目に映像が表示され、続いて3行目、4行目、2163行目、2164行目…と4行ずつ映像が表示され、最後の4320行目のゲートバスラインGBが選択された後は再び上から次の映像信号を書きこんでいく。 When a video signal is input from the outside, the video signal is divided into four and supplied to four TCONs 80, and two gate bus lines GB are simultaneously selected. Therefore, at the first timing, the video is displayed on the first row, the second row, the 2161th row, the 2162th row, and then the fourth row, the fourth row, the 2163th row, the 2164th row, and so on. Is displayed, and after the last gate bus line GB in the 4320th row is selected, the next video signal is written again from above.
 駆動方法は、前記の4ライン同時書き込みに限らず、配線容量が十分に小さく、かつ液晶の応答速度が十分に早い場合は1ラインずつ上からスキャンしてもかまわない。 The driving method is not limited to the simultaneous writing of the four lines, and scanning may be performed line by line when the wiring capacity is sufficiently small and the response speed of the liquid crystal is sufficiently high.
 次に、光制御部材9について詳細に説明する。
 図5は、光制御部材9を視認側から見た斜視図である。図6は、光制御部材9の平面図及び2方向からの断面図である。図7は、光制御部材9の外周部を含む平面図である。図8は、光制御部材9の遮光層40の交差部103を示す平面図である。図5では、後述する封止部材150を二点鎖線で示す。図6において、左側上段は光制御部材9の平面図、左側下段は左側上段の平面図のA-A線に沿った断面図、右側上段は左側上段の平面図のB-B線に沿った断面図である。
Next, the light control member 9 will be described in detail.
FIG. 5 is a perspective view of the light control member 9 as viewed from the viewing side. FIG. 6 is a plan view of the light control member 9 and a cross-sectional view from two directions. FIG. 7 is a plan view including the outer periphery of the light control member 9. FIG. 8 is a plan view showing the intersection 103 of the light shielding layer 40 of the light control member 9. In FIG. 5, a sealing member 150 described later is indicated by a two-dot chain line. In FIG. 6, the upper left side is a plan view of the light control member 9, the lower left side is a cross-sectional view along the line AA of the upper left side plan view, and the upper right side is along the BB line of the upper left side plan view. It is sectional drawing.
 光制御部材9は、図5に示すように、基材39と、遮光層40と、光拡散部41と、中空部42と、を備えている。遮光層40は、基材39の第1の面39a(視認側と反対側の面)に形成されている。光拡散部41は、基材39の第1の面39aのうち、遮光層40の形成領域以外の領域に形成されている。逆に言えば、遮光層40は、第1の面39aのうち、基材39の法線方向から見て光拡散部41と重ならない位置に設けられている。
 中空部42は、基材39の法線方向から見て遮光層40と一部重なる位置に設けられている。
 本実施形態の遮光層40は、特許請求の範囲の遮光部に対応する。
As shown in FIG. 5, the light control member 9 includes a base material 39, a light shielding layer 40, a light diffusion portion 41, and a hollow portion 42. The light shielding layer 40 is formed on the first surface 39 a (surface opposite to the viewing side) of the base material 39. The light diffusion portion 41 is formed in a region other than the region where the light shielding layer 40 is formed on the first surface 39 a of the base material 39. In other words, the light shielding layer 40 is provided on the first surface 39 a at a position that does not overlap the light diffusion portion 41 when viewed from the normal direction of the base material 39.
The hollow portion 42 is provided at a position that partially overlaps the light shielding layer 40 when viewed from the normal direction of the substrate 39.
The light shielding layer 40 of the present embodiment corresponds to the light shielding portion in the claims.
 光制御部材9は、図1に示すように、光拡散部41を第2の偏光板7に向け、基材39を視認側に向けて第2の偏光板7上に配置される。光制御部材9は、接着剤層43を介して第2の偏光板7に固定される。 As shown in FIG. 1, the light control member 9 is disposed on the second polarizing plate 7 with the light diffusion portion 41 facing the second polarizing plate 7 and the base material 39 facing the viewing side. The light control member 9 is fixed to the second polarizing plate 7 through the adhesive layer 43.
 基材39には、例えばトリアセチルセルロース(TAC)フィルム、ポリエチレンテレフタレート(PET)、ポリカーボネート(PC)、ポリエチレンナフタレート(PEN)、ポリエーテルサルホン(PES)フィルム等の透明樹脂製の基材が好ましく用いられる。基材39は、製造プロセスにおいて、後で遮光層40や光拡散部41の材料を塗布する際の下地となる。基材39は、製造プロセス中の熱処理工程における耐熱性と機械的強度とを備える必要がある。したがって、基材39には、樹脂製の基材の他、ガラス製の基材等を用いても良い。但し、基材39の厚さは耐熱性や機械的強度を損なわない程度に薄い方が好ましい。その理由は、基材39の厚さが厚くなる程、液晶表示装置全体の厚みを厚くする必要が生じるからである。又、基材39の全光線透過率は、JIS K7361-1の規定で90%以上が好ましい。全光線透過率が90%以上であると、十分な透明性が得られる。
 本実施形態では、基材39に、例えば厚さが100μmの透明樹脂製基材を用いる。
Examples of the base material 39 include transparent resin base materials such as triacetyl cellulose (TAC) film, polyethylene terephthalate (PET), polycarbonate (PC), polyethylene naphthalate (PEN), and polyethersulfone (PES) film. Preferably used. The base material 39 becomes a base when the material for the light shielding layer 40 and the light diffusion portion 41 is applied later in the manufacturing process. The base material 39 needs to have heat resistance and mechanical strength in a heat treatment step during the manufacturing process. Therefore, as the base material 39, a glass base material or the like may be used in addition to the resin base material. However, it is preferable that the thickness of the base material 39 is as thin as possible without impairing the heat resistance and mechanical strength. The reason is that as the thickness of the base material 39 increases, it becomes necessary to increase the thickness of the entire liquid crystal display device. Further, the total light transmittance of the base material 39 is preferably 90% or more as defined in JIS K7361-1. When the total light transmittance is 90% or more, sufficient transparency can be obtained.
In the present embodiment, a transparent resin substrate having a thickness of, for example, 100 μm is used as the substrate 39.
 図6の左側上段に示すように、遮光層40は、基材39の第1の面39aの法線方向から見て格子状のパターンに形成されている。言い換えると、基材39の法線方向から見た遮光層40の平面形状は、一方向に直線状に延びる第1の直線部分101と、第1の直線部分101に対して交差する第2の直線部分102と、を有している。 6, the light shielding layer 40 is formed in a lattice pattern as viewed from the normal direction of the first surface 39a of the base material 39. In other words, the planar shape of the light shielding layer 40 viewed from the normal direction of the base material 39 is a first linear portion 101 that extends linearly in one direction and a second shape that intersects the first linear portion 101. A straight portion 102.
 第1の直線部分101及び第2の直線部分102は、遮光層40において一定の幅を有する部分である。遮光層40において第1の直線部分101と第2の直線部分102とが交差する部分には、交差部103が形成される。遮光層40は、一例として、可視光を吸収するカーボンブラック、顔料及び染料等を有するブラックレジスト、黒色インク等の光吸収性及び感光性を有する有機材料で構成されている。その他、Cr(クロム)やCr/酸化Crの多層膜等の金属膜を用いても良い。 The first straight line portion 101 and the second straight line portion 102 are portions having a certain width in the light shielding layer 40. A crossing portion 103 is formed at a portion where the first straight portion 101 and the second straight portion 102 intersect in the light shielding layer 40. As an example, the light shielding layer 40 is made of an organic material having light absorptivity and photosensitivity, such as carbon black that absorbs visible light, a black resist including a pigment and a dye, and black ink. In addition, a metal film such as Cr (chromium) or a Cr / Cr oxide multilayer film may be used.
 光拡散部41は、例えばアクリル樹脂やエポキシ樹脂等の光透過性及び感光性を有する有機材料で構成されている。又、光拡散部41の全光線透過率は、JIS K7361-1の規定で90%以上が好ましい。全光線透過率が90%以上であると、十分な透明性が得られる。 The light diffusing unit 41 is made of an organic material having optical transparency and photosensitivity such as acrylic resin and epoxy resin. Further, the total light transmittance of the light diffusing portion 41 is preferably 90% or more in accordance with JIS K7361-1. When the total light transmittance is 90% or more, sufficient transparency can be obtained.
 図6に示すように、光拡散部41は、光射出端面41aと、光入射端面41bと、反射面41cと、を有する。光拡散部41は、基材39の第1の面39aの遮光層40が形成されていない領域を光射出端面41aとする。光射出端面41aは、基材39に接する面である。光入射端面41bは、光射出端面41aと対向する面である。反射面41cは、光拡散部41のテーパ状の傾斜面である。反射面41cは、光入射端面41bから入射した光を反射する面である。本実施形態では、全ての光拡散部41において、光入射端面41bの面積は、光射出端面41aの面積よりも大きい。 As shown in FIG. 6, the light diffusing portion 41 has a light exit end face 41a, a light incident end face 41b, and a reflecting face 41c. The light diffusing unit 41 uses a region of the first surface 39a of the base 39 where the light shielding layer 40 is not formed as a light emission end surface 41a. The light emission end surface 41 a is a surface in contact with the base material 39. The light incident end surface 41b is a surface facing the light emitting end surface 41a. The reflection surface 41 c is a tapered inclined surface of the light diffusion portion 41. The reflection surface 41c is a surface that reflects light incident from the light incident end surface 41b. In the present embodiment, in all the light diffusion portions 41, the area of the light incident end face 41b is larger than the area of the light exit end face 41a.
 光拡散部41は、光制御部材9において光の透過に寄与する部分である。図6の左側下段に示すように、光拡散部41に入射した光のうち、光L1は、反射面41cで反射されることなく光射出端面41aから射出される。光拡散部41に入射した光のうち、光L2は、光拡散部41の反射面41cで全反射しつつ、光拡散部41の内部に略閉じこめられた状態で導光し、光射出端面41aから射出される。 The light diffusion part 41 is a part that contributes to the transmission of light in the light control member 9. As shown in the lower left part of FIG. 6, among the light incident on the light diffusing portion 41, the light L1 is emitted from the light emitting end face 41a without being reflected by the reflecting surface 41c. Of the light incident on the light diffusing unit 41, the light L2 is totally reflected by the reflecting surface 41c of the light diffusing unit 41 and guided in a state of being substantially confined inside the light diffusing unit 41, and the light emitting end surface 41a. Is injected from.
 光制御部材9は、基材39が視認側に向くように配置される。そのため、光拡散部41の2つの対向面のうち、面積の小さい方の面が光射出端面41aとなる。一方、面積の大きい方の面が光入射端面41bとなる。 The light control member 9 is arranged so that the base material 39 faces the viewing side. Therefore, of the two opposing surfaces of the light diffusing portion 41, the surface with the smaller area becomes the light emission end surface 41a. On the other hand, the surface with the larger area becomes the light incident end surface 41b.
 光拡散部41の反射面41cの傾斜角度(光入射端面41bと反射面41cとのなす角度θc)は、一例として80°±5°程度である。但し、光拡散部41の反射面41cの傾斜角度θcは、光制御部材9から射出する際に、左右方向からの入射光を略上下方向に射出させ、入射光を十分に拡散することが可能な角度であれば、特に限定されない。本実施形態において、光拡散部41の反射面41cの傾斜角度は一定になっている。 The inclination angle of the reflection surface 41c of the light diffusing portion 41 (the angle θc formed between the light incident end surface 41b and the reflection surface 41c) is, for example, about 80 ° ± 5 °. However, the angle of inclination θc of the reflection surface 41c of the light diffusing portion 41 allows the incident light from the left and right directions to be emitted substantially in the vertical direction when emitted from the light control member 9, and the incident light can be sufficiently diffused. If it is a proper angle, it will not be specifically limited. In the present embodiment, the inclination angle of the reflection surface 41c of the light diffusing unit 41 is constant.
 光拡散部41の光入射端面41bから光射出端面41aまでの高さt1は、遮光層40の層厚t2よりも大きく設定されている。本実施形態の場合、遮光層40の層厚t2は、一例として150nm程度である。光拡散部41の光入射端面41bから光射出端面41aまでの高さt1は、一例として10~20μm程度である。光拡散部41の反射面41cと遮光層40とにより囲まれた部分は、中空部42となっている。中空部42には、窒素及びアルゴン等の不活性ガス、空気等の気体が存在している。 The height t1 from the light incident end surface 41b of the light diffusion portion 41 to the light emitting end surface 41a is set to be larger than the layer thickness t2 of the light shielding layer 40. In the present embodiment, the thickness t2 of the light shielding layer 40 is about 150 nm as an example. The height t1 from the light incident end face 41b to the light emitting end face 41a of the light diffusing portion 41 is, for example, about 10 to 20 μm. A portion surrounded by the reflection surface 41 c of the light diffusion portion 41 and the light shielding layer 40 is a hollow portion 42. In the hollow portion 42, an inert gas such as nitrogen and argon, or a gas such as air is present.
 尚、基材39の屈折率と光拡散部41の屈折率とは略同等であることが望ましい。その理由は、以下による。例えば、基材39の屈折率と光拡散部41の屈折率とが大きく異なる場合を考える。この場合、光入射端面41bから入射した光が光拡散部41から射出する際に、光拡散部41と基材39との界面で不要な光の屈折や反射が生じることがある。
 この場合、所望の視野角が得られない、射出光の光量が減少する、等の不具合が生じる虞があるからである。
In addition, it is desirable that the refractive index of the base material 39 and the refractive index of the light diffusion portion 41 are substantially equal. The reason is as follows. For example, consider a case where the refractive index of the base material 39 and the refractive index of the light diffusion portion 41 are greatly different. In this case, when light incident from the light incident end surface 41 b exits from the light diffusion portion 41, unnecessary light refraction or reflection may occur at the interface between the light diffusion portion 41 and the base material 39.
In this case, there is a possibility that problems such as failure to obtain a desired viewing angle and a decrease in the amount of emitted light may occur.
 本実施形態の場合、中空部42(光拡散部の外部)には空気が介在している。そのため、光拡散部41を例えば透明アクリル樹脂で形成したとすると、光拡散部41の反射面41cは、透明アクリル樹脂と空気との界面となる。ここで、中空部42を他の低屈折率材料で充填しても良い。しかしながら、光拡散部41の内部と外部との界面の屈折率差は、外部にいかなる低屈折率材料が存在する場合よりも空気が存在する場合が最大となる。
 したがって、Snellの法則より、本実施形態の構成においては臨界角が最も小さくなり、光拡散部41の反射面41cで光が全反射する入射角範囲が最も広くなる。その結果、光の損失がより抑えられ、高い輝度を得ることができる。
 本実施形態の中空部42は、特許請求の範囲の低屈折率部に対応する。
In the case of this embodiment, air is interposed in the hollow portion 42 (outside the light diffusion portion). Therefore, if the light diffusion portion 41 is formed of, for example, a transparent acrylic resin, the reflection surface 41c of the light diffusion portion 41 is an interface between the transparent acrylic resin and air. Here, the hollow portion 42 may be filled with another low refractive index material. However, the difference in the refractive index at the interface between the inside and the outside of the light diffusing portion 41 is maximized when air is present rather than when any low refractive index material is present outside.
Therefore, according to Snell's law, in the configuration of the present embodiment, the critical angle is the smallest, and the incident angle range in which the light is totally reflected by the reflection surface 41c of the light diffusion portion 41 is the widest. As a result, light loss is further suppressed, and high luminance can be obtained.
The hollow portion 42 of the present embodiment corresponds to the low refractive index portion in the claims.
 本実施形態の光制御部材9は、図7に示すように、遮光層40が、基材39の法線方向から見て格子状のパターンに形成されている。本実施形態の遮光層40において、基材39の法線方向から見た交差部103周辺の平面形状は、x軸方向に長いX字形状である。
 すなわち、遮光層40は、異方性形状を呈する。
In the light control member 9 of the present embodiment, as shown in FIG. 7, the light shielding layer 40 is formed in a lattice pattern as viewed from the normal direction of the base material 39. In the light shielding layer 40 of the present embodiment, the planar shape around the intersection 103 seen from the normal direction of the base material 39 is an X shape that is long in the x-axis direction.
That is, the light shielding layer 40 exhibits an anisotropic shape.
 図8に示すように、遮光層40の交差部103において、第1の直線部分101と第2の直線部分102とがなす第1の角度K1は、鈍角をなし、例えば100~120°である。遮光層40の交差部103において、第1の角度K1と隣り合う第2の角度K2は、第1の角度K1と異なる。第2の角度K2は、鋭角をなし、例えば60~80°である。
 本実施形態において、交差部103を挟んで対向する第1の角度K1は互いに概ね等しく、交差部103を挟んで対向する第2の角度K2も互いに概ね等しい。基材39の法線方向から見た遮光層40の平面形状は、2回転対称である。
As shown in FIG. 8, the first angle K1 formed by the first straight line portion 101 and the second straight line portion 102 at the intersecting portion 103 of the light shielding layer 40 is an obtuse angle, for example, 100 to 120 °. . At the intersection 103 of the light shielding layers 40, the second angle K2 adjacent to the first angle K1 is different from the first angle K1. The second angle K2 is an acute angle, for example, 60 to 80 °.
In the present embodiment, the first angles K1 that face each other across the intersection 103 are substantially equal to each other, and the second angles K2 that face each other across the intersection 103 are also substantially equal to each other. The planar shape of the light shielding layer 40 viewed from the normal direction of the base material 39 is two-fold symmetric.
 本実施形態では、交差部103は、液晶パネル2の1個の画素に少なくとも1つ配置される。具体的に、液晶パネル2の1個の画素PXが赤(R)、緑(G)、青(B)の3個の副画素で構成されている。交差部103は、画素PXのうち視感度透過率が相対的に高い緑色Gの画素に少なくとも1つ配置される。交差部103は、3個の副画素にそれぞれ同じ数ずつ配置される。尚、画素PXに黄色の画素が含まれる場合には、交差部103は黄色の画素に少なくとも1つ配置されていてもよい。 In the present embodiment, at least one intersection 103 is arranged in one pixel of the liquid crystal panel 2. Specifically, one pixel PX of the liquid crystal panel 2 includes three subpixels of red (R), green (G), and blue (B). At least one intersection 103 is arranged in a green G pixel having a relatively high visibility transmittance among the pixels PX. The same number of intersections 103 are arranged in each of the three subpixels. Note that when the pixel PX includes a yellow pixel, at least one intersection 103 may be arranged in the yellow pixel.
 遮光層40において、第1の直線部分101の幅W1は略一定であり、第2の直線部分102の幅W2も略一定である。第1の直線部分101の幅W1及び第2の直線部分102の幅W2は、互いに略等しく(W1≒W2)、例えば10μmである。 In the light shielding layer 40, the width W1 of the first straight portion 101 is substantially constant, and the width W2 of the second straight portion 102 is also substantially constant. The width W1 of the first straight line portion 101 and the width W2 of the second straight line portion 102 are substantially equal to each other (W1≈W2), for example, 10 μm.
 仮に、直線部分の幅W1,W2が小さすぎると、後述する露光工程において、逆テーパ状を有する光拡散部の光入射端面側がくっついてしまい、中空部が形成できない可能性がある。中空部が形成できないと、遮光層が形成されていない領域の面積率(開口率)に対する光拡散性能が低下することがある。又、直線部分の幅W1,W2が大きすぎても、逆テーパ状を有する光拡散部の光入射端面側の開口部が必要以上に大きくなり、開口率に対する光拡散性能が低下することがある。 If the widths W1 and W2 of the linear portion are too small, the light incident end face side of the light diffusing portion having an inversely tapered shape may stick to each other in the exposure process described later, and the hollow portion may not be formed. If the hollow portion cannot be formed, the light diffusion performance with respect to the area ratio (aperture ratio) of the region where the light shielding layer is not formed may be deteriorated. Moreover, even if the width W1 and W2 of the straight portion are too large, the opening on the light incident end face side of the light diffusing portion having an inversely tapered shape may become larger than necessary, and the light diffusing performance with respect to the aperture ratio may be deteriorated. .
 一方、図7に示すように、遮光層40において、隣り合う2つの第1の直線部分101の間隔Waはランダムであり、隣り合う2つの第2の直線部分102の間隔Wbもランダムである。隣り合う2つの第1の直線部分101の間隔Wa及び隣り合う2つの第2の直線部分102の間隔Wbは、例えば6~40μmである。 On the other hand, as shown in FIG. 7, in the light shielding layer 40, the interval Wa between the two adjacent first linear portions 101 is random, and the interval Wb between the two adjacent second linear portions 102 is also random. The interval Wa between the two adjacent first linear portions 101 and the interval Wb between the two adjacent second linear portions 102 are, for example, 6 to 40 μm.
 基材39の第1の面39aの全面積に対する遮光層40の占有面積の割合は、例えば30%±10%である。 The ratio of the occupied area of the light shielding layer 40 to the total area of the first surface 39a of the base 39 is, for example, 30% ± 10%.
 図6の左側下段、右側上段に示すように、遮光層40の下方に相当する部分は中空部42となる。光制御部材9は、遮光層40に対応して中空部42を有している。光制御部材9において中空部42以外の部分には、光拡散部41が設けられている。光拡散部41は、基材39の一面39aに点在して設けられている。基材39の法線方向から見た光拡散部41の平面形状は、x軸方向に延びる細長い菱形、もしくはx軸方向と鋭角をなして傾斜する長辺を有する平行四辺形である。複数の光拡散部41のうち平面形状が菱形である光拡散部41に着目すると、平面形状である菱形の長軸方向は概ねx軸方向に揃っており、平面形状である菱形の短軸方向はy軸方向に揃っている。詳細は後述するが、光拡散部41の反射面41cの向きを考えると、x軸方向から反射面41cに入射した光は、y軸に対してx軸方向に傾いて戻る光よりもy軸と平行な方向へ向けて反射される割合が多くなる。 As shown in the lower left side and the upper right side of FIG. 6, a portion corresponding to the lower part of the light shielding layer 40 is a hollow part 42. The light control member 9 has a hollow portion 42 corresponding to the light shielding layer 40. In the light control member 9, a light diffusion portion 41 is provided in a portion other than the hollow portion 42. The light diffusing portions 41 are provided in a scattered manner on one surface 39 a of the base material 39. The planar shape of the light diffusing portion 41 viewed from the normal direction of the base material 39 is an elongated rhombus extending in the x-axis direction, or a parallelogram having long sides inclined at an acute angle with the x-axis direction. When attention is paid to the light diffusing portion 41 whose planar shape is a rhombus among the plurality of light diffusing portions 41, the major axis direction of the rhombus that is the planar shape is substantially aligned with the x-axis direction, and the minor axis direction of the rhombus that is the planar shape. Are aligned in the y-axis direction. Although details will be described later, considering the direction of the reflecting surface 41c of the light diffusing unit 41, the light incident on the reflecting surface 41c from the x-axis direction is more y-axis than the light that is tilted back in the x-axis direction with respect to the y-axis. The ratio of reflection in the direction parallel to the direction increases.
 尚、光拡散部41の平面形状は、全ての光拡散部41において、x軸方向に延びる細長い菱形、もしくはx軸方向と鋭角をなして傾斜する長辺を有する平行四辺形でなくてもよく、円形、楕円形、多角形、半円等の他の形状が含まれていても良い。又、光拡散部41の開口部同士が重なって形成されていても良い。 In addition, the planar shape of the light diffusing unit 41 may not be a long rhombus extending in the x-axis direction or a parallelogram having a long side inclined at an acute angle with the x-axis direction in all the light diffusing units 41. Other shapes such as a circle, an ellipse, a polygon, and a semicircle may be included. Further, the openings of the light diffusion portion 41 may be formed so as to overlap each other.
 本実施形態の光制御部材9では、遮光層40の平面形状の一部をなす第1の直線部分101は、x軸方向と鋭角をなして傾斜し、図7の平面視で左下から右上に向けて延びている。一方、遮光層40の平面形状の一部をなす第2の直線部分102は、x軸方向と鋭角をなして傾斜し、図7の平面視で左上から右下に向けて延びている。このように本実施形態の光制御部材9では、第1の直線部分101及び第2の直線部分102は、y軸方向よりもx軸方向寄りに傾斜して配置されている。又、第1の角度K1の二等分線Dk1はy軸方向を向くように配置され、第2の角度K2の二等分線Dk2はx軸方向を向くように配置されている。 In the light control member 9 of the present embodiment, the first linear portion 101 forming a part of the planar shape of the light shielding layer 40 is inclined at an acute angle with the x-axis direction, and from the lower left to the upper right in the plan view of FIG. It extends toward. On the other hand, the second straight line portion 102 forming a part of the planar shape of the light shielding layer 40 is inclined at an acute angle with the x-axis direction and extends from the upper left to the lower right in the plan view of FIG. As described above, in the light control member 9 of the present embodiment, the first straight line portion 101 and the second straight line portion 102 are arranged so as to be inclined closer to the x-axis direction than the y-axis direction. Further, the bisector Dk1 of the first angle K1 is arranged to face the y-axis direction, and the bisector Dk2 of the second angle K2 is arranged to face the x-axis direction.
 尚、図4に示したように本実施形態のTFT基板10上には、互いに平行に延びる複数のソースバスラインSBと、互いに平行に延びる複数のゲートバスラインGBとが直交している。このように互いに平行に延びる複数の配線が直交して配置される場合には、図7に示す第1の角度K1の二等分線Dk1及び第2の角度K2の二等分線Dk2は配線の延在方向を向くように配置されていてもよい。 As shown in FIG. 4, on the TFT substrate 10 of this embodiment, a plurality of source bus lines SB extending in parallel with each other and a plurality of gate bus lines GB extending in parallel with each other are orthogonal to each other. When a plurality of wirings extending in parallel with each other are arranged orthogonally, the bisector Dk1 having the first angle K1 and the bisector Dk2 having the second angle K2 shown in FIG. It may be arranged so as to face the extending direction.
 図6に示すように、光拡散部41の反射面41cは遮光層40の第1の直線部分101及び第2の直線部分102に対応する。このことから、光拡散部41の反射面41cの向きを考えると、光拡散部41の反射面41cのうち、x軸方向及びy軸方向に平行な反射面41cの割合は極めて少なく、x軸方向及びy軸方向と角度をなす反射面41cが大半を占める。そのため、光の進行方向をxy平面上に射影して見ると、x軸方向から入射して反射面41cで反射した光Lxはy軸方向へ進行し、y軸方向から入射して反射面41cで反射した光Lyはx軸方向へ進行する割合が大きい。さらに後述するように、上記2種類の光を比べると、x軸方向からy軸方向へ向けて拡散される光Lxのほうが、y軸方向からx軸方向へ向けて拡散される光Lyよりも大きい。 As shown in FIG. 6, the reflection surface 41 c of the light diffusion portion 41 corresponds to the first straight portion 101 and the second straight portion 102 of the light shielding layer 40. From this, when the direction of the reflection surface 41c of the light diffusion portion 41 is considered, the ratio of the reflection surface 41c parallel to the x-axis direction and the y-axis direction in the reflection surface 41c of the light diffusion portion 41 is extremely small. Most of the reflection surface 41c forms an angle with the direction and the y-axis direction. Therefore, when the traveling direction of light is projected onto the xy plane, the light Lx incident from the x-axis direction and reflected by the reflecting surface 41c travels in the y-axis direction, enters from the y-axis direction, and is reflected from the reflecting surface 41c. The light Ly reflected at has a high rate of traveling in the x-axis direction. As will be described later, when the two types of light are compared, the light Lx diffused from the x-axis direction to the y-axis direction is lighter than the light Ly diffused from the y-axis direction to the x-axis direction. large.
 尚、遮光層40の平面形状は、一部に円形、楕円形、多角形、半円等の形状が含まれていても良い。又、遮光層40の一部が重なって形成されていても良い。 Note that the planar shape of the light shielding layer 40 may partially include shapes such as a circle, an ellipse, a polygon, and a semicircle. Further, a part of the light shielding layer 40 may be formed to overlap.
 図7に示すように、光制御部材9は、遮光層40が存在する領域の外周部を覆う封止部材150を備える。封止部材150は、液晶表示装置1の表示領域以外の領域に配置される。封止部材150は、図7の平面視で矩形枠状をなし、例えば液晶表示装置1の額縁部分に配置される。封止部材150は、光拡散部41と同じ材料により形成される。尚、封止部材150は、光拡散部41と異なる材料により形成されてもよい。 As shown in FIG. 7, the light control member 9 includes a sealing member 150 that covers the outer peripheral portion of the region where the light shielding layer 40 exists. The sealing member 150 is disposed in a region other than the display region of the liquid crystal display device 1. The sealing member 150 has a rectangular frame shape in plan view of FIG. 7, and is disposed, for example, in a frame portion of the liquid crystal display device 1. The sealing member 150 is formed of the same material as that of the light diffusion portion 41. Note that the sealing member 150 may be formed of a material different from that of the light diffusion portion 41.
 光制御部材9において封止部材150が配置される領域には、液晶パネル2に対する光制御部材9の位置を示す指標134が設けられる。言い換えると、液晶パネル2に対する光制御部材9の位置を示す指標134は、遮光層40が存在する領域の外周部に設けられる。本実施形態の光制御部材9では、指標134は、図7の平面視で矩形枠状をなす封止部材150の四隅に配置されている。尚、指標134の配置位置及び配置数は、必要に応じて適宜変更してもよい。 In the region where the sealing member 150 is disposed in the light control member 9, an index 134 indicating the position of the light control member 9 with respect to the liquid crystal panel 2 is provided. In other words, the indicator 134 indicating the position of the light control member 9 with respect to the liquid crystal panel 2 is provided on the outer periphery of the region where the light shielding layer 40 exists. In the light control member 9 of the present embodiment, the indicators 134 are arranged at the four corners of the sealing member 150 having a rectangular frame shape in plan view of FIG. Note that the position and number of the indicators 134 may be changed as necessary.
 図8に示すように、光拡散部41のうち交差部103に臨む部分41r(以下、光拡散部の曲線部という。)は、中空部42に向けて凸をなす丸みを帯びた形状を有する。又、遮光層40の第1の直線部分101及び第2の直線部分102のうち交差部103に臨む部分103r(以下「交差部の曲線部」という。)は、光拡散部41に向けて凹をなす丸みを帯びた形状を有する。光拡散部41の光入射端面側の曲線部41rは、交差部103の曲線部103rよりも大きい曲率半径を有する。光拡散部41の光射出端面側の曲線部41rは、交差部103の曲線部103rと略等しい曲率半径を有する。よって、光拡散部41の光入射端面側の曲線部41rは、光拡散部41の光射出端面側の曲線部41rよりも大きい曲率半径を有する。
 尚、光拡散部41の曲線部41rに形成される反射面により色々な方位に光を反射することができ、視野角特性の変化を滑らかにすることができる。
As shown in FIG. 8, a portion 41 r (hereinafter referred to as a curved portion of the light diffusion portion) of the light diffusion portion 41 that faces the intersection portion 103 has a rounded shape that protrudes toward the hollow portion 42. . Further, a portion 103 r of the light shielding layer 40 facing the intersecting portion 103 (hereinafter referred to as “curved portion of the intersecting portion”) of the first straight portion 101 and the second straight portion 102 is recessed toward the light diffusion portion 41. It has a rounded shape. The curved portion 41 r on the light incident end face side of the light diffusing portion 41 has a larger radius of curvature than the curved portion 103 r of the intersecting portion 103. The curved portion 41r on the light emission end face side of the light diffusing portion 41 has a radius of curvature substantially equal to the curved portion 103r of the intersecting portion 103. Therefore, the curved portion 41 r on the light incident end face side of the light diffusing portion 41 has a larger radius of curvature than the curved portion 41 r on the light exit end face side of the light diffusing portion 41.
Note that light can be reflected in various directions by the reflecting surface formed on the curved portion 41r of the light diffusion portion 41, and the change in viewing angle characteristics can be smoothed.
 基材39の法線方向から見て、遮光層40の外周縁のうち、第1の直線部分101及び第2の直線部分102に対応する部分を直線縁111,112とし、交差部103の曲線部103rに対応する部分を曲線縁113とする。基材39の法線方向から見て、直線縁111,112の長さを全て足し合わせた合計の長さは、曲線縁113の長さを全て足し合わせた合計の長さよりも長い。
 本実施形態の曲線縁113は、特許請求の範囲の第2の曲線縁に対応する。
As seen from the normal direction of the base material 39, portions of the outer peripheral edge of the light shielding layer 40 corresponding to the first straight portion 101 and the second straight portion 102 are defined as straight edges 111 and 112, and the curve of the intersecting portion 103. A portion corresponding to the portion 103r is defined as a curved edge 113. When viewed from the normal direction of the substrate 39, the total length of all the straight edges 111 and 112 is longer than the total length of all the curved edges 113.
The curved edge 113 of the present embodiment corresponds to the second curved edge in the claims.
 図9、図10は、光制御部材9に対する遮光層40の配置方向を表した模式図である。
 図9、図10に示すように、光制御部材9を作製する際には、一つの光制御部材9の形成領域9Eのサイズよりも大きい光制御部材作製用母材86を予め作製し、その後、光制御部材作製用母材86を切断・分断して所望のサイズの光制御部材9を切り出してもよい。もしくは、複数の光制御部材9の形成領域9Eを含む光制御部材作製用母材86を予め作製し、その後、光制御部材作製用母材86を切断・分断して複数の光制御部材9を一括して作製してもよい。すなわち、光制御部材作製用母材86は、少なくとも一つの光制御部材9の形成領域9Eを含んでいる。例えば、図9、図10に示す光制御部材作製用母材86は、Roll to Roll法で用いるロール状の原反の一部である。
FIGS. 9 and 10 are schematic views showing the arrangement direction of the light shielding layer 40 with respect to the light control member 9.
As shown in FIGS. 9 and 10, when the light control member 9 is manufactured, a light control member manufacturing base material 86 that is larger than the size of the formation region 9E of one light control member 9 is prepared in advance, and thereafter Alternatively, the light control member manufacturing base material 86 may be cut and divided to cut out the light control member 9 having a desired size. Alternatively, the light control member manufacturing base material 86 including the formation regions 9E of the plurality of light control members 9 is prepared in advance, and then the light control member manufacturing base material 86 is cut and divided to form a plurality of light control members 9. You may produce it collectively. That is, the light control member manufacturing base material 86 includes at least one light control member 9 formation region 9E. For example, the light control member manufacturing base material 86 shown in FIGS. 9 and 10 is a part of a roll-shaped raw fabric used in the Roll to Roll method.
 上記の方法を用いて光制御部材9を作製する際には、図9に示すように、遮光層40の第2の角度K2の二等分線Dk2が光制御部材作製用母材86の縁86Fと平行に揃っていて、縁86Fと平行な直線で光制御部材作製用母材86を分断してもよい。もしくは、図10に示すように、遮光層40の第2の角度K2の二等分線Dk2が光制御部材作製用母材86の縁86Fと45°の角度をなしており、光制御部材作製用母材86の縁86Fと45°の角度をなす直線で光制御部材作製用母材86を分断してもよい。遮光層40の第2の角度K2の二等分線Dk2が光制御部材作製用母材86の縁86Fとなす角度は、必ずしも45°である必要はなく、45°±15°程度であればよい。 When the light control member 9 is manufactured using the above method, as shown in FIG. 9, the bisector Dk2 of the second angle K2 of the light shielding layer 40 is the edge of the light control member manufacturing base material 86. The light control member manufacturing base material 86 may be divided by a straight line that is aligned in parallel with 86F and parallel to the edge 86F. Alternatively, as shown in FIG. 10, the bisector Dk2 having the second angle K2 of the light shielding layer 40 forms an angle of 45 ° with the edge 86F of the base material 86 for manufacturing the light control member. The light control member manufacturing base material 86 may be divided by a straight line that forms an angle of 45 ° with the edge 86F of the base material 86. The angle formed by the bisector Dk2 of the second angle K2 of the light shielding layer 40 and the edge 86F of the base material 86 for manufacturing the light control member does not necessarily need to be 45 °, and may be about 45 ° ± 15 °. Good.
 特に、偏光板と光制御部材9とを一体に形成し、かつ偏光板を一軸延伸とする場合、製造プロセス上の都合から、偏光板の吸収軸もしくは透過軸が光制御部材作製用母材86の長手方向に一致することが多い。そのため、偏光板の吸収軸もしくは透過軸に対して遮光層40の第2の角度K2の二等分線Dk2が斜め45°を向くように、遮光層40の第2の角度K2の二等分線Dk2が光制御部材作製用母材86の縁86Fと45°の角度をなす図10の配置を採用することが望ましい。 In particular, when the polarizing plate and the light control member 9 are integrally formed and the polarizing plate is uniaxially stretched, the absorption axis or the transmission axis of the polarizing plate has the light control member manufacturing base material 86 for convenience of the manufacturing process. Often coincides with the longitudinal direction. Therefore, the bisector of the second angle K2 of the light shielding layer 40 is set so that the bisector Dk2 of the second angle K2 of the light shielding layer 40 is inclined 45 ° with respect to the absorption axis or transmission axis of the polarizing plate. It is desirable to employ the arrangement shown in FIG. 10 in which the line Dk2 forms an angle of 45 ° with the edge 86F of the light control member manufacturing base material 86.
 以下に、光制御部材9とVAモードの液晶パネル2を組み合わせた場合の効果について説明する。
 図11は、極角と方位角の定義を説明するための図である。
 ここで、図11に示すように、液晶表示装置1の画面の法線方向Eを基準とした観察者の視線方向Fのなす角度を極角θとする。x軸の正方向(0°方向)を基準とした観察者の視線方向Fを画面上に射影したときの線分Gの方向のなす角度を方位角φとする。
Below, the effect at the time of combining the light control member 9 and the liquid crystal panel 2 of VA mode is demonstrated.
FIG. 11 is a diagram for explaining the definition of the polar angle and the azimuth angle.
Here, as shown in FIG. 11, the angle formed by the observer's line-of-sight direction F with respect to the normal line direction E of the screen of the liquid crystal display device 1 is defined as a polar angle θ. The angle formed by the direction of the line segment G when the line-of-sight direction F of the observer is projected on the screen with reference to the positive direction (0 ° direction) of the x-axis is defined as an azimuth angle φ.
 図12は、液晶表示装置1の正面図である。
 図12に示すように、液晶表示装置1の画面において、水平方向(x軸方向)を方位角φ:0°-180°方向とする。垂直方向(y軸方向)を方位角φ:90°-270°方向とする。本実施形態において、第1の偏光板3の透過軸P1は、方位角φ:45°-225°方向に配置され、第2の偏光板7の透過軸P2は、方位角φ:135°-315°方向に配置される。
FIG. 12 is a front view of the liquid crystal display device 1.
As shown in FIG. 12, on the screen of the liquid crystal display device 1, the horizontal direction (x-axis direction) is the azimuth angle φ: 0 ° -180 ° direction. The vertical direction (y-axis direction) is the azimuth angle φ: 90 ° -270 ° direction. In this embodiment, the transmission axis P1 of the first polarizing plate 3 is arranged in the direction of azimuth angle φ: 45 ° -225 °, and the transmission axis P2 of the second polarizing plate 7 is set to have an azimuth angle φ: 135 °- It is arranged in the 315 ° direction.
 図13は、液晶表示装置1に含まれるVAモードの液晶を含む画素50と、光制御部材9との配置関係を示す模式図である。実際には図1に示すように、画素50上に光制御部材9が配置されるが、図示の都合上、図13では画素50と光制御部材9とを並列して記載している。又、画素50の右側には、第1の偏光板3の透過軸P1及び第2の偏光板7の透過軸P2を図示した。
 以下の図面においても適宜必要に応じて、液晶分子51のダイレクタの方向D、第1の偏光板3の透過軸P1及び第2の偏光板7の透過軸P2を図示する。
FIG. 13 is a schematic diagram showing an arrangement relationship between the light control member 9 and the pixel 50 including the VA mode liquid crystal included in the liquid crystal display device 1. Actually, as shown in FIG. 1, the light control member 9 is arranged on the pixel 50. For convenience of illustration, the pixel 50 and the light control member 9 are shown in parallel in FIG. On the right side of the pixel 50, the transmission axis P1 of the first polarizing plate 3 and the transmission axis P2 of the second polarizing plate 7 are shown.
In the following drawings, the direction D of the director of the liquid crystal molecules 51, the transmission axis P1 of the first polarizing plate 3, and the transmission axis P2 of the second polarizing plate 7 are illustrated as appropriate.
 本実施形態における画素50は、一つの画素50を第1ドメイン50aと第2ドメイン50bの2つのドメインに分割したVA構造、いわゆる2ドメインVA構造を採用している。ここでは、長方形の画素を長手方向に平行な直線で2分割し、縦長のドメインとしている。画素50に含まれる液晶分子51は、電圧を印加しない状態においてほぼ垂直に配向している。図13では、液晶分子51を円錐状に記載している。円錐の頂点は、液晶分子51の背面側の端部を意味する。円錐の底面は、液晶分子51の視認側の端部を示している。本実施形態において、液晶分子51のダイレクタの方向は、液晶分子51の長軸方向を意味し、液晶分子51のダイレクタの向きは、液晶分子51の背面側の端部から視認側の端部へ向かう向きと定義する。液晶分子51のダイレクタの方向を符号Dの矢印で示す。液晶分子51のダイレクタの方向Dは、画素の長辺方向もしくはドメインの長辺方向と一致する。 The pixel 50 in this embodiment employs a VA structure in which one pixel 50 is divided into two domains, a first domain 50a and a second domain 50b, a so-called two-domain VA structure. Here, a rectangular pixel is divided into two by a straight line parallel to the longitudinal direction to form a vertically long domain. The liquid crystal molecules 51 included in the pixel 50 are aligned substantially vertically when no voltage is applied. In FIG. 13, the liquid crystal molecules 51 are illustrated in a conical shape. The vertex of the cone means the end of the liquid crystal molecule 51 on the back side. The bottom surface of the cone indicates the end of the liquid crystal molecule 51 on the viewing side. In this embodiment, the direction of the director of the liquid crystal molecules 51 means the major axis direction of the liquid crystal molecules 51, and the direction of the director of the liquid crystal molecules 51 is from the end on the back side of the liquid crystal molecules 51 to the end on the viewing side. Defined as heading. The direction of the director of the liquid crystal molecules 51 is indicated by an arrow D. The direction D of the director of the liquid crystal molecules 51 coincides with the long side direction of the pixel or the long side direction of the domain.
 図13に示すように、第1ドメイン50aに含まれる液晶分子51と第2ドメイン50bに含まれる液晶分子51とは、方位角φ:90°-270°方向において、互いに180°異なる方向に傾いて配向している。具体的には、第1ドメイン50aに含まれる液晶分子51は、方位角φ:90°における極角θが0°より大きくなるよう傾いている。第2ドメイン50bに含まれる液晶分子51は、方位角φ:270°における極角θが0°より大きくなるよう傾いている。 As shown in FIG. 13, the liquid crystal molecules 51 included in the first domain 50a and the liquid crystal molecules 51 included in the second domain 50b are inclined in directions different from each other by 180 ° in the azimuth angle φ: 90 ° -270 ° direction. Oriented. Specifically, the liquid crystal molecules 51 included in the first domain 50a are inclined such that the polar angle θ at the azimuth angle φ: 90 ° is larger than 0 °. The liquid crystal molecules 51 included in the second domain 50b are inclined such that the polar angle θ at the azimuth angle φ: 270 ° is larger than 0 °.
 このように液晶分子51を配向することにより、第1ドメイン50aにおいて、電圧印加時の液晶層11の厚さ方向の中央部では、液晶分子51が方位角φ:90°でかつ極角が90°に近づくように倒れる。第2ドメイン50bにおいて、電圧印加時の液晶層11の厚さ方向の中央部では、液晶分子51が方位角φ:270°でかつ極角が90°に近づくように倒れる。つまり、電圧印加時の液晶層11の厚さ方向の中央部では、第1ドメイン50aに含まれる液晶分子51と第2ドメイン50bに含まれる液晶分子51とは、方位角φ:90°-270°方向において、互いに180°異なる方向に倒れる。尚、第1の配向膜27及び第2の配向膜34近傍の液晶分子51は、第1の配向膜27及び第2の配向膜34によって配向が規制されているため、電圧印加時においてもほぼ垂直のままである。 By aligning the liquid crystal molecules 51 in this way, in the first domain 50a, the liquid crystal molecules 51 have an azimuth angle φ of 90 ° and a polar angle of 90 ° at the center in the thickness direction of the liquid crystal layer 11 when a voltage is applied. Tilt down closer to °. In the second domain 50b, at the central portion in the thickness direction of the liquid crystal layer 11 when a voltage is applied, the liquid crystal molecules 51 are tilted so that the azimuth angle φ is 270 ° and the polar angle approaches 90 °. That is, at the central portion in the thickness direction of the liquid crystal layer 11 when a voltage is applied, the liquid crystal molecules 51 included in the first domain 50a and the liquid crystal molecules 51 included in the second domain 50b have an azimuth angle φ: 90 ° -270. In the ° direction, they fall down in directions different from each other by 180 °. Note that the liquid crystal molecules 51 in the vicinity of the first alignment film 27 and the second alignment film 34 are regulated by the first alignment film 27 and the second alignment film 34, so that even when a voltage is applied. It remains vertical.
 尚、第1ドメイン50aに含まれる液晶分子51と第2ドメイン50bに含まれる液晶分子51とは、必ずしも互いに180°異なる方向に倒れる必要はなく、180°±10°程度異なる方向に倒れていればよい。例えば、第1ドメイン50aに含まれる液晶分子51と第2ドメイン50bに含まれる液晶分子51とが180°から大きくずれた方向に倒れる場合には、第1ドメイン50aと第2ドメイン50bとで透過率のバランスが崩れることがある。しかし、ドメインバウンダリーを安定化する観点からは、第1ドメイン50aに含まれる液晶分子51と第2ドメイン50bに含まれる液晶分子51とが180°から数度だけずれた方向に倒されていてもよい。
 本実施形態では、交差部103は、第1ドメイン50aと第2ドメイン50bとにそれぞれ同じ数ずつ配置される。
The liquid crystal molecules 51 included in the first domain 50a and the liquid crystal molecules 51 included in the second domain 50b do not necessarily need to be tilted in directions different from each other by 180 °, and may be tilted in directions different from each other by about 180 ° ± 10 °. That's fine. For example, when the liquid crystal molecules 51 included in the first domain 50a and the liquid crystal molecules 51 included in the second domain 50b are tilted in a direction greatly deviated from 180 °, the first domain 50a and the second domain 50b are transmitted. Rate balance may be lost. However, from the viewpoint of stabilizing the domain boundary, the liquid crystal molecules 51 included in the first domain 50a and the liquid crystal molecules 51 included in the second domain 50b are tilted in a direction shifted by several degrees from 180 °. Also good.
In the present embodiment, the same number of intersections 103 are arranged in each of the first domain 50a and the second domain 50b.
 図14は、光制御部材9を備えていない比較例の液晶表示装置において、極角θを変化させた場合のガンマ特性を示す図である。図14において、横軸は極角(°)を示し、縦軸は各極角でのガンマ値を示す。図14において、曲線Cxは方位角φ:0°-180°方向において極角θを変化させた場合のガンマ特性を示し、曲線Cyは方位角90°-270°方向において極角θを変化させた場合のガンマ特性を示す。液晶分子51のダイレクタの方向Dは、図13に示したように、90°-270°方向とする。ガンマ値は、極角0°で最大となり、2.2となるように調整されている。
 尚、ガンマ値をγ、入力(階調)をGr、出力(各角度での規格化輝度)をBrとしたとき、下記の式が成り立つ。
 Br=Grγ
FIG. 14 is a diagram illustrating gamma characteristics when the polar angle θ is changed in a liquid crystal display device of a comparative example that does not include the light control member 9. In FIG. 14, the horizontal axis indicates the polar angle (°), and the vertical axis indicates the gamma value at each polar angle. In FIG. 14, a curve Cx shows gamma characteristics when the polar angle θ is changed in the direction of azimuth angle φ: 0 ° -180 °, and a curve Cy changes the polar angle θ in the direction of azimuth angle 90 ° -270 °. The gamma characteristic is shown. The direction D of the director of the liquid crystal molecules 51 is 90 ° -270 ° as shown in FIG. The gamma value is adjusted to be maximum at a polar angle of 0 ° and 2.2.
When the gamma value is γ, the input (gradation) is Gr, and the output (normalized luminance at each angle) is Br, the following equation holds.
Br = Gr γ
 図14に示すように、曲線Cxに着目し、画素を有する液晶表示装置を方位角φ:0°-180°方向において極角θを変化させると、ガンマ特性の変化は比較的小さい。一方、曲線Cyに着目し、方位角φ:90°-270°方向において極角θを変化させると、ガンマ特性の変化が大きい。曲線Cx及び曲線Cyから、方位角φ:90°-270°方向において極角θを変化させた場合では、方位角φ:0°-180°方向において極角θを変化させた場合と比較すると、極角θに依存してガンマ特性が大きく変化することがわかる。尚、曲線Cx及び曲線Cyは2回転対称の形状を有する。 As shown in FIG. 14, when paying attention to the curve Cx and changing the polar angle θ in the azimuth angle φ: 0 ° -180 ° direction of the liquid crystal display device having pixels, the change in the gamma characteristic is relatively small. On the other hand, when paying attention to the curve Cy and changing the polar angle θ in the direction of the azimuth angle φ: 90 ° -270 °, the change in the gamma characteristic is large. From the curve Cx and the curve Cy, when the polar angle θ is changed in the azimuth angle φ: 90 ° -270 ° direction, compared with the case where the polar angle θ is changed in the azimuth angle φ: 0 ° -180 ° direction. It can be seen that the gamma characteristic varies greatly depending on the polar angle θ. Note that the curve Cx and the curve Cy have two rotationally symmetric shapes.
 このように、光制御部材9を備えていない比較例の液晶表示装置において、方位角φ:0°-180°方向における視野角特性と方位角φ:90°-270°方向における視野角特性とが異なるのは、液晶分子が方位角φ:90°-270°方向のみに倒れるよう配向していることに起因する。
 方位角φ:0°-180°方向において観察者の視点の極角θを変化させた場合は、液晶分子の短軸方向に視点を動かすことになるため、液晶分子の複屈折差はそれほど大きくない。その一方、方位角φ:90°-270°方向において観察者の視点の極角θを変化させると、液晶分子の長軸方向に視点を動かすことになり、さらに、液晶分子が倒れる方向に沿って視点を動かすことになるため、液晶分子の複屈折差が大きい。
Thus, in the liquid crystal display device of the comparative example that does not include the light control member 9, the viewing angle characteristics in the azimuth angle φ: 0 ° -180 ° direction and the viewing angle characteristics in the azimuth angle φ: 90 ° -270 ° direction The difference is due to the fact that the liquid crystal molecules are aligned so as to tilt only in the direction of the azimuth angle φ: 90 ° -270 °.
When the polar angle θ of the observer's viewpoint is changed in the azimuth angle φ: 0 ° -180 °, the viewpoint moves in the minor axis direction of the liquid crystal molecules, so the birefringence difference of the liquid crystal molecules is so large Absent. On the other hand, when the polar angle θ of the observer's viewpoint is changed in the direction of the azimuth angle φ: 90 ° -270 °, the viewpoint is moved in the major axis direction of the liquid crystal molecules, and further along the direction in which the liquid crystal molecules are tilted. The birefringence difference of the liquid crystal molecules is large.
 本実施形態では、図13に示すように、遮光層40の交差部103において鈍角をなす角度の二等分線方向と、電圧印加時の液晶層の厚みの中間領域における液晶分子のダイレクタの方向Dとが略等しい。つまり、電圧印加時に液晶分子51が倒れる方向、すなわち液晶分子51のダイレクタの方向Dと、光制御部材9の遮光層40の第1の直線部分101及び第2の直線部分102とが交差するように光制御部材9が配置されている。基材39の法線方向から見て、第1の直線部分101及び第2の直線部分102は、液晶分子51のダイレクタの方向Dに対して45°よりも大きく且つ90°よりも小さい角度をなす。言い換えると、基材39の法線方向から見た遮光層40の平面形状は、液晶分子51のダイレクタの方向Dに直交する方向に対して0°よりも大きく且つ45°よりも小さい角度をなす第1の直線部分101及び第2の直線部分102を有している。例えば、第1の直線部分101及び第2の直線部分102が液晶分子51のダイレクタの方向Dに直交する方向に対してなす角度は、33.7°程度とされる。 In this embodiment, as shown in FIG. 13, the direction of the bisector of the obtuse angle at the intersection 103 of the light shielding layer 40 and the direction of the director of the liquid crystal molecules in the intermediate region of the thickness of the liquid crystal layer when a voltage is applied. D is substantially equal. That is, the direction in which the liquid crystal molecules 51 are tilted when a voltage is applied, that is, the direction D of the director of the liquid crystal molecules 51 intersects the first straight portion 101 and the second straight portion 102 of the light shielding layer 40 of the light control member 9. A light control member 9 is disposed on the surface. When viewed from the normal direction of the substrate 39, the first straight portion 101 and the second straight portion 102 have an angle larger than 45 ° and smaller than 90 ° with respect to the direction D of the director of the liquid crystal molecules 51. Eggplant. In other words, the planar shape of the light shielding layer 40 viewed from the normal direction of the base material 39 forms an angle larger than 0 ° and smaller than 45 ° with respect to the direction perpendicular to the direction D of the director of the liquid crystal molecules 51. It has a first straight line portion 101 and a second straight line portion 102. For example, the angle formed by the first straight line portion 101 and the second straight line portion 102 with respect to the direction perpendicular to the direction D of the director of the liquid crystal molecules 51 is about 33.7 °.
 液晶分子51のダイレクタの方向Dと第1の偏光板3及び第2の偏光板7の吸収軸P1,P2は45°の角度をなすため、光制御部材9の遮光層40の第1の直線部分101及び第2の直線部分102と、第1の偏光板3及び第2の偏光板7の吸収軸P1,P2とは鋭角をなす。言い換えると、基材39の法線方向から見た遮光層40の平面形状は、第1の偏光板3及び第2の偏光板7のうちの一方の偏光板の吸収軸P1,P2と45°未満の角度をなす第1の直線部分101及び第2の直線部分102を有している。 Since the direction D of the director of the liquid crystal molecules 51 and the absorption axes P1 and P2 of the first polarizing plate 3 and the second polarizing plate 7 form an angle of 45 °, the first straight line of the light shielding layer 40 of the light control member 9 is used. The portion 101 and the second linear portion 102 and the absorption axes P1 and P2 of the first polarizing plate 3 and the second polarizing plate 7 form an acute angle. In other words, the planar shape of the light shielding layer 40 viewed from the normal direction of the base material 39 is 45 ° with respect to the absorption axes P1 and P2 of one of the first polarizing plate 3 and the second polarizing plate 7. The first straight portion 101 and the second straight portion 102 are formed at an angle of less than.
 この場合、光の進行方向をxy平面上に射影して見ると、x軸方向から入射して反射面41cで反射した光Lxはy軸方向へ進行し、y軸方向から入射して反射面41cで反射した光Lyはx軸方向へ進行する割合が大きい。さらに、x軸方向から入射してy軸方向に進行する光Lxの量と、y軸方向から入射してx軸方向に進行する光Lyの量と、を比較すると、x軸方向から入射してy軸方向に進行する光Lxの量が、y軸方向から入射してx軸方向に進行する光Lyよりも多い。
 この理由を以下、図15を用いて説明する。
In this case, when the traveling direction of the light is projected onto the xy plane, the light Lx incident from the x-axis direction and reflected by the reflecting surface 41c travels in the y-axis direction, enters from the y-axis direction, and is reflected by the reflecting surface. The light Ly reflected by 41c has a high rate of traveling in the x-axis direction. Further, when the amount of light Lx that enters from the x-axis direction and travels in the y-axis direction is compared with the amount of light Ly that enters from the y-axis direction and travels in the x-axis direction, it enters from the x-axis direction. The amount of light Lx traveling in the y-axis direction is larger than the light Ly entering from the y-axis direction and traveling in the x-axis direction.
The reason for this will be described below with reference to FIG.
 図15(A)~(F)は、各種の形状及び配置を有する遮光層と光の反射の様子を示している。図15(A)~(F)においては、光の進行方向を矢印で示しているが、この矢印は光の進行方向をxy平面上に射影して示したものであり、実際の光の進行方向はz軸方向の成分を有している。角度φ1~φ6は、xy平面上に射影したときの光の入射方向と射出方向とのなす角度である。 FIGS. 15A to 15F show light-shielding layers having various shapes and arrangements and light reflection states. In FIGS. 15A to 15F, the traveling direction of light is indicated by an arrow, and this arrow is a projection of the traveling direction of light on the xy plane. The direction has a component in the z-axis direction. The angles φ1 to φ6 are angles formed by the light incident direction and the light emitting direction when projected onto the xy plane.
 例えばx軸方向から入射する光の方位角方向の進行方向を変えるためには、x軸に対して0°より大きく、90°より小さい角度をなす反射面があればよい。
 最初に、図15(A)に示すように、第1の直線部分及び第2の直線部分をx軸及びy軸に対して45°回転させた平面形状の遮光層40Xを考える。この場合、反射面41Xcは、x軸に対して45°の角度をなす。仮に反射面41Xcが遮光層40Xの形成面に対して垂直方向に図15(A)の紙面の奥側に向かって配置されていたとする。この場合、x軸の負側から正側に向けて反射面41Xcに入射した光L1は、反射面41Xcで反射してxy平面上で90°方向を変え、y軸に平行な方向に進行する。すなわち、xy平面上に射影した光L1の入射方向と射出方向とのなす角度φ1は90°である。
For example, in order to change the traveling direction in the azimuth direction of light incident from the x-axis direction, a reflecting surface having an angle larger than 0 ° and smaller than 90 ° with respect to the x-axis may be used.
First, as shown in FIG. 15A, consider a planar light shielding layer 40X obtained by rotating the first straight line portion and the second straight line portion by 45 ° with respect to the x axis and the y axis. In this case, the reflection surface 41Xc makes an angle of 45 ° with respect to the x-axis. Suppose that the reflection surface 41Xc is arranged in the direction perpendicular to the formation surface of the light shielding layer 40X toward the back side of the paper surface of FIG. In this case, the light L1 incident on the reflecting surface 41Xc from the negative side to the positive side of the x axis is reflected by the reflecting surface 41Xc, changes its direction by 90 ° on the xy plane, and travels in a direction parallel to the y axis. . That is, the angle φ1 formed by the incident direction and the emission direction of the light L1 projected onto the xy plane is 90 °.
 ところが、本実施形態の光制御部材に即して考えると、反射面41Xcは、遮光層40Xに対して垂直方向に配置されているのではなく、図15(B)に示すように、紙面の奥側に向かって遮光層40Xの外形形状を示す実線の内側に示した破線(中空部の外形)に向けて斜めに傾斜している。この場合、角度φ2は90°よりも小さくなり、x軸の負側から正側に向けて反射面41Xcに入射した光L2は、反射面41Xcで反射した後、y軸に平行な方向には進まず、y軸に平行な方向よりもx軸の負側に傾いた方向に進む。 However, considering the light control member of the present embodiment, the reflection surface 41Xc is not arranged in the vertical direction with respect to the light shielding layer 40X, but as shown in FIG. It inclines diagonally toward the broken line (outside shape of hollow part) shown inside the solid line which shows the external shape of the light shielding layer 40X toward the back side. In this case, the angle φ2 is smaller than 90 °, and the light L2 incident on the reflecting surface 41Xc from the negative side of the x axis toward the positive side is reflected by the reflecting surface 41Xc and then in a direction parallel to the y axis. It does not advance, but proceeds in a direction inclined to the negative side of the x axis from the direction parallel to the y axis.
 これに対して、図15(C)、(D)に示すように、本実施形態のように、基材39の法線方向から見て、第1の直線部分101及び第2の直線部分102を、液晶分子51のダイレクタの方向Dに対して45°よりも大きく且つ90°よりも小さい角度をなすように配置した場合を考える。この場合、図15(C)に示すように、反射面41cが遮光層40の形成面に対して垂直方向に配置されていると仮定すると、角度φ3は90°よりも大きく、x軸の負側から正側に向けて反射面41cに入射した光L3は、反射面41cで反射した後、y軸に平行な方向には進まず、y軸に平行な方向よりもx軸の正側に傾いた方向に進む。ところが、図15(D)に示すように、実際の反射面41cは、遮光層40の外形形状を示す実線の内側に示した破線(中空部の外形)に向けて斜めに傾斜している。これにより、角度φ4を90°にすることができ、x軸の負側から正側に向けて反射面41cに入射した光L4は、反射面41cで反射した後、y軸に平行な方向に進む。 On the other hand, as shown in FIGS. 15C and 15D, the first straight line portion 101 and the second straight line portion 102 are viewed from the normal direction of the base material 39 as in the present embodiment. Are arranged so as to form an angle larger than 45 ° and smaller than 90 ° with respect to the direction D of the director of the liquid crystal molecules 51. In this case, as shown in FIG. 15C, assuming that the reflection surface 41c is arranged in a direction perpendicular to the formation surface of the light shielding layer 40, the angle φ3 is larger than 90 °, and the negative x-axis The light L3 incident on the reflection surface 41c from the side toward the positive side is reflected by the reflection surface 41c and does not travel in the direction parallel to the y axis, but is closer to the positive side of the x axis than the direction parallel to the y axis. Proceed in a tilted direction. However, as shown in FIG. 15D, the actual reflecting surface 41 c is inclined obliquely toward the broken line (outer shape of the hollow portion) shown inside the solid line indicating the outer shape of the light shielding layer 40. Thus, the angle φ4 can be set to 90 °, and the light L4 incident on the reflecting surface 41c from the negative side of the x axis toward the positive side is reflected by the reflecting surface 41c and then in a direction parallel to the y axis. move on.
 比較例として、図15(E)、(F)に示すように、本実施形態と異なり、基材39の法線方向から見て、第1の直線部分及び第2の直線部分を、液晶分子51のダイレクタの方向Dに対して0°よりも大きく且つ45°よりも小さい角度をなすように配置した遮光層40Aを考える。この場合、図15(E)に示すように、反射面41Acが遮光層40Aの形成面に対して垂直方向に配置されていると仮定すると、角度φ5は90°よりも小さく、x軸の負側から正側に向けて反射面41Acに入射した光L5は、反射面41Acで反射した後、y軸に平行な方向には進まず、y軸に平行な方向よりもx軸の負側に傾いた方向に進む。ところが、図15(F)に示すように、実際の反射面41Acは斜めに傾斜しているため、角度φ6は角度φ5よりもさらに小さくなり、x軸の負側から正側に向けて反射面41Acに入射した光L6は、反射面41Acで反射した後、y軸に平行な方向よりもx軸の負側に傾いた方向に進む。 As a comparative example, as shown in FIGS. 15E and 15F, unlike the present embodiment, when viewed from the normal direction of the base material 39, the first straight portion and the second straight portion are liquid crystal molecules. Consider a light-shielding layer 40A arranged to form an angle larger than 0 ° and smaller than 45 ° with respect to the direction D of 51 directors. In this case, as shown in FIG. 15E, when it is assumed that the reflection surface 41Ac is arranged in a direction perpendicular to the formation surface of the light shielding layer 40A, the angle φ5 is smaller than 90 ° and the negative value of the x axis is negative. The light L5 incident on the reflecting surface 41Ac from the side toward the positive side is reflected by the reflecting surface 41Ac, and does not travel in the direction parallel to the y axis, but is closer to the negative side of the x axis than the direction parallel to the y axis. Proceed in a tilted direction. However, as shown in FIG. 15F, since the actual reflecting surface 41Ac is inclined obliquely, the angle φ6 is further smaller than the angle φ5, and the reflecting surface is directed from the negative side of the x axis toward the positive side. The light L6 incident on 41Ac is reflected by the reflecting surface 41Ac, and then travels in a direction tilted to the negative side of the x axis from the direction parallel to the y axis.
 以上述べたように、(1)第1の直線部分及び第2の直線部分をx軸及びy軸に対して45°回転させた平面形状の遮光層40Xの場合、(2)基材39の法線方向から見て、第1の直線部分101及び第2の直線部分102を、液晶分子51のダイレクタの方向Dに対して45°よりも大きく且つ90°よりも小さい角度をなすように配置した遮光層40の場合、(3)基材39の法線方向から見て、第1の直線部分及び第2の直線部分を、液晶分子51のダイレクタの方向Dに対して0°よりも大きく且つ45°よりも小さい角度をなすように配置した遮光層40Aの場合、の3つのケースを比較したとき、x軸に平行な方向から反射面に入射してy軸に平行な方向に進む光の量は、(2)基材39の法線方向から見て、第1の直線部分101及び第2の直線部分102を、液晶分子51のダイレクタの方向Dに対して45°よりも大きく且つ90°よりも小さい角度をなすように配置した遮光層40の場合が最も多くなる。
 このことから、x軸方向から入射してy軸方向に進行する光の量と、y軸方向から入射してx軸方向に進行する光の量と、を比較すると、x軸方向から入射してy軸方向に進行する光の量が、y軸方向から入射してx軸方向に進行する光よりも多いことになる。
As described above, (1) in the case of the light shielding layer 40X having a planar shape obtained by rotating the first straight line portion and the second straight line portion by 45 ° with respect to the x axis and the y axis, (2) The first straight line portion 101 and the second straight line portion 102 are arranged so as to form an angle larger than 45 ° and smaller than 90 ° with respect to the direction D of the director of the liquid crystal molecules 51 when viewed from the normal direction. In the case of the light shielding layer 40, (3) when viewed from the normal direction of the base material 39, the first straight line portion and the second straight line portion are larger than 0 ° with respect to the direction D of the director of the liquid crystal molecules 51. In the case of the light shielding layer 40A arranged so as to form an angle smaller than 45 °, when comparing the three cases, light entering the reflecting surface from a direction parallel to the x axis and traveling in a direction parallel to the y axis (2) when viewed from the normal direction of the base material 39, the amount of the first straight portion 10 In most cases, the light shielding layer 40 has the first and second linear portions 102 arranged so as to form an angle larger than 45 ° and smaller than 90 ° with respect to the director direction D of the liquid crystal molecules 51.
Therefore, when comparing the amount of light incident from the x-axis direction and traveling in the y-axis direction with the amount of light incident from the y-axis direction and traveling in the x-axis direction, the light is incident from the x-axis direction. Thus, the amount of light traveling in the y-axis direction is larger than the light traveling from the y-axis direction and traveling in the x-axis direction.
 言い換えると、本実施形態の場合、方位角φ:0°-180°方向から光制御部材9に入射した光は、遮光層40において液晶分子のダイレクタの方向Dに対して45°よりも大きく且つ90°よりも小さい角度をなす第1の直線部分101及び第2の直線部分102に対応して配置される光拡散部41の反射面41cによって反射され、方位角φ:90°-270°方向へ射出される。その際、光拡散部41の傾斜角θcが90°よりも小さいことから(図6参照)、光の進行方向の極角θは、光制御部材9に入射する前よりも大きくなる方向へ変わる。図14を用いて説明したように、光制御部材9を用いなかったとすると、方位角φ:90°-270°方向とφ:0°-180°方向は視野角特性の差が大きい。この問題を改善するためには、光制御部材9を用いて、方位角φ:0°-180°方向に進む光を視野角特性の劣る方位角φ:90°-270°方向へ意図的に混合すればよい。これにより、方位ごとの視野角特性の差が緩和される。これにより、輝度変化のばらつきが平均化され、方位角φ:90°-270°方向における極角θに依存したガンマ特性の変化を改善することができる。 In other words, in the present embodiment, the light incident on the light control member 9 from the direction of the azimuth angle φ: 0 ° -180 ° is greater than 45 ° with respect to the direction D of the director of the liquid crystal molecules in the light shielding layer 40 and Reflected by the reflecting surface 41c of the light diffusing portion 41 arranged corresponding to the first straight line portion 101 and the second straight line portion 102 that form an angle smaller than 90 °, the azimuth angle φ: 90 ° -270 ° direction Is injected into. At this time, since the inclination angle θc of the light diffusing portion 41 is smaller than 90 ° (see FIG. 6), the polar angle θ in the light traveling direction changes in a direction larger than that before entering the light control member 9. . As described with reference to FIG. 14, if the light control member 9 is not used, there is a large difference in viewing angle characteristics between the azimuth angle φ: 90 ° -270 ° direction and the φ: 0 ° -180 ° direction. In order to improve this problem, the light control member 9 is used to intentionally move light traveling in the direction of azimuth angle φ: 0 ° -180 ° in the direction of azimuth angle φ: 90 ° -270 ° having inferior viewing angle characteristics. What is necessary is just to mix. Thereby, the difference of the viewing angle characteristic for every direction is relieved. Thereby, the variation of the luminance change is averaged, and the change of the gamma characteristic depending on the polar angle θ in the direction of the azimuth angle φ: 90 ° -270 ° can be improved.
 本実施形態によれば、2ドメインVA方式を採用した液晶表示装置に、本実施形態の光制御部材9を組み合わせることにより、液晶分子51のダイレクタの方向Dである方位角φ:90°-270°方向における視野角特性が改善される。従来の2ドメインVA方式を採用した液晶表示装置においては、液晶分子が倒れる方向と垂直な方位角φ:0°-180°方向の視野角特性は良好なものであったが、本実施形態の光制御部材9を組み合わせることにより、さらに方位角φ:90°-270°方向における視野角特性が改善され、方位角による視野角特性の差異が低減する、という効果が得られる。特に高精細ディスプレイにおいては、セル内の構造を複雑にすることなく、高い透過率を維持したまま視野角特性を改善することができる。 According to the present embodiment, by combining the light control member 9 of the present embodiment with the liquid crystal display device adopting the two-domain VA method, the azimuth angle φ, which is the direction D of the director of the liquid crystal molecules 51: 90 ° -270 The viewing angle characteristics in the ° direction are improved. In the conventional liquid crystal display device adopting the two-domain VA method, the viewing angle characteristics in the direction of the azimuth angle φ: 0 ° -180 ° perpendicular to the direction in which the liquid crystal molecules are tilted are good. By combining the light control member 9, it is possible to further improve the viewing angle characteristics in the direction of the azimuth angle φ: 90 ° to 270 ° and to reduce the difference in viewing angle characteristics depending on the azimuth angle. Particularly in a high-definition display, the viewing angle characteristics can be improved while maintaining a high transmittance without complicating the structure in the cell.
 尚、本実施形態に限らず、TN(Twisted Nematic)モードで表示を行う液晶パネルを用いてもよいし、その他の液晶モードで表示を行う液晶パネルを用いてもよい。例えば、TNモードで表示を行う液晶パネルとしては、左右方向の特性が上下方向の特性よりも優れるハイブリッド配向をしたネガ型液晶層を視野角補償層として用いた構成が挙げられる。例えば、ネガ型液晶層としては、富士フィルム社製のWVフィルム(商品名)等を用いてもよい。 Note that the present invention is not limited to this embodiment, and a liquid crystal panel that performs display in a TN (TwistedwNematic) mode may be used, or a liquid crystal panel that performs display in other liquid crystal modes may be used. For example, a liquid crystal panel that performs display in the TN mode includes a configuration in which a negative-type liquid crystal layer having a hybrid alignment in which the left-right characteristics are superior to the vertical characteristics is used as the viewing angle compensation layer. For example, as the negative liquid crystal layer, a WV film (trade name) manufactured by Fuji Film may be used.
 TNモードで表示を行う液晶パネルにおいて、第1の配向膜は、液晶層を構成する液晶分子を水平配向させる配向規制力を有し、第2の配向膜は、液晶層を構成する液晶分子を水平配向させる配向規制力を有する。
 尚、TNモードで表示を行う液晶パネルを備える液晶表示装置において、基材39の法線方向から見た遮光層40の平面形状は、液晶分子のダイレクタの方向と、第1の偏光板3及び第2の偏光板7の吸収軸P1,P2とのそれぞれに交差する第1の直線部分101及び第2の直線部分102を有する。
In a liquid crystal panel that performs display in the TN mode, the first alignment film has an alignment regulating force that horizontally aligns the liquid crystal molecules constituting the liquid crystal layer, and the second alignment film includes the liquid crystal molecules that constitute the liquid crystal layer. Has the ability to regulate the orientation to be horizontally oriented.
In the liquid crystal display device including a liquid crystal panel that performs display in the TN mode, the planar shape of the light shielding layer 40 viewed from the normal direction of the base material 39 is the direction of the director of the liquid crystal molecules, the first polarizing plate 3 and It has the 1st linear part 101 and the 2nd linear part 102 which cross | intersect with the absorption axes P1 and P2 of the 2nd polarizing plate 7, respectively.
(液晶表示装置の製造方法)
 図16~図19は、光制御部材9の製造工程を、順を追って示す斜視図である。
 上記構成の液晶表示装置1を構成する光制御部材9の製造工程を中心に、その製造方法について説明する。
(Manufacturing method of liquid crystal display device)
16 to 19 are perspective views showing the manufacturing process of the light control member 9 step by step.
The manufacturing method of the light control member 9 constituting the liquid crystal display device 1 having the above configuration will be mainly described.
 液晶パネル2の製造工程の概略を先に説明する。
 最初に、TFT基板10とカラーフィルター基板12とをそれぞれ作製する。その後、TFT基板10のTFT19が形成された側の面とカラーフィルター基板12のカラーフィルター31が形成された側の面とを対向させて配置する。その後、TFT基板10とカラーフィルター基板12とをシール部材を介して貼り合わせる。その後、TFT基板10とカラーフィルター基板12とシール部材とによって囲まれた空間内に液晶を注入する。
 このようにしてできた液晶セル5の両面に、光学接着剤等を用いて第1位相差フィルム4、第1の偏光板3、第2位相差フィルム6、第2の偏光板7をそれぞれ貼り合わせる。以上の工程を経て、液晶パネル2が完成する。
 尚、TFT基板10やカラーフィルター基板12の製造方法は常法によれば良く、その説明を省略する。
The outline of the manufacturing process of the liquid crystal panel 2 will be described first.
First, the TFT substrate 10 and the color filter substrate 12 are respectively produced. Thereafter, the surface of the TFT substrate 10 on which the TFT 19 is formed and the surface of the color filter substrate 12 on which the color filter 31 is formed are arranged to face each other. Thereafter, the TFT substrate 10 and the color filter substrate 12 are bonded together via a seal member. Thereafter, liquid crystal is injected into a space surrounded by the TFT substrate 10, the color filter substrate 12, and the seal member.
The first retardation film 4, the first polarizing plate 3, the second retardation film 6, and the second polarizing plate 7 are attached to both surfaces of the liquid crystal cell 5 thus formed using an optical adhesive or the like. Match. The liquid crystal panel 2 is completed through the above steps.
The manufacturing method of the TFT substrate 10 and the color filter substrate 12 may be a conventional method, and the description thereof is omitted.
 光制御部材9の製造工程について説明する。
 図16に示すように、厚さが100μmのポリエチレンテレフタレートの基材39を準備する。次いで、スリットコーターを用いて、この基材39の一面に遮光層材料としてカーボンが含有されたブラックネガレジストを塗布する。これにより、膜厚150nmの塗膜45を形成する。
 上記の塗膜45を形成した基材39をヒーターで加熱し、温度90℃で塗膜45のプリベークを行う。これにより、ブラックネガレジスト中の溶媒が揮発する。
The manufacturing process of the light control member 9 will be described.
As shown in FIG. 16, a polyethylene terephthalate base material 39 having a thickness of 100 μm is prepared. Next, a black negative resist containing carbon as a light shielding layer material is applied to one surface of the substrate 39 using a slit coater. Thereby, the coating film 45 with a film thickness of 150 nm is formed.
The substrate 39 on which the coating film 45 is formed is heated with a heater, and the coating film 45 is pre-baked at a temperature of 90 ° C. Thereby, the solvent in the black negative resist is volatilized.
 露光装置を用い、平面形状が例えば格子状の開口パターン46が形成されたフォトマスク47を介して塗膜45に光Lを照射し、露光を行う。このとき、波長365nmのi線、波長404nmのh線、波長436nmのg線の混合線を用いた露光装置を使用する。
 露光量は100mJ/cmとする。
Using an exposure apparatus, the coating film 45 is irradiated with light L through a photomask 47 in which an opening pattern 46 having a lattice shape, for example, a lattice shape, is exposed. At this time, an exposure apparatus using a mixed line of i-line having a wavelength of 365 nm, h-line having a wavelength of 404 nm, and g-line having a wavelength of 436 nm is used.
The exposure dose is 100 mJ / cm 2 .
 上記のフォトマスク47を用いて露光を行った後、専用の現像液を用いてブラックネガレジストからなる塗膜45の現像を行い、100℃で乾燥し、図17に示すように、平面形状が例えば格子状の遮光層40を基材39の一面に形成する。本実施形態の場合、次工程でブラックネガレジストからなる遮光層40をマスクとして透明ネガレジストの露光を行い、中空部42を形成する。そのため、フォトマスク47の開口パターン46の位置が中空部42の形成位置に対応する。 After exposure using the photomask 47 described above, the coating film 45 made of black negative resist is developed using a dedicated developer, dried at 100 ° C., and the planar shape is as shown in FIG. For example, the lattice-shaped light shielding layer 40 is formed on one surface of the base material 39. In the case of the present embodiment, in the next step, the transparent negative resist is exposed using the light shielding layer 40 made of a black negative resist as a mask to form the hollow portion 42. Therefore, the position of the opening pattern 46 of the photomask 47 corresponds to the position where the hollow portion 42 is formed.
 平面形状が格子状の遮光層40は、次工程の光拡散部41の非形成領域(中空部42)に対応する。本例では、開口パターン46は格子状のパターンであり、直線部分の幅は一定である。開口パターン46において隣り合う2つの直線部分の間隔(ピッチ)の配置は、規則的でもなく、周期的でもない。開口パターン46の間隔(ピッチ)は液晶パネル2の画素の間隔(ピッチ、例えば60μm)よりも小さいことが望ましい。これにより、画素内に少なくとも1つの直線部分101,102が形成される。そのため、高精細ディスプレイと組み合わせたときに、特に広視野角化を図ることができる。 The planar light-shielding layer 40 having a lattice shape corresponds to a non-formation region (hollow portion 42) of the light diffusion portion 41 in the next step. In this example, the opening pattern 46 is a lattice pattern, and the width of the straight line portion is constant. The arrangement (interval) (pitch) between two adjacent linear portions in the opening pattern 46 is neither regular nor periodic. The interval (pitch) between the opening patterns 46 is preferably smaller than the interval (pitch, for example, 60 μm) between the pixels of the liquid crystal panel 2. As a result, at least one straight line portion 101, 102 is formed in the pixel. Therefore, when combined with a high-definition display, a wide viewing angle can be achieved.
 本実施形態では、ブラックネガレジストを用いたフォトリソグラフィー法によって遮光層40を形成したが、これに限らない。この他に、本実施形態の開口パターン46と遮光パターンとが反転したフォトマスクを用いれば、光吸収性を有するポジレジストを用いることもできる。もしくは、蒸着法や印刷法等を用いて遮光層40を直接形成しても良い。 In the present embodiment, the light shielding layer 40 is formed by a photolithography method using a black negative resist, but the present invention is not limited to this. In addition to this, if a photomask in which the opening pattern 46 and the light shielding pattern of the present embodiment are reversed is used, a positive resist having light absorption can also be used. Alternatively, the light shielding layer 40 may be directly formed using a vapor deposition method, a printing method, or the like.
 例えばインクジェット法等の印刷法を用いて遮光層を形成したとすると、図20に示すように、遮光層140Fは、複数の点状部分140aによって構成される。点状部分140aは、印刷装置によって形成されるパターンを構成する最小単位のドットである。このように、遮光層は、一様な膜から構成されるものに限らず、複数の微小領域の集合体から構成されてもよい。 For example, when the light shielding layer is formed by using a printing method such as an ink jet method, the light shielding layer 140F includes a plurality of dot-like portions 140a as shown in FIG. The dotted portion 140a is a minimum unit dot constituting a pattern formed by the printing apparatus. Thus, the light shielding layer is not limited to a uniform film, and may be composed of an assembly of a plurality of minute regions.
 フォトリソグラフィー法により、Roll to Rollプロセスで連続的に遮光層を形成する場合には、平板のフォトマスクに代えて、円筒状のフォトマスクと、円筒内のUVランプで露光するローリングマスクフォトリソグラフィー法を用いることもできる。 When a light shielding layer is continuously formed by a roll-to-roll process by photolithography, a cylindrical photomask and a rolling mask photolithography method using a UV lamp in the cylinder instead of a flat photomask. Can also be used.
 次いで、図18に示すように、スリットコーターを用いて、遮光層40の上面に光拡散部材料としてアクリル樹脂からなる透明ネガレジストを塗布する。これにより、膜厚20μmの塗膜48を形成する。
 次いで、上記の塗膜48を形成した基材39をヒーターで加熱し、温度95℃で塗膜48のプリベークを行う。これにより、透明ネガレジスト中の溶媒が揮発する。
Next, as shown in FIG. 18, a transparent negative resist made of an acrylic resin is applied to the upper surface of the light shielding layer 40 as a light diffusion portion material using a slit coater. Thereby, the coating film 48 with a film thickness of 20 μm is formed.
Next, the base material 39 on which the coating film 48 is formed is heated with a heater, and the coating film 48 is pre-baked at a temperature of 95 ° C. Thereby, the solvent in the transparent negative resist is volatilized.
 次いで、基材39側から遮光層40をマスクとして塗膜48に拡散光Fを照射し、露光を行う。このとき、波長365nmのi線、波長404nmのh線、波長436nmのg線の混合線を用いた露光装置を使用する。露光量は500mJ/cmとする。 
 その後、上記の塗膜48を形成した基材39をヒーターで加熱し、温度95℃で塗膜48のポストエクスポージャーベイク(PEB)を行う。
Next, the coating film 48 is irradiated with diffused light F from the base material 39 side using the light shielding layer 40 as a mask to perform exposure. At this time, an exposure apparatus using a mixed line of i-line having a wavelength of 365 nm, h-line having a wavelength of 404 nm, and g-line having a wavelength of 436 nm is used. The exposure amount is 500 mJ / cm 2 .
Thereafter, the substrate 39 on which the coating film 48 is formed is heated with a heater, and post-exposure baking (PEB) of the coating film 48 is performed at a temperature of 95 ° C.
 次いで、専用の現像液を用いて透明ネガレジストからなる塗膜48の現像を行い、100℃でポストベークし、図19に示すように、中空部42を有する透明樹脂層(光拡散部41)を基材39の一面に形成する。本実施形態では、図18に示したように、拡散光Fを用いて露光を行っているため、塗膜48を構成する透明ネガレジストが遮光層40の非形成領域から外側に広がるように放射状に露光される。これにより、順テーパ状の中空部42が形成される。光拡散部41は逆テーパ状の形状となる。光拡散部41の反射面41cの傾斜角度は拡散光Fの拡散の度合いで制御できる。又、拡散光Fを用いて露光を行っているため、塗膜48を構成する透明ネガレジストが遮光層40の非形成領域から外側に広がるように放射状に露光されることにより、光拡散部41のうち遮光層40から離れた部分である光拡散部41の光入射端面側の曲線部41r(図8参照)では、光拡散部41の光射出端面側の曲線部41rよりも、拡散光Fの照射領域の輪郭をぼかすことができる。光拡散部41の光入射端面側の曲線部41rにおいて拡散光Fの照射領域の輪郭をぼかすことにより、光拡散部41の光入射端面側の曲線部41rの曲率半径を制御することができ、光拡散部41の光入射端面側の曲線部41rの曲率半径を、光拡散部41の光射出端面側の曲線部41rの曲率半径よりも大きくすることができる。
 尚、図19では、封止部材150を二点鎖線で示す。封止部材150を光拡散部41と同じ材料で形成する場合には、光拡散部41の形成工程と同じ工程で封止部材150を形成してもよい。
Next, the coating film 48 made of a transparent negative resist is developed using a dedicated developer, post-baked at 100 ° C., and a transparent resin layer (light diffusion portion 41) having a hollow portion 42 as shown in FIG. Is formed on one surface of the substrate 39. In this embodiment, as shown in FIG. 18, since the exposure is performed using the diffused light F, the transparent negative resist constituting the coating film 48 is radially spread so as to spread outward from the non-formation region of the light shielding layer 40. To be exposed. Thereby, the forward tapered hollow portion 42 is formed. The light diffusion portion 41 has a reverse tapered shape. The inclination angle of the reflection surface 41 c of the light diffusion portion 41 can be controlled by the degree of diffusion of the diffused light F. In addition, since the exposure is performed using the diffused light F, the transparent negative resist constituting the coating film 48 is exposed radially so as to spread outward from the non-formation region of the light shielding layer 40, so that the light diffusion portion 41. In the curved portion 41r (see FIG. 8) on the light incident end face side of the light diffusing portion 41, which is a portion away from the light shielding layer 40, the diffused light F is larger than the curved portion 41r on the light emitting end face side of the light diffusing portion 41. The outline of the irradiation area can be blurred. By blurring the outline of the irradiation area of the diffused light F in the curved portion 41r on the light incident end face side of the light diffusing portion 41, the radius of curvature of the curved portion 41r on the light incident end face side of the light diffusing portion 41 can be controlled. The radius of curvature of the curved portion 41r on the light incident end face side of the light diffusing portion 41 can be made larger than the radius of curvature of the curved portion 41r on the light exit end face side of the light diffusing portion 41.
In FIG. 19, the sealing member 150 is indicated by a two-dot chain line. When the sealing member 150 is formed of the same material as that of the light diffusion portion 41, the sealing member 150 may be formed in the same process as the light diffusion portion 41 formation process.
 ここで用いる光Fとして、平行光、もしくは拡散光、もしくは特定の射出角度における強度が他の射出角度における強度と異なる光、すなわち特定の射出角度に強弱を有する光を用いることができる。平行光を用いた場合、光拡散部41の反射面41cの傾斜角度が例えば60°~90°程度の単一の傾斜角度となる。拡散光を用いた場合には、傾斜角度が連続的に変化する、断面形状が曲線状の傾斜面となる。特定の射出角度に強弱を有する光を用いた場合には、その強弱に対応した斜面角度を有する傾斜面となる。このように、光拡散部41の反射面41cの傾斜角度を調整することができる。又、拡散光Fを用いた時と同様に、光拡散部41のうち遮光層40から離れた部分である光拡散部41の光入射端面側の曲線部41r(図8参照)では、光拡散部41の光射出端面側の曲線部41rよりも、拡散光Fの照射領域の輪郭をぼかすことにより、光拡散部41の光入射端面側の曲線部41rの曲率半径を制御することができ、光拡散部41の光入射端面側の曲線部41rの曲率半径を、光拡散部41の光射出端面側の曲線部41rの曲率半径よりも大きくすることができる。これにより、光制御部材9の光拡散性を、目的とする視認性が得られるように調整することが可能となる。 As the light F used here, parallel light, diffused light, or light whose intensity at a specific emission angle is different from that at another emission angle, that is, light having strength at a specific emission angle can be used. When parallel light is used, the inclination angle of the reflection surface 41c of the light diffusing unit 41 becomes a single inclination angle of, for example, about 60 ° to 90 °. When diffused light is used, the tilt angle changes continuously, and the cross-sectional shape becomes a curved inclined surface. When light having strength at a specific emission angle is used, an inclined surface having a slope angle corresponding to the strength is obtained. Thus, the inclination angle of the reflection surface 41c of the light diffusing unit 41 can be adjusted. Similarly to the case of using the diffused light F, the curved portion 41r (see FIG. 8) on the light incident end face side of the light diffusing portion 41 which is a portion away from the light shielding layer 40 in the light diffusing portion 41 has a light diffusion. The curvature radius of the curved portion 41r on the light incident end face side of the light diffusing portion 41 can be controlled by blurring the outline of the irradiation region of the diffused light F rather than the curved portion 41r on the light emitting end face side of the portion 41, The radius of curvature of the curved portion 41r on the light incident end face side of the light diffusing portion 41 can be made larger than the radius of curvature of the curved portion 41r on the light exit end face side of the light diffusing portion 41. Thereby, it becomes possible to adjust the light diffusibility of the light control member 9 so that the target visibility can be obtained.
 尚、露光装置から射出された平行光を光Fとして基材39に照射する手段の一つとして、例えば露光装置から射出された光の光路上にヘイズ50程度の拡散板を配置し、拡散板を介して光を照射してもよい。
 又、現像液を用いて現像を行う際、現像液を加圧して透明ネガレジストへ噴射して、不要なレジストの除去を促進してもよい。
As one means for irradiating the base material 39 with the parallel light emitted from the exposure apparatus as light F, for example, a diffusion plate having a haze of about 50 is arranged on the optical path of the light emitted from the exposure apparatus. You may irradiate light through.
Further, when developing with a developer, the developer may be pressurized and sprayed onto a transparent negative resist to promote removal of unnecessary resist.
 以上、図16~図19の工程を経て、本実施形態の光制御部材9が完成する。
 光制御部材9の全光線透過率は、90%以上が好ましい。全光線透過率が90%以上であると、十分な透明性が得られ、光制御部材に求められる光学性能を十分に発揮できる。
 全光線透過率は、JIS K7361-1の規定によるものである。尚、本実施形態では、液体状のレジストを用いる例を挙げたが、この構成に代えて、フィルム状のレジストを用いても良い。
As described above, the light control member 9 of the present embodiment is completed through the steps of FIGS.
The total light transmittance of the light control member 9 is preferably 90% or more. When the total light transmittance is 90% or more, sufficient transparency can be obtained, and the optical performance required for the light control member can be sufficiently exhibited.
The total light transmittance is as defined in JIS K7361-1. In the present embodiment, an example in which a liquid resist is used has been described, but a film resist may be used instead of this configuration.
 最後に、完成した光制御部材9を、図1に示すように、基材39を視認側に向け、光拡散部41を第2の偏光板7に対向させた状態で、接着剤層43を介して液晶パネル2に貼り合わせる。 Finally, as shown in FIG. 1, the completed light control member 9 is placed with the adhesive layer 43 in a state where the base material 39 faces the viewing side and the light diffusion portion 41 faces the second polarizing plate 7. To the liquid crystal panel 2.
 光制御部材9を、接着剤層43を介して液晶パネル2に貼付する際、加熱加圧処理をしてもよい。加熱加圧処理を加えることにより、加熱加圧時に接着剤層43の一部が中空部42の一部に侵入する。冷却後、中空部42に侵入した接着剤層43は硬化する。硬化した接着剤層43は、逆テーパ状を有する光拡散部41の光入射端面側に引っかかるようになる。そのため、液晶パネル2に対する光制御部材9の密着性が向上する。
 尚、接着剤層43の厚みは、中空部42が接着剤層43で埋まらないように、光拡散部41の高さt1(図6参照)よりも小さいことが好ましい。但し、接着剤層43の内部にPETフィルム等の芯材を介在させることにより、液晶パネル2側の接着剤層43の厚みを光拡散部41の高さt1よりも大きくすることは可能である。
When the light control member 9 is attached to the liquid crystal panel 2 via the adhesive layer 43, a heat and pressure treatment may be performed. By applying the heat and pressure treatment, a part of the adhesive layer 43 enters a part of the hollow portion 42 during the heat and pressure. After cooling, the adhesive layer 43 that has entered the hollow portion 42 is cured. The cured adhesive layer 43 is caught on the light incident end face side of the light diffusing portion 41 having a reverse taper shape. Therefore, the adhesion of the light control member 9 to the liquid crystal panel 2 is improved.
The thickness of the adhesive layer 43 is preferably smaller than the height t1 (see FIG. 6) of the light diffusion portion 41 so that the hollow portion 42 is not filled with the adhesive layer 43. However, it is possible to make the thickness of the adhesive layer 43 on the liquid crystal panel 2 side larger than the height t1 of the light diffusion portion 41 by interposing a core material such as a PET film inside the adhesive layer 43. .
 加熱加圧処理を加えることにより、液晶パネル2に対する光制御部材9の密着性が向上するとともに、圧力によっては光拡散部41の反射面41cの傾斜角度が小さくなり、光拡散性を上げることができる。加熱加圧処理の方法としては、例えばオートクレーブ装置や加温ラミネーター等を用いることができる。
 以上の工程により、本実施形態の液晶表示装置1が完成する。
By applying the heat and pressure treatment, the adhesion of the light control member 9 to the liquid crystal panel 2 is improved, and depending on the pressure, the inclination angle of the reflection surface 41c of the light diffusing portion 41 is reduced, and the light diffusibility is increased. it can. As a method for the heat and pressure treatment, for example, an autoclave device, a warming laminator, or the like can be used.
Through the above steps, the liquid crystal display device 1 of the present embodiment is completed.
 本実施形態に係る液晶表示装置1においては、液晶パネル2の光射出側に光制御部材9が配置されているため、光制御部材9によって異なる方位同士の光が混合されることにより視野角特性の方位依存性が緩和される。特に、視野角特性に優れる左右方向の光が視野角特性に劣る上下方向に優先的に混合される。したがって、観察者が液晶表示装置1の正面方向(法線方向)からいずれの方位へ視線を傾けていっても良好な表示を視認することが可能であり、視野角特性に優れた液晶表示装置1を提供することができる。 In the liquid crystal display device 1 according to the present embodiment, since the light control member 9 is disposed on the light emission side of the liquid crystal panel 2, the viewing angle characteristics are obtained by mixing light of different directions by the light control member 9. The orientation dependency of is relaxed. In particular, light in the left-right direction that is excellent in viewing angle characteristics is preferentially mixed in the vertical direction that is inferior in viewing angle characteristics. Therefore, even if the observer tilts the line of sight from the front direction (normal direction) of the liquid crystal display device 1 to any direction, a good display can be visually recognized, and the liquid crystal display device has excellent viewing angle characteristics. 1 can be provided.
 一般に、ストライプや格子等のような規則性のあるパターン同士を重ね合わせた場合、各パターンの周期が僅かにずれると、干渉縞模様(モアレ)が視認されることが知られている。例えば複数の光拡散部がマトリクス状に配列された光制御部材と複数の画素がマトリクス状に配列された液晶パネルとを重ね合わせたとすると、光制御部材の光拡散部による周期パターンと液晶パネルの画素による周期パターンとの間でモアレが発生し、表示品位を低下させる虞がある。 Generally, it is known that when regular patterns such as stripes and lattices are overlapped with each other, an interference fringe pattern (moire) is visually recognized when the period of each pattern is slightly shifted. For example, when a light control member in which a plurality of light diffusion portions are arranged in a matrix and a liquid crystal panel in which a plurality of pixels are arranged in a matrix are overlapped, the periodic pattern by the light diffusion portions of the light control members and the liquid crystal panel There is a risk that moire occurs between the periodic patterns of pixels and the display quality is lowered.
 これに対し、本実施形態の液晶表示装置1においては、遮光層40において隣り合う2つの第1の直線部分101の間隔Wa、及び第2の直線部分102の間隔Wbがランダムになっている。又、光拡散部41は、遮光層40の形成領域以外の領域に形成されている。そのため、液晶パネル2の画素の規則的配列との間で光の干渉によるモアレが生じることがなく、表示品位を維持することができる。 On the other hand, in the liquid crystal display device 1 of the present embodiment, the interval Wa between the two first linear portions 101 adjacent to each other in the light shielding layer 40 and the interval Wb between the second linear portions 102 are random. The light diffusing portion 41 is formed in a region other than the region where the light shielding layer 40 is formed. Therefore, moire due to light interference does not occur with the regular arrangement of the pixels of the liquid crystal panel 2, and the display quality can be maintained.
 本実施形態では、遮光層40において隣り合う2つの第1の直線部分101の間隔Wa、及び第2の直線部分102の間隔Wbをランダムとしたが、必ずしも全ての間隔がランダムである必要はない。複数の間隔が非周期的であれば、モアレの発生を抑えることができる。さらに、状況や用途に応じて多少のモアレの発生が許容される場合には、遮光層40において隣り合う2つの第1の直線部分101の間隔Wa、及び第2の直線部分102の間隔Wbが周期的に配置されていても良い。 In the present embodiment, the interval Wa between the two first linear portions 101 adjacent to each other in the light shielding layer 40 and the interval Wb between the second linear portions 102 are random. However, not all the intervals are necessarily random. . If a plurality of intervals are aperiodic, the occurrence of moire can be suppressed. Furthermore, when some moiré is allowed depending on the situation and application, the interval Wa between the two first linear portions 101 adjacent to each other in the light shielding layer 40 and the interval Wb between the second linear portions 102 are determined. It may be arranged periodically.
 又、本実施形態の液晶表示装置1では、遮光層40において、第1の直線部分101の幅W1は略一定であり、第2の直線部分102の幅W2も略一定である。そのため、第1の直線部分101及び第2の直線部分102に対応して配置される中空部42の幅も一定になり、中空部42を挟んで隣り合う光拡散部41同士を接し難くすることができる。 Further, in the liquid crystal display device 1 of the present embodiment, in the light shielding layer 40, the width W1 of the first straight portion 101 is substantially constant, and the width W2 of the second straight portion 102 is also substantially constant. Therefore, the width of the hollow portion 42 arranged corresponding to the first straight portion 101 and the second straight portion 102 is also constant, and it is difficult for the adjacent light diffusion portions 41 to contact each other with the hollow portion 42 interposed therebetween. Can do.
 又、本実施形態の液晶表示装置1においては、光拡散部41のうち交差部103に臨む部分である曲線部41rは、中空部42に向けて凸をなす丸みを帯びた形状を有する。そのため、光拡散部41の曲線部41rに沿う反射面41cに入射する光は、第1の直線部分101及び第2の直線部分102に沿う反射面41cに入射する光とは異なる方向に反射される。例えば、図8に示すように、x軸の負側から正側に向けて第1の直線部分101及び第2の直線部分102に沿う反射面41cに入射した光Lx1は、反射面41cで反射した後、y軸に平行な方向に進む。一方、x軸の負側から正側に向けて光拡散部41の曲線部41rに沿う反射面41cに入射した光Lx2は、反射面41cで反射した後、y軸に平行な方向には進まず、y軸に平行な方向よりもx軸の正側に傾いた方向に進む。
 このように、光拡散部41の曲線部41rを丸みを帯びた形状とすることで、光拡散性を高めることができる。具体的には、視野角特性に優れるx軸に平行な方向の光をy軸方向だけでなく、その他の方位にも反射することが可能となる。従って、液晶表示装置1の視野角特性の改善効果を高めることができる。
Further, in the liquid crystal display device 1 of the present embodiment, the curved portion 41 r that is a portion facing the intersecting portion 103 in the light diffusing portion 41 has a rounded shape that protrudes toward the hollow portion 42. Therefore, the light incident on the reflection surface 41c along the curved portion 41r of the light diffusion portion 41 is reflected in a different direction from the light incident on the reflection surface 41c along the first straight line portion 101 and the second straight line portion 102. The For example, as shown in FIG. 8, light Lx1 incident on the reflective surface 41c along the first straight line portion 101 and the second straight line portion 102 from the negative side to the positive side of the x-axis is reflected by the reflective surface 41c. After that, the process proceeds in a direction parallel to the y-axis. On the other hand, the light Lx2 incident on the reflection surface 41c along the curved portion 41r of the light diffusion portion 41 from the negative side to the positive side of the x axis is reflected by the reflection surface 41c and then travels in a direction parallel to the y axis. First, the process proceeds in a direction inclined to the positive side of the x axis from the direction parallel to the y axis.
Thus, the light diffusibility can be enhanced by making the curved portion 41r of the light diffusion portion 41 into a rounded shape. Specifically, light in a direction parallel to the x axis, which has excellent viewing angle characteristics, can be reflected not only in the y axis direction but also in other directions. Therefore, the effect of improving the viewing angle characteristics of the liquid crystal display device 1 can be enhanced.
 又、本実施形態の液晶表示装置1においては、交差部103は画素PXに少なくとも1つ配置される。そのため、一部の画素PXのみに交差部103が配置される場合と比較して、各画素PXにおける輝度特性のばらつきを低減することができる。 Further, in the liquid crystal display device 1 of the present embodiment, at least one intersection 103 is disposed in the pixel PX. Therefore, it is possible to reduce variations in luminance characteristics in each pixel PX, compared to the case where the intersection 103 is arranged only in some pixels PX.
 又、本実施形態では、交差部103は、画素PXのうち視感度透過率が相対的に高い緑色Gの画素に少なくとも1つ配置される。人間の眼は光の波長によって感度が異なり、緑色光の波長(495nm~570nm)が相対的に感度が高く、明るく見える。交差部103を緑色Gの画素に配置することにより、画素PXのうち視感度透過率が相対的に低い色の画素に交差部103を配置する場合と比較して、人間の眼の感度に対する影響が大きくなるため、液晶表示装置の視野角特性の改善効果を高めることができる。 In the present embodiment, at least one intersection 103 is arranged in a green G pixel having a relatively high visibility transmittance among the pixels PX. The human eye has different sensitivity depending on the wavelength of light, and the wavelength of green light (495 nm to 570 nm) is relatively sensitive and appears bright. By arranging the intersection 103 in the green G pixel, the influence on the sensitivity of the human eye compared to the case where the intersection 103 is arranged in a pixel having a relatively low visibility transmittance among the pixels PX. Therefore, the effect of improving the viewing angle characteristics of the liquid crystal display device can be enhanced.
 又、本実施形態の液晶表示装置1においては、液晶パネル2の1個の画素PXが赤(R)、緑(G)、青(B)の3個の副画素で構成されており、交差部103は3個の副画素にそれぞれ同じ数ずつ配置される。そのため、交差部103が3個の副画素に異なる数ずつ配置される場合と比較して、各副画素における輝度特性のばらつきを低減することができる。 Further, in the liquid crystal display device 1 of the present embodiment, one pixel PX of the liquid crystal panel 2 is composed of three sub-pixels of red (R), green (G), and blue (B). The same number of units 103 are arranged in three subpixels. For this reason, it is possible to reduce variations in luminance characteristics in each sub-pixel as compared with a case where different numbers of intersections 103 are arranged in three sub-pixels.
 又、本実施形態の液晶表示装置1においては、交差部103は、第1ドメイン50aと第2ドメイン50bとにそれぞれ同じ数ずつ配置される。そのため、交差部103が二つのドメインに異なる数ずつ配置される場合と比較して、各ドメインにおける輝度特性のばらつきを低減することができる。 Further, in the liquid crystal display device 1 of the present embodiment, the same number of intersections 103 are arranged in the first domain 50a and the second domain 50b. Therefore, it is possible to reduce variations in luminance characteristics in each domain, compared to a case where different numbers of intersections 103 are arranged in two domains.
 又、本実施形態の液晶表示装置1においては、光制御部材9は遮光層40が存在する領域の外周部を覆う封止部材150を備える。そのため、遮光層40は外部に露出せず、遮光層40に対応して配置される中空部42も外部に露出しない。従って、中空部42に外部から水等が浸入することを抑制することができる。仮に、中空部42に水等の液体が浸入すると、光拡散部41のテーパ状の傾斜面での反射率が低下し、視認性が損なわれる可能性がある。 Further, in the liquid crystal display device 1 of the present embodiment, the light control member 9 includes a sealing member 150 that covers the outer peripheral portion of the region where the light shielding layer 40 exists. Therefore, the light shielding layer 40 is not exposed to the outside, and the hollow portion 42 disposed corresponding to the light shielding layer 40 is not exposed to the outside. Therefore, it is possible to prevent water or the like from entering the hollow portion 42 from the outside. If a liquid such as water enters the hollow portion 42, the reflectance at the tapered inclined surface of the light diffusing portion 41 is lowered, and visibility may be impaired.
 又、本実施形態の液晶表示装置1においては、封止部材150は液晶表示装置1の表示領域以外の領域に配置される。そのため、観察者が液晶表示装置1の表示画像を見ても、封止部材150は液晶表示装置1の表示領域において視認されない。従って、表示品位を維持することができる。 Further, in the liquid crystal display device 1 of the present embodiment, the sealing member 150 is disposed in a region other than the display region of the liquid crystal display device 1. Therefore, even when an observer views the display image of the liquid crystal display device 1, the sealing member 150 is not visually recognized in the display area of the liquid crystal display device 1. Accordingly, display quality can be maintained.
 又、本実施形態の液晶表示装置1においては、封止部材150は光拡散部41と同じ材料により形成される。そのため、封止部材150が光拡散部41と異なる材料により形成される場合と比較して、封止部材150専用の材料を準備する必要がなく、材料コストを低減することができる。 Further, in the liquid crystal display device 1 of the present embodiment, the sealing member 150 is formed of the same material as the light diffusion portion 41. Therefore, compared with the case where the sealing member 150 is formed of a material different from that of the light diffusion portion 41, it is not necessary to prepare a material dedicated to the sealing member 150, and the material cost can be reduced.
 本実施形態の光制御部材9においては、基材39の法線方向から見た遮光層40の平面形状が、基材39の平面形状の一つの辺に対して交差する第1の直線部分101及び第2の直線部分102を有し、遮光層40が存在する領域の外周部を覆う封止部材150を備える。言い換えると、基材39の法線方向から見た遮光層40の平面形状が、基材39側と反対側に配置される偏光板の吸収軸(例えば光拡散部41の光入射端面41bの側に配置される第2の偏光板7の吸収軸P2)と交差する第1の直線部分101及び第2の直線部分102を有し、遮光層40が存在する領域の外周部を覆う封止部材150を備える。
 そのため、液晶表示装置1の視野角依存性を小さくするために用いる光制御部材9を提供することができる。又、光制御部材9において、中空部42に外部から水等が浸入することを抑制することができる。
In the light control member 9 of the present embodiment, the first linear portion 101 where the planar shape of the light shielding layer 40 viewed from the normal direction of the substrate 39 intersects one side of the planar shape of the substrate 39. And a sealing member 150 that has a second straight portion 102 and covers the outer periphery of the region where the light shielding layer 40 exists. In other words, the planar shape of the light shielding layer 40 viewed from the normal direction of the base material 39 is the absorption axis of the polarizing plate disposed on the side opposite to the base material 39 side (for example, the light incident end face 41b side of the light diffusion portion 41) A first linear portion 101 and a second linear portion 102 intersecting with the absorption axis P2) of the second polarizing plate 7 disposed on the outer periphery of the region where the light shielding layer 40 is present. 150.
Therefore, the light control member 9 used for reducing the viewing angle dependency of the liquid crystal display device 1 can be provided. Further, in the light control member 9, it is possible to prevent water or the like from entering the hollow portion 42 from the outside.
 本実施形態の光制御部材9においては、基材39の法線方向から見た遮光層40の平面形状が、基材39の平面形状の一つの辺に対して交差する第1の直線部分101と、第1の直線部分101に対して交差する交差部103を有する第2の直線部分102を有し、光拡散部41の光入射端面側の曲線部41rは、交差部103の曲線部103rよりも大きい曲率半径を有する。そのため、光拡散部41の曲線部41rに形成される反射面により色々な方位に光を反射することができ、視野角特性の変化を滑らかにすることができる。 In the light control member 9 of the present embodiment, the first linear portion 101 where the planar shape of the light shielding layer 40 viewed from the normal direction of the substrate 39 intersects one side of the planar shape of the substrate 39. And a second linear portion 102 having an intersection 103 that intersects the first linear portion 101, and the curved portion 41 r on the light incident end face side of the light diffusing portion 41 is a curved portion 103 r of the intersecting portion 103. Larger radius of curvature. Therefore, the light can be reflected in various directions by the reflecting surface formed on the curved portion 41r of the light diffusing portion 41, and the change in viewing angle characteristics can be smoothed.
 尚、本実施形態の光制御部材9においては、基材39の法線方向から見て、直線縁111,112の長さを全て足し合わせた合計の長さは、曲線縁113の長さを全て足し合わせた合計の長さよりも長い。 In the light control member 9 of the present embodiment, the total length of all of the lengths of the straight edges 111 and 112 when viewed from the normal direction of the base material 39 is the length of the curve edge 113. It is longer than the total length of all.
 本実施形態では、基材39の法線方向から見た光制御部材9の光拡散強度の方位分布は、2回転対称である。図21に示すように、第1の直線部分101が基材39の長辺に対して33.7°をなし、且つ、第2の直線部分102が基材39の長辺に対して146.3°をなす場合を考える。すなわち、第1の直線部分101及び第2の直線部分102が液晶分子51のダイレクタの方向Dに直交する方向に対して33.7°をなす場合を考える。この場合、光制御部材9において光拡散強度が相対的に大きくなる方向(以下「強散乱方向」という。)は、第1の直線部分101に対して直交する方向V1及び第2の直線部分102に対して直交する方向V2となる。 In this embodiment, the azimuth distribution of the light diffusion intensity of the light control member 9 viewed from the normal direction of the substrate 39 is two-fold symmetric. As shown in FIG. 21, the first straight portion 101 forms 33.7 ° with respect to the long side of the base material 39, and the second straight portion 102 has 146. Consider the case of 3 °. That is, consider a case where the first straight line portion 101 and the second straight line portion 102 form 33.7 ° with respect to the direction perpendicular to the director direction D of the liquid crystal molecules 51. In this case, the direction in which the light diffusion intensity is relatively increased in the light control member 9 (hereinafter referred to as “strong scattering direction”) is a direction V1 orthogonal to the first straight line portion 101 and the second straight line portion 102. The direction V2 is orthogonal to the direction.
 図22は、基材39の法線方向から見た光制御部材9の光拡散強度の方位分布を示す図である。図22では、一例として極角30°における光拡散強度の方位分布を示す。図22に示すように、基材39の法線方向から見た光制御部材9の光拡散強度の方位分布は、2回転対称である。基材39の法線方向から見た光制御部材9の光拡散強度は、極角30°において、方位角33.7°、方位角146.3°、方位角213.7°、方位角326.3°で最大値となる。これら最大値における方位角の方向は、図21に示す強散乱方向と一致する。尚、基材39の法線方向から見た光制御部材9の光拡散強度の強弱(図22に示す強度強、強度中、強度弱)についての説明は後述する(図41参照)。 FIG. 22 is a diagram showing the azimuth distribution of the light diffusion intensity of the light control member 9 as viewed from the normal direction of the base material 39. FIG. 22 shows an azimuth distribution of light diffusion intensity at a polar angle of 30 ° as an example. As shown in FIG. 22, the azimuth distribution of the light diffusion intensity of the light control member 9 viewed from the normal direction of the substrate 39 is two-fold symmetric. The light diffusion intensity of the light control member 9 viewed from the normal direction of the base material 39 is as follows: azimuth angle 33.7 °, azimuth angle 146.3 °, azimuth angle 213.7 °, azimuth angle 326 at a polar angle of 30 °. Maximum value at 3 °. The direction of the azimuth angle at these maximum values coincides with the strong scattering direction shown in FIG. The intensity of the light diffusion intensity of the light control member 9 as viewed from the normal direction of the base material 39 (intensity strength shown in FIG. 22, medium intensity weakness) will be described later (see FIG. 41).
[第2実施形態]
 以下、本発明の第2実施形態について、図23~図27を用いて説明する。
 本実施形態の液晶表示装置の基本構成は第1実施形態と同一であり、光制御部材における遮光層の構成が第1実施形態と異なる。そのため、本実施形態では、液晶表示装置の基本構成の説明は省略し、光制御部材について説明する。
[Second Embodiment]
Hereinafter, a second embodiment of the present invention will be described with reference to FIGS.
The basic configuration of the liquid crystal display device of this embodiment is the same as that of the first embodiment, and the configuration of the light shielding layer in the light control member is different from that of the first embodiment. Therefore, in this embodiment, the description of the basic configuration of the liquid crystal display device is omitted, and the light control member is described.
 図23は、第2実施形態の光制御部材209の平面図である。
 図23に示すように、本実施形態の光制御部材209は、第1実施形態の光制御部材9に対して遮光層の構成が異なる。
FIG. 23 is a plan view of the light control member 209 of the second embodiment.
As shown in FIG. 23, the light control member 209 of this embodiment differs in the structure of a light shielding layer with respect to the light control member 9 of 1st Embodiment.
 具体的には、第1実施形態の光制御部材9では、遮光層40は基材39の第1の面39aの法線方向から見て格子状のパターンに形成されていた。これに対して、図23に示すように、本実施形態の光制御部材209は、基材39の第1の面39aに点在して複数のX字形状の遮光層240を備えている。複数の遮光層240は、基材39の第1の面39aの法線方向から見てランダムに配置されている。 Specifically, in the light control member 9 of the first embodiment, the light shielding layer 40 is formed in a lattice pattern as viewed from the normal direction of the first surface 39a of the base material 39. On the other hand, as shown in FIG. 23, the light control member 209 of the present embodiment includes a plurality of X-shaped light shielding layers 240 that are scattered on the first surface 39 a of the base material 39. The plurality of light shielding layers 240 are randomly arranged as viewed from the normal direction of the first surface 39 a of the base material 39.
 基材39の法線方向から見た遮光層240の平面形状は、一方向に直線状に延びる第1の直線部分201と、第1の直線部分201に対して交差する第2の直線部分202と、を有している。遮光層240において第1の直線部分201と第2の直線部分202とが交差する部分には、交差部203が形成される。基材39の法線方向から見て、第1の直線部分201及び第2の直線部分202は、液晶分子のダイレクタの方向Dに対して45°よりも大きく且つ90°よりも小さい角度をなす。基材39の法線方向から見た遮光層240の平面形状は、x軸方向に長いX字形状である。 The planar shape of the light shielding layer 240 viewed from the normal direction of the base material 39 includes a first straight line portion 201 that extends linearly in one direction and a second straight line portion 202 that intersects the first straight line portion 201. And have. In the light shielding layer 240, an intersection 203 is formed at a portion where the first straight portion 201 and the second straight portion 202 intersect. The first straight line portion 201 and the second straight line portion 202 form an angle larger than 45 ° and smaller than 90 ° with respect to the direction D of the director of the liquid crystal molecules when viewed from the normal direction of the substrate 39. . The planar shape of the light shielding layer 240 viewed from the normal direction of the substrate 39 is an X shape that is long in the x-axis direction.
 尚、遮光層240において、第1の直線部分201の幅W1は略一定であり、第2の直線部分202の幅W2も略一定である。第1の直線部分201の幅W1及び第2の直線部分202の幅W2は、互いに略等しい(W1≒W2)。
 図示はしないが、光拡散部のうち交差部203に臨む部分(図8に示す光拡散部の曲線部41rに相当)は、中空部に向けて凸をなす丸みを帯びた形状を有する。又、遮光層240の第1の直線部分201及び第2の直線部分202のうち交差部203に臨む部分(図8に示す交差部の曲線部103rに相当)は、光拡散部に向けて凹をなす丸みを帯びた形状を有する。光拡散部の光入射端面側の曲線部は、交差部203の曲線部よりも大きい曲率半径を有する。光拡散部の光射出端面側の曲線部は、交差部203の曲線部と略等しい曲率半径を有する。よって、光拡散部の光入射端面側の曲線部は、光拡散部の光射出端面側の曲線部よりも大きい曲率半径を有する。
 又、基材39の法線方向から見て、遮光層240の外周縁のうち、第1の直線部分201及び第2の直線部分202に対応する部分を直線縁(図8に示す直線縁111,112に相当)とし、交差部203の曲線部に対応する部分を曲線縁(図8に示す曲線縁113に相当)とする。基材39の法線方向から見て、直線縁の長さを全て足し合わせた合計の長さは、曲線縁の長さを全て足し合わせた合計の長さよりも長い。
In the light shielding layer 240, the width W1 of the first straight line portion 201 is substantially constant, and the width W2 of the second straight line portion 202 is also substantially constant. The width W1 of the first straight line portion 201 and the width W2 of the second straight line portion 202 are substantially equal to each other (W1≈W2).
Although not shown, a portion (corresponding to the curved portion 41r of the light diffusion portion shown in FIG. 8) of the light diffusion portion facing the intersection portion 203 has a rounded shape that protrudes toward the hollow portion. Further, the portion of the first straight portion 201 and the second straight portion 202 of the light shielding layer 240 that faces the intersecting portion 203 (corresponding to the intersecting curved portion 103r shown in FIG. 8) is recessed toward the light diffusion portion. It has a rounded shape. The curved portion on the light incident end face side of the light diffusion portion has a larger radius of curvature than the curved portion of the intersecting portion 203. The curved portion on the light emission end face side of the light diffusing portion has a radius of curvature substantially equal to the curved portion of the intersecting portion 203. Therefore, the curved part on the light incident end face side of the light diffusing part has a larger radius of curvature than the curved part on the light emitting end face side of the light diffusing part.
In addition, as viewed from the normal direction of the base material 39, a portion corresponding to the first straight portion 201 and the second straight portion 202 in the outer peripheral edge of the light shielding layer 240 is a straight edge (the straight edge 111 shown in FIG. 8). , 112), and a portion corresponding to the curved portion of the intersection 203 is defined as a curved edge (corresponding to the curved edge 113 shown in FIG. 8). When viewed from the normal direction of the base material 39, the total length of all the lengths of the straight edges is longer than the total length of all the lengths of the curved edges.
 図24は、複数の遮光層240のうち一つの遮光層240を示す平面図である。
 図24に示すように、遮光層240の左右方向の長さ(以下「左右長さ」という。)をB1とする。遮光層240の上下方向の長さ(以下「上下長さ」という。)をB2とする。遮光層240は、左右長さB1と上下長さB2とが異なる異方性形状を呈する。遮光層240の上下長さB2に対する左右長さB1の比(B1/B2)は、例えば1以上かつ3以下である。
FIG. 24 is a plan view showing one light shielding layer 240 among the plurality of light shielding layers 240.
As shown in FIG. 24, the length of the light shielding layer 240 in the left-right direction (hereinafter referred to as “left-right length”) is B1. The length of the light shielding layer 240 in the vertical direction (hereinafter referred to as “vertical length”) is B2. The light shielding layer 240 has an anisotropic shape in which the left-right length B1 and the vertical length B2 are different. The ratio (B1 / B2) of the left and right length B1 to the vertical length B2 of the light shielding layer 240 is, for example, 1 or more and 3 or less.
 遮光層240の左右長さB1は、例えば10~20μmであり、遮光層240の上下長さB2は、例えば5~10μmである。本実施形態の光制御部材209では、図23に示すように、それぞれの遮光層240において、上下長さB2自体、左右長さB1自体は異なるものの、上下長さB2に対する左右長さB1の比は概ね等しい。本実施形態の光制御部材209では、全ての遮光層240の左右方向(左右長さB1に沿う方向)が方位角φ:0°-180°方向に配置されている。 The left and right length B1 of the light shielding layer 240 is, for example, 10 to 20 μm, and the vertical length B2 of the light shielding layer 240 is, for example, 5 to 10 μm. In the light control member 209 of the present embodiment, as shown in FIG. 23, in each light shielding layer 240, although the vertical length B2 itself and the horizontal length B1 itself are different, the ratio of the horizontal length B1 to the vertical length B2 is different. Are roughly equal. In the light control member 209 of the present embodiment, the left-right direction (direction along the left-right length B1) of all the light shielding layers 240 is arranged in the azimuth angle φ: 0 ° -180 ° direction.
 以下、遮光層240の平面視の大きさについて説明する。
 図25は、人間の視力と人間の眼で認識できる物体の大きさとの関係を示すグラフである。
 光制御部材209において、遮光層240の平面視の大きさは、ある程度小さくした方がよい。その理由は、遮光層240の平面視の大きさが大きすぎると、観察者が液晶表示装置の表示画像を見たときに、遮光層240がドットとして認識されてしまうおそれがあるからである。
Hereinafter, the plan view size of the light shielding layer 240 will be described.
FIG. 25 is a graph showing the relationship between human visual acuity and the size of an object that can be recognized by human eyes.
In the light control member 209, the size of the light shielding layer 240 in plan view should be reduced to some extent. The reason is that if the size of the light shielding layer 240 in plan view is too large, the light shielding layer 240 may be recognized as a dot when an observer views the display image of the liquid crystal display device.
 遮光層240がドットとして認識されにくくするためには、遮光層240の左右長さB1が100μm以下であることが好ましい。以下、遮光層240の左右長さB1を導くための方法について説明する。 In order to make it difficult for the light shielding layer 240 to be recognized as dots, the left and right length B1 of the light shielding layer 240 is preferably 100 μm or less. Hereinafter, a method for guiding the left and right length B1 of the light shielding layer 240 will be described.
 図25に示すように、人間の視力と人間の眼で認識できる物体の大きさとの間には一定の関係がある。図25に示す曲線Cよりも上方の範囲AR1は、人間の眼で物体を認識することができる範囲である。一方、曲線Cよりも下方の範囲AR2は、人間の眼で物体を認識することができない範囲である。この曲線Cは、以下の式により導かれる(3)式により定義される。 As shown in FIG. 25, there is a certain relationship between the human eyesight and the size of the object that can be recognized by the human eye. A range AR1 above the curve C shown in FIG. 25 is a range in which an object can be recognized by human eyes. On the other hand, the range AR2 below the curve C is a range in which an object cannot be recognized by human eyes. This curve C is defined by equation (3) derived from the following equation.
 人間の眼において、視力αは、最小視角をβ(分)としたとき、下記の(1)式により導かれる。 In the human eye, the visual acuity α is derived from the following equation (1) when the minimum viewing angle is β (minutes).
 α=1/β ・・・(1) Α = 1 / β (1)
 最小視角βは、人間の眼で認識できる物体の大きさをV(mm)、人間の眼から物体までの距離をW(m)としたとき、下記の(2)式により導かれる。 The minimum viewing angle β is derived from the following equation (2), where V (mm) is the size of an object that can be recognized by the human eye, and W (m) is the distance from the human eye to the object.
 β=(V/1000)/{W×2π/(360/60)} ・・・(2) Β = (V / 1000) / {W × 2π / (360/60)} (2)
 上記の(1)式、(2)式により、視力αは、下記の(3)式で表される。 From the above formulas (1) and (2), the visual acuity α is expressed by the following formula (3).
 α={W×2π/(360/60)}/(V/1000) ・・・(3) Α = {W × 2π / (360/60)} / (V / 1000) (3)
 上記の(3)式を変形すると、人間の眼で認識できる物体の大きさVは、下記の(4)式で表される。 When the above equation (3) is transformed, the size V of the object that can be recognized by human eyes is expressed by the following equation (4).
 V=[{W×2π/(360/60)}×1000]/α ・・・(4) V = [{W × 2π / (360/60)} × 1000] / α (4)
 携帯電話機等の携帯型電子機器を使用する際、人間の眼から物体までの距離Wは20cm~30cm程度である。ここでは一例として、人間の眼から物体までの距離Wを25cmとする。 When using a portable electronic device such as a cellular phone, the distance W from the human eye to the object is about 20 to 30 cm. Here, as an example, the distance W from the human eye to the object is 25 cm.
 自動車の運転免許を取得するための最低視力は0.7である。この場合、人間の眼で認識できる物体の大きさVは100μmとなる。物体の大きさVが100μm以下であれば、人間の眼で物体を認識しにくくなると考えられる。すなわち、遮光層240の左右長さB1が100μm以下であることが好ましい。これにより、遮光層240が液晶表示装置の表示画面においてドットとして認識されることが抑制される。この場合、遮光層240の上下長さB2は、遮光層240の左右長さB1よりも短く、かつ、100μm以下に設定される。 The minimum visual acuity for obtaining a driving license is 0.7. In this case, the size V of the object that can be recognized by the human eye is 100 μm. If the size V of the object is 100 μm or less, it will be difficult to recognize the object with human eyes. That is, the left-right length B1 of the light shielding layer 240 is preferably 100 μm or less. Thereby, it is suppressed that the light shielding layer 240 is recognized as a dot on the display screen of the liquid crystal display device. In this case, the vertical length B2 of the light shielding layer 240 is set shorter than the left and right length B1 of the light shielding layer 240 and 100 μm or less.
 85V型のスーパーハイビジョン対応ディスプレイは約103Pixel/Inch、60V型は約146Pixel/Inchとなる。カラーフィルターがR、G、Bの3色で構成されている場合、画素のサイズは、85V型の場合で約82μm×246μm、60V型の場合で58μm×174μmとなる。前述の通り、遮光層240のサイズが40μm以下であれば目視でドットとして認識されることはない。しかしながら、多くの遮光層240が複数の画素にまたがって配置されていると、異なる画素から射出された光を混合することになるため、解像感の低下が生じる。よって、画素の幅に対して遮光層240の左右長さB1は1/3~1/2になっていることが望ましい。例えば60V型ハイビジョンの場合、遮光層240の左右長さB1は、例えば19μm以下になっていることが望ましい。但し、上述のフォトリソグラフィー工程で中空部42を形成する場合、光拡散部41の高さt1(図6参照)は遮光層240の直線部分の幅W1,W2と同等以下であることが望ましいことが実験によって明らかになっている。その観点から、例えば遮光層240の直線部分の幅W1,W2が10μmの場合、光拡散部41の高さt1を10μm以下にすることが望ましい。 85V type Super Hi-Vision compatible display is about 103Pixel / Inch, 60V type is about 146Pixel / Inch. When the color filter is composed of three colors of R, G, and B, the pixel size is about 82 μm × 246 μm for the 85V type and 58 μm × 174 μm for the 60V type. As described above, when the size of the light shielding layer 240 is 40 μm or less, it is not visually recognized as a dot. However, when many light shielding layers 240 are arranged over a plurality of pixels, light emitted from different pixels is mixed, resulting in a decrease in resolution. Therefore, it is desirable that the left and right length B1 of the light shielding layer 240 is 1/3 to 1/2 with respect to the width of the pixel. For example, in the case of 60V type high vision, it is desirable that the left and right length B1 of the light shielding layer 240 is, for example, 19 μm or less. However, when the hollow portion 42 is formed by the above-described photolithography process, it is desirable that the height t1 (see FIG. 6) of the light diffusion portion 41 is equal to or less than the widths W1 and W2 of the linear portions of the light shielding layer 240. Has been clarified through experiments. From this viewpoint, for example, when the widths W1 and W2 of the linear portions of the light shielding layer 240 are 10 μm, it is desirable that the height t1 of the light diffusion portion 41 is 10 μm or less.
 以下、本実施形態の遮光層240の平面形状の作用について図26、図27を用いて説明する。
 図26は、比較例の遮光層240Xの平面図である。図27は、第2実施形態の遮光層240の平面形状の作用を説明するための図である。図26、図27において、x軸方向からy軸方向へ向けて拡散される光を符号Lx、y軸方向からx軸方向へ向けて拡散される光を符号Lyで示す。
Hereinafter, the operation of the planar shape of the light shielding layer 240 of the present embodiment will be described with reference to FIGS.
FIG. 26 is a plan view of the light shielding layer 240X of the comparative example. FIG. 27 is a diagram for explaining the operation of the planar shape of the light shielding layer 240 of the second embodiment. 26 and 27, the light diffused from the x-axis direction toward the y-axis direction is denoted by a symbol Lx, and the light diffused from the y-axis direction toward the x-axis direction is denoted by a symbol Ly.
 図26に示すように、比較例の遮光層240Xとして、平面形状が菱形の遮光層を考える。比較例の遮光層240Xの場合、光制御部材に入射した光は、菱形の4辺に対応して配置される光拡散部の反射面によって反射される。菱形の遮光層240Xの場合、光拡散部の反射面は計4箇所(図26に示す二点鎖線部)に配置される。 As shown in FIG. 26, as the light shielding layer 240X of the comparative example, a light shielding layer having a diamond shape in plan view is considered. In the case of the light shielding layer 240X of the comparative example, the light incident on the light control member is reflected by the reflection surface of the light diffusing portion arranged corresponding to the four sides of the rhombus. In the case of the diamond-shaped light shielding layer 240X, the reflection surfaces of the light diffusion portions are arranged at a total of four locations (two-dot chain line portions shown in FIG. 26).
 これに対し、本実施形態の遮光層240の場合、光制御部材209に入射した光は、遮光層240の第1の直線部分201及び第2の直線部分202に対応して配置される光拡散部の反射面によって反射される。X字形状の遮光層240の交差部203を基準として上半分に着目すると、光拡散部の反射面は、第1の直線部分201の左上側及び右下側の二箇所、及び第2の直線部分202の右上側及び左下側の二箇所、の計4箇所(図27に示す二点鎖線部)に配置される。同様にX字形状の遮光層240の下半分にも光拡散部の反射面は計4箇所(不図示)に配置されるため、X字形状の遮光層240全体としては光拡散部の反射面は計8箇所に配置される。従って、本実施形態のX字形状の遮光層240の場合、菱形の遮光層240Xの場合と比較して光拡散部の反射面の数が多いため、X字形状の遮光層240と菱形の遮光層240Xとを同じ面積とすれば、x軸方向から入射してy軸方向に進行する光Lxの量を多くすることができる。すなわち、本実施形態と比較例とで同じ開口率とすれば、本実施形態のほうが比較例よりも高い光反射性能を有する。 On the other hand, in the case of the light shielding layer 240 of the present embodiment, the light incident on the light control member 209 is a light diffusion that is arranged corresponding to the first straight line portion 201 and the second straight line portion 202 of the light shielding layer 240. It is reflected by the reflection surface of the part. Focusing on the upper half with respect to the intersection 203 of the X-shaped light shielding layer 240, the reflection surface of the light diffusing portion includes two locations on the upper left side and the lower right side of the first linear portion 201, and the second straight line. It is arranged at a total of four locations (two-dot chain line portion shown in FIG. 27), two locations on the upper right side and lower left side of the portion 202. Similarly, the reflection surface of the light diffusing portion is also arranged in a total of four locations (not shown) in the lower half of the X-shaped light shielding layer 240. Therefore, the X-shaped light shielding layer 240 as a whole is a reflective surface of the light diffusing portion. Are arranged in a total of eight locations. Therefore, in the case of the X-shaped light shielding layer 240 of the present embodiment, the number of reflection surfaces of the light diffusion portion is larger than that in the case of the diamond-shaped light shielding layer 240X. If the layer 240X has the same area, the amount of light Lx incident from the x-axis direction and traveling in the y-axis direction can be increased. That is, if the same aperture ratio is used in the present embodiment and the comparative example, the present embodiment has higher light reflection performance than the comparative example.
 本実施形態の光制御部材209を使用した場合も、第1実施形態と同様、表示画面をいずれの方位においても斜めから見たときのガンマ特性の変化を抑制し、視野角特性に優れた表示画像を実現することができる。 Even when the light control member 209 of this embodiment is used, as in the first embodiment, the display screen is excellent in viewing angle characteristics by suppressing a change in gamma characteristics when the display screen is viewed obliquely in any orientation. An image can be realized.
[第2実施形態の変形例]
 以下、第2実施形態の変形例について、図28~図31を用いて説明する。
 本変形例の液晶表示装置の基本構成は第2実施形態と同一であり、光制御部材における遮光層の構成が第2実施形態と異なる。
 したがって、本変形例では、液晶表示装置の基本構成の説明は省略し、光制御部材について説明する。
[Modification of Second Embodiment]
Hereinafter, a modification of the second embodiment will be described with reference to FIGS.
The basic configuration of the liquid crystal display device of this modification is the same as that of the second embodiment, and the configuration of the light shielding layer in the light control member is different from that of the second embodiment.
Therefore, in this modification, the description of the basic configuration of the liquid crystal display device is omitted, and the light control member will be described.
 図28~図31は、本変形例の光制御部材209A,209B,209C,209Dを示す平面図である。
 図28~図31に示すように、本変形例の光制御部材209A,209B,209C,209Dは、第2実施形態の光制御部材209に対して遮光層の構成が異なる。
28 to 31 are plan views showing light control members 209A, 209B, 209C, and 209D of the present modification.
As shown in FIGS. 28 to 31, the light control members 209A, 209B, 209C, and 209D of the present modification are different from the light control member 209 of the second embodiment in the configuration of the light shielding layer.
 尚、本変形例の光制御部材209A,209B,209C,209Dにおいても、第2実施形態の光制御部材209と同様に、遮光層における第1の直線部分の幅(図23に示す第1の直線部分の幅W1に相当)は略一定であり、第2の直線部分の幅(図23に示す第2の直線部分の幅W2に相当)も略一定である。第1の直線部分の幅及び第2の直線部分の幅は、互いに略等しい。
 図示はしないが、光拡散部のうち交差部に臨む部分(図8に示す光拡散部の曲線部41rに相当)は、中空部に向けて凸をなす丸みを帯びた形状を有する。又、遮光層の第1の直線部分及び第2の直線部分のうち交差部に臨む部分(図8に示す交差部の曲線部103rに相当)は、光拡散部に向けて凹をなす丸みを帯びた形状を有する。光拡散部の光入射端面側の曲線部は、交差部の曲線部よりも大きい曲率半径を有する。光拡散部の光射出端面側の曲線部は、交差部の曲線部と略等しい曲率半径を有する。よって、光拡散部の光入射端面側の曲線部は、光拡散部の光射出端面側の曲線部よりも大きい曲率半径を有する。
 又、基材の法線方向から見て、遮光層の外周縁のうち、第1の直線部分及び第2の直線部分に対応する部分を直線縁(図8に示す直線縁111,112に相当)とし、交差部の曲線部に対応する部分を曲線縁(図8に示す曲線縁113に相当)とする。基材の法線方向から見て、直線縁の長さを全て足し合わせた合計の長さは、曲線縁の長さを全て足し合わせた合計の長さよりも長い。
Note that the light control members 209A, 209B, 209C, and 209D of the present modification also have the width of the first straight line portion in the light shielding layer (the first line shown in FIG. 23), similarly to the light control member 209 of the second embodiment. (Corresponding to the width W1 of the straight line portion) is substantially constant, and the width of the second straight line portion (corresponding to the width W2 of the second straight line portion shown in FIG. 23) is also substantially constant. The width of the first straight line portion and the width of the second straight line portion are substantially equal to each other.
Although not shown, a portion (corresponding to the curved portion 41r of the light diffusion portion shown in FIG. 8) of the light diffusion portion facing the intersecting portion has a rounded shape that protrudes toward the hollow portion. In addition, the portion of the light shielding layer that faces the intersection (corresponding to the curved portion 103r of the intersection shown in FIG. 8) of the first straight portion and the second straight portion is rounded toward the light diffusion portion. Has a banded shape. The curved portion on the light incident end face side of the light diffusing portion has a larger radius of curvature than the curved portion at the intersection. The curved portion on the light emission end face side of the light diffusion portion has a radius of curvature that is substantially equal to the curved portion of the intersection. Therefore, the curved part on the light incident end face side of the light diffusing part has a larger radius of curvature than the curved part on the light emitting end face side of the light diffusing part.
Further, when viewed from the normal direction of the base material, portions corresponding to the first straight portion and the second straight portion of the outer peripheral edge of the light shielding layer are straight edges (corresponding to the straight edges 111 and 112 shown in FIG. 8). ) And a portion corresponding to the curved portion of the intersection is defined as a curved edge (corresponding to the curved edge 113 shown in FIG. 8). When viewed from the normal direction of the substrate, the total length of all the straight edge lengths is longer than the total length of all the curved edge lengths.
 具体的には、第2実施形態の光制御部材209では、全ての遮光層240において上下長さB2に対する左右長さB1の比が概ね等しくなっていた。これに対して、図28に示すように、第2実施形態の第1変形例の光制御部材209Aには、上下長さB2に対する左右長さB1の比が異なる遮光層240Aが混在している。尚、上下長さB2に対する左右長さB1の比が、1以上かつ3以下の範囲内で異なることが望ましい。 Specifically, in the light control member 209 of the second embodiment, the ratio of the left and right length B1 to the vertical length B2 is substantially equal in all the light shielding layers 240. On the other hand, as shown in FIG. 28, the light control member 209A of the first modified example of the second embodiment includes a light shielding layer 240A having a different ratio of the left and right length B1 to the vertical length B2. . It is desirable that the ratio of the left and right length B1 to the vertical length B2 is different within a range of 1 or more and 3 or less.
 第2実施形態の光制御部材209では、全ての遮光層240の左右方向が方位角φ:0°-180°方向に配置されていた。これに対して、図29に示すように、第2実施形態の第2変形例の光制御部材209Bでは、複数の遮光層240Bのうちの一部の遮光層240Bの左右方向は、他の遮光層240Bの左右方向と異なる方向を向いている。一部の遮光層240Bの左右方向は、方位角φ:0°-180°方向からずれている。 In the light control member 209 of the second embodiment, the left and right directions of all the light shielding layers 240 are arranged in the direction of the azimuth angle φ: 0 ° -180 °. On the other hand, as shown in FIG. 29, in the light control member 209B of the second modified example of the second embodiment, the left-right direction of a part of the plurality of light shielding layers 240B is the other light shielding. The direction is different from the horizontal direction of the layer 240B. The left-right direction of some of the light shielding layers 240B is deviated from the direction of the azimuth angle φ: 0 ° -180 °.
 第2実施形態の光制御部材209では、全ての遮光層240が基材39上に点在して配置されていた。これに対して、図30に示すように、第2実施形態の第3変形例の光制御部材209Cでは、複数の遮光層240Cのうちの一部の遮光層240Cが他の遮光層240Cの一部と連結している。 In the light control member 209 of the second embodiment, all the light shielding layers 240 are scattered on the base material 39. On the other hand, as shown in FIG. 30, in the light control member 209C of the third modified example of the second embodiment, a part of the light shielding layers 240C among the plurality of light shielding layers 240C is one of the other light shielding layers 240C. Connected to the department.
 第2実施形態の光制御部材209では、全ての遮光層240の平面形状がX字形状であった。これに対して、図31に示すように、第2実施形態の第4変形例の光制御部材209Dでは、複数の遮光層240Dのうちの一部の遮光層240Dの平面形状が円形もしくは楕円形である。尚、円形や楕円形の他、例えば六角形等、他の平面形状の遮光層が混在していてもよい。 In the light control member 209 of the second embodiment, the planar shape of all the light shielding layers 240 was X-shaped. On the other hand, as shown in FIG. 31, in the light control member 209D of the fourth modified example of the second embodiment, the planar shape of a part of the plurality of light shielding layers 240D is circular or elliptical. It is. In addition to circular and elliptical shapes, for example, other planar light shielding layers such as hexagons may be mixed.
 本変形例の光制御部材209A,209B,209C,209Dを用いても、表示画面をいずれの方位においても斜めから見たときのガンマ特性の変化を抑制し、視野角特性に優れた液晶表示装置を実現することができる。 Even when the light control members 209A, 209B, 209C, and 209D of this modification are used, a change in gamma characteristics when the display screen is viewed obliquely in any orientation is suppressed, and a liquid crystal display device excellent in viewing angle characteristics Can be realized.
[第3実施形態]
 以下、本発明の第3実施形態について、図32、図33を用いて説明する。
 本実施形態の液晶表示装置の基本構成は第1実施形態と同一であり、光制御部材における遮光層の構成が第1実施形態と異なる。そのため、本実施形態では、液晶表示装置の基本構成の説明は省略し、光制御部材について説明する。
[Third Embodiment]
Hereinafter, a third embodiment of the present invention will be described with reference to FIGS. 32 and 33.
The basic configuration of the liquid crystal display device of this embodiment is the same as that of the first embodiment, and the configuration of the light shielding layer in the light control member is different from that of the first embodiment. Therefore, in this embodiment, the description of the basic configuration of the liquid crystal display device is omitted, and the light control member is described.
 図32は、第3実施形態の光制御部材309の平面図である。図33は、第3実施形態の遮光層340の非形成部304を示す平面図である。
 図32に示すように、本実施形態の光制御部材309は、第1実施形態の光制御部材9に対して遮光層の構成が異なる。
FIG. 32 is a plan view of the light control member 309 of the third embodiment. FIG. 33 is a plan view showing a non-forming portion 304 of the light shielding layer 340 of the third embodiment.
As shown in FIG. 32, the light control member 309 of this embodiment differs in the structure of a light shielding layer with respect to the light control member 9 of 1st Embodiment.
 尚、本実施形態の光制御部材309においても、第1実施形態の光制御部材9と同様に、遮光層340における第1の直線部分301の幅(図8に示す第1の直線部分の幅W1に相当)は略一定であり、第2の直線部分302の幅(図8に示す第2の直線部分の幅W2に相当)も略一定である。第1の直線部分301の幅及び第2の直線部分302の幅は、互いに略等しい。
 図示はしないが、光拡散部341のうち交差部303に臨む部分(図8に示す光拡散部の曲線部41rに相当)は、中空部42に向けて凸をなす丸みを帯びた形状を有する。又、遮光層340の第1の直線部分301及び第2の直線部分302のうち交差部303に臨む部分(図8に示す交差部の曲線部103rに相当)は、光拡散部341に向けて凹をなす丸みを帯びた形状を有する。光拡散部341の光入射端面側の曲線部は、交差部303の曲線部よりも大きい曲率半径を有する。光拡散部341の光射出端面側の曲線部は、交差部303の曲線部と略等しい曲率半径を有する。よって、光拡散部341の光入射端面側の曲線部は、光拡散部341の光射出端面側の曲線部よりも大きい曲率半径を有する。
 又、基材39の法線方向から見て、遮光層340の外周縁のうち、第1の直線部分301及び第2の直線部分302に対応する部分を直線縁(図8に示す直線縁111,112に相当)とし、交差部303の曲線部に対応する部分を曲線縁(図8に示す曲線縁113に相当)とする。基材39の法線方向から見て、直線縁の長さを全て足し合わせた合計の長さは、曲線縁の長さを全て足し合わせた合計の長さよりも長い。
In the light control member 309 of the present embodiment, the width of the first straight portion 301 in the light shielding layer 340 (the width of the first straight portion shown in FIG. 8) is the same as that of the light control member 9 of the first embodiment. (Corresponding to W1) is substantially constant, and the width of the second straight line portion 302 (corresponding to the width W2 of the second straight line portion shown in FIG. 8) is also substantially constant. The width of the first straight line portion 301 and the width of the second straight line portion 302 are substantially equal to each other.
Although not shown, a portion (corresponding to the curved portion 41r of the light diffusing portion shown in FIG. 8) of the light diffusing portion 341 facing the intersecting portion 303 has a rounded shape that protrudes toward the hollow portion 42. . In addition, a portion of the first straight portion 301 and the second straight portion 302 of the light shielding layer 340 that faces the intersecting portion 303 (corresponding to the intersecting curved portion 103r shown in FIG. 8) is directed toward the light diffusion portion 341. It has a concave rounded shape. The curved portion on the light incident end face side of the light diffusion portion 341 has a larger radius of curvature than the curved portion of the intersecting portion 303. The curved portion on the light emission end face side of the light diffusing portion 341 has a radius of curvature substantially equal to the curved portion of the intersecting portion 303. Therefore, the curved portion on the light incident end face side of the light diffusing portion 341 has a larger radius of curvature than the curved portion on the light exit end face side of the light diffusing portion 341.
In addition, when viewed from the normal direction of the base material 39, portions corresponding to the first straight portion 301 and the second straight portion 302 in the outer peripheral edge of the light shielding layer 340 are straight edges (the straight edges 111 shown in FIG. 8). , 112), and a portion corresponding to the curved portion of the intersecting portion 303 is defined as a curved edge (corresponding to the curved edge 113 shown in FIG. 8). When viewed from the normal direction of the base material 39, the total length of all the lengths of the straight edges is longer than the total length of all the lengths of the curved edges.
 具体的には、第1実施形態の光制御部材9では、遮光層40は第1の直線部分101及び第2の直線部分102が途切れることなく連続して形成されていた。これに対して、図32に示すように、本実施形態の光制御部材309では、第1の直線部分301及び第2の直線部分302の少なくとも一部に遮光層340が形成されない非形成部304が設けられている。非形成部304は、基材39の第1の面39aの法線方向から見てランダムに複数配置されている。すなわち、非形成部304は、基材39の第1の面39aの法線方向から見て、遮光層340における第1の直線部分301、第2の直線部分302及び交差部303のうち少なくとも一部に設けられている。 Specifically, in the light control member 9 of the first embodiment, the light shielding layer 40 is formed continuously without the first straight portion 101 and the second straight portion 102 being interrupted. On the other hand, as shown in FIG. 32, in the light control member 309 of this embodiment, the non-forming part 304 in which the light shielding layer 340 is not formed on at least a part of the first straight part 301 and the second straight part 302. Is provided. A plurality of non-forming portions 304 are randomly arranged as viewed from the normal direction of the first surface 39a of the base 39. That is, the non-forming portion 304 is at least one of the first straight portion 301, the second straight portion 302, and the intersecting portion 303 in the light shielding layer 340 when viewed from the normal direction of the first surface 39 a of the base material 39. Provided in the department.
 図33に示すように、光拡散部341のうち非形成部304に臨む部分341r(以下「光拡散部の曲線部」という。)は、中空部42に向けて凹をなす丸みを帯びた形状を有する。又、遮光層340の第1の直線部分301及び第2の直線部分302のうち非形成部304に臨む部分304r(以下「非形成部の曲線部」という。)は、光拡散部341に向けて凸をなす丸みを帯びた形状を有する。光拡散部341の光入射端面側の曲線部341rは、非形成部304の曲線部304rよりも大きい曲率半径を有する。光拡散部341の光射出端面側の曲線部341rは、非形成部304の曲線部304rと略等しい曲率半径を有する。よって、光拡散部341の光入射端面側の曲線部341rは、光拡散部341の光射出端面側の曲線部341rよりも大きい曲率半径を有する。 As shown in FIG. 33, a portion 341r facing the non-forming portion 304 of the light diffusing portion 341 (hereinafter referred to as “curved portion of the light diffusing portion”) has a rounded shape that is concave toward the hollow portion 42. Have Further, a portion 304 r (hereinafter referred to as “curved portion of the non-formed portion”) of the light shielding layer 340 facing the non-formed portion 304 among the first straight portion 301 and the second straight portion 302 is directed toward the light diffusion portion 341. And has a rounded and convex shape. The curved portion 341r on the light incident end face side of the light diffusion portion 341 has a larger radius of curvature than the curved portion 304r of the non-forming portion 304. The curved portion 341r on the light emission end face side of the light diffusing portion 341 has a radius of curvature substantially equal to the curved portion 304r of the non-forming portion 304. Therefore, the curved portion 341r on the light incident end face side of the light diffusing portion 341 has a larger radius of curvature than the curved portion 341r on the light exit end face side of the light diffusing portion 341.
 基材39の法線方向から見て、遮光層340の外周縁のうち、第1の直線部分301及び第2の直線部分302に対応する部分を直線縁311,312とし、非形成部304の曲線部304rに対応する部分を曲線縁314とする。基材39の法線方向から見て、直線縁311,312の長さを全て足し合わせた合計の長さは、曲線縁314の長さを全て足し合わせた合計の長さよりも長い。
 本実施形態の曲線縁314は、特許請求の範囲の曲線縁に対応する。
Of the outer peripheral edge of the light shielding layer 340 when viewed from the normal direction of the base material 39, the portions corresponding to the first straight portion 301 and the second straight portion 302 are defined as straight edges 311, 312, and the non-forming portion 304. A portion corresponding to the curved portion 304r is defined as a curved edge 314. When viewed from the normal direction of the substrate 39, the total length of all the straight edges 311, 312 is added to be longer than the total length of all the curved edges 314.
The curved edge 314 of the present embodiment corresponds to the curved edge in the claims.
 本実施形態の光制御部材309を使用した場合も、第1実施形態と同様、表示画面をいずれの方位においても斜めから見たときのガンマ特性の変化を抑制し、視野角特性に優れた表示画像を実現することができる。 Even when the light control member 309 of the present embodiment is used, as in the first embodiment, a change in gamma characteristics when the display screen is viewed obliquely in any orientation is suppressed, and display with excellent viewing angle characteristics is achieved. An image can be realized.
 又、本実施形態の液晶表示装置においては、光拡散部341のうち非形成部304に臨む部分である曲線部341rは、中空部42に向けて凹をなす丸みを帯びた形状を有する。そのため、光拡散部341の曲線部341rに沿う反射面に入射する光は、第1の直線部分301及び第2の直線部分302に沿う反射面に入射する光とは異なる方向に反射される。例えば、図33に示すように、x軸の負側から正側に向けて第2の直線部分302に沿う反射面に入射した光Lx1は、反射面で反射した後、y軸に平行な方向に進む。一方、x軸の負側から正側に向けて光拡散部341の曲線部341rに沿う反射面に入射した光Lx3は、反射面で反射した後、y軸に平行な方向には進まず、y軸に平行な方向よりもx軸の正側に傾いた方向とy軸に平行な方向よりもx軸の負側に傾いた方向とに進む。このように、光拡散部341の曲線部341rを丸みを帯びた形状とすることで、光拡散性を高めることができ、液晶表示装置の視野角特性の改善効果を高めることができる。 Further, in the liquid crystal display device of the present embodiment, the curved portion 341 r that is a portion facing the non-forming portion 304 of the light diffusing portion 341 has a rounded shape that is concave toward the hollow portion 42. Therefore, the light incident on the reflection surface along the curved portion 341r of the light diffusion portion 341 is reflected in a direction different from the light incident on the reflection surfaces along the first straight line portion 301 and the second straight line portion 302. For example, as shown in FIG. 33, the light Lx1 incident on the reflecting surface along the second straight line portion 302 from the negative side to the positive side of the x-axis is reflected by the reflecting surface and then parallel to the y-axis. Proceed to On the other hand, the light Lx3 incident on the reflecting surface along the curved portion 341r of the light diffusing unit 341 from the negative side to the positive side of the x axis is reflected by the reflecting surface and does not travel in the direction parallel to the y axis. The process proceeds in a direction inclined to the positive side of the x axis from the direction parallel to the y axis and a direction inclined to the negative side of the x axis from the direction parallel to the y axis. Thus, by making the curved portion 341r of the light diffusing portion 341 into a rounded shape, the light diffusibility can be enhanced, and the effect of improving the viewing angle characteristics of the liquid crystal display device can be enhanced.
[第4実施形態]
 以下、本発明の第4実施形態について、図34を用いて説明する。
 本実施形態の液晶表示装置の基本構成は第3実施形態と同一であり、光制御部材における遮光層の構成が第3実施形態と異なる。そのため、本実施形態では、液晶表示装置の基本構成の説明は省略し、光制御部材について説明する。
[Fourth Embodiment]
Hereinafter, a fourth embodiment of the present invention will be described with reference to FIG.
The basic configuration of the liquid crystal display device of this embodiment is the same as that of the third embodiment, and the configuration of the light shielding layer in the light control member is different from that of the third embodiment. Therefore, in this embodiment, the description of the basic configuration of the liquid crystal display device is omitted, and the light control member is described.
 図34は、第4実施形態の光制御部材409の平面図である。
 図34に示すように、本実施形態の光制御部材409は、第3実施形態の光制御部材309に対して遮光層の構成が異なる。
FIG. 34 is a plan view of the light control member 409 of the fourth embodiment.
As shown in FIG. 34, the light control member 409 of this embodiment differs in the structure of a light shielding layer with respect to the light control member 309 of 3rd Embodiment.
 尚、本実施形態の光制御部材409においても、第1実施形態の光制御部材9と同様に、遮光層440における第1の直線部分401の幅(図8に示す第1の直線部分の幅W1に相当)は略一定であり、第2の直線部分402の幅(図8に示す第2の直線部分の幅W2に相当)も略一定である。第1の直線部分401の幅及び第2の直線部分402の幅は、互いに略等しい。
 図示はしないが、光拡散部441のうち交差部403に臨む部分(図8に示す光拡散部の曲線部41rに相当)は、中空部42に向けて凸をなす丸みを帯びた形状を有する。又、遮光層440の第1の直線部分401及び第2の直線部分402のうち交差部403に臨む部分(図8に示す交差部の曲線部103rに相当)は、光拡散部441に向けて凹をなす丸みを帯びた形状を有する。光拡散部441の光入射端面側の曲線部は、交差部403の曲線部よりも大きい曲率半径を有する。光拡散部441の光射出端面側の曲線部は、交差部403の曲線部と略等しい曲率半径を有する。よって、光拡散部441の光入射端面側の曲線部は、光拡散部441の光射出端面側の曲線部よりも大きい曲率半径を有する。
 又、基材39の法線方向から見て、遮光層440の外周縁のうち、第1の直線部分401及び第2の直線部分402に対応する部分を直線縁(図8に示す直線縁111,112に相当)とし、交差部403の曲線部に対応する部分を曲線縁(図8に示す曲線縁113に相当)とする。基材39の法線方向から見て、直線縁の長さを全て足し合わせた合計の長さは、曲線縁の長さを全て足し合わせた合計の長さよりも長い。
 又、基材39の法線方向から見て、遮光層440の外周縁のうち、第1の直線部分401及び第2の直線部分402に対応する部分を直線縁(図32に示す直線縁311,312に相当)とし、非形成部404の曲線部に対応する部分を曲線縁(図33に示す曲線縁314に相当)とする。基材39の法線方向から見て、直線縁の長さを全て足し合わせた合計の長さは、曲線縁の長さを全て足し合わせた合計の長さよりも長い。
Note that in the light control member 409 of the present embodiment as well, as in the light control member 9 of the first embodiment, the width of the first straight portion 401 in the light shielding layer 440 (the width of the first straight portion shown in FIG. 8). (Corresponding to W1) is substantially constant, and the width of the second straight line portion 402 (corresponding to the width W2 of the second straight line portion shown in FIG. 8) is also substantially constant. The width of the first straight line portion 401 and the width of the second straight line portion 402 are substantially equal to each other.
Although not shown, a portion (corresponding to the curved portion 41r of the light diffusing portion shown in FIG. 8) of the light diffusing portion 441 facing the intersection 403 has a rounded shape that protrudes toward the hollow portion 42. . Further, a portion of the first straight portion 401 and the second straight portion 402 of the light shielding layer 440 that faces the intersecting portion 403 (corresponding to the intersecting portion curved portion 103r shown in FIG. 8) is directed toward the light diffusion portion 441. It has a concave rounded shape. The curved portion on the light incident end face side of the light diffusion portion 441 has a larger radius of curvature than the curved portion of the intersecting portion 403. The curved portion on the light emission end face side of the light diffusion portion 441 has a radius of curvature substantially equal to the curved portion of the intersecting portion 403. Therefore, the curved portion on the light incident end face side of the light diffusing portion 441 has a larger radius of curvature than the curved portion on the light exit end face side of the light diffusing portion 441.
In addition, as viewed from the normal direction of the base material 39, a portion corresponding to the first straight portion 401 and the second straight portion 402 in the outer peripheral edge of the light shielding layer 440 is a straight edge (the straight edge 111 shown in FIG. 8). , 112), and a portion corresponding to the curved portion of the intersection 403 is defined as a curved edge (corresponding to the curved edge 113 shown in FIG. 8). When viewed from the normal direction of the base material 39, the total length of all the lengths of the straight edges is longer than the total length of all the lengths of the curved edges.
Further, when viewed from the normal direction of the base material 39, a portion corresponding to the first straight portion 401 and the second straight portion 402 in the outer peripheral edge of the light shielding layer 440 is defined as a straight edge (a straight edge 311 shown in FIG. 32). , 312), and a portion corresponding to the curved portion of the non-forming portion 404 is a curved edge (corresponding to the curved edge 314 shown in FIG. 33). When viewed from the normal direction of the base material 39, the total length of all the lengths of the straight edges is longer than the total length of all the lengths of the curved edges.
 具体的には、第3実施形態の光制御部材309では、非形成部304は基材39の第1の面39aの法線方向から見てランダムに複数配置されていた。これに対して、図34に示すように、本実施形態の光制御部材409では、非形成部404は画素PXに少なくとも1つ配置されている。本実施形態の非形成部404は、基材39の第1の面39aの法線方向から見て、ランダムに複数配置されていることに加え、遮光層440における第1の直線部分401、第2の直線部分402及び交差部403の全てに設けられている。 Specifically, in the light control member 309 of the third embodiment, a plurality of non-formed portions 304 are randomly arranged as viewed from the normal direction of the first surface 39a of the base 39. On the other hand, as shown in FIG. 34, in the light control member 409 of the present embodiment, at least one non-forming part 404 is arranged in the pixel PX. The non-forming portion 404 of the present embodiment is arranged in a plurality in a random manner when viewed from the normal direction of the first surface 39a of the base material 39, and in addition, the first straight portion 401 and the first linear portion 401 in the light shielding layer 440 are arranged. The two straight portions 402 and the intersecting portion 403 are all provided.
 本実施形態の光制御部材409を使用した場合も、第1実施形態と同様、表示画面をいずれの方位においても斜めから見たときのガンマ特性の変化を抑制し、視野角特性に優れた表示画像を実現することができる。 Even when the light control member 409 of the present embodiment is used, as in the first embodiment, a change in gamma characteristics when the display screen is viewed obliquely in any orientation is suppressed, and display with excellent viewing angle characteristics is achieved. An image can be realized.
 又、本実施形態の液晶表示装置においては、非形成部404は画素PXに少なくとも1つ配置されている。そのため、一部の画素PXのみに非形成部404が配置される場合と比較して、各画素PXにおける輝度特性のばらつきを低減することができる。 Further, in the liquid crystal display device of the present embodiment, at least one non-forming part 404 is arranged in the pixel PX. Therefore, it is possible to reduce variation in luminance characteristics in each pixel PX, compared to the case where the non-formation part 404 is arranged only in some pixels PX.
[第5実施形態]
 以下、本発明の第5実施形態について、図35、図36を用いて説明する。
 本実施形態の液晶表示装置の基本構成は第1実施形態と同一であり、光制御部材における遮光層の構成が第1実施形態と異なる。そのため、本実施形態では、液晶表示装置の基本構成の説明は省略し、光制御部材について説明する。
[Fifth Embodiment]
Hereinafter, a fifth embodiment of the present invention will be described with reference to FIGS.
The basic configuration of the liquid crystal display device of this embodiment is the same as that of the first embodiment, and the configuration of the light shielding layer in the light control member is different from that of the first embodiment. Therefore, in this embodiment, the description of the basic configuration of the liquid crystal display device is omitted, and the light control member is described.
 図35は、第5実施形態の光制御部材509の平面図である。図36は、第5実施形態の遮光層540の屈曲部505を示す平面図である。
 図35に示すように、本実施形態の光制御部材509は、第1実施形態の光制御部材9に対して遮光層の構成が異なる。
FIG. 35 is a plan view of a light control member 509 according to the fifth embodiment. FIG. 36 is a plan view showing a bent portion 505 of the light shielding layer 540 of the fifth embodiment.
As shown in FIG. 35, the light control member 509 of the present embodiment is different from the light control member 9 of the first embodiment in the configuration of the light shielding layer.
 具体的には、第1実施形態の光制御部材9では、遮光層40の平面形状は直線状をなす第1の直線部分101及び第2の直線部分102を有していた。これに対して、図35に示すように、本実施形態の光制御部材509では、遮光層540の平面形状は少なくとも一部に屈曲部505を有する折れ線形状を有している。屈曲部505は、基材39の第1の面39aの法線方向から見てランダムに複数配置されている。すなわち、屈曲部505は、基材39の第1の面39aの法線方向から見て、遮光層540の少なくとも一部に不規則に設けられている。屈曲部505は、画素PXに少なくとも1つ配置される。 Specifically, in the light control member 9 of the first embodiment, the planar shape of the light shielding layer 40 includes the first straight portion 101 and the second straight portion 102 that are linear. On the other hand, as shown in FIG. 35, in the light control member 509 of the present embodiment, the planar shape of the light shielding layer 540 has a polygonal line shape having a bent portion 505 at least partially. A plurality of the bent portions 505 are randomly arranged as viewed from the normal direction of the first surface 39a of the base 39. That is, the bent portion 505 is irregularly provided on at least a part of the light shielding layer 540 when viewed from the normal direction of the first surface 39 a of the base material 39. At least one bent portion 505 is disposed in the pixel PX.
 図36に示すように、光拡散部541のうち屈曲部505に臨む部分541v(以下「光拡散部の屈曲部」という。)は、遮光層540の屈曲部505に沿う折れ線形状を有する。光拡散部541の屈曲部541vは、中空部42に向けて凹をなす折れ線形状と、中空部42に向けて凸をなす折れ線形状とを有する。又、遮光層540の屈曲部505は、光拡散部541に向けて凸をなす折れ線形状と、光拡散部541に向けて凹をなす折れ線形状とを有する。 As shown in FIG. 36, a portion 541v of the light diffusion portion 541 facing the bent portion 505 (hereinafter referred to as “bent portion of the light diffusion portion”) has a polygonal line shape along the bent portion 505 of the light shielding layer 540. The bent part 541v of the light diffusion part 541 has a polygonal line shape that is concave toward the hollow part 42 and a polygonal line shape that is convex toward the hollow part 42. Further, the bent portion 505 of the light shielding layer 540 has a polygonal line shape that is convex toward the light diffusion portion 541 and a polygonal line shape that is concave toward the light diffusion portion 541.
 尚、光拡散部541の光入射端面側の屈曲部541vは、遮光層540の屈曲部505よりも大きい曲率半径を有する。光拡散部541の光射出端面側の屈曲部541vは、遮光層540の屈曲部505と略等しい曲率半径を有する。よって、光拡散部541の光入射端面側の屈曲部541vは、光拡散部541の光射出端面側の屈曲部541vよりも大きい曲率半径を有する。 The bent portion 541v on the light incident end face side of the light diffusion portion 541 has a larger radius of curvature than the bent portion 505 of the light shielding layer 540. The bent portion 541v on the light emission end face side of the light diffusion portion 541 has a radius of curvature substantially equal to the bent portion 505 of the light shielding layer 540. Therefore, the bent portion 541v on the light incident end face side of the light diffusion portion 541 has a larger radius of curvature than the bent portion 541v on the light emission end face side of the light diffusion portion 541.
 本実施形態の光制御部材509を使用した場合も、第1実施形態と同様、表示画面をいずれの方位においても斜めから見たときのガンマ特性の変化を抑制し、視野角特性に優れた表示画像を実現することができる。 Even when the light control member 509 of the present embodiment is used, as in the first embodiment, a change in gamma characteristics when the display screen is viewed obliquely in any orientation is suppressed, and display with excellent viewing angle characteristics is achieved. An image can be realized.
 又、本実施形態の液晶表示装置においては、遮光層540の平面形状は少なくとも一部に屈曲部505を有する折れ線形状を有している。光拡散部541の屈曲部541vは、遮光層540の屈曲部505に沿う折れ線形状を有する。そのため、光拡散部541の反射面に入射する光は、反射面の屈曲度合いによっては異なる方向に反射される。例えば、図36に示すように、x軸の負側から正側に向けて光拡散部541の反射面に入射した光Lx4は、反射面で反射した後、y軸に平行な方向に進む一方で、屈曲度合いが異なる反射面においては、反射面で反射した後、y軸に平行な方向には進まず、y軸に平行な方向よりもx軸の負側に傾いた方向に進む。このように、遮光層540の平面形状を折れ線形状とすることで、光拡散性を高めることができ、液晶表示装置の視野角特性の改善効果を高めることができる。 Further, in the liquid crystal display device of the present embodiment, the planar shape of the light shielding layer 540 has a polygonal line shape having a bent portion 505 at least partially. The bent portion 541v of the light diffusion portion 541 has a polygonal line shape along the bent portion 505 of the light shielding layer 540. Therefore, the light incident on the reflection surface of the light diffusion portion 541 is reflected in different directions depending on the degree of bending of the reflection surface. For example, as shown in FIG. 36, the light Lx4 incident on the reflecting surface of the light diffusing unit 541 from the negative side to the positive side of the x axis is reflected by the reflecting surface and then travels in a direction parallel to the y axis. Thus, after reflecting on the reflection surface, the reflection surface having a different degree of bending does not advance in the direction parallel to the y-axis, but proceeds in a direction inclined more to the negative side of the x-axis than the direction parallel to the y-axis. Thus, by making the planar shape of the light shielding layer 540 into a polygonal line shape, the light diffusibility can be enhanced, and the effect of improving the viewing angle characteristics of the liquid crystal display device can be enhanced.
 又、本実施形態の液晶表示装置においては、屈曲部505は画素PXに少なくとも1つ配置される。そのため、一部の画素PXのみに屈曲部505が配置される場合と比較して、各画素PXにおける輝度特性のばらつきを低減することができる。 Further, in the liquid crystal display device of the present embodiment, at least one bent portion 505 is disposed in the pixel PX. Therefore, it is possible to reduce variations in luminance characteristics in each pixel PX, compared to the case where the bent portion 505 is arranged only in some pixels PX.
[第6実施形態]
 以下、本発明の第6実施形態について、図37、図38を用いて説明する。
 本実施形態の液晶表示装置の基本構成は第5実施形態と同一であり、光制御部材における遮光層の構成が第1実施形態と異なる。そのため、本実施形態では、液晶表示装置の基本構成の説明は省略し、光制御部材について説明する。
[Sixth Embodiment]
Hereinafter, a sixth embodiment of the present invention will be described with reference to FIGS.
The basic configuration of the liquid crystal display device of this embodiment is the same as that of the fifth embodiment, and the configuration of the light shielding layer in the light control member is different from that of the first embodiment. Therefore, in this embodiment, the description of the basic configuration of the liquid crystal display device is omitted, and the light control member is described.
 図37は、第6実施形態の光制御部材609の平面図である。図38は、第6実施形態の遮光層640の屈曲部605及び非形成部604を示す平面図である。
 図37に示すように、本実施形態の光制御部材609は、第5実施形態の光制御部材9に対して遮光層の構成が異なる。
FIG. 37 is a plan view of a light control member 609 according to the sixth embodiment. FIG. 38 is a plan view showing the bent portion 605 and the non-formed portion 604 of the light shielding layer 640 of the sixth embodiment.
As shown in FIG. 37, the light control member 609 of this embodiment differs in the structure of the light shielding layer from the light control member 9 of the fifth embodiment.
 尚、本実施形態の光制御部材609においても、第5実施形態の光制御部材509と同様に、光拡散部641の光入射端面側の屈曲部641vは、遮光層640の屈曲部605よりも大きい曲率半径を有する。光拡散部641の光射出端面側の屈曲部641vは、遮光層640の屈曲部605と略等しい曲率半径を有する。よって、光拡散部641の光入射端面側の屈曲部641vは、光拡散部641の光射出端面側の屈曲部641vよりも大きい曲率半径を有する。 In the light control member 609 of the present embodiment, the bent portion 641v on the light incident end face side of the light diffusing portion 641 is more than the bent portion 605 of the light shielding layer 640, similarly to the light control member 509 of the fifth embodiment. Has a large radius of curvature. The bent portion 641v on the light emission end face side of the light diffusing portion 641 has a radius of curvature substantially equal to the bent portion 605 of the light shielding layer 640. Therefore, the bent portion 641v on the light incident end face side of the light diffusing portion 641 has a larger radius of curvature than the bent portion 641v on the light exit end face side of the light diffusing portion 641.
 具体的には、第5実施形態の光制御部材509では、遮光層540は途切れることなく連続して形成されていた。これに対して、図37に示すように、本実施形態の光制御部材609では、遮光層640の少なくとも一部に遮光層640が形成されない非形成部604が設けられている。非形成部604は、基材39の第1の面39aの法線方向から見てランダムに複数配置されている。 Specifically, in the light control member 509 of the fifth embodiment, the light shielding layer 540 is continuously formed without interruption. On the other hand, as shown in FIG. 37, in the light control member 609 of this embodiment, the non-forming part 604 in which the light shielding layer 640 is not formed is provided in at least a part of the light shielding layer 640. A plurality of non-formed portions 604 are randomly arranged as viewed from the normal direction of the first surface 39 a of the base material 39.
 図38に示すように、光拡散部641のうち非形成部604に臨む部分641r(以下「光拡散部の曲線部」という。)は、中空部42に向けて凹をなす丸みを帯びた形状を有する。又、遮光層640のうち非形成部604に臨む部分604r(以下「非形成部の曲線部」という。)は、光拡散部641に向けて凸をなす丸みを帯びた形状を有する。光拡散部641の光入射端面側の曲線部641rは、非形成部604の曲線部604rよりも大きい曲率半径を有する。光拡散部641の光射出端面側の曲線部641rは、非形成部604の曲線部604rと略等しい曲率半径を有する。よって、光拡散部641の光入射端面側の曲線部641rは、光拡散部641の光射出端面側の曲線部641rよりも大きい曲率半径を有する。 As shown in FIG. 38, a portion 641r facing the non-forming portion 604 of the light diffusion portion 641 (hereinafter referred to as “curved portion of the light diffusion portion”) has a rounded shape that is concave toward the hollow portion. Have A portion 604r of the light shielding layer 640 facing the non-forming portion 604 (hereinafter referred to as “curved portion of the non-forming portion”) has a rounded shape that is convex toward the light diffusion portion 641. The curved portion 641r on the light incident end face side of the light diffusion portion 641 has a larger radius of curvature than the curved portion 604r of the non-forming portion 604. The curved portion 641r on the light emission end face side of the light diffusing portion 641 has a radius of curvature substantially equal to the curved portion 604r of the non-forming portion 604. Therefore, the curved portion 641r on the light incident end face side of the light diffusing portion 641 has a larger radius of curvature than the curved portion 641r on the light exit end face side of the light diffusing portion 641.
 本実施形態の光制御部材509を使用した場合も、第1実施形態と同様、表示画面をいずれの方位においても斜めから見たときのガンマ特性の変化を抑制し、視野角特性に優れた表示画像を実現することができる。 Even when the light control member 509 of the present embodiment is used, as in the first embodiment, a change in gamma characteristics when the display screen is viewed obliquely in any orientation is suppressed, and display with excellent viewing angle characteristics is achieved. An image can be realized.
 又、本実施形態の液晶表示装置においても、遮光層640の平面形状は少なくとも一部に屈曲部605を有する折れ線形状を有している。光拡散部641の屈曲部641vは、遮光層640の屈曲部605に沿う折れ線形状を有する。そのため、光拡散部641の反射面に入射する光は、反射面の屈曲度合いによっては異なる方向に反射される。例えば、図38に示すように、x軸の負側から正側に向けて光拡散部641の反射面に入射した光Lx4は、反射面で反射した後、y軸に平行な方向に進む一方で、屈曲度合いが異なる反射面においては、反射面で反射した後、y軸に平行な方向には進まず、y軸に平行な方向よりもx軸の負側に傾いた方向に進む。このように、遮光層640の平面形状を折れ線形状とすることで、光拡散性を高めることができ、液晶表示装置の視野角特性の改善効果を高めることができる。 Also in the liquid crystal display device of the present embodiment, the planar shape of the light shielding layer 640 has a polygonal line shape having a bent portion 605 at least partially. The bent portion 641v of the light diffusion portion 641 has a polygonal line shape along the bent portion 605 of the light shielding layer 640. Therefore, the light incident on the reflection surface of the light diffusing unit 641 is reflected in different directions depending on the degree of bending of the reflection surface. For example, as shown in FIG. 38, the light Lx4 incident on the reflecting surface of the light diffusing unit 641 from the negative side to the positive side of the x axis is reflected by the reflecting surface and then travels in a direction parallel to the y axis. Thus, after reflecting on the reflection surface, the reflection surface having a different degree of bending does not advance in the direction parallel to the y-axis, but proceeds in a direction inclined more to the negative side of the x-axis than the direction parallel to the y-axis. Thus, by making the planar shape of the light shielding layer 640 into a polygonal line shape, the light diffusibility can be enhanced, and the effect of improving the viewing angle characteristics of the liquid crystal display device can be enhanced.
 又、本実施形態の液晶表示装置においては、光拡散部641のうち非形成部604に臨む部分である曲線部641rは、中空部42に向けて凹をなす丸みを帯びた形状を有する。そのため、光拡散部641の曲線部641rに沿う反射面に入射する光は、直線部分に沿う反射面に入射する光とは異なる方向に反射される。例えば、図38に示すように、x軸の負側から正側に向けて直線部分に沿う反射面に入射した光Lx1は、反射面で反射した後、y軸に平行な方向に進む。一方、x軸の負側から正側に向けて光拡散部641の曲線部641rに沿う反射面に入射した光Lx3は、反射面で反射した後、y軸に平行な方向には進まず、y軸に平行な方向よりもx軸の正側に傾いた方向とy軸に平行な方向よりもx軸の負側に傾いた方向とに進む。このように、光拡散部641の曲線部641rを丸みを帯びた形状とすることで、光拡散性を高めることができ、液晶表示装置の視野角特性の改善効果を高めることができる。 Further, in the liquid crystal display device of the present embodiment, the curved portion 641r that is the portion facing the non-forming portion 604 in the light diffusion portion 641 has a rounded shape that is concave toward the hollow portion. Therefore, the light incident on the reflection surface along the curved portion 641r of the light diffusion portion 641 is reflected in a direction different from the light incident on the reflection surface along the straight line portion. For example, as shown in FIG. 38, the light Lx1 incident on the reflecting surface along the straight portion from the negative side of the x axis toward the positive side is reflected by the reflecting surface and then travels in a direction parallel to the y axis. On the other hand, the light Lx3 incident on the reflecting surface along the curved portion 641r of the light diffusing unit 641 from the negative side to the positive side of the x axis is reflected by the reflecting surface and does not travel in the direction parallel to the y axis. The process proceeds in a direction inclined to the positive side of the x axis from the direction parallel to the y axis and a direction inclined to the negative side of the x axis from the direction parallel to the y axis. Thus, by making the curved portion 641r of the light diffusing portion 641 round, the light diffusibility can be improved, and the effect of improving the viewing angle characteristics of the liquid crystal display device can be enhanced.
[第7実施形態]
 以下、本発明の第7実施形態について、図39~図43を用いて説明する。
 本実施形態の液晶表示装置の基本構成は第1実施形態と同一であり、光制御部材における遮光層の構成が第1実施形態と異なる。そのため、本実施形態では、液晶表示装置の基本構成の説明は省略し、光制御部材について説明する。
[Seventh Embodiment]
A seventh embodiment of the present invention will be described below with reference to FIGS. 39 to 43.
The basic configuration of the liquid crystal display device of this embodiment is the same as that of the first embodiment, and the configuration of the light shielding layer in the light control member is different from that of the first embodiment. Therefore, in this embodiment, the description of the basic configuration of the liquid crystal display device is omitted, and the light control member is described.
 図39は、第7実施形態の光制御部材709の平面図である。
 図39に示すように、本実施形態の光制御部材709は、第1実施形態の光制御部材9に対して遮光層の構成が異なる。
 図示はしないが、本実施形態の光制御部材709においても、第1実施形態の光制御部材9と同様に、遮光層740が存在する領域の外周部を覆う封止部材(図7に示す封止部材150に相当)を備える。
FIG. 39 is a plan view of a light control member 709 according to the seventh embodiment.
As shown in FIG. 39, the light control member 709 of this embodiment differs in the structure of a light shielding layer with respect to the light control member 9 of 1st Embodiment.
Although not shown, in the light control member 709 of the present embodiment, similarly to the light control member 9 of the first embodiment, a sealing member that covers the outer periphery of the region where the light shielding layer 740 exists (the seal shown in FIG. 7). Equivalent to the stop member 150).
 具体的には、第1実施形態の光制御部材9では、遮光層40の平面形状は第1の直線部分101と第2の直線部分102とを有する格子状のパターンに形成されていた。これに対して、図39に示すように、本実施形態の光制御部材709は、遮光層740の平面形状は互いに平行に直線状に延びる複数の第1の直線部分701を有している。第1の直線部分701は、遮光層740において一定の幅を有する部分である。 Specifically, in the light control member 9 of the first embodiment, the planar shape of the light shielding layer 40 is formed in a lattice pattern having a first straight portion 101 and a second straight portion 102. On the other hand, as shown in FIG. 39, the light control member 709 of the present embodiment has a plurality of first straight portions 701 in which the planar shape of the light shielding layer 740 extends linearly in parallel with each other. The first straight line portion 701 is a portion having a certain width in the light shielding layer 740.
 遮光層740において、第1の直線部分701の幅W1は略一定である。一方、遮光層740において、隣り合う2つの第1の直線部分701の間隔Waはランダムである。 In the light shielding layer 740, the width W1 of the first straight portion 701 is substantially constant. On the other hand, in the light shielding layer 740, the interval Wa between two adjacent first linear portions 701 is random.
 基材39の法線方向から見て、第1の直線部分701は、液晶分子のダイレクタの方向Dに対して45°よりも大きく且つ90°よりも小さい角度をなす。液晶分子51のダイレクタの方向Dと第1の偏光板3及び第2の偏光板7の吸収軸P1,P2は45°の角度をなすため、光制御部材709の遮光層740において第1の直線部分701と第2の偏光板7の吸収軸P2とのなす角度J1は45°よりも大きい角度を有する。言い換えると、基材39の法線方向から見た遮光層740の平面形状は、第2の偏光板7の吸収軸P2に対して45°よりも大きい角度をなす第1の直線部分701を有している。同様に、基材39の法線方向から見た光拡散部741の平面形状も、第2の偏光板7の吸収軸P2に対して45°よりも大きい角度をなしている。 When viewed from the normal direction of the base material 39, the first straight line portion 701 forms an angle larger than 45 ° and smaller than 90 ° with respect to the direction D of the director of the liquid crystal molecules. Since the direction D of the director of the liquid crystal molecules 51 and the absorption axes P1 and P2 of the first polarizing plate 3 and the second polarizing plate 7 form an angle of 45 °, the first straight line is formed in the light shielding layer 740 of the light control member 709. An angle J1 formed by the portion 701 and the absorption axis P2 of the second polarizing plate 7 has an angle larger than 45 °. In other words, the planar shape of the light shielding layer 740 viewed from the normal direction of the base material 39 has the first linear portion 701 that forms an angle larger than 45 ° with respect to the absorption axis P2 of the second polarizing plate 7. is doing. Similarly, the planar shape of the light diffusion portion 741 viewed from the normal direction of the substrate 39 is also at an angle larger than 45 ° with respect to the absorption axis P2 of the second polarizing plate 7.
 本実施形態の光制御部材709を使用した場合も、第1実施形態と同様、表示画面をいずれの方位においても斜めから見たときのガンマ特性の変化を抑制し、視野角特性に優れた表示画像を実現することができる。 Even when the light control member 709 of the present embodiment is used, as in the first embodiment, a change in gamma characteristics when the display screen is viewed obliquely in any orientation is suppressed, and display with excellent viewing angle characteristics is achieved. An image can be realized.
 又、本実施形態の光制御部材709では、遮光層740の平面形状は互いに平行に直線状に延びる複数の第1の直線部分701を有するため、遮光層40の平面形状は第1の直線部分101と第2の直線部分102とを有する格子状のパターンに形成される場合と比較して、遮光層740のパターンが単純である。従って、遮光層740のパターンを印刷等の方法で簡単に作製することができる。 Further, in the light control member 709 of the present embodiment, the planar shape of the light shielding layer 740 includes a plurality of first linear portions 701 extending linearly in parallel with each other, and thus the planar shape of the light shielding layer 40 is the first linear portion. The pattern of the light shielding layer 740 is simple as compared with the case where it is formed in a lattice pattern having 101 and the second straight portion 102. Therefore, the pattern of the light shielding layer 740 can be easily produced by a method such as printing.
 本実施形態においても、基材39の法線方向から見た光制御部材709の光拡散強度の方位分布は、2回転対称である。図40に示すように、第1の直線部分701が基材39の長辺に対して33.7°をなす場合を考える。すなわち、第1の直線部分701が液晶分子51のダイレクタの方向Dに直交する方向に対して33.7°をなす場合を考える。
 この場合、光制御部材709において光拡散強度が相対的に大きくなる方向(以下「強散乱方向」という。)は、第1の直線部分701に対して直交する方向V1となる。
Also in this embodiment, the azimuth distribution of the light diffusion intensity of the light control member 709 viewed from the normal direction of the base material 39 is two-fold symmetric. Consider the case where the first straight portion 701 forms 33.7 ° with respect to the long side of the substrate 39 as shown in FIG. That is, consider a case where the first straight line portion 701 forms 33.7 ° with respect to the direction perpendicular to the direction D of the director of the liquid crystal molecules 51.
In this case, the direction in which the light diffusion intensity is relatively increased in the light control member 709 (hereinafter referred to as “strong scattering direction”) is a direction V 1 orthogonal to the first straight line portion 701.
 ここで、図41及び図42を参照して、光制御部材709の強散乱方向の測定方法を説明する。
 図41は、光制御部材709の強散乱方向の測定方法を説明するための図であり、図40のA1-A1断面を含む図である。図42は、受光角度30°における方位角と受光強度との関係を示すグラフである。尚、図42において、横軸は方位角(°)、縦軸は受光強度を示す。
Here, with reference to FIG.41 and FIG.42, the measuring method of the strong scattering direction of the light control member 709 is demonstrated.
FIG. 41 is a diagram for explaining a method for measuring the strong scattering direction of the light control member 709, and includes a cross section taken along line A1-A1 of FIG. FIG. 42 is a graph showing the relationship between the azimuth angle and the light reception intensity at a light reception angle of 30 °. In FIG. 42, the horizontal axis represents the azimuth angle (°), and the vertical axis represents the received light intensity.
 図41において、光制御部材709における基材39の法線をα11とする。
 この強散乱方向の測定方法では、光源731から光制御部材709に対して、平行光LAを照射する。このとき、法線α11と平行光LAとのなす角度(投光角度)をβ11とする。光制御部材709(光拡散部741)に入射した平行光LAは、光制御部材709によって散乱されて、光制御部材709に対して、平行光LAの入射側とは反対側に反射光LBとして一部が射出され、受光器732に受光される。このとき、法線α11と反射光LBとのなす角度(受光角度)をβ12とする。尚、受光器732に受光される光の強度を受光強度とする。
In FIG. 41, the normal line of the base material 39 in the light control member 709 is α 11 .
In this strong scattering direction measurement method, the light source 731 irradiates the light control member 709 with the parallel light LA. At this time, an angle (light projection angle) between the normal α 11 and the parallel light LA is β 11 . The parallel light LA that has entered the light control member 709 (light diffusion unit 741) is scattered by the light control member 709, and reflected light LB on the side opposite to the incident side of the parallel light LA with respect to the light control member 709. A part is emitted and received by the light receiver 732. In this case, the angle (light receiving angle) of the normal alpha 11 and the reflected light LB to beta 12. The intensity of the light received by the light receiver 732 is defined as the received light intensity.
 光源731から射出される平行光LAの強度と、投光角度β11と、受光器732に受光される反射光LBの受光角度β12とを固定して、光制御部材709を、法線α11を中心軸として回転させると、図42に示すように、相対的に受光強度が強い方向と、相対的に受光強度が弱い方向とが存在する。ここで、受光強度が強い方向を強散乱方向、相対的に受光強度が弱い方向を弱散乱方向とする。光制御部材709は、基材39の法線方向から見て、強散乱方向と弱散乱方向とを有する異方性光制御部材である。 The intensity of the parallel light LA emitted from the light source 731, the light projection angle β 11, and the light reception angle β 12 of the reflected light LB received by the light receiver 732 are fixed, and the light control member 709 is changed to the normal α When rotating around 11 as the central axis, as shown in FIG. 42, there are a direction in which the received light intensity is relatively strong and a direction in which the received light intensity is relatively weak. Here, the direction in which the received light intensity is strong is the strong scattering direction, and the direction in which the received light intensity is relatively weak is the weak scattering direction. The light control member 709 is an anisotropic light control member having a strong scattering direction and a weak scattering direction when viewed from the normal direction of the substrate 39.
 なお、この強散乱方向の測定方法では、基材39の法線方向と、光源731からの平行光LAを光制御部材709に投光する方向(投光方向)と、光制御部材709からの反射光LBを受光器732が受光する方向(受光方向)とが同一平面上(同一A1-A1断面上)に配されるようにする。 In this strong scattering direction measurement method, the normal direction of the base material 39, the direction in which the parallel light LA from the light source 731 is projected onto the light control member 709 (light projection direction), and the light control member 709 The direction in which the light receiver 732 receives the reflected light LB (light receiving direction) is arranged on the same plane (on the same A1-A1 cross section).
 図43は、基材39の法線方向から見た光制御部材709の光拡散強度の方位分布を示す図である。図43では、一例として極角30°における光拡散強度の方位分布を示す。
 図43に示すように、基材39の法線方向から見た光制御部材709の光拡散強度の方位分布は、2回転対称である。基材39の法線方向から見た光制御部材709の光拡散強度は、極角30°において、方位角146.3°、方位角326.3°で最大値となる。これら最大値における方位角の方向は、図40に示す方向V1及び図42に示す強散乱方向と一致する。
FIG. 43 is a diagram illustrating the azimuth distribution of the light diffusion intensity of the light control member 709 viewed from the normal direction of the base material 39. FIG. 43 shows an azimuth distribution of light diffusion intensity at a polar angle of 30 ° as an example.
As shown in FIG. 43, the azimuth distribution of the light diffusion intensity of the light control member 709 viewed from the normal direction of the substrate 39 is two-fold symmetric. The light diffusion intensity of the light control member 709 viewed from the normal direction of the base material 39 is maximum at an azimuth angle of 146.3 ° and an azimuth angle of 326.3 ° at a polar angle of 30 °. The direction of the azimuth angle at these maximum values coincides with the direction V1 shown in FIG. 40 and the strong scattering direction shown in FIG.
 尚、図43において基材39の法線方向から見た光制御部材709の光拡散強度の強弱については、図42に示す強散乱方向における受光強度を光強度強、弱散乱方向における受光強度を光強度弱、強散乱方向と弱散乱方向との中間における受光強度を光強度中とする。 43, regarding the intensity of the light diffusion intensity of the light control member 709 viewed from the normal direction of the substrate 39, the light reception intensity in the strong scattering direction shown in FIG. Light intensity is weak, and the received light intensity in the middle between the strong scattering direction and the weak scattering direction is the light intensity.
 尚、本実施形態では、図44に示すように、光制御部材709Aの遮光層740Aにおいて第1の直線部分701Aと第2の偏光板7の吸収軸P2とのなす角度J2は45°未満の角度であってもよい。言い換えると、基材39の法線方向から見た遮光層740Aの平面形状は、第2の偏光板7の吸収軸P2と45°未満の角度をなす第1の直線部分701Aを有していてもよい。この場合、基材39の法線方向から見た光拡散部741Aの平面形状も、第2の偏光板7の吸収軸P2と45°未満の角度をなしている。 In the present embodiment, as shown in FIG. 44, in the light shielding layer 740A of the light control member 709A, the angle J2 formed by the first linear portion 701A and the absorption axis P2 of the second polarizing plate 7 is less than 45 °. It may be an angle. In other words, the planar shape of the light shielding layer 740A viewed from the normal direction of the substrate 39 has the first straight portion 701A that forms an angle of less than 45 ° with the absorption axis P2 of the second polarizing plate 7. Also good. In this case, the planar shape of the light diffusion portion 741 </ b> A viewed from the normal direction of the substrate 39 also forms an angle of less than 45 ° with the absorption axis P <b> 2 of the second polarizing plate 7.
[第7実施形態の変形例]
 以下、第7実施形態の変形例について、図45~図47を用いて説明する。
 本変形例の液晶表示装置の基本構成は第7実施形態と同一であり、光制御部材における遮光層の構成が第7実施形態と異なる。
 したがって、本変形例では、液晶表示装置の基本構成の説明は省略し、光制御部材について説明する。
[Modification of the seventh embodiment]
Hereinafter, modifications of the seventh embodiment will be described with reference to FIGS. 45 to 47. FIG.
The basic configuration of the liquid crystal display device of the present modification is the same as that of the seventh embodiment, and the configuration of the light shielding layer in the light control member is different from that of the seventh embodiment.
Therefore, in this modification, the description of the basic configuration of the liquid crystal display device is omitted, and the light control member will be described.
 図45~図47は、本変形例の光制御部材709B,709C,709Dを示す平面図である。
 図45~図47に示すように、本変形例の光制御部材709B,709C,709Dは、第7実施形態の光制御部材709に対して遮光層の構成が異なる。
45 to 47 are plan views showing light control members 709B, 709C, and 709D of the present modification.
As shown in FIGS. 45 to 47, the light control members 709B, 709C, and 709D of the present modification are different from the light control member 709 of the seventh embodiment in the configuration of the light shielding layer.
 尚、本変形例の光制御部材709B,709C,709Dにおいても、第7実施形態の光制御部材709と同様に、遮光層における第1の直線部分の幅(図39に示す第1の直線部分の幅W1に相当)は略一定である。一方、遮光層における隣り合う2つの第1の直線部分の間隔(図39に示す隣り合う2つの第1の直線部分の間隔Waに相当)はランダムである。
 又、基材39の法線方向から見て、遮光層の外周縁のうち、第1の直線部分に対応する部分を直線縁(図32に示す直線縁311に相当)とし、非形成部704の曲線部に対応する部分を曲線縁(図33に示す曲線縁314に相当)とする。基材39の法線方向から見て、直線縁の長さを全て足し合わせた合計の長さは、曲線縁の長さを全て足し合わせた合計の長さよりも長い。
Note that the light control members 709B, 709C, and 709D of this modification also have the width of the first straight line portion in the light shielding layer (the first straight line portion shown in FIG. 39), similarly to the light control member 709 of the seventh embodiment. (Corresponding to the width W1) is substantially constant. On the other hand, the interval between two adjacent first linear portions in the light shielding layer (corresponding to the interval Wa between the two adjacent first linear portions shown in FIG. 39) is random.
Further, when viewed from the normal direction of the base material 39, a portion corresponding to the first straight portion of the outer peripheral edge of the light shielding layer is defined as a straight edge (corresponding to the straight edge 311 shown in FIG. 32), and the non-forming portion 704 is formed. A portion corresponding to the curved portion is defined as a curved edge (corresponding to the curved edge 314 shown in FIG. 33). When viewed from the normal direction of the base material 39, the total length of all the lengths of the straight edges is longer than the total length of all the lengths of the curved edges.
 具体的には、第7実施形態の光制御部材709では、遮光層740は第1の直線部分701が途切れることなく連続して形成されていた。これに対して、図45に示すように、第7実施形態の第1変形例の光制御部材709Bでは、第1の直線部分701Bの少なくとも一部に遮光層740Bが形成されない非形成部704が設けられている。非形成部704は、基材39の法線方向から見てランダムに複数配置されている。尚、光拡散部741Bは、非形成部704において繋がっている。 Specifically, in the light control member 709 of the seventh embodiment, the light shielding layer 740 is formed continuously without the first straight portion 701 being interrupted. On the other hand, as shown in FIG. 45, in the light control member 709B of the first modified example of the seventh embodiment, the non-forming portion 704 in which the light shielding layer 740B is not formed on at least a part of the first linear portion 701B. Is provided. A plurality of non-forming portions 704 are randomly arranged as viewed from the normal direction of the base material 39. The light diffusion portion 741B is connected in the non-forming portion 704.
 第7実施形態の光制御部材709では、遮光層740において隣り合う2つの第1の直線部分701の間には全て光拡散部741が配置されていた。これに対して、図46に示すように、第7実施形態の第2変形例の光制御部材709Cでは、遮光層740Cの平面形状は隣り合う2つの第1の直線部分701Cの間を繋ぐ連結部706を有している。すなわち、光拡散部741Cの少なくとも一部には光拡散部741Cが形成されない非形成領域が設けられ、この非形成領域に連結部706が配置されている。 In the light control member 709 of the seventh embodiment, the light diffusion portion 741 is disposed between all the two first linear portions 701 adjacent to each other in the light shielding layer 740. On the other hand, as shown in FIG. 46, in the light control member 709C of the second modified example of the seventh embodiment, the planar shape of the light shielding layer 740C is a connection that connects two adjacent first linear portions 701C. Part 706. That is, a non-formation region where the light diffusion unit 741C is not formed is provided in at least a part of the light diffusion unit 741C, and the connecting portion 706 is disposed in this non-formation region.
 一方、図47に示すように、第7実施形態の第3変形例の光制御部材709Dでは、第1の直線部分701Dの少なくとも一部に遮光層740Dが形成されない非形成部704が設けられると共に、遮光層740Dの平面形状は隣り合う2つの第1の直線部分701Dの間を繋ぐ連結部706を有している。 On the other hand, as shown in FIG. 47, in the light control member 709D of the third modified example of the seventh embodiment, a non-forming portion 704 in which the light shielding layer 740D is not formed is provided in at least a part of the first linear portion 701D. The planar shape of the light shielding layer 740D has a connecting portion 706 that connects two adjacent first linear portions 701D.
 本変形例の光制御部材709B,709C,709Dを用いても、表示画面をいずれの方位においても斜めから見たときのガンマ特性の変化を抑制し、視野角特性に優れた液晶表示装置を実現することができる。 Even if the light control members 709B, 709C, and 709D of this modification are used, a change in gamma characteristics when the display screen is viewed obliquely in any direction is suppressed, and a liquid crystal display device excellent in viewing angle characteristics is realized. can do.
[第8実施形態]
 以下、本発明の第8実施形態について、図48~図51を用いて説明する。
 本実施形態の液晶表示装置の基本構成は第1実施形態と同一であり、光制御部材における光拡散部の反射面の構成が第1実施形態と異なる。
 したがって、本実施形態では、液晶表示装置の基本構成の説明は省略し、光制御部材について説明する。
[Eighth Embodiment]
Hereinafter, an eighth embodiment of the present invention will be described with reference to FIGS.
The basic configuration of the liquid crystal display device of the present embodiment is the same as that of the first embodiment, and the configuration of the reflection surface of the light diffusion portion in the light control member is different from that of the first embodiment.
Therefore, in this embodiment, description of the basic structure of a liquid crystal display device is abbreviate | omitted, and demonstrates a light control member.
 図48、図49は、第8実施形態の光制御部材809A,809Bの断面図である。
 図48、図49に示すように、本実施形態の光制御部材809A,809Bは、第1実施形態の光制御部材9に対し、光拡散部841A,841Bの反射面841Ac,841Bcの構成が異なる。
48 and 49 are sectional views of light control members 809A and 809B of the eighth embodiment.
As shown in FIGS. 48 and 49, the light control members 809A and 809B of the present embodiment are different from the light control member 9 of the first embodiment in the configuration of the reflection surfaces 841Ac and 841Bc of the light diffusion portions 841A and 841B. .
 具体的には、第1実施形態の光制御部材9では、光拡散部41の反射面41cの傾斜角度が一定であった。これに対し、図48、図49に示す光制御部材809A,809Bでは、光拡散部841A,841Bの反射面841Ac,841Bcの傾斜角度が連続的に変化している。光拡散部841A,841Bの反射面841Ac,841Bcの断面形状は、曲線状の傾斜面である。 Specifically, in the light control member 9 of the first embodiment, the inclination angle of the reflection surface 41c of the light diffusion portion 41 is constant. On the other hand, in the light control members 809A and 809B shown in FIGS. 48 and 49, the inclination angles of the reflection surfaces 841Ac and 841Bc of the light diffusion portions 841A and 841B continuously change. The cross-sectional shapes of the reflection surfaces 841Ac and 841Bc of the light diffusion portions 841A and 841B are curved inclined surfaces.
 図48に示す光制御部材809Aでは、光拡散部841Aの反射面841Acが中空部842A側に湾曲し、中空部842Aの反射面841Ac側の部分が凹となっている。 In the light control member 809A shown in FIG. 48, the reflection surface 841Ac of the light diffusion portion 841A is curved toward the hollow portion 842A, and the portion of the hollow portion 842A on the reflection surface 841Ac side is concave.
 図49に示す光制御部材809Bでは、光拡散部841Bの反射面841Bcが中空部842B側に湾曲し、中空部842Bの反射面841Bc側の部分が凸となっている。 In the light control member 809B shown in FIG. 49, the reflection surface 841Bc of the light diffusion portion 841B is curved toward the hollow portion 842B, and the portion of the hollow portion 842B on the reflection surface 841Bc side is convex.
 以下、光拡散部の反射面の傾斜角度と面積率との関係について図50、図51を用いて説明する。
 図50は、光拡散部の反射面の傾斜角度の分布が第1の反射面と第2の反射面とで同じ場合における光拡散部の反射面の傾斜角度と面積率との関係を示す図である。図51は、光拡散部の反射面の傾斜角度の分布が第1の反射面と第2の反射面とで異なる場合における光拡散部の反射面の傾斜角度と面積率との関係を示す図である。図50、図51において、横軸は光拡散部の反射面の傾斜角度である。縦軸は光拡散部の反射面の面積率である。面積率とは、光拡散部の反射面を側方から見たときに、反射面全体の面積に対する、ある傾斜角度を有する部分の面積の比率である。本実施形態では、反射面が湾曲しているため、傾斜角度は、反射面の湾曲部分の所定位置における接線と光拡散部の光入射端面とのなす角度となる。ここでは、一例として、第1の反射面の傾斜角度ψ1が第2の反射面の傾斜角度ψ2よりも大きい場合を挙げて説明する。
Hereinafter, the relationship between the inclination angle of the reflection surface of the light diffusion portion and the area ratio will be described with reference to FIGS. 50 and 51. FIG.
FIG. 50 is a diagram illustrating the relationship between the inclination angle of the reflection surface of the light diffusion portion and the area ratio when the distribution of the inclination angle of the reflection surface of the light diffusion portion is the same between the first reflection surface and the second reflection surface. It is. FIG. 51 is a diagram showing the relationship between the inclination angle of the reflection surface of the light diffusion portion and the area ratio when the distribution of the inclination angle of the reflection surface of the light diffusion portion is different between the first reflection surface and the second reflection surface. It is. 50 and 51, the horizontal axis represents the inclination angle of the reflection surface of the light diffusion portion. The vertical axis represents the area ratio of the reflection surface of the light diffusion portion. The area ratio is the ratio of the area of a portion having a certain inclination angle to the area of the entire reflection surface when the reflection surface of the light diffusion portion is viewed from the side. In the present embodiment, since the reflection surface is curved, the inclination angle is an angle formed by a tangent line at a predetermined position of the curved portion of the reflection surface and the light incident end surface of the light diffusion portion. Here, as an example, a case where the tilt angle ψ1 of the first reflecting surface is larger than the tilt angle ψ2 of the second reflecting surface will be described.
 本実施形態において、光拡散部の反射面の傾斜角度は、メインとなる傾斜角度を中心に角度分布に幅を有する。光拡散部の反射面の傾斜角度の分布は、図50に示すように、第1の反射面の傾斜角度ψ1と第2の反射面の傾斜角度ψ2とで、それぞれ同じ傾斜分布でもよい。又、図51に示すように、第1の反射面の傾斜角度ψ1と第2の反射面の傾斜角度ψ2とで、それぞれ異なる傾斜分布でもよい。
 但し、第1の反射面の傾斜角度ψ1の方が第2の反射面の傾斜角度ψ2よりも輝度分布の対称性に対する寄与度が大きい。そのため、輝度分布の対称性をよくするためには第1の反射面の傾斜角度ψ1の分布は狭いほうがよい。
In the present embodiment, the inclination angle of the reflection surface of the light diffusing portion has a width in the angle distribution around the main inclination angle. As shown in FIG. 50, the distribution of the inclination angle of the reflection surface of the light diffusing section may be the same distribution for the inclination angle ψ1 of the first reflection surface and the inclination angle ψ2 of the second reflection surface. Further, as shown in FIG. 51, different inclination distributions may be used for the inclination angle ψ1 of the first reflecting surface and the inclination angle ψ2 of the second reflecting surface.
However, the inclination angle ψ1 of the first reflecting surface contributes more to the symmetry of the luminance distribution than the inclination angle ψ2 of the second reflecting surface. Therefore, in order to improve the symmetry of the luminance distribution, the distribution of the inclination angle ψ1 of the first reflecting surface is preferably narrow.
 本実施形態の光制御部材809A,809Bを用いても、表示画面をいずれの方位においても斜めから見たときのガンマ特性の変化を抑制し、視野角特性に優れた液晶表示装置を実現することができる。 Even when the light control members 809A and 809B of the present embodiment are used, a change in gamma characteristics when the display screen is viewed obliquely in any direction is suppressed, and a liquid crystal display device excellent in viewing angle characteristics is realized. Can do.
[第9実施形態]
 以下、本発明の第9実施形態について、図52、図53を用いて説明する。
 本実施形態の液晶表示装置の基本構成は第8実施形態と同一であり、光制御部材における光拡散部の反射面の構成が第8実施形態と異なる。
 したがって、本実施形態では、液晶表示装置の基本構成の説明は省略し、光制御部材について説明する。
[Ninth Embodiment]
The ninth embodiment of the present invention will be described below with reference to FIGS.
The basic configuration of the liquid crystal display device of the present embodiment is the same as that of the eighth embodiment, and the configuration of the reflection surface of the light diffusion portion in the light control member is different from that of the eighth embodiment.
Therefore, in this embodiment, description of the basic structure of a liquid crystal display device is abbreviate | omitted, and demonstrates a light control member.
 図52、図53は、本実施形態の光制御部材909A,909Bの断面図である。
 図52、図53に示すように、本実施形態の光制御部材909A,909Bは、第8実施形態の光制御部材809A,809Bに対し、光拡散部の反射面の構成が異なる。
52 and 53 are cross-sectional views of the light control members 909A and 909B of this embodiment.
As shown in FIGS. 52 and 53, the light control members 909A and 909B of the present embodiment are different from the light control members 809A and 809B of the eighth embodiment in the configuration of the reflection surface of the light diffusion portion.
 具体的には、第8実施形態の光制御部材809A,809Bでは、光拡散部841A,841Bの反射面の傾斜角度が連続的に変化しており、光拡散部841A,841Bの反射面の断面形状が曲線状の傾斜面であった。これに対し、図52、図53に示す光制御部材909A,909Bでは光拡散部941A,941Bの反射面941Ac,941Bcが複数の異なる傾斜角度を有している。光拡散部941A,941Bの反射面941Ac,941Bcの断面形状は、折れ線状の傾斜面である。 Specifically, in the light control members 809A and 809B of the eighth embodiment, the inclination angles of the reflection surfaces of the light diffusion portions 841A and 841B continuously change, and the cross sections of the reflection surfaces of the light diffusion portions 841A and 841B The shape was a curved inclined surface. In contrast, in the light control members 909A and 909B shown in FIGS. 52 and 53, the reflecting surfaces 941Ac and 941Bc of the light diffusion portions 941A and 941B have a plurality of different inclination angles. The cross-sectional shapes of the reflection surfaces 941Ac and 941Bc of the light diffusion portions 941A and 941B are polygonal inclined surfaces.
 図52に示す光制御部材909Aでは、光拡散部941Aの反射面941Acが傾斜角度の異なる3つの傾斜面を有し、中空部942Aの反射面941Ac側の部分が凹となっている。 In the light control member 909A shown in FIG. 52, the reflection surface 941Ac of the light diffusion portion 941A has three inclined surfaces with different inclination angles, and the portion of the hollow portion 942A on the reflection surface 941Ac side is concave.
 図53に示す光制御部材909Bでは、光拡散部941Bの反射面941Bcが傾斜角度の異なる3つの傾斜面を有し、中空部942Bの反射面941Bc側の部分が凸となっている。 In the light control member 909B shown in FIG. 53, the reflection surface 941Bc of the light diffusion portion 941B has three inclined surfaces having different inclination angles, and the portion of the hollow portion 942B on the reflection surface 941Bc side is convex.
 本実施形態の光制御部材909A,909Bを用いても、表示画面を斜め方向から見たときの階調反転を抑制し、視野角特性に優れた液晶表示装置を得ることができる。 Even if the light control members 909A and 909B of the present embodiment are used, it is possible to obtain a liquid crystal display device that suppresses gradation inversion when the display screen is viewed from an oblique direction and has excellent viewing angle characteristics.
[第10実施形態]
 以下、本発明の第10実施形態について、図54~図56を用いて説明する。
 本実施形態の液晶表示装置の基本構成は第2実施形態と同一であり、光制御部材における遮光層の構成が第2実施形態と異なる。
 したがって、本実施形態では、液晶表示装置の基本構成の説明は省略し、光制御部材について説明する。
[Tenth embodiment]
Hereinafter, a tenth embodiment of the present invention will be described with reference to FIGS.
The basic configuration of the liquid crystal display device of the present embodiment is the same as that of the second embodiment, and the configuration of the light shielding layer in the light control member is different from that of the second embodiment.
Therefore, in this embodiment, description of the basic structure of a liquid crystal display device is abbreviate | omitted, and demonstrates a light control member.
 図54は、本実施形態の液晶表示装置の分解斜視図である。
 第2実施形態の光制御部材209では、遮光層240は面内にランダムに配置されており、遮光層240の密度に場所による差が無かった。これに対して、本実施形態の光制御部材1009では、図54に示すように、遮光層1040は、液晶パネル2のブラックマトリクス30の直上で密度が高く、カラーフィルター31の直上で密度が低くなるように配置されている。図54において、個々の遮光層の図示は省略した。液晶パネル2から鉛直方向へ射出された光が光制御部材1009の光拡散部と中空部との界面に当たると反射されるため、光制御部材1009がある場合には、光制御部材1009が無い場合に比べて正面方向(方位角φ:0°、極角θ:0°方向)へ透過する光の量は少なくなる。この傾向は、遮光層1040が多く配置されているほど顕著になる。
FIG. 54 is an exploded perspective view of the liquid crystal display device of the present embodiment.
In the light control member 209 of the second embodiment, the light shielding layers 240 are randomly arranged in the plane, and the density of the light shielding layers 240 is not different depending on the location. On the other hand, in the light control member 1009 of this embodiment, as shown in FIG. 54, the light shielding layer 1040 has a high density directly above the black matrix 30 of the liquid crystal panel 2 and a low density directly above the color filter 31. It is arranged to be. In FIG. 54, illustration of individual light shielding layers is omitted. When light emitted in the vertical direction from the liquid crystal panel 2 hits the interface between the light diffusion portion and the hollow portion of the light control member 1009, the light is reflected. Therefore, when the light control member 1009 is present, the light control member 1009 is absent. The amount of light transmitted in the front direction (azimuth angle φ: 0 °, polar angle θ: 0 ° direction) is smaller. This tendency becomes more prominent as more light shielding layers 1040 are arranged.
 本実施形態では、もともとブラックマトリクス30によって鉛直方向に進む光が吸収される領域に遮光層1040が配置されるため、正面方向の光量が減ることはない。一方、カラーフィルター31を斜めに透過してブラックマトリクス30の直上で光制御部材1009に入射した光は遮光層1040の直下の光拡散部の反射面で反射されるため、全体での拡散性を高めることができる。
 その結果、ブラックマトリクス30の直上の遮光層1040を増やすことにより、正面方向の光量を減らすことなく光拡散性を高めることができ、液晶表示装置の視野角特性の改善効果を高めることができる。
In the present embodiment, since the light shielding layer 1040 is disposed in a region where light traveling in the vertical direction is absorbed by the black matrix 30 from the beginning, the amount of light in the front direction is not reduced. On the other hand, the light that is transmitted obliquely through the color filter 31 and is incident on the light control member 1009 immediately above the black matrix 30 is reflected by the reflection surface of the light diffusing portion immediately below the light shielding layer 1040. Can be increased.
As a result, by increasing the light shielding layer 1040 immediately above the black matrix 30, light diffusibility can be enhanced without reducing the amount of light in the front direction, and the effect of improving the viewing angle characteristics of the liquid crystal display device can be enhanced.
 図55は、本実施形態の液晶表示装置の他の例を示す斜視図である。
 2つのドメイン50a,50bの境界Gでは液晶分子の配向が乱れ、偏光板を通して見たときの表示画像が局所的に線状に暗くなる領域である。そのため、ブラックマトリクス30に加えて、ドメインの境界Gの直上の遮光層1040を増やすことにより、正面方向の光量を減らすことなく光拡散性を高め、液晶表示装置の視野角特性の改善効果を高めることができる。
FIG. 55 is a perspective view showing another example of the liquid crystal display device of the present embodiment.
At the boundary G between the two domains 50a and 50b, the orientation of the liquid crystal molecules is disturbed, and the display image when viewed through the polarizing plate is locally darkened linearly. Therefore, in addition to the black matrix 30, by increasing the light shielding layer 1040 immediately above the domain boundary G, the light diffusibility is improved without reducing the amount of light in the front direction, and the effect of improving the viewing angle characteristics of the liquid crystal display device is enhanced. be able to.
 いずれの方法においても、遮光層1040の密度が高い領域とブラックマトリクス30もしくはドメイン境界Gの位置を合わせるためには、液晶パネル2と光拡散部材1009との位置をアライメントして貼り合わせる必要がある。そのためには、例えば図56に示すように、液晶パネル2に位置合わせ用のマーカー1032を形成し、光制御部材1009に位置合わせ用のマーカー1034を形成し、対応するマーカー1032,1034の位置が合うようにカメラで確認しながら、液晶パネル2と光制御部材1009とを貼り合わせればよい。このように貼合することで、遮光層1040の密度が高い領域とブラックマトリクス30もしくはドメイン境界Gの位置精度の高い液晶表示装置を実現することができる。 In any of the methods, in order to align the high density area of the light shielding layer 1040 with the position of the black matrix 30 or the domain boundary G, it is necessary to align the positions of the liquid crystal panel 2 and the light diffusion member 1009 and bond them together. . For this purpose, for example, as shown in FIG. 56, a marker 1032 for alignment is formed on the liquid crystal panel 2, a marker 1034 for alignment is formed on the light control member 1009, and the positions of the corresponding markers 1032 and 1034 are The liquid crystal panel 2 and the light control member 1009 may be bonded together while confirming with a camera so as to match. By bonding in this way, it is possible to realize a liquid crystal display device with high positional accuracy between the region where the density of the light shielding layer 1040 is high and the black matrix 30 or the domain boundary G.
 尚、光制御部材1009における位置合わせ用のマーカー1034は、図7に示す光制御部材9と同様、封止部材150が配置される領域、すなわち、遮光層40が存在する領域の外周部に設けられていてもよい。 The alignment marker 1034 in the light control member 1009 is provided in the outer peripheral portion of the region where the sealing member 150 is arranged, that is, the region where the light shielding layer 40 exists, as in the light control member 9 shown in FIG. It may be done.
[第11実施形態]
 以下、本発明の第11実施形態について、図57、図58を用いて説明する。
 本実施形態の光制御部材の基本構成は第1実施形態と同一であり、バックライトの構成が第1実施形態と異なる。
 したがって、本実施形態では、液晶パネル及び光制御部材の説明は省略し、バックライトについて説明する。
[Eleventh embodiment]
The eleventh embodiment of the present invention will be described below with reference to FIGS.
The basic configuration of the light control member of this embodiment is the same as that of the first embodiment, and the configuration of the backlight is different from that of the first embodiment.
Therefore, in this embodiment, description of a liquid crystal panel and a light control member is abbreviate | omitted, and demonstrates a backlight.
 第1実施形態の光制御部材9は、液晶パネル2の方位角φ:0-180°方向から射出された光を、方位角φ:90-270°方向へ射出された光に優先的に混合させる機能を有している。したがって、バックライトから方位角φ:0-180°方向に元々射出されている光量が多い程、方位角φ:90-270°方向に反射される光量も多くなる。その結果、方位角φ:90-270°方向に対する視野角特性の改善効果は大きくなる。そのため、バックライト8は、視野角特性に優れる液晶パネルの方位である方位角φ:0-180°方向に射出されている光の量が、方位角φ:90-270°方向に射出されている光の量よりも多いことが望ましい。 The light control member 9 of the first embodiment preferentially mixes light emitted from the azimuth angle φ: 0-180 ° direction of the liquid crystal panel 2 with light emitted from the azimuth angle φ: 90-270 ° direction. It has a function to make it. Therefore, as the amount of light originally emitted from the backlight in the direction of azimuth φ: 0 to 180 ° increases, the amount of light reflected in the direction of azimuth φ: 90 to 270 ° increases. As a result, the effect of improving the viewing angle characteristic with respect to the azimuth angle φ: 90-270 ° direction is increased. Therefore, in the backlight 8, the amount of light emitted in the azimuth angle φ: 0-180 ° direction, which is the azimuth of the liquid crystal panel excellent in viewing angle characteristics, is emitted in the azimuth angle φ: 90-270 ° direction. It is desirable to have more light than the amount of light.
 図57に示すバックライト1108は、方位角φ:0-180°方向に射出されている光の量が、方位角φ:90-270°方向に射出されている光の量よりも多い特性を有する。バックライト1108は、方位角φ:0-180°方向に射出されている光の量を、方位角φ:90-270°方向に射出されている光の量よりも多くするための構造体を備えている。すなわち、バックライト1108は、基材39の法線方向から見て、液晶分子51のダイレクタの方向Dに垂直な方向に射出される光の量を、液晶分子51のダイレクタの方向Dに平行な方向に射出される光の量よりも多くする。 The backlight 1108 shown in FIG. 57 has a characteristic that the amount of light emitted in the azimuth angle φ: 0-180 ° direction is larger than the amount of light emitted in the azimuth angle φ: 90-270 ° direction. Have. The backlight 1108 has a structure for increasing the amount of light emitted in the direction of azimuth angle φ: 0 to 180 ° more than the amount of light emitted in the direction of azimuth angle φ: 90 to 270 °. I have. That is, the backlight 1108 is configured so that the amount of light emitted in a direction perpendicular to the director direction D of the liquid crystal molecules 51 is parallel to the director direction D of the liquid crystal molecules 51 when viewed from the normal direction of the substrate 39. More than the amount of light emitted in the direction.
 バックライト1108は、導光体1137と、光源36と、プリズムシート1190と、を備えている。光源36は、第1実施形態のバックライト8と同様である。プリズムシート1190は、構造体として、導光体1137に対向する側の面に、導光体1137の端面1137cに垂直かつ導光体1137の光射出面1137bに垂直な平面(yz平面)で切断した断面が三角形状であり、端面1137cと平行な方向に延びる複数の凸部1190Sを備えている。プリズムシート1190は、いわゆるターニングレンズシートと呼ばれる。 The backlight 1108 includes a light guide 1137, a light source 36, and a prism sheet 1190. The light source 36 is the same as the backlight 8 of the first embodiment. The prism sheet 1190 is cut as a structure on a surface facing the light guide 1137 on a plane (yz plane) perpendicular to the end surface 1137c of the light guide 1137 and perpendicular to the light exit surface 1137b of the light guide 1137. The cross section is triangular, and includes a plurality of convex portions 1190S extending in a direction parallel to the end surface 1137c. The prism sheet 1190 is called a so-called turning lens sheet.
 図58は、液晶表示装置の方位角φ:0°-180°方向及び方位角φ:90°-270°方向における極角とバックライトの輝度との関係を示す図である。図58において、横軸は極角(°)を示し、縦軸は輝度を示す。図58において、曲線Uxは方位角φ:0°-180°方向における輝度特性を示し、曲線Uyは方位角90°-270°方向における輝度特性を示す。液晶分子51のダイレクタの方向Dは、図13に示したように、90°-270°方向とする。 FIG. 58 is a diagram showing the relationship between the polar angle and the luminance of the backlight in the azimuth angle φ: 0 ° -180 ° direction and the azimuth angle φ: 90 ° -270 ° direction of the liquid crystal display device. 58, the horizontal axis indicates the polar angle (°), and the vertical axis indicates the luminance. In FIG. 58, a curve Ux shows the luminance characteristics in the direction of azimuth angle φ: 0 ° -180 °, and a curve Uy shows the luminance characteristics in the direction of azimuth angle 90 ° -270 °. The direction D of the director of the liquid crystal molecules 51 is 90 ° -270 ° as shown in FIG.
 図58に示すように、曲線Ux及び曲線Uyは2回転対称の形状を有する。具体的に、基材39の法線方向から見た方位角方向において、バックライト1108から射出される光の輝度分布を示す複数の輝度曲線のうち、少なくとも液晶分子51のダイレクタの方向Dに平行な方向に射出される光の輝度分布を示す曲線Uy(第1の輝度曲線)と、液晶分子51のダイレクタの方向Dに垂直な方向に射出される光の輝度分布を示す曲線Ux(第2の輝度曲線)とは、2回転対称の形状を有する。 As shown in FIG. 58, the curve Ux and the curve Uy have a two-fold symmetrical shape. Specifically, in the azimuth angle direction viewed from the normal direction of the base material 39, among a plurality of luminance curves indicating the luminance distribution of light emitted from the backlight 1108, at least parallel to the director direction D of the liquid crystal molecules 51. A curve Uy (first luminance curve) indicating the luminance distribution of light emitted in a specific direction and a curve Ux (second luminance) indicating the luminance distribution of light emitted in a direction perpendicular to the direction D of the director of the liquid crystal molecules 51. Brightness curve) has a two-fold symmetrical shape.
 本実施形態のバックライト1108によれば、図58に示すように、方位角φ:0-180°方向へ射出されている光の量が相対的に大きいため、光制御部材による視野角特性の改善効果をより高めることができる。 According to the backlight 1108 of the present embodiment, as shown in FIG. 58, since the amount of light emitted in the direction of the azimuth angle φ: 0 to 180 ° is relatively large, the viewing angle characteristics of the light control member The improvement effect can be further enhanced.
 図59は、第11実施形態の他の例のバックライト1108Aを示す断面図である。
 図59に示すバックライト1108Aの基本構成は上述のバックライト1108と同一であり、バックライトにおけるプリズムシートの構成が上述のバックライト1108と異なる。
 したがって、以下において、バックライトの基本構成の説明は省略し、プリズムシートについて説明する。
FIG. 59 is a cross-sectional view showing a backlight 1108A of another example of the eleventh embodiment.
The basic configuration of the backlight 1108A illustrated in FIG. 59 is the same as that of the above-described backlight 1108, and the configuration of the prism sheet in the backlight is different from that of the above-described backlight 1108.
Therefore, in the following, description of the basic configuration of the backlight will be omitted, and the prism sheet will be described.
 上述のバックライト1108では、プリズムシート1190は、構造体として、図57に示したように、導光体1137に対向する側の面に、導光体1137の端面1137cに垂直かつ導光体1137の光射出面1137bに垂直な平面(yz平面)で切断した断面が三角形状であり、端面1137cと平行な方向に延びる複数の凸部1190Sを備えていた。これに対して、図59に示すバックライト1108Aでは、プリズムシート1190Aは、構造体として、導光体1137の端面1137cに垂直かつ導光体1137の光射出面1137bに垂直な平面(yz平面)で切断した断面が三角形状であって端面1137cと平行な方向に延びると共に液晶パネル2(図1参照)と対向する側の面(上述の凸部1190Sの突出方向とは反対側)に向けて凸をなす複数の凸部1190ASを備えている。プリズムシート1190Aには、例えば3M社製のBEFシート(商品名)が用いられる。 In the above-described backlight 1108, the prism sheet 1190 has a structure, as shown in FIG. 57, on the surface facing the light guide 1137, perpendicular to the end surface 1137c of the light guide 1137, and the light guide 1137. The cross section cut by a plane (yz plane) perpendicular to the light exit surface 1137b is triangular, and has a plurality of convex portions 1190S extending in a direction parallel to the end surface 1137c. On the other hand, in the backlight 1108A shown in FIG. 59, the prism sheet 1190A is a plane that is perpendicular to the end surface 1137c of the light guide 1137 and perpendicular to the light exit surface 1137b of the light guide 1137 (yz plane). The cross-section cut in FIG. 3 is triangular and extends in a direction parallel to the end face 1137c, and faces the liquid crystal panel 2 (see FIG. 1) and faces the opposite side (opposite to the protruding direction of the protrusion 1190S). A plurality of convex portions 1190AS are provided. For example, a 3M BEF sheet (trade name) is used as the prism sheet 1190A.
 プリズムシート1190Aを備えるバックライト1108Aを用いても、方位角φ:0-180°方向へ射出されている光の量が相対的に大きいため、光制御部材による視野角特性の改善効果をより高めることができる。 Even when the backlight 1108A including the prism sheet 1190A is used, the amount of light emitted in the direction of the azimuth angle φ: 0 to 180 ° is relatively large, so that the effect of improving the viewing angle characteristics by the light control member is further enhanced. be able to.
[第12実施形態]
 以下、本発明の第12実施形態について、図60、図61を用いて説明する。
 本実施形態の液晶表示装置の基本構成は第1実施形態と同一であり、光制御部材における光拡散部の構成が第1実施形態と異なる。
 したがって、本実施形態では、液晶表示装置の基本構成の説明は省略し、光制御部材について説明する。
[Twelfth embodiment]
The twelfth embodiment of the present invention will be described below with reference to FIGS.
The basic configuration of the liquid crystal display device of this embodiment is the same as that of the first embodiment, and the configuration of the light diffusion portion in the light control member is different from that of the first embodiment.
Therefore, in this embodiment, description of the basic structure of a liquid crystal display device is abbreviate | omitted, and demonstrates a light control member.
 第1実施形態の光制御部材9では、全ての光拡散部41において、光拡散部41の光入射端面41bが光射出端面41aよりも大きくなっていた。これに対して、図60に示すように、本実施形態の光制御部材1209では、複数の光拡散部のうち、光入射端面41bの面積が光射出端面41aの面積よりも大きい光拡散部41の中に、光入射端面1241bの面積が光射出端面1241aの面積よりも小さい光拡散部1241が一部混在している。光拡散部41の反射面41cの傾斜角度θcは90°よりも小さいのに対し、光拡散部1241の反射面1241cの傾斜角度θc‘は90°よりも大きい。この構成の違いにより、光拡散部41の機能と光拡散部1241の機能とが異なる。光拡散部1241の反射面1241cに光が入射すると、基材39の法線方向に対する光線の角度が小さくなる方向に光が反射し、一部の光は液晶表示装置の法線方向(正面方向)へと射出される。光拡散部41により正面方向の光が斜め方向に混合され、光拡散部1241により斜め方向の光が正面方向へ混合されると、正面方向と斜め方向の視野角特性の差が緩和される。その結果、正面方向の画像調整を行った際に斜め方向の視野角特性が改善される。 In the light control member 9 of the first embodiment, in all the light diffusing portions 41, the light incident end surface 41b of the light diffusing portion 41 is larger than the light emitting end surface 41a. On the other hand, as shown in FIG. 60, in the light control member 1209 of this embodiment, among the plurality of light diffusing parts, the light diffusing part 41 has a larger area of the light incident end face 41b than the area of the light emitting end face 41a. The light diffusion part 1241 in which the area of the light incident end face 1241b is smaller than the area of the light exit end face 1241a is partially mixed. While the inclination angle θc of the reflection surface 41c of the light diffusion portion 41 is smaller than 90 °, the inclination angle θc ′ of the reflection surface 1241c of the light diffusion portion 1241 is larger than 90 °. Due to the difference in configuration, the function of the light diffusing unit 41 and the function of the light diffusing unit 1241 are different. When light is incident on the reflection surface 1241c of the light diffusing unit 1241, the light is reflected in a direction in which the angle of the light beam becomes smaller with respect to the normal direction of the base material 39, and a part of the light is in the normal direction (front direction) of the liquid crystal display device. ) Is injected. When light in the front direction is mixed in the oblique direction by the light diffusing unit 41 and light in the oblique direction is mixed in the front direction by the light diffusing unit 1241, the difference in viewing angle characteristics between the front direction and the oblique direction is alleviated. As a result, the viewing angle characteristic in the oblique direction is improved when the image adjustment in the front direction is performed.
 このように、本実施形態の光制御部材1209によれば、第1実施形態と同様の方位角φ:0-180°方向とφ:90-270°方向との視野角特性の差を緩和する効果に加えて、液晶表示装置の法線方向、すなわち画面の正面方向と斜め方向との視野角特性の差を緩和する効果が機能する。これにより、より斜め方向から画面を観た時の正面方向と斜め方向との表示品位の差異が改善される。 Thus, according to the light control member 1209 of the present embodiment, the difference in viewing angle characteristics between the azimuth angle φ: 0-180 ° direction and the φ: 90-270 ° direction similar to the first embodiment is alleviated. In addition to the effect, the effect of alleviating the difference in viewing angle characteristics between the normal direction of the liquid crystal display device, that is, the front direction and the oblique direction of the screen functions. Thereby, the difference in display quality between the front direction and the diagonal direction when the screen is viewed from an oblique direction is improved.
 図61は、本実施形態の光制御部材1209の製造プロセスにおける露光工程の模式図である。光拡散部の反射面の傾斜角度が90°より大きい領域と90°より小さい領域を混在させる方法としては、露光工程を2回に分けて、図61に示すように、1回目の露光工程では、フォトマスク1210を用いて、レジスト1211の一部が露光されないように遮光し、2回目の露光工程では、レジスト1211の全面が露光されるようにフォトマスク1210を取り外して露光を行う。1回目と2回目の露光量を制御することにより、露光量が少ない領域は傾斜角度を90°より大きく、露光量が多い領域は傾斜角度を90°より小さくすることが可能である。又、1回目と2回目の露光工程で光の拡散度を変えることにより、傾斜角度の制御性を変えることができる。 FIG. 61 is a schematic diagram of an exposure process in the manufacturing process of the light control member 1209 of the present embodiment. As a method of mixing a region where the angle of inclination of the reflecting surface of the light diffusing portion is larger than 90 ° and a region smaller than 90 °, the exposure process is divided into two times, as shown in FIG. The photomask 1210 is used to shield a part of the resist 1211 from being exposed, and in the second exposure step, the photomask 1210 is removed so that the entire surface of the resist 1211 is exposed. By controlling the first and second exposure amounts, it is possible to make the tilt angle larger than 90 ° in the region where the exposure amount is small, and make the tilt angle smaller than 90 ° in the region where the exposure amount is large. In addition, the controllability of the tilt angle can be changed by changing the light diffusion degree in the first and second exposure steps.
 又、反射面1241cの傾斜角度が90°より大きい光拡散部1241を含む光制御部材1209で斜め方向の光を正面方向へ反射させることにより、正面方向の特性、例えば入力階調に対して出力する画像の輝度や色度は、光制御部材1209が無い状態と異なる可能性がある。この場合、光制御部材1209を貼合した後に画像調整を行うか、もしくは光制御部材1209によって輝度・色度が変わることを前提にして、予め異なる画像調整を行っておくか、いずれかの方法で解決できる。 Further, the light control member 1209 including the light diffusing portion 1241 having the inclination angle of the reflection surface 1241c larger than 90 ° reflects the light in the oblique direction to the front direction, thereby outputting the characteristic in the front direction, for example, the input gradation. The brightness and chromaticity of the image to be performed may be different from the state without the light control member 1209. In this case, either image adjustment is performed after the light control member 1209 is bonded, or different image adjustments are performed in advance on the assumption that the luminance and chromaticity are changed by the light control member 1209. Can be solved.
[第13実施形態]
 上述の第1実施形態~第12実施形態の液晶表示装置は、各種電子機器に適用することができる。
 以下、上述の第1実施形態~第12実施形態の液晶表示装置を備えた電子機器について、図62~図64を用いて説明する。
 上述の第1実施形態~第12実施形態の液晶表示装置は、例えば、図62に示す薄型テレビに適用できる。
 図62に示す薄型テレビ1350は、表示部1351、スピーカ1352、キャビネット1353及びスタンド1354等を備えている。
 表示部1351として、上述の第1実施形態~第12実施形態の液晶表示装置を好適に適用できる。上述の第1実施形態~第12実施形態の液晶表示装置を薄型テレビ1350の表示部1351に適用することにより、視野角依存性の小さい映像を表示することができる。
[Thirteenth embodiment]
The liquid crystal display devices of the first to twelfth embodiments described above can be applied to various electronic devices.
Hereinafter, electronic devices including the liquid crystal display devices of the first to twelfth embodiments will be described with reference to FIGS. 62 to 64. FIG.
The liquid crystal display devices according to the first to twelfth embodiments described above can be applied to, for example, a thin television shown in FIG.
A thin television 1350 illustrated in FIG. 62 includes a display portion 1351, a speaker 1352, a cabinet 1353, a stand 1354, and the like.
As the display unit 1351, the liquid crystal display devices of the first to twelfth embodiments described above can be suitably applied. By applying the liquid crystal display devices of the first to twelfth embodiments to the display unit 1351 of the flat-screen television 1350, it is possible to display an image with small viewing angle dependency.
 上述の第1実施形態~第12実施形態の液晶表示装置は、例えば、図63に示すスマートフォン1360に適用できる。
 図63に示すスマートフォン1360は、音声入力部1361、音声出力部1362、操作スイッチ1364、表示部1365、タッチパネル1363及び筐体1366等を備えている。
 表示部1365として、上述の第1実施形態~第12実施形態の液晶表示装置を好適に適用できる。上述の第1実施形態~第12実施形態の液晶表示装置をスマートフォン1360の表示部1365に適用することによって、視野角依存性の小さい映像を表示することができる。
The liquid crystal display devices of the first to twelfth embodiments described above can be applied to, for example, the smartphone 1360 shown in FIG.
A smartphone 1360 illustrated in FIG. 63 includes a voice input unit 1361, a voice output unit 1362, an operation switch 1364, a display unit 1365, a touch panel 1363, a housing 1366, and the like.
As the display unit 1365, the liquid crystal display devices of the first to twelfth embodiments described above can be suitably applied. By applying the liquid crystal display devices of the first to twelfth embodiments described above to the display unit 1365 of the smartphone 1360, an image with a small viewing angle dependency can be displayed.
 上述の第1実施形態~第12実施形態の液晶表示装置は、例えば、図64に示すノートパソコン1370に適用できる。
 図64に示すノートパソコン1370は、表示部1371、キーボード1372、タッチパッド1373、メインスイッチ1374、カメラ1375、記録媒体スロット1376及び筐体1377等を備えている。
 表示部1371として、上述の第1実施形態~第12実施形態の液晶表示装置を好適に適用できる。上述の第1実施形態~第12実施形態の液晶表示装置をノートパソコン1370の表示部1371に適用することによって、視野角依存性の小さい映像を表示することができる。
The liquid crystal display devices of the first to twelfth embodiments described above can be applied to, for example, a notebook computer 1370 shown in FIG.
A notebook computer 1370 illustrated in FIG. 64 includes a display portion 1371, a keyboard 1372, a touch pad 1373, a main switch 1374, a camera 1375, a recording medium slot 1376, a housing 1377, and the like.
As the display unit 1371, the liquid crystal display devices of the first to twelfth embodiments described above can be suitably applied. By applying the liquid crystal display devices of the first to twelfth embodiments described above to the display unit 1371 of the notebook computer 1370, an image with a small viewing angle dependency can be displayed.
 尚、本発明のいくつかの態様における技術範囲は上記実施形態に限定されるものではなく、本発明の態様における趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
 例えば、液晶パネルの極角に依存したガンマ特性変化が大きい方位角方向と光制御部材のX字形状の遮光層の上下方向(図24に示す上下長さB2に沿う方向)とは、完全に一致する必要はなく、概ね一致していればよい。
 液晶パネルの極角に依存したガンマ特性変化が大きい方位角方向と、光制御部材のX字形状の遮光層の上下方向とが、±5°程度ずれている場合も、本発明の態様における技術範囲に含まれる。このことから、本発明の一つの態様の液晶表示装置において、液晶パネルは、電圧印加時の液晶層の厚みの中間領域における液晶分子のダイレクタが第1の方向であって互いに異なる向きを向く、二つのドメインを有する複数の画素を備え、第1の偏光板の吸収軸と第2の偏光板の吸収軸とが、互いに直交するとともに、前記第1の方向に対して45°±5°の角度をなすことが好ましい。
 その理由は、上記の角度範囲を超えた場合には、透過率の低下を招くことがあるからである。通常、上記の角度の最適な設計値は45°であるが、パネル内の構成や製造プロセス起因などで最適値の45°から多少ずれることもあり得る。45°から5°ずれた場合には光透過率が約10%程度低下すると思われるが、5°を超えて大きくずれた場合には透過率の低下割合が大幅に増加し、表示性能に影響するためである。
The technical scope of some aspects of the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the aspect of the present invention.
For example, the azimuth angle direction where the gamma characteristic change depending on the polar angle of the liquid crystal panel is large and the vertical direction of the X-shaped light shielding layer of the light control member (the direction along the vertical length B2 shown in FIG. 24) are completely It is not necessary to match, and it is only necessary that they match.
Even in the case where the azimuth angle direction in which the gamma characteristic change depending on the polar angle of the liquid crystal panel is large and the vertical direction of the X-shaped light shielding layer of the light control member are deviated by about ± 5 °, the technique in the aspect of the present invention Included in the range. From this, in the liquid crystal display device according to one aspect of the present invention, the liquid crystal panel has a liquid crystal molecule director in a middle region of the thickness of the liquid crystal layer when a voltage is applied in the first direction and in different directions. A plurality of pixels having two domains, wherein the absorption axis of the first polarizing plate and the absorption axis of the second polarizing plate are orthogonal to each other and 45 ° ± 5 ° with respect to the first direction; It is preferable to make an angle.
The reason is that if the angle range is exceeded, the transmittance may be reduced. Usually, the optimum design value of the above-mentioned angle is 45 °, but it may be slightly deviated from the optimum value of 45 ° due to the configuration in the panel and the manufacturing process. When it deviates from 45 ° by 5 °, the light transmittance is expected to decrease by about 10%, but when it deviates greatly by more than 5 °, the rate of decrease in the transmittance increases significantly, affecting the display performance. It is to do.
 又、上記実施形態における光制御部材の基材の視認側に、反射防止構造、偏光フィルター層、帯電防止層、防眩処理層、防汚処理層のうちの少なくとも一つが設けられた構成であってもよい。この構成によれば、基材の視認側に設ける層の種類に応じて、外光反射を低減する機能、塵埃や汚れの付着を防止する機能、傷を防止する機能等を付加することができ、視野角特性の経時劣化を防ぐことができる。 In the above embodiment, at least one of an antireflection structure, a polarizing filter layer, an antistatic layer, an antiglare treatment layer, and an antifouling treatment layer is provided on the viewing side of the base material of the light control member. May be. According to this configuration, it is possible to add a function to reduce external light reflection, a function to prevent the adhesion of dust and dirt, a function to prevent scratches, and the like according to the type of layer provided on the viewing side of the substrate. Further, it is possible to prevent deterioration of viewing angle characteristics with time.
 特に、反射防止構造の一例として、光制御部材の基材の視認側にアンチグレア層が設けられた構成であってもよい。アンチグレア層としては、例えば、光の干渉を用いて外光を打ち消す誘電体多層膜等が用いられる。 Particularly, as an example of the antireflection structure, a configuration in which an antiglare layer is provided on the viewing side of the base material of the light control member may be used. As the antiglare layer, for example, a dielectric multilayer film that cancels external light using light interference is used.
 反射防止構造の他の例として、光制御部材の基材の視認側に、いわゆるモスアイ構造が設けられた構成であってもよい。本発明において、モスアイ構造は、以下の構造や形状を含むものとする。モスアイ構造は、周期が可視光の波長以下の凹凸形状であり、いわゆる“蛾の目(Moth-eye)”構成の原理を利用した形状や構造である。凹凸の周期は、可視光(λ=380nm~780nm)の波長以下に制御されている。凹凸パターンを構成する凸部の2次元的な大きさは、10nm以上、500nm未満である。基材に入射する光に対する屈折率を凹凸の深さ方向に沿って入射媒体(空気)の屈折率から基材の屈折率まで連続的に変化させることによって反射を抑制する。 As another example of the antireflection structure, a so-called moth-eye structure may be provided on the viewing side of the base material of the light control member. In the present invention, the moth-eye structure includes the following structures and shapes. The moth-eye structure is a concavo-convex shape with a period equal to or less than the wavelength of visible light, and is a shape or structure using the principle of a so-called “Moth-eye” configuration. The period of the unevenness is controlled to be equal to or less than the wavelength of visible light (λ = 380 nm to 780 nm). The two-dimensional size of the convex portions constituting the concavo-convex pattern is 10 nm or more and less than 500 nm. Reflection is suppressed by continuously changing the refractive index for light incident on the base material from the refractive index of the incident medium (air) to the refractive index of the base material along the depth direction of the unevenness.
 又、上記実施形態では、中空部もしくは光拡散部の形状を四角錐台状としたが、その他の形状であってもよい。又、光拡散部の反射面の傾斜角度は、光軸を中心として必ずしも対称でなくても良い。上記実施形態のように、中空部もしくは光拡散部の形状を四角錐台状とした場合には、光拡散部の反射面の傾斜角度が光軸を中心として線対称となるため、光軸を中心として線対称的な角度分布が得られる。これに対して、表示装置の用途や使い方に応じて意図的に非対称な角度分布が要求される場合、例えば画面の上側だけ、あるいは右側だけに視野角を広げたい等の要求がある場合には、光拡散部の反射面の傾斜角度を非対称にしても良い。 Moreover, in the said embodiment, although the shape of the hollow part or the light-diffusion part was made into the shape of a quadrangular pyramid, other shapes may be sufficient. In addition, the inclination angle of the reflection surface of the light diffusing portion is not necessarily symmetric about the optical axis. When the shape of the hollow part or the light diffusing part is a quadrangular pyramid shape as in the above embodiment, the inclination angle of the reflecting surface of the light diffusing part is axisymmetric about the optical axis. A line-symmetric angular distribution is obtained as the center. On the other hand, when an intentionally asymmetric angular distribution is required depending on the application and usage of the display device, for example, when there is a request to widen the viewing angle only on the upper side or only on the right side of the screen. The inclination angle of the reflection surface of the light diffusing unit may be asymmetric.
 又、液晶表示装置内のドメインについては、2つのドメインの面積が異なっていてもよいし、液晶分子のダイレクタの方向は完全に180°異なっていなくてもよい。又、本発明は、画素内に少なくとも2つのドメインがある場合に適用されるものであり、3つ以上のドメインがあってもよい。その場合、視野角特性を改善したい方位角方向に合わせて、光制御部材の遮光層の上下方向を配置すればよい。 In addition, regarding the domains in the liquid crystal display device, the areas of the two domains may be different, and the director direction of the liquid crystal molecules may not be completely different by 180 °. The present invention is applied when there are at least two domains in a pixel, and there may be three or more domains. In that case, the vertical direction of the light shielding layer of the light control member may be arranged in accordance with the azimuth direction in which the viewing angle characteristics are desired to be improved.
 又、上記実施形態においては、図65(A)に示すように、液晶パネル2の1個の画素PXが長方形状の赤(R)、緑(G)、青(B)の3個の副画素で構成され、これら3個の副画素が画面の垂直方向(矢印V方向)に長辺方向を向けて水平方向(矢印H方向)に配列されている例を示した。副画素の配置はこの例に限ることなく、例えば図65(B)に示すように、R,G,Bの3個の副画素が画面の水平方向(矢印H方向)に長辺方向を向けて垂直方向(矢印V方向)に配列されていてもよい。 In the above embodiment, as shown in FIG. 65A, one pixel PX of the liquid crystal panel 2 has three sub-pixels of red (R), green (G), and blue (B) having a rectangular shape. An example in which the three sub-pixels are configured by pixels and arranged in the horizontal direction (arrow H direction) with the long-side direction directed in the vertical direction (arrow V direction) of the screen is shown. The arrangement of the sub-pixels is not limited to this example. For example, as shown in FIG. 65 (B), the three sub-pixels R, G, B are oriented in the horizontal direction (arrow H direction) on the long side. May be arranged in the vertical direction (arrow V direction).
 又、図65(C)に示すように、液晶パネル2の1個の画素が長方形状の赤(R)、緑(G)、青(B)、黄(Y)の4個の副画素で構成され、これら4個の副画素が画面の垂直方向(矢印V方向)に長辺方向を向けて水平方向(矢印H方向)に配列されていてもよい。もしくは、図65(D)に示すように、R,G,B,Yの4個の副画素が画面の水平方向(矢印H方向)に長辺方向を向けて垂直方向(矢印V方向)に配列されていてもよい。もしくは、図65(E)に示すように、液晶パネルの1個の画素が正方形状のR,G,B,Yの4個の副画素で構成され、画面の水平方向と垂直方向とに2行2列に配置されていてもよい。 Further, as shown in FIG. 65C, one pixel of the liquid crystal panel 2 is a rectangular sub-pixel of red (R), green (G), blue (B), and yellow (Y). The four subpixels may be arranged in the horizontal direction (arrow H direction) with the long side direction directed in the vertical direction (arrow V direction) of the screen. Alternatively, as shown in FIG. 65D, the four sub-pixels R, G, B, and Y are oriented in the horizontal direction (arrow H direction) and the long side direction in the vertical direction (arrow V direction). It may be arranged. Alternatively, as shown in FIG. 65 (E), one pixel of the liquid crystal panel is composed of four square R, G, B, and Y sub-pixels, and 2 pixels in the horizontal and vertical directions of the screen. They may be arranged in two rows and two columns.
 以上、図面を参照しながら本発明に係る好適な実施形態について説明したが、本発明は上記の実施形態に限定されないことは言うまでもない。上記の実施形態において示した各構成部材の諸形状や組み合わせ等は一例であって、本発明の主旨から逸脱しない範囲において設計要求等に基づき種々変更可能である。
 その他、表示装置の各構成要素の形状、数、配置、材料、形成方法等に関する具体的な記載は、上記の実施形態に限定されることなく、適宜変更が可能である。例えば上記実施形態では、液晶パネルの外側に偏光板や位相差板を配置する例を示したが、この構成に代えて、液晶パネルを構成する一対の基板の内側に偏光層や位相差層を形成しても良い。
As mentioned above, although preferred embodiment which concerns on this invention was described referring drawings, it cannot be overemphasized that this invention is not limited to said embodiment. Various shapes, combinations, and the like of the constituent members shown in the above embodiment are merely examples, and various modifications can be made based on design requirements and the like without departing from the gist of the present invention.
In addition, specific descriptions regarding the shape, number, arrangement, material, formation method, and the like of each component of the display device are not limited to the above-described embodiment, and can be changed as appropriate. For example, in the above-described embodiment, an example in which a polarizing plate and a retardation plate are arranged outside the liquid crystal panel has been described. Instead of this configuration, a polarizing layer and a retardation layer are provided inside a pair of substrates constituting the liquid crystal panel. It may be formed.
 本発明のいくつかの態様は、液晶表示装置及び光制御部材に利用可能である。 Some embodiments of the present invention can be used for a liquid crystal display device and a light control member.
1…液晶表示装置
2…液晶パネル
3…第1の偏光板
7…第2の偏光板
8,1108,1108A…バックライト(照明装置)
9,209,209A,209B,209C,209D,309,409,509,609,709,709A,709B,709C,709D,809A,809B,909A,909B,1009,1209…光制御部材
10…TFT基板(第1の基板)
11…液晶層
12…カラーフィルター基板(第2の基板)
27…第1の配向膜
34…第2の配向膜
39…基材
40,40A,140,140F,240,240B,240C,240D,340,440,540,640,740,740A,740B,740C,740D,1040…遮光層(遮光部)
41,341,541,641,741,741A,741B,841A,841B,941A,941B,1241…光拡散部
41a,1241a…光射出端面
41b,1241b…光入射端面
41c,141c,841Ac,841Bc,941Ac,941Bc,1241c…反射面(傾斜面)
41r…光拡散部の曲線部(光拡散部のうち交差部に臨む部分)
42,842A,842B,942A,942B…中空部(低屈折率部)
50,PX…画素、51…液晶分子、101,201,701,701A,701B,701C,701D…第1の直線部分
102,202…第2の直線部分
103,203,303,403…交差部
103r…交差部の曲線部(第1の直線部分及び第2の直線部分のうち交差部に臨む部分)
111,112,311,312…直線縁
113…曲線縁(第2の曲線縁)
114,314…曲線縁
134…指標
150…封止部材
304,404,604,704…非形成部
304r…非形成部の曲線部(第1の直線部分及び第2の直線部分のうち非形成部に臨む部分)
341r,641r…光拡散部の曲線部(光拡散部のうち非形成部に臨む部分)
505,605…屈曲部
706…連結部
Ux…第2の輝度曲線
Uy…第1の輝度曲線
W1…第1の直線部分の幅
W1、W2…第2の直線部分の幅
Wa…隣り合う2つの第1の直線部分の間隔
Wb…隣り合う2つの第2の直線部分の間隔
DESCRIPTION OF SYMBOLS 1 ... Liquid crystal display device 2 ... Liquid crystal panel 3 ... 1st polarizing plate 7 ... 2nd polarizing plate 8, 1108, 1108A ... Backlight (illuminating device)
9, 209, 209A, 209B, 209C, 209D, 309, 409, 509, 609, 709, 709A, 709B, 709C, 709D, 809A, 809B, 909A, 909B, 1009, 1209 ... Light control member 10 ... TFT substrate ( First substrate)
11 ... Liquid crystal layer 12 ... Color filter substrate (second substrate)
27 ... 1st alignment film 34 ... 2nd alignment film 39 ... Base material 40, 40A, 140, 140F, 240, 240B, 240C, 240D, 340, 440, 540, 640, 740, 740A, 740B, 740C, 740D, 1040 ... Light shielding layer (light shielding part)
41, 341, 541, 641, 741, 741A, 741B, 841A, 841B, 941A, 941B, 1241... Light diffusion portions 41a, 1241a. , 941Bc, 1241c ... reflective surface (inclined surface)
41r ... curve portion of light diffusion portion (portion of light diffusion portion facing intersection)
42, 842A, 842B, 942A, 942B ... hollow part (low refractive index part)
50, PX ... Pixel, 51 ... Liquid crystal molecule, 101, 201, 701, 701A, 701B, 701C, 701D ... First straight line portion 102, 202 ... Second straight line portion 103, 203, 303, 403 ... Intersection 103r ... Curved part of the intersection (the part facing the intersection of the first straight part and the second straight part)
111, 112, 311, 312 ... straight edge 113 ... curved edge (second curved edge)
114, 314 ... curved edge 134 ... index 150 ... sealing members 304, 404, 604, 704 ... non-formed part 304r ... curved part of the non-formed part (the non-formed part of the first straight line part and the second straight line part) The part that faces
341r, 641r ... curve portion of light diffusion portion (portion facing non-forming portion of light diffusion portion)
505, 605 ... bent portion 706 ... connecting portion Ux ... second luminance curve Uy ... first luminance curve W1 ... first straight portion width W1, W2 ... second straight portion width Wa ... two adjacent two Interval between first straight line portions Wb... Distance between two adjacent second straight line portions.

Claims (37)

  1.  第1の配向膜を有する第1の基板と、第2の配向膜を有する第2の基板と、前記第1の配向膜と前記第2の配向膜との間に挟持された液晶層と、前記液晶層の光入射側に配置された第1の偏光板と、前記液晶層の光射出側に配置された第2の偏光板と、を含む液晶パネルと、
     前記液晶パネルの光射出側に配置された光制御部材と、を備え、
     前記液晶パネルは、電圧印加時の前記液晶層の厚みの中間領域における液晶分子のダイレクタが第1の方向を向く複数の画素を備え、
     前記第1の偏光板の吸収軸と前記第2の偏光板の吸収軸とが、互いに直交するとともに、前記第1の方向に対して非平行の角度をなし、
     前記光制御部材は、光透過性を有する基材と、前記基材の第1の面に設けられた遮光部と、前記基材の前記第1の面の前記遮光部が形成されていない領域を光射出端面とする光拡散部と、前記基材の法線方向から見て前記遮光部と一部重なる位置に設けられ、前記光拡散部の屈折率よりも低い屈折率を有する低屈折率部と、を備え、
     前記光拡散部は、前記基材側に位置する前記光射出端面と、前記基材側と反対側に位置する光入射端面と、前記光射出端面と前記光入射端面との間に位置する傾斜面と、を有し、
     前記基材の法線方向から見た前記遮光部の平面形状は、前記第1の方向に対して交差する第1の直線部分を有する液晶表示装置。
    A first substrate having a first alignment film, a second substrate having a second alignment film, a liquid crystal layer sandwiched between the first alignment film and the second alignment film, A liquid crystal panel comprising: a first polarizing plate disposed on the light incident side of the liquid crystal layer; and a second polarizing plate disposed on the light emission side of the liquid crystal layer;
    A light control member disposed on the light emission side of the liquid crystal panel,
    The liquid crystal panel includes a plurality of pixels in which directors of liquid crystal molecules in a middle region of the thickness of the liquid crystal layer when a voltage is applied are oriented in a first direction,
    The absorption axis of the first polarizing plate and the absorption axis of the second polarizing plate are orthogonal to each other and form an angle that is not parallel to the first direction,
    The light control member includes a light-transmitting base material, a light shielding portion provided on the first surface of the base material, and a region where the light shielding portion of the first surface of the base material is not formed. And a low refractive index having a refractive index lower than the refractive index of the light diffusing portion provided at a position partially overlapping with the light shielding portion when viewed from the normal direction of the base material And comprising
    The light diffusing unit is formed between the light emitting end face located on the substrate side, a light incident end face located on the opposite side of the substrate side, and an inclination located between the light emitting end face and the light incident end face. And having a surface,
    The liquid crystal display device, wherein a planar shape of the light shielding portion viewed from the normal direction of the base material has a first straight line portion intersecting the first direction.
  2.  前記基材の法線方向から見た前記光制御部材の光拡散強度の方位分布は、2回転対称である請求項1に記載の液晶表示装置。 2. The liquid crystal display device according to claim 1, wherein the azimuth distribution of the light diffusion intensity of the light control member viewed from the normal direction of the substrate is two-fold symmetric.
  3.  前記基材の法線方向から見て、前記第1の直線部分は、前記第1の方向に対して45°よりも大きく且つ90°よりも小さい角度をなす請求項1又は2に記載の液晶表示装置。 3. The liquid crystal according to claim 1, wherein the first straight line portion forms an angle larger than 45 ° and smaller than 90 ° with respect to the first direction when viewed from the normal direction of the base material. Display device.
  4.  前記基材の法線方向から見て、前記第1の直線部分は、前記第1の偏光板及び前記第2の偏光板のうちの一方の偏光板の吸収軸と交差する請求項1から3までの何れか一項に記載の液晶表示装置。 The first linear portion intersects with an absorption axis of one of the first polarizing plate and the second polarizing plate as viewed from the normal direction of the substrate. The liquid crystal display device according to any one of the above.
  5.  前記第1の直線部分の少なくとも一部には、前記遮光部が形成されない非形成部が設けられる請求項1から4までの何れか一項に記載の液晶表示装置。 The liquid crystal display device according to any one of claims 1 to 4, wherein a non-formed part where the light shielding part is not formed is provided in at least a part of the first straight line part.
  6.  前記光拡散部のうち前記非形成部に臨む部分は、丸みを帯びた形状を有する請求項5に記載の液晶表示装置。 The liquid crystal display device according to claim 5, wherein a portion of the light diffusing portion facing the non-forming portion has a rounded shape.
  7.  前記第1の直線部分のうち前記非形成部に臨む部分は、丸みを帯びた形状を有し、
     前記光拡散部のうち前記光入射端面側の前記非形成部に臨む部分は、前記第1の直線部分のうち前記非形成部に臨む部分よりも大きい曲率半径を有する請求項6に記載の液晶表示装置。
    Of the first straight part, the part facing the non-forming part has a rounded shape,
    The liquid crystal according to claim 6, wherein a portion of the light diffusion portion that faces the non-forming portion on the light incident end face side has a larger radius of curvature than a portion of the first straight portion that faces the non-forming portion. Display device.
  8.  前記基材の法線方向から見て、前記遮光部の外周縁のうち、前記第1の直線部分に対応する部分を直線縁とし、前記第1の直線部分のうち前記非形成部に臨む部分に対応する部分を曲線縁としたとき、前記直線縁の長さの合計は、前記曲線縁の長さの合計よりも長い請求項7に記載の液晶表示装置。 A portion of the outer peripheral edge of the light-shielding portion that corresponds to the first straight portion as a straight edge, and a portion that faces the non-forming portion of the first straight portion when viewed from the normal direction of the base material 8. The liquid crystal display device according to claim 7, wherein a total length of the straight line edges is longer than a total length of the curved edges when a portion corresponding to is a curved edge.
  9.  前記非形成部は、前記画素に少なくとも1つ配置される請求項5から8までの何れか一項に記載の液晶表示装置。 The liquid crystal display device according to any one of claims 5 to 8, wherein at least one non-forming portion is disposed in the pixel.
  10.  前記平面形状は、前記第1の直線部分と、前記第1の方向に対して交差し且つ前記第1の直線部分に対して交差する交差部を有する第2の直線部分と、を有する請求項1から9までの何れか一項に記載の液晶表示装置。 The planar shape includes the first straight line portion and a second straight line portion having a crossing portion that intersects the first direction and intersects the first straight line portion. The liquid crystal display device according to any one of 1 to 9.
  11.  前記交差部を挟んで対向する第1の角度は、互いに等しい請求項10に記載の液晶表示装置。 The liquid crystal display device according to claim 10, wherein first angles facing each other across the intersection are equal to each other.
  12.  前記第1の角度と隣り合う第2の角度は、前記第1の角度と異なる請求項11に記載の液晶表示装置。 The liquid crystal display device according to claim 11, wherein a second angle adjacent to the first angle is different from the first angle.
  13.  前記第1の角度は、前記第1の方向を向き且つ鈍角をなす請求項11又は12に記載の液晶表示装置。 The liquid crystal display device according to claim 11 or 12, wherein the first angle is oriented in the first direction and an obtuse angle.
  14.  前記光拡散部のうち前記交差部に臨む部分は、丸みを帯びた形状を有する請求項10から13までの何れか一項に記載の液晶表示装置。 The liquid crystal display device according to any one of claims 10 to 13, wherein a portion of the light diffusion portion that faces the intersecting portion has a rounded shape.
  15.  前記第1の直線部分及び前記第2の直線部分のうち前記交差部に臨む部分は、丸みを帯びた形状を有し、
     前記光拡散部のうち前記光入射端面側の前記交差部に臨む部分は、前記第1の直線部分及び前記第2の直線部分のうち前記交差部に臨む部分よりも大きい曲率半径を有する請求項14に記載の液晶表示装置。
    Of the first straight portion and the second straight portion, the portion facing the intersection has a rounded shape,
    The portion of the light diffusing portion that faces the intersecting portion on the light incident end face side has a larger radius of curvature than the portion of the first straight portion and the second straight portion that faces the intersecting portion. 14. A liquid crystal display device according to item 14.
  16.  前記基材の法線方向から見て、前記遮光部の外周縁のうち、前記第1の直線部分及び前記第2の直線部分に対応する部分を直線縁とし、前記第1の直線部分及び前記第2の直線部分のうち前記交差部に臨む部分に対応する部分を第2の曲線縁としたとき、前記直線縁の長さの合計は、前記第2の曲線縁の長さの合計よりも長い請求項15に記載の液晶表示装置。 A portion corresponding to the first straight portion and the second straight portion of the outer peripheral edge of the light shielding portion when viewed from the normal direction of the base material is defined as a straight edge, and the first straight portion and the When the portion corresponding to the portion facing the intersecting portion of the second straight line portion is the second curved edge, the total length of the straight edge is larger than the total length of the second curved edge. The liquid crystal display device according to claim 15 which is long.
  17.  前記交差部は、前記画素に少なくとも1つ配置される請求項10から16までの何れか一項に記載の液晶表示装置。 The liquid crystal display device according to any one of claims 10 to 16, wherein at least one intersection is arranged in the pixel.
  18.  前記交差部は、前記画素のうち視感度透過率が相対的に高い色の画素に少なくとも1つ配置される請求項10から17までの何れか一項に記載の液晶表示装置。 The liquid crystal display device according to any one of claims 10 to 17, wherein at least one of the intersections is arranged in a pixel having a relatively high visibility transmittance among the pixels.
  19.  前記画素は、複数の副画素を有し、
     前記交差部は、前記複数の副画素にそれぞれ同じ数ずつ配置される請求項10から18までの何れか一項に記載の液晶表示装置。
    The pixel has a plurality of sub-pixels;
    19. The liquid crystal display device according to claim 10, wherein the same number of intersections are arranged in each of the plurality of sub-pixels.
  20.  前記画素は、二つのドメインを有し、
     前記交差部は、前記二つのドメインにそれぞれ同じ数ずつ配置される請求項10から19までの何れか一項に記載の液晶表示装置。
    The pixel has two domains,
    20. The liquid crystal display device according to claim 10, wherein the same number of the intersecting portions are arranged in each of the two domains.
  21.  前記遮光部は、前記第1の面に点在して配置される複数のX字形状の遮光層を備える請求項10から20までの何れか一項に記載の液晶表示装置。 The liquid crystal display device according to any one of claims 10 to 20, wherein the light shielding portion includes a plurality of X-shaped light shielding layers that are arranged in a scattered manner on the first surface.
  22.  前記平面形状は、少なくとも一部に屈曲部を有する折れ線形状を有する請求項1から9までの何れか一項に記載の液晶表示装置。 The liquid crystal display device according to any one of claims 1 to 9, wherein the planar shape has a polygonal line shape having a bent portion at least in part.
  23.  前記屈曲部が、前記画素に少なくとも1つ配置される請求項22に記載の液晶表示装置。 The liquid crystal display device according to claim 22, wherein at least one bent portion is disposed in the pixel.
  24.  前記平面形状は、互いに平行に直線状に延びる複数の前記第1の直線部分を有する請求項1から9までの何れか一項に記載の液晶表示装置。 The liquid crystal display device according to any one of claims 1 to 9, wherein the planar shape includes a plurality of the first straight portions extending linearly in parallel with each other.
  25.  前記第1の直線部分の幅は、一定である請求項24に記載の液晶表示装置。 The liquid crystal display device according to claim 24, wherein a width of the first straight line portion is constant.
  26.  隣り合う2つの前記第1の直線部分の間隔は、ランダムである請求項24又は25に記載の液晶表示装置。 The liquid crystal display device according to claim 24 or 25, wherein an interval between two adjacent first straight line portions is random.
  27.  前記平面形状は、隣り合う2つの前記第1の直線部分の間を繋ぐ連結部を有する請求項24から26までの何れか一項に記載の液晶表示装置。 27. The liquid crystal display device according to any one of claims 24 to 26, wherein the planar shape includes a connecting portion that connects two adjacent first straight line portions.
  28.  前記液晶パネルの光入射側に配置された照明装置をさらに備え、
     前記照明装置は、前記基材の法線方向から見て、前記第1の方向に垂直な方向に射出される光の量を、前記第1の方向に平行な方向に射出される光の量よりも多くする請求項1から請求項27までのいずれか一項に記載の液晶表示装置。
    A lighting device disposed on the light incident side of the liquid crystal panel;
    The illuminating device uses an amount of light emitted in a direction perpendicular to the first direction as viewed from the normal direction of the base material, and an amount of light emitted in a direction parallel to the first direction. The liquid crystal display device according to any one of claims 1 to 27, wherein the liquid crystal display device is increased in number.
  29.  前記基材の法線方向から見た方位角方向において、前記照明装置から射出される光の輝度分布を示す複数の輝度曲線のうち、少なくとも前記第1の方向に平行な方向に射出される光の輝度分布を示す第1の輝度曲線と、前記第1の方向に垂直な方向に射出される光の輝度分布を示す第2の輝度曲線とは、2回転対称の形状を有する請求項28に記載の液晶表示装置。 Light emitted in a direction parallel to at least the first direction among a plurality of luminance curves indicating the luminance distribution of light emitted from the illumination device in the azimuth angle direction viewed from the normal direction of the base material The first luminance curve indicating the luminance distribution of the second luminance curve and the second luminance curve indicating the luminance distribution of the light emitted in a direction perpendicular to the first direction have a rotationally symmetric shape. The liquid crystal display device described.
  30.  前記光制御部材は、前記遮光部が存在する領域の外周部を覆う封止部材を備える請求項1から請求項29までのいずれか一項に記載の液晶表示装置。 The liquid crystal display device according to any one of claims 1 to 29, wherein the light control member includes a sealing member that covers an outer peripheral portion of a region where the light shielding portion exists.
  31.  前記封止部材は、前記液晶表示装置の表示領域以外の領域に配置される請求項30に記載の液晶表示装置。 The liquid crystal display device according to claim 30, wherein the sealing member is disposed in a region other than a display region of the liquid crystal display device.
  32.  前記液晶パネルに対する前記光制御部材の位置を示す指標は、前記遮光部が存在する領域の前記外周部に設けられる請求項30又は31に記載の液晶表示装置。 32. The liquid crystal display device according to claim 30, wherein an index indicating a position of the light control member with respect to the liquid crystal panel is provided on the outer peripheral portion of the region where the light shielding portion exists.
  33.  前記封止部材は、前記光拡散部と同じ材料により形成される請求項30から32までの何れか一項に記載の液晶表示装置。 The liquid crystal display device according to any one of claims 30 to 32, wherein the sealing member is formed of the same material as the light diffusion portion.
  34.  光透過性を有する基材と、前記基材の第1の面に設けられた遮光部と、前記基材の前記第1の面の前記遮光部が形成されていない領域を光射出端面とする光拡散部と、前記基材の法線方向から見て前記遮光部と一部重なる位置に設けられ、前記光拡散部の屈折率よりも低い屈折率を有する低屈折率部と、を備え、
     前記光拡散部は、前記基材側に位置する前記光射出端面と、前記基材側と反対側に位置する光入射端面と、前記光射出端面と前記光入射端面との間に位置する傾斜面と、を有し、
     前記基材の法線方向から見た前記遮光部の平面形状が、前記基材の平面形状の一つの辺に対して交差する第1の直線部分を有し、
     前記遮光部が存在する領域の外周部を覆う封止部材を備える光制御部材。
    A light-transmitting base material, a light-shielding portion provided on the first surface of the base material, and a region where the light-shielding portion of the first surface of the base material is not formed is defined as a light emission end surface. A light diffusing part, and a low refractive index part provided at a position partially overlapping with the light shielding part when viewed from the normal direction of the substrate, and having a refractive index lower than the refractive index of the light diffusing part,
    The light diffusing unit is formed between the light emitting end face located on the substrate side, a light incident end face located on the opposite side of the substrate side, and an inclination located between the light emitting end face and the light incident end face. And having a surface,
    The planar shape of the light-shielding portion viewed from the normal direction of the substrate has a first straight line portion that intersects one side of the planar shape of the substrate,
    A light control member comprising a sealing member that covers an outer peripheral portion of a region where the light shielding portion exists.
  35.  光透過性を有する基材と、前記基材の第1の面に設けられた遮光部と、前記基材の前記第1の面の前記遮光部が形成されていない領域を光射出端面とする光拡散部と、前記基材の法線方向から見て前記遮光部と一部重なる位置に設けられ、前記光拡散部の屈折率よりも低い屈折率を有する低屈折率部と、を備え、
     前記光拡散部は、前記基材側に位置する前記光射出端面と、前記基材側と反対側に位置する光入射端面と、前記光射出端面と前記光入射端面との間に位置する傾斜面と、を有し、
     前記基材の法線方向から見た前記遮光部の平面形状が、前記基材側と反対側に配置される偏光板の吸収軸と交差する第1の直線部分を有し、
     前記遮光部が存在する領域の外周部を覆う封止部材を備える光制御部材。
    A light-transmitting base material, a light-shielding portion provided on the first surface of the base material, and a region where the light-shielding portion of the first surface of the base material is not formed is defined as a light emission end surface. A light diffusing part, and a low refractive index part provided at a position partially overlapping with the light shielding part when viewed from the normal direction of the substrate, and having a refractive index lower than the refractive index of the light diffusing part,
    The light diffusing unit is formed between the light emitting end face located on the substrate side, a light incident end face located on the opposite side of the substrate side, and an inclination located between the light emitting end face and the light incident end face. And having a surface,
    The planar shape of the light-shielding portion viewed from the normal direction of the substrate has a first linear portion that intersects the absorption axis of the polarizing plate disposed on the side opposite to the substrate side,
    A light control member comprising a sealing member that covers an outer peripheral portion of a region where the light shielding portion exists.
  36.  光透過性を有する基材と、前記基材の第1の面に設けられた遮光部と、前記基材の前記第1の面の前記遮光部が形成されていない領域を光射出端面とする光拡散部と、前記基材の法線方向から見て前記遮光部と一部重なる位置に設けられ、前記光拡散部の屈折率よりも低い屈折率を有する低屈折率部と、を備え、
     前記光拡散部は、前記基材側に位置する前記光射出端面と、前記基材側と反対側に位置する光入射端面と、前記光射出端面と前記光入射端面との間に位置する傾斜面と、を有し、
     前記基材の法線方向から見た前記遮光部の平面形状が、前記基材の平面形状の一つの辺に対して交差する第1の直線部分と、前記第1の直線部分に対して交差する交差部を有する第2の直線部分と、を有し、
     前記第1の直線部分及び前記第2の直線部分のうち前記交差部に臨む部分は、丸みを帯びた形状を有し、
     前記光拡散部のうち前記光入射端面側の前記交差部に臨む部分は、前記第1の直線部分及び前記第2の直線部分のうち前記交差部に臨む部分よりも大きい曲率半径を有する光制御部材。
    A light-transmitting base material, a light-shielding portion provided on the first surface of the base material, and a region where the light-shielding portion of the first surface of the base material is not formed is defined as a light emission end surface. A light diffusing part, and a low refractive index part provided at a position partially overlapping with the light shielding part when viewed from the normal direction of the substrate, and having a refractive index lower than the refractive index of the light diffusing part,
    The light diffusing unit is formed between the light emitting end face located on the substrate side, a light incident end face located on the opposite side of the substrate side, and an inclination located between the light emitting end face and the light incident end face. And having a surface,
    A planar shape of the light-shielding portion viewed from the normal direction of the base material intersects a first straight line portion intersecting one side of the planar shape of the base material and the first straight line portion. A second straight portion having an intersecting portion that
    Of the first straight portion and the second straight portion, the portion facing the intersection has a rounded shape,
    The portion of the light diffusing portion facing the intersection on the light incident end face side has a larger radius of curvature than the portion of the first linear portion and the second linear portion facing the intersection. Element.
  37.  光透過性を有する基材と、前記基材の第1の面に設けられた遮光部と、前記基材の前記第1の面の前記遮光部が形成されていない領域を光射出端面とする光拡散部と、前記基材の法線方向から見て前記遮光部と一部重なる位置に設けられ、前記光拡散部の屈折率よりも低い屈折率を有する低屈折率部と、を備え、
     前記光拡散部は、前記基材側に位置する前記光射出端面と、前記基材側と反対側に位置する光入射端面と、前記光射出端面と前記光入射端面との間に位置する傾斜面と、を有し、
     前記基材の法線方向から見た前記遮光部の平面形状が、前記基材の平面形状の一つの辺に対して交差する第1の直線部分と、前記第1の直線部分に対して交差する交差部を有する第2の直線部分と、を有し、
     前記基材の法線方向から見て、前記遮光部の外周縁のうち、前記第1の直線部分及び前記第2の直線部分に対応する部分を直線縁とし、前記第1の直線部分及び前記第2の直線部分のうち前記交差部に臨む部分に対応する部分を第2の曲線縁としたとき、前記直線縁の長さの合計は、前記第2の曲線縁の長さの合計よりも長い光制御部材。
    A light-transmitting base material, a light-shielding portion provided on the first surface of the base material, and a region where the light-shielding portion of the first surface of the base material is not formed is defined as a light emission end surface. A light diffusing part, and a low refractive index part provided at a position partially overlapping with the light shielding part when viewed from the normal direction of the substrate, and having a refractive index lower than the refractive index of the light diffusing part,
    The light diffusing unit is formed between the light emitting end face located on the substrate side, a light incident end face located on the opposite side of the substrate side, and an inclination located between the light emitting end face and the light incident end face. And having a surface,
    A planar shape of the light-shielding portion viewed from the normal direction of the base material intersects a first straight line portion intersecting one side of the planar shape of the base material and the first straight line portion. A second straight portion having an intersecting portion that
    A portion corresponding to the first straight portion and the second straight portion of the outer peripheral edge of the light shielding portion when viewed from the normal direction of the base material is defined as a straight edge, and the first straight portion and the When the portion corresponding to the portion facing the intersecting portion of the second straight line portion is the second curved edge, the total length of the straight edge is larger than the total length of the second curved edge. Long light control member.
PCT/JP2015/082399 2014-11-25 2015-11-18 Liquid crystal display device and light control member WO2016084676A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014237717 2014-11-25
JP2014-237717 2014-11-25

Publications (1)

Publication Number Publication Date
WO2016084676A1 true WO2016084676A1 (en) 2016-06-02

Family

ID=56074243

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/082399 WO2016084676A1 (en) 2014-11-25 2015-11-18 Liquid crystal display device and light control member

Country Status (1)

Country Link
WO (1) WO2016084676A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109270730A (en) * 2018-08-15 2019-01-25 住华科技股份有限公司 Optical film, display device and manufacturing method thereof
TWI727481B (en) * 2018-08-15 2021-05-11 住華科技股份有限公司 Optical film

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012157517A1 (en) * 2011-05-13 2012-11-22 シャープ株式会社 Light diffusion member, method for producing same, and display device
WO2013151034A1 (en) * 2012-04-02 2013-10-10 シャープ株式会社 Liquid crystal display device
WO2014034471A1 (en) * 2012-08-27 2014-03-06 シャープ株式会社 Liquid crystal display device
WO2014092017A1 (en) * 2012-12-11 2014-06-19 シャープ株式会社 Light diffusion member and display device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012157517A1 (en) * 2011-05-13 2012-11-22 シャープ株式会社 Light diffusion member, method for producing same, and display device
WO2013151034A1 (en) * 2012-04-02 2013-10-10 シャープ株式会社 Liquid crystal display device
WO2014034471A1 (en) * 2012-08-27 2014-03-06 シャープ株式会社 Liquid crystal display device
WO2014092017A1 (en) * 2012-12-11 2014-06-19 シャープ株式会社 Light diffusion member and display device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109270730A (en) * 2018-08-15 2019-01-25 住华科技股份有限公司 Optical film, display device and manufacturing method thereof
TWI695190B (en) * 2018-08-15 2020-06-01 住華科技股份有限公司 Optical film, display device, and manufacturing method for the same
TWI727481B (en) * 2018-08-15 2021-05-11 住華科技股份有限公司 Optical film
CN109270730B (en) * 2018-08-15 2022-03-25 住华科技股份有限公司 Optical film, display device and manufacturing method thereof

Similar Documents

Publication Publication Date Title
WO2015178321A1 (en) Liquid crystal display device, optical control member, and base material for manufacturing optical control member
JP5937678B2 (en) Liquid crystal display
JP5943265B2 (en) Liquid crystal display
WO2012086424A1 (en) Light diffusing member, method for manufacturing same, and display device
JP5863215B2 (en) Light diffusing member, manufacturing method thereof, and display device
JP6239978B2 (en) Liquid crystal display
JP6101388B2 (en) Liquid crystal display
US20150205151A1 (en) Liquid crystal display device
WO2014084261A1 (en) Light control film and display device
JP2017097053A (en) Liquid crystal display device
JP5332548B2 (en) Color filter and liquid crystal display device including the same
WO2016084676A1 (en) Liquid crystal display device and light control member
JP6015934B2 (en) Liquid crystal display
WO2014080907A1 (en) Liquid crystal display device
WO2016158834A1 (en) Photo-alignment member, lighting device, liquid crystal display device and method for producing photo-alignment member
WO2017022800A1 (en) Photo-alignment control part, lighting device and liquid crystal display device
WO2016088596A1 (en) Liquid crystal display device
WO2015005284A1 (en) Light diffusing member and display device
JP2017097123A (en) Liquid crystal display device and light-controlling member
JP2017097119A (en) Wide viewing angle display system
JP2014032324A (en) Light diffusion member, light diffusion member manufacturing method, and display device
JP2017219618A (en) Liquid crystal display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15863376

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 15863376

Country of ref document: EP

Kind code of ref document: A1