WO2016158834A1 - Photo-alignment member, lighting device, liquid crystal display device and method for producing photo-alignment member - Google Patents

Photo-alignment member, lighting device, liquid crystal display device and method for producing photo-alignment member Download PDF

Info

Publication number
WO2016158834A1
WO2016158834A1 PCT/JP2016/059851 JP2016059851W WO2016158834A1 WO 2016158834 A1 WO2016158834 A1 WO 2016158834A1 JP 2016059851 W JP2016059851 W JP 2016059851W WO 2016158834 A1 WO2016158834 A1 WO 2016158834A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
photo
liquid crystal
alignment
base material
Prior art date
Application number
PCT/JP2016/059851
Other languages
French (fr)
Japanese (ja)
Inventor
奨 越智
昇平 勝田
康 浅岡
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2016158834A1 publication Critical patent/WO2016158834A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors

Definitions

  • the present invention relates to a photo-alignment member, a lighting device, a liquid crystal display device, and a method for manufacturing a photo-alignment member.
  • Liquid crystal display devices are widely used as portable electronic devices such as smartphones, or displays for televisions, personal computers, and the like.
  • the display has become particularly high-definition, and the development of a display that supports a super high-definition video (7680 Pixel ⁇ 4320 Pixel) having a resolution that is four times the width and width of the conventional full high-definition video (1920 Pixel ⁇ 1080 Pixel) is progressing.
  • a liquid crystal display device has different display characteristics when the display screen is viewed from the front and display characteristics when the display screen is viewed from an oblique direction. This difference in display characteristics is greatly influenced by the alignment characteristics of light emitted from the liquid crystal display.
  • One of the causes of this difference in display characteristics is the alignment characteristics of light emitted from the backlight to the liquid crystal panel.
  • a prism sheet or the like is used to control the alignment characteristics of light incident on a liquid crystal panel.
  • seat etc. which have a predetermined structure are used.
  • the direction greatly deviating from the normal direction of the liquid crystal panel means a high angle direction in which an angle (hereinafter referred to as polar angle) formed by the normal direction of the liquid crystal panel and the viewing direction of the observer is 50 ° or more.
  • the light emitted in the high polar angle direction is called sidelobe light.
  • the sidelobe light causes a brightness increase (light leakage) when the liquid crystal display device is viewed from an oblique direction, and causes a decrease in visibility in the oblique direction of the liquid crystal display.
  • the light collecting sheet of Patent Document 2 also controls the light emitted from the backlight, but the orientation is not sufficient.
  • One aspect of the present invention has been made in order to solve the above-described problems, and has an object to provide a photo-alignment member that has high orientation and can enhance the light utilization efficiency of a liquid crystal display device. One of them. Another object of one embodiment of the present invention is to provide a lighting device used for improving the alignment controllability of a liquid crystal display device. Another object of one embodiment of the present invention is to provide a liquid crystal display device capable of controlling viewing angle characteristics.
  • a photo-alignment member includes a light-transmitting base material, a plurality of light-alignment portions provided on the first surface of the base material, Of the first surface, at least a reflection portion provided at a position not overlapping with the photo-alignment portion when viewed from the normal direction of the base material, and partially overlapping with the reflection portion when viewed from the normal direction of the base material And a low refractive index portion having a lower refractive index than the refractive index of the light orientation portion, the light orientation portion having a light incident end face located on the substrate side, and the substrate side And a light exit end face larger than the light incident end face, and an inclined face located between the light entrance end face and the light exit end face.
  • the low refractive index portion may be an air layer.
  • the planar shape of the photo-alignment portion and the reflection portion may be a line shape extending in the first direction of the first surface.
  • a width L in the second direction perpendicular to the first direction of the reflective portion and a height H of the photo-alignment portion are 0.2 ⁇ L / H.
  • the relationship ⁇ 2.0 may be satisfied.
  • the width L of the reflecting portion in the second direction perpendicular to the first direction and the width s of the light incident end surface of the photo-alignment portion are s> 3 / The 7L relationship may be satisfied.
  • an angle formed by the light exit end face and the inclined surface may be 60 ° or more and less than 90 °.
  • the ratio of the area occupied by the reflective portion to the base material may be 70% or less.
  • an angle formed by the light emission end surface and the first inclined surface is The angle formed between the light exit end surface and the second inclined surface may be different.
  • An illumination device is disposed between the light alignment member described above, a light source device disposed on a light incident end surface side of the light alignment member, and between the light alignment member and the light source device, And a structure for orienting light emitted from the light source device in a direction approaching the normal direction of the substrate.
  • the light source device is disposed on a light guide, a light source provided on an end surface of the light guide, and a surface of the light guide opposite to the structure. And a reflecting plate.
  • the structure has a triangular cross section cut in a plane perpendicular to the end surface and perpendicular to the light exit surface of the light guide, and in a direction parallel to the end surface.
  • a plurality of extending protrusions may be used.
  • the light orientation portion may extend in a first direction of the base material, and the direction may coincide with the direction in which the convex portion extends.
  • a liquid crystal display device includes the above-described lighting device and a liquid crystal panel disposed on a light alignment member side of the lighting device.
  • the liquid crystal display device further includes a light control member on a light emission side of the liquid crystal panel, and the light control member includes a second base material having light transmittance, and the second base.
  • a light diffusing portion provided on the first surface of the material, and a position that does not overlap the light diffusing portion when viewed from the normal direction of the second base material in the first surface of the second base material.
  • a second light source having a refractive index lower than a refractive index of the light diffusion portion provided at a position partially overlapping with the light shielding portion when viewed from the normal direction of the second base material.
  • a refractive index portion, and the light diffusing portion has a second light exit end face located on the second base material side and a second light incident on the opposite side to the second base material side.
  • the second low refractive index portion may be an air layer.
  • the manufacturing method of the photo-alignment member which concerns on 1 aspect of this invention is a manufacturing method of the above-mentioned photo-alignment member, Comprising: The process of forming a reflection part in the 1st surface of a base material, The 1st surface of the said base material And a step of forming a photocurable resin layer on the reflective portion, and a step of diffusing light from a surface of the base material where the reflective portion is not formed to cure a part of the photocurable resin layer. And removing the uncured portion of the photo-curable resin layer to form the photo-alignment portion.
  • a photo-alignment member that has high photo-alignment properties and can sufficiently increase the light utilization efficiency of a liquid crystal display device. Further, according to one embodiment of the present invention, it is possible to provide an illumination device that can increase the light use efficiency of the liquid crystal display device and can control the viewing angle dependency of the liquid crystal display device. Further, according to one embodiment of the present invention, it is possible to provide a liquid crystal display device that has high light utilization efficiency and can control viewing angle characteristics.
  • FIG. 1st Embodiment of this embodiment It is a longitudinal cross-sectional view of a liquid crystal panel. It is a block diagram which shows the structure of the drive circuit of a liquid crystal display device. It is a figure which shows the gate bus line and source bus line of a liquid crystal display device. It is a perspective schematic diagram of a photo-alignment member. It is the cross-sectional schematic diagram which expanded the principal part of the reflective layer. It is sectional drawing which showed typically the path
  • FIG. 1st Embodiment of this embodiment It is a longitudinal cross-sectional view of a liquid crystal panel. It is a block diagram which shows the structure of the drive circuit of a liquid crystal display device. It is a figure which shows the gate bus line and source bus line of a liquid crystal display device. It is a perspective schematic diagram of a photo-alignment member. It is the cross-sectional schematic diagram which expanded the principal
  • FIG. 6 is a cross-sectional view schematically showing a path of emitted light in the backlight unit according to one aspect of the present invention. It is a cross-sectional schematic diagram of the condensing sheet described in patent document 2.
  • FIG. It is a figure for demonstrating the definition of a polar angle and an azimuth.
  • It is a front view of a liquid crystal display device. It is the result of measuring the luminance distribution in the vertical direction on the viewing side of the liquid crystal display device when the photo-alignment member is not provided and when the tilt angle of the photo-alignment portion of the photo-alignment member is changed.
  • variety of the light-incidence end surface of a light orientation part is shown.
  • FIG. 5 is an external view showing a thin television that is an application example of the liquid crystal display device of the first to third embodiments.
  • FIG. 11 is an external view showing a smartphone that is an application example of the liquid crystal display device of the first to third embodiments.
  • FIG. 5 is an external view showing a notebook personal computer that is one application example of the liquid crystal display devices of the first to third embodiments. It is a figure which shows the example of the 1st color arrangement
  • FIG. 1 is a cross-sectional view of the liquid crystal display device of the present embodiment.
  • the liquid crystal display device 1 of this embodiment includes a liquid crystal panel 2 and an illumination device (backlight unit) 8.
  • the liquid crystal panel 2 includes a first polarizing plate 3, a first retardation film 4, a liquid crystal cell 5, a second retardation film 6, and a second polarizing plate 7.
  • the liquid crystal cell 5 is schematically illustrated, but the detailed structure thereof will be described later.
  • the backlight unit 8 includes a backlight 36, a light orientation member 37, and a prism sheet 38.
  • the backlight unit 8 corresponds to the illumination device recited in the claims.
  • the backlight 36 corresponds to the light source device in the claims.
  • the prism sheet 38 corresponds to the structure of the claims.
  • the observer views the display image of the liquid crystal display device 1 from the surface opposite to the backlight unit 8 of the liquid crystal panel 2.
  • the side opposite to the backlight unit 8 of the liquid crystal panel 2 is referred to as a viewing side.
  • the side on which the backlight unit 8 is disposed is referred to as the back side.
  • the x axis is defined as the horizontal direction of the screen of the liquid crystal display device 1.
  • the y axis is defined as the vertical direction of the screen of the liquid crystal display device 1.
  • the z axis is defined as the thickness direction of the liquid crystal display device 1.
  • the horizontal direction of the screen corresponds to the left-right direction when the observer views the liquid crystal display device 1 facing the front.
  • the vertical direction of the screen corresponds to the up-down direction when the observer views the liquid crystal display device 1 facing the front.
  • liquid crystal display device 1 of the present embodiment light emitted from the backlight unit 8 after being aligned in the z-axis direction is modulated by the liquid crystal panel 2, and a predetermined image, character, or the like is displayed by the modulated light.
  • liquid crystal panel 2 an active matrix transmissive liquid crystal panel will be described as an example.
  • the liquid crystal panel applicable to this embodiment is not limited to an active matrix transmissive liquid crystal panel.
  • the liquid crystal panel 2 applicable to the present embodiment may be, for example, a transflective (transmission / reflection type) liquid crystal panel.
  • a simple matrix type liquid crystal panel in which each pixel does not include a switching thin film transistor may be used.
  • a thin film transistor is abbreviated as TFT.
  • FIG. 2 is a longitudinal sectional view of the liquid crystal panel 2.
  • the liquid crystal cell 5 includes a TFT substrate 10, a color filter substrate 12, and a liquid crystal layer 11.
  • the TFT substrate 10 functions as a switching element substrate.
  • the color filter substrate 12 is disposed to face the TFT substrate 10.
  • the liquid crystal layer 11 is sandwiched between the TFT substrate 10 and the color filter substrate 12.
  • the liquid crystal layer 11 is sealed in a space surrounded by the TFT substrate 10, the color filter substrate 12, and a frame-shaped seal member (not shown).
  • the sealing member bonds the TFT substrate 10 and the color filter substrate 12 at a predetermined interval.
  • the liquid crystal panel 2 of the present embodiment performs display in a VA (Vertical Alignment) mode.
  • a liquid crystal having a negative dielectric anisotropy is used for the liquid crystal layer 11.
  • a spacer 13 is disposed between the TFT substrate 10 and the color filter substrate 12.
  • the spacer 13 is a spherical or columnar member. The spacer 13 keeps the distance between the TFT substrate 10 and the color filter substrate 12 constant.
  • a TFT 19 having a semiconductor layer 15, a gate electrode 16, a source electrode 17, a drain electrode 18 and the like is formed on the surface of the transparent substrate 14 constituting the TFT substrate 10 on the liquid crystal layer 11 side.
  • the transparent substrate 14 for example, a glass substrate can be used.
  • a semiconductor layer 15 is formed on the transparent substrate 14.
  • the semiconductor layer is made of a quaternary mixed crystal semiconductor material containing, for example, indium (In), gallium (Ga), zinc (Zn), and oxygen (O).
  • a material of the semiconductor layer in addition to In—Ga—Zn—O-based quaternary mixed crystal semiconductor, CGS (Continuous Grain Silicon), LPS (Low-temperature Poly-Silicon), A semiconductor material such as ⁇ -Si (Amorphous Silicon) is used.
  • a gate insulating film 20 is formed on the transparent substrate 14 so as to cover the semiconductor layer 15.
  • a material of the gate insulating film 20 for example, a silicon oxide film, a silicon nitride film, or a laminated film thereof is used.
  • a gate electrode 16 is formed on the gate insulating film 20 so as to face the semiconductor layer 15.
  • a laminated film of W (tungsten) / TaN (tantalum nitride), Mo (molybdenum), Ti (titanium), Al (aluminum), or the like is used.
  • a first interlayer insulating film 21 is formed on the gate insulating film 20 so as to cover the gate electrode 16.
  • a material of the first interlayer insulating film 21 for example, a silicon oxide film, a silicon nitride film, or a laminated film thereof is used.
  • a source electrode 17 and a drain electrode 18 are formed on the first interlayer insulating film 21.
  • a contact hole 22 and a contact hole 23 are formed in the first interlayer insulating film 21 and the gate insulating film 20 so as to penetrate the first interlayer insulating film 21 and the gate insulating film 20.
  • the source electrode 17 is connected to the source region of the semiconductor layer 15 through the contact hole 22.
  • the drain electrode 18 is connected to the drain region of the semiconductor layer 15 through the contact hole 23.
  • a second interlayer insulating film 24 is formed on the first interlayer insulating film 21 so as to cover the source electrode 17 and the drain electrode 18.
  • the same material as the first interlayer insulating film 21 described above or an organic insulating material is used.
  • a pixel electrode 25 is formed on the second interlayer insulating film 24.
  • a contact hole 26 is formed through the second interlayer insulating film 24 in the second interlayer insulating film 24.
  • the pixel electrode 25 is connected to the drain electrode 18 through the contact hole 26.
  • the pixel electrode 25 is connected to the drain region of the semiconductor layer 15 using the drain electrode 18 as a relay electrode.
  • a transparent conductive material such as ITO (Indium Tin Oxide) or IZO (Indium Zinc Oxide) is used.
  • the image signal supplied to the source electrode 17 through the source bus line passes through the semiconductor layer 15 and the drain electrode 18 to form a pixel electrode. 25.
  • the form of the TFT 19 may be the top gate type TFT shown in FIG. 2 or the bottom gate type TFT.
  • a first vertical alignment film 27 is formed on the entire surface of the second interlayer insulating film 24 so as to cover the pixel electrode 25.
  • the first vertical alignment film 27 has an alignment regulating force for vertically aligning liquid crystal molecules constituting the liquid crystal layer 11.
  • the first vertical alignment film 27 is subjected to an alignment process using an optical alignment technique. That is, in this embodiment, a photo-alignment film is used as the first vertical alignment film 27.
  • a black matrix 30, a color filter 31, a planarization layer 32, a counter electrode 33, and a second vertical alignment film 34 are sequentially formed on the surface of the transparent substrate 29 constituting the color filter substrate 12 on the liquid crystal layer 11 side. ing.
  • the black matrix 30 has a function of blocking light transmission in the inter-pixel region.
  • the black matrix 30 is formed of, for example, a metal such as Cr (chromium) or a Cr / Cr oxide multilayer film, or a photoresist in which carbon particles are dispersed in a photosensitive resin.
  • the color filter 31 includes one of red (R), green (G), and blue (B) pigments for each sub-pixel having a different color that constitutes one pixel.
  • One color filter 31 of R, G, and B is disposed to face one pixel electrode 25 on the TFT substrate 10.
  • the color filter 31 may have a multicolor configuration of three or more colors of R, G, and B. For example, a four-color configuration with yellow (Y) added, a four-color configuration with white (W) added, or a yellow (Y), cyan (C), and magenta (M) added 6 A color configuration may be used.
  • the planarization layer 32 is composed of an insulating film that covers the black matrix 30 and the color filter 31.
  • the planarizing layer 32 has a function of smoothing and leveling a step formed by the black matrix 30 and the color filter 31.
  • a counter electrode 33 is formed on the planarization layer 32.
  • a transparent conductive material similar to that of the pixel electrode 25 is used.
  • a second vertical alignment film 34 is formed on the entire surface of the counter electrode 33.
  • the second vertical alignment film 34 has an alignment regulating force for vertically aligning the liquid crystal molecules constituting the liquid crystal layer 11.
  • the alignment process is performed on the second vertical alignment film 34 using a photo-alignment technique. That is, in this embodiment, a photo-alignment film is used as the second vertical alignment film 34.
  • a first polarizing plate 3 is provided between the backlight unit 8 and the liquid crystal cell 5.
  • the first polarizing plate 3 functions as a polarizer that controls the polarization state of light incident on the liquid crystal cell 5.
  • a second polarizing plate 7 is provided on the viewing side of the liquid crystal cell 5.
  • the second polarizing plate 7 functions as an analyzer that controls the transmission state of the light emitted from the liquid crystal cell 5. As will be described later, the transmission axis of the first polarizing plate 3 and the transmission axis of the second polarizing plate 7 are in a crossed Nicol arrangement.
  • the 1st phase difference film 4 for compensating the phase difference of light is provided between the 1st polarizing plate 3 and the liquid crystal cell 5.
  • a second retardation film 6 is provided between the second polarizing plate 7 and the liquid crystal cell 5 to compensate for the phase difference of light.
  • the retardation film (first retardation film 4, second retardation film 6) of the present embodiment for example, a TAC film is used.
  • FIG. 3 is a schematic wiring diagram of the driver and timing controller (TCON) of the liquid crystal display device 1.
  • the liquid crystal display device 1 of the present embodiment has four TCONs 80, and the four TCONs 80 are input to the source driver 81 and the gate driver 82 in the upper right area, upper left area, lower right area, and lower left area of the screen 83, respectively. The signal is controlled.
  • FIG. 4 is an enlarged view of an image display area of the liquid crystal display device 1.
  • the TFT substrate 10 has a plurality of pixels PX arranged in a matrix.
  • the pixel PX is a basic unit of display.
  • a plurality of source bus lines SB are formed on the TFT substrate 10 so as to extend in parallel to each other.
  • a plurality of gate bus lines GB are formed on the TFT substrate 10 so as to extend in parallel to each other.
  • the plurality of gate bus lines GB are orthogonal to the plurality of source bus lines SB.
  • a plurality of source bus lines SB and a plurality of gate bus lines GB are formed in a lattice pattern.
  • a rectangular area defined by the adjacent source bus line SB and the adjacent gate bus line GB is one pixel PX.
  • the source bus line SB is connected to the source electrode of the TFT.
  • the gate bus line GB is connected to the gate electrode of the TFT.
  • two source bus lines SB1, SB2 are formed for one column of pixels PX, and the first source bus line SB1 has an odd row (Line 1, 3,). ) Of pixels PX are connected, and pixels PX of even-numbered rows (Lines 2, 4,...) Are connected to the second source bus line SB2.
  • two gate bus lines GB are selected, and signals are written to the pixels PX two rows at a time.
  • the video signal When a video signal is input from the outside, the video signal is divided into four and supplied to four TCONs 80, and two gate bus lines GB are simultaneously selected. Therefore, at the first timing, the video is displayed on the first row, the second row, the 2161th row, the 2162th row, and then the fourth row, the fourth row, the 2163th row, the 2164th row, and so on. Is displayed, and after the last gate bus line GB in the 4320th row is selected, the next video signal is written again from above.
  • the driving method is not limited to the simultaneous writing of the four lines, and scanning may be performed line by line when the wiring capacity is sufficiently small and the response speed of the liquid crystal is sufficiently high.
  • the backlight unit 8 which is a lighting device will be described in detail.
  • the backlight unit 8 includes a backlight 36, a prism sheet 38, and a light orientation member 37.
  • the backlight 36 includes a light source 39, a light guide 40 and a reflection plate 41.
  • the light source 39 is disposed on the end face of the light guide 40.
  • As the light source 39 for example, a light emitting diode, a cold cathode tube, or the like is used.
  • the backlight 36 of the present embodiment is an edge light type backlight.
  • the light guide 40 has a function of guiding the light emitted from the light source 39 to the liquid crystal panel 2.
  • a resin material such as an acrylic resin is used.
  • the light incident on the end surface of the light guide 40 from the light source 39 propagates by being totally reflected inside the light guide 40 and is emitted from the upper surface (light emission surface) of the light guide 40 with a substantially uniform intensity.
  • a prism sheet 38 is disposed on the upper surface of the light guide 40.
  • the prism sheet 38 is disposed between the light orientation member 37 and the backlight 36, and orients the light incident from the backlight in the z-axis direction (normal direction of the base material).
  • the prism sheet 38 has a triangular cross section cut in the y-axis direction, and includes a plurality of convex portions extending in the x-axis direction. Therefore, the prism sheet 38 is perpendicular and convex with respect to the first surface portion 38a on the light guide 40 side, the second surface portion 38b having a predetermined angle with respect to the first surface portion 38a, and the first surface portion 38a.
  • a third surface portion 38c that is symmetrical to the second surface portion 38b around a plane (xZ plane) parallel to the extending direction (x-axis direction) of the portion.
  • a BEF sheet (trade name) manufactured by Sumitomo 3M may be used.
  • the angles formed by the first surface portion 38a and the second surface portion 38b, and the first surface portion 38a and the 23rd surface portion 38c are not particularly limited. A commercially available product can be used as appropriate in accordance with the orientation of light emitted from the prism sheet 38.
  • the light guide 40 and the prism sheet 38 constituting the backlight 36 may or may not be optically bonded via an adhesive.
  • the refractive index interface between the light guide 40 and the prism sheet 38 is filled with an adhesive layer and optically connected (the optical interface is eliminated), the interface reflection is reduced. Therefore, the light use efficiency can be increased.
  • the light guide 40 and the prism sheet 38 are not optically bonded (for example, an air interface is provided between them)
  • the light guide 40 has an interface on the prism sheet 38 side and the light guide of the prism sheet 38. There will be a 40-side interface. That is, it is possible to further suppress the generated side lobe light from entering the liquid crystal panel 2 side. Therefore, the configuration of the interface between the light guide 40 and the prism sheet 38 can be appropriately designed depending on the mode of use.
  • a scattering sheet may be disposed between the light guide 40 and the prism sheet 38.
  • the light emitted from the upper surface of the light guide 40 is scattered by the scattering sheet and then collected by the prism sheet 38, and a part of the light is oriented in the z-axis direction.
  • White PET may be used as the scattering sheet.
  • the scattering sheet is not limited to between the light guide 40 and the prism sheet 38, and may be provided between the prism sheet 38 and the light alignment member 37, and between the light alignment member 37 and the liquid crystal panel 2. In the drawn image drawn through the liquid crystal panel 2, unevenness including moire may occur.
  • the arrangement of the scattering sheet, the scattering intensity, and the like can be appropriately set according to the position and degree of the unevenness.
  • FIG. 5 is a schematic perspective view of the photo-alignment member 37 viewed from the viewing side.
  • the photo-alignment member 37 includes a base material 42, a plurality of photo-alignment portions 43, a reflective layer 44, and a low refractive index portion (hollow portion) 45.
  • the plurality of photo-alignment portions 43 are formed on the first surface 42 a (surface on the viewing side) of the base material 42.
  • the reflective layer 44 is formed in a region other than the region where the photo-alignment portion 43 is formed on the first surface 42 a of the base material 42.
  • the reflective layer 44 when the reflective layer 44 is viewed in plan, it is provided at least at a position on the first surface 42 a that does not overlap with the photo-alignment portion 43 when viewed from the normal direction of the base material 42.
  • “at least” means that the optical alignment portion 43 is inclined when viewed in a plan view, and therefore there is a region where the optical alignment portion 43 and the reflective layer 44 partially overlap.
  • the hollow portion 45 is provided at a position that partially overlaps the reflective layer 44 when viewed from the normal direction of the substrate 42.
  • the reflective layer 44 corresponds to a reflective portion in the claims.
  • the hollow portion 45 corresponds to a low refractive index portion in the claims.
  • the photo-alignment member 37 is disposed on the prism sheet 38 with the photo-alignment member 43 facing the first polarizing plate 3 and the base material 42 facing the prism sheet 38 side.
  • the photo-alignment member 37 is disposed on the first polarizing plate 3 side.
  • the photo-alignment member 37 and the first polarizing plate 3 may or may not be optically bonded via an adhesive.
  • the refractive index interface between the optical alignment member 37 and the first polarizing plate 3 is filled with an adhesive layer and optically connected (the optical interface is eliminated), the interface reflection is reduced. Therefore, the light use efficiency can be increased.
  • the interface on the first polarizing plate 3 side of the optical alignment member 37 and the first polarization There is an interface on the optical alignment member 37 side of the plate 3. That is, the generated side lobe light can be prevented from entering the liquid crystal panel 2 side. Therefore, the configuration of the interface between the photo-alignment member 37 and the first polarizing plate 3 can be appropriately designed depending on the mode of use.
  • the base material 42 examples include base materials made of transparent resin such as triacetyl cellulose (TAC) film, polyethylene terephthalate (PET), polycarbonate (PC), polyethylene naphthalate (PEN), and polyethersulfone (PES) film.
  • TAC triacetyl cellulose
  • PET polyethylene terephthalate
  • PC polycarbonate
  • PEN polyethylene naphthalate
  • PES polyethersulfone
  • the base material 42 becomes a base when a material for the reflective layer 44 and the photo-alignment portion 43 is applied later in the manufacturing process.
  • the base material 42 needs to have heat resistance and mechanical strength in a heat treatment step during the manufacturing process. Therefore, the base material 42 may be a glass base material in addition to the resin base material. However, it is preferable that the thickness of the base material 42 is thin enough not to impair heat resistance and mechanical strength.
  • the total light transmittance of the base material 42 is preferably 90% or more as defined in JIS K7361-1. When the total light transmittance is 90% or more, sufficient transparency can be obtained.
  • a transparent resin substrate having a thickness of, for example, 100 ⁇ m is used as the substrate 42.
  • the reflective layer 44 is made of a material having a high reflectance from the ultraviolet light region to the visible light region. More specifically, the reflective layer 44 is preferably made of a material having an average reflectance of 80% or more with respect to a wavelength region of 250 nm to 800 nm. For example, aluminum, silver, chromium, chromium oxide, platinum, or the like can be used.
  • the reflective layer 44 does not need to be a flat metal layer in which regular reflection occurs.
  • the reflective layer 44 may be a scatterer including a filler or the like inside.
  • the reflective layer 44 is arranged in a line when viewed from the normal direction (z-axis direction) of the first surface 42 a of the base material 42. That is, the reflective layer 44 is a plane having a predetermined width extending in the x-axis direction, and a plurality of the reflective layers 44 are arranged at predetermined intervals in the y-axis direction.
  • the width of the reflective layer 44 and the interval between the reflective layers 44 are combined with the height H from the light incident end face 43b to the light exit end face 43a of the light orientation section 43, which will be described later, and the angle ⁇ c formed between the light exit end face 43a and the reflective face 43c. It is preferable to set appropriately.
  • the width of the reflective layer 44 is about 10 to 20 ⁇ m, and the distance between the reflective layers 44 is about 10 to 20 ⁇ m.
  • the surface 44 a on the base material 42 side of the reflective layer 44 is opposite to the base material 42 of the reflective layer 44 at the end face when the reflective layer 44 is cut along a plane parallel to the y-axis direction. It is preferable to protrude with respect to the surface 44b. According to this configuration, the end surface when the reflecting surface 44 is cut along a plane parallel to the y-axis direction forms an inclined surface. Therefore, the light incident on the light alignment portion 43 from an oblique direction can be aligned in the normal direction of the liquid crystal panel 2 by the reflective layer 44.
  • This inclined surface may be a flat surface or a curved surface.
  • the relationship between the protrusion width A of the surface 44a of the reflective layer 44 on the base 42 side and the surface 44b of the reflective layer 44 opposite to the base 42 and the thickness T of the reflective layer 44 is 0. It can be about 4.
  • the photo-alignment portion 43 is made of an organic material having optical transparency and photosensitivity such as acrylic resin and epoxy resin. Further, the total light transmittance of the photo-alignment portion 43 is preferably 90% or more in accordance with JIS K7361-1. When the total light transmittance is 90% or more, sufficient transparency can be obtained.
  • the photo-alignment portion 43 has a line shape extending in the x-axis direction.
  • the light alignment portion 43 has a light emission end surface 43a, a light incident end surface 43b, and a reflection surface 43c.
  • the light incident end surface 43 b is a surface in contact with the base material 42.
  • the light emission end surface 43a is a surface facing the light incident end surface 43b.
  • the reflection surface 43 c is a tapered inclined surface of the photo-alignment portion 43.
  • the reflecting surface 43c is a surface that reflects the light incident from the light incident end surface 43b.
  • the area of the light incident end face 43b is smaller than the area of the light exit end face 43a in all the light orientation portions 43.
  • the inclination angle of the reflection surface 43c of the light alignment portion 43 is about 80 ° ⁇ 5 °.
  • the inclination angle ⁇ c of the reflection surface 43c of the light alignment portion 43 can sufficiently align the side lobe light in the z-axis direction. If the inclination angle ⁇ c is not too small and less than 90 °, the sidelobe light can be sufficiently efficiently oriented in the z-axis direction.
  • a preferable range of the inclination angle ⁇ c will be described later in terms of the function of the photo-alignment portion 43.
  • the height H from the light incident end face 43 b to the light exit end face 43 a of the light orientation portion 43 is set to be larger than the layer thickness h of the reflective layer 44.
  • the layer thickness h of the reflective layer 44 is about 150 nm as an example.
  • the height H from the light incident end face 43b to the light exit end face 43a of the light orientation section 43 is about 10 to 20 ⁇ m as an example. From the viewpoint of producing the photo-alignment portion 43 by photolithography, it is preferably 50 ⁇ m or less.
  • a portion surrounded by the reflection surface 43 c and the reflection layer 44 of the photo-alignment portion 43 is a hollow portion 45. Air exists in the hollow portion 45.
  • the refractive index of the base material 42 and the refractive index of the photo-alignment portion 43 are substantially equal.
  • the reason is as follows. For example, consider a case where the refractive index of the base material 42 and the refractive index of the photo-alignment portion 43 are significantly different. In this case, when light incident from the light incident end face 43 b is emitted from the light alignment portion 43, unnecessary light refraction or reflection may occur at the interface between the light alignment portion 43 and the base material 42. In this case, there is a possibility that problems such as failure to obtain a desired photo-alignment property and a decrease in the amount of emitted light may occur.
  • the photo-alignment portion 43 is formed of, for example, a transparent acrylic resin, the reflection surface 43c of the photo-alignment portion 43 becomes an interface between the transparent acrylic resin and air.
  • the hollow portion 45 may be filled with another low refractive index material.
  • the difference in the refractive index at the interface between the inside and the outside of the photo-alignment portion 43 is maximized when air is present rather than when any low refractive index material is present outside.
  • the critical angle is the smallest, and the incident angle range in which the light is totally reflected by the reflection surface 43c of the light orientation portion 43 is the widest. As a result, light loss is further suppressed, and high luminance can be obtained.
  • the hollow portion 45 of the present embodiment corresponds to the low refractive index portion in the claims.
  • FIG. 7 is a schematic diagram for explaining functions of a backlight system including only a backlight and a prism sheet.
  • the prism sheet 38 has a function of guiding a part of the light emitted from the light guide 40 in the normal direction (z-axis direction).
  • sidelobe light emitted in the direction close to the y-axis direction at the same time is generated.
  • the light emitted from the light source 39 is emitted to the prism sheet 38 while propagating by totally reflecting inside the light guide 40. Therefore, the light emitted from the light guide 40 is emitted while being inclined in the direction (y direction) from the end of the light guide 40 on the light source 39 side toward the opposite end. Therefore, most of the emitted light is refracted by the second surface portion 38b of the prism sheet 38 and emitted toward the liquid crystal panel 2 as indicated by the light L1. In other words, the prism sheet 38 can guide part of the light emitted from the light guide 40 in the normal direction.
  • the third surface portion 38c of the prism sheet 38 is inclined in the same direction as the light emitted from the light guide 40. Therefore, the light incident on the third surface portion 38c is often totally reflected. As shown by the light L2, the totally reflected light is refracted by the second surface portion 38b and is emitted in a direction close to the y-axis direction. For this reason, the light incident on the third surface portion 38c cannot guide the light emitted from the light guide 40 in the normal direction, and becomes sidelobe light.
  • FIG. 8 is a schematic diagram for explaining the function of the backlight system according to the first embodiment of the present invention.
  • a light orientation member 37 is disposed on the prism sheet 38 on the liquid crystal panel 2 (see FIG. 1) side.
  • the extending direction of the light orientation part 43 and the extending direction of the convex part of the prism sheet 38 are the same.
  • the side lobe light generated in the prism sheet 38 can be more efficiently oriented in the normal direction.
  • the light (light L ⁇ b> 2) that has become sidelobe light enters the photo-alignment member 37.
  • the incident light passes through the base material 42, is refracted by the reflecting surface 43c of the orientation portion 43, and is oriented in the normal direction. That is, the light orientation member 37 can orient the light that has become sidelobe light by the prism sheet 38 in the normal direction.
  • the light (light L1) incident on the second surface portion 38b of the prism sheet 38 is emitted as it is toward the liquid crystal panel by the photo-alignment member 37 or is once aligned. After being refracted by the reflecting surface 43c, the light is further oriented in the z-axis direction and emitted. Therefore, the light L ⁇ b> 1 is not disturbed by the light alignment member 37.
  • the photo-alignment member 37 has a reflective layer 44.
  • the reflective layer 44 has a function of reflecting a part of light incident from the prism sheet 38 side. Therefore, a part of the light emitted from the backlight 36 is reflected by the reflective layer 44 and returned to the backlight 36 side as indicated by the light L3.
  • the backlight 36 includes a reflecting plate 41 on the side opposite to the light exit surface. Therefore, the light reflected toward the backlight 36 as indicated by the light L3 is reflected again by the reflector 41. The reflected light reenters the light alignment portion 43 of the light alignment member 37 as indicated by light L4.
  • the photo-alignment member 37 has a function of aligning light emitted from the backlight 36 in the z-axis direction. Therefore, the backlight system 8 of the present embodiment can efficiently orient the light generated by the light source 36 in the z-axis direction. That is, most of the light emitted from the backlight system 8 is incident from the normal direction (z-axis direction) of the liquid crystal panel 2. Therefore, the light utilization efficiency of the liquid crystal display device 1 can be maximized by using the backlight system 8 of the present embodiment.
  • FIG. 9 is a diagram schematically showing the light collecting sheet of Patent Document 2.
  • the reflection unit 1001 and the light guide unit 1002 are arranged on different surfaces of the transparent layer 1003. This is also clear from the manufacturing method described in FIG. In FIG. 1 of Patent Document 2, since the scale is changed and illustrated, the transparent layer 1003 is shown thinner than the light guide unit 1002. However, in practice, the thickness of the transparent layer 1003 is more than several times the thickness of the light guide unit 1002. This is clear from the fact that the light guide portion 1002 is obtained by curing a photosensitive resin, and the transparent layer 1003 uses a transparent film.
  • the condensing sheet 1000 of Patent Document 2 condenses incident light by total reflection at the interface 1002b between the light guide portion 1002 and the gap portion 1004 in a direction close to the normal direction of the liquid crystal panel. ing.
  • Total reflection is a phenomenon that occurs when light enters from the high refractive index side to the low refractive side. Therefore, in order to obtain the orientation shown in the light L5, light needs to enter from the light guide portion 1002 toward the gap portion 1004.
  • the inclination angle ⁇ c of the inclined surface of the alignment portion 43 (the angle formed by the light emitting end surface 43a and the reflecting surface 43c) shown in FIG. 6 is cut along a plane parallel to the y-axis direction.
  • a preferable range of the width L of the reflective layer 44 and the interval s between the adjacent reflective layers 44 will be described.
  • the interval s between the reflective layers 44 is equal to the width of the light incident end face 43 b of the light orientation portion 43.
  • FIG. 10 is a diagram for explaining the definition of the polar angle and the azimuth angle.
  • the angle formed by the observer's line-of-sight direction F with respect to the normal direction E of the screen of the liquid crystal display device 1 is defined as a polar angle ⁇ .
  • the angle formed by the direction of the line segment G when the line-of-sight direction F of the observer is projected on the screen with reference to the positive direction (0 ° direction) of the x-axis is defined as an azimuth angle ⁇ .
  • FIG. 11 is a front view of the liquid crystal display device 1.
  • the horizontal direction (x-axis direction) is the azimuth angle ⁇ : 0 ° -180 ° direction.
  • the vertical direction (y-axis direction) is the azimuth angle ⁇ : 90 ° -270 ° direction.
  • the transmission axis P1 of the first polarizing plate 3 is arranged in the direction of azimuth angle ⁇ : 45 ° -225 °
  • the transmission axis P2 of the second polarizing plate 7 is set to have an azimuth angle ⁇ : 135 ° -315 °. Arranged in the direction.
  • the photo-alignment portions 43 of the photo-alignment member 37 are arranged along the x-axis. That is, the light orientation member 37 of this embodiment controls light in the direction of the azimuth angle ⁇ : 90 ° -270 °.
  • FIG. 12 shows the viewing-side orientation of the liquid crystal display device 1 when the photo-alignment member 37 is not provided (referred to as Ref in the drawing) and when the tilt angle ⁇ c of the photo-alignment portion 43 of the photo-alignment member 37 is changed.
  • This is a result of measuring the luminance distribution in the direction of angle ⁇ : 90 ° -270 °.
  • the horizontal axis represents the polar angle
  • the vertical axis represents the normalized luminance obtained by normalizing the luminance in the normal direction of the liquid crystal display device 1 as 1.
  • the light alignment member 37 preferably aligns light incident at a polar angle of 60 ° or more toward the liquid crystal panel 2. Therefore, the light use efficiency of the liquid crystal display device 1 can be increased.
  • FIG. 13A is an enlarged view of a main part when the optical alignment portion 43 is cut along a plane parallel to the y-axis direction when the inclination angle ⁇ c of the photo-alignment portion 43 is small
  • FIG. 13B is an inclination angle ⁇ c of the photo-alignment portion 43 of 90. It is the figure which expanded the principal part at the time of cut
  • the inclination angle ⁇ c of the light alignment portion 43 of the light alignment member 37 is small, the light incident on the light alignment portion 43 from the light incident end surface 43b is not reflected by the reflection surface 43c.
  • the ratio of the light L7 that passes through the direct light exit end face 43a increases. That is, the ratio of the light L8 reflected by the photo-alignment portion 43 is reduced. Since the photo-alignment member 37 has a function of aligning the light incident on the photo-alignment portion 43 in the z-axis direction, this photo-alignment characteristic cannot be sufficiently obtained when the ratio of the direct light L7 increases. As shown in FIG. 13B, when the inclination angle ⁇ c of the light alignment portion 43 of the light alignment member 37 is 90 °, the light incident on the light incident end surface 43b is directly emitted from the light emitting end surface 43a on the opposite side in the y-axis direction. Is done.
  • the reflecting surface 43 is a surface perpendicular to the y-axis direction.
  • the photo-alignment member 37 cannot realize the function of aligning the light incident on the photo-alignment unit 43 in the z-axis direction. Therefore, the inclination angle ⁇ c of the photo-alignment portion 43 of the photo-alignment member 41 needs to be less than 90 °.
  • FIG. 14 is a diagram for explaining the path of light incident on the light alignment portion 43 at an incident angle of 60 °, where the refractive index of the light alignment portion 43 of the light alignment member 37 is 1.6.
  • the light incident on the light incident end face 43b of the light alignment section 43 from the air side with a refractive index of 1.0 at an incident angle of 60 ° (a typical incident angle at which sidelobe light is generated) The light is refracted at 32 ° and guided in the photo-alignment portion. Therefore, when the angle between the light incident end surface 43b and the reflecting surface 43c is less than 32 °, the refracted light is not reflected by the reflecting surface 43c but directly enters the light emitting end surface 43a.
  • This light is refracted again when exiting from the light exit end face 43a, exits at a refraction angle of 60 °, and becomes sidelobe light.
  • the angle between the light incident end face 43b and the reflecting face 43c being less than 32 ° means that the angle ⁇ c formed by the light emitting end face 43a and the reflecting face 43c is greater than 58 °.
  • the refractive index of a resin that can be used for the photo-alignment portion 43 is limited to about 1.6 from the viewpoint of cost. Therefore, if the condition of the inclination angle greater than 58 ° shown in this example is satisfied, most of the incident light can be incident on the reflecting surface 43c.
  • the photo-alignment member 41 exhibits high alignment performance even when the refractive index of the photo-alignment portion 43 and the incident angle of light are changed.
  • the light use efficiency of the liquid crystal display device 1 can be increased.
  • the case where the refractive index of the photo-alignment portion 43 is 1.60 and the incident angle of light is 60 ° is described as an example. Actually, there is also light incident at a smaller incident angle. Therefore, if the angle ⁇ c formed by the light exit end face 43a and the reflecting surface 43c is not larger than 58 °, the effect of aligning the sidelobe light in the z-axis direction cannot be obtained at all. is not.
  • FIG. 15 shows the result of simulating the luminance distribution in the direction of the azimuth angle ⁇ : 90 ° -270 ° on the viewing side of the liquid crystal display device 1 when the tilt angle ⁇ c of the photo-alignment member is changed, and the total light amount It is the figure which simulated the ratio of the direct light and reflected light in.
  • the height of the photo-alignment portion 43 is 20 ⁇ m
  • the width of the reflection layer 44 is 20 ⁇ m
  • the line interval of the reflection layer 44 is 15 ⁇ m. did.
  • the horizontal axis represents the polar angle
  • the vertical axis represents the normalized luminance obtained by normalizing the luminance in the normal direction of the liquid crystal display device 1 as 1.
  • reflected light means light that has been once reflected by the reflecting surface 43 c of the light alignment portion 43.
  • the tilt angle ⁇ c is more preferably 75 ° or more and less than 88 °.
  • the width L of the reflective layer 44 when the photo-alignment portion 43 is cut along a plane parallel to the y-axis direction is preferably narrow. By narrowing the width L of the reflective layer 44, the coverage of the reflective layer 44 with respect to the base material 42 can be reduced. If the coverage of the reflective layer 44 becomes too high, most of the light emitted from the backlight 36 is reflected by the reflective layer 44. Considering that the reflectance of the reflective layer 44 is not 100%, it is preferable that the light reflected by the reflective layer 44 out of the light emitted from the backlight 36 is small.
  • the light alignment portion 43 is inclined so as to spread from the light incident end surface 43b toward the light emitting end surface 43a. For this reason, if the width L of the reflective layer 44 is narrow, the light emission end faces 43a may be connected to each other. Therefore, the width L of the reflective layer 44 is limited by the inclination angle ⁇ c of the photo-alignment portion 43 and the height H of the photo-alignment portion 43.
  • FIG. 16 shows measurement results obtained by actually measuring the relationship between the width L of the reflective layer 44, the height H of the photo-alignment portion 43, and the inclination angle ⁇ c.
  • the horizontal axis represents the width L of the reflective layer 44 divided by the height H of the photo-alignment portion 43, and the vertical axis represents the tilt angle ⁇ c.
  • the width L of the reflective layer 44 / the height H of the photo-alignment portion 43 is 0.6, it means that the adjacent photo-alignment portions 43 are connected when the inclination angle ⁇ c is 82.5 ° or less.
  • the photo-alignment portion 43 can set only a large inclination angle ⁇ c and is selected.
  • the width of the obtained inclination angle ⁇ c is narrow.
  • the width of the reflective layer 44 is wide (the width L of the reflective layer 44 / the height H of the photo-alignment portion 43 is small)
  • the ratio of the width L of the reflective layer 44 to the height H of the photo-alignment portion 43 is 0.2 ⁇ L / H ⁇ 2.0. It is preferable to satisfy.
  • FIG. 17 shows the relationship of light utilization efficiency with respect to the coverage of the reflective layer 44 on the base material 42.
  • the light use efficiency means the ratio of the total light amount of light after passing through the photo-alignment member 37 to the total light amount emitted from the backlight 36.
  • the reflectance of the reflective layer 44 is 85%, and the probability that the light once reflected by the reflective layer 44 re-enters the light incident end face 43b of the light orientation portion 43 (hereinafter referred to as a recycling rate) is 90%. did.
  • the light utilization efficiency as the backlight unit 8 is preferably 60% or more. Therefore, the coverage of the reflective layer 44 with respect to the base material 42 is preferably 70% or less.
  • FIG. 18A is a schematic cross-sectional view when the width of the light incident end face 43b is relatively wide when the light alignment section 43 is cut along a plane parallel to the y-axis direction
  • FIG. It is a cross-sectional schematic diagram in case the width
  • FIG. 19 shows the luminance distribution of transmitted light when the width (interval between adjacent reflective layers 44) s of the light incident end face 43b of the light orientation section 43 is changed.
  • the inclination angle ⁇ c was fixed at 80 °
  • the width L of the reflective layer 44 was fixed at 15 ⁇ m.
  • the width s of the light incident end face 43b was set to 5 ⁇ m, 10 ⁇ m, 15 ⁇ m, and 20 ⁇ m, and the case where the photo-alignment member 41 was not provided was indicated as Ref for reference.
  • Ref the case where the photo-alignment member 41 was not provided
  • the width s of the light incident end face 43b is narrowed, the total amount of transmitted light is reduced. This is because the amount of light incident on the reflecting surface 44 increases. That is, it is preferable to reduce the width of the light incident end face 43 b of the light alignment portion 43 when it is desired to enhance the light alignment even at the expense of the amount of light emitted from the liquid crystal display member 1. Conversely, when it is desired to increase the total light amount while allowing a certain amount of light spread, it is preferable to widen the light incident end face 43b of the light alignment portion 43.
  • the width s of the light incident end face 43b of the light alignment portion 43 with respect to the width L of the reflective layer 44 is s> It is preferable to satisfy the 3 / 7L relationship. Further, the relationship between the width s of the light incident end face 43b and the width L of the reflective layer 44 only needs to satisfy this relationship as an average value of the entire photo-alignment member 41.
  • the width L of the reflective layer 44 may be set randomly so that interference fringes (moire) do not occur when used in combination with the liquid crystal panel 2.
  • (Manufacturing method of liquid crystal display device) 20 to 23 are perspective views showing the manufacturing process of the photo-alignment member 37 step by step. The manufacturing method will be described focusing on the manufacturing process of the photo-alignment member 37 constituting the liquid crystal display device 1 having the above configuration.
  • the outline of the manufacturing process of the liquid crystal panel 2 will be described first.
  • the TFT substrate 10 and the color filter substrate 12 are respectively produced. Thereafter, the surface of the TFT substrate 10 on which the TFT 19 is formed and the surface of the color filter substrate 12 on which the color filter 31 is formed are arranged to face each other. Thereafter, the TFT substrate 10 and the color filter substrate 12 are bonded together via a seal member. Thereafter, liquid crystal is injected into a space surrounded by the TFT substrate 10, the color filter substrate 12, and the seal member.
  • the first retardation film 4, the first polarizing plate 3, the second retardation film 6, and the second polarizing plate 7 are bonded to both surfaces of the liquid crystal cell 5 thus formed using an optical adhesive or the like.
  • the liquid crystal panel 2 is completed through the above steps.
  • the manufacturing method of the TFT substrate 10 and the color filter substrate 12 may be a conventional method, and the description thereof is omitted.
  • a manufacturing process of the photo-alignment member 37 will be described. As shown in FIG. 20, a polyethylene terephthalate base material 42 having a thickness of 100 ⁇ m is prepared. Next, a metal film 46 having a thickness of 150 nm is formed on one surface of the base material 42 by sputtering, vapor deposition, or the like. Next, the dry resist film 46A is bonded onto the metal film using a warming laminator or the like.
  • the dry resist film 46A may be a positive resist or a negative resist. Hereinafter, it will be described as a negative resist. Moreover, it is not restricted to a dry resist, A liquid resist film may be formed using a slit coater or the like.
  • an exposure apparatus Exposure is performed by irradiating the dry resist film 46A with light L through a photomask 48 in which a plurality of opening patterns 47 whose planar shape is, for example, a linear shape is formed.
  • a photomask 48 in which a plurality of opening patterns 47 whose planar shape is, for example, a linear shape is formed.
  • an exposure apparatus using a mixed line of i-line having a wavelength of 365 nm, h-line having a wavelength of 404 nm, and g-line having a wavelength of 436 nm is used.
  • the exposure dose is 100 mJ / cm 2 .
  • the dry resist film 46A made of a negative resist is developed using a dedicated developer and dried at 100 ° C.
  • a resist pattern having a planar shape for example, a line shape is formed on the metal film 46.
  • the metal film 46 is etched through this resist pattern. Etching may be either dry etching or wet etching. After etching, the remaining resist is removed, so that a plurality of metal layers 44 having a planar shape such as a line shape as shown in FIG.
  • the transparent negative resist is exposed using the metal layer 44 made of a negative resist as a mask in the next step, and the hollow portion 45 is formed. Therefore, the position of the opening pattern 47 of the photomask 48 corresponds to the position where the hollow portion 45 is formed.
  • the line-shaped metal layer 44 corresponds to a non-formation region (hollow portion 45) of the photo-alignment portion 43 in the next step.
  • the plurality of opening patterns 47 are all regularly arranged in a line.
  • the widths and intervals of the plurality of opening patterns 47 may be set at random. By setting at random, the occurrence of moire can be avoided when combined with a liquid crystal display.
  • the metal layer 44 is formed by photoetching, but the present invention is not limited to this.
  • the metal layer 44 may be formed by a lift-off process using a sacrificial layer. Further, the metal layer 44 may be directly deposited on the base material through the mask pattern.
  • a cylindrical photomask and a rolling mask photolithography method in which exposure is performed with a UV lamp in the cylinder instead of a flat photomask. Can also be used.
  • a dry resist made of an acrylic resin is bonded to the upper surface of the metal layer 44 as a light diffusing portion material using a warming laminator.
  • the coating film 49 with a film thickness of 20 ⁇ m is formed.
  • the dry resist may be a negative resist or a positive resist.
  • a liquid resist film may be formed using a slit coater or the like. When forming a liquid resist film, it is necessary to volatilize the solvent in the resist. This can be realized by heating the base material 42 on which the coating film 49 is formed with a heater and pre-baking the coating film 49 at a temperature of 95 ° C.
  • the coating layer 49 is irradiated with diffused light F from the base material 42 side as a mask to perform exposure.
  • an exposure apparatus using a mixed line of i-line having a wavelength of 365 nm, h-line having a wavelength of 404 nm, and g-line having a wavelength of 436 nm is used.
  • the exposure amount is 500 mJ / cm 2 .
  • the base material 42 on which the coating film 49 is formed is heated with a heater, and post-exposure baking (PEB) of the coating film 49 is performed at a temperature of 95 ° C.
  • PEB post-exposure baking
  • the coating film 49 made of a transparent resist is developed using a dedicated developer, post-baked at 100 ° C., and as shown in FIG. Form on one side.
  • the transparent negative resist constituting the coating film 49 is radially spread so as to spread outward from the non-formation region of the metal layer 44. To be exposed. Thereby, the forward tapered hollow portion 45 is formed.
  • the photo-alignment portion 43 has a reverse tapered shape. The inclination angle of the reflection surface 43 c of the light alignment portion 43 can be controlled by the degree of diffusion of the diffused light F.
  • the inclination angle of the reflection surface 43c of the light alignment section 43 is a single inclination angle of about 60 ° to 90 °, for example.
  • the tilt angle changes continuously, and the cross-sectional shape becomes a curved inclined surface.
  • an inclined surface having a slope angle corresponding to the strength is obtained.
  • a diffusion plate having a haze of about 50 is arranged on the optical path of the light emitted from the exposure apparatus. You may irradiate light through. Further, when developing with a developer, the developer may be pressurized and sprayed onto a transparent negative resist to promote removal of unnecessary resist.
  • the total light transmittance of the photo-alignment member 37 is preferably 90% or more. When the total light transmittance is 90% or more, sufficient transparency can be obtained, and the optical performance required for the light control member can be sufficiently exhibited.
  • the total light transmittance is as defined in JIS K7361-1. In this embodiment, an example in which a liquid resist is used has been described, but a film resist may be used instead of this configuration.
  • the completed light alignment member 37 is directed to the prism sheet 38 side, and the light alignment portion 43 is placed on the liquid crystal panel 2 via an adhesive layer (not shown). to paste together.
  • a heat and pressure treatment may be performed.
  • the adhesion of the photo-alignment member 37 to the liquid crystal panel 2 is improved, and the inclination angle of the reflection surface 43c of the photo-alignment portion 43 is increased depending on the pressure, thereby improving the photo-alignment. it can.
  • a method for the heat and pressure treatment for example, an autoclave device, a warming laminator, or the like can be used.
  • the liquid crystal display device 1 having this configuration can suppress the brightness increase that occurs in the y-axis direction. For this reason, when the liquid crystal display is viewed from the high polar angle side in the y-axis direction, it is possible to suppress a decrease in contrast or black and white reversal. Further, since light leakage to the high polar angle side in the y-axis direction can be suppressed, an effect of preventing peeping can be obtained.
  • the present invention is not necessarily limited to the configuration of the liquid crystal display device 1 shown as the first embodiment, and various modifications can be made without departing from the spirit of the present invention.
  • FIGS. 24A to 24D are plan views showing modifications of the photo-alignment member 37.
  • FIG. 24A to 24D are plan views showing modifications of the photo-alignment member 37.
  • the reflective layer 44A includes a plurality of lines arranged in parallel in the y-axis direction on the base material 42A and a plurality of lines arranged in parallel in the x-axis direction. May be configured to be orthogonal to each other. This configuration can be rephrased as a so-called lattice pattern.
  • the reflection surface 43cA of the photo-alignment portion 43A also has the x-axis direction and the y-axis direction. Therefore, the alignment characteristics of light can be enhanced in both the x-axis direction and the y-axis direction.
  • a configuration in which a plurality of circular reflective layers 44B are arranged on the base material 42B may be employed.
  • the reflecting surface 43cB of the photo-alignment portion 43B exists in all directions, the photo-alignment characteristics in all directions can be improved.
  • FIG. 24C a configuration in which a plurality of elliptical reflective layers 44C are arranged on the base material 42C may be employed.
  • FIG. 24D the structure by which multiple rhombus-shaped reflection layers 44D are arrange
  • FIGS. 24C and 24D in the case of a reflective layer having a minor axis and a major axis, the photo-alignment characteristics in the minor axis direction can be particularly enhanced from the relationship of the area ratio of the reflecting surface of the reflective layer. Therefore, when used for a liquid crystal display or the like, the minor axis direction can be set in accordance with the directionality to be controlled.
  • the backlight 36 is not limited to the edge type backlight, and a direct type backlight may be used. Since the direct type backlight usually has directivity, when it is used in a liquid crystal display device, a scattering plate is provided to avoid occurrence of luminance unevenness. As the scattering plate, either an isotropic scattering plate or an anisotropic scattering plate may be used. Whichever scattering plate is used, the light transmitted through the scattering plate is directed in various directions. Therefore, the amount of light incident on the liquid crystal panel can be increased by controlling the orientation with the photo-alignment member. That is, the light use efficiency of the liquid crystal display device can be increased.
  • FIG. 25 is a schematic cross-sectional view of the optical alignment member of the liquid crystal display device of the second embodiment cut along a plane parallel to the y-axis direction.
  • a photo-alignment member 51 shown in FIG. 25 includes a base material 52, a reflective layer 54, and a photo-alignment part 53.
  • the light orientation portion 53 has a light incident end face 53b on which light is incident, a light exit end face 53a from which light is emitted, a first inclined face 53c, and a second inclined face. 53d.
  • the inclination angle ⁇ 1 formed by the light emitting end face 53a and the first inclined face 53c is different from the inclination angle ⁇ 2 formed by the light emitting end face 53a and the second inclined face 53d.
  • the inclination angle ⁇ 1 is larger than the inclination angle ⁇ 2.
  • the light incident on the first inclined surface 53c of the photo-alignment portion 53 is aligned in the z-axis direction, and the light incident on the second inclined surface 53d of the photo-alignment portion 53 is in the positive direction of the y-axis. Oriented. That is, the light transmitted through the light alignment member 51 is aligned in the z-axis direction and the positive direction of the y-axis.
  • FIG. 26 shows the result of measuring the photo-alignment property in the y-axis direction of the photo-alignment member of the second embodiment by the luminance distribution.
  • the horizontal axis is the polar angle
  • the vertical axis is the normalized luminance normalized with the luminance of light emitted in the front direction as 1.
  • the photo-alignment member 51 has an asymmetric luminance distribution around a polar angle of 0 °. This is because there is light that is totally reflected by the second inclined surface 53d and oriented in the positive direction of the y-axis as described above.
  • the photo-alignment member 51 of the second embodiment can be applied to, for example, a liquid crystal display on an upper part of a train door. It is assumed that the liquid crystal display installed on the upper part of the train door is viewed from obliquely below the liquid crystal display. On the other hand, it is difficult to assume that the liquid crystal display is viewed from an obliquely upward direction. In such a case, the light emitted upward from the liquid crystal display can be aligned downward by using the light alignment member 51 of the second embodiment. Therefore, the visibility at the time of visually recognizing from diagonally below the liquid crystal display can be enhanced.
  • FIG. 27A is a diagram schematically illustrating the function of the light alignment member of the second embodiment when the light source is provided only at one end side in the y-axis direction of the light guide of the backlight, and FIG. It is the figure which showed typically the function of the photo-alignment member of 2nd Embodiment, when there exists a light source in the both ends side of the y-axis direction of the light guide of light. As shown in FIG.
  • the basic configuration of the liquid crystal display device of the present embodiment is the same as that of the first embodiment, and differs from the first embodiment in that a light control member is provided on the light emission side of the liquid crystal panel 2.
  • FIG. 28 is a schematic cross-sectional view of the liquid crystal display device of the third embodiment.
  • a liquid crystal display device 101 according to the third embodiment includes a backlight unit 8, a liquid crystal panel 2, and a light control member 61.
  • FIG. 29 is a perspective view of the light control member 61 as viewed from the viewing side.
  • FIG. 30 is a schematic diagram of the light control member 61.
  • the upper left side is a plan view of the light control member 61.
  • the lower left side is a cross-sectional view along the line AA in the plan view of the upper left side.
  • the upper right stage is a cross-sectional view along the line BB in the plan view of the upper left stage.
  • the light control member 61 includes a base material 62, a light diffusion portion 63, a plurality of light shielding layers 64, and a plurality of hollow portions 65.
  • the plurality of light shielding layers 64 are formed on the first surface 62 a (surface opposite to the viewing side) of the base material 62.
  • the light diffusion part 63 is formed in a region other than the region where the light shielding layer 64 is formed on the first surface 62 a of the base material 62.
  • the light shielding layer 64 is provided on the first surface 62 a at a position that does not overlap with the light diffusion portion 61 when viewed from the normal direction of the base material 62.
  • the hollow portion 65 is provided at a position that partially overlaps the light shielding layer 64 when viewed from the normal direction of the substrate 62.
  • the base material 62 corresponds to the second base material in the claims.
  • the hollow portion 65 corresponds to the second low refractive index portion in the claims.
  • the light shielding layer 64 corresponds to a light shielding portion.
  • the light control member 61 is disposed on the second polarizing plate 7 with the light diffusion portion 63 facing the second polarizing plate 7 and the base material 62 facing the viewing side.
  • the light control member 61 is fixed to the second polarizing plate 7 through the adhesive layer 66.
  • the same material as the base material 42 of the optical alignment member 41 of the first embodiment can be used for the base material 62.
  • the light shielding layer 64 is randomly arranged as viewed from the normal direction of the first surface 62a of the base material 62.
  • the light shielding layer 64 is made of an organic material having light absorption and photosensitivity such as a black resist and black ink.
  • a metal film such as Cr (chromium) or a Cr / Cr oxide multilayer film may be used.
  • the light diffusing portion 63 is made of an organic material having optical transparency and photosensitivity such as acrylic resin and epoxy resin. Further, the total light transmittance of the light diffusing portion 63 is preferably 90% or more according to JIS K7361-1. When the total light transmittance is 90% or more, sufficient transparency can be obtained.
  • the light diffusion part 63 has a light emission end face 63a, a light incident end face 63b, and a reflection face 63c.
  • the light emission end surface 63 a is a surface in contact with the base material 62.
  • the light incident end surface 63b is a surface facing the light emitting end surface 63a.
  • the reflection surface 63 c is a tapered inclined surface of the light diffusion portion 63.
  • the reflecting surface 63c is a surface that reflects the light incident from the light incident end surface 63b.
  • the area of the light incident end face 63b is larger than the area of the light emitting end face 63a.
  • the light incident end surface 63a corresponds to the second light incident end surface of the claims.
  • the light emission end face 63b corresponds to a second light emission end face in the claims.
  • the light reflecting surface 63c corresponds to the reflecting surface in the claims.
  • the light diffusion part 63 is a part that contributes to the transmission of light in the light control member 61. As shown in the lower left of FIG. 30, among the light incident on the light diffusing unit 63, the light L9 is emitted from the light emitting end face 63a without being reflected by the reflecting surface 63c. Of the light incident on the light diffusing portion 63, the light L10 is totally reflected by the reflecting surface 63c of the light diffusing portion 63 and guided in a state of being substantially confined inside the light diffusing portion 63, and the light emitting end face 63a. Is injected from.
  • the light control member 61 is arranged so that the base material 62 faces the viewing side. Therefore, of the two opposing surfaces of the light diffusion portion 63, the surface with the smaller area becomes the light emission end surface 63a. On the other hand, the surface with the larger area becomes the light incident end surface 63b.
  • An inclination angle of the reflection surface 63c of the light diffusion portion 63 (an angle ⁇ c formed between the light incident end surface 63b and the reflection surface 63c) is, for example, about 80 ° ⁇ 5 °.
  • the inclination angle ⁇ c of the reflection surface 63c of the light diffusion portion 63 is not particularly limited as long as it is an angle that can sufficiently diffuse incident light when emitted from the light control member 9.
  • the height t1 from the light incident end surface 63b of the light diffusing portion 63 to the light emitting end surface 63a is set larger than the layer thickness t2 of the light shielding layer 64.
  • the layer thickness t2 of the light shielding layer 64 is about 150 nm as an example.
  • the height t1 from the light incident end face 63b of the light diffusing portion 63 to the light emitting end face 63a is, for example, about 10 to 20 ⁇ m.
  • a portion surrounded by the reflection surface 63 c and the light shielding layer 64 of the light diffusion portion 41 is a hollow portion 65. Air exists in the hollow portion 65.
  • the refractive index of the base material 62 and the refractive index of the light diffusion portion 63 are substantially equal.
  • the reason is as follows. For example, consider a case where the refractive index of the base material 62 and the refractive index of the light diffusion portion 63 are greatly different. In this case, when light incident from the light incident end face 63 b exits from the light diffusion portion 63, unnecessary light refraction or reflection may occur at the interface between the light diffusion portion 63 and the base material 62. In this case, there is a possibility that problems such as failure to obtain a desired viewing angle and a decrease in the amount of emitted light may occur.
  • the hollow portion 65 (outside the light diffusion portion). Therefore, if the light diffusion part 63 is formed of, for example, a transparent acrylic resin, the reflection surface 63c of the light diffusion part 63 is an interface between the transparent acrylic resin and air.
  • the hollow portion 65 may be filled with another low refractive index material. However, the difference in the refractive index at the interface between the inside and the outside of the light diffusing portion 63 is maximized when air is present rather than when any low refractive index material is present outside.
  • the critical angle is the smallest, and the incident angle range in which the light is totally reflected by the reflecting surface 63c of the light diffusion portion 63 is the widest. As a result, light loss is further suppressed, and high luminance can be obtained.
  • a plurality of light shielding layers 64 are provided on the first surface 62 a of the base material 62.
  • the planar shape of the light shielding layer 64 viewed from the normal direction of the substrate 62 is an elongated rhombus. That is, the light shielding layer 64 has an anisotropic shape having a major axis and a minor axis.
  • the ratio (B1 / B2) of the major axis dimension B1 to the minor axis dimension B2 of the rhombus that is the planar shape of the light shielding layer 64 is, for example, 1 or more and 3 or less.
  • the long axis dimension B1 of the light shielding layer 64 is, for example, 10 to 20 ⁇ m, and the short axis dimension B2 of the light shielding layer 64 is, for example, 5 to 10 ⁇ m.
  • the minor axis dimension B2 itself and the major axis dimension B1 themselves are different, but the ratio of the major axis dimension B1 to the minor axis dimension B2 is substantially equal.
  • the ratio of the occupied area of the light shielding layer 64 to the total area of the first surface 62a of the substrate 62 is, for example, 30% ⁇ 10%.
  • the portion corresponding to the lower part of the light shielding layer 64 is a square pyramid-shaped hollow portion 65.
  • the light control member 61 has a plurality of hollow portions 65 corresponding to the plurality of light shielding layers 64. In parts other than the plurality of hollow portions 65, a light diffusion portion 63 is integrally provided.
  • the major axis direction of the rhombus that forms the planar shape of the light shielding layer 64 is substantially aligned with the x-axis direction.
  • the major axis direction of the rhombus may be referred to as the major axis direction of the light shielding layer 64.
  • the short axis direction of the rhombus forming the planar shape of the light shielding layer 64 is substantially aligned with the y axis direction.
  • the minor axis direction of the rhombus may be referred to as the minor axis direction of the light shielding layer 64.
  • the reflection surface 63c of the light diffusion portion 63 corresponds to each side of the rhombus that forms the planar shape of the light shielding layer 64, considering the direction of the reflection surface 63c of the light diffusion portion 63, the reflection surface 63c of the light diffusion portion 63 Among them, the proportion of the reflecting surface 63c parallel to the x-axis direction and the y-axis direction is extremely small, and the reflecting surface 63c that forms an angle with the x-axis direction and the y-axis direction occupies the majority.
  • the traveling direction of light is projected onto the xy plane
  • the light Lx incident from the x-axis direction and reflected by the reflecting surface 63c travels in the y-axis direction, enters from the y-axis direction, and is reflected from the reflecting surface 63c.
  • the light Ly reflected at has a high rate of traveling in the x-axis direction.
  • the light Lx diffused from the x-axis direction parallel to the long axis of the light shielding layer 63 toward the y-axis direction parallel to the short axis is large.
  • planar shape of the light shielding layer 64 may partially include shapes such as a circle, an ellipse, a polygon, and a semicircle. Further, a part of the light shielding layer 64 may be overlapped.
  • FIG. 31 and 32 are diagrams for explaining the size of the light shielding layer 64 in plan view.
  • FIG. 31 is a plan view showing one light shielding layer 64 among the plurality of light shielding layers 64.
  • FIG. 32 is a graph showing the relationship between human visual acuity and the size of an object that can be recognized by human eyes.
  • the horizontal axis represents human visual acuity.
  • the vertical axis represents the size of an object that can be recognized by human eyes.
  • the size of the light shielding layer 64 in plan view should be reduced to some extent. The reason is that if the size of the light shielding layer 64 in a plan view is too large, the light shielding layer 64 may be recognized as a dot when an observer views the display image of the liquid crystal display device 1. .
  • the length of the light shielding layer 64 in the major axis direction is B1.
  • the length of the light shielding layer 64 in the minor axis direction is B2.
  • the length B1 of the light shielding layer 64 in the major axis direction is preferably 100 ⁇ m or less.
  • a method for deriving the length B1 of the light shielding layer 64 in the major axis direction will be described.
  • a range AR1 above the curve C shown in FIG. 32 is a range in which an object can be recognized by human eyes.
  • the range AR2 below the curve C is a range in which an object cannot be recognized by human eyes.
  • This curve C is defined by equation (3) derived from the following equation.
  • the visual acuity ⁇ is derived from the following equation (1) when the minimum viewing angle is ⁇ (minutes).
  • the minimum viewing angle ⁇ is derived from the following equation (2), where V (mm) is the size of an object that can be recognized by the human eye, and W (m) is the distance from the human eye to the object.
  • V [ ⁇ W ⁇ 2 ⁇ / (360/60) ⁇ ⁇ 1000] / ⁇ (4)
  • the distance W from the human eye to the object is about 20 to 30 cm.
  • the distance W from the human eye to the object is 25 cm.
  • the minimum visual acuity for obtaining a driving license is 0.7.
  • the size V of the object that can be recognized by the human eye is 100 ⁇ m. If the size V of the object is 100 ⁇ m or less, it will be difficult to recognize the object with human eyes. That is, the length B1 in the major axis direction of the light shielding layer 64 is preferably 100 ⁇ m or less. Thereby, it is suppressed that the light shielding layer 64 is recognized as a dot on the display screen of the liquid crystal display device 1.
  • the length B2 of the light shielding layer 64 in the minor axis direction is set to be shorter than the length B1 of the light shielding layer 64 in the major axis direction and 100 ⁇ m or less.
  • the size V of an object that can be recognized by the human eye with a visual acuity of 2.0 is 40 ⁇ m. If the size V of the object is 40 ⁇ m or less, it is considered that almost no object can be recognized by human eyes.
  • the length B1 in the major axis direction of the light shielding layer 64 is more preferably 40 ⁇ m or less. This reliably suppresses the light shielding layer 64 from being recognized as dots on the display screen of the liquid crystal display device 1.
  • the length B2 of the light shielding layer 64 in the minor axis direction is set to be shorter than the length B1 of the light shielding layer 40 in the major axis direction and 40 ⁇ m or less.
  • 85V type Super Hi-Vision compatible display is about 103Pixel / Inch
  • 60V type is about 146Pixel / Inch.
  • the color filter is composed of three colors of R, G, and B
  • the pixel size is about 82 ⁇ m ⁇ 246 ⁇ m for the 85V type and 58 ⁇ m ⁇ 174 ⁇ m for the 60V type.
  • the size of the light shielding layer 64 is 40 ⁇ m or less, it is not visually recognized as a dot. However, when many light shielding layers 64 are arranged over a plurality of pixels, light emitted from different pixels is mixed, resulting in a decrease in resolution.
  • the dimension of the light shielding layer 64 in the major axis direction is 1/3 to 1/2 with respect to the width of the pixel.
  • the dimension of the light shielding layer 64 in the major axis direction is, for example, 19 ⁇ m or less.
  • the thickness of the light diffusion portion 63 is desirably equal to or less than the width of the light shielding layer 64. From this point of view, for example, when the dimension of the light shielding layer 64 in the major axis direction is 15 ⁇ m, it is desirable that the thickness of the light diffusion portion 63 be 15 ⁇ m or less.
  • the light alignment member 37 of the backlight unit 8 contributes to improving the viewing angle characteristics by controlling the alignment of light incident on the liquid crystal panel 2.
  • the light control member 61 can enhance the viewing angle characteristics by controlling the light emission direction after passing through the liquid crystal panel.
  • FIG. 33 is a schematic diagram showing an arrangement relationship of the pixel 70 including the VA mode liquid crystal included in the liquid crystal display device 1, the light control member 61, and the light alignment portion 43 of the light alignment member 37.
  • the pixel 50 is arranged on the light alignment member 37, and the light control member 61 is further arranged thereon.
  • the member 61 and the photo-alignment member 37 are described in parallel. Further, on the right side of the photo-alignment member 37, the transmission axis P1 of the first polarizing plate 3 and the transmission axis P2 of the second polarizing plate 7 are illustrated.
  • the pixel 70 in this embodiment employs a VA structure in which one pixel 70 is divided into two domains of a first domain 70a and a second domain 70b, a so-called two-domain VA structure.
  • a rectangular pixel is divided into two by a straight line parallel to the longitudinal direction to form a vertically long domain.
  • the liquid crystal molecules 71 included in the pixel 70 are aligned substantially vertically when no voltage is applied.
  • the liquid crystal molecules 71 are illustrated in a conical shape.
  • the vertex of the cone means the end of the liquid crystal molecule 71 on the back side.
  • the bottom surface of the cone indicates the end of the liquid crystal molecule 71 on the viewing side.
  • the major axis direction of the liquid crystal molecules 71 is set as the director direction of the liquid crystal molecules 71.
  • the direction of the director of the liquid crystal molecules 71 is defined as the direction from the end on the back side of the liquid crystal molecules 71 toward the end on the viewing side.
  • the director of the liquid crystal molecules 71 is indicated by an arrow D.
  • the direction of the director of the liquid crystal molecules 71 coincides with the long side direction of the pixel or the long side direction of the domain.
  • the liquid crystal molecules 71 included in the first domain 70a and the liquid crystal molecules 71 included in the second domain 70b are inclined in directions different from each other by 180 ° in the azimuth angle ⁇ : 90 ° -270 ° direction. Oriented. Specifically, the liquid crystal molecules 71 included in the first domain 70a are inclined such that the polar angle ⁇ at the azimuth angle ⁇ : 90 ° is greater than 0 °. The liquid crystal molecules 71 included in the second domain 70b are inclined such that the polar angle ⁇ at the azimuth angle ⁇ : 270 ° is greater than 0 °.
  • the liquid crystal molecules 71 By aligning the liquid crystal molecules 51 in this way, in the first domain 70a, the liquid crystal molecules 71 have an azimuth angle ⁇ : 90 ° and a polar angle of 90 ° at the center in the thickness direction of the liquid crystal layer 11 when a voltage is applied. Tilt down closer to °. In the second domain 70b, at the central portion in the thickness direction of the liquid crystal layer 11 when a voltage is applied, the liquid crystal molecules 71 are tilted so that the azimuth angle ⁇ is 270 ° and the polar angle approaches 90 °.
  • the liquid crystal molecules 71 included in the first domain 70a and the liquid crystal molecules 71 included in the second domain 70b have an azimuth angle ⁇ : 90 ° -270. In the ° direction, they fall down in directions different from each other by 180 °. Note that the liquid crystal molecules 71 in the vicinity of the first alignment film 27 and the second alignment film 34 remain substantially vertical even when a voltage is applied because the alignment is regulated by the first alignment film 27 and the second alignment film 34. is there.
  • this VA mode liquid crystal panel has different viewing angle characteristics in the direction of azimuth angle ⁇ : 0 ° -180 ° and viewing angle characteristics in the direction of azimuth angle ⁇ : 90 ° -270 °. This is because the liquid crystal molecules are aligned so as to fall only in the direction of the azimuth angle ⁇ : 90 ° -270 °.
  • the viewpoint moves in the minor axis direction of the liquid crystal molecules, so the birefringence difference of the liquid crystal molecules is so large Absent.
  • the viewpoint is moved in the major axis direction of the liquid crystal molecules, and further along the direction in which the liquid crystal molecules are tilted.
  • the birefringence difference of the liquid crystal molecules is large.
  • the photo-alignment member 37 can control the photo-alignment characteristics in the y-axis direction. Therefore, the viewing angle characteristics of the liquid crystal display device can be enhanced by using the photo-alignment member 37 and the liquid crystal panel at the same time.
  • the liquid crystal molecules are tilted when a voltage is applied, it is preferable to control not only the incident light but also the direction of the light emitted after passing through the liquid crystal panel.
  • the direction in which the liquid crystal molecules 71 are tilted when a voltage is applied that is, the direction D of the director of the liquid crystal molecules and the minor axis direction of the light shielding layer 64 of the light control member 61 are substantially matched.
  • the light control member 61 is disposed on the surface.
  • the direction D of the director of the liquid crystal molecules and the absorption axes P1 and P2 of the first polarizing plate 3 and the second polarizing plate 7 form an angle of 45 °
  • the plate 3 and the absorption axes P1 and P2 of the second polarizing plate 7 form an angle of 45 °.
  • the rhombus that is the planar shape of the light shielding layer 64 has absorption axes P ⁇ b> 1 and P ⁇ b> 2 of one of the first polarizing plate 3 and the second polarizing plate 7. It has a straight portion that makes an angle of less than 45 °. In the case of the present embodiment, this straight line portion corresponds to the four sides of the rhombus.
  • the traveling direction of the light is projected onto the xy plane, the light Lx incident from the x-axis direction and reflected by the reflecting surface 63c travels in the y-axis direction, enters from the y-axis direction, and is reflected by the reflecting surface.
  • the light Ly reflected by 63c has a high rate of traveling in the x-axis direction. Further, when the amount of light Lx that enters from the x-axis direction and travels in the y-axis direction is compared with the amount of light Ly that enters from the y-axis direction and travels in the x-axis direction, it enters from the x-axis direction. The amount of light Lx traveling in the y-axis direction is larger than the light Ly entering from the y-axis direction and traveling in the x-axis direction. The reason for this will be described below with reference to FIGS. 34A to 34F.
  • 34A to 34F show light-shielding layers having various shapes and arrangements and how light is reflected.
  • the traveling direction of light is indicated by an arrow. This arrow indicates the traveling direction of light on the xy plane, and the actual traveling direction of light is the z axis. It has a directional component.
  • the angles ⁇ 1 to ⁇ 6 are angles formed by the light incident direction and the light emitting direction when projected onto the xy plane.
  • a reflecting surface having an angle larger than 0 ° and smaller than 90 ° with respect to the x-axis may be used.
  • a planar light shielding layer 140 in which one side of a square is rotated by 45 ° with respect to the x axis and the y axis is considered.
  • the reflecting surface 141c makes an angle of 45 ° with respect to the x-axis.
  • the reflection surface 141c is arranged in the direction perpendicular to the formation surface of the light shielding layer 140 toward the back side of the paper surface of FIG. 34A.
  • the light L11 incident on the reflecting surface 141c from the negative side of the x axis toward the positive side is reflected by the reflecting surface 141c, changes its direction by 90 ° on the xy plane, and travels in a direction parallel to the y axis. . That is, the angle ⁇ 1 formed by the incident direction and the emission direction of the light L1 projected onto the xy plane is 90 °.
  • the reflecting surface 141c is not arranged in the vertical direction with respect to the light shielding layer 140, but on the far side of the paper surface as shown in FIG. 34B.
  • the light-shielding layer 140 is inclined obliquely toward the broken-line square (the outer shape of the hollow portion) shown inside the solid-line square indicating the outer shape of the light shielding layer 140.
  • the angle ⁇ 2 is smaller than 90 °, and the light L12 incident on the reflecting surface 141c from the negative side of the x axis toward the positive side is reflected by the reflecting surface 141c and then in a direction parallel to the y axis. It does not advance, but proceeds in a direction inclined to the negative side of the x axis from the direction parallel to the y axis.
  • FIG. 34C and FIG. 34D consider the case where the diamond-shaped light shielding layer 40 is arranged so that the major axis direction is in the x-axis direction as in this embodiment.
  • the angle ⁇ 3 is larger than 90 ° and is positive from the negative side of the x axis.
  • the light L13 incident on the reflecting surface 63c toward the side does not travel in the direction parallel to the y axis after being reflected by the reflecting surface 63c, and is tilted to the positive side of the x axis from the direction parallel to the y axis Proceed to However, as shown in FIG. 34D, the actual reflecting surface 63c is inclined obliquely toward the broken rhombus (the outer shape of the hollow portion) shown inside the solid rhombus indicating the outer shape of the light shielding layer 64. .
  • the angle ⁇ 4 can be set to 90 °, and the light L14 incident on the reflecting surface 141c from the negative side of the x axis toward the positive side is reflected by the reflecting surface 141c and then in a direction parallel to the y axis. move on.
  • FIGS. 34E and 34F As a comparative example, as shown in FIGS. 34E and 34F, let us consider a case where a diamond-shaped light shielding layer 64 is arranged so that the major axis direction is in the y-axis direction, unlike the present embodiment.
  • the angle ⁇ 5 is smaller than 90 ° and is positive from the negative side of the x-axis.
  • the light L5 incident on the reflecting surface 63c toward the side is not reflected in the direction parallel to the y axis after being reflected by the reflecting surface 63c, and is inclined to the negative side of the x axis from the direction parallel to the y axis.
  • the angle ⁇ 6 is further smaller than the angle ⁇ 5 and enters the reflecting surface 141c from the negative side of the x axis toward the positive side.
  • the reflected light L16 is reflected by the reflecting surface 141c, and then travels in a direction inclined to the negative side of the x axis from the direction parallel to the y axis.
  • the planar shape of the light shielding layer 140 is a square
  • the light shielding layer 64 having a rhombic planar shape is arranged so that the major axis direction is in the x-axis direction
  • the light shielding layer 64 having a rhombus planar shape is formed.
  • the amount of light incident on the reflecting surface from the direction parallel to the x-axis and traveling in the direction parallel to the y-axis is The number of cases in which the light shielding layer 64 having a rhombic planar shape is arranged so that the major axis direction faces the x-axis direction is the largest.
  • the light is incident from the x-axis direction.
  • the amount of light traveling in the y-axis direction is larger than the light traveling from the y-axis direction and traveling in the x-axis direction.
  • light incident on the light control member 9 from the direction of the azimuth angle ⁇ : 0 ° -180 ° is emitted from the light diffusing portion 64 arranged corresponding to the planar shape of the diamond-shaped light shielding layer 64.
  • the light is reflected by the reflecting surface 63c and emitted in the direction of the azimuth ⁇ : 90 ° -270 °.
  • the inclination angle ⁇ c of the light diffusing portion 63 is smaller than 90 °, the polar angle ⁇ in the light traveling direction changes in a direction larger than that before entering the light control member 61.
  • the light control member 61 is used to intentionally move the light traveling in the azimuth angle ⁇ : 0 ° -180 ° direction to the azimuth angle ⁇ : 90 ° -270 ° direction having a poor viewing angle characteristic. What is necessary is just to mix. Thereby, the difference of the viewing angle characteristic for every direction is relieved. Thereby, the variation in luminance change is averaged, and the difference in viewing angle characteristics depending on the polar angle ⁇ in the direction of the azimuth angle ⁇ : 90 ° -270 ° can be improved.
  • the azimuth angle ⁇ which is the direction of the director of the liquid crystal molecules 71: 90 ° ⁇
  • the viewing angle characteristics in the 270 ° direction are improved from both the incident side and the outgoing side of the liquid crystal panel.
  • the viewing angle characteristics in the direction of the azimuth angle ⁇ : 0 ° -180 ° perpendicular to the direction in which the liquid crystal molecules are tilted are good.
  • the viewing angle characteristics in the azimuth angle ⁇ : 90 ° -270 ° direction are further improved, and the difference in viewing angle characteristics due to the azimuth is reduced.
  • the viewing angle characteristics can be improved while maintaining a high transmittance without complicating the structure in the cell.
  • the two-domain VA type liquid crystal panel has been described.
  • the liquid crystal panel is not limited to the two-domain VA type.
  • it can be suitably used for a liquid crystal panel having different gamma characteristics depending on the orientation of a TN liquid crystal or the like.
  • the light control member 61 can be manufactured in the same manner as the light alignment member 37 only by changing the reflection layer 44 of the light alignment member 37 to the light shielding layer 64.
  • the liquid crystal display devices of the first to third embodiments described above can be applied to various electronic devices.
  • an electronic apparatus provided with the liquid crystal display device of the first to third embodiments will be described with reference to FIGS. 35 to 37.
  • FIG. The liquid crystal display devices of the first to third embodiments described above can be applied to, for example, a thin television 250 shown in FIG.
  • a thin television 250 illustrated in FIG. 35 includes a display portion 251, a speaker 252, a cabinet 253, a stand 254, and the like.
  • the liquid crystal display devices of the first to third embodiments described above can be suitably applied.
  • an image with a small viewing angle dependency can be displayed.
  • the liquid crystal display devices of the first to third embodiments described above can be applied to, for example, the smartphone 240 shown in FIG.
  • a smartphone 240 illustrated in FIG. 36 includes a voice input unit 241, a voice output unit 242, an operation switch 244, a display unit 245, a touch panel 243, a housing 246, and the like.
  • the display unit 245 the liquid crystal display devices of the first to third embodiments described above can be suitably applied.
  • the liquid crystal display devices of the first to third embodiments described above can be applied to, for example, a notebook personal computer 270 shown in FIG.
  • a notebook computer 270 illustrated in FIG. 37 includes a display portion 271, a keyboard 272, a touch pad 273, a main switch 274, a camera 275, a recording medium slot 276, a housing 277, and the like.
  • the display unit 271 the liquid crystal display devices of the first to third embodiments described above can be suitably applied.
  • the light control member in the above embodiment has a configuration in which at least one of an antireflection structure, a polarizing filter layer, an antistatic layer, an antiglare treatment layer, and an antifouling treatment layer is provided on the viewing side of the base material. May be. According to this configuration, it is possible to add a function to reduce external light reflection, a function to prevent the adhesion of dust and dirt, a function to prevent scratches, and the like according to the type of layer provided on the viewing side of the substrate. Further, it is possible to prevent deterioration of viewing angle characteristics with time.
  • the antireflection structure a configuration in which an antiglare layer is provided on the viewing side of the base material of the light control member may be used.
  • the antiglare layer for example, a dielectric multilayer film that cancels external light using light interference is used.
  • a so-called moth-eye structure may be provided on the viewing side of the base material of the light control member.
  • the moth-eye structure includes the following structures and shapes.
  • the moth-eye structure is a concavo-convex shape with a period equal to or less than the wavelength of visible light, and is a shape or structure using the principle of a so-called “Moth-eye” configuration.
  • the two-dimensional size of the convex portions constituting the concavo-convex pattern is 10 nm or more and less than 500 nm. Reflection is suppressed by continuously changing the refractive index for light incident on the base material from the refractive index of the incident medium (air) to the refractive index of the base material along the depth direction of the unevenness.
  • the areas of the two domains may be different, and the director direction of the liquid crystal molecules may not be completely different by 180 °.
  • some aspects of the present invention are applied when there are at least two domains in a pixel, and there may be more than two domains. In that case, the minor axis direction of the light shielding layer of the light control member may be arranged in accordance with the azimuth direction in which the viewing angle characteristics are desired to be improved.
  • one pixel PX of the liquid crystal panel 2 is configured by three rectangular red (R), green (G), and blue (B) subpixels.
  • these three subpixels are arranged in the horizontal direction (arrow H direction) with the long side direction directed in the vertical direction (arrow V direction) of the screen.
  • the arrangement of the sub-pixels is not limited to this example.
  • the three sub-pixels R, G, B are oriented in the vertical direction with the long side direction in the horizontal direction (arrow H direction) of the screen. They may be arranged in the direction of arrow V.
  • one pixel of the liquid crystal panel 2 is composed of four rectangular sub-pixels of red (R), green (G), blue (B), and yellow (Y), These four subpixels may be arranged in the horizontal direction (arrow H direction) with the long side direction directed in the vertical direction (arrow V direction) of the screen.
  • four sub-pixels R, G, B, and Y are arranged in the vertical direction (arrow V direction) with the long side facing in the horizontal direction (arrow H direction) of the screen. May be.
  • one pixel of the liquid crystal panel is composed of four square subpixels R, G, B, and Y, and two rows and two columns in the horizontal and vertical directions of the screen. May be arranged.
  • each component of the liquid crystal display device and the light control member is not limited to the above embodiment, and can be changed as appropriate.
  • a polarizing plate and a retardation plate are arranged outside the liquid crystal panel.
  • a polarizing layer and a retardation layer are provided inside a pair of substrates constituting the liquid crystal panel. It may be formed.
  • Some embodiments of the present invention can be used for a liquid crystal display device, a lighting device, and a light alignment member.
  • prism sheet structure
  • 39 56 ... light source
  • 40 DESCRIPTION OF SYMBOLS ... Light guide
  • 41 ... Reflector
  • 53c 1st inclined surface
  • 53d ... 2nd inclined surface
  • 61 ... Light control member
  • 62 ... Base material (2nd base material)
  • 63 ... Light diffusion part
  • 64 ... Light-shielding layer
  • 65 hollow part (second low refractive index part)

Abstract

A liquid crystal display device according to one embodiment of the present invention is provided with: a light-transmitting base; a plurality of photo-alignment parts which are provided on a first surface of the base; a reflection part which is provided on the first surface at least in a position that does not overlap the photo-alignment parts when viewed from the normal direction of the base; and a low refractive index part which is provided in a position that partially overlaps the reflection part when viewed from the normal direction of the base and has a refractive index lower than the refractive index of the photo-alignment parts. Each of the photo-alignment parts has: a light input end face which is positioned on the base side; a light exit end face which is positioned on the opposite side of the base side and has a larger area than the light input end face; and an inclined surface which is positioned between the light input end face and the light exit end face.

Description

光配向部材、照明装置、液晶表示装置および光配向部材の製造方法Photo-alignment member, illumination device, liquid crystal display device, and method of manufacturing photo-alignment member
 本発明は、光配向部材、照明装置、液晶表示装置および光配向部材の製造方法に関する。
 本願は、2015年4月1日に、日本に出願された特願2015-075363号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a photo-alignment member, a lighting device, a liquid crystal display device, and a method for manufacturing a photo-alignment member.
This application claims priority based on Japanese Patent Application No. 2015-075363 filed in Japan on April 1, 2015, the contents of which are incorporated herein by reference.
 スマートフォン等をはじめとする携帯型電子機器、もしくはテレビジョン、パーソナルコンピューター等のディスプレイとして、液晶表示装置が広く用いられている。昨今は特にディスプレイの高精細化が進み、従来のフルハイビジョン映像(1920Pixel×1080Pixel)に対し、縦横4倍の解像度を有するスーパーハイビジョン映像(7680Pixel×4320Pixel)に対応したディスプレイの開発が進んでいる。一般に、液晶表示装置は、表示画面を正面から見たときの表示特性と、表示画面を斜め方向から見たときの表示特性が異なる。この表示特性の違いは、液晶ディスプレイから射出する光の配向特性に大きな影響を受ける。 Liquid crystal display devices are widely used as portable electronic devices such as smartphones, or displays for televisions, personal computers, and the like. In recent years, the display has become particularly high-definition, and the development of a display that supports a super high-definition video (7680 Pixel × 4320 Pixel) having a resolution that is four times the width and width of the conventional full high-definition video (1920 Pixel × 1080 Pixel) is progressing. Generally, a liquid crystal display device has different display characteristics when the display screen is viewed from the front and display characteristics when the display screen is viewed from an oblique direction. This difference in display characteristics is greatly influenced by the alignment characteristics of light emitted from the liquid crystal display.
 この表示特性の違いを生じさせる原因の一つとしてバックライトから液晶パネルへ出射する光の配向特性がある。例えば、特許文献1では液晶パネルに入射する光の配向特性を制御するためにプリズムシート等を用いている。また特許文献2では、所定の構造体を有する集光シート等を用いている。 One of the causes of this difference in display characteristics is the alignment characteristics of light emitted from the backlight to the liquid crystal panel. For example, in Patent Document 1, a prism sheet or the like is used to control the alignment characteristics of light incident on a liquid crystal panel. Moreover, in patent document 2, the condensing sheet | seat etc. which have a predetermined structure are used.
特開2014-219537号公報JP 2014-219537 A 特開2009-258754号公報JP 2009-258754 A
 特許文献1のように、バックライトと液晶パネルの間にプリズムシート等を配置する場合、そのプリズムシートの所定の面で全反射した光は液晶パネルの法線方向に配向される。その一方で、所定の面以外の部分で反射した光は、液晶パネルの法線方向から大きく外れた方向に射出する、という欠点がある。この液晶パネルの法線方向から大きく外れた方向とは、液晶パネルの法線方向と観察者の視線方向のなす角度(以下、極角と言う)が50°以上の高角方向を意味する。この高極角方向に射出された光は、サイドローブ光と言われる。サイドローブ光は、液晶表示装置を斜め方向から見たときに輝度浮き(光漏れ)の原因となり、液晶ディスプレイの斜め方向の視認性の低下の原因となる。
 また特許文献2の集光シートも、バックライトから出射した光を制御しているが、その配向性は十分とは言えない。
When a prism sheet or the like is disposed between the backlight and the liquid crystal panel as in Patent Document 1, light totally reflected by a predetermined surface of the prism sheet is oriented in the normal direction of the liquid crystal panel. On the other hand, there is a drawback that light reflected by a portion other than the predetermined surface is emitted in a direction greatly deviating from the normal direction of the liquid crystal panel. The direction greatly deviating from the normal direction of the liquid crystal panel means a high angle direction in which an angle (hereinafter referred to as polar angle) formed by the normal direction of the liquid crystal panel and the viewing direction of the observer is 50 ° or more. The light emitted in the high polar angle direction is called sidelobe light. The sidelobe light causes a brightness increase (light leakage) when the liquid crystal display device is viewed from an oblique direction, and causes a decrease in visibility in the oblique direction of the liquid crystal display.
The light collecting sheet of Patent Document 2 also controls the light emitted from the backlight, but the orientation is not sufficient.
 本発明の一つの態様は、上記の課題を解決するためになされたものであり、高い配向性を有し、液晶表示装置の光利用効率を高めることができる光配向部材を提供することを目的の一つとする。また本発明の一つに態様は、液晶表示装置の配向制御性を高めるために用いる照明装置を提供することを目的の一つとする。また本発明の一つの態様は、視野角特性を制御できる液晶表示装置を提供することを目的の一つとする。 One aspect of the present invention has been made in order to solve the above-described problems, and has an object to provide a photo-alignment member that has high orientation and can enhance the light utilization efficiency of a liquid crystal display device. One of them. Another object of one embodiment of the present invention is to provide a lighting device used for improving the alignment controllability of a liquid crystal display device. Another object of one embodiment of the present invention is to provide a liquid crystal display device capable of controlling viewing angle characteristics.
 上記の目的を達成するために、本発明の一態様に係る光配向部材は、光透過性を有する基材と、前記基材の第1の面に設けられた複数の光配向部と、前記第1の面のうち前記基材の法線方向から見て前記光配向部と重ならない位置に少なくとも設けられた反射部と、前記基材の法線方向から見て前記反射部と一部重なる位置に設けられ、前記光配向部の屈折率よりも低い屈折率を有する低屈折率部と、を備え、前記光配向部は、前記基材側に位置する光入射端面と、前記基材側と反対側に位置し光入射端面より大きな光射出端面と、前記光入射端面と前記光射出端面との間に位置する傾斜面と、を有する。ただし、上記低屈折率部は空気層であってもよい。 In order to achieve the above object, a photo-alignment member according to an aspect of the present invention includes a light-transmitting base material, a plurality of light-alignment portions provided on the first surface of the base material, Of the first surface, at least a reflection portion provided at a position not overlapping with the photo-alignment portion when viewed from the normal direction of the base material, and partially overlapping with the reflection portion when viewed from the normal direction of the base material And a low refractive index portion having a lower refractive index than the refractive index of the light orientation portion, the light orientation portion having a light incident end face located on the substrate side, and the substrate side And a light exit end face larger than the light incident end face, and an inclined face located between the light entrance end face and the light exit end face. However, the low refractive index portion may be an air layer.
 本発明の一態様に係る光配向部材において、前記光配向部及び前記反射部の平面形状が、前記第1の面の第1の方向に延在するライン形状であってもよい。 In the photo-alignment member according to one aspect of the present invention, the planar shape of the photo-alignment portion and the reflection portion may be a line shape extending in the first direction of the first surface.
 本発明の一態様に係る光配向部材において、前記反射部の前記第1の方向に垂直な第2の方向の幅Lと、前記光配向部の高さHが、0.2<L/H<2.0の関係を満たしてもよい。 In the photo-alignment member according to one aspect of the present invention, a width L in the second direction perpendicular to the first direction of the reflective portion and a height H of the photo-alignment portion are 0.2 <L / H. The relationship <2.0 may be satisfied.
 本発明の一態様に係る光配向部材において、前記第1の方向に垂直な第2の方向における前記反射部の幅Lと、前記光配向部の光入射端面の幅sが、s>3/7Lの関係を満たしてもよい。 In the photo-alignment member according to one aspect of the present invention, the width L of the reflecting portion in the second direction perpendicular to the first direction and the width s of the light incident end surface of the photo-alignment portion are s> 3 / The 7L relationship may be satisfied.
 本発明の一態様に係る光配向部材において、前記光射出端面と、前記傾斜面のなす角が、60°以上90°未満であってもよい。 In the photo-alignment member according to one aspect of the present invention, an angle formed by the light exit end face and the inclined surface may be 60 ° or more and less than 90 °.
 本発明の一態様に係る光配向部材において、前記基材に対する前記反射部の占有面積の割合が70%以下であってもよい。 In the photo-alignment member according to one aspect of the present invention, the ratio of the area occupied by the reflective portion to the base material may be 70% or less.
 本発明の一態様に係る光配向部材において、前記第1の面に垂直な切断面における前記光配向部を断面視した際の断面形状において、前記光射出端面と第1傾斜面のなす角と、前記光射出端面と第2傾斜面のなす角が異なってもよい。 In the photo-alignment member according to an aspect of the present invention, in a cross-sectional shape when the photo-alignment portion is cut in a cross section perpendicular to the first surface, an angle formed by the light emission end surface and the first inclined surface is The angle formed between the light exit end surface and the second inclined surface may be different.
 本発明の一態様に係る照明装置は、上述の光配向部材と、前記光配向部材の光入射端面側に配置された光源装置と、前記光配向部材と前記光源装置の間に配置され、前記光源装置から射出された光を基材の法線方向に近づく方向に配向させる構造体とを備える。 An illumination device according to one aspect of the present invention is disposed between the light alignment member described above, a light source device disposed on a light incident end surface side of the light alignment member, and between the light alignment member and the light source device, And a structure for orienting light emitted from the light source device in a direction approaching the normal direction of the substrate.
 本発明の一態様に係る照明装置において、前記光源装置が、導光体と、前記導光体の端面に設けられた光源と、前記導光体の前記構造体と反対側の面に配置された反射板とを備えてもよい。 In the illumination device according to one embodiment of the present invention, the light source device is disposed on a light guide, a light source provided on an end surface of the light guide, and a surface of the light guide opposite to the structure. And a reflecting plate.
 本発明の一態様に係る照明装置において、前記構造体が、前記端面に垂直かつ前記導光体の光射出面に垂直な平面で切断した断面が三角形状であって前記端面と平行な方向に延びる複数の凸部であってもよい。 In the lighting device according to one embodiment of the present invention, the structure has a triangular cross section cut in a plane perpendicular to the end surface and perpendicular to the light exit surface of the light guide, and in a direction parallel to the end surface. A plurality of extending protrusions may be used.
 本発明の一態様に係る照明装置において、前記光配向部が前記基材の第1の方向に延在し、その方向が前記凸部が延在する方向と一致してもよい。 In the lighting device according to an aspect of the present invention, the light orientation portion may extend in a first direction of the base material, and the direction may coincide with the direction in which the convex portion extends.
 本発明の一態様に係る液晶表示装置は、上述の照明装置と、前記照明装置の光配向部材側に配置された液晶パネルとを備える。 A liquid crystal display device according to one embodiment of the present invention includes the above-described lighting device and a liquid crystal panel disposed on a light alignment member side of the lighting device.
 本発明の一態様に係る液晶表示装置は、前記液晶パネルの光射出側に光制御部材をさらに備え、前記光制御部材は、光透過性を有する第2の基材と、前記第2の基材の第1の面に設けられた光拡散部と、前記第2の基材の第1の面のうち前記第2の基材の法線方向から見て前記光拡散部と重ならない位置に設けられた遮光部と、前記第2の基材の法線方向から見て前記遮光部と一部重なる位置に設けられ、前記光拡散部の屈折率よりも低い屈折率を有する第2の低屈折率部と、を備え、前記光拡散部は、前記第2の基材側に位置する第2の光射出端面と、前記第2の基材側と反対側に位置する第2の光入射端面と、前記第2の光射出端面と前記第2の光入射端面との間に位置する反射面と、を有する。ただし、上記第2の低屈折率部は空気層であってもよい。 The liquid crystal display device according to one embodiment of the present invention further includes a light control member on a light emission side of the liquid crystal panel, and the light control member includes a second base material having light transmittance, and the second base. A light diffusing portion provided on the first surface of the material, and a position that does not overlap the light diffusing portion when viewed from the normal direction of the second base material in the first surface of the second base material. A second light source having a refractive index lower than a refractive index of the light diffusion portion provided at a position partially overlapping with the light shielding portion when viewed from the normal direction of the second base material. A refractive index portion, and the light diffusing portion has a second light exit end face located on the second base material side and a second light incident on the opposite side to the second base material side. An end face, and a reflecting face located between the second light exit end face and the second light incident end face. However, the second low refractive index portion may be an air layer.
 本発明の一態様に係る光配向部材の製造方法は、上述の光配向部材の製造方法であって、基材の第1の面に反射部を形成する工程と、前記基材の第1面及び前記反射部上に、光硬化性樹脂層を形成する工程と、前記基材の反射部が形成されていない面から拡散光を入射し、前記光硬化性樹脂層の一部を硬化する工程と、前記光硬化性樹脂層の内、未硬化の部分を除去し、前記光配向部を形成する工程とを有する。 The manufacturing method of the photo-alignment member which concerns on 1 aspect of this invention is a manufacturing method of the above-mentioned photo-alignment member, Comprising: The process of forming a reflection part in the 1st surface of a base material, The 1st surface of the said base material And a step of forming a photocurable resin layer on the reflective portion, and a step of diffusing light from a surface of the base material where the reflective portion is not formed to cure a part of the photocurable resin layer. And removing the uncured portion of the photo-curable resin layer to form the photo-alignment portion.
 本発明の一つの態様によれば、高い光配向性を有し、液晶表示装置の光利用効率を十分高めることができる光配向部材を提供することができる。また本発明の一つの態様によれば、液晶表示装置の光利用効率を高めると共に、液晶表示装置の視野角依存性を制御することができる照明装置を提供することができる。また本発明の一つの態様によれば、光利用効率が高く、視野角特性を制御することができる液晶表示装置を提供することができる。 According to one aspect of the present invention, it is possible to provide a photo-alignment member that has high photo-alignment properties and can sufficiently increase the light utilization efficiency of a liquid crystal display device. Further, according to one embodiment of the present invention, it is possible to provide an illumination device that can increase the light use efficiency of the liquid crystal display device and can control the viewing angle dependency of the liquid crystal display device. Further, according to one embodiment of the present invention, it is possible to provide a liquid crystal display device that has high light utilization efficiency and can control viewing angle characteristics.
本実施形態の第1実施形態の液晶表示装置の断面図である。It is sectional drawing of the liquid crystal display device of 1st Embodiment of this embodiment. 液晶パネルの縦断面図である。It is a longitudinal cross-sectional view of a liquid crystal panel. 液晶表示装置の駆動回路の構成を示すブロック図である。It is a block diagram which shows the structure of the drive circuit of a liquid crystal display device. 液晶表示装置のゲートバスラインおよびソースバスラインを示す図である。It is a figure which shows the gate bus line and source bus line of a liquid crystal display device. 光配向部材の斜視模式図である。It is a perspective schematic diagram of a photo-alignment member. 反射層の要部を拡大した断面模式図である。It is the cross-sectional schematic diagram which expanded the principal part of the reflective layer. 光配向部材を有さないバックライトユニットにおける射出される光の経路を模式的に示した断面図である。It is sectional drawing which showed typically the path | route of the light inject | emitted in the backlight unit which does not have a photo-alignment member. 本発明の一態様に係るバックライトユニットにおける射出される光の経路を模式的に示した断面図である。FIG. 6 is a cross-sectional view schematically showing a path of emitted light in the backlight unit according to one aspect of the present invention. 特許文献2に記載された集光シートの断面模式図である。It is a cross-sectional schematic diagram of the condensing sheet described in patent document 2. FIG. 極角と方位角の定義を説明するための図である。It is a figure for demonstrating the definition of a polar angle and an azimuth. 液晶表示装置の正面図である。It is a front view of a liquid crystal display device. 光配向部材を設けない場合と、光配向部材の光配向部の傾斜角を変化させた場合の、液晶表示装置の視認側の上下方向の輝度分布を測定した結果である。It is the result of measuring the luminance distribution in the vertical direction on the viewing side of the liquid crystal display device when the photo-alignment member is not provided and when the tilt angle of the photo-alignment portion of the photo-alignment member is changed. 光配向部材の傾斜角度が小さい場合におけるy軸方向に平行な面で切断した際の要部を拡大した図である。It is the figure which expanded the principal part at the time of cut | disconnecting in a surface parallel to the y-axis direction in case the inclination angle of a photo-alignment member is small. 光配向部材の傾斜角度が90°の場合におけるy軸方向に平行な面で切断した際の要部を拡大した図である。It is the figure which expanded the principal part at the time of cut | disconnecting in the surface parallel to the y-axis direction in case the inclination angle of a photo-alignment member is 90 degrees. 光配向部に入射した光の経路を説明するための断面図である。It is sectional drawing for demonstrating the path | route of the light which injected into the photo-alignment part. 光配向部材の傾斜角度を変化させた場合の、液晶表示装置の視認側の上下方向の輝度分布をシミュレーションした結果であり、その総光線量における直抜け光と反射光の比率をシミュレーションした図である。It is the result of simulating the luminance distribution in the vertical direction on the viewing side of the liquid crystal display device when the tilt angle of the photo-alignment member is changed, and is a diagram simulating the ratio of direct light and reflected light in the total light amount is there. 反射層の幅と、光配向部の高さ及び傾斜角度の関係を実測した測定結果である。It is the measurement result which measured the relationship between the width | variety of a reflection layer, the height of a photo orientation part, and an inclination angle. 基材に対する反射層の被覆率による光利用効率の関係を示す。The relationship of the light utilization efficiency by the coverage of the reflective layer with respect to a base material is shown. 光配向部をy軸方向に平行な面で切断した際の光入射端面の幅が、比較的広い場合の断面模式図である。It is a cross-sectional schematic diagram when the width | variety of the light-incidence end surface at the time of cut | disconnecting a photo-alignment part by a surface parallel to a y-axis direction is comparatively wide. 光配向部をy軸方向に平行な面で切断した際の光入射端面の幅が、比較的狭い場合の断面模式図である。It is a cross-sectional schematic diagram when the width | variety of the light-incidence end surface at the time of cut | disconnecting a photo-alignment part by a surface parallel to a y-axis direction is comparatively narrow. 光配向部の光入射端面の幅を変更した際の透過光の輝度分布を示す。The brightness | luminance distribution of the transmitted light at the time of changing the width | variety of the light-incidence end surface of a light orientation part is shown. 本発明の第1実施形態の光配向部材の製造方法の一工程の様子を示す斜視図である。It is a perspective view which shows the mode of 1 process of the manufacturing method of the optical orientation member of 1st Embodiment of this invention. 製造工程図の続きである。It is a continuation of the manufacturing process diagram. 製造工程図の続きである。It is a continuation of the manufacturing process diagram. 製造工程図の続きである。It is a continuation of the manufacturing process diagram. 光配向部材の第1の変形例を示す平面図。The top view which shows the 1st modification of a photo-alignment member. 光配向部材の第2の変形例を示す平面図。The top view which shows the 2nd modification of a photo-alignment member. 光配向部材の第3の変形例を示す平面図。The top view which shows the 3rd modification of a photo-alignment member. 光配向部材の第4の変形例を示す平面図。The top view which shows the 4th modification of a photo-alignment member. 第2実施形態の液晶表示装置の光配向部材をy軸方向と平行な面で切断した断面模式図である。It is the cross-sectional schematic diagram which cut | disconnected the optical orientation member of the liquid crystal display device of 2nd Embodiment by the surface parallel to a y-axis direction. 第2実施形態の光配向部材のy軸方向の輝度分布を測定した結果を示す。The result of having measured the luminance distribution of the y-axis direction of the photo-alignment member of 2nd Embodiment is shown. バックライトの導光体のy軸方向の一端側のみに光源がある場合において、第2実施形態の光配向部材の機能を模式的に示した図である。It is the figure which showed typically the function of the photo-alignment member of 2nd Embodiment, when there exists a light source only in the one end side of the y-axis direction of the light guide of a backlight. バックライトの導光体のy軸方向の両端側に光源がある場合において、第2実施形態の光配向部材の機能を模式的に示した図である。It is the figure which showed typically the function of the photo-alignment member of 2nd Embodiment, when there exists a light source in the both ends side of the y-axis direction of the light guide of a backlight. 本実施形態の第3実施形態の液晶表示装置の断面図である。It is sectional drawing of the liquid crystal display device of 3rd Embodiment of this embodiment. 光制御部材を視認側から見た斜視図である。It is the perspective view which looked at the light control member from the visual recognition side. 光制御部材の平面図及び2方向からの断面図である。It is the top view of a light control member, and sectional drawing from two directions. 複数の遮光層のうちの一つの遮光層を示す平面図である。It is a top view which shows one light shielding layer among several light shielding layers. 人間の視力と人間の眼で認識できる物体の大きさとの関係を示すグラフでA graph showing the relationship between human eyesight and the size of an object that can be recognized by the human eye 画素内の各ドメインの液晶分子のダイレクタ方向と、光配向部材、光制御部材および偏光板との配置関係を示す模式図である。It is a schematic diagram which shows the arrangement | positioning relationship between the director direction of the liquid crystal molecule of each domain in a pixel, a photo-alignment member, a light control member, and a polarizing plate. 本実施形態の遮光部の第1の平面形状の作用を説明するための図である。It is a figure for demonstrating the effect | action of the 1st planar shape of the light-shielding part of this embodiment. 本実施形態の遮光部の第2の平面形状の作用を説明するための図である。It is a figure for demonstrating the effect | action of the 2nd planar shape of the light-shielding part of this embodiment. 本実施形態の遮光部の第3の平面形状の作用を説明するための図である。It is a figure for demonstrating the effect | action of the 3rd planar shape of the light-shielding part of this embodiment. 本実施形態の遮光部の第4の平面形状の作用を説明するための図である。It is a figure for demonstrating the effect | action of the 4th planar shape of the light-shielding part of this embodiment. 本実施形態の遮光部の第5の平面形状の作用を説明するための図である。It is a figure for demonstrating the effect | action of the 5th planar shape of the light-shielding part of this embodiment. 本実施形態の遮光部の第6の平面形状の作用を説明するための図である。It is a figure for demonstrating the effect | action of the 6th planar shape of the light-shielding part of this embodiment. 第1~第3実施形態の液晶表示装置の一適用例である薄型テレビを示す外観図である。FIG. 5 is an external view showing a thin television that is an application example of the liquid crystal display device of the first to third embodiments. 第1~第3実施形態の液晶表示装置の一適用例であるスマートフォンを示す外観図である。FIG. 11 is an external view showing a smartphone that is an application example of the liquid crystal display device of the first to third embodiments. 第1~第3実施形態の液晶表示装置の一適用例であるノートパソコンを示す外観図である。FIG. 5 is an external view showing a notebook personal computer that is one application example of the liquid crystal display devices of the first to third embodiments. 液晶表示装置を構成するカラーフィルターの第1の色配置の例を示す図である。It is a figure which shows the example of the 1st color arrangement | positioning of the color filter which comprises a liquid crystal display device. 液晶表示装置を構成するカラーフィルターの第2の色配置の例を示す図である。It is a figure which shows the example of the 2nd color arrangement | positioning of the color filter which comprises a liquid crystal display device. 液晶表示装置を構成するカラーフィルターの第3の色配置の例を示す図である。It is a figure which shows the example of the 3rd color arrangement | positioning of the color filter which comprises a liquid crystal display device. 液晶表示装置を構成するカラーフィルターの第4の色配置の例を示す図である。It is a figure which shows the example of the 4th color arrangement | positioning of the color filter which comprises a liquid crystal display device. 液晶表示装置を構成するカラーフィルターの第5の色配置の例を示す図である。It is a figure which shows the example of the 5th color arrangement | positioning of the color filter which comprises a liquid crystal display device.
[第1実施形態]
 以下、本発明の第1実施形態について、図1~図23を用いて説明する。
 本実施形態では、透過型の液晶パネルを備えた、スーパーハイビジョン(7680Pixel×4320Pixel)映像の表示に対応した液晶表示装置の例を挙げて説明する。
 なお、以下の全ての図面においては、各構成要素を見やすくするため、構成要素によって寸法の縮尺を異ならせて示すことがある。
[First Embodiment]
Hereinafter, a first embodiment of the present invention will be described with reference to FIGS.
In the present embodiment, an example of a liquid crystal display device that includes a transmissive liquid crystal panel and is compatible with super high-definition (7680 pixel × 4320 pixel) video display will be described.
In all of the following drawings, in order to make each component easy to see, the scale of the size may be changed depending on the component.
 図1は、本実施形態の液晶表示装置の断面図である。
 図1に示すように、本実施形態の液晶表示装置1は、液晶パネル2と、照明装置(バックライトユニット)8とを備えている。液晶パネル2は、第1偏光板3と、第1位相差フィルム4と、液晶セル5と、第2位相差フィルム6と、第2偏光板7と、を備えている。
図1では、液晶セル5を模式的に図示しているが、その詳細な構造については後述する。
バックライトユニット8は、バックライト36と、光配向部材37と、プリズムシート38を備えている。
 本実施形態では、バックライトユニット8は、特許請求の範囲の照明装置に対応する。
本実施形態では、バックライト36は、特許請求の範囲の光源装置に対応する。本実施形態では、プリズムシート38は、特許請求の範囲の構造体に対応する。
FIG. 1 is a cross-sectional view of the liquid crystal display device of the present embodiment.
As shown in FIG. 1, the liquid crystal display device 1 of this embodiment includes a liquid crystal panel 2 and an illumination device (backlight unit) 8. The liquid crystal panel 2 includes a first polarizing plate 3, a first retardation film 4, a liquid crystal cell 5, a second retardation film 6, and a second polarizing plate 7.
In FIG. 1, the liquid crystal cell 5 is schematically illustrated, but the detailed structure thereof will be described later.
The backlight unit 8 includes a backlight 36, a light orientation member 37, and a prism sheet 38.
In the present embodiment, the backlight unit 8 corresponds to the illumination device recited in the claims.
In the present embodiment, the backlight 36 corresponds to the light source device in the claims. In the present embodiment, the prism sheet 38 corresponds to the structure of the claims.
 観察者は、液晶パネル2のバックライトユニット8と反対側の面から液晶表示装置1の表示画像を見る。以下の説明では、液晶パネル2のバックライトユニット8と反対側を視認側と称する。バックライトユニット8が配置された側を背面側と称する。また、以下の説明において、x軸は、液晶表示装置1の画面の水平方向と定義する。y軸は、液晶表示装置1の画面の垂直方向と定義する。z軸は、液晶表示装置1の厚さ方向と定義する。さらに、画面の水平方向は、観察者が液晶表示装置1を正対して見たときの左右方向に対応する。画面の垂直方向は、観察者が液晶表示装置1を正対して見たときの上下方向に対応する。 The observer views the display image of the liquid crystal display device 1 from the surface opposite to the backlight unit 8 of the liquid crystal panel 2. In the following description, the side opposite to the backlight unit 8 of the liquid crystal panel 2 is referred to as a viewing side. The side on which the backlight unit 8 is disposed is referred to as the back side. In the following description, the x axis is defined as the horizontal direction of the screen of the liquid crystal display device 1. The y axis is defined as the vertical direction of the screen of the liquid crystal display device 1. The z axis is defined as the thickness direction of the liquid crystal display device 1. Further, the horizontal direction of the screen corresponds to the left-right direction when the observer views the liquid crystal display device 1 facing the front. The vertical direction of the screen corresponds to the up-down direction when the observer views the liquid crystal display device 1 facing the front.
 本実施形態の液晶表示装置1においては、バックライトユニット8からz軸方向に配向して射出された光を液晶パネル2で変調し、変調した光によって所定の画像や文字等を表示する。 In the liquid crystal display device 1 of the present embodiment, light emitted from the backlight unit 8 after being aligned in the z-axis direction is modulated by the liquid crystal panel 2, and a predetermined image, character, or the like is displayed by the modulated light.
 以下、液晶パネル2の具体的な構成について説明する。
 ここでは、アクティブマトリクス方式の透過型液晶パネルを一例に挙げて説明する。ただし、本実施形態に適用可能な液晶パネルはアクティブマトリクス方式の透過型液晶パネルに限るものではない。本実施形態に適用可能な液晶パネル2は、例えば半透過型(透過・反射兼用型)液晶パネルであっても良い。さらには、各画素がスイッチング用薄膜トランジスタを備えていない単純マトリクス方式の液晶パネルであっても良い。以下、薄膜トランジスタ(Thin Film Transistor)をTFTと略記する。
Hereinafter, a specific configuration of the liquid crystal panel 2 will be described.
Here, an active matrix transmissive liquid crystal panel will be described as an example. However, the liquid crystal panel applicable to this embodiment is not limited to an active matrix transmissive liquid crystal panel. The liquid crystal panel 2 applicable to the present embodiment may be, for example, a transflective (transmission / reflection type) liquid crystal panel. Furthermore, a simple matrix type liquid crystal panel in which each pixel does not include a switching thin film transistor may be used. Hereinafter, a thin film transistor is abbreviated as TFT.
 図2は、液晶パネル2の縦断面図である。
 図2に示すように、液晶セル5は、TFT基板10と、カラーフィルター基板12と、液晶層11と、を有している。TFT基板10は、スイッチング素子基板として機能する。カラーフィルター基板12は、TFT基板10に対向して配置されている。液晶層11は、TFT基板10とカラーフィルター基板12との間に挟持されている。
FIG. 2 is a longitudinal sectional view of the liquid crystal panel 2.
As illustrated in FIG. 2, the liquid crystal cell 5 includes a TFT substrate 10, a color filter substrate 12, and a liquid crystal layer 11. The TFT substrate 10 functions as a switching element substrate. The color filter substrate 12 is disposed to face the TFT substrate 10. The liquid crystal layer 11 is sandwiched between the TFT substrate 10 and the color filter substrate 12.
 液晶層11は、TFT基板10と、カラーフィルター基板12と、枠状のシール部材(図示せず)と、によって囲まれた空間内に封入されている。シール部材は、TFT基板10とカラーフィルター基板12とを所定の間隔をおいて貼り合わせる。 The liquid crystal layer 11 is sealed in a space surrounded by the TFT substrate 10, the color filter substrate 12, and a frame-shaped seal member (not shown). The sealing member bonds the TFT substrate 10 and the color filter substrate 12 at a predetermined interval.
 本実施形態の液晶パネル2は、VA(Vertical Alignment, 垂直配向)モードで表示を行う。液晶層11には誘電率異方性が負の液晶が用いられる。TFT基板10とカラーフィルター基板12との間には、スペーサー13が配置されている。スペーサー13は球状あるいは柱状の部材である。スペーサー13は、TFT基板10とカラーフィルター基板12との間の間隔を一定に保持する。 The liquid crystal panel 2 of the present embodiment performs display in a VA (Vertical Alignment) mode. A liquid crystal having a negative dielectric anisotropy is used for the liquid crystal layer 11. A spacer 13 is disposed between the TFT substrate 10 and the color filter substrate 12. The spacer 13 is a spherical or columnar member. The spacer 13 keeps the distance between the TFT substrate 10 and the color filter substrate 12 constant.
 TFT基板10を構成する透明基板14の液晶層11側の面には、半導体層15、ゲート電極16、ソース電極17、ドレイン電極18等を有するTFT19が形成されている。透明基板14としては、例えばガラス基板を用いることができる。 A TFT 19 having a semiconductor layer 15, a gate electrode 16, a source electrode 17, a drain electrode 18 and the like is formed on the surface of the transparent substrate 14 constituting the TFT substrate 10 on the liquid crystal layer 11 side. As the transparent substrate 14, for example, a glass substrate can be used.
 透明基板14上には、半導体層15が形成されている。半導体層は、例えばインジウム(In)、ガリウム(Ga)、亜鉛(Zn)、酸素(O)を含む4元混晶半導体材料で構成されている。半導体層の材料としては、In-Ga-Zn-O系4元混晶半導体の他、CGS(Continuous Grain Silicon:連続粒界シリコン)、LPS(Low-temperature Poly-Silicon:低温多結晶シリコン)、α-Si(Amorphous Silicon:非結晶シリコン)等の半導体材料が用いられる。 A semiconductor layer 15 is formed on the transparent substrate 14. The semiconductor layer is made of a quaternary mixed crystal semiconductor material containing, for example, indium (In), gallium (Ga), zinc (Zn), and oxygen (O). As a material of the semiconductor layer, in addition to In—Ga—Zn—O-based quaternary mixed crystal semiconductor, CGS (Continuous Grain Silicon), LPS (Low-temperature Poly-Silicon), A semiconductor material such as α-Si (Amorphous Silicon) is used.
 透明基板14上には、半導体層15を覆うようにゲート絶縁膜20が形成されている。
 ゲート絶縁膜20の材料としては、例えばシリコン酸化膜、シリコン窒化膜、もしくはこれらの積層膜等が用いられる。
A gate insulating film 20 is formed on the transparent substrate 14 so as to cover the semiconductor layer 15.
As a material of the gate insulating film 20, for example, a silicon oxide film, a silicon nitride film, or a laminated film thereof is used.
 ゲート絶縁膜20上には、半導体層15と対向するようにゲート電極16が形成されている。ゲート電極16の材料としては、例えばW(タングステン)/TaN(窒化タンタル)の積層膜、Mo(モリブデン)、Ti(チタン)、Al(アルミニウム)等が用いられる。 A gate electrode 16 is formed on the gate insulating film 20 so as to face the semiconductor layer 15. As the material of the gate electrode 16, for example, a laminated film of W (tungsten) / TaN (tantalum nitride), Mo (molybdenum), Ti (titanium), Al (aluminum), or the like is used.
 ゲート絶縁膜20上には、ゲート電極16を覆うように第1層間絶縁膜21が形成されている。第1層間絶縁膜21の材料としては、例えばシリコン酸化膜、シリコン窒化膜、もしくはこれらの積層膜等が用いられる。 A first interlayer insulating film 21 is formed on the gate insulating film 20 so as to cover the gate electrode 16. As a material of the first interlayer insulating film 21, for example, a silicon oxide film, a silicon nitride film, or a laminated film thereof is used.
 第1層間絶縁膜21上には、ソース電極17およびドレイン電極18が形成されている。第1層間絶縁膜21とゲート絶縁膜20とには、コンタクトホール22およびコンタクトホール23が、第1層間絶縁膜21とゲート絶縁膜20とを貫通して形成されている。
 ソース電極17は、コンタクトホール22を介して半導体層15のソース領域に接続されている。ドレイン電極18は、コンタクトホール23を介して半導体層15のドレイン領域に接続されている。ソース電極17およびドレイン電極18の材料としては、上述のゲート電極16と同様の導電性材料が用いられる。
A source electrode 17 and a drain electrode 18 are formed on the first interlayer insulating film 21. A contact hole 22 and a contact hole 23 are formed in the first interlayer insulating film 21 and the gate insulating film 20 so as to penetrate the first interlayer insulating film 21 and the gate insulating film 20.
The source electrode 17 is connected to the source region of the semiconductor layer 15 through the contact hole 22. The drain electrode 18 is connected to the drain region of the semiconductor layer 15 through the contact hole 23. As a material for the source electrode 17 and the drain electrode 18, the same conductive material as that for the gate electrode 16 is used.
 第1層間絶縁膜21上には、ソース電極17およびドレイン電極18を覆うように第2層間絶縁膜24が形成されている。第2層間絶縁膜24の材料としては、上述の第1層間絶縁膜21と同様の材料、もしくは有機絶縁性材料が用いられる。 A second interlayer insulating film 24 is formed on the first interlayer insulating film 21 so as to cover the source electrode 17 and the drain electrode 18. As the material of the second interlayer insulating film 24, the same material as the first interlayer insulating film 21 described above or an organic insulating material is used.
 第2層間絶縁膜24上には、画素電極25が形成されている。第2層間絶縁膜24には、コンタクトホール26が第2層間絶縁膜24を貫通して形成されている。画素電極25は、コンタクトホール26を介してドレイン電極18に接続されている。画素電極25は、ドレイン電極18を中継用電極として半導体層15のドレイン領域に接続されている。
 画素電極25の材料としては、例えばITO(Indium Tin Oxide、インジウム錫酸化物)、IZO(Indium Zinc Oxide、インジウム亜鉛酸化物)等の透明導電性材料が用いられる。
A pixel electrode 25 is formed on the second interlayer insulating film 24. A contact hole 26 is formed through the second interlayer insulating film 24 in the second interlayer insulating film 24. The pixel electrode 25 is connected to the drain electrode 18 through the contact hole 26. The pixel electrode 25 is connected to the drain region of the semiconductor layer 15 using the drain electrode 18 as a relay electrode.
As the material of the pixel electrode 25, for example, a transparent conductive material such as ITO (Indium Tin Oxide) or IZO (Indium Zinc Oxide) is used.
 この構成により、ゲートバスラインを通じて走査信号が供給され、TFT19がオン状態となったときに、ソースバスラインを通じてソース電極17に供給された画像信号が、半導体層15、ドレイン電極18を経て画素電極25に供給される。なお、TFT19の形態としては、図2に示したトップゲート型TFTであってもよいし、ボトムゲート型TFTであってもよい。 With this configuration, when the scanning signal is supplied through the gate bus line and the TFT 19 is turned on, the image signal supplied to the source electrode 17 through the source bus line passes through the semiconductor layer 15 and the drain electrode 18 to form a pixel electrode. 25. The form of the TFT 19 may be the top gate type TFT shown in FIG. 2 or the bottom gate type TFT.
 画素電極25を覆うように、第2層間絶縁膜24上の全面に第1の垂直配向膜27が形成されている。第1の垂直配向膜27は、液晶層11を構成する液晶分子を垂直配向させる配向規制力を有している。本実施形態では、光配向技術を用いて第1の垂直配向膜27に配向処理を施している。つまり、本実施形態では、第1の垂直配向膜27として光配向膜を用いている。 A first vertical alignment film 27 is formed on the entire surface of the second interlayer insulating film 24 so as to cover the pixel electrode 25. The first vertical alignment film 27 has an alignment regulating force for vertically aligning liquid crystal molecules constituting the liquid crystal layer 11. In the present embodiment, the first vertical alignment film 27 is subjected to an alignment process using an optical alignment technique. That is, in this embodiment, a photo-alignment film is used as the first vertical alignment film 27.
 一方、カラーフィルター基板12を構成する透明基板29の液晶層11側の面には、ブラックマトリクス30、カラーフィルター31、平坦化層32、対向電極33、第2の垂直配向膜34が順次形成されている。 On the other hand, a black matrix 30, a color filter 31, a planarization layer 32, a counter electrode 33, and a second vertical alignment film 34 are sequentially formed on the surface of the transparent substrate 29 constituting the color filter substrate 12 on the liquid crystal layer 11 side. ing.
 ブラックマトリクス30は、画素間領域において光の透過を遮断する機能を有する。ブラックマトリクス30は、例えば、Cr(クロム)やCr/酸化Crの多層膜等の金属、もしくはカーボン粒子を感光性樹脂に分散させたフォトレジストで形成されている。 The black matrix 30 has a function of blocking light transmission in the inter-pixel region. The black matrix 30 is formed of, for example, a metal such as Cr (chromium) or a Cr / Cr oxide multilayer film, or a photoresist in which carbon particles are dispersed in a photosensitive resin.
 カラーフィルター31には、1個の画素を構成する色の異なる副画素毎に、赤色(R)、緑色(G)、青色(B)のいずれかの色素が含まれている。TFT基板10上の一つの画素電極25に対して、R,G,Bのいずれか一つのカラーフィルター31が対向して配置されている。なお、カラーフィルター31は、R、G、Bの3色以上の多色構成としてもよい。例えば、黄色(Y)を加えた4色構成としてもよいし、白色(W)を加えた4色構成としてもよいし、黄色(Y)、シアン(C)、マゼンダ(M)を加えた6色構成としてもよい。 The color filter 31 includes one of red (R), green (G), and blue (B) pigments for each sub-pixel having a different color that constitutes one pixel. One color filter 31 of R, G, and B is disposed to face one pixel electrode 25 on the TFT substrate 10. The color filter 31 may have a multicolor configuration of three or more colors of R, G, and B. For example, a four-color configuration with yellow (Y) added, a four-color configuration with white (W) added, or a yellow (Y), cyan (C), and magenta (M) added 6 A color configuration may be used.
 平坦化層32は、ブラックマトリクス30およびカラーフィルター31を覆う絶縁膜で構成されている。平坦化層32は、ブラックマトリクス30およびカラーフィルター31によってできる段差を緩和して平坦化する機能を有している。 The planarization layer 32 is composed of an insulating film that covers the black matrix 30 and the color filter 31. The planarizing layer 32 has a function of smoothing and leveling a step formed by the black matrix 30 and the color filter 31.
 平坦化層32上には対向電極33が形成されている。対向電極33の材料としては、画素電極25と同様の透明導電性材料が用いられる。 A counter electrode 33 is formed on the planarization layer 32. As the material of the counter electrode 33, a transparent conductive material similar to that of the pixel electrode 25 is used.
 対向電極33上の全面に第2の垂直配向膜34が形成されている。第2の垂直配向膜34は、液晶層11を構成する液晶分子を垂直配向させる配向規制力を有している。本実施形態では、光配向技術を用いて第2の垂直配向膜34に配向処理を施している。つまり、本実施形態では、第2の垂直配向膜34として光配向膜を用いている。 A second vertical alignment film 34 is formed on the entire surface of the counter electrode 33. The second vertical alignment film 34 has an alignment regulating force for vertically aligning the liquid crystal molecules constituting the liquid crystal layer 11. In the present embodiment, the alignment process is performed on the second vertical alignment film 34 using a photo-alignment technique. That is, in this embodiment, a photo-alignment film is used as the second vertical alignment film 34.
 バックライトユニット8と液晶セル5との間には、第1偏光板3が設けられている。第1偏光板3は、液晶セル5に入射する光の偏光状態を制御する偏光子として機能する。液晶セル5の視認側には、第2偏光板7が設けられている。第2偏光板7は、液晶セル5から射出された光の透過状態を制御する検光子として機能する。後述するように、第1偏光板3の透過軸と第2偏光板7の透過軸とは、クロスニコルの配置となっている。 A first polarizing plate 3 is provided between the backlight unit 8 and the liquid crystal cell 5. The first polarizing plate 3 functions as a polarizer that controls the polarization state of light incident on the liquid crystal cell 5. A second polarizing plate 7 is provided on the viewing side of the liquid crystal cell 5. The second polarizing plate 7 functions as an analyzer that controls the transmission state of the light emitted from the liquid crystal cell 5. As will be described later, the transmission axis of the first polarizing plate 3 and the transmission axis of the second polarizing plate 7 are in a crossed Nicol arrangement.
 第1偏光板3と液晶セル5との間には、光の位相差を補償するための第1位相差フィルム4が設けられている。第2偏光板7と液晶セル5との間には、光の位相差を補償するための第2位相差フィルム6が設けられている。
 本実施形態の位相差フィルム(第1位相差フィルム4、第2位相差フィルム6)としては、例えばTACフィルムが用いられる。
Between the 1st polarizing plate 3 and the liquid crystal cell 5, the 1st phase difference film 4 for compensating the phase difference of light is provided. A second retardation film 6 is provided between the second polarizing plate 7 and the liquid crystal cell 5 to compensate for the phase difference of light.
As the retardation film (first retardation film 4, second retardation film 6) of the present embodiment, for example, a TAC film is used.
 続いて、本実施形態の液晶表示装置1の駆動方法について説明する。
 本実施形態の液晶表示装置1はスーパーハイビジョンの映像を表示するため、水平方向:7680Pixel×垂直方向:4320Pixelの画素を有している。
 図3は、液晶表示装置1のドライバーおよびタイミングコントローラー(TCON)の配線模式図を表している。
 本実施形態の液晶表示装置1は4個のTCON80を有しており、4つのTCON80はそれぞれ画面83の右上領域、左上領域、右下領域、左下領域のソースドライバー81およびゲートドライバー82への入力信号を制御している。
Next, a driving method of the liquid crystal display device 1 of the present embodiment will be described.
The liquid crystal display device 1 of the present embodiment has pixels of horizontal direction: 7680 pixels × vertical direction: 4320 pixels in order to display Super Hi-Vision images.
FIG. 3 is a schematic wiring diagram of the driver and timing controller (TCON) of the liquid crystal display device 1.
The liquid crystal display device 1 of the present embodiment has four TCONs 80, and the four TCONs 80 are input to the source driver 81 and the gate driver 82 in the upper right area, upper left area, lower right area, and lower left area of the screen 83, respectively. The signal is controlled.
 図4は、液晶表示装置1の画像表示領域の拡大図である。
 図4に示すように、TFT基板10には、複数の画素PXがマトリクス状に配置されている。画素PXは、表示の基本単位である。TFT基板10には、複数のソースバスラインSBが、互いに平行に延在するように形成されている。TFT基板10には、複数のゲートバスラインGBが、互いに平行に延在するように形成されている。複数のゲートバスラインGBは、複数のソースバスラインSBと直交している。TFT基板10上には、複数のソースバスラインSBと複数のゲートバスラインGBとが格子状に形成されている。
隣接するソースバスラインSBと隣接するゲートバスラインGBとによって区画された矩形状の領域が一つの画素PXとなる。ソースバスラインSBは、TFTのソース電極に接続されている。ゲートバスラインGBは、TFTのゲート電極に接続されている。
FIG. 4 is an enlarged view of an image display area of the liquid crystal display device 1.
As shown in FIG. 4, the TFT substrate 10 has a plurality of pixels PX arranged in a matrix. The pixel PX is a basic unit of display. A plurality of source bus lines SB are formed on the TFT substrate 10 so as to extend in parallel to each other. A plurality of gate bus lines GB are formed on the TFT substrate 10 so as to extend in parallel to each other. The plurality of gate bus lines GB are orthogonal to the plurality of source bus lines SB. On the TFT substrate 10, a plurality of source bus lines SB and a plurality of gate bus lines GB are formed in a lattice pattern.
A rectangular area defined by the adjacent source bus line SB and the adjacent gate bus line GB is one pixel PX. The source bus line SB is connected to the source electrode of the TFT. The gate bus line GB is connected to the gate electrode of the TFT.
 本実施形態の液晶表示装置1では、1列の画素PXに対して2本のソースバスラインSB1,SB2が形成されており、1本目のソースバスラインSB1に奇数行目(Line1,3,…)の画素PXが接続され、2本目のソースバスラインSB2に偶数行目(Line2,4,…)の画素PXが接続されている。スキャンする際にゲートバスラインGBは2本ずつ選択され、2行ずつ同時に画素PXへ信号が書き込まれる。 In the liquid crystal display device 1 of the present embodiment, two source bus lines SB1, SB2 are formed for one column of pixels PX, and the first source bus line SB1 has an odd row ( Line 1, 3,...). ) Of pixels PX are connected, and pixels PX of even-numbered rows ( Lines 2, 4,...) Are connected to the second source bus line SB2. When scanning, two gate bus lines GB are selected, and signals are written to the pixels PX two rows at a time.
 外部から映像信号が入力されると、映像信号は4つに分かれて4つのTCON80に供給され、かつゲートバスラインGBは2本ずつ同時選択される。そのため、最初のタイミングで1行目、2行目、2161行目、2162行目に映像が表示され、続いて3行目、4行目、2163行目、2164行目…と4行ずつ映像が表示され、最後の4320行目のゲートバスラインGBが選択された後は再び上から次の映像信号を書きこんでいく。 When a video signal is input from the outside, the video signal is divided into four and supplied to four TCONs 80, and two gate bus lines GB are simultaneously selected. Therefore, at the first timing, the video is displayed on the first row, the second row, the 2161th row, the 2162th row, and then the fourth row, the fourth row, the 2163th row, the 2164th row, and so on. Is displayed, and after the last gate bus line GB in the 4320th row is selected, the next video signal is written again from above.
 駆動方法は、前記の4ライン同時書き込みに限らず、配線容量が十分に小さく、かつ液晶の応答速度が十分に早い場合は1ラインずつ上からスキャンしてもかまわない。 The driving method is not limited to the simultaneous writing of the four lines, and scanning may be performed line by line when the wiring capacity is sufficiently small and the response speed of the liquid crystal is sufficiently high.
 次に、図1に戻って、照明装置であるバックライトユニット8について、詳細に説明する。バックライトユニット8は、バックライト36と、プリズムシート38と、光配向部材37と、を備えている。 Next, returning to FIG. 1, the backlight unit 8 which is a lighting device will be described in detail. The backlight unit 8 includes a backlight 36, a prism sheet 38, and a light orientation member 37.
 バックライト36は、光源39と導光体40と反射板41からなる。光源39は、導光体40の端面に配置されている。光源39としては、例えば、発光ダイオード、冷陰極管等が用いられる。
 本実施形態のバックライト36は、エッジライト型のバックライトである。
The backlight 36 includes a light source 39, a light guide 40 and a reflection plate 41. The light source 39 is disposed on the end face of the light guide 40. As the light source 39, for example, a light emitting diode, a cold cathode tube, or the like is used.
The backlight 36 of the present embodiment is an edge light type backlight.
 導光体40は、光源39から射出された光を液晶パネル2に導く機能を有する。導光体40の材料としては、例えば、アクリル樹脂等の樹脂材料が用いられる。 The light guide 40 has a function of guiding the light emitted from the light source 39 to the liquid crystal panel 2. As a material of the light guide 40, for example, a resin material such as an acrylic resin is used.
 光源39から導光体40の端面に入射した光は、導光体40の内部を全反射して伝播し、導光体40の上面(光射出面)から概ね均一な強度で射出される。導光体40の上面には、プリズムシート38が配置されている。 The light incident on the end surface of the light guide 40 from the light source 39 propagates by being totally reflected inside the light guide 40 and is emitted from the upper surface (light emission surface) of the light guide 40 with a substantially uniform intensity. A prism sheet 38 is disposed on the upper surface of the light guide 40.
 プリズムシート38は、光配向部材37とバックライト36の間に配置され、バックライトから入射した光を、z軸方向(基材の法線方向)に配向する。
 本実施形態では、プリズムシート38は、y軸方向に切断した断面が三角形状であり、x軸方向に延在する複数の凸部からなる。そのため、プリズムシート38は、導光体40側の第1面部38aと、第1の面部38aに対して所定の角度を有する第2の面部38bと、第1の面部38aに対して垂直かつ凸部の延在方向(x軸方向)に平行な平面(xZ平面)を中心に第2の面部38bと対称な第3の面部38cとを備える。プリズムシート38としては、例えば、住友3M社製のBEFシート(商品名)を用いることができる。
第1面部38aと第2の面部38b及び第1面部38aと第23面部38cのなす角は、特に制限されない。プリズムシート38から射出される光の配向性に合せて、適宜市販のものを用いることができる。
The prism sheet 38 is disposed between the light orientation member 37 and the backlight 36, and orients the light incident from the backlight in the z-axis direction (normal direction of the base material).
In the present embodiment, the prism sheet 38 has a triangular cross section cut in the y-axis direction, and includes a plurality of convex portions extending in the x-axis direction. Therefore, the prism sheet 38 is perpendicular and convex with respect to the first surface portion 38a on the light guide 40 side, the second surface portion 38b having a predetermined angle with respect to the first surface portion 38a, and the first surface portion 38a. And a third surface portion 38c that is symmetrical to the second surface portion 38b around a plane (xZ plane) parallel to the extending direction (x-axis direction) of the portion. As the prism sheet 38, for example, a BEF sheet (trade name) manufactured by Sumitomo 3M may be used.
The angles formed by the first surface portion 38a and the second surface portion 38b, and the first surface portion 38a and the 23rd surface portion 38c are not particularly limited. A commercially available product can be used as appropriate in accordance with the orientation of light emitted from the prism sheet 38.
 バックライト36を構成する導光体40とプリズムシート38は、接着剤を介して光学的に接着されていてもよいし、されていなくてもよい。導光体40とプリズムシート38の屈折率界面を接着剤層で埋め、光学的に接続する(光学的な界面を無くす)場合は、界面反射が減少する。そのため、光利用効率を高めることができる。一方で、導光体40とプリズムシート38を光学的に接着しない場合(例えば、間に空気界面を有する等)は、導光体40のプリズムシート38側の界面及びプリズムシート38の導光体40側の界面が存在することになる。すなわち、発生したサイドローブ光が、液晶パネル2側に入射することをより抑制することができる。したがって、使用の態様によって、導光体40とプリズムシート38の界面の構成は適宜設計することができる。 The light guide 40 and the prism sheet 38 constituting the backlight 36 may or may not be optically bonded via an adhesive. When the refractive index interface between the light guide 40 and the prism sheet 38 is filled with an adhesive layer and optically connected (the optical interface is eliminated), the interface reflection is reduced. Therefore, the light use efficiency can be increased. On the other hand, when the light guide 40 and the prism sheet 38 are not optically bonded (for example, an air interface is provided between them), the light guide 40 has an interface on the prism sheet 38 side and the light guide of the prism sheet 38. There will be a 40-side interface. That is, it is possible to further suppress the generated side lobe light from entering the liquid crystal panel 2 side. Therefore, the configuration of the interface between the light guide 40 and the prism sheet 38 can be appropriately designed depending on the mode of use.
 本実施形態では図示はしないが、導光体40とプリズムシート38の間には、散乱シートが配置されていてもよい。導光体40の上面から射出された光は、散乱シートにより散乱した後、プリズムシート38によって集光され、その光の一部がz軸方向に配向される。散乱シートとしては、白色PETを用いてもよい。
 また散乱シートは、導光体40とプリズムシート38の間に限られず、プリズムシート38と光配向部材37の間、及び、光配向部材37及び液晶パネル2の間に設けてもよい。液晶パネル2を介して描画される描画像には、モアレを含めたムラが生じる場合がある。このムラの位置、程度に合せて、散乱シートの配置、散乱強度等を適宜設定することができる。
Although not illustrated in the present embodiment, a scattering sheet may be disposed between the light guide 40 and the prism sheet 38. The light emitted from the upper surface of the light guide 40 is scattered by the scattering sheet and then collected by the prism sheet 38, and a part of the light is oriented in the z-axis direction. White PET may be used as the scattering sheet.
The scattering sheet is not limited to between the light guide 40 and the prism sheet 38, and may be provided between the prism sheet 38 and the light alignment member 37, and between the light alignment member 37 and the liquid crystal panel 2. In the drawn image drawn through the liquid crystal panel 2, unevenness including moire may occur. The arrangement of the scattering sheet, the scattering intensity, and the like can be appropriately set according to the position and degree of the unevenness.
 次に、光配向部材37について説明する。図5は、光配向部材37を視認側から見た斜視模式図である。光配向部材37は、基材42と、複数の光配向部43と、反射層44と、低屈折率部(中空部)45を備えている。複数の光配向部43は、基材42の第1の面42a(視認側の面)に形成されている。反射層44は、基材42の第1の面42aのうち、光配向部43の形成領域以外の領域に形成されている。そのため、反射層44を平面視すると、第1の面42aのうち、基材42の法線方向から見て光配向部43と重ならない位置に少なくとも設けられている。ここで、「少なくとも」とは、平面視した際に、光配向部43は傾斜しているため、光配向部43と反射層44が一部重なる領域が存在することを意味する。中空部45は、基材42の法線方向から見て反射層44と一部重なる位置に設けられている。
 本実施形態において反射層44は、特許請求の範囲の反射部に対応する。本実施形態において中空部45は、特許請求の範囲の低屈折率部に対応する。
Next, the photo-alignment member 37 will be described. FIG. 5 is a schematic perspective view of the photo-alignment member 37 viewed from the viewing side. The photo-alignment member 37 includes a base material 42, a plurality of photo-alignment portions 43, a reflective layer 44, and a low refractive index portion (hollow portion) 45. The plurality of photo-alignment portions 43 are formed on the first surface 42 a (surface on the viewing side) of the base material 42. The reflective layer 44 is formed in a region other than the region where the photo-alignment portion 43 is formed on the first surface 42 a of the base material 42. Therefore, when the reflective layer 44 is viewed in plan, it is provided at least at a position on the first surface 42 a that does not overlap with the photo-alignment portion 43 when viewed from the normal direction of the base material 42. Here, “at least” means that the optical alignment portion 43 is inclined when viewed in a plan view, and therefore there is a region where the optical alignment portion 43 and the reflective layer 44 partially overlap. The hollow portion 45 is provided at a position that partially overlaps the reflective layer 44 when viewed from the normal direction of the substrate 42.
In the present embodiment, the reflective layer 44 corresponds to a reflective portion in the claims. In the present embodiment, the hollow portion 45 corresponds to a low refractive index portion in the claims.
 光配向部材37は、図1に示すように、光配向部材43を第1の偏光板3に向け、基材42をプリズムシート38側に向けて、プリズムシート38上に配置される。光配向部材37は、第1偏光板3側に配置される。
 光配向部材37と第1偏光板3は、接着剤を介して光学的に接着されていてもよいし、されていなくてもよい。光配向部材37と第1偏光板3の屈折率界面を接着剤層で埋め、光学的に接続する(光学的な界面を無くす)場合は、界面反射が減少する。そのため、光利用効率を高めることができる。一方で、光配向部材37と第1偏光板3を光学的に接着しない場合(例えば、間に空気界面を有する等)は、光配向部材37の第1偏光板3側の界面及び第1偏光板3の光配向部材37側の界面が存在することになる。すなわち、発生したサイドローブ光が、液晶パネル2側に入射することを抑制することができる。したがって、使用の態様によって、光配向部材37と第1偏光板3の界面の構成は、適宜設計することができる。
As shown in FIG. 1, the photo-alignment member 37 is disposed on the prism sheet 38 with the photo-alignment member 43 facing the first polarizing plate 3 and the base material 42 facing the prism sheet 38 side. The photo-alignment member 37 is disposed on the first polarizing plate 3 side.
The photo-alignment member 37 and the first polarizing plate 3 may or may not be optically bonded via an adhesive. When the refractive index interface between the optical alignment member 37 and the first polarizing plate 3 is filled with an adhesive layer and optically connected (the optical interface is eliminated), the interface reflection is reduced. Therefore, the light use efficiency can be increased. On the other hand, when the optical alignment member 37 and the first polarizing plate 3 are not optically bonded (for example, having an air interface between them), the interface on the first polarizing plate 3 side of the optical alignment member 37 and the first polarization There is an interface on the optical alignment member 37 side of the plate 3. That is, the generated side lobe light can be prevented from entering the liquid crystal panel 2 side. Therefore, the configuration of the interface between the photo-alignment member 37 and the first polarizing plate 3 can be appropriately designed depending on the mode of use.
 基材42には、例えばトリアセチルセルロース(TAC)フィルム、ポリエチレンテレフタレート(PET)、ポリカーボネート(PC)、ポリエチレンナフタレート(PEN)、ポリエーテルサルホン(PES)フィルム等の透明樹脂製の基材が好ましく用いられる。基材42は、製造プロセスにおいて、後で反射層44や光配向部43の材料を塗布する際の下地となる。基材42は、製造プロセス中の熱処理工程における耐熱性と機械的強度とを備える必要がある。したがって、基材42には、樹脂製の基材の他、ガラス製の基材等を用いても良い。ただし、基材42の厚さは耐熱性や機械的強度を損なわない程度に薄い方が好ましい。その理由は、基材42の厚さが厚くなる程、液晶表示装置全体の厚みを厚くする必要が生じるからである。また、基材42の全光線透過率は、JIS K7361-1の規定で90%以上が好ましい。全光線透過率が90%以上であると、十分な透明性が得られる。
 本実施形態では、基材42に、例えば厚さが100μmの透明樹脂製基材を用いる。
Examples of the base material 42 include base materials made of transparent resin such as triacetyl cellulose (TAC) film, polyethylene terephthalate (PET), polycarbonate (PC), polyethylene naphthalate (PEN), and polyethersulfone (PES) film. Preferably used. The base material 42 becomes a base when a material for the reflective layer 44 and the photo-alignment portion 43 is applied later in the manufacturing process. The base material 42 needs to have heat resistance and mechanical strength in a heat treatment step during the manufacturing process. Therefore, the base material 42 may be a glass base material in addition to the resin base material. However, it is preferable that the thickness of the base material 42 is thin enough not to impair heat resistance and mechanical strength. The reason is that as the thickness of the base material 42 increases, it becomes necessary to increase the thickness of the entire liquid crystal display device. Further, the total light transmittance of the base material 42 is preferably 90% or more as defined in JIS K7361-1. When the total light transmittance is 90% or more, sufficient transparency can be obtained.
In the present embodiment, a transparent resin substrate having a thickness of, for example, 100 μm is used as the substrate 42.
 反射層44は、紫外光領域から可視光領域まで高い反射率を持つ材料からなる。より具体的には、反射層44は、250nm~800nmの波長領域に対して平均80%以上の反射率を有する材料からなることが好ましい。例えば、アルミニウム、銀、クロム、酸化クロム、白金等を用いることができる。
 反射層44は、正反射が生じる平坦な金属層である必要はない。例えば反射層44は、内部にフィラー等を含む散乱体としてもよい。
The reflective layer 44 is made of a material having a high reflectance from the ultraviolet light region to the visible light region. More specifically, the reflective layer 44 is preferably made of a material having an average reflectance of 80% or more with respect to a wavelength region of 250 nm to 800 nm. For example, aluminum, silver, chromium, chromium oxide, platinum, or the like can be used.
The reflective layer 44 does not need to be a flat metal layer in which regular reflection occurs. For example, the reflective layer 44 may be a scatterer including a filler or the like inside.
 反射層44は、基材42の第1の面42aの法線方向(z軸方向)から見てライン状に配置されている。すなわち、反射層44は、x軸方向に延在する所定の幅を有する平面であり、y軸方向に所定の間隔で複数配列している。反射層44の幅及び反射層44の間隔は、後述する光配向部43の光入射端面43bから光射出端面43aまでの高さH及び光射出端面43aと反射面43cのなす角θcと合せて適宜設定することが好ましい。本実施形態では、一例として反射層44の幅が10~20μm程度、反射層44が間隔を10~20μm程度である。 The reflective layer 44 is arranged in a line when viewed from the normal direction (z-axis direction) of the first surface 42 a of the base material 42. That is, the reflective layer 44 is a plane having a predetermined width extending in the x-axis direction, and a plurality of the reflective layers 44 are arranged at predetermined intervals in the y-axis direction. The width of the reflective layer 44 and the interval between the reflective layers 44 are combined with the height H from the light incident end face 43b to the light exit end face 43a of the light orientation section 43, which will be described later, and the angle θc formed between the light exit end face 43a and the reflective face 43c. It is preferable to set appropriately. In the present embodiment, as an example, the width of the reflective layer 44 is about 10 to 20 μm, and the distance between the reflective layers 44 is about 10 to 20 μm.
 図6に示すように、反射層44をy軸方向と平行な面で切断した際の端面において、反射層44の基材42側の面44aが、反射層44の基材42と反対側の面44bに対して突出していることが好ましい。この構成によると、反射面44をy軸方向と平行な面で切断した際の端面が傾斜面を形成する。そのため、光配向部43に対して斜め方向から入射してきた光を反射層44で、液晶パネル2の法線方向に配向することができる。この傾斜面は、平面であってもよく、曲面であってもよい。反射層44の基材42側の面44aが、反射層44の基材42と反対側の面44bに対して突出する突出幅Aと、反射層44の厚みTの関係は、一例として0.4程度とすることができる。 As shown in FIG. 6, the surface 44 a on the base material 42 side of the reflective layer 44 is opposite to the base material 42 of the reflective layer 44 at the end face when the reflective layer 44 is cut along a plane parallel to the y-axis direction. It is preferable to protrude with respect to the surface 44b. According to this configuration, the end surface when the reflecting surface 44 is cut along a plane parallel to the y-axis direction forms an inclined surface. Therefore, the light incident on the light alignment portion 43 from an oblique direction can be aligned in the normal direction of the liquid crystal panel 2 by the reflective layer 44. This inclined surface may be a flat surface or a curved surface. For example, the relationship between the protrusion width A of the surface 44a of the reflective layer 44 on the base 42 side and the surface 44b of the reflective layer 44 opposite to the base 42 and the thickness T of the reflective layer 44 is 0. It can be about 4.
 光配向部43は、例えばアクリル樹脂やエポキシ樹脂等の光透過性および感光性を有する有機材料で構成されている。また、光配向部43の全光線透過率は、JIS K7361-1の規定で90%以上が好ましい。全光線透過率が90%以上であると、十分な透明性が得られる。 The photo-alignment portion 43 is made of an organic material having optical transparency and photosensitivity such as acrylic resin and epoxy resin. Further, the total light transmittance of the photo-alignment portion 43 is preferably 90% or more in accordance with JIS K7361-1. When the total light transmittance is 90% or more, sufficient transparency can be obtained.
 図5に示すように、光配向部43は、x軸方向に延在するライン状である。光配向部43は、光射出端面43aと、光入射端面43bと、反射面43cと、を有する。光入射端面43bは、基材42に接する面である。光射出端面43aは、光入射端面43bと対向する面である。反射面43cは、光配向部43のテーパ状の傾斜面である。反射面43cは、光入射端面43bから入射した光を反射する面である。本実施形態では、全ての光配向部43において、光入射端面43bの面積は、光射出端面43aの面積よりも小さい。 As shown in FIG. 5, the photo-alignment portion 43 has a line shape extending in the x-axis direction. The light alignment portion 43 has a light emission end surface 43a, a light incident end surface 43b, and a reflection surface 43c. The light incident end surface 43 b is a surface in contact with the base material 42. The light emission end surface 43a is a surface facing the light incident end surface 43b. The reflection surface 43 c is a tapered inclined surface of the photo-alignment portion 43. The reflecting surface 43c is a surface that reflects the light incident from the light incident end surface 43b. In this embodiment, the area of the light incident end face 43b is smaller than the area of the light exit end face 43a in all the light orientation portions 43.
 光配向部43の反射面43cの傾斜角度(光射出端面43aと反射面43cとのなす角度θc)は、一例として80°±5°程度である。ただし、光配向部43の反射面43cの傾斜角度θcは、サイドローブ光をz軸方向に十分配向できることが好ましい。傾斜角度θcが小さすぎず90°未満であれば、十分効率的にサイドローブ光をz軸方向に配向することができる。傾斜角θcの好ましい範囲については、光配向部43の機能の面から後述する。 As an example, the inclination angle of the reflection surface 43c of the light alignment portion 43 (angle θc formed between the light emission end surface 43a and the reflection surface 43c) is about 80 ° ± 5 °. However, it is preferable that the inclination angle θc of the reflection surface 43c of the light alignment portion 43 can sufficiently align the side lobe light in the z-axis direction. If the inclination angle θc is not too small and less than 90 °, the sidelobe light can be sufficiently efficiently oriented in the z-axis direction. A preferable range of the inclination angle θc will be described later in terms of the function of the photo-alignment portion 43.
 光配向部43の光入射端面43bから光射出端面43aまでの高さHは、反射層44の層厚hよりも大きく設定されている。本実施形態の場合、反射層44の層厚hは、一例として150nm程度である。光配向部43の光入射端面43bから光射出端面43aまでの高さHは、一例として10~20μm程度である。光配向部43をフォトリソグラフィーで作製する観点からは、50μm以下であることが好ましい。光配向部43の反射面43cと反射層44とにより囲まれた部分は、中空部45となっている。中空部45には空気が存在している。 The height H from the light incident end face 43 b to the light exit end face 43 a of the light orientation portion 43 is set to be larger than the layer thickness h of the reflective layer 44. In the case of this embodiment, the layer thickness h of the reflective layer 44 is about 150 nm as an example. The height H from the light incident end face 43b to the light exit end face 43a of the light orientation section 43 is about 10 to 20 μm as an example. From the viewpoint of producing the photo-alignment portion 43 by photolithography, it is preferably 50 μm or less. A portion surrounded by the reflection surface 43 c and the reflection layer 44 of the photo-alignment portion 43 is a hollow portion 45. Air exists in the hollow portion 45.
 なお、基材42の屈折率と光配向部43の屈折率とは略同等であることが望ましい。その理由は、以下による。例えば、基材42の屈折率と光配向部43の屈折率とが大きく異なる場合を考える。この場合、光入射端面43bから入射した光が光配向部43から射出する際に、光配向部43と基材42との界面で不要な光の屈折や反射が生じることがある。この場合、所望の光配向性が得られない、射出光の光量が減少する、等の不具合が生じる虞があるからである。 In addition, it is desirable that the refractive index of the base material 42 and the refractive index of the photo-alignment portion 43 are substantially equal. The reason is as follows. For example, consider a case where the refractive index of the base material 42 and the refractive index of the photo-alignment portion 43 are significantly different. In this case, when light incident from the light incident end face 43 b is emitted from the light alignment portion 43, unnecessary light refraction or reflection may occur at the interface between the light alignment portion 43 and the base material 42. In this case, there is a possibility that problems such as failure to obtain a desired photo-alignment property and a decrease in the amount of emitted light may occur.
 本実施形態の場合、中空部45(光配向部43の外部)には空気が介在している。そのため、光配向部43を例えば透明アクリル樹脂で形成したとすると、光配向部43の反射面43cは、透明アクリル樹脂と空気との界面となる。ここで、中空部45を他の低屈折率材料で充填しても良い。しかしながら、光配向部43の内部と外部との界面の屈折率差は、外部にいかなる低屈折率材料が存在する場合よりも空気が存在する場合が最大となる。
 したがって、Snellの法則より、本実施形態の構成においては臨界角が最も小さくなり、光配向部43の反射面43cで光が全反射する入射角範囲が最も広くなる。その結果、光の損失がより抑えられ、高い輝度を得ることができる。
 本実施形態の中空部45は、特許請求の範囲の低屈折率部に対応する。
In the case of this embodiment, air is interposed in the hollow portion 45 (outside the light orientation portion 43). Therefore, if the photo-alignment portion 43 is formed of, for example, a transparent acrylic resin, the reflection surface 43c of the photo-alignment portion 43 becomes an interface between the transparent acrylic resin and air. Here, the hollow portion 45 may be filled with another low refractive index material. However, the difference in the refractive index at the interface between the inside and the outside of the photo-alignment portion 43 is maximized when air is present rather than when any low refractive index material is present outside.
Therefore, according to Snell's law, in the configuration of the present embodiment, the critical angle is the smallest, and the incident angle range in which the light is totally reflected by the reflection surface 43c of the light orientation portion 43 is the widest. As a result, light loss is further suppressed, and high luminance can be obtained.
The hollow portion 45 of the present embodiment corresponds to the low refractive index portion in the claims.
 次いで、バックライトシステム8の機能について説明する。
 図7は、バックライトとプリズムシートのみからなるバックライトシステムの機能を説明するための模式図である。
 まず図7を基に、プリズムシート38の機能について説明する。プリズムシート38は、導光体40から射出された光の一部を、法線方向(z軸方向)に導く機能を有する。一方で、同時にy軸方向に近い方向に射出されるサイドローブ光を生じてしまう。
Next, functions of the backlight system 8 will be described.
FIG. 7 is a schematic diagram for explaining functions of a backlight system including only a backlight and a prism sheet.
First, the function of the prism sheet 38 will be described with reference to FIG. The prism sheet 38 has a function of guiding a part of the light emitted from the light guide 40 in the normal direction (z-axis direction). On the other hand, sidelobe light emitted in the direction close to the y-axis direction at the same time is generated.
 図7に示すように、光源39から出射された光は、導光体40内部を全反射して伝播しながら、プリズムシート38に射出される。そのため、導光体40から射出される光は、導光体40の光源39側の端部から反対側の端部に向けた方向(y方向)に傾いて射出される。そのため、射出した光の多くは、光L1で示すように、プリズムシート38の第2の面部38bで屈折し、液晶パネル2側に射出される。すなわち、プリズムシート38によって、導光体40から射出された光の一部を、法線方向に導くことができる。 As shown in FIG. 7, the light emitted from the light source 39 is emitted to the prism sheet 38 while propagating by totally reflecting inside the light guide 40. Therefore, the light emitted from the light guide 40 is emitted while being inclined in the direction (y direction) from the end of the light guide 40 on the light source 39 side toward the opposite end. Therefore, most of the emitted light is refracted by the second surface portion 38b of the prism sheet 38 and emitted toward the liquid crystal panel 2 as indicated by the light L1. In other words, the prism sheet 38 can guide part of the light emitted from the light guide 40 in the normal direction.
 これに対し、導光体40から射出された光の一部は、プリズムシート38の第3の面部38cに入射する。第3の面部38cは、導光体40から射出された光と同じ方向に傾いている。そのため、第3の面部38cに入射した光は全反射することが多い。全反射した光は、光L2で示すように、第2の面部38bで屈折して、y軸方向に近い方向射出する。そのため、第3の面部38cに入射した光は、導光体40から射出された光を、法線方向に導くことができず、サイドローブ光となる。 On the other hand, a part of the light emitted from the light guide 40 enters the third surface portion 38c of the prism sheet 38. The third surface portion 38 c is inclined in the same direction as the light emitted from the light guide 40. Therefore, the light incident on the third surface portion 38c is often totally reflected. As shown by the light L2, the totally reflected light is refracted by the second surface portion 38b and is emitted in a direction close to the y-axis direction. For this reason, the light incident on the third surface portion 38c cannot guide the light emitted from the light guide 40 in the normal direction, and becomes sidelobe light.
 図8は、本発明の第1実施形態におけるバックライトシステムの機能を説明するための模式図である。本実施形態では、プリズムシート38の液晶パネル2(図1参照)側には、光配向部材37が配置されている。光配向部43の延在方向と、プリズムシート38の凸部の延在方向は一致している。このように延在方向を一致させることで、より効率的にプリズムシート38で生じたサイドローブ光を、法線方向に配向することができる。
 図8に示すように、サイドローブ光となった光(光L2)は、光配向部材37に入射する。この入射した光は、基材42を通過し、配向部43の反射面43cで屈折され法線方向に配向される。すなわち、光配向部材37は、プリズムシート38でサイドローブ光となった光を法線方向に配向することができる。
FIG. 8 is a schematic diagram for explaining the function of the backlight system according to the first embodiment of the present invention. In the present embodiment, a light orientation member 37 is disposed on the prism sheet 38 on the liquid crystal panel 2 (see FIG. 1) side. The extending direction of the light orientation part 43 and the extending direction of the convex part of the prism sheet 38 are the same. By matching the extending directions in this way, the side lobe light generated in the prism sheet 38 can be more efficiently oriented in the normal direction.
As shown in FIG. 8, the light (light L <b> 2) that has become sidelobe light enters the photo-alignment member 37. The incident light passes through the base material 42, is refracted by the reflecting surface 43c of the orientation portion 43, and is oriented in the normal direction. That is, the light orientation member 37 can orient the light that has become sidelobe light by the prism sheet 38 in the normal direction.
 またバックライト36から出射した光のうち、プリズムシート38の第2の面部38bに入射した光(光L1)は、光配向部材37は、そのまま液晶パネル側に射出されるか、一度配向部43の反射面43cで屈折した後、よりz軸方向に配向されて射出する。そのため、光L1は、光配向部材37によって光の配向性を阻害されることはない。 Of the light emitted from the backlight 36, the light (light L1) incident on the second surface portion 38b of the prism sheet 38 is emitted as it is toward the liquid crystal panel by the photo-alignment member 37 or is once aligned. After being refracted by the reflecting surface 43c, the light is further oriented in the z-axis direction and emitted. Therefore, the light L <b> 1 is not disturbed by the light alignment member 37.
 一方、光配向部材37は反射層44を有する。反射層44は、プリズムシート38側から入射した光の一部を反射する機能を有する。そのため、バックライト36から射出された光の一部は、光L3で示すように反射層44で反射してバックライト36側に戻ってきてしまう。しかしながら、バックライト36は、その光射出面と反対側に反射板41を備える。そのため、この光L3で示すようにバックライト36側に反射された光は、反射板41で再び反射する。この反射した光は、光L4で示すように光配向部材37の光配向部43に再入射する。そのため、反射層44を有していても、反射板41によって反射光(光L3)は再利用できる(光L4)ため、光の利用効率が極端に低下することはない。また図7では、反射板41で反射する光L4のみを図示したが、プリズムシート38及び導光体40の各界面で反射して、光配向部43に再入射する光路もある。 On the other hand, the photo-alignment member 37 has a reflective layer 44. The reflective layer 44 has a function of reflecting a part of light incident from the prism sheet 38 side. Therefore, a part of the light emitted from the backlight 36 is reflected by the reflective layer 44 and returned to the backlight 36 side as indicated by the light L3. However, the backlight 36 includes a reflecting plate 41 on the side opposite to the light exit surface. Therefore, the light reflected toward the backlight 36 as indicated by the light L3 is reflected again by the reflector 41. The reflected light reenters the light alignment portion 43 of the light alignment member 37 as indicated by light L4. Therefore, even if it has the reflective layer 44, since the reflected light (light L3) can be reused by the reflective plate 41 (light L4), the light utilization efficiency does not extremely decrease. In FIG. 7, only the light L <b> 4 reflected by the reflecting plate 41 is illustrated, but there is also an optical path that is reflected at each interface between the prism sheet 38 and the light guide 40 and re-enters the light orientation unit 43.
 このように、光配向部材37は、バックライト36から出射した光を、z軸方向に配向する機能を有する。そのため、本実施形態のバックライトシステム8は、光源36で生じた光を、効率的にz軸方向に配向することができる。すなわち、バックライトシステム8から射出された光の多くは、液晶パネル2の法線方向(z軸方向)から入射することとなる。従って、本実施形態のバックライトシステム8を用いることで、液晶表示装置1の光利用効率を最大限とすることができる。 Thus, the photo-alignment member 37 has a function of aligning light emitted from the backlight 36 in the z-axis direction. Therefore, the backlight system 8 of the present embodiment can efficiently orient the light generated by the light source 36 in the z-axis direction. That is, most of the light emitted from the backlight system 8 is incident from the normal direction (z-axis direction) of the liquid crystal panel 2. Therefore, the light utilization efficiency of the liquid crystal display device 1 can be maximized by using the backlight system 8 of the present embodiment.
 なお、特許文献2の集光シートも、バックライトから出射した光を配向制御している。
しかしその配向制御性は十分とは言えない。図9は、特許文献2の集光シートを模式的に示した図である。特許文献2の集光シート1000では、反射部1001と導光部1002が、透明層1003の異なる面に配置されている。このことは、特許文献2の図2に記載された製造方法からも明らかである。特許文献2の図1では、縮尺を変更して図示しているため、透明層1003は導光部1002に対して薄く図示されている。しかしながら実際は、透明層1003の厚みは、導光部1002の厚みの数倍以上である。このことは、導光部1002は感光性の樹脂を硬化させたものであり、透明層1003は透明フィルムを用いていることからも明らかである。
Note that the light collecting sheet of Patent Document 2 also controls the orientation of light emitted from the backlight.
However, the orientation controllability is not sufficient. FIG. 9 is a diagram schematically showing the light collecting sheet of Patent Document 2. As shown in FIG. In the condensing sheet 1000 of Patent Document 2, the reflection unit 1001 and the light guide unit 1002 are arranged on different surfaces of the transparent layer 1003. This is also clear from the manufacturing method described in FIG. In FIG. 1 of Patent Document 2, since the scale is changed and illustrated, the transparent layer 1003 is shown thinner than the light guide unit 1002. However, in practice, the thickness of the transparent layer 1003 is more than several times the thickness of the light guide unit 1002. This is clear from the fact that the light guide portion 1002 is obtained by curing a photosensitive resin, and the transparent layer 1003 uses a transparent film.
 特許文献2の集光シート1000は、光L5に示すように、導光部1002と空隙部1004の界面1002bでの全反射により入射した光を液晶パネルの法線方向に近い方向に集光している。全反射は、高屈折率側から低屈折側に光が入射する際に生じる現象である。そのため、光L5に示す配向性を得るためには、導光部1002から空隙部1004に向かって光が入射する必要がある。 As shown in the light L5, the condensing sheet 1000 of Patent Document 2 condenses incident light by total reflection at the interface 1002b between the light guide portion 1002 and the gap portion 1004 in a direction close to the normal direction of the liquid crystal panel. ing. Total reflection is a phenomenon that occurs when light enters from the high refractive index side to the low refractive side. Therefore, in order to obtain the orientation shown in the light L5, light needs to enter from the light guide portion 1002 toward the gap portion 1004.
 反射部1001の間を通過した光は、全反射による集光特性を得るために、すべて導光部1002に入射することが理想的である。しかしながら、反射部1001と導光部1002が、透明層1003の異なる面に配置されると、反射部1001と導光部1002の間に、透明層1003の厚さ分だけの空間を有する。したがって、透明層1003に平行に近い方向からこの集光シートに入射した光は、透明層1003を通過後に、導光部1002に入射せずに、空隙部1004に入射する場合がある。この空隙部1004に入射した光は、界面1002bに空隙部1004側から入射するため、光L2に示すように屈折し、サイドローブ光となる。したがって、特許文献2に記載された集光シートを液晶表示装置のバックライトと合せて用いても、十分な配向制御性を実現することができない。 Ideally, all the light that has passed between the reflecting portions 1001 is incident on the light guide portion 1002 in order to obtain a condensing characteristic by total reflection. However, when the reflective unit 1001 and the light guide unit 1002 are arranged on different surfaces of the transparent layer 1003, there is a space corresponding to the thickness of the transparent layer 1003 between the reflective unit 1001 and the light guide unit 1002. Therefore, light that has entered the light collecting sheet from a direction almost parallel to the transparent layer 1003 may pass through the transparent layer 1003 and may enter the gap portion 1004 without entering the light guide portion 1002. Since the light incident on the gap 1004 enters the interface 1002b from the gap 1004 side, it is refracted as shown by the light L2 and becomes sidelobe light. Therefore, even if the condensing sheet described in Patent Document 2 is used together with the backlight of the liquid crystal display device, sufficient alignment controllability cannot be realized.
 ここで、光の利用効率の観点から、図6に示す、配向部43の傾斜面の傾斜角度θc(光射出端面43aと反射面43cのなす角)、y軸方向に平行な面で切断した際の反射層44の幅L、隣接する反射層44の間隔sの好ましい範囲について説明する。反射層44の間隔sは、光配向部43の光入射端面43bの幅と等しい。 Here, from the viewpoint of the light use efficiency, the inclination angle θc of the inclined surface of the alignment portion 43 (the angle formed by the light emitting end surface 43a and the reflecting surface 43c) shown in FIG. 6 is cut along a plane parallel to the y-axis direction. A preferable range of the width L of the reflective layer 44 and the interval s between the adjacent reflective layers 44 will be described. The interval s between the reflective layers 44 is equal to the width of the light incident end face 43 b of the light orientation portion 43.
 図10は、極角と方位角の定義を説明するための図である。
 ここで、図10に示すように、液晶表示装置1の画面の法線方向Eを基準とした観察者の視線方向Fのなす角度を極角θとする。x軸の正方向(0°方向)を基準とした観察者の視線方向Fを画面上に射影したときの線分Gの方向のなす角度を方位角φとする。
FIG. 10 is a diagram for explaining the definition of the polar angle and the azimuth angle.
Here, as shown in FIG. 10, the angle formed by the observer's line-of-sight direction F with respect to the normal direction E of the screen of the liquid crystal display device 1 is defined as a polar angle θ. The angle formed by the direction of the line segment G when the line-of-sight direction F of the observer is projected on the screen with reference to the positive direction (0 ° direction) of the x-axis is defined as an azimuth angle φ.
 図11は、液晶表示装置1の正面図である。
 図11に示すように、液晶表示装置1の画面において、水平方向(x軸方向)を方位角φ:0°-180°方向とする。垂直方向(y軸方向)を方位角φ:90°-270°方向とする。本実施形態において、第1偏光板3の透過軸P1は、方位角φ:45°-225°方向に配置され、第2偏光板7の透過軸P2は、方位角φ:135°-315°方向に配置される。
FIG. 11 is a front view of the liquid crystal display device 1.
As shown in FIG. 11, on the screen of the liquid crystal display device 1, the horizontal direction (x-axis direction) is the azimuth angle φ: 0 ° -180 ° direction. The vertical direction (y-axis direction) is the azimuth angle φ: 90 ° -270 ° direction. In this embodiment, the transmission axis P1 of the first polarizing plate 3 is arranged in the direction of azimuth angle φ: 45 ° -225 °, and the transmission axis P2 of the second polarizing plate 7 is set to have an azimuth angle φ: 135 ° -315 °. Arranged in the direction.
 図6及び図9に示すように、光配向部材37の光配向部43は、x軸に沿って配列している。すなわち、本実施形態の光配向部材37を、方位角φ:90°―270°方向の光を制御する。 As shown in FIGS. 6 and 9, the photo-alignment portions 43 of the photo-alignment member 37 are arranged along the x-axis. That is, the light orientation member 37 of this embodiment controls light in the direction of the azimuth angle φ: 90 ° -270 °.
 図12は、光配向部材37を設けない場合(図視Refと表記)と、光配向部材37の光配向部43の傾斜角θcを変化させた場合の、液晶表示装置1の視認側の方位角φ:90°―270°方向の輝度分布を測定した結果である。横軸は極角であり、縦軸は液晶表示装置1の法線方向の輝度を1として規格化した規格化輝度である。 FIG. 12 shows the viewing-side orientation of the liquid crystal display device 1 when the photo-alignment member 37 is not provided (referred to as Ref in the drawing) and when the tilt angle θc of the photo-alignment portion 43 of the photo-alignment member 37 is changed. This is a result of measuring the luminance distribution in the direction of angle φ: 90 ° -270 °. The horizontal axis represents the polar angle, and the vertical axis represents the normalized luminance obtained by normalizing the luminance in the normal direction of the liquid crystal display device 1 as 1.
 図12に示すように、光配向部材37を設けない場合は、極角50°付近で輝度分布が変曲点を有し、極角60°以上の高角側で、輝度上昇が生じている。この輝度上昇がサイドローブ光によるものと考えられる。そのため、光配向部材37は、極角60°以上の角度で入射してくる光を好適に液晶パネル2側に配向する。そのため、液晶表示装置1の光利用効率を高めることができる。 As shown in FIG. 12, when the photo-alignment member 37 is not provided, the luminance distribution has an inflection point in the vicinity of the polar angle of 50 °, and the luminance is increased on the high angle side where the polar angle is 60 ° or more. This increase in luminance is considered to be caused by sidelobe light. Therefore, the light alignment member 37 preferably aligns light incident at a polar angle of 60 ° or more toward the liquid crystal panel 2. Therefore, the light use efficiency of the liquid crystal display device 1 can be increased.
 図13Aは、光配向部43の傾斜角度θcが小さい場合におけるy軸方向に平行な面で切断した際の要部を拡大した図であり、図13Bは光配向部43の傾斜角度θcが90°の場合におけるy軸方向に平行な面で切断した際の要部を拡大した図である。
 図13Aに示すように、光配向部材37の光配向部43の傾斜角度θcが小さい場合は、光入射端面43bから光配向部43に入射した光のうち、反射面43cで反射せずに、直接光射出端面43aに抜ける光L7(以下、「直抜け光」という。)の割合が高くなる。すなわち、光配向部43で反射する光L8の割合が低くなる。光配向部材37は、光配向部43に入射した光をz軸方向に配向する機能を有するため、直抜け光L7の比率が高くなると、この光配向特性を十分得ることができなくなる。
 図13Bに示すように、光配向部材37の光配向部43の傾斜角θcが90°の場合は、光入射端面43bに入射した光が、そのままy軸方向反対側に光射出端面43aから射出される。これは、反射面43がy軸方向に垂直な面となっているためである。この場合、光配向部材37は、光配向部43に入射した光をz軸方向に配向する機能を実現することができない。そのため、光配向部材41の光配向部43の傾斜角度θcは90°未満である必要がある。
FIG. 13A is an enlarged view of a main part when the optical alignment portion 43 is cut along a plane parallel to the y-axis direction when the inclination angle θc of the photo-alignment portion 43 is small, and FIG. 13B is an inclination angle θc of the photo-alignment portion 43 of 90. It is the figure which expanded the principal part at the time of cut | disconnecting in the surface parallel to the y-axis direction in the case of (degree).
As shown in FIG. 13A, when the inclination angle θc of the light alignment portion 43 of the light alignment member 37 is small, the light incident on the light alignment portion 43 from the light incident end surface 43b is not reflected by the reflection surface 43c. The ratio of the light L7 that passes through the direct light exit end face 43a (hereinafter referred to as “direct light”) increases. That is, the ratio of the light L8 reflected by the photo-alignment portion 43 is reduced. Since the photo-alignment member 37 has a function of aligning the light incident on the photo-alignment portion 43 in the z-axis direction, this photo-alignment characteristic cannot be sufficiently obtained when the ratio of the direct light L7 increases.
As shown in FIG. 13B, when the inclination angle θc of the light alignment portion 43 of the light alignment member 37 is 90 °, the light incident on the light incident end surface 43b is directly emitted from the light emitting end surface 43a on the opposite side in the y-axis direction. Is done. This is because the reflecting surface 43 is a surface perpendicular to the y-axis direction. In this case, the photo-alignment member 37 cannot realize the function of aligning the light incident on the photo-alignment unit 43 in the z-axis direction. Therefore, the inclination angle θc of the photo-alignment portion 43 of the photo-alignment member 41 needs to be less than 90 °.
 図14は、光配向部材37の光配向部43の屈折率を1.6とし、入射角60°で光配向部43に入射した光の経路を説明するための図である。図14に示すように、屈折率1.0の空気側から入射角60°(サイドローブ光が生じる典型的な入射角度)で光配向部43の光入射端面43bに入射した光は、屈折角32°で屈折して光配向部内を導光する。そのため、光入射端面43bと反射面43cの角度が32°未満の場合、屈折した光は反射面43cで反射せず、光射出端面43aに直接入射する。この光は、光射出端面43aから射出される際に、再度屈折し、屈折角60°で射出し、サイドローブ光となる。このとき、光入射端面43bと反射面43cの角度が32°未満ということは、光射出端面43aと反射面43cのなす角度θcが58°より大きいことを意味する。一般に光配向部43に用いることができる樹脂の屈折率はコストの面からも1.6程度が限度である。
そのため、この一例で示す傾斜角58°より大きいという条件を満たせば、入射した光の多くを反射面43cに入射することができる。したがって、光射出端面43aと反射面43cのなす角度θcが60°以上であれば、光配向部43の屈折率および光の入射角を変更した場合でも、光配向部材41は高い配向性能を示し、液晶表示装置1の光利用効率を高めることができる。
 なお、ここでは光配向部43の屈折率が1.60、光の入射角60°の場合を例に説明したものである。実際はより小さな入射角で入射する光も存在するため、光射出端面43aと反射面43cのなす角度θcが58°より大きくないとサイドローブ光をz軸方向に配向する効果が全く得られない訳ではない。
FIG. 14 is a diagram for explaining the path of light incident on the light alignment portion 43 at an incident angle of 60 °, where the refractive index of the light alignment portion 43 of the light alignment member 37 is 1.6. As shown in FIG. 14, the light incident on the light incident end face 43b of the light alignment section 43 from the air side with a refractive index of 1.0 at an incident angle of 60 ° (a typical incident angle at which sidelobe light is generated) The light is refracted at 32 ° and guided in the photo-alignment portion. Therefore, when the angle between the light incident end surface 43b and the reflecting surface 43c is less than 32 °, the refracted light is not reflected by the reflecting surface 43c but directly enters the light emitting end surface 43a. This light is refracted again when exiting from the light exit end face 43a, exits at a refraction angle of 60 °, and becomes sidelobe light. At this time, the angle between the light incident end face 43b and the reflecting face 43c being less than 32 ° means that the angle θc formed by the light emitting end face 43a and the reflecting face 43c is greater than 58 °. Generally, the refractive index of a resin that can be used for the photo-alignment portion 43 is limited to about 1.6 from the viewpoint of cost.
Therefore, if the condition of the inclination angle greater than 58 ° shown in this example is satisfied, most of the incident light can be incident on the reflecting surface 43c. Therefore, if the angle θc formed by the light emitting end face 43a and the reflecting surface 43c is 60 ° or more, the photo-alignment member 41 exhibits high alignment performance even when the refractive index of the photo-alignment portion 43 and the incident angle of light are changed. The light use efficiency of the liquid crystal display device 1 can be increased.
Here, the case where the refractive index of the photo-alignment portion 43 is 1.60 and the incident angle of light is 60 ° is described as an example. Actually, there is also light incident at a smaller incident angle. Therefore, if the angle θc formed by the light exit end face 43a and the reflecting surface 43c is not larger than 58 °, the effect of aligning the sidelobe light in the z-axis direction cannot be obtained at all. is not.
 図15は、光配向部材の傾斜角度θcを変化させた場合の、液晶表示装置1の視認側の方位角φ:90°―270°方向の輝度分布をシミュレーションした結果であり、その総光線量における直抜け光と反射光の比率をシミュレーションした図である。このとき、一例として、光配向部43の高さを20μm、反射層44の幅を20μm、反射層44の線間隔(光配向部43の光入射端面43cのy軸方向の幅)を15μmとした。横軸は極角であり、縦軸は液晶表示装置1の法線方向の輝度を1として規格化した規格化輝度である。ここで、「反射光」とは、光配向部43の反射面43cで一度反射した光を意味する。
 図15に示すように、傾斜角度θcが88°以上では、配向光の一部も60°以上の高極角側で確認することができる。これに対し、傾斜角度θcが75度°未満では、総光線量における反射光の占める割合が少ない。そのため、液晶表示装置1の高極角側に射出される光を、低極角側に配向するという観点からは、傾斜角度θcが75°以上88°未満であることがより好ましい。
FIG. 15 shows the result of simulating the luminance distribution in the direction of the azimuth angle φ: 90 ° -270 ° on the viewing side of the liquid crystal display device 1 when the tilt angle θc of the photo-alignment member is changed, and the total light amount It is the figure which simulated the ratio of the direct light and reflected light in. At this time, as an example, the height of the photo-alignment portion 43 is 20 μm, the width of the reflection layer 44 is 20 μm, and the line interval of the reflection layer 44 (the width in the y-axis direction of the light incident end face 43c of the photo-alignment portion 43) is 15 μm. did. The horizontal axis represents the polar angle, and the vertical axis represents the normalized luminance obtained by normalizing the luminance in the normal direction of the liquid crystal display device 1 as 1. Here, “reflected light” means light that has been once reflected by the reflecting surface 43 c of the light alignment portion 43.
As shown in FIG. 15, when the inclination angle θc is 88 ° or more, part of the alignment light can be confirmed on the high polar angle side of 60 ° or more. On the other hand, when the inclination angle θc is less than 75 degrees, the proportion of the reflected light in the total light amount is small. Therefore, from the viewpoint of aligning the light emitted to the high polar angle side of the liquid crystal display device 1 to the low polar angle side, the tilt angle θc is more preferably 75 ° or more and less than 88 °.
 光配向部43をy軸方向に平行な面で切断した際の反射層44の幅Lは、狭い方が好ましい。反射層44の幅Lを狭くすることで、基材42に対する反射層44の被覆率を少なくすることができる。反射層44の被覆率が高くなりすぎると、バックライト36から射出された光の多くが、反射層44で反射される。反射層44の反射率が100%でないことを考慮すると、バックライト36から射出される光のうち反射層44で反射される光は少ないことが好ましい。 The width L of the reflective layer 44 when the photo-alignment portion 43 is cut along a plane parallel to the y-axis direction is preferably narrow. By narrowing the width L of the reflective layer 44, the coverage of the reflective layer 44 with respect to the base material 42 can be reduced. If the coverage of the reflective layer 44 becomes too high, most of the light emitted from the backlight 36 is reflected by the reflective layer 44. Considering that the reflectance of the reflective layer 44 is not 100%, it is preferable that the light reflected by the reflective layer 44 out of the light emitted from the backlight 36 is small.
 光配向部43は、光入射端面43bから光射出端面43aに向かい広がるように傾斜している。そのため、反射層44の幅Lが狭いと、光射出端面43a同士が繋がってしまうおそれがある。そのため、反射層44の幅Lは、光配向部43の傾斜角度θcと光配向部43の高さHによって制限される。 The light alignment portion 43 is inclined so as to spread from the light incident end surface 43b toward the light emitting end surface 43a. For this reason, if the width L of the reflective layer 44 is narrow, the light emission end faces 43a may be connected to each other. Therefore, the width L of the reflective layer 44 is limited by the inclination angle θc of the photo-alignment portion 43 and the height H of the photo-alignment portion 43.
 図16は、反射層44の幅Lと、光配向部43の高さH及び傾斜角度θcの関係を実測した測定結果である。横軸は、反射層44の幅Lを光配向部43の高さHで割ったものであり、縦軸は傾斜角度θcを示す。例えば、反射層44の幅L/光配向部43の高さH=0.6の場合は、傾斜角度θcが82.5°以下では、隣接する光配向部43同士が繋がることを意味する。そのため、反射層44の幅が狭い(反射層44の幅L/光配向部43の高さHが小さい)場合、光配向部43は、大きな傾斜角度θcしか設定することができず、選択し得る傾斜角度θcの幅が狭い。これに対し、反射層44の幅が広い(反射層44の幅L/光配向部43の高さHが小さい)場合、光配向部43が取りうる傾斜角度θcの幅が広くなる。傾斜角度θcは60°以上90°未満であることが好ましいことを考慮すると、反射層44の幅Lと光配向部43の高さHの比は、0.2<L/H<2.0を満たすことが好ましい。 FIG. 16 shows measurement results obtained by actually measuring the relationship between the width L of the reflective layer 44, the height H of the photo-alignment portion 43, and the inclination angle θc. The horizontal axis represents the width L of the reflective layer 44 divided by the height H of the photo-alignment portion 43, and the vertical axis represents the tilt angle θc. For example, when the width L of the reflective layer 44 / the height H of the photo-alignment portion 43 is 0.6, it means that the adjacent photo-alignment portions 43 are connected when the inclination angle θc is 82.5 ° or less. Therefore, when the width of the reflective layer 44 is narrow (the width L of the reflective layer 44 / the height H of the photo-alignment portion 43 is small), the photo-alignment portion 43 can set only a large inclination angle θc and is selected. The width of the obtained inclination angle θc is narrow. On the other hand, when the width of the reflective layer 44 is wide (the width L of the reflective layer 44 / the height H of the photo-alignment portion 43 is small), the width of the inclination angle θc that the photo-alignment portion 43 can take becomes wide. Considering that the inclination angle θc is preferably 60 ° or more and less than 90 °, the ratio of the width L of the reflective layer 44 to the height H of the photo-alignment portion 43 is 0.2 <L / H <2.0. It is preferable to satisfy.
 図17は、基材42に対する反射層44の被覆率に対する光利用効率の関係を示す。光利用効率は、バックライト36から射出された光の総光量に対する、光配向部材37を通過後の光の総光量の割合を意味する。この際、一例として、反射層44の反射率を85%、一度反射層44で反射した光が光配向部43の光入射端面43bへ再入射する確率(以下、リサイクル率という)を90%とした。
 液晶表示装置1として使用することを考慮すると、バックライトユニット8としての光利用効率は60%以上であることが好ましい。そのため、基材42に対する反射層44の被覆率としては、70%以下であることが好ましい。
FIG. 17 shows the relationship of light utilization efficiency with respect to the coverage of the reflective layer 44 on the base material 42. The light use efficiency means the ratio of the total light amount of light after passing through the photo-alignment member 37 to the total light amount emitted from the backlight 36. At this time, as an example, the reflectance of the reflective layer 44 is 85%, and the probability that the light once reflected by the reflective layer 44 re-enters the light incident end face 43b of the light orientation portion 43 (hereinafter referred to as a recycling rate) is 90%. did.
Considering the use as the liquid crystal display device 1, the light utilization efficiency as the backlight unit 8 is preferably 60% or more. Therefore, the coverage of the reflective layer 44 with respect to the base material 42 is preferably 70% or less.
 光配向部43をy軸方向に平行な面で切断した際の光入射端面43bの幅は、求める配向制御性に合せて適宜設定することが好ましい。図18Aは、光配向部43をy軸方向に平行な面で切断した際の光入射端面43bの幅が、比較的広い場合の断面模式図であり、図18Bは、光配向部43をy軸方向に平行な面で切断した際の光入射端面43bの幅が、比較的狭い場合の断面模式図である。
 図18A及び図18Bに示すように、同一の入射角で光配向部材37に光が入射しても、光入射端面43bの幅が比較的狭い場合は、直抜け光L7として液晶パネル2側に射出される光が少ない。
The width of the light incident end face 43b when the light orientation part 43 is cut along a plane parallel to the y-axis direction is preferably set as appropriate in accordance with the orientation controllability desired. FIG. 18A is a schematic cross-sectional view when the width of the light incident end face 43b is relatively wide when the light alignment section 43 is cut along a plane parallel to the y-axis direction, and FIG. It is a cross-sectional schematic diagram in case the width | variety of the light-incidence end surface 43b at the time of cut | disconnecting in the surface parallel to an axial direction is comparatively narrow.
As shown in FIGS. 18A and 18B, even when light is incident on the photo-alignment member 37 at the same incident angle, if the width of the light incident end face 43b is relatively narrow, the light passes through the liquid crystal panel 2 as direct light L7. Less light is emitted.
 図19は、光配向部43の光入射端面43bの幅(隣接する反射層44の間隔)sを変更した際の透過光の輝度分布を示す。このとき傾斜角度θcは80°、反射層44の幅Lは、15μmで固定した。光入射端面43bの幅sは、5μm、10μm、15μm、20μmとし、参考のために光配向部材41を有さない場合をRefとして表記した。図19に示すように、光入射端面43sの幅が狭くなると、高極角側に広がる光が少なくなる。これは、直抜け光L7として液晶パネル2側に射出される光の量が少なくなるためである。一方で、光入射端面43bの幅sが狭くなると、透過する光の総量が少なくなる。これは、反射面44に入射する光の量が増えるためである。
 すなわち、液晶表示部材1から射出される光量を犠牲にしても、光の配向性を高めたい場合は、光配向部43の光入射端面43bの幅を狭くすることが好ましい。逆に、ある程度の光の広がりを許容しつつ、全体の光量を増やしたい場合は、光配向部43の光入射端面43bを広くすることが好ましい。
FIG. 19 shows the luminance distribution of transmitted light when the width (interval between adjacent reflective layers 44) s of the light incident end face 43b of the light orientation section 43 is changed. At this time, the inclination angle θc was fixed at 80 °, and the width L of the reflective layer 44 was fixed at 15 μm. The width s of the light incident end face 43b was set to 5 μm, 10 μm, 15 μm, and 20 μm, and the case where the photo-alignment member 41 was not provided was indicated as Ref for reference. As shown in FIG. 19, when the width of the light incident end face 43s is narrowed, the light spreading toward the high polar angle side is reduced. This is because the amount of light emitted to the liquid crystal panel 2 side as the direct light L7 is reduced. On the other hand, when the width s of the light incident end face 43b is narrowed, the total amount of transmitted light is reduced. This is because the amount of light incident on the reflecting surface 44 increases.
That is, it is preferable to reduce the width of the light incident end face 43 b of the light alignment portion 43 when it is desired to enhance the light alignment even at the expense of the amount of light emitted from the liquid crystal display member 1. Conversely, when it is desired to increase the total light amount while allowing a certain amount of light spread, it is preferable to widen the light incident end face 43b of the light alignment portion 43.
 上述のように、基材42に対する反射層44の被覆率を70%以下としたいという観点から考えると、反射層44の幅Lに対する光配向部43の光入射端面43bの幅sは、s>3/7Lの関係をみたすことが好ましい。またこの光入射端面43bの幅sと反射層44の幅Lの関係は、光配向部材41全体の平均値としてこの関係を満たしていればよい。
例えば、反射層44の幅Lを、液晶パネル2と合せて使用する際に、干渉縞(モアレ)が発生しない様にランダムに設定してもよい。
As described above, from the viewpoint of setting the coverage ratio of the reflective layer 44 to the base material 42 to 70% or less, the width s of the light incident end face 43b of the light alignment portion 43 with respect to the width L of the reflective layer 44 is s> It is preferable to satisfy the 3 / 7L relationship. Further, the relationship between the width s of the light incident end face 43b and the width L of the reflective layer 44 only needs to satisfy this relationship as an average value of the entire photo-alignment member 41.
For example, the width L of the reflective layer 44 may be set randomly so that interference fringes (moire) do not occur when used in combination with the liquid crystal panel 2.
(液晶表示装置の製造方法)
 図20~図23は、光配向部材37の製造工程を、順を追って示す斜視図である。
 上記構成の液晶表示装置1を構成する光配向部材37の製造工程を中心に、その製造方法について説明する。
(Manufacturing method of liquid crystal display device)
20 to 23 are perspective views showing the manufacturing process of the photo-alignment member 37 step by step.
The manufacturing method will be described focusing on the manufacturing process of the photo-alignment member 37 constituting the liquid crystal display device 1 having the above configuration.
 液晶パネル2の製造工程の概略を先に説明する。
 最初に、TFT基板10とカラーフィルター基板12をそれぞれ作製する。その後、TFT基板10のTFT19が形成された側の面とカラーフィルター基板12のカラーフィルター31が形成された側の面とを対向させて配置する。その後、TFT基板10とカラーフィルター基板12とをシール部材を介して貼り合わせる。その後、TFT基板10とカラーフィルター基板12とシール部材とによって囲まれた空間内に液晶を注入する。このようにしてできた液晶セル5の両面に、光学接着剤等を用いて第1位相差フィルム4、第1偏光板3、第2位相差フィルム6、第2偏光板7をそれぞれ貼り合わせる。以上の工程を経て、液晶パネル2が完成する。
 なお、TFT基板10やカラーフィルター基板12の製造方法は常法によれば良く、その説明を省略する。
The outline of the manufacturing process of the liquid crystal panel 2 will be described first.
First, the TFT substrate 10 and the color filter substrate 12 are respectively produced. Thereafter, the surface of the TFT substrate 10 on which the TFT 19 is formed and the surface of the color filter substrate 12 on which the color filter 31 is formed are arranged to face each other. Thereafter, the TFT substrate 10 and the color filter substrate 12 are bonded together via a seal member. Thereafter, liquid crystal is injected into a space surrounded by the TFT substrate 10, the color filter substrate 12, and the seal member. The first retardation film 4, the first polarizing plate 3, the second retardation film 6, and the second polarizing plate 7 are bonded to both surfaces of the liquid crystal cell 5 thus formed using an optical adhesive or the like. The liquid crystal panel 2 is completed through the above steps.
The manufacturing method of the TFT substrate 10 and the color filter substrate 12 may be a conventional method, and the description thereof is omitted.
 光配向部材37の製造工程について説明する。
 図20に示すように、厚さが100μmのポリエチレンテレフタレートの基材42を準備する。次いで、スパッタ、蒸着等を用いて基材42の一面に、膜厚150nmの金属膜46を形成する。
 次いで、金属膜の上に、加温ラミネーター等を用いて、ドライレジスト膜46Aを貼り合せる。ドライレジスト膜46Aは、ポジレジストでもネガレジストでもよい。以下、ネガレジストとして説明する。またドライレジストに限られず、スリットコーター等を用いて液状のレジスト膜を形成してもよい。
A manufacturing process of the photo-alignment member 37 will be described.
As shown in FIG. 20, a polyethylene terephthalate base material 42 having a thickness of 100 μm is prepared. Next, a metal film 46 having a thickness of 150 nm is formed on one surface of the base material 42 by sputtering, vapor deposition, or the like.
Next, the dry resist film 46A is bonded onto the metal film using a warming laminator or the like. The dry resist film 46A may be a positive resist or a negative resist. Hereinafter, it will be described as a negative resist. Moreover, it is not restricted to a dry resist, A liquid resist film may be formed using a slit coater or the like.
 露光装置を用い、平面形状が例えば線状の複数の開口パターン47が形成されたフォトマスク48を介してドライレジスト膜46Aに光Lを照射し、露光を行う。このとき、波長365nmのi線、波長404nmのh線、波長436nmのg線の混合線を用いた露光装置を使用する。露光量は100mJ/cmとする。 Using an exposure apparatus, exposure is performed by irradiating the dry resist film 46A with light L through a photomask 48 in which a plurality of opening patterns 47 whose planar shape is, for example, a linear shape is formed. At this time, an exposure apparatus using a mixed line of i-line having a wavelength of 365 nm, h-line having a wavelength of 404 nm, and g-line having a wavelength of 436 nm is used. The exposure dose is 100 mJ / cm 2 .
 上記のフォトマスク48を用いて露光を行った後、専用の現像液を用いてネガレジストからなるドライレジスト膜46Aの現像を行い、100℃で乾燥する。これにより、金属膜46上に平面形状が例えばライン形状のレジストパターンが形成される。
 このレジストパターンを介して、金属膜46のエッチングを行う。エッチングは、ドライエッチング及びウェットエッチングのいずれでもよい。エッチング後、残存したレジストを除去することで、図21に示すような平面形状が例えばライン形状の複数の金属層44を基材42の一面に得ることができる。本実施形態の場合、次工程でネガレジストからなる金属層44をマスクとして透明ネガレジストの露光を行い、中空部45を形成する。
そのため、フォトマスク48の開口パターン47の位置が中空部45の形成位置に対応する。
After exposure using the photomask 48 described above, the dry resist film 46A made of a negative resist is developed using a dedicated developer and dried at 100 ° C. As a result, a resist pattern having a planar shape, for example, a line shape is formed on the metal film 46.
The metal film 46 is etched through this resist pattern. Etching may be either dry etching or wet etching. After etching, the remaining resist is removed, so that a plurality of metal layers 44 having a planar shape such as a line shape as shown in FIG. In the case of the present embodiment, the transparent negative resist is exposed using the metal layer 44 made of a negative resist as a mask in the next step, and the hollow portion 45 is formed.
Therefore, the position of the opening pattern 47 of the photomask 48 corresponds to the position where the hollow portion 45 is formed.
 平面形状がライン形状の金属層44は、次工程の光配向部43の非形成領域(中空部45)に対応する。本例では、複数の開口パターン47は、全てライン状で規則的に配置されている。一方で、複数の開口パターン47の幅及び間隔はランダムに設定してもよい。
ランダムに設定することで、液晶ディスプレイと組み合わせたときに、モアレの発生を避けることができる。
The line-shaped metal layer 44 corresponds to a non-formation region (hollow portion 45) of the photo-alignment portion 43 in the next step. In this example, the plurality of opening patterns 47 are all regularly arranged in a line. On the other hand, the widths and intervals of the plurality of opening patterns 47 may be set at random.
By setting at random, the occurrence of moire can be avoided when combined with a liquid crystal display.
 本実施形態では、金属膜を形成後、フォトエッチングによって金属層44を形成したが、これに限らない。この他に例えば犠牲層を用いたリフトオフ工程によって金属層44を作製してもよい。またマスクパターンを介して、直接基材上に金属層44を蒸着してもよい。 In this embodiment, after the metal film is formed, the metal layer 44 is formed by photoetching, but the present invention is not limited to this. In addition, for example, the metal layer 44 may be formed by a lift-off process using a sacrificial layer. Further, the metal layer 44 may be directly deposited on the base material through the mask pattern.
 フォトリソグラフィー法により、Roll to Rollプロセスで連続的にレジストパターンを形成する場合には、平板のフォトマスクに代えて、円筒状のフォトマスクと、円筒内のUVランプで露光するローリングマスクフォトリソグラフィー法を用いることもできる。 When a resist pattern is continuously formed by a roll-to-roll process by a photolithography method, a cylindrical photomask and a rolling mask photolithography method in which exposure is performed with a UV lamp in the cylinder instead of a flat photomask. Can also be used.
 次いで、図22に示すように、加温ラミネーターを用いて、金属層44の上面に光拡散部材料としてアクリル樹脂からなるドライレジストを貼合する。これにより、膜厚20μmの塗膜49を形成する。ドライレジストは、ネガレジストでもポジレジストでもよい。
 またドライレジストを貼合するのではなく、スリットコーター等を用いて、液状のレジスト膜を形成してもよい。液状のレジスト膜を形成する場合は、レジスト中の溶媒を揮発させる必要がある。これは、塗膜49を形成した基材42をヒーターで加熱し、温度95℃で塗膜49のプリベークを行うことで実現できる。
Next, as illustrated in FIG. 22, a dry resist made of an acrylic resin is bonded to the upper surface of the metal layer 44 as a light diffusing portion material using a warming laminator. Thereby, the coating film 49 with a film thickness of 20 μm is formed. The dry resist may be a negative resist or a positive resist.
Further, instead of laminating a dry resist, a liquid resist film may be formed using a slit coater or the like. When forming a liquid resist film, it is necessary to volatilize the solvent in the resist. This can be realized by heating the base material 42 on which the coating film 49 is formed with a heater and pre-baking the coating film 49 at a temperature of 95 ° C.
 次いで、基材42側から金属層44をマスクとして塗膜49に拡散光Fを照射し、露光を行う。このとき、波長365nmのi線、波長404nmのh線、波長436nmのg線の混合線を用いた露光装置を使用する。露光量は500mJ/cmとする。
 その後、上記の塗膜49を形成した基材42をヒーターで加熱し、温度95℃で塗膜49のポストエクスポージャーベイク(PEB)を行う。
Next, the coating layer 49 is irradiated with diffused light F from the base material 42 side as a mask to perform exposure. At this time, an exposure apparatus using a mixed line of i-line having a wavelength of 365 nm, h-line having a wavelength of 404 nm, and g-line having a wavelength of 436 nm is used. The exposure amount is 500 mJ / cm 2 .
Thereafter, the base material 42 on which the coating film 49 is formed is heated with a heater, and post-exposure baking (PEB) of the coating film 49 is performed at a temperature of 95 ° C.
 次いで、専用の現像液を用いて透明レジストからなる塗膜49の現像を行い、100℃でポストベークし、図23に示すように、複数の中空部45と光配向部43を基材42の一面に形成する。本実施形態では、図22に示したように、拡散光Fを用いて露光を行っているため、塗膜49を構成する透明ネガレジストが金属層44の非形成領域から外側に広がるように放射状に露光される。これにより、順テーパ状の中空部45が形成される。
光配向部43は逆テーパ状の形状となる。光配向部43の反射面43cの傾斜角度は拡散光Fの拡散の度合いで制御できる。
Next, the coating film 49 made of a transparent resist is developed using a dedicated developer, post-baked at 100 ° C., and as shown in FIG. Form on one side. In this embodiment, as shown in FIG. 22, since the exposure is performed using the diffused light F, the transparent negative resist constituting the coating film 49 is radially spread so as to spread outward from the non-formation region of the metal layer 44. To be exposed. Thereby, the forward tapered hollow portion 45 is formed.
The photo-alignment portion 43 has a reverse tapered shape. The inclination angle of the reflection surface 43 c of the light alignment portion 43 can be controlled by the degree of diffusion of the diffused light F.
 ここで用いる光Fとして、平行光、もしくは拡散光、もしくは特定の射出角度における強度が他の射出角度における強度と異なる光、すなわち特定の射出角度に強弱を有する光を用いることができる。平行光を用いた場合、光配向部43の反射面43cの傾斜角度が例えば60°~90°程度の単一の傾斜角度となる。拡散光を用いた場合には、傾斜角度が連続的に変化する、断面形状が曲線状の傾斜面となる。特定の射出角度に強弱を有する光を用いた場合には、その強弱に対応した斜面角度を有する傾斜面となる。このように、光配向部43の反射面43cの傾斜角度を調整することができる。これにより、光配向部材41の光拡散性を、目的とする視認性が得られるように調整することが可能となる。 As the light F used here, parallel light, diffused light, or light whose intensity at a specific emission angle is different from that at another emission angle, that is, light having strength at a specific emission angle can be used. When parallel light is used, the inclination angle of the reflection surface 43c of the light alignment section 43 is a single inclination angle of about 60 ° to 90 °, for example. When diffused light is used, the tilt angle changes continuously, and the cross-sectional shape becomes a curved inclined surface. When light having strength at a specific emission angle is used, an inclined surface having a slope angle corresponding to the strength is obtained. Thus, the inclination angle of the reflecting surface 43c of the photo-alignment portion 43 can be adjusted. Thereby, it becomes possible to adjust the light diffusibility of the light orientation member 41 so that the target visibility can be obtained.
 なお、露光装置から出射された平行光を光Fとして基材42に照射する手段の一つとして、例えば露光装置から出射された光の光路上にヘイズ50程度の拡散板を配置し、拡散板を介して光を照射してもよい。
 また、現像液を用いて現像を行う際、現像液を加圧して透明ネガレジストへ噴射して、不要なレジストの除去を促進してもよい。
As one of means for irradiating the base material 42 with the parallel light emitted from the exposure apparatus as light F, for example, a diffusion plate having a haze of about 50 is arranged on the optical path of the light emitted from the exposure apparatus. You may irradiate light through.
Further, when developing with a developer, the developer may be pressurized and sprayed onto a transparent negative resist to promote removal of unnecessary resist.
 以上、図20~図23の工程を経て、本実施形態の光配向部材37が完成する。
 光配向部材37の全光線透過率は、90%以上が好ましい。全光線透過率が90%以上であると、十分な透明性が得られ、光制御部材に求められる光学性能を十分に発揮できる。全光線透過率は、JIS K7361-1の規定によるものである。なお、本実施形態では、液体状のレジストを用いる例を挙げたが、この構成に代えて、フィルム状のレジストを用いても良い。
As described above, the optical alignment member 37 of this embodiment is completed through the steps of FIGS.
The total light transmittance of the photo-alignment member 37 is preferably 90% or more. When the total light transmittance is 90% or more, sufficient transparency can be obtained, and the optical performance required for the light control member can be sufficiently exhibited. The total light transmittance is as defined in JIS K7361-1. In this embodiment, an example in which a liquid resist is used has been described, but a film resist may be used instead of this configuration.
 最後に、完成した光配向部材37を、図2に示すように、基材42をプリズムシート38側に向けて、光配向部43を液晶パネル2に接着剤層(図視略)を介して貼り合わせる。 Finally, as shown in FIG. 2, the completed light alignment member 37 is directed to the prism sheet 38 side, and the light alignment portion 43 is placed on the liquid crystal panel 2 via an adhesive layer (not shown). to paste together.
 光配向部材37を、接着剤層を介して液晶パネル2に貼付する際、加熱加圧処理をしてもよい。加熱加圧処理を加えることにより、液晶パネル2に対する光配向部材37の密着性が向上するとともに、圧力によっては光配向部43の反射面43cの傾斜角度が大きくなり、光配向性を上げることができる。加熱加圧処理の方法としては、例えばオートクレーブ装置や加温ラミネーター等を用いることができる。
 以上の工程により、本実施形態の液晶表示装置1が完成する。
When the photo-alignment member 37 is attached to the liquid crystal panel 2 via the adhesive layer, a heat and pressure treatment may be performed. By applying the heat and pressure treatment, the adhesion of the photo-alignment member 37 to the liquid crystal panel 2 is improved, and the inclination angle of the reflection surface 43c of the photo-alignment portion 43 is increased depending on the pressure, thereby improving the photo-alignment. it can. As a method for the heat and pressure treatment, for example, an autoclave device, a warming laminator, or the like can be used.
Through the above steps, the liquid crystal display device 1 of the present embodiment is completed.
 この構成の液晶表示装置1は、y軸方向に生じる輝度浮きを抑制することができる。そのため、y軸方向の高極角側から液晶ディスプレイを視認した際に、コントラストが低下したり白黒反転することを抑制することができる。またy軸方向の高極角側への光漏れを抑制することができるため、覗き見防止の効果を得ることもできる。 The liquid crystal display device 1 having this configuration can suppress the brightness increase that occurs in the y-axis direction. For this reason, when the liquid crystal display is viewed from the high polar angle side in the y-axis direction, it is possible to suppress a decrease in contrast or black and white reversal. Further, since light leakage to the high polar angle side in the y-axis direction can be suppressed, an effect of preventing peeping can be obtained.
 なお、本発明は上記第1の実施形態として示す液晶表示装置1の構成に必ずしも限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。 The present invention is not necessarily limited to the configuration of the liquid crystal display device 1 shown as the first embodiment, and various modifications can be made without departing from the spirit of the present invention.
 ここで、図24A~図24Dは、光配向部材37の変形例を示す平面図である。 Here, FIGS. 24A to 24D are plan views showing modifications of the photo-alignment member 37. FIG.
 例えば、図24Aに示すように、反射層44Aが基材42A上のy軸方向に並列に配置された複数のラインと、x軸方向に並列に配置された複数のラインからなり、これらのラインが互いに直交する構成でもよい。この構成は、いわゆる格子状と換言することができる。この構成では、光配向部43Aの反射面43cAが、x軸方向及びy軸方向にも有する。そのため、x軸方向及びy軸方向の両軸方向において光の配向特性を高めることができる。 For example, as shown in FIG. 24A, the reflective layer 44A includes a plurality of lines arranged in parallel in the y-axis direction on the base material 42A and a plurality of lines arranged in parallel in the x-axis direction. May be configured to be orthogonal to each other. This configuration can be rephrased as a so-called lattice pattern. In this configuration, the reflection surface 43cA of the photo-alignment portion 43A also has the x-axis direction and the y-axis direction. Therefore, the alignment characteristics of light can be enhanced in both the x-axis direction and the y-axis direction.
 例えば、図24Bに示すように、円形の反射層44Bが基材42B上に複数配置された構成でもよい。この構成では、光配向部43Bの反射面43cBが、全方位に存在するため、全方位の光配向特性を高めることができる。 For example, as shown in FIG. 24B, a configuration in which a plurality of circular reflective layers 44B are arranged on the base material 42B may be employed. In this configuration, since the reflecting surface 43cB of the photo-alignment portion 43B exists in all directions, the photo-alignment characteristics in all directions can be improved.
 例えば、図24Cに示すように、楕円状の反射層44Cが基材42C上に複数配置された構成でもよい。また図24Dに示すように、菱形状の反射層44Dが基材42D上に複数配置された構成でもよい。図24C及び図24Dに示すように、短軸と長軸を有する反射層の場合、反射層の反射面の面積比率の関係から、短軸方向の光配向特性を特に高めることができる。そのため、液晶ディスプレイ等に用いる場合に、制御したい方向性に合せて短軸方向を設定することができる。 For example, as shown in FIG. 24C, a configuration in which a plurality of elliptical reflective layers 44C are arranged on the base material 42C may be employed. Moreover, as shown to FIG. 24D, the structure by which multiple rhombus-shaped reflection layers 44D are arrange | positioned on the base material 42D may be sufficient. As shown in FIGS. 24C and 24D, in the case of a reflective layer having a minor axis and a major axis, the photo-alignment characteristics in the minor axis direction can be particularly enhanced from the relationship of the area ratio of the reflecting surface of the reflective layer. Therefore, when used for a liquid crystal display or the like, the minor axis direction can be set in accordance with the directionality to be controlled.
 またバックライト36は、エッジ型のバックライトに限定されず、直下型のバックライトを用いてもよい。直下型のバックライトは、通常指向性を有しているため、液晶表示装置に用いる場合は、散乱板を設けて輝度ムラの発生をさける。散乱板は、等方散乱板、異方性散乱板のいずれも用いる場合がある。いずれの散乱板を用いても、散乱板を透過後の光は種々の方向に向く。そのため、光配向部材により配向性を制御することで、液晶パネルに入射する光量を高めることができる。すなわち、液晶表示装置の光利用効率を高めることができる。 Further, the backlight 36 is not limited to the edge type backlight, and a direct type backlight may be used. Since the direct type backlight usually has directivity, when it is used in a liquid crystal display device, a scattering plate is provided to avoid occurrence of luminance unevenness. As the scattering plate, either an isotropic scattering plate or an anisotropic scattering plate may be used. Whichever scattering plate is used, the light transmitted through the scattering plate is directed in various directions. Therefore, the amount of light incident on the liquid crystal panel can be increased by controlling the orientation with the photo-alignment member. That is, the light use efficiency of the liquid crystal display device can be increased.
[第2実施形態]
 以下、本発明の第2実施形態について、図25~図27Bを用いて説明する。
 本実施形態の液晶表示装置の基本構成は第1実施形態と同一であり、光配向部材における光配向部の反射面の構成が第1実施形態と異なる。
 したがって、本実施形態では、液晶表示装置の基本構成の説明は省略し、光配向部材について説明する。
[Second Embodiment]
Hereinafter, a second embodiment of the present invention will be described with reference to FIGS. 25 to 27B.
The basic configuration of the liquid crystal display device of the present embodiment is the same as that of the first embodiment, and the configuration of the reflection surface of the light alignment portion in the light alignment member is different from that of the first embodiment.
Therefore, in this embodiment, description of the basic composition of a liquid crystal display device is abbreviate | omitted, and demonstrates a photo-alignment member.
 図25は、第2実施形態の液晶表示装置の光配向部材をy軸方向と平行な面で切断した断面模式図である。
 図25に示す光配向部材51は、基材52と、反射層54と、光配向部53を備える。
光配向部53は、y軸方向と平行な面で切断した断面において、光が入射する光入射端面53bと、光が射出される光射出端面53aと、第1傾斜面53cと第2傾斜面53dを有する。この光射出端面53aと第1傾斜面53cのなす傾斜角θ1と、光射出端面53aと第2傾斜面53dのなす傾斜角θ2と、は異なっている。図25では、傾斜角θ1は、傾斜角θ2より大きい。
FIG. 25 is a schematic cross-sectional view of the optical alignment member of the liquid crystal display device of the second embodiment cut along a plane parallel to the y-axis direction.
A photo-alignment member 51 shown in FIG. 25 includes a base material 52, a reflective layer 54, and a photo-alignment part 53.
In the cross section cut by a plane parallel to the y-axis direction, the light orientation portion 53 has a light incident end face 53b on which light is incident, a light exit end face 53a from which light is emitted, a first inclined face 53c, and a second inclined face. 53d. The inclination angle θ1 formed by the light emitting end face 53a and the first inclined face 53c is different from the inclination angle θ2 formed by the light emitting end face 53a and the second inclined face 53d. In FIG. 25, the inclination angle θ1 is larger than the inclination angle θ2.
 このことから、光配向部53の第1傾斜面53cに入射した光は、z軸方向に配向され、光配向部53の第2傾斜面53dに入射した光は、y軸の正の方向に配向される。すなわち、光配向部材51を透過後の光は、z軸方向と、y軸の正方向に配向される。 Therefore, the light incident on the first inclined surface 53c of the photo-alignment portion 53 is aligned in the z-axis direction, and the light incident on the second inclined surface 53d of the photo-alignment portion 53 is in the positive direction of the y-axis. Oriented. That is, the light transmitted through the light alignment member 51 is aligned in the z-axis direction and the positive direction of the y-axis.
 図26は、第2実施形態の光配向部材のy軸方向への光配向性を輝度分布により測定した結果を示す。横軸は極角であり、縦軸は、正面方向に射出された光の輝度を1として規格化した規格化輝度である。図26に示すように、第2実施形態に光配向部材51は、極角0°を中心に、非対称な輝度分布が得られている。これは、上述のように、第2の傾斜面53dで全反射し、y軸の正方向に配向された光が存在するためである。 FIG. 26 shows the result of measuring the photo-alignment property in the y-axis direction of the photo-alignment member of the second embodiment by the luminance distribution. The horizontal axis is the polar angle, and the vertical axis is the normalized luminance normalized with the luminance of light emitted in the front direction as 1. As shown in FIG. 26, in the second embodiment, the photo-alignment member 51 has an asymmetric luminance distribution around a polar angle of 0 °. This is because there is light that is totally reflected by the second inclined surface 53d and oriented in the positive direction of the y-axis as described above.
 第2の実施形態の光配向部材51は、例えば、電車の扉上部の液晶ディスプレイ等に適用することができる。電車の扉上部に設置された液晶ディスプレイは、液晶ディスプレイに対して、斜め下方向から視認されることが想定される。一方で、斜め上方向から液晶ディスプレイを視認することは想定しにくい。このような場合に、第2実施形態の光配向部材51を用いることで、液晶ディスプレイの上方向に射出されていた光を、下方向に配向させることができる。そのため、液晶ディスプレイの斜め下方から視認する際の視認性を高めることができる。 The photo-alignment member 51 of the second embodiment can be applied to, for example, a liquid crystal display on an upper part of a train door. It is assumed that the liquid crystal display installed on the upper part of the train door is viewed from obliquely below the liquid crystal display. On the other hand, it is difficult to assume that the liquid crystal display is viewed from an obliquely upward direction. In such a case, the light emitted upward from the liquid crystal display can be aligned downward by using the light alignment member 51 of the second embodiment. Therefore, the visibility at the time of visually recognizing from diagonally below the liquid crystal display can be enhanced.
 また光配向部材51に入射する光は、光配向部材51のy軸方向の両側から入射することが好ましい。すなわち、光配向部材51の下面側に配置されるバックライト57は、両端に光源56を備えることが好ましい。
 図27Aは、バックライトの導光体のy軸方向の一端側のみに光源がある場合において、第2実施形態の光配向部材の機能を模式的に示した図であり、図27Bは、バックライトの導光体のy軸方向の両端側に光源がある場合において、第2実施形態の光配向部材の機能を模式的に示した図である。
 図27Aに示すように、バックライト57の一端側にのみ光源56を備える場合は、バックライト57から射出される光は、導光体内を導光する方向に指向されている。そのため、バックライト57から射出された光の多くは、第1傾斜面53cに入射する。そのため、光配向部材51を透過後にy軸方向に配向される光の割合を高くすることが難しい。
 これに対し、図27Bに示すように、バックライト57の両端側に光源56を備える場合は、バックライト57から射出される光は、y軸の両方向に指向している。そのため、バックライト57から射出された光は、第1傾斜面53c及び第2傾斜面53dのいずれにも入射する。そのため、バックライト57から射出された光のうち、y軸方向に配向される割合を高めることができる。
Moreover, it is preferable that the light incident on the photo-alignment member 51 enters from both sides of the photo-alignment member 51 in the y-axis direction. That is, it is preferable that the backlight 57 disposed on the lower surface side of the photo-alignment member 51 includes the light sources 56 at both ends.
FIG. 27A is a diagram schematically illustrating the function of the light alignment member of the second embodiment when the light source is provided only at one end side in the y-axis direction of the light guide of the backlight, and FIG. It is the figure which showed typically the function of the photo-alignment member of 2nd Embodiment, when there exists a light source in the both ends side of the y-axis direction of the light guide of light.
As shown in FIG. 27A, when the light source 56 is provided only on one end side of the backlight 57, the light emitted from the backlight 57 is directed in the direction of guiding the light through the light guide. Therefore, most of the light emitted from the backlight 57 enters the first inclined surface 53c. Therefore, it is difficult to increase the proportion of light that is oriented in the y-axis direction after passing through the photo-alignment member 51.
On the other hand, as shown in FIG. 27B, when the light sources 56 are provided at both ends of the backlight 57, the light emitted from the backlight 57 is directed in both directions of the y-axis. Therefore, the light emitted from the backlight 57 is incident on both the first inclined surface 53c and the second inclined surface 53d. Therefore, the proportion of light emitted from the backlight 57 that is oriented in the y-axis direction can be increased.
[第3実施形態]
 以下、本発明の第3実施形態について、図28を用いて説明する。
 本実施形態の液晶表示装置の基本構成は第1実施形態と同一であり、液晶パネル2の光射出側に光制御部材を備えることが第1実施形態と異なる。
[Third Embodiment]
Hereinafter, a third embodiment of the present invention will be described with reference to FIG.
The basic configuration of the liquid crystal display device of the present embodiment is the same as that of the first embodiment, and differs from the first embodiment in that a light control member is provided on the light emission side of the liquid crystal panel 2.
 図28は、第3実施形態の液晶表示装置の断面模式図である。第3実施形態の液晶表示装置101は、バックライトユニット8と、液晶パネル2と、光制御部材61を備える。 FIG. 28 is a schematic cross-sectional view of the liquid crystal display device of the third embodiment. A liquid crystal display device 101 according to the third embodiment includes a backlight unit 8, a liquid crystal panel 2, and a light control member 61.
 以下、光制御部材61について詳細に説明する。
 図29は、光制御部材61を視認側から見た斜視図である。図30は、光制御部材61の模式図である。図30において、左側上段は光制御部材61の平面図である。左側下段は、左側上段の平面図のA-A線に沿った断面図である。右側上段は、左側上段の平面図のB-B線に沿った断面図である。
Hereinafter, the light control member 61 will be described in detail.
FIG. 29 is a perspective view of the light control member 61 as viewed from the viewing side. FIG. 30 is a schematic diagram of the light control member 61. In FIG. 30, the upper left side is a plan view of the light control member 61. The lower left side is a cross-sectional view along the line AA in the plan view of the upper left side. The upper right stage is a cross-sectional view along the line BB in the plan view of the upper left stage.
 光制御部材61は、図29に示すように、基材62と、光拡散部63と、複数の遮光層64と、複数の中空部65と、を備えている。複数の遮光層64は、基材62の第1の面62a(視認側と反対側の面)に形成されている。光拡散部63は、基材62の第1の面62aのうち、遮光層64の形成領域以外の領域に形成されている。逆に言えば、遮光層64は、第1の面62aのうち、基材62の法線方向から見て光拡散部61と重ならない位置に設けられている。中空部65は、基材62の法線方向から見て遮光層64と一部重なる位置に設けられている。
 本実施形態において基材62は、特許請求の範囲の第2の基材に対応する。本実施形態において中空部65は、特許請求の範囲の第2の低屈折率部に対応する。本実施形態において遮光層64は、遮光部に対応する。
As shown in FIG. 29, the light control member 61 includes a base material 62, a light diffusion portion 63, a plurality of light shielding layers 64, and a plurality of hollow portions 65. The plurality of light shielding layers 64 are formed on the first surface 62 a (surface opposite to the viewing side) of the base material 62. The light diffusion part 63 is formed in a region other than the region where the light shielding layer 64 is formed on the first surface 62 a of the base material 62. In other words, the light shielding layer 64 is provided on the first surface 62 a at a position that does not overlap with the light diffusion portion 61 when viewed from the normal direction of the base material 62. The hollow portion 65 is provided at a position that partially overlaps the light shielding layer 64 when viewed from the normal direction of the substrate 62.
In the present embodiment, the base material 62 corresponds to the second base material in the claims. In the present embodiment, the hollow portion 65 corresponds to the second low refractive index portion in the claims. In the present embodiment, the light shielding layer 64 corresponds to a light shielding portion.
 光制御部材61は、図28に示すように、光拡散部63を第2偏光板7に向け、基材62を視認側に向けて第2偏光板7上に配置される。光制御部材61は、接着剤層66を介して第2偏光板7に固定される。 28, the light control member 61 is disposed on the second polarizing plate 7 with the light diffusion portion 63 facing the second polarizing plate 7 and the base material 62 facing the viewing side. The light control member 61 is fixed to the second polarizing plate 7 through the adhesive layer 66.
 基材62には、第1実施形態の光配向部材41の基材42と同様の物を用いることができる。本実施形態では、基材62に、例えば厚さが100μmの透明樹脂製基材を用いる。 The same material as the base material 42 of the optical alignment member 41 of the first embodiment can be used for the base material 62. In the present embodiment, a transparent resin substrate having a thickness of 100 μm, for example, is used for the substrate 62.
 遮光層64は、基材62の第1の面62aの法線方向から見てランダムに配置されている。遮光層64は、一例として、ブラックレジスト、黒色インク等の光吸収性および感光性を有する有機材料で構成されている。その他、Cr(クロム)やCr/酸化Crの多層膜等の金属膜を用いても良い。 The light shielding layer 64 is randomly arranged as viewed from the normal direction of the first surface 62a of the base material 62. For example, the light shielding layer 64 is made of an organic material having light absorption and photosensitivity such as a black resist and black ink. In addition, a metal film such as Cr (chromium) or a Cr / Cr oxide multilayer film may be used.
 光拡散部63は、例えばアクリル樹脂やエポキシ樹脂等の光透過性および感光性を有する有機材料で構成されている。また、光拡散部63の全光線透過率は、JIS K7361-1の規定で90%以上が好ましい。全光線透過率が90%以上であると、十分な透明性が得られる。 The light diffusing portion 63 is made of an organic material having optical transparency and photosensitivity such as acrylic resin and epoxy resin. Further, the total light transmittance of the light diffusing portion 63 is preferably 90% or more according to JIS K7361-1. When the total light transmittance is 90% or more, sufficient transparency can be obtained.
 図30に示すように、光拡散部63は、光射出端面63aと、光入射端面63bと、反射面63cと、を有する。光射出端面63aは、基材62に接する面である。光入射端面63bは、光射出端面63aと対向する面である。反射面63cは、光拡散部63のテーパ状の傾斜面である。反射面63cは、光入射端面63bから入射した光を反射する面である。本実施形態では、全ての光拡散部63において、光入射端面63bの面積は、光射出端面63aの面積よりも大きい。
 本実施形態において光入射端面63aは、特許請求の範囲の第2の光入射端面に対応する。本実施形態において光射出端面63bは、特許請求の範囲の第2の光射出端面に対応する。本実施形態において光反射面63cは、特許請求の範囲の反射面に対応する。
As shown in FIG. 30, the light diffusion part 63 has a light emission end face 63a, a light incident end face 63b, and a reflection face 63c. The light emission end surface 63 a is a surface in contact with the base material 62. The light incident end surface 63b is a surface facing the light emitting end surface 63a. The reflection surface 63 c is a tapered inclined surface of the light diffusion portion 63. The reflecting surface 63c is a surface that reflects the light incident from the light incident end surface 63b. In the present embodiment, in all the light diffusion portions 63, the area of the light incident end face 63b is larger than the area of the light emitting end face 63a.
In the present embodiment, the light incident end surface 63a corresponds to the second light incident end surface of the claims. In the present embodiment, the light emission end face 63b corresponds to a second light emission end face in the claims. In the present embodiment, the light reflecting surface 63c corresponds to the reflecting surface in the claims.
 光拡散部63は、光制御部材61において光の透過に寄与する部分である。図30の左下に示すように、光拡散部63に入射した光のうち、光L9は、反射面63cで反射されることなく光射出端面63aから射出される。光拡散部63に入射した光のうち、光L10は、光拡散部63の反射面63cで全反射しつつ、光拡散部63の内部に略閉じこめられた状態で導光し、光射出端面63aから射出される。 The light diffusion part 63 is a part that contributes to the transmission of light in the light control member 61. As shown in the lower left of FIG. 30, among the light incident on the light diffusing unit 63, the light L9 is emitted from the light emitting end face 63a without being reflected by the reflecting surface 63c. Of the light incident on the light diffusing portion 63, the light L10 is totally reflected by the reflecting surface 63c of the light diffusing portion 63 and guided in a state of being substantially confined inside the light diffusing portion 63, and the light emitting end face 63a. Is injected from.
 光制御部材61は、基材62が視認側に向くように配置される。そのため、光拡散部63の2つの対向面のうち、面積の小さい方の面が光射出端面63aとなる。一方、面積の大きい方の面が光入射端面63bとなる。 The light control member 61 is arranged so that the base material 62 faces the viewing side. Therefore, of the two opposing surfaces of the light diffusion portion 63, the surface with the smaller area becomes the light emission end surface 63a. On the other hand, the surface with the larger area becomes the light incident end surface 63b.
 光拡散部63の反射面63cの傾斜角度(光入射端面63bと反射面63cとのなす角度θc)は、一例として80°±5°程度である。ただし、光拡散部63の反射面63cの傾斜角度θcは、光制御部材9から射出する際に、入射光を十分に拡散することが可能な角度であれば、特に限定されない。 An inclination angle of the reflection surface 63c of the light diffusion portion 63 (an angle θc formed between the light incident end surface 63b and the reflection surface 63c) is, for example, about 80 ° ± 5 °. However, the inclination angle θc of the reflection surface 63c of the light diffusion portion 63 is not particularly limited as long as it is an angle that can sufficiently diffuse incident light when emitted from the light control member 9.
 光拡散部63の光入射端面63bから光射出端面63aまでの高さt1は、遮光層64の層厚t2よりも大きく設定されている。本実施形態の場合、遮光層64の層厚t2は、一例として150nm程度である。光拡散部63の光入射端面63bから光射出端面63aまでの高さt1は、一例として10~20μm程度である。光拡散部41の反射面63cと遮光層64とにより囲まれた部分は、中空部65となっている。中空部65には空気が存在している。 The height t1 from the light incident end surface 63b of the light diffusing portion 63 to the light emitting end surface 63a is set larger than the layer thickness t2 of the light shielding layer 64. In this embodiment, the layer thickness t2 of the light shielding layer 64 is about 150 nm as an example. The height t1 from the light incident end face 63b of the light diffusing portion 63 to the light emitting end face 63a is, for example, about 10 to 20 μm. A portion surrounded by the reflection surface 63 c and the light shielding layer 64 of the light diffusion portion 41 is a hollow portion 65. Air exists in the hollow portion 65.
 なお、基材62の屈折率と光拡散部63の屈折率とは略同等であることが望ましい。その理由は、以下による。例えば、基材62の屈折率と光拡散部63の屈折率とが大きく異なる場合を考える。この場合、光入射端面63bから入射した光が光拡散部63から射出する際に、光拡散部63と基材62との界面で不要な光の屈折や反射が生じることがある。この場合、所望の視野角が得られない、射出光の光量が減少する、等の不具合が生じる虞があるからである。 In addition, it is desirable that the refractive index of the base material 62 and the refractive index of the light diffusion portion 63 are substantially equal. The reason is as follows. For example, consider a case where the refractive index of the base material 62 and the refractive index of the light diffusion portion 63 are greatly different. In this case, when light incident from the light incident end face 63 b exits from the light diffusion portion 63, unnecessary light refraction or reflection may occur at the interface between the light diffusion portion 63 and the base material 62. In this case, there is a possibility that problems such as failure to obtain a desired viewing angle and a decrease in the amount of emitted light may occur.
 本実施形態の場合、中空部65(光拡散部の外部)には空気が介在している。そのため、光拡散部63を例えば透明アクリル樹脂で形成したとすると、光拡散部63の反射面63cは、透明アクリル樹脂と空気との界面となる。ここで、中空部65を他の低屈折率材料で充填しても良い。しかしながら、光拡散部63の内部と外部との界面の屈折率差は、外部にいかなる低屈折率材料が存在する場合よりも空気が存在する場合が最大となる。
 したがって、Snellの法則より、本実施形態の構成においては臨界角が最も小さくなり、光拡散部63の反射面63cで光が全反射する入射角範囲が最も広くなる。その結果、光の損失がより抑えられ、高い輝度を得ることができる。
In the present embodiment, air is interposed in the hollow portion 65 (outside the light diffusion portion). Therefore, if the light diffusion part 63 is formed of, for example, a transparent acrylic resin, the reflection surface 63c of the light diffusion part 63 is an interface between the transparent acrylic resin and air. Here, the hollow portion 65 may be filled with another low refractive index material. However, the difference in the refractive index at the interface between the inside and the outside of the light diffusing portion 63 is maximized when air is present rather than when any low refractive index material is present outside.
Therefore, according to Snell's law, in the configuration of the present embodiment, the critical angle is the smallest, and the incident angle range in which the light is totally reflected by the reflecting surface 63c of the light diffusion portion 63 is the widest. As a result, light loss is further suppressed, and high luminance can be obtained.
 本実施形態の光制御部材61は、図30の左上に示すように、複数の遮光層64が、基材62の第1の面62aに点在して設けられている。基材62の法線方向から見た遮光層64の平面形状は、細長い菱形である。すなわち、遮光層64は、長軸と短軸とを有する異方性形状を呈する。図30に示すように、遮光層64の平面形状である菱形の短軸寸法B2に対する長軸寸法B1の比(B1/B2)は、例えば1以上かつ3以下である。
 遮光層64の長軸寸法B1は、例えば10~20μmであり、遮光層64の短軸寸法B2は、例えば5~10μmである。本実施形態の光制御部材61では、それぞれの遮光層64において、短軸寸法B2自体、長軸寸法B1自体は異なるものの、短軸寸法B2に対する長軸寸法B1の比は概ね等しい。
In the light control member 61 of this embodiment, as shown in the upper left of FIG. 30, a plurality of light shielding layers 64 are provided on the first surface 62 a of the base material 62. The planar shape of the light shielding layer 64 viewed from the normal direction of the substrate 62 is an elongated rhombus. That is, the light shielding layer 64 has an anisotropic shape having a major axis and a minor axis. As shown in FIG. 30, the ratio (B1 / B2) of the major axis dimension B1 to the minor axis dimension B2 of the rhombus that is the planar shape of the light shielding layer 64 is, for example, 1 or more and 3 or less.
The long axis dimension B1 of the light shielding layer 64 is, for example, 10 to 20 μm, and the short axis dimension B2 of the light shielding layer 64 is, for example, 5 to 10 μm. In the light control member 61 of the present embodiment, in each light shielding layer 64, the minor axis dimension B2 itself and the major axis dimension B1 themselves are different, but the ratio of the major axis dimension B1 to the minor axis dimension B2 is substantially equal.
 基材62の第1の面62aの全面積に対する遮光層64の占有面積の割合は、例えば30%±10%である。 The ratio of the occupied area of the light shielding layer 64 to the total area of the first surface 62a of the substrate 62 is, for example, 30% ± 10%.
 図30の左下、右上に示すように、遮光層64の下方に相当する部分は、四角錐台状の中空部65となる。光制御部材61は、複数の遮光層64に対応して複数の中空部65を有している。複数の中空部65以外の部分には、光拡散部63が一体に連なって設けられている。 30. As shown in the lower left and upper right of FIG. 30, the portion corresponding to the lower part of the light shielding layer 64 is a square pyramid-shaped hollow portion 65. The light control member 61 has a plurality of hollow portions 65 corresponding to the plurality of light shielding layers 64. In parts other than the plurality of hollow portions 65, a light diffusion portion 63 is integrally provided.
 本実施形態の光制御部材61では、遮光層64の平面形状をなす菱形の長軸方向は、概ねx軸方向に揃っている。以下、菱形の長軸方向を遮光層64の長軸方向と称することがある。遮光層64の平面形状をなす菱形の短軸方向は、概ねy軸方向に揃っている。以下、菱形の短軸方向を遮光層64の短軸方向と称することがある。光拡散部63の反射面63cは遮光層64の平面形状をなす菱形の各辺に対応することから、光拡散部63の反射面63cの向きを考えると、光拡散部63の反射面63cのうち、x軸方向およびy軸方向に平行な反射面63cの割合は極めて少なく、x軸方向およびy軸方向と角度をなす反射面63cが大半を占める。そのため、光の進行方向をxy平面上に射影して見ると、x軸方向から入射して反射面63cで反射した光Lxはy軸方向へ進行し、y軸方向から入射して反射面63cで反射した光Lyはx軸方向へ進行する割合が大きい。さらに後述するように、上記2種類の光を比べると、遮光層63の長軸と平行なx軸方向から短軸と平行なy軸方向へ向けて拡散される光Lxが大きい。 In the light control member 61 of this embodiment, the major axis direction of the rhombus that forms the planar shape of the light shielding layer 64 is substantially aligned with the x-axis direction. Hereinafter, the major axis direction of the rhombus may be referred to as the major axis direction of the light shielding layer 64. The short axis direction of the rhombus forming the planar shape of the light shielding layer 64 is substantially aligned with the y axis direction. Hereinafter, the minor axis direction of the rhombus may be referred to as the minor axis direction of the light shielding layer 64. Since the reflection surface 63c of the light diffusion portion 63 corresponds to each side of the rhombus that forms the planar shape of the light shielding layer 64, considering the direction of the reflection surface 63c of the light diffusion portion 63, the reflection surface 63c of the light diffusion portion 63 Among them, the proportion of the reflecting surface 63c parallel to the x-axis direction and the y-axis direction is extremely small, and the reflecting surface 63c that forms an angle with the x-axis direction and the y-axis direction occupies the majority. Therefore, when the traveling direction of light is projected onto the xy plane, the light Lx incident from the x-axis direction and reflected by the reflecting surface 63c travels in the y-axis direction, enters from the y-axis direction, and is reflected from the reflecting surface 63c. The light Ly reflected at has a high rate of traveling in the x-axis direction. Further, as will be described later, when the two types of light are compared, the light Lx diffused from the x-axis direction parallel to the long axis of the light shielding layer 63 toward the y-axis direction parallel to the short axis is large.
 なお、遮光層64の平面形状は、一部に円形、楕円形、多角形、半円等の形状が含まれていても良い。また、遮光層64の一部が重なって形成されていても良い。 Note that the planar shape of the light shielding layer 64 may partially include shapes such as a circle, an ellipse, a polygon, and a semicircle. Further, a part of the light shielding layer 64 may be overlapped.
 図31、図32は、遮光層64の平面視の大きさを説明するための図である。
 図31は、複数の遮光層64のうちの一つの遮光層64を示す平面図である。図32は、人間の視力と人間の眼で認識できる物体の大きさとの関係を示すグラフである。図32において、横軸は人間の視力である。縦軸は人間の眼で認識できる物体の大きさである。
31 and 32 are diagrams for explaining the size of the light shielding layer 64 in plan view.
FIG. 31 is a plan view showing one light shielding layer 64 among the plurality of light shielding layers 64. FIG. 32 is a graph showing the relationship between human visual acuity and the size of an object that can be recognized by human eyes. In FIG. 32, the horizontal axis represents human visual acuity. The vertical axis represents the size of an object that can be recognized by human eyes.
 光制御部材61において、遮光層64の平面視の大きさは、ある程度小さくした方がよい。その理由は、遮光層64の平面視の大きさが大きすぎると、観察者が液晶表示装置1の表示画像を見たときに、遮光層64がドットとして認識されてしまうおそれがあるからである。 In the light control member 61, the size of the light shielding layer 64 in plan view should be reduced to some extent. The reason is that if the size of the light shielding layer 64 in a plan view is too large, the light shielding layer 64 may be recognized as a dot when an observer views the display image of the liquid crystal display device 1. .
 図31に示すように、遮光層64の長軸方向の長さをB1とする。遮光層64の短軸方向の長さをB2とする。遮光層64がドットとして認識されにくくするためには、遮光層64の長軸方向の長さB1が100μm以下であることが好ましい。以下、遮光層64の長軸方向の長さB1を導くための方法について説明する。 As shown in FIG. 31, the length of the light shielding layer 64 in the major axis direction is B1. The length of the light shielding layer 64 in the minor axis direction is B2. In order to make it difficult for the light shielding layer 64 to be recognized as dots, the length B1 of the light shielding layer 64 in the major axis direction is preferably 100 μm or less. Hereinafter, a method for deriving the length B1 of the light shielding layer 64 in the major axis direction will be described.
 図32に示すように、人間の視力と人間の眼で認識できる物体の大きさとの間には一定の関係がある。図32に示す曲線Cよりも上方の範囲AR1は、人間の眼で物体を認識することができる範囲である。一方、曲線Cよりも下方の範囲AR2は、人間の眼で物体を認識することができない範囲である。この曲線Cは、以下の式により導かれる(3)式により定義される。 32, there is a certain relationship between the human eyesight and the size of the object that can be recognized by the human eye. A range AR1 above the curve C shown in FIG. 32 is a range in which an object can be recognized by human eyes. On the other hand, the range AR2 below the curve C is a range in which an object cannot be recognized by human eyes. This curve C is defined by equation (3) derived from the following equation.
 人間の眼において、視力αは、最小視角をβ(分)としたとき、下記の(1)式により導かれる。 In the human eye, the visual acuity α is derived from the following equation (1) when the minimum viewing angle is β (minutes).
 α=1/β ・・・(1) Α = 1 / β (1)
 最小視角βは、人間の眼で認識できる物体の大きさをV(mm)、人間の眼から物体までの距離をW(m)としたとき、下記の(2)式により導かれる。 The minimum viewing angle β is derived from the following equation (2), where V (mm) is the size of an object that can be recognized by the human eye, and W (m) is the distance from the human eye to the object.
 β=(V/1000)/{W×2π/(360/60)} ・・・(2) Β = (V / 1000) / {W × 2π / (360/60)} (2)
 上記の(1)式、(2)式により、視力αは、下記の(3)式で表される。 From the above formulas (1) and (2), the visual acuity α is expressed by the following formula (3).
 α={W×2π/(360/60)}/(V/1000) ・・・(3) Α = {W × 2π / (360/60)} / (V / 1000) (3)
 上記の(3)式を変形すると、人間の眼で認識できる物体の大きさVは、下記の(4)式で表される。 When the above equation (3) is transformed, the size V of the object that can be recognized by human eyes is expressed by the following equation (4).
 V=[{W×2π/(360/60)}×1000]/α ・・・(4) V = [{W × 2π / (360/60)} × 1000] / α (4)
 携帯電話機等の携帯型電子機器を使用する際、人間の眼から物体までの距離Wは20cm~30cm程度である。ここでは一例として、人間の眼から物体までの距離Wを25cmとする。 When using a portable electronic device such as a cellular phone, the distance W from the human eye to the object is about 20 to 30 cm. Here, as an example, the distance W from the human eye to the object is 25 cm.
 自動車の運転免許を取得するための最低視力は0.7である。この場合、人間の眼で認識できる物体の大きさVは100μmとなる。物体の大きさVが100μm以下であれば、人間の眼で物体を認識しにくくなると考えられる。すなわち、遮光層64の長軸方向の長さB1が100μm以下であることが好ましい。これにより、遮光層64が液晶表示装置1の表示画面においてドットとして認識されることが抑制される。この場合、遮光層64の短軸方向の長さB2は、遮光層64の長軸方向の長さB1よりも短く、かつ、100μm以下に設定される。 The minimum visual acuity for obtaining a driving license is 0.7. In this case, the size V of the object that can be recognized by the human eye is 100 μm. If the size V of the object is 100 μm or less, it will be difficult to recognize the object with human eyes. That is, the length B1 in the major axis direction of the light shielding layer 64 is preferably 100 μm or less. Thereby, it is suppressed that the light shielding layer 64 is recognized as a dot on the display screen of the liquid crystal display device 1. In this case, the length B2 of the light shielding layer 64 in the minor axis direction is set to be shorter than the length B1 of the light shielding layer 64 in the major axis direction and 100 μm or less.
 さらに、視力が2.0の人間の眼で認識できる物体の大きさVは40μmとなる。物体の大きさVが40μm以下であれば、人間の眼では物体を殆ど認識することができないと考えられる。すなわち、遮光層64の長軸方向の長さB1が40μm以下であることがより好ましい。これにより、遮光層64が液晶表示装置1の表示画面においてドットとして認識されることが確実に抑制される。この場合、遮光層64の短軸方向の長さB2は、遮光層40の長軸方向の長さB1よりも短く、かつ、40μm以下に設定される。 Furthermore, the size V of an object that can be recognized by the human eye with a visual acuity of 2.0 is 40 μm. If the size V of the object is 40 μm or less, it is considered that almost no object can be recognized by human eyes. In other words, the length B1 in the major axis direction of the light shielding layer 64 is more preferably 40 μm or less. This reliably suppresses the light shielding layer 64 from being recognized as dots on the display screen of the liquid crystal display device 1. In this case, the length B2 of the light shielding layer 64 in the minor axis direction is set to be shorter than the length B1 of the light shielding layer 40 in the major axis direction and 40 μm or less.
 85V型のスーパーハイビジョン対応ディスプレイは約103Pixel/Inch、60V型は約146Pixel/Inchとなる。カラーフィルターがR、G、Bの3色で構成されている場合、画素のサイズは、85V型の場合で約82μm×246μm、60V型の場合で58μm×174μmとなる。前述の通り、遮光層64のサイズが40μm以下であれば目視でドットとして認識されることはない。しかしながら、多くの遮光層64が複数の画素にまたがって配置されていると、異なる画素から射出された光を混合することになるため、解像感の低下が生じる。よって、画素の幅に対して遮光層64の長軸方向の寸法は1/3~1/2になっていることが望ましい。例えば60V型ハイビジョンの場合、遮光層64の長軸方向の寸法は、例えば19μm以下になっていることが望ましい。ただし、後述のフォトリソグラフィー工程で中空部65を形成する場合、光拡散部63の厚さは遮光層64の幅と同等以下であることが望ましいことが実験によって明らかになっている。その観点から、例えば遮光層64の長軸方向の寸法が15μmの場合、光拡散部63の厚さを15μm以下にすることが望ましい。 85V type Super Hi-Vision compatible display is about 103Pixel / Inch, 60V type is about 146Pixel / Inch. When the color filter is composed of three colors of R, G, and B, the pixel size is about 82 μm × 246 μm for the 85V type and 58 μm × 174 μm for the 60V type. As described above, when the size of the light shielding layer 64 is 40 μm or less, it is not visually recognized as a dot. However, when many light shielding layers 64 are arranged over a plurality of pixels, light emitted from different pixels is mixed, resulting in a decrease in resolution. Accordingly, it is desirable that the dimension of the light shielding layer 64 in the major axis direction is 1/3 to 1/2 with respect to the width of the pixel. For example, in the case of 60V type high vision, it is desirable that the dimension of the light shielding layer 64 in the major axis direction is, for example, 19 μm or less. However, when the hollow portion 65 is formed by a photolithography process described later, it has been clarified through experiments that the thickness of the light diffusion portion 63 is desirably equal to or less than the width of the light shielding layer 64. From this point of view, for example, when the dimension of the light shielding layer 64 in the major axis direction is 15 μm, it is desirable that the thickness of the light diffusion portion 63 be 15 μm or less.
 以下に、光制御部材61とVAモードの液晶パネル2とバックライトユニット8を組み合わせた場合の効果について説明する。
 バックライトユニット8の光配向部材37は、液晶パネル2に入射する光の配向性を制御することで、視野角特性を高めることに寄与する。光制御部材61は、液晶パネルを透過後の光の射出方向を制御することで視野角特性を高めることができる。
Below, the effect when the light control member 61, the VA mode liquid crystal panel 2, and the backlight unit 8 are combined will be described.
The light alignment member 37 of the backlight unit 8 contributes to improving the viewing angle characteristics by controlling the alignment of light incident on the liquid crystal panel 2. The light control member 61 can enhance the viewing angle characteristics by controlling the light emission direction after passing through the liquid crystal panel.
 図33は、液晶表示装置1に含まれるVAモードの液晶を含む画素70と、光制御部材61と、光配向部材37の光配向部43の配置関係を示す模式図である。実際には図1に示すように、光配向部材37上に画素50が配置され、さらにその上に光制御部材61が配置されるが、図示の都合上、図33では画素70と、光制御部材61と、光配向部材37とを並列して記載している。また、光配向部材37の右側には、第1偏光板3の透過軸P1および第2偏光板7の透過軸P2を図示した。 FIG. 33 is a schematic diagram showing an arrangement relationship of the pixel 70 including the VA mode liquid crystal included in the liquid crystal display device 1, the light control member 61, and the light alignment portion 43 of the light alignment member 37. Actually, as shown in FIG. 1, the pixel 50 is arranged on the light alignment member 37, and the light control member 61 is further arranged thereon. For convenience of illustration, in FIG. The member 61 and the photo-alignment member 37 are described in parallel. Further, on the right side of the photo-alignment member 37, the transmission axis P1 of the first polarizing plate 3 and the transmission axis P2 of the second polarizing plate 7 are illustrated.
 本実施形態における画素70は、一つの画素70を第1ドメイン70aと第2ドメイン70bの2つのドメインに分割したVA構造、いわゆる2ドメインVA構造を採用している。ここでは、長方形の画素を長手方向に平行な直線で2分割し、縦長のドメインとしている。画素70に含まれる液晶分子71は、電圧を印加しない状態においてほぼ垂直に配向している。図33では、液晶分子71を円錐状に記載している。円錐の頂点は、液晶分子71の背面側の端部を意味する。円錐の底面は、液晶分子71の視認側の端部を示している。本実施形態において、液晶分子71の長軸方向を液晶分子71のダイレクタの方向とする。液晶分子71のダイレクタの向きは、液晶分子71の背面側の端部から視認側の端部へ向かう向きと定義する。液晶分子71のダイレクタを符号Dの矢印で示す。液晶分子71のダイレクタの方向は、画素の長辺方向もしくはドメインの長辺方向と一致する。 The pixel 70 in this embodiment employs a VA structure in which one pixel 70 is divided into two domains of a first domain 70a and a second domain 70b, a so-called two-domain VA structure. Here, a rectangular pixel is divided into two by a straight line parallel to the longitudinal direction to form a vertically long domain. The liquid crystal molecules 71 included in the pixel 70 are aligned substantially vertically when no voltage is applied. In FIG. 33, the liquid crystal molecules 71 are illustrated in a conical shape. The vertex of the cone means the end of the liquid crystal molecule 71 on the back side. The bottom surface of the cone indicates the end of the liquid crystal molecule 71 on the viewing side. In the present embodiment, the major axis direction of the liquid crystal molecules 71 is set as the director direction of the liquid crystal molecules 71. The direction of the director of the liquid crystal molecules 71 is defined as the direction from the end on the back side of the liquid crystal molecules 71 toward the end on the viewing side. The director of the liquid crystal molecules 71 is indicated by an arrow D. The direction of the director of the liquid crystal molecules 71 coincides with the long side direction of the pixel or the long side direction of the domain.
 図33に示すように、第1ドメイン70aに含まれる液晶分子71と第2ドメイン70bに含まれる液晶分子71とは、方位角φ:90°-270°方向において、互いに180°異なる方向に傾いて配向している。具体的には、第1ドメイン70aに含まれる液晶分子71は、方位角φ:90°における極角θが0°より大きくなるよう傾いている。第2ドメイン70bに含まれる液晶分子71は、方位角φ:270°における極角θが0°より大きくなるよう傾いている。 As shown in FIG. 33, the liquid crystal molecules 71 included in the first domain 70a and the liquid crystal molecules 71 included in the second domain 70b are inclined in directions different from each other by 180 ° in the azimuth angle φ: 90 ° -270 ° direction. Oriented. Specifically, the liquid crystal molecules 71 included in the first domain 70a are inclined such that the polar angle θ at the azimuth angle φ: 90 ° is greater than 0 °. The liquid crystal molecules 71 included in the second domain 70b are inclined such that the polar angle θ at the azimuth angle φ: 270 ° is greater than 0 °.
 このように液晶分子51を配向することにより、第1ドメイン70aにおいて、電圧印加時の液晶層11の厚さ方向の中央部では、液晶分子71が方位角φ:90°でかつ極角が90°に近づくように倒れる。第2ドメイン70bにおいて、電圧印加時の液晶層11の厚さ方向の中央部では、液晶分子71が方位角φ:270°でかつ極角が90°に近づくように倒れる。つまり、電圧印加時の液晶層11の厚さ方向の中央部では、第1ドメイン70aに含まれる液晶分子71と第2ドメイン70bに含まれる液晶分子71とは、方位角φ:90°-270°方向において、互いに180°異なる方向に倒れる。なお、第1配向膜27および第2配向膜34近傍の液晶分子71は、第1配向膜27および第2配向膜34によって配向が規制されているため、電圧印加時においてもほぼ垂直のままである。 By aligning the liquid crystal molecules 51 in this way, in the first domain 70a, the liquid crystal molecules 71 have an azimuth angle φ: 90 ° and a polar angle of 90 ° at the center in the thickness direction of the liquid crystal layer 11 when a voltage is applied. Tilt down closer to °. In the second domain 70b, at the central portion in the thickness direction of the liquid crystal layer 11 when a voltage is applied, the liquid crystal molecules 71 are tilted so that the azimuth angle φ is 270 ° and the polar angle approaches 90 °. That is, at the central portion in the thickness direction of the liquid crystal layer 11 when a voltage is applied, the liquid crystal molecules 71 included in the first domain 70a and the liquid crystal molecules 71 included in the second domain 70b have an azimuth angle φ: 90 ° -270. In the ° direction, they fall down in directions different from each other by 180 °. Note that the liquid crystal molecules 71 in the vicinity of the first alignment film 27 and the second alignment film 34 remain substantially vertical even when a voltage is applied because the alignment is regulated by the first alignment film 27 and the second alignment film 34. is there.
 そのため、このVAモードの液晶パネルは、方位角φ:0°-180°方向における視野角特性と方位角φ:90°-270°方向における視野角特性とが異なる。これは、液晶分子が方位角φ:90°-270°方向のみに倒れるよう配向していることに起因する。
 方位角φ:0°-180°方向において観察者の視点の極角θを変化させた場合は、液晶分子の短軸方向に視点を動かすことになるため、液晶分子の複屈折差はそれほど大きくない。その一方、方位角φ:90°-270°方向において観察者の視点の極角θを変化させると、液晶分子の長軸方向に視点を動かすことになり、さらに、液晶分子が倒れる方向に沿って視点を動かすことになるため、液晶分子の複屈折差が大きい。
Therefore, this VA mode liquid crystal panel has different viewing angle characteristics in the direction of azimuth angle φ: 0 ° -180 ° and viewing angle characteristics in the direction of azimuth angle φ: 90 ° -270 °. This is because the liquid crystal molecules are aligned so as to fall only in the direction of the azimuth angle φ: 90 ° -270 °.
When the polar angle θ of the observer's viewpoint is changed in the azimuth angle φ: 0 ° -180 °, the viewpoint moves in the minor axis direction of the liquid crystal molecules, so the birefringence difference of the liquid crystal molecules is so large Absent. On the other hand, when the polar angle θ of the observer's viewpoint is changed in the direction of the azimuth angle φ: 90 ° -270 °, the viewpoint is moved in the major axis direction of the liquid crystal molecules, and further along the direction in which the liquid crystal molecules are tilted. The birefringence difference of the liquid crystal molecules is large.
 このことは、液晶分子を固定して光の入射方向を変えても同様の議論ができる。液晶分子に対して、方位角φ:90°-270°方向において光の入射角を変えて光を入射する。液晶分子の長軸方向は、複屈折率差が大きいため、液晶パネルから射出される光の輝度は変化しやすい。そのため、液晶パネルに入射する光の角度を制御することで、より液晶表示装置の視野角特性を制御することができる。 This can be discussed similarly by fixing the liquid crystal molecules and changing the light incident direction. Light is incident on the liquid crystal molecules while changing the incident angle of light in the direction of azimuth φ: 90 ° -270 °. Since the birefringence difference is large in the major axis direction of the liquid crystal molecules, the luminance of light emitted from the liquid crystal panel is likely to change. Therefore, the viewing angle characteristics of the liquid crystal display device can be further controlled by controlling the angle of light incident on the liquid crystal panel.
 第1実施形態で説明した様に、本発明の一態様による光配向部材37は、y軸方向の光配向特性を制御することができる。そのため、光配向部材37と液晶パネルを同時に用いることで液晶表示装置の視野角特性を高めることができる。 As described in the first embodiment, the photo-alignment member 37 according to one aspect of the present invention can control the photo-alignment characteristics in the y-axis direction. Therefore, the viewing angle characteristics of the liquid crystal display device can be enhanced by using the photo-alignment member 37 and the liquid crystal panel at the same time.
 これに対し、液晶分子が電圧印加時に倒れることを考慮すると、入射する光を制御するのみならず、液晶パネルを通過後に射出される光の向きを制御することが好ましい。
 本実施形態では、図33に示すように、電圧印加時に液晶分子71が倒れる方向、すなわち液晶分子のダイレクタの方向Dと光制御部材61の遮光層64の短軸方向とが、概ね一致するように光制御部材61が配置されている。液晶分子のダイレクタの方向Dと第1偏光板3および第2偏光板7の吸収軸P1,P2は45°の角度をなすため、光制御部材61の遮光層64の短軸方向と第1偏光板3および第2偏光板7の吸収軸P1,P2とは45°の角度をなす。
On the other hand, considering that the liquid crystal molecules are tilted when a voltage is applied, it is preferable to control not only the incident light but also the direction of the light emitted after passing through the liquid crystal panel.
In the present embodiment, as shown in FIG. 33, the direction in which the liquid crystal molecules 71 are tilted when a voltage is applied, that is, the direction D of the director of the liquid crystal molecules and the minor axis direction of the light shielding layer 64 of the light control member 61 are substantially matched. The light control member 61 is disposed on the surface. Since the direction D of the director of the liquid crystal molecules and the absorption axes P1 and P2 of the first polarizing plate 3 and the second polarizing plate 7 form an angle of 45 °, the short axis direction of the light shielding layer 64 of the light control member 61 and the first polarization The plate 3 and the absorption axes P1 and P2 of the second polarizing plate 7 form an angle of 45 °.
 言い換えると、基材62の法線方向から見て、遮光層64の平面形状である菱形は、第1偏光板3および第2偏光板7のうちの一方の偏光板の吸収軸P1,P2と45°未満の角度をなす直線部分を有している。本実施形態の場合、この直線部分は菱形の4辺に対応する。この場合、光の進行方向をxy平面上に射影して見ると、x軸方向から入射して反射面63cで反射した光Lxはy軸方向へ進行し、y軸方向から入射して反射面63cで反射した光Lyはx軸方向へ進行する割合が大きい。さらに、x軸方向から入射してy軸方向に進行する光Lxの量と、y軸方向から入射してx軸方向に進行する光Lyの量と、を比較すると、x軸方向から入射してy軸方向に進行する光Lxの量が、y軸方向から入射してx軸方向に進行する光Lyよりも多い。
 この理由を以下、図34A~図34Fを用いて説明する。
In other words, when viewed from the normal direction of the base material 62, the rhombus that is the planar shape of the light shielding layer 64 has absorption axes P <b> 1 and P <b> 2 of one of the first polarizing plate 3 and the second polarizing plate 7. It has a straight portion that makes an angle of less than 45 °. In the case of the present embodiment, this straight line portion corresponds to the four sides of the rhombus. In this case, when the traveling direction of the light is projected onto the xy plane, the light Lx incident from the x-axis direction and reflected by the reflecting surface 63c travels in the y-axis direction, enters from the y-axis direction, and is reflected by the reflecting surface. The light Ly reflected by 63c has a high rate of traveling in the x-axis direction. Further, when the amount of light Lx that enters from the x-axis direction and travels in the y-axis direction is compared with the amount of light Ly that enters from the y-axis direction and travels in the x-axis direction, it enters from the x-axis direction. The amount of light Lx traveling in the y-axis direction is larger than the light Ly entering from the y-axis direction and traveling in the x-axis direction.
The reason for this will be described below with reference to FIGS. 34A to 34F.
 図34A~図34Fは、各種の形状および配置を有する遮光層と光の反射の様子を示している。図34A~図34Fにおいては、光の進行方向を矢印で示しているが、この矢印は光の進行方向をxy平面上に射影して示したものであり、実際の光の進行方向はz軸方向の成分を有している。角度φ1~φ6は、xy平面上に射影したときの光の入射方向と射出方向とのなす角度である。 34A to 34F show light-shielding layers having various shapes and arrangements and how light is reflected. In FIGS. 34A to 34F, the traveling direction of light is indicated by an arrow. This arrow indicates the traveling direction of light on the xy plane, and the actual traveling direction of light is the z axis. It has a directional component. The angles φ1 to φ6 are angles formed by the light incident direction and the light emitting direction when projected onto the xy plane.
 例えばx軸方向から入射する光の方位角方向の進行方向を変えるためには、x軸に対して0°より大きく、90°より小さい角度をなす反射面があればよい。
 最初に、図34Aに示すように、正方形の一辺をx軸およびy軸に対して45°回転させた平面形状の遮光層140を考える。この場合、反射面141cは、x軸に対して45°の角度をなす。仮に反射面141cが遮光層140の形成面に対して垂直方向に図34Aの紙面の奥側に向かって配置されていたとする。この場合、x軸の負側から正側に向けて反射面141cに入射した光L11は、反射面141cで反射してxy平面上で90°方向を変え、y軸に平行な方向に進行する。すなわち、xy平面上に射影した光L1の入射方向と射出方向とのなす角度φ1は90°である。
For example, in order to change the traveling direction in the azimuth direction of light incident from the x-axis direction, a reflecting surface having an angle larger than 0 ° and smaller than 90 ° with respect to the x-axis may be used.
First, as shown in FIG. 34A, a planar light shielding layer 140 in which one side of a square is rotated by 45 ° with respect to the x axis and the y axis is considered. In this case, the reflecting surface 141c makes an angle of 45 ° with respect to the x-axis. Suppose that the reflection surface 141c is arranged in the direction perpendicular to the formation surface of the light shielding layer 140 toward the back side of the paper surface of FIG. 34A. In this case, the light L11 incident on the reflecting surface 141c from the negative side of the x axis toward the positive side is reflected by the reflecting surface 141c, changes its direction by 90 ° on the xy plane, and travels in a direction parallel to the y axis. . That is, the angle φ1 formed by the incident direction and the emission direction of the light L1 projected onto the xy plane is 90 °.
 ところが、本実施形態の光制御部材に即して考えると、反射面141cは、遮光層140に対して垂直方向に配置されているのではなく、図34Bに示すように、紙面の奥側に向かって遮光層140の外形形状を示す実線の正方形の内側に示した破線の正方形(中空部の外形)に向けて斜めに傾斜している。この場合、角度φ2は90°よりも小さくなり、x軸の負側から正側に向けて反射面141cに入射した光L12は、反射面141cで反射した後、y軸に平行な方向には進まず、y軸に平行な方向よりもx軸の負側に傾いた方向に進む。 However, considering the light control member of the present embodiment, the reflecting surface 141c is not arranged in the vertical direction with respect to the light shielding layer 140, but on the far side of the paper surface as shown in FIG. 34B. The light-shielding layer 140 is inclined obliquely toward the broken-line square (the outer shape of the hollow portion) shown inside the solid-line square indicating the outer shape of the light shielding layer 140. In this case, the angle φ2 is smaller than 90 °, and the light L12 incident on the reflecting surface 141c from the negative side of the x axis toward the positive side is reflected by the reflecting surface 141c and then in a direction parallel to the y axis. It does not advance, but proceeds in a direction inclined to the negative side of the x axis from the direction parallel to the y axis.
 これに対して、図34C、図34Dに示すように、本実施形態のように、菱形の遮光層40を長軸方向がx軸方向を向くように配置した場合を考える。この場合、図34Cに示すように、反射面63cが遮光層64の形成面に対して垂直方向に配置されていると仮定すると、角度φ3は90°よりも大きく、x軸の負側から正側に向けて反射面63cに入射した光L13は、反射面63cで反射した後、y軸に平行な方向には進まず、y軸に平行な方向よりもx軸の正側に傾いた方向に進む。ところが、図34Dに示すように、実際の反射面63cは、遮光層64の外形形状を示す実線の菱形の内側に示した破線の菱形(中空部の外形)に向けて斜めに傾斜している。これにより、角度φ4を90°にすることができ、x軸の負側から正側に向けて反射面141cに入射した光L14は、反射面141cで反射した後、y軸に平行な方向に進む。 On the other hand, as shown in FIG. 34C and FIG. 34D, consider the case where the diamond-shaped light shielding layer 40 is arranged so that the major axis direction is in the x-axis direction as in this embodiment. In this case, as shown in FIG. 34C, assuming that the reflection surface 63c is arranged in a direction perpendicular to the formation surface of the light shielding layer 64, the angle φ3 is larger than 90 ° and is positive from the negative side of the x axis. The light L13 incident on the reflecting surface 63c toward the side does not travel in the direction parallel to the y axis after being reflected by the reflecting surface 63c, and is tilted to the positive side of the x axis from the direction parallel to the y axis Proceed to However, as shown in FIG. 34D, the actual reflecting surface 63c is inclined obliquely toward the broken rhombus (the outer shape of the hollow portion) shown inside the solid rhombus indicating the outer shape of the light shielding layer 64. . As a result, the angle φ4 can be set to 90 °, and the light L14 incident on the reflecting surface 141c from the negative side of the x axis toward the positive side is reflected by the reflecting surface 141c and then in a direction parallel to the y axis. move on.
 比較例として、図34E、図34Fに示すように、本実施形態と異なり、菱形の遮光層64を長軸方向がy軸方向を向くように配置した場合を考える。この場合、図34Eに示すように、反射面63cが遮光層64の形成面に対して垂直方向に配置されていると仮定すると、角度φ5は90°よりも小さく、x軸の負側から正側に向けて反射面63cに入射した光L5は、反射面63cで反射した後、y軸に平行な方向には進まず、y軸に平行な方向よりもx軸の負側に傾いた方向に進む。ところが、図34Fに示すように、実際の反射面63cは斜めに傾斜しているため、角度φ6は角度φ5よりもさらに小さくなり、x軸の負側から正側に向けて反射面141cに入射した光L16は、反射面141cで反射した後、y軸に平行な方向よりもx軸の負側に傾いた方向に進む。 As a comparative example, as shown in FIGS. 34E and 34F, let us consider a case where a diamond-shaped light shielding layer 64 is arranged so that the major axis direction is in the y-axis direction, unlike the present embodiment. In this case, as shown in FIG. 34E, assuming that the reflecting surface 63c is arranged in a direction perpendicular to the formation surface of the light shielding layer 64, the angle φ5 is smaller than 90 ° and is positive from the negative side of the x-axis. The light L5 incident on the reflecting surface 63c toward the side is not reflected in the direction parallel to the y axis after being reflected by the reflecting surface 63c, and is inclined to the negative side of the x axis from the direction parallel to the y axis. Proceed to However, as shown in FIG. 34F, since the actual reflecting surface 63c is inclined, the angle φ6 is further smaller than the angle φ5 and enters the reflecting surface 141c from the negative side of the x axis toward the positive side. The reflected light L16 is reflected by the reflecting surface 141c, and then travels in a direction inclined to the negative side of the x axis from the direction parallel to the y axis.
 以上述べたように、遮光層140の平面形状が正方形の場合、平面形状が菱形の遮光層64を長軸方向がx軸方向を向くように配置した場合、平面形状が菱形の遮光層64を長軸方向がy軸方向を向くように配置した場合、の3つのケースを比較したとき、x軸に平行な方向から反射面に入射してy軸に平行な方向に進む光の量は、平面形状が菱形の遮光層64を長軸方向がx軸方向を向くように配置した場合が最も多くなる。
 このことから、x軸方向から入射してy軸方向に進行する光の量と、y軸方向から入射してx軸方向に進行する光の量と、を比較すると、x軸方向から入射してy軸方向に進行する光の量が、y軸方向から入射してx軸方向に進行する光よりも多いことになる。
As described above, when the planar shape of the light shielding layer 140 is a square, when the light shielding layer 64 having a rhombic planar shape is arranged so that the major axis direction is in the x-axis direction, the light shielding layer 64 having a rhombus planar shape is formed. When the three cases are compared when the major axis direction is oriented in the y-axis direction, the amount of light incident on the reflecting surface from the direction parallel to the x-axis and traveling in the direction parallel to the y-axis is The number of cases in which the light shielding layer 64 having a rhombic planar shape is arranged so that the major axis direction faces the x-axis direction is the largest.
Therefore, when comparing the amount of light incident from the x-axis direction and traveling in the y-axis direction with the amount of light incident from the y-axis direction and traveling in the x-axis direction, the light is incident from the x-axis direction. Thus, the amount of light traveling in the y-axis direction is larger than the light traveling from the y-axis direction and traveling in the x-axis direction.
 言い換えると、本実施形態の場合、方位角φ:0°-180°方向から光制御部材9に入射した光は、菱形の遮光層64の平面形状に対応して配置される光拡散部64の反射面63cによって反射され、方位角φ:90°-270°方向へ射出される。その際、光拡散部63の傾斜角θcが90°よりも小さいことから、光の進行方向の極角θは、光制御部材61に入射する前よりも大きくなる方向へ変わる。光制御部材61を用いなかったとすると、方位角φ:90°-270°方向とφ:0°-180°方向は視野角特性の差が大きい。この問題を改善するためには、光制御部材61を用いて、方位角φ:0°-180°方向に進む光を視野角特性の劣る方位角φ:90°-270°方向へ意図的に混合すればよい。これにより、方位ごとの視野角特性の差が緩和される。これにより、輝度変化のばらつきが平均化され、方位角φ:90°-270°方向における極角θに依存した視野角特性の違いを改善することができる。 In other words, in the case of the present embodiment, light incident on the light control member 9 from the direction of the azimuth angle φ: 0 ° -180 ° is emitted from the light diffusing portion 64 arranged corresponding to the planar shape of the diamond-shaped light shielding layer 64. The light is reflected by the reflecting surface 63c and emitted in the direction of the azimuth φ: 90 ° -270 °. At this time, since the inclination angle θc of the light diffusing portion 63 is smaller than 90 °, the polar angle θ in the light traveling direction changes in a direction larger than that before entering the light control member 61. If the light control member 61 is not used, there is a large difference in viewing angle characteristics between the azimuth angle φ: 90 ° -270 ° direction and the φ: 0 ° -180 ° direction. In order to improve this problem, the light control member 61 is used to intentionally move the light traveling in the azimuth angle φ: 0 ° -180 ° direction to the azimuth angle φ: 90 ° -270 ° direction having a poor viewing angle characteristic. What is necessary is just to mix. Thereby, the difference of the viewing angle characteristic for every direction is relieved. Thereby, the variation in luminance change is averaged, and the difference in viewing angle characteristics depending on the polar angle θ in the direction of the azimuth angle φ: 90 ° -270 ° can be improved.
 このように、2ドメインVA方式を採用した液晶表示装置に、本実施形態の光制御部材61と光配向部材37を組み合わせることにより、液晶分子71のダイレクタの方向である方位角φ:90°-270°方向における視野角特性が、液晶パネルに入射する側からも射出する側からも改善される。従来の2ドメインVA方式を採用した液晶表示装置においては、液晶分子が倒れる方向と垂直な方位角φ:0°-180°方向の視野角特性は良好なものであったが、本実施形態の光制御部材61及び光配向部材37を組み合わせることにより、さらに方位角φ:90°-270°方向における視野角特性が改善され、方位角による視野角特性の差異が低減する、という効果が得られる。特に高精細ディスプレイにおいては、セル内の構造を複雑にすることなく、高い透過率を維持したまま視野角特性を改善することができる。 As described above, by combining the light control member 61 and the light alignment member 37 of the present embodiment with the liquid crystal display device adopting the two-domain VA method, the azimuth angle φ which is the direction of the director of the liquid crystal molecules 71: 90 ° − The viewing angle characteristics in the 270 ° direction are improved from both the incident side and the outgoing side of the liquid crystal panel. In the conventional liquid crystal display device adopting the two-domain VA method, the viewing angle characteristics in the direction of the azimuth angle φ: 0 ° -180 ° perpendicular to the direction in which the liquid crystal molecules are tilted are good. By combining the light control member 61 and the light orientation member 37, the viewing angle characteristics in the azimuth angle φ: 90 ° -270 ° direction are further improved, and the difference in viewing angle characteristics due to the azimuth is reduced. . Particularly in a high-definition display, the viewing angle characteristics can be improved while maintaining a high transmittance without complicating the structure in the cell.
 また第3実施形態では2ドメインVA方式の液晶パネルについて説明したが、液晶パネルは2ドメインVA方式に限られない。この他にもTN液晶等の方位によりガンマ特性が異なる液晶パネルに好適に用いることができる。 In the third embodiment, the two-domain VA type liquid crystal panel has been described. However, the liquid crystal panel is not limited to the two-domain VA type. In addition, it can be suitably used for a liquid crystal panel having different gamma characteristics depending on the orientation of a TN liquid crystal or the like.
 なお、光制御部材61は、光配向部材37の反射層44を遮光層64に変更するだけで、光配向部材37と同様の方法で作製することができる。 The light control member 61 can be manufactured in the same manner as the light alignment member 37 only by changing the reflection layer 44 of the light alignment member 37 to the light shielding layer 64.
 [第4実施形態]
 上述の第1実施形態~第3実施形態の液晶表示装置は、各種電子機器に適用することができる。
 以下、上述の第1実施形態~第3実施形態の液晶表示装置を備えた電子機器について、図35~図37を用いて説明する。
 上述の第1実施形態~第3実施形態の液晶表示装置は、例えば、図35に示す薄型テレビ250に適用できる。
 図35に示す薄型テレビ250は、表示部251、スピーカ252、キャビネット253およびスタンド254等を備えている。
 表示部251として、上述の第1実施形態~第3実施形態の液晶表示装置を好適に適用できる。上述の第1実施形態~第3実施形態の液晶表示装置を薄型テレビ250の表示部251に適用することにより、視野角依存性の小さい映像を表示することができる。
[Fourth Embodiment]
The liquid crystal display devices of the first to third embodiments described above can be applied to various electronic devices.
Hereinafter, an electronic apparatus provided with the liquid crystal display device of the first to third embodiments will be described with reference to FIGS. 35 to 37. FIG.
The liquid crystal display devices of the first to third embodiments described above can be applied to, for example, a thin television 250 shown in FIG.
A thin television 250 illustrated in FIG. 35 includes a display portion 251, a speaker 252, a cabinet 253, a stand 254, and the like.
As the display unit 251, the liquid crystal display devices of the first to third embodiments described above can be suitably applied. By applying the liquid crystal display devices of the first to third embodiments described above to the display unit 251 of the flat-screen television 250, an image with a small viewing angle dependency can be displayed.
 上述の第1実施形態~第3実施形態の液晶表示装置は、例えば、図36に示すスマートフォン240に適用できる。
 図36に示すスマートフォン240は、音声入力部241、音声出力部242、操作スイッチ244、表示部245、タッチパネル243および筐体246等を備えている。
 表示部245として、上述の第1実施形態~第3実施形態の液晶表示装置を好適に適用できる。上述の第1実施形態~第3実施形態の液晶表示装置をスマートフォン240の表示部245に適用することによって、視野角依存性の小さい映像を表示することができる。
The liquid crystal display devices of the first to third embodiments described above can be applied to, for example, the smartphone 240 shown in FIG.
A smartphone 240 illustrated in FIG. 36 includes a voice input unit 241, a voice output unit 242, an operation switch 244, a display unit 245, a touch panel 243, a housing 246, and the like.
As the display unit 245, the liquid crystal display devices of the first to third embodiments described above can be suitably applied. By applying the liquid crystal display devices of the first to third embodiments described above to the display unit 245 of the smartphone 240, an image with a small viewing angle dependency can be displayed.
 上述の第1実施形態~第3実施形態の液晶表示装置は、例えば、図37に示すノートパソコン270に適用できる。
 図37に示すノートパソコン270は、表示部271、キーボード272、タッチパッド273、メインスイッチ274、カメラ275、記録媒体スロット276および筐体277等を備えている。
 表示部271として、上述の第1実施形態~第3実施形態の液晶表示装置を好適に適用できる。上述の第1実施形態~第3実施形態の液晶表示装置をノートパソコン270の表示部271に適用することによって、視野角依存性の小さい映像を表示することができる。
The liquid crystal display devices of the first to third embodiments described above can be applied to, for example, a notebook personal computer 270 shown in FIG.
A notebook computer 270 illustrated in FIG. 37 includes a display portion 271, a keyboard 272, a touch pad 273, a main switch 274, a camera 275, a recording medium slot 276, a housing 277, and the like.
As the display unit 271, the liquid crystal display devices of the first to third embodiments described above can be suitably applied. By applying the liquid crystal display devices of the first to third embodiments described above to the display unit 271 of the notebook computer 270, it is possible to display an image with a small viewing angle dependency.
 なお、本発明のいくつかの態様における技術範囲は上記実施形態に限定されるものではなく、本発明の態様における趣旨を逸脱しない範囲において種々の変更を加えることが可能である。 It should be noted that the technical scope of some aspects of the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the aspect of the present invention.
 また、上記実施形態における光制御部材の基材の視認側に、反射防止構造、偏光フィルター層、帯電防止層、防眩処理層、防汚処理層のうちの少なくとも一つが設けられた構成であってもよい。この構成によれば、基材の視認側に設ける層の種類に応じて、外光反射を低減する機能、塵埃や汚れの付着を防止する機能、傷を防止する機能等を付加することができ、視野角特性の経時劣化を防ぐことができる。 The light control member in the above embodiment has a configuration in which at least one of an antireflection structure, a polarizing filter layer, an antistatic layer, an antiglare treatment layer, and an antifouling treatment layer is provided on the viewing side of the base material. May be. According to this configuration, it is possible to add a function to reduce external light reflection, a function to prevent the adhesion of dust and dirt, a function to prevent scratches, and the like according to the type of layer provided on the viewing side of the substrate. Further, it is possible to prevent deterioration of viewing angle characteristics with time.
 特に、反射防止構造の一例として、光制御部材の基材の視認側にアンチグレア層が設けられた構成であってもよい。アンチグレア層としては、例えば、光の干渉を用いて外光を打ち消す誘電体多層膜等が用いられる。 Particularly, as an example of the antireflection structure, a configuration in which an antiglare layer is provided on the viewing side of the base material of the light control member may be used. As the antiglare layer, for example, a dielectric multilayer film that cancels external light using light interference is used.
 反射防止構造の他の例として、光制御部材の基材の視認側に、いわゆるモスアイ構造が設けられた構成であってもよい。本発明のいくつかの態様において、モスアイ構造は、以下の構造や形状を含むものとする。モスアイ構造は、周期が可視光の波長以下の凹凸形状であり、いわゆる“蛾の目(Moth-eye)”構成の原理を利用した形状や構造である。凹凸の周期は、可視光(λ=380nm~780nm)の波長以下に制御されている。凹凸パターンを構成する凸部の2次元的な大きさは、10nm以上、500nm未満である。基材に入射する光に対する屈折率を凹凸の深さ方向に沿って入射媒体(空気)の屈折率から基材の屈折率まで連続的に変化させることによって反射を抑制する。 As another example of the antireflection structure, a so-called moth-eye structure may be provided on the viewing side of the base material of the light control member. In some embodiments of the present invention, the moth-eye structure includes the following structures and shapes. The moth-eye structure is a concavo-convex shape with a period equal to or less than the wavelength of visible light, and is a shape or structure using the principle of a so-called “Moth-eye” configuration. The period of the unevenness is controlled to be equal to or less than the wavelength of visible light (λ = 380 nm to 780 nm). The two-dimensional size of the convex portions constituting the concavo-convex pattern is 10 nm or more and less than 500 nm. Reflection is suppressed by continuously changing the refractive index for light incident on the base material from the refractive index of the incident medium (air) to the refractive index of the base material along the depth direction of the unevenness.
 また、液晶表示装置内のドメインについては、2つのドメインの面積が異なっていてもよいし、液晶分子のダイレクタの方向は完全に180°異なっていなくてもよい。また、本発明のいくつかの態様は、画素内に少なくとも2つのドメインがある場合に適用されるものであり、3つ以上のドメインがあってもよい。その場合、視野角特性を改善したい方位角方向に合わせて、光制御部材の遮光層の短軸方向を配置すればよい。 In addition, regarding the domains in the liquid crystal display device, the areas of the two domains may be different, and the director direction of the liquid crystal molecules may not be completely different by 180 °. Further, some aspects of the present invention are applied when there are at least two domains in a pixel, and there may be more than two domains. In that case, the minor axis direction of the light shielding layer of the light control member may be arranged in accordance with the azimuth direction in which the viewing angle characteristics are desired to be improved.
 また、上記実施形態においては、図38Aに示すように、液晶パネル2の1個の画素PXが長方形状の赤(R)、緑(G)、青(B)の3個の副画素で構成され、これら3個の副画素が画面の垂直方向(矢印V方向)に長辺方向を向けて水平方向(矢印H方向)に配列されている例を示した。副画素の配置はこの例に限ることなく、例えば図38Bに示すように、R,G,Bの3個の副画素が画面の水平方向(矢印H方向)に長辺方向を向けて垂直方向(矢印V方向)に配列されていてもよい。 Further, in the above embodiment, as shown in FIG. 38A, one pixel PX of the liquid crystal panel 2 is configured by three rectangular red (R), green (G), and blue (B) subpixels. In the example, these three subpixels are arranged in the horizontal direction (arrow H direction) with the long side direction directed in the vertical direction (arrow V direction) of the screen. The arrangement of the sub-pixels is not limited to this example. For example, as shown in FIG. 38B, the three sub-pixels R, G, B are oriented in the vertical direction with the long side direction in the horizontal direction (arrow H direction) of the screen. They may be arranged in the direction of arrow V.
 また、図38Cに示すように、液晶パネル2の1個の画素が長方形状の赤(R)、緑(G)、青(B)、黄(Y)の4個の副画素で構成され、これら4個の副画素が画面の垂直方向(矢印V方向)に長辺方向を向けて水平方向(矢印H方向)に配列されていてもよい。もしくは、図38Dに示すように、R,G,B,Yの4個の副画素が画面の水平方向(矢印H方向)に長辺方向を向けて垂直方向(矢印V方向)に配列されていてもよい。もしくは、図38Eに示すように、液晶パネルの1個の画素が正方形状のR,G,B,Yの4個の副画素で構成され、画面の水平方向と垂直方向とに2行2列に配置されていてもよい。 Further, as shown in FIG. 38C, one pixel of the liquid crystal panel 2 is composed of four rectangular sub-pixels of red (R), green (G), blue (B), and yellow (Y), These four subpixels may be arranged in the horizontal direction (arrow H direction) with the long side direction directed in the vertical direction (arrow V direction) of the screen. Alternatively, as shown in FIG. 38D, four sub-pixels R, G, B, and Y are arranged in the vertical direction (arrow V direction) with the long side facing in the horizontal direction (arrow H direction) of the screen. May be. Or, as shown in FIG. 38E, one pixel of the liquid crystal panel is composed of four square subpixels R, G, B, and Y, and two rows and two columns in the horizontal and vertical directions of the screen. May be arranged.
 その他、液晶表示装置および光制御部材の各構成部材の材料、数、配置等に関する具体的な構成は上記実施形態に限ることなく、適宜変更が可能である。例えば上記実施形態では、液晶パネルの外側に偏光板や位相差板を配置する例を示したが、この構成に代えて、液晶パネルを構成する一対の基板の内側に偏光層や位相差層を形成しても良い。 In addition, the specific configuration regarding the material, the number, the arrangement, and the like of each component of the liquid crystal display device and the light control member is not limited to the above embodiment, and can be changed as appropriate. For example, in the above-described embodiment, an example in which a polarizing plate and a retardation plate are arranged outside the liquid crystal panel has been described. Instead of this configuration, a polarizing layer and a retardation layer are provided inside a pair of substrates constituting the liquid crystal panel. It may be formed.
 本発明のいくつかの態様は、液晶表示装置、照明装置および光配向部材に利用可能である。 Some embodiments of the present invention can be used for a liquid crystal display device, a lighting device, and a light alignment member.
 1,101…液晶表示装置、2…液晶パネル、3…第1偏光板、7…第2偏光板、8…バックライトユニット(照明装置)、36,57…バックライト(光源装置)、37,51…光配向部材、42,42A,42B,42C,42D,52…基材、43,53…光配向部、43a,53a…光射出端面、43b,53b…光入射端面、43c…反射面(傾斜面)、44,44A,44B,44C,44d,54…反射層(反射部)、45…中空部(低屈折率部)、38…プリズムシート(構造体)、39,56…光源、40…導光体、41…反射板、53c…第1傾斜面、53d…第2傾斜面、61…光制御部材,62…基材(第2の基材)、63…光拡散部、64…遮光層、65…中空部(第2の低屈折率部) DESCRIPTION OF SYMBOLS 1,101 ... Liquid crystal display device, 2 ... Liquid crystal panel, 3 ... 1st polarizing plate, 7 ... 2nd polarizing plate, 8 ... Backlight unit (illuminating device), 36,57 ... Backlight (light source device), 37, 51 ... light orientation member, 42, 42A, 42B, 42C, 42D, 52 ... base material, 43, 53 ... light orientation part, 43a, 53a ... light emission end face, 43b, 53b ... light incidence end face, 43c ... reflection face ( Inclined surface), 44, 44A, 44B, 44C, 44d, 54 ... reflective layer (reflective part), 45 ... hollow part (low refractive index part), 38 ... prism sheet (structure), 39, 56 ... light source, 40 DESCRIPTION OF SYMBOLS ... Light guide, 41 ... Reflector, 53c ... 1st inclined surface, 53d ... 2nd inclined surface, 61 ... Light control member, 62 ... Base material (2nd base material), 63 ... Light diffusion part, 64 ... Light-shielding layer, 65 ... hollow part (second low refractive index part)

Claims (14)

  1.  光透過性を有する基材と、
     前記基材の第1の面に設けられた複数の光配向部と、
     前記第1の面のうち前記基材の法線方向から見て前記光配向部と重ならない位置に少なくとも設けられた反射部と、
     前記基材の法線方向から見て前記反射部と一部重なる位置に設けられ、前記光配向部の屈折率よりも低い屈折率を有する低屈折率部と、を備え、
     前記光配向部は、前記基材側に位置する光入射端面と、前記基材側と反対側に位置し光入射端面より大きな光射出端面と、前記光入射端面と前記光射出端面との間に位置する傾斜面と、を有する光配向部材。
    A substrate having optical transparency;
    A plurality of photo-alignment portions provided on the first surface of the substrate;
    A reflection portion provided at least in a position not overlapping with the photo-alignment portion when viewed from the normal direction of the base material in the first surface;
    A low refractive index portion that is provided at a position that partially overlaps with the reflective portion as viewed from the normal direction of the substrate, and that has a lower refractive index than the refractive index of the photo-alignment portion,
    The light orientation portion includes a light incident end face located on the substrate side, a light exit end face located on the opposite side of the substrate side and larger than the light incident end face, and between the light incident end face and the light exit end face. An optical orientation member having an inclined surface located on the surface.
  2.  前記光配向部及び前記反射部の平面形状が、前記第1の面の第1の方向に延在するライン形状である請求項1に記載の光配向部材。 2. The photo-alignment member according to claim 1, wherein planar shapes of the photo-alignment portion and the reflection portion are line shapes extending in a first direction of the first surface.
  3.  前記反射部の前記第1の方向に垂直な第2の方向の幅Lと、前記光配向部の高さHが、0.2<L/H<2.0の関係を満たす請求項2に記載の光配向部材。 The width L in a second direction perpendicular to the first direction of the reflective portion and the height H of the photo-alignment portion satisfy a relationship of 0.2 <L / H <2.0. The photo-alignment member described.
  4.  前記第1の方向に垂直な第2の方向における前記反射部の幅Lと、前記光配向部の光入射端面の幅sが、s>3/7Lの関係を満たす請求項2又は3のいずれかに記載の光配向部材。 The width L of the reflection part in the second direction perpendicular to the first direction and the width s of the light incident end face of the light orientation part satisfy a relationship of s> 3 / 7L. A photo-alignment member according to any one of the above.
  5.  前記光射出端面と、前記傾斜面のなす角が、60°以上90°未満である請求項1~4のいずれか一項に記載の光配向部材。 The light alignment member according to any one of claims 1 to 4, wherein an angle formed by the light emitting end face and the inclined surface is 60 ° or more and less than 90 °.
  6.  前記基材に対する前記反射部の占有面積の割合が70%以下である請求項1~5のいずれか一項に記載の光配向部材。 The photo-alignment member according to any one of claims 1 to 5, wherein a ratio of an area occupied by the reflection portion to the base material is 70% or less.
  7.  前記第1の面に垂直な切断面における前記光配向部を断面視した際の断面形状において、
     前記光射出端面と第1傾斜面のなす角と、前記光射出端面と第2傾斜面のなす角が異なる請求項1~6のいずれか一項に記載の光配向部材。
    In a cross-sectional shape when the light orientation portion in a cross section perpendicular to the first surface is viewed in cross section,
    The photo-alignment member according to any one of claims 1 to 6, wherein an angle formed between the light emitting end surface and the first inclined surface is different from an angle formed between the light emitting end surface and the second inclined surface.
  8.  請求項1~7のいずれか一項に記載の光配向部材と、
     前記光配向部材の光入射端面側に配置された光源装置と、
     前記光配向部材と前記光源装置の間に配置され、前記光源装置から射出された光を基材の法線方向に近づく方向に配向させる構造体とを備える照明装置。
    The photo-alignment member according to any one of claims 1 to 7,
    A light source device disposed on the light incident end face side of the light orientation member;
    A lighting device comprising: a structure that is disposed between the light orientation member and the light source device and orients light emitted from the light source device in a direction approaching a normal direction of a substrate.
  9.  前記光源装置が、導光体と、前記導光体の端面に設けられた光源と、前記導光体の前記構造体と反対側の面に配置された反射板とを備える請求項8に記載の照明装置。 The said light source device is provided with the light guide, the light source provided in the end surface of the said light guide, and the reflecting plate arrange | positioned at the surface on the opposite side to the said structure of the said light guide. Lighting equipment.
  10.  前記構造体が、前記端面に垂直かつ前記導光体の光射出面に垂直な平面で切断した断面が三角形状であって前記端面と平行な方向に延びる複数の凸部である請求項9に記載の照明装置。 10. The structure according to claim 9, wherein the structure has a plurality of convex portions extending in a direction parallel to the end surface, the cross section being cut in a plane perpendicular to the end surface and perpendicular to the light emitting surface of the light guide. The lighting device described.
  11.  前記光配向部材の前記光配向部が、前記基材の一方向に延在し、その方向が前記凸部が延在する方向と一致する請求項10に記載の照明装置。 The lighting device according to claim 10, wherein the light orientation portion of the light orientation member extends in one direction of the base material, and the direction coincides with a direction in which the convex portion extends.
  12.  請求項8~11のいずれか一項に記載の照明装置と、前記照明装置の光配向部材側に配置された液晶パネルとを備える液晶表示装置。 A liquid crystal display device comprising: the illuminating device according to any one of claims 8 to 11; and a liquid crystal panel disposed on a light alignment member side of the illuminating device.
  13.  前記液晶パネルの光射出側に光制御部材をさらに備え、
     前記光制御部材は、光透過性を有する第2の基材と、前記第2の基材の第1の面に設けられた光拡散部と、前記第2の基材の第1の面のうち前記第2の基材の法線方向から見て前記光拡散部と重ならない位置に設けられた遮光部と、前記第2の基材の法線方向から見て前記遮光部と一部重なる位置に設けられ、前記光拡散部の屈折率よりも低い屈折率を有する第2の低屈折率部と、を備え、
     前記光拡散部は、前記第2の基材側に位置する第2の光射出端面と、前記第2の基材側と反対側に位置する第2の光入射端面と、前記第2の光射出端面と前記第2の光入射端面との間に位置する反射面と、を有する請求項12に記載の液晶表示装置。
    A light control member is further provided on the light emission side of the liquid crystal panel,
    The light control member includes: a second base material having light permeability; a light diffusion portion provided on a first surface of the second base material; and a first surface of the second base material. Among them, a light shielding portion provided at a position not overlapping with the light diffusion portion when viewed from the normal direction of the second base material, and a part of the light shielding portion when viewed from the normal direction of the second base material A second low refractive index portion provided at a position and having a refractive index lower than the refractive index of the light diffusing portion,
    The light diffusing section includes a second light emitting end face located on the second base material side, a second light incident end face located on the opposite side to the second base material side, and the second light. The liquid crystal display device according to claim 12, further comprising a reflection surface positioned between an emission end surface and the second light incident end surface.
  14.  請求項1~7のいずれか一項に記載の光配向部材の製造方法であって、
     基材の第1の面に反射部を形成する工程と、
     前記基材の第1面及び前記反射部上に、光硬化性樹脂層を形成する工程と、
     前記基材の反射部が形成されていない面から拡散光を入射し、前記光硬化性樹脂層の一部を硬化する工程と、
     前記光硬化性樹脂層の内、未硬化の部分を除去し、前記光配向部を形成する工程とを有する光配向部材の製造方法。
    A method for producing a photo-alignment member according to any one of claims 1 to 7,
    Forming a reflecting portion on the first surface of the substrate;
    Forming a photocurable resin layer on the first surface of the substrate and the reflective portion;
    A step of entering diffused light from a surface of the base material on which the reflective portion is not formed and curing a part of the photocurable resin layer;
    A method for producing a photoalignment member, comprising: removing an uncured portion of the photocurable resin layer to form the photoalignment portion.
PCT/JP2016/059851 2015-04-01 2016-03-28 Photo-alignment member, lighting device, liquid crystal display device and method for producing photo-alignment member WO2016158834A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-075363 2015-04-01
JP2015075363 2015-04-01

Publications (1)

Publication Number Publication Date
WO2016158834A1 true WO2016158834A1 (en) 2016-10-06

Family

ID=57007158

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/059851 WO2016158834A1 (en) 2015-04-01 2016-03-28 Photo-alignment member, lighting device, liquid crystal display device and method for producing photo-alignment member

Country Status (1)

Country Link
WO (1) WO2016158834A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019049505A1 (en) * 2017-09-05 2019-03-14 ソニー株式会社 Luminescence device and display device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005050654A (en) * 2003-07-28 2005-02-24 Clariant Internatl Ltd Surface light source
JP2006107993A (en) * 2004-10-07 2006-04-20 Dainippon Printing Co Ltd Condensing sheet, surface light source device, and manufacturing method of condensing sheet
WO2012060266A1 (en) * 2010-11-02 2012-05-10 シャープ株式会社 Light-control element, display device, and illumination device
WO2013099839A1 (en) * 2011-12-27 2013-07-04 シャープ株式会社 Liquid crystal display device, light control film, and display device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005050654A (en) * 2003-07-28 2005-02-24 Clariant Internatl Ltd Surface light source
JP2006107993A (en) * 2004-10-07 2006-04-20 Dainippon Printing Co Ltd Condensing sheet, surface light source device, and manufacturing method of condensing sheet
WO2012060266A1 (en) * 2010-11-02 2012-05-10 シャープ株式会社 Light-control element, display device, and illumination device
WO2013099839A1 (en) * 2011-12-27 2013-07-04 シャープ株式会社 Liquid crystal display device, light control film, and display device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019049505A1 (en) * 2017-09-05 2019-03-14 ソニー株式会社 Luminescence device and display device
JPWO2019049505A1 (en) * 2017-09-05 2020-10-15 ソニー株式会社 Light emitting device and display device
JP7140126B2 (en) 2017-09-05 2022-09-21 ソニーグループ株式会社 Light emitting device and display device

Similar Documents

Publication Publication Date Title
US8926157B2 (en) Light diffusing member and method of manufacturing the same, and display device
US10162214B2 (en) Liquid crystal display device, optical control member, and base material for manufacturing optical control member
JP5943265B2 (en) Liquid crystal display
JP5916245B2 (en) Liquid crystal display device, light control film, display device
WO2012118137A1 (en) Light diffusion member, method of manufacturing same, and display device
WO2012081410A1 (en) Light diffusing member, method for manufacturing same, and display device
WO2012053501A1 (en) Light-diffusion member, manufacturing method thereof, and display device
JP5908089B2 (en) Light diffusion touch panel, manufacturing method thereof, and display device
JP5863215B2 (en) Light diffusing member, manufacturing method thereof, and display device
WO2013151034A1 (en) Liquid crystal display device
JP6103377B2 (en) Display device and manufacturing method thereof
WO2014119532A1 (en) Light diffusion member, light diffusion member with polarizing plate, and method for fabrication of light diffusion member with polarizing plate
JP2015014692A (en) Light diffusion member and display divice
WO2014045988A1 (en) Liquid crystal display device
JP2017097053A (en) Liquid crystal display device
WO2016084676A1 (en) Liquid crystal display device and light control member
WO2016158834A1 (en) Photo-alignment member, lighting device, liquid crystal display device and method for producing photo-alignment member
WO2014092017A1 (en) Light diffusion member and display device
WO2017022800A1 (en) Photo-alignment control part, lighting device and liquid crystal display device
US9835904B2 (en) Liquid crystal display device
US9829737B2 (en) Liquid crystal display device having low viewing angle dependency
WO2016088596A1 (en) Liquid crystal display device
JP2017097119A (en) Wide viewing angle display system
JP2017097123A (en) Liquid crystal display device and light-controlling member
JP2014032324A (en) Light diffusion member, light diffusion member manufacturing method, and display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16772715

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16772715

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP