WO2016084174A1 - Refrigeration cycle device - Google Patents

Refrigeration cycle device Download PDF

Info

Publication number
WO2016084174A1
WO2016084174A1 PCT/JP2014/081282 JP2014081282W WO2016084174A1 WO 2016084174 A1 WO2016084174 A1 WO 2016084174A1 JP 2014081282 W JP2014081282 W JP 2014081282W WO 2016084174 A1 WO2016084174 A1 WO 2016084174A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
refrigerant
condenser
pipe
compressor
Prior art date
Application number
PCT/JP2014/081282
Other languages
French (fr)
Japanese (ja)
Inventor
篤史 岐部
池田 隆
悠介 有井
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2016561147A priority Critical patent/JP6316452B2/en
Priority to PCT/JP2014/081282 priority patent/WO2016084174A1/en
Priority to CN201480082499.3A priority patent/CN106796056B/en
Publication of WO2016084174A1 publication Critical patent/WO2016084174A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/89Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle

Definitions

  • the present invention relates to a refrigeration cycle apparatus.
  • a refrigeration cycle apparatus used for an air conditioner or the like includes a compressor, a condenser (heat radiator), an expansion valve, and an evaporator, and is connected by a pipe for circulating a refrigerant.
  • the high-temperature and high-pressure refrigerant compressed by the compressor is liquefied by heat exchange with the outside air in the condenser, and the liquefied refrigerant becomes a low-temperature fluid mixed with gas and liquid through an expansion valve, and is heat-exchanged and vaporized in the evaporator.
  • the vaporized refrigerant enters the compressor again.
  • the refrigeration cycle apparatus circulates the refrigerant in this way.
  • the conventional refrigeration cycle apparatus further includes a supercooling device that supercools the refrigerant flowing out of the condenser, and a part of the liquid refrigerant flowing out of the condenser is vaporized due to a pressure drop of the liquid refrigerant or heat intrusion.
  • a supercooling device that supercools the refrigerant flowing out of the condenser, and a part of the liquid refrigerant flowing out of the condenser is vaporized due to a pressure drop of the liquid refrigerant or heat intrusion.
  • Various proposals have been made to suppress the formation of flash gas (see, for example, Patent Document 1 and Patent Document 2). When the flash gas is generated, the flow rate of the refrigerant flowing into the expansion device on the downstream side of the condenser is reduced correspondingly, and the refrigeration capacity of the refrigeration cycle apparatus is reduced.
  • the supercooling device comprised with the double tube heat exchanger etc. is installed in the downstream of a condenser, and it condenses with a condenser.
  • a refrigeration cycle apparatus having a configuration in which the temperature of a liquefied refrigerant is lowered to perform supercooling has been proposed.
  • the mode condensation suppression priority mode which has the control means which suppresses that the piping which connected the supercooling apparatus and the indoor unit (load apparatus) condenses with the refrigerant
  • Japanese Patent No. 3376844 (FIG. 1) Japanese Patent Laying-Open No. 2014-153036 (pages 8-15, FIG. 8)
  • the refrigeration cycle apparatus proposed in Patent Document 2 is provided with switching means between a mode in which refrigeration capacity is given priority and a priority mode in which condensation is suppressed.
  • the condensation suppression priority mode the flow rate of the supercooling refrigerant in the supercooling device is increased, and the amount of injection flowing from the supercooling device to the intermediate pressure of the compressor is increased, so that the intermediate pressure of the compressor and the condenser The condensation temperature is increased, and the temperature on the liquid refrigerant side of the supercooling device is increased to a temperature at which no condensation occurs.
  • the refrigeration capacity priority mode similarly to Patent Document 1, there is a problem that the temperature of the pipe connecting the supercooling device and the indoor unit (load device) is lowered, resulting in pipe condensation.
  • the dew condensation suppression mode since the injection flow rate to the intermediate pressure of the compressor is increased, there is a problem that the discharge temperature from the supercooling device is lowered and the compressor fails due to the liquid back on the intermediate pressure side of the compressor. is there. Moreover, when the heat exchange capacity of the condenser is small and the high pressure pressure is likely to increase with respect to the input of the compressor, it is possible to suppress dew condensation by increasing the injection flow rate. However, if the heat exchange capacity of the condenser is large and it is difficult to increase the high pressure with respect to the input of the compressor, the intermediate pressure cannot be increased even if the injection flow rate to the intermediate pressure of the compressor is increased. There is a problem in that the temperature of the liquid refrigerant that has passed through the supercooling device does not rise to a temperature at which no condensation occurs, and the piping is condensed.
  • the present invention has been made in order to solve the above-described problems, and it is possible to more easily prevent the dew condensation of the pipe without performing a large-scale construction such as a heat insulation treatment on the pipe.
  • An object is to provide an apparatus.
  • a refrigeration cycle apparatus has a refrigeration cycle in which a compressor, a condenser, a first expansion device, and an evaporator are connected by a refrigerant pipe, and a heat source device on which the compressor and the condenser are mounted;
  • a refrigeration cycle apparatus including a load device on which the evaporator is mounted; a condenser fan that sends air to the condenser; and a downstream side of the condenser and an upstream side of the first expansion device And a pipe temperature for detecting a temperature of a refrigerant pipe connecting the load device with the supercooling device for supercooling the refrigerant flowing out of the condenser, the heat source device through which the refrigerant flowing out of the supercooling device flows Detecting means, outside air temperature detecting means for detecting the temperature of the air sucked into the condenser, and refrigerant piping connecting the heat source device and the load device from the temperature of the air sucked into the condenser Pull
  • the control device controls the rotation speed of the condenser fan.
  • the temperature of the refrigerant flowing out of the condenser is raised to be higher than the outside air temperature, so that the heat source device and the load device circuit Condensation can be prevented.
  • the condenser has a large heat exchanger capacity, it is possible to prevent the condensation of the pipe. Accordingly, it is possible to more easily prevent the dew condensation on the pipe without performing a large-scale construction such as heat insulation treatment on the pipe.
  • Embodiment 3 is an example of a circuit configuration of a refrigeration cycle apparatus according to Embodiments 1 to 3 of the present invention. It is a Mollier diagram of the refrigerating cycle device concerning Embodiment 3 of the present invention. It is an example of the control flow of the refrigerating-cycle apparatus which concerns on Embodiment 3 of this invention.
  • FIG. 1 is an example of a refrigerant circuit configuration of a refrigeration cycle apparatus 500 according to Embodiment 1 of the present invention.
  • the refrigeration cycle apparatus 500 shown in FIG. 1 corresponds to, for example, a refrigerator.
  • the heat source device 100 to be installed, the piping 300 and the piping 400 that connect the load device 200 and the heat source device 100 are provided.
  • the pipe 300 is a pipe through which the liquid refrigerant passes
  • the pipe 400 is a pipe through which the suction gas passes.
  • the refrigeration cycle apparatus 500 includes a compressor 1 that compresses and discharges refrigerant, a condenser 2 (heat radiator) that condenses the refrigerant, and a liquid reservoir that is connected downstream of the condenser 2 and separates into liquid refrigerant and gas refrigerant.
  • the refrigeration cycle apparatus 500 includes a refrigeration circuit in which the compressor 1, the condenser 2, the liquid reservoir 3, the supercooling device 4, the first expansion device 5, and the evaporator 6 are connected by refrigerant piping. ing.
  • the heat source device 100 includes a compressor 1, a condenser 2, a liquid reservoir 3, and a supercooling device 4. In addition, the heat source device 100 supplies air to the condenser 2, and promotes heat exchange between the air and the refrigerant flowing through the condenser 2, and supplies the expanded refrigerant to the supercooling device 4.
  • An injection pipe 43 for sending the refrigerant that has passed through the two expansion device 42 and the supercooling device 4 to the intermediate pressure of the compressor 1 is provided.
  • the second expansion device 42 for example, an electronic expansion valve or a circuit in which capillary tubes having different lengths and electromagnetic valves are combined in parallel can be adopted. In the present embodiment, the second expansion device 42 will be described by taking an electronic expansion valve as an example.
  • the heat source device 100 is a pipe that detects the temperature of the outside air temperature sensor 8 that detects the temperature of the air sucked into the condenser 2 and the pipe 300 that connects the load device 200 downstream of the supercooling device 4 and the heat source device 100.
  • a temperature sensor 9 and a control device 10 that takes in the detected values of the outside air temperature sensor 8 and the pipe temperature sensor 9 and controls the rotational speed of the condenser fan 7 are provided.
  • the load device 200 includes a first expansion device 5 and an evaporator 6.
  • the refrigerant piping after exiting the condenser 2 and passing through the liquid reservoir 3 branches off downstream of the supercooling device 4 of the heat source device 100, and one is connected to the load device 200 through the piping 300.
  • the refrigerant piping that has passed through the first expansion device 5 and the evaporator 6 in the load device 200 is connected to the suction side of the compressor 1 in the heat source device 100 through the piping 400.
  • the compressor 1 sucks a refrigerant, compresses the refrigerant, and discharges the refrigerant in a high temperature and high pressure state.
  • the compressor 1 has a refrigerant discharge side connected to a condenser 2 (heat radiator) and a refrigerant suction side connected to a pipe 400.
  • the compressor 1 is comprised by an inverter compressor etc., for example.
  • the case where one compressor 1 is installed has been described as an example.
  • the present invention is not limited to this, and a plurality of compressors may be provided in series or in parallel.
  • the condenser 2 has an upstream side connected to the discharge side of the compressor 1 and a downstream side connected to the liquid reservoir 3.
  • the condenser 2 performs heat exchange between the refrigerant discharged from the compressor 1 and air.
  • the condenser 2 is comprised by the plate fin and tube type heat exchanger which can exchange heat between the refrigerant
  • the liquid reservoir 3 separates the refrigerant into a liquid refrigerant and a gas refrigerant, and the upstream side is connected to the condenser 2 and the downstream side is connected to the supercooling device 4. More specifically, the liquid reservoir 3 separates the gas-liquid two-phase refrigerant flowing out of the condenser 2 into a liquid refrigerant and a gas refrigerant.
  • the liquid reservoir 3 is configured to supply the liquid refrigerant to the supercooling device 4 and to stay in the liquid reservoir 3 for the gas refrigerant.
  • the supercooling device 4 is connected to the liquid reservoir 3 on the upstream side and connected to the first expansion device 5 mounted on the load device 200 via the pipe 300 on the downstream side.
  • the supercooling device 4 cools the refrigerant supplied from the liquid reservoir 3 and takes the degree of supercooling of the refrigerant before flowing it through the pipe 300.
  • the supercooling device 4 is used to ensure the refrigeration capacity of the refrigeration cycle device 500.
  • the subcooling device 4 is not particularly limited with respect to the cooling method of the refrigerant circulating in the heat source device 100 and the load device 200, but employs, for example, a double pipe heat exchanger, a plate type heat exchanger, or the like. In the first embodiment, as an example, the case where the supercooling device 4 has a plate heat exchanger will be described as an example.
  • the plate type heat exchanger of the supercooling device 4 is formed with a flow path through which two refrigerants flow. That is, the first flow path 41 through which the refrigerant circulating through the heat source device 100 and the load apparatus 200 flows, and the second flow path 45 through which the refrigerant that cools the refrigerant flowing through the flow path flows. Since the supercooling device 4 includes a plate heat exchanger that can supply the cold heat of the refrigerant flowing through the second flow path 45 to the refrigerant flowing through the first flow path 41, the supercooling degree is reduced to the refrigerant flowing through the pipe 300. Can be turned on.
  • the injection pipe 43 is a pipe whose upstream end is connected to the pipe 300 and whose downstream end is connected to the compressor 1. That is, the injection pipe 43 is a pipe that injects refrigerant into the compressor 1 via the first flow path 41 of the supercooling device 4, the second expansion device 42, and the second flow path 45 of the supercooling device 4. The second expansion device 42 and the second flow path 45 of the supercooling device 4 are connected to the injection piping 43 in order from the upstream side.
  • the compressor 1 has an intermediate port (not shown) that is a process in the middle of compression from a low pressure that is a pressure when taken from the suction side of the compressor 1 to a high pressure that is a pressure higher than the low pressure.
  • the downstream end of the injection pipe 43 is connected to this intermediate port.
  • the second expansion device 42 is for expanding the refrigerant, and has an upstream side connected to the pipe 300 and a downstream side connected to the second flow path 45 of the supercooling device 4.
  • the second expansion device 42 is constituted by an electronic expansion valve whose opening degree is variable, for example. The opening degree of the second expansion device 42 is controlled by the control device 10.
  • the second expansion device 42 is described as an electronic expansion valve.
  • the present invention is not limited to this, and in a plurality of capillary tubes connected in parallel, electromagnetic waves can be placed upstream or downstream of the capillary.
  • a configuration may be employed in which the amount of restriction in the expansion device is controlled by installing a valve or the like for controlling a flow path such as a valve and controlling the number of passes through the capillary tube.
  • Control device 10 and setting device 11 The control device 10 detects a detection result of a temperature sensor (not shown) that detects the detected values of the outside air temperature sensor 8 and the piping temperature sensor 9, the discharge refrigerant temperature of the compressor 1, the compressor shell temperature, and the intake refrigerant temperature. Based on the detection result of a pressure sensor (not shown) that detects each of the high-pressure side pressure and the low-pressure side pressure of the compressor 1, the output of the setting device 11, etc. ), The rotational speed (including operation and stop) of the condenser fan 7 attached to the condenser 2 and the fan (not shown) attached to the evaporator 6, the opening degree of the first expansion device 5, and the supercooling device 4. And so on.
  • this control apparatus 10 is comprised, for example with a microcomputer.
  • the setting device 11 is connected to the control device 10, which is used in the second embodiment.
  • the setting device 11 includes a setting value display unit and a setting value input unit, and includes, for example, a switch, a button, or a combination thereof.
  • the control apparatus 10 shall be mounted in the control board (not shown) of the heat-source apparatus 100 with the setting apparatus 11, it is not limited to it, For example, it is mounted in the load apparatus 200 side. Also good.
  • the first expansion device 5 is for expanding the refrigerant, and the upstream side is connected to the supercooling device 4 via the pipe 300 and the downstream side is connected to the evaporator 6.
  • swelling apparatus 5 is comprised with the electronic expansion valve, capillary tube, etc. whose opening degree is variable, for example.
  • the evaporator 6 performs heat exchange between the refrigerant decompressed by the first expansion device 5 and the air.
  • the evaporator 6 is comprised with the plate fin and tube type heat exchanger which can heat-exchange between the refrigerant
  • the refrigerant is condensed into a high-temperature and high-pressure liquid refrigerant by performing heat exchange between a medium such as air and the refrigerant in the condenser 2 after being compressed into a high-temperature and high-pressure superheated gas by the compressor 1. .
  • the liquid refrigerant exiting the condenser 2 is separated into gas and liquid in the liquid reservoir 3 and is converted into a liquid refrigerant to which supercooling is added at a high pressure by the supercooling device 4.
  • the supercooling device 4 branches the first flow path 41 from which the refrigerant is sent from the liquid reservoir 3 and a part of the refrigerant that has flowed through the first flow path 41 on the downstream side of the supercooling device 4. And a second flow path 45 through which the refrigerant expanded by the expansion device 42 and converted into a low-pressure two-phase gas is provided. That is, the refrigerant that has become low-pressure two-phase gas expanded by the second expansion device 42 enters the supercooling device 4 and exchanges heat with the high-pressure liquid refrigerant flowing through the first flow path 41.
  • the low-pressure two-phase gas that has entered the supercooling device 4 exchanges heat with the liquid refrigerant on the high-pressure side of the first flow path 41, passes through the injection pipe 43, and enters the intermediate pressure (intermediate port) of the compressor 1.
  • the low-pressure two-phase gas refrigerant that has entered the intermediate pressure of the compressor 1 is suppressed to a discharge temperature rise of the compressor 1 and is compressed into a high-temperature and high-pressure superheated gas.
  • the liquid refrigerant flowing toward the load device 200 exits the heat source device 100, passes through the pipe 300, and enters the load device 200.
  • the supercooled liquid refrigerant that has entered the load device 200 is expanded by the first expansion device 5 into a low-pressure two-phase gas, and is heat-exchanged with the surrounding air and water in the evaporator 6 to be in a state of low-temperature and low-pressure superheated gas It becomes.
  • the low-temperature and low-pressure superheated gas leaves the load device 200, passes through the pipe 400, and returns to the heat source device 100. Then, it is again sucked into the compressor 1 and compressed into a high-temperature and high-pressure superheated gas. Thereafter, the above refrigerant circuit cycle is repeated.
  • the liquid refrigerant that has exited the condenser 2 can increase the capacity of the refrigeration cycle apparatus 500 by lowering the liquid refrigerant temperature by the supercooling apparatus 4.
  • the pipe temperature of the pipe 300 is lower than the surrounding dew point temperature by the supercooling device 4
  • dew condensation occurs from the pipe surface.
  • condensed water hangs down the ceiling of a store where the pipe 300 is disposed.
  • the following means is adopted in the refrigeration cycle apparatus 500 of the first embodiment.
  • control device 10 determines the temperature of the outside air temperature sensor 8 that detects the air suction temperature of the condenser 2 and the temperature of the pipe 300 downstream of the supercooling device 4 in the heat source device 100 during the operation.
  • the detected values of the pipe temperature sensor 9 to be detected are taken in and compared with each other.
  • the control apparatus 10 continues operation
  • the condenser fan 7 is stopped or decelerated.
  • the rotation speed of the condenser fan 7 is controlled to be reduced to an upper limit of 80% of the normal rotation speed.
  • the rotational speed of the condenser fan 7 decreases, the amount of air per unit time fed into the condenser 2 decreases, so that a decrease in the refrigerant temperature in the condenser 2 is suppressed.
  • the refrigeration cycle apparatus 500 of the present embodiment when the intake air temperature of the condenser 2 is 32 ° C., when the pipe temperature of the pipe 300 becomes lower than 26 ° C., the temperature of the pipe 300 becomes 26 ° C. Until this is reached, the rotational speed of the condenser fan 7 is reduced from 100% to 80%.
  • the refrigeration cycle apparatus 500 by controlling the refrigeration cycle apparatus 500 as described above and preventing the condensation on the pipe 300, when the pipe 300 is installed on the ceiling of the store, breeding of mold on the ceiling due to condensed water, or from the ceiling Can prevent water leakage.
  • the refrigerant can be supercooled within a range in which condensation does not occur in the pipe 300, a large-scale work such as heat insulation treatment is not required for the liquid pipe disposed on the ceiling or the like, and the refrigeration cycle apparatus 500 is eliminated. It is possible to reduce the installation cost of the installation.
  • the supercooling device 4 can be easily applied when a supercooling device is added to increase the refrigeration capacity with respect to the refrigeration cycle device of an existing store where piping has already been installed.
  • Embodiment 2 the method of stopping or decelerating the condenser fan 7 when the temperature difference obtained by subtracting the pipe temperature value of the pipe 300 from the suction temperature value of the condenser 2 exceeds the set value has been described.
  • the set value can be changed from the heat source device 100 and the air volume of the condenser fan 7 can be changed according to the set value will be described.
  • the refrigeration cycle apparatus 500 includes a control unit 10 in the heat source apparatus 100 including a display unit for setting values and a setting device 11 that is a setting value input unit.
  • the refrigerant circuit diagram and operation of the refrigeration cycle apparatus 500 according to the present embodiment are the same as those in the first embodiment.
  • the control device 10 periodically detects the detection value of the pressure sensor that detects the high-pressure side pressure and the low-pressure side pressure of the compressor 1, the detection value of the pipe temperature sensor 9 that detects the temperature of the pipe 300, and condensation.
  • the detected value of the outside air temperature sensor 8 that detects the air suction temperature of the condenser 2 is read, and it is predicted not to exceed the set value of the temperature difference between the air suction temperature of the condenser 2 and the temperature of the pipe 300, and the condenser fan The air volume of 7 is adjusted.
  • the switch or button is used to input the set value of the temperature difference between the air suction temperature of the condenser 2 and the temperature of the pipe 300, but it has a schedule function and sets the set value for each daily time zone in advance.
  • the set value may be changed for each time zone.
  • the heat source device 100 and the load device 200 are electrically connected to each other by communication, and a set value of a temperature difference between the air suction temperature of the condenser 2 and the temperature of the pipe 300 is set by an operation from the load device 200 side.
  • the configuration may be changed.
  • relative humidity may be input instead of the difference between the air suction temperature of the condenser 2 and the temperature of the pipe 300.
  • the dew point is calculated from the input relative humidity and the detected value of the air suction temperature of the condenser 2, and the required temperature of the pipe 300 is calculated. Then, the air volume of the condenser fan 7 is adjusted in accordance with the operating state of the refrigeration cycle apparatus 500 so that the temperature of the pipe 300 does not fall below the calculated temperature.
  • the air volume of the condenser fan 7 can be adjusted by inputting a set value from the outside.
  • the pipe temperature of the pipe 300 can be controlled at a temperature that does not always cause condensation.
  • the set value can be flexibly changed in accordance with the local environment where the refrigeration cycle apparatus is installed.
  • the refrigeration cycle apparatus 500 according to the first and second embodiments is configured not only to adjust the air volume of the condenser fan 7 but also to suppress condensation by adjusting the opening degree of the second expansion device 42. Is described.
  • the refrigeration cycle apparatus 500 is the same refrigerant circuit as in the first and second embodiments.
  • the refrigeration cycle device 500 does not increase the degree of supercooling and the refrigeration capacity priority mode, which is an operation mode in which the degree of supercooling is increased for the refrigerant that has passed through the supercooling device 4. It is possible to operate by switching the dew condensation suppression priority mode that is the mode.
  • the flow of the refrigerant flowing through the supercooling device 4 and the like will be described with reference to FIG.
  • the high-pressure refrigerant that has flowed out of the liquid reservoir 3 flows into the first flow path 41 of the supercooling device 4.
  • the refrigerant that has flowed into the first flow path 41 is cooled by exchanging heat with the refrigerant that has flowed into the second flow path 45, and is supercooled.
  • a part of the supercooled refrigerant that flows out from the first flow path 41 of the supercooling device 4 flows out from the heat source device 100 via the pipe 300 and flows into the load device 200.
  • the remainder of the refrigerant that has flowed out of the first flow path 41 of the supercooling device 4 flows into the injection pipe 43 and branches off from the flow of the pipe 300, is reduced in pressure through the second expansion device 42, and decreases in temperature.
  • the refrigerant having the lowered temperature flows into the second flow path 45 of the supercooling device 4 and exchanges heat with the refrigerant in the first flow path 41.
  • the refrigerant that has flowed out from the second flow path 45 of the supercooling device 4 is used to lower the temperature of the gas refrigerant that flows into the intermediate port of the compressor 1 through the injection pipe 43 and is discharged from the compressor 1. That is, the refrigerant that has flowed out of the second flow path 45 of the supercooling device 4 is injected into the compressor 1 to suppress the temperature rise of the gas refrigerant discharged from the compressor 1, and to suppress deterioration of the refrigeration machine oil. Used.
  • the opening degree of the second expansion device 42 When the opening degree of the second expansion device 42 is increased, the flow rate of the refrigerant branched from the pipe 300 and supplied to the injection pipe 43 is increased.
  • the refrigerant pressure entering the intermediate port of the compressor 1 is small because the pressure reduction amount is small.
  • the intermediate pressure (pressure) increases and the refrigerant temperature tends to increase. Accordingly, the pressure of the gas discharged from the compressor 1 (high pressure) also increases.
  • the opening degree of the second expansion device 42 when the opening degree of the second expansion device 42 is reduced, the flow rate of the refrigerant branched from the pipe 300 and supplied to the injection pipe 43 is reduced, the refrigerant pressure (intermediate pressure pressure) is reduced, and the refrigerant temperature is also reduced. Become. Along with this, the pressure of the gas discharged from the compressor 1 (high pressure) also decreases.
  • FIG. 2 is a Mollier diagram of the refrigeration cycle apparatus 500 according to the third embodiment.
  • a refrigerant state corresponding to the opening degree of the second expansion device 42 will be described with reference to the Mollier diagram of FIG.
  • qualitative explanation is given for the case where the opening degree of the second expansion device 42 is (1) smaller and (2) the case where it is relatively larger than (1).
  • the “low pressure”, which is the pressure after depressurization by the first expansion device 5 is assumed to be the same, will be described.
  • the case (1) corresponds to the solid line in FIG. 2
  • the case (2) corresponds to the dotted line in FIG.
  • the “intermediate pressure” that is the pressure of the refrigerant passing through the second expansion device 42 and flowing through the injection pipe 43 is also relatively lower than in the case of (2) (FIG. 2 P2 and Q2). That is, as compared with the case of (2), in the case of (1), before “lowering the high pressure” and “passing through the first flow path 41 of the supercooling device 4 and flowing into the second expansion device 42” (Refer to P1), and the temperature of the “intermediate pressure” refrigerant reduced by the second expansion device 42 also decreases (see P2). Therefore, in the case of (1), the liquid refrigerant after heat exchange in the supercooling device 4 flows out at a lower temperature than in the case of (2).
  • low temperature refrigerant flows through the first expansion device 5, and the enthalpy difference between the refrigerant inflow side and the refrigerant outflow side of the evaporator 6 can be increased, and the refrigeration capacity of the refrigeration cycle apparatus 500 can be increased. Will improve.
  • the opening degree of the second expansion device 42 when the opening degree of the second expansion device 42 is reduced, it is described that “the temperature of the high-pressure liquid refrigerant is decreased” compared to the case of (2). If the opening degree of the second expansion device 42 is too small, the refrigerant flow rate in the injection pipe 43 becomes too small, and heat exchange between the first flow path 41 and the second flow path 45 is performed in the supercooling device 4. It should be noted that the temperature of the high-pressure liquid refrigerant in the first flow path 41 may increase instead.
  • the second expansion device 42 also serves as an injection for lowering the temperature of the refrigerant discharged from the compressor 1.
  • the opening degree of the second expansion device 42 is made smaller than necessary, the discharge refrigerant temperature of the compressor 1 may rise and the compressor 1 may break down. Therefore, it should be noted that it is necessary to maintain a minimum opening degree at which the compressor 1 does not break down.
  • the refrigerant state can be changed according to the opening degree of the second expansion device 42.
  • Executing the refrigeration capacity priority mode in the refrigeration cycle apparatus 500 corresponds to approaching the Mollier diagram shown by the solid line in FIG. 2, and executing the dew condensation suppression priority mode in the refrigeration cycle apparatus 500 is indicated by the dotted line in FIG. This corresponds to approaching the Mollier diagram shown in FIG.
  • the refrigeration capacity priority mode and the dew condensation suppression priority mode have been qualitatively described based on FIG. 2, and then a specific control method for the dew condensation suppression priority mode by adjusting the opening of the second expansion device 42 will be described. .
  • FIG. 3 is an example of a control flow of the dew condensation suppression priority mode by adjusting the opening of the second expansion device 42 of the refrigeration cycle apparatus 500 according to the present embodiment.
  • the control start (START) in FIG. 4 is the time when the dew condensation suppression priority mode is set by adjusting the opening of the second expansion device 42.
  • the dew condensation suppression priority mode by the opening degree adjustment of the second expansion device 42 will be described.
  • Step U0 The control device 10 shifts to control in the dew condensation suppression priority mode by adjusting the opening of the second expansion device 42.
  • Step U1 The control device 10 determines whether or not the discharge refrigerant temperature of the compressor 1 is equal to or higher than a preset value (lower limit specified value).
  • the preset value is set to 70 ° C., for example. If the value is equal to or greater than the preset value, the process proceeds to step U2. If it is not equal to or greater than the preset value, the process proceeds to step U3.
  • Step U2 The control device 10 increases the opening degree of the second expansion device 42.
  • a lower limit specified value for example, 70 ° C.
  • the opening degree of the second expansion device 42 is increased, and the “high pressure” and “intermediate pressure” are increased, Increase the temperature of the “high-pressure liquid refrigerant”.
  • This “high-pressure liquid refrigerant” is a refrigerant that flows through the pipe 300, but as the temperature of the “high-pressure liquid refrigerant” increases, the temperature of the pipe 300 also increases, and condensation is suppressed.
  • the opening degree of the 2nd expansion apparatus 42 in this step U2 is larger than the opening degree of the 2nd expansion apparatus 42 in below-mentioned step U3.
  • Step U3 The control device 10 reduces the opening degree of the second expansion device 42.
  • the discharge refrigerant temperature of the compressor 1 is equal to or lower than the lower limit specified value, the discharge refrigerant temperature of the compressor 1 is too low, causing a failure. Therefore, the discharge refrigerant of the compressor 1 is reduced by reducing the opening degree of the second expansion device 42, reducing the flow rate of the refrigerant injected into the compressor 1, and reducing the injection flow rate for cooling the discharge refrigerant of the compressor 1. Increase temperature.
  • the opening degree of the second expansion device 42 is reduced so that the temperature of the pipe 300 is in a range where condensation does not occur.
  • the control means for suppressing condensation in the condensation suppression priority mode described above uses the injection pipe 43 and the second expansion device 42, and the high-pressure and high-temperature discharge refrigerant temperature of the compressor 1 is changed to the liquid back. It should be lowered to the extent that it does not. That is, the opening degree of the second expansion device 42 is increased, and the injection flow rate to the intermediate pressure of the compressor 1 is increased. When the injection flow rate increases, the input (work amount) in the compressor 1 increases, and the high pressure of the condenser 2 and the intermediate pressure of the injection pipe 43 increase.
  • the combined use of the dew condensation suppression priority mode by adjusting the air volume of the condenser fan 7 and adjusting the opening of the second expansion device 42 can further improve the dew condensation prevention effect of the pipe 300.
  • the heat exchanger capacity of the condenser 2 is large, even if the opening of the second expansion device 42 in the dew condensation suppression priority mode described above is increased (for example, in the case of U2 in FIG. 3), The increase rate of the flow rate (that is, intermediate pressure) of the injection pipe 43 is small, the discharge side of the compressor 1 is not high pressure, and the increase range of the pipe temperature of the pipe 300 is small.
  • the opening degree of the second expansion device 42 is increased too much, the refrigerant discharged from the compressor 1 is cooled too much, and the temperature of the refrigerant discharged becomes low, leading to failure of the compressor 1 in some cases.
  • the difference between the intake air temperature of the condenser 2 and the temperature of the pipe 300 is detected, and if the difference value exceeds the set value, the rotational speed of the condenser fan 7 is reduced, The temperature of the piping 300 can be raised.
  • the dew condensation of the pipe 300 is prevented without excessively increasing the opening degree of the second expansion device 42.
  • the prevention effect can be ensured.

Abstract

Provided is a refrigeration cycle device that increases refrigeration capacity in a supercooling device, and is able to prevent condensation on pipes without performing an insulating process on the pipes. This refrigeration cycle device is equipped with: a condenser fan 7 that sends air to a condenser 2; a supercooling device 4 that is connected downstream from the condenser 2 and upstream from a first expansion device 5, and that supercools a refrigerant flowing from the condenser 2; a pipe temperature detection means 9 that detects the temperature of a refrigerant pipe 300 connecting a load device 200 and a heat source device 100 in which the refrigerant flowing from the supercooling device 4 flows; an outside temperature detection means 8 that detects the temperature of air drawn into the condenser 2; and a control device 10 that controls the rotational speed of the condenser fan 7 such that the difference when the temperature of the refrigerant pipe connecting the heat source device 100 and the load device 200 is subtracted from the temperature of the air drawn into the condenser 2 does not exceed a set value.

Description

冷凍サイクル装置Refrigeration cycle equipment
 本発明は、冷凍サイクル装置に関するものである。 The present invention relates to a refrigeration cycle apparatus.
 空調装置などに用いられる冷凍サイクル装置は、一般的に、圧縮機と、凝縮器(放熱器)と、膨張弁と、蒸発器とを備え、冷媒を循環させる配管により接続されている。圧縮機にて圧縮された高温高圧の冷媒が凝縮器にて外気と熱交換され液化し、液化した冷媒が膨張弁を経て気液混合の低温流体となり、蒸発器にて熱交換され気化する。気化した冷媒は、再度圧縮機に入る。冷凍サイクル装置は、冷媒をこのように循環させている。
 従来の冷凍サイクル装置においては、さらに凝縮器から流出する冷媒を過冷却させる過冷却装置を備え、凝縮器から流出する液冷媒の一部が液冷媒の圧力降下や熱の侵入などにより気化してフラッシュガスとなることを抑制しているものが各種提案されている(たとえば、特許文献1及び特許文献2を参照)。なお、フラッシュガスが発生すると、その分、凝縮器の下流側の絞り装置に流入する冷媒の流量が低減し、冷凍サイクル装置の冷凍能力が低下してしまう。
Generally, a refrigeration cycle apparatus used for an air conditioner or the like includes a compressor, a condenser (heat radiator), an expansion valve, and an evaporator, and is connected by a pipe for circulating a refrigerant. The high-temperature and high-pressure refrigerant compressed by the compressor is liquefied by heat exchange with the outside air in the condenser, and the liquefied refrigerant becomes a low-temperature fluid mixed with gas and liquid through an expansion valve, and is heat-exchanged and vaporized in the evaporator. The vaporized refrigerant enters the compressor again. The refrigeration cycle apparatus circulates the refrigerant in this way.
The conventional refrigeration cycle apparatus further includes a supercooling device that supercools the refrigerant flowing out of the condenser, and a part of the liquid refrigerant flowing out of the condenser is vaporized due to a pressure drop of the liquid refrigerant or heat intrusion. Various proposals have been made to suppress the formation of flash gas (see, for example, Patent Document 1 and Patent Document 2). When the flash gas is generated, the flow rate of the refrigerant flowing into the expansion device on the downstream side of the condenser is reduced correspondingly, and the refrigeration capacity of the refrigeration cycle apparatus is reduced.
 特許文献1では、フラッシュガスの発生により冷凍能力が低下してしまうことを抑制するため、二重管熱交換器などで構成した過冷却装置を凝縮器の下流側に設置し、凝縮器で凝縮液化した冷媒の温度を低くして過冷却する構成の冷凍サイクル装置が提案されている。
 また、特許文献2では、過冷却装置と室内機(負荷装置)とを接続している配管が凝縮器から流出した冷媒によって結露することを抑制する制御手段を有したモード(結露抑制優先モード)と、過冷却装置にて液冷媒温度を下げ冷凍能力を優先するモード(冷凍能力優先モード)とを備え、切り換えることができ、選択するモードに合わせて過冷却装置の過冷却量を調整する構成の冷凍サイクル装置が提案されている。
In patent document 1, in order to suppress that a refrigerating capacity falls by generation | occurrence | production of flash gas, the supercooling device comprised with the double tube heat exchanger etc. is installed in the downstream of a condenser, and it condenses with a condenser. A refrigeration cycle apparatus having a configuration in which the temperature of a liquefied refrigerant is lowered to perform supercooling has been proposed.
Moreover, in patent document 2, the mode (condensation suppression priority mode) which has the control means which suppresses that the piping which connected the supercooling apparatus and the indoor unit (load apparatus) condenses with the refrigerant | coolant which flowed out from the condenser. And a mode (refrigeration capacity priority mode) that lowers the liquid refrigerant temperature in the supercooling device and prioritizes the refrigerating capacity, and can be switched, and the supercooling amount of the supercooling apparatus is adjusted according to the mode to be selected A refrigeration cycle apparatus has been proposed.
特許第3376844号公報(図1)Japanese Patent No. 3376844 (FIG. 1) 特開2014-153036号公報(第8-15頁、図8)Japanese Patent Laying-Open No. 2014-153036 (pages 8-15, FIG. 8)
 特許文献1で提案されている冷凍サイクル装置のように、冷媒を過冷却装置により冷却して過冷却をつけると、冷凍能力は増大するが、過冷却装置から流出した液冷媒の温度が、外気温度以下になる場合がある。過冷却装置と室内機(負荷装置)とを接続している配管の温度が周囲の温度より低下すると、その表面に結露が発生しやすくなる。冷凍サイクル装置が多く利用されているコンビニエンスストアやスーパーマーケットでは、冷凍サイクル装置の冷媒回路配管は、天井裏などに配置される場合が多く、結露すると天井裏にカビ等が繁殖したり、場合によっては天井からの水漏れが発生するため、配管に断熱処理等を施す必要がある。また、その長さは店舗の規模により100m程度もある場合があり、その断熱処理は簡単ではなく工事費増大などの問題がある。また、既に工事が完了した店舗において、天井裏などの配管に断熱処理を追加するのは、施工性が悪く、工事に多くの時間やコストを費やしてしまうなどの課題もある。 As in the refrigeration cycle apparatus proposed in Patent Document 1, when the refrigerant is cooled by the supercooling device and supercooled, the refrigeration capacity increases, but the temperature of the liquid refrigerant flowing out of the supercooling device May be below temperature. When the temperature of the pipe connecting the supercooling device and the indoor unit (load device) is lower than the ambient temperature, condensation tends to occur on the surface. In convenience stores and supermarkets where refrigeration cycle equipment is widely used, the refrigerant circuit piping of refrigeration cycle equipment is often placed on the back of the ceiling, etc. Since water leaks from the ceiling, it is necessary to insulate the piping. Moreover, the length may be about 100 m depending on the scale of the store, and the heat insulation process is not simple and there is a problem such as an increase in construction costs. In addition, in a store where construction has already been completed, adding heat insulation treatment to piping such as the back of the ceiling has problems such as poor workability and a lot of time and cost for the construction.
 特許文献2で提案されている冷凍サイクル装置においては、冷凍能力優先するモードと結露抑制する優先モードの切換手段を備えている。結露抑制優先モード時には、過冷却装置内の過冷却用の冷媒の流量を増やし、過冷却装置から圧縮機の中間圧に流入するインジェクション量を増加させることで、圧縮機の中間圧力と凝縮器の凝縮温度とを上昇させ、過冷却装置の液冷媒側の温度を結露しない温度まで上昇させている。一方、冷凍能力優先モードでは、特許文献1と同様、過冷却装置と室内機(負荷装置)とを接続している配管温度が低下し、配管結露に至るという課題がある。また、結露抑制モードでは、圧縮機の中間圧へのインジェクション流量を増大させるため、過冷却装置からの吐出温度が低下し、圧縮機の中間圧側での液バックによる圧縮機故障に至るという課題がある。また、凝縮器の熱交換容量が小さく、圧縮機の入力に対し、高圧圧力が上がりやすい場合には、インジェクション流量を増やすことにより、配管結露を抑制することができる。しかし、凝縮器の熱交換容量が大きく、圧縮機の入力に対して、高圧圧力が上がりにくい場合には、圧縮機の中間圧へのインジェクション流量を増やしても中間圧力も上げることができないため、過冷却装置を経た液冷媒の温度が、結露しない温度まで上昇せず、配管が結露してしまうという課題がある。 The refrigeration cycle apparatus proposed in Patent Document 2 is provided with switching means between a mode in which refrigeration capacity is given priority and a priority mode in which condensation is suppressed. In the condensation suppression priority mode, the flow rate of the supercooling refrigerant in the supercooling device is increased, and the amount of injection flowing from the supercooling device to the intermediate pressure of the compressor is increased, so that the intermediate pressure of the compressor and the condenser The condensation temperature is increased, and the temperature on the liquid refrigerant side of the supercooling device is increased to a temperature at which no condensation occurs. On the other hand, in the refrigeration capacity priority mode, similarly to Patent Document 1, there is a problem that the temperature of the pipe connecting the supercooling device and the indoor unit (load device) is lowered, resulting in pipe condensation. Further, in the dew condensation suppression mode, since the injection flow rate to the intermediate pressure of the compressor is increased, there is a problem that the discharge temperature from the supercooling device is lowered and the compressor fails due to the liquid back on the intermediate pressure side of the compressor. is there. Moreover, when the heat exchange capacity of the condenser is small and the high pressure pressure is likely to increase with respect to the input of the compressor, it is possible to suppress dew condensation by increasing the injection flow rate. However, if the heat exchange capacity of the condenser is large and it is difficult to increase the high pressure with respect to the input of the compressor, the intermediate pressure cannot be increased even if the injection flow rate to the intermediate pressure of the compressor is increased. There is a problem in that the temperature of the liquid refrigerant that has passed through the supercooling device does not rise to a temperature at which no condensation occurs, and the piping is condensed.
 本発明は、上記のような課題を解決するためになされたものであり、配管に断熱処理を施すなどの大がかりな工事を施すことなく、より簡単に配管の結露を防止することができる冷凍サイクル装置を提供することを目的とする。 The present invention has been made in order to solve the above-described problems, and it is possible to more easily prevent the dew condensation of the pipe without performing a large-scale construction such as a heat insulation treatment on the pipe. An object is to provide an apparatus.
 本発明に係る冷凍サイクル装置は、圧縮機、凝縮器、第1膨張装置、及び蒸発器を冷媒配管で接続した冷凍サイクルを有し、前記圧縮機及び前記凝縮器が搭載される熱源装置と、前記蒸発器が搭載される負荷装置とを備えている冷凍サイクル装置において、前記凝縮器に空気を送る凝縮器ファンと、前記凝縮器の下流側であって前記第1膨張装置の上流側に接続され、前記凝縮器から流出した冷媒を過冷却する過冷却装置と、前記過冷却装置から流出した冷媒が流れる前記熱源装置と前記負荷装置とを接続している冷媒配管の温度を検出する配管温度検出手段と、前記凝縮器に吸込まれる空気の温度を検出する外気温度検出手段と、前記凝縮器に吸込まれる空気の温度から前記熱源装置と前記負荷装置とを接続している冷媒配管の温度を引いた差が設定値を超えないように、前記凝縮器ファンの回転速度を制御する制御装置とを備えるものである。 A refrigeration cycle apparatus according to the present invention has a refrigeration cycle in which a compressor, a condenser, a first expansion device, and an evaporator are connected by a refrigerant pipe, and a heat source device on which the compressor and the condenser are mounted; A refrigeration cycle apparatus including a load device on which the evaporator is mounted; a condenser fan that sends air to the condenser; and a downstream side of the condenser and an upstream side of the first expansion device And a pipe temperature for detecting a temperature of a refrigerant pipe connecting the load device with the supercooling device for supercooling the refrigerant flowing out of the condenser, the heat source device through which the refrigerant flowing out of the supercooling device flows Detecting means, outside air temperature detecting means for detecting the temperature of the air sucked into the condenser, and refrigerant piping connecting the heat source device and the load device from the temperature of the air sucked into the condenser Pull temperature As the difference does not exceed the set value, in which a control device for controlling the rotational speed of the condenser fan.
 本発明に係る冷凍サイクル装置は、凝縮器吸込温度を検出する外気温度値と過冷却装置後の配管温度との差が設定値を超えている場合に、制御装置により凝縮器ファンの回転速度を減少させる制御を行い、凝縮器での冷媒の凝縮温度を上げることで、凝縮器から流出する冷媒の温度を上げて外気温より高くすることにより、熱源装置及び負荷装置回路を接続する配管での結露を防止することができる。また、凝縮器の熱交換器容量が大きい場合でも、配管の結露を防止することができる。これにより、配管に断熱処理を施すなどの大がかりな工事を施すことなく、より簡単に配管の結露を防止することができるものである。 In the refrigeration cycle apparatus according to the present invention, when the difference between the outside air temperature value for detecting the condenser suction temperature and the pipe temperature after the supercooling device exceeds the set value, the control device controls the rotation speed of the condenser fan. By controlling to reduce and increasing the condensation temperature of the refrigerant in the condenser, the temperature of the refrigerant flowing out of the condenser is raised to be higher than the outside air temperature, so that the heat source device and the load device circuit Condensation can be prevented. Further, even when the condenser has a large heat exchanger capacity, it is possible to prevent the condensation of the pipe. Accordingly, it is possible to more easily prevent the dew condensation on the pipe without performing a large-scale construction such as heat insulation treatment on the pipe.
本発明の実施の形態1~3に係る冷凍サイクル装置の回路構成の一例である。3 is an example of a circuit configuration of a refrigeration cycle apparatus according to Embodiments 1 to 3 of the present invention. 本発明の実施の形態3に係る冷凍サイクル装置のモリエル線図である。It is a Mollier diagram of the refrigerating cycle device concerning Embodiment 3 of the present invention. 本発明の実施の形態3に係る冷凍サイクル装置の制御フローの一例である。It is an example of the control flow of the refrigerating-cycle apparatus which concerns on Embodiment 3 of this invention.
 以下、本発明の実施の形態を図面に基づいて説明する。
実施の形態1.
 図1は、本発明の実施の形態1に係る冷凍サイクル装置500の冷媒回路構成の一例である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
Embodiment 1 FIG.
FIG. 1 is an example of a refrigerant circuit configuration of a refrigeration cycle apparatus 500 according to Embodiment 1 of the present invention.
(冷凍サイクル装置500の構成説明)
 図1の冷凍サイクル装置500は、例えば冷蔵庫などに該当するものであり、例えば室内などに設置され庫内に食品などの貯蔵品を載置する空間を冷却する負荷装置200と、例えば室外などに設置される熱源装置100と、負荷装置200と熱源装置100とを接続する配管300及び配管400とを有している。配管300は液冷媒が通る配管であり、配管400は吸入ガスが通る配管である。
 冷凍サイクル装置500は、冷媒を圧縮して吐出する圧縮機1と、冷媒を凝縮させる凝縮器2(放熱器)と、凝縮器2の下流に接続され液冷媒とガス冷媒とに分離する液溜め3と、液溜め3から流出した冷媒を冷却して過冷却する過冷却装置4と、冷媒を減圧させる第1膨張装置5と、冷媒を蒸発させる蒸発器6とを有している。そして、冷凍サイクル装置500は、圧縮機1、凝縮器2、液溜め3、過冷却装置4、第1膨張装置5、及び蒸発器6が冷媒配管で接続されて構成された冷凍回路を有している。
(Description of configuration of refrigeration cycle apparatus 500)
The refrigeration cycle apparatus 500 shown in FIG. 1 corresponds to, for example, a refrigerator. The heat source device 100 to be installed, the piping 300 and the piping 400 that connect the load device 200 and the heat source device 100 are provided. The pipe 300 is a pipe through which the liquid refrigerant passes, and the pipe 400 is a pipe through which the suction gas passes.
The refrigeration cycle apparatus 500 includes a compressor 1 that compresses and discharges refrigerant, a condenser 2 (heat radiator) that condenses the refrigerant, and a liquid reservoir that is connected downstream of the condenser 2 and separates into liquid refrigerant and gas refrigerant. 3, a supercooling device 4 that cools and supercools the refrigerant flowing out of the liquid reservoir 3, a first expansion device 5 that decompresses the refrigerant, and an evaporator 6 that evaporates the refrigerant. The refrigeration cycle apparatus 500 includes a refrigeration circuit in which the compressor 1, the condenser 2, the liquid reservoir 3, the supercooling device 4, the first expansion device 5, and the evaporator 6 are connected by refrigerant piping. ing.
(熱源装置100)
 熱源装置100は、圧縮機1、凝縮器2、液溜め3、過冷却装置4を備える。
 また、熱源装置100は、凝縮器2に空気を供給し当該空気と凝縮器2内を流れる冷媒との熱交換を促進させる凝縮器ファン7、過冷却装置4に膨張させた冷媒を供給する第2膨張装置42、過冷却装置4を経た冷媒を圧縮機1の中間圧へ送るインジェクション配管43を備えている。第2膨張装置42は、例えば、電子式の膨張弁又は、長さの異なるキャピラリーチューブと電磁弁を並列に組合わせた回路を採用できる。本実施の形態においては、第2膨張装置42は、電子式の膨張弁を例に説明を行う。
(Heat source device 100)
The heat source device 100 includes a compressor 1, a condenser 2, a liquid reservoir 3, and a supercooling device 4.
In addition, the heat source device 100 supplies air to the condenser 2, and promotes heat exchange between the air and the refrigerant flowing through the condenser 2, and supplies the expanded refrigerant to the supercooling device 4. An injection pipe 43 for sending the refrigerant that has passed through the two expansion device 42 and the supercooling device 4 to the intermediate pressure of the compressor 1 is provided. As the second expansion device 42, for example, an electronic expansion valve or a circuit in which capillary tubes having different lengths and electromagnetic valves are combined in parallel can be adopted. In the present embodiment, the second expansion device 42 will be described by taking an electronic expansion valve as an example.
 また、熱源装置100は、凝縮器2の吸い込む空気の温度を検出する外気温度センサ8と、過冷却装置4の下流の負荷装置200と熱源装置100とを接続する配管300の温度を検出する配管温度センサ9と、外気温度センサ8及び配管温度センサ9の検出値を取り込み、凝縮器ファン7の回転数を制御する制御装置10とを備えている。 The heat source device 100 is a pipe that detects the temperature of the outside air temperature sensor 8 that detects the temperature of the air sucked into the condenser 2 and the pipe 300 that connects the load device 200 downstream of the supercooling device 4 and the heat source device 100. A temperature sensor 9 and a control device 10 that takes in the detected values of the outside air temperature sensor 8 and the pipe temperature sensor 9 and controls the rotational speed of the condenser fan 7 are provided.
(負荷装置200)
 負荷装置200は、第1膨張装置5と蒸発器6とを備えている。凝縮器2から出て液溜め3を経たあとの冷媒の配管は、熱源装置100の過冷却装置4の下流側で配管が分岐し、一方は配管300を通じて負荷装置200に接続される。負荷装置200内にて第1膨張装置5と蒸発器6とを経た冷媒の配管は、配管400を通じて熱源装置100内の圧縮機1の吸入側に接続されている。
(Load device 200)
The load device 200 includes a first expansion device 5 and an evaporator 6. The refrigerant piping after exiting the condenser 2 and passing through the liquid reservoir 3 branches off downstream of the supercooling device 4 of the heat source device 100, and one is connected to the load device 200 through the piping 300. The refrigerant piping that has passed through the first expansion device 5 and the evaporator 6 in the load device 200 is connected to the suction side of the compressor 1 in the heat source device 100 through the piping 400.
(圧縮機1及び凝縮器2)
 圧縮機1は、冷媒を吸入し、その冷媒を圧縮して高温高圧の状態にして吐出するものである。圧縮機1は、冷媒吐出側が凝縮器2(放熱器)に接続され、冷媒吸入側が配管400に接続されている。なお、圧縮機1は、たとえばインバーター圧縮機などで構成される。本実施の形態1では、圧縮機1が1台設置された場合を例に説明したが、それに限定されるものではなく、複数台の圧縮機が直列又は並列に設けられていてもよい。
 凝縮器2は、上流側が圧縮機1の吐出側に接続され、下流側が液溜め3に接続されている。凝縮器2は、圧縮機1から吐出された冷媒と空気との間で熱交換を行わせるものである。なお、凝縮器2は、たとえば、凝縮器2を流れる冷媒とフィンを通過する空気との間で熱交換ができるようなプレートフィンアンドチューブ型熱交換器で構成される。
(Compressor 1 and condenser 2)
The compressor 1 sucks a refrigerant, compresses the refrigerant, and discharges the refrigerant in a high temperature and high pressure state. The compressor 1 has a refrigerant discharge side connected to a condenser 2 (heat radiator) and a refrigerant suction side connected to a pipe 400. In addition, the compressor 1 is comprised by an inverter compressor etc., for example. In the first embodiment, the case where one compressor 1 is installed has been described as an example. However, the present invention is not limited to this, and a plurality of compressors may be provided in series or in parallel.
The condenser 2 has an upstream side connected to the discharge side of the compressor 1 and a downstream side connected to the liquid reservoir 3. The condenser 2 performs heat exchange between the refrigerant discharged from the compressor 1 and air. In addition, the condenser 2 is comprised by the plate fin and tube type heat exchanger which can exchange heat between the refrigerant | coolant which flows through the condenser 2, and the air which passes a fin, for example.
(液溜め3)
 液溜め3は、冷媒を液冷媒とガス冷媒とに分離するものであり、上流側が凝縮器2に接続され、下流側が過冷却装置4に接続されている。より詳細には、液溜め3は、凝縮器2から流出する気液2相冷媒を、液冷媒とガス冷媒とに分離する。そして、液溜め3は、過冷却装置4に液冷媒を供給し、ガス冷媒については液溜め3内に留まるように構成されている。
(Liquid reservoir 3)
The liquid reservoir 3 separates the refrigerant into a liquid refrigerant and a gas refrigerant, and the upstream side is connected to the condenser 2 and the downstream side is connected to the supercooling device 4. More specifically, the liquid reservoir 3 separates the gas-liquid two-phase refrigerant flowing out of the condenser 2 into a liquid refrigerant and a gas refrigerant. The liquid reservoir 3 is configured to supply the liquid refrigerant to the supercooling device 4 and to stay in the liquid reservoir 3 for the gas refrigerant.
(過冷却装置4)
 過冷却装置4は、上流側が液溜め3に接続され、下流側が配管300を介して負荷装置200に搭載されている第1膨張装置5に接続されている。過冷却装置4は、液溜め3から供給された冷媒を冷却して冷媒の過冷却度をとってから配管300に流す。過冷却装置4は、冷凍サイクル装置500の冷凍能力を確保するために利用されるものである。
 過冷却装置4は、熱源装置100及び負荷装置200を循環する冷媒の冷却方法については特に限定されるものではないが、たとえば、2重管熱交換器、プレート型熱交換器などを採用する。なお、本実施の形態1では、一例として、過冷却装置4がプレート型熱交換器を有している場合を例に説明する。
(Supercooling device 4)
The supercooling device 4 is connected to the liquid reservoir 3 on the upstream side and connected to the first expansion device 5 mounted on the load device 200 via the pipe 300 on the downstream side. The supercooling device 4 cools the refrigerant supplied from the liquid reservoir 3 and takes the degree of supercooling of the refrigerant before flowing it through the pipe 300. The supercooling device 4 is used to ensure the refrigeration capacity of the refrigeration cycle device 500.
The subcooling device 4 is not particularly limited with respect to the cooling method of the refrigerant circulating in the heat source device 100 and the load device 200, but employs, for example, a double pipe heat exchanger, a plate type heat exchanger, or the like. In the first embodiment, as an example, the case where the supercooling device 4 has a plate heat exchanger will be described as an example.
 過冷却装置4のプレート型熱交換器には、2つの冷媒が流れる流路が形成されている。すなわち、熱源装置100及び負荷装置200を循環する冷媒が流れる第1流路41と、この流路を流れる冷媒を冷却する冷媒が流れる第2流路45である。
 過冷却装置4は、第2流路45を流れる冷媒の冷熱を、第1流路41を流れる冷媒に供給することができるプレート型熱交換器を有するため、配管300を流れる冷媒に過冷却度をつけることができるようになっている。
The plate type heat exchanger of the supercooling device 4 is formed with a flow path through which two refrigerants flow. That is, the first flow path 41 through which the refrigerant circulating through the heat source device 100 and the load apparatus 200 flows, and the second flow path 45 through which the refrigerant that cools the refrigerant flowing through the flow path flows.
Since the supercooling device 4 includes a plate heat exchanger that can supply the cold heat of the refrigerant flowing through the second flow path 45 to the refrigerant flowing through the first flow path 41, the supercooling degree is reduced to the refrigerant flowing through the pipe 300. Can be turned on.
(インジェクション配管43)
 インジェクション配管43は、上流側の端部が配管300に接続され、下流側の端部が圧縮機1に接続されている配管である。すなわち、インジェクション配管43は、過冷却装置4の第1流路41、第2膨張装置42、及び過冷却装置4の第2流路45を介して圧縮機1に冷媒をインジェクションする配管である。インジェクション配管43には、上流側から順番に、第2膨張装置42及び過冷却装置4の第2流路45が接続されている。
 なお、圧縮機1は、圧縮機1の吸入側から取り入れたときにおける圧力である低圧から、この低圧よりも高い圧力である高圧へと圧縮する途中の工程となる中間ポート(図示なし)を有しており、インジェクション配管43の下流側の端部はこの中間ポートに接続されている。
(Injection piping 43)
The injection pipe 43 is a pipe whose upstream end is connected to the pipe 300 and whose downstream end is connected to the compressor 1. That is, the injection pipe 43 is a pipe that injects refrigerant into the compressor 1 via the first flow path 41 of the supercooling device 4, the second expansion device 42, and the second flow path 45 of the supercooling device 4. The second expansion device 42 and the second flow path 45 of the supercooling device 4 are connected to the injection piping 43 in order from the upstream side.
The compressor 1 has an intermediate port (not shown) that is a process in the middle of compression from a low pressure that is a pressure when taken from the suction side of the compressor 1 to a high pressure that is a pressure higher than the low pressure. The downstream end of the injection pipe 43 is connected to this intermediate port.
(第2膨張装置42)
 第2膨張装置42は、冷媒を膨張させるためのものであり、上流側が配管300に接続され、下流側が過冷却装置4の第2流路45に接続されているものである。第2膨張装置42は、たとえば開度が可変である電子膨張弁などで構成される。なお、第2膨張装置42の開度は、制御装置10により制御される。
(Second expansion device 42)
The second expansion device 42 is for expanding the refrigerant, and has an upstream side connected to the pipe 300 and a downstream side connected to the second flow path 45 of the supercooling device 4. The second expansion device 42 is constituted by an electronic expansion valve whose opening degree is variable, for example. The opening degree of the second expansion device 42 is controlled by the control device 10.
 なお、本実施の形態では、第2膨張装置42が電子膨張弁であるものとして説明するが、それに限定されるものではなく、複数個並列に接続されたキャピラリーチューブにおいてキャピラリーの上流もしくは下流に電磁弁などの流路を制御する弁などを設置し、キャピラリーチューブを通過するパス数を制御することにより、膨張装置における絞り量を制御する構成を採用してもよい。 In the present embodiment, the second expansion device 42 is described as an electronic expansion valve. However, the present invention is not limited to this, and in a plurality of capillary tubes connected in parallel, electromagnetic waves can be placed upstream or downstream of the capillary. A configuration may be employed in which the amount of restriction in the expansion device is controlled by installing a valve or the like for controlling a flow path such as a valve and controlling the number of passes through the capillary tube.
(制御装置10及び設定装置11)
 制御装置10は、外気温度センサ8及び配管温度センサ9の検出値、圧縮機1の吐出冷媒温度、圧縮機シェル温度、吸入冷媒温度の各温度を検出する温度センサ(図示せず)の検出結果、圧縮機1の高圧側圧力及び低圧側圧力の各圧力を検出する圧力センサ(図示せず)の検出結果、設定装置11の出力などに基づいて、圧縮機1の回転数(運転及び停止含む)、凝縮器2に付設される凝縮器ファン7や蒸発器6に付設されるファン(図示なし)の回転数(運転及び停止含む)、第1膨張装置5の開度、及び過冷却装置4などを制御するものである。なお、この制御装置10は、たとえばマイコンなどで構成されるものである。
 また、図1においては制御装置10に設定装置11が接続されているが、これは実施の形態2にて用いられるものである。設定装置11は、設定値等の表示部と設定値の入力部を備えており、例えばスイッチ若しくはボタン又はこれらの組み合わせなどで構成されている。
 なお、制御装置10は、設定装置11とともに熱源装置100の制御基板(図示なし)に搭載されているものとしたが、それに限定されるものではなく、たとえば、負荷装置200側に搭載されていてもよい。
(Control device 10 and setting device 11)
The control device 10 detects a detection result of a temperature sensor (not shown) that detects the detected values of the outside air temperature sensor 8 and the piping temperature sensor 9, the discharge refrigerant temperature of the compressor 1, the compressor shell temperature, and the intake refrigerant temperature. Based on the detection result of a pressure sensor (not shown) that detects each of the high-pressure side pressure and the low-pressure side pressure of the compressor 1, the output of the setting device 11, etc. ), The rotational speed (including operation and stop) of the condenser fan 7 attached to the condenser 2 and the fan (not shown) attached to the evaporator 6, the opening degree of the first expansion device 5, and the supercooling device 4. And so on. In addition, this control apparatus 10 is comprised, for example with a microcomputer.
In FIG. 1, the setting device 11 is connected to the control device 10, which is used in the second embodiment. The setting device 11 includes a setting value display unit and a setting value input unit, and includes, for example, a switch, a button, or a combination thereof.
In addition, although the control apparatus 10 shall be mounted in the control board (not shown) of the heat-source apparatus 100 with the setting apparatus 11, it is not limited to it, For example, it is mounted in the load apparatus 200 side. Also good.
(第1膨張装置5及び蒸発器6)
 第1膨張装置5は、冷媒を膨張させるためのものであり、上流側が配管300を介して過冷却装置4に接続され、下流側が蒸発器6に接続されている。なお、第1膨張装置5は、たとえば開度が可変である電子膨張弁、キャピラリーチューブなどで構成される。蒸発器6は、第1膨張装置5で減圧された冷媒と、空気との間で熱交換を行わせるものである。なお、蒸発器6は、凝縮器2と同様に、たとえば、蒸発器6を流れる冷媒とフィンを通過する空気との間で熱交換ができるようなプレートフィンアンドチューブ型熱交換器で構成される。
(First expansion device 5 and evaporator 6)
The first expansion device 5 is for expanding the refrigerant, and the upstream side is connected to the supercooling device 4 via the pipe 300 and the downstream side is connected to the evaporator 6. In addition, the 1st expansion | swelling apparatus 5 is comprised with the electronic expansion valve, capillary tube, etc. whose opening degree is variable, for example. The evaporator 6 performs heat exchange between the refrigerant decompressed by the first expansion device 5 and the air. In addition, the evaporator 6 is comprised with the plate fin and tube type heat exchanger which can heat-exchange between the refrigerant | coolant which flows through the evaporator 6, and the air which passes a fin similarly to the condenser 2, for example. .
(冷凍サイクル装置500の動作)
 次に図1の冷凍サイクル装置500の動作について説明する。
 冷媒は、圧縮機1にて高温高圧の過熱ガスに圧縮された後、凝縮器2にて空気などの媒体と冷媒との間で熱交換を行うことで、高温高圧の液冷媒に凝縮される。凝縮器2を出た液冷媒は、液溜め3で気液分離され、過冷却装置4により高圧で過冷却が付加された液冷媒とされる。
 過冷却装置4は、液溜め3から冷媒が送られてくる第1流路41と、第1流路41を流れてきた冷媒の一部を過冷却装置4の下流側で分岐させ、第2膨張装置42で膨張させ低圧二相ガスにした冷媒を流す第2流路45とを備える。つまり、第2膨張装置42で膨張させた低圧二相ガスとなった冷媒は、過冷却装置4に入り、第1流路41を流れる高圧側の液冷媒と熱交換する構造である。過冷却装置4に入った低圧二相ガスは、第1流路41の高圧側の液冷媒と熱交換後、インジェクション配管43を通り、圧縮機1の中間圧(中間ポート)に入る。圧縮機1の中間圧に入った低圧二相ガス冷媒は、圧縮機1の吐出温度上昇を抑制し、高温高圧の過熱ガスに圧縮される。
 過冷却装置4で高圧で過冷却された液冷媒のうち負荷装置200側へ流れる液冷媒は、熱源装置100を出て、配管300を通り、負荷装置200に入る。負荷装置200に入った過冷却された液冷媒は、第1膨張装置5で膨張させ低圧二相ガスにし、蒸発器6内で周囲の空気や水と熱交換されて低温低圧の過熱ガスの状態となる。低温低圧の過熱ガスは、負荷装置200を出て、配管400を通り、熱源装置100に戻る。そして、再度圧縮機1に吸入され、高温高圧の過熱ガスに圧縮される。以降、上記の冷媒回路サイクルを繰り返す。
(Operation of refrigeration cycle apparatus 500)
Next, the operation of the refrigeration cycle apparatus 500 of FIG. 1 will be described.
The refrigerant is condensed into a high-temperature and high-pressure liquid refrigerant by performing heat exchange between a medium such as air and the refrigerant in the condenser 2 after being compressed into a high-temperature and high-pressure superheated gas by the compressor 1. . The liquid refrigerant exiting the condenser 2 is separated into gas and liquid in the liquid reservoir 3 and is converted into a liquid refrigerant to which supercooling is added at a high pressure by the supercooling device 4.
The supercooling device 4 branches the first flow path 41 from which the refrigerant is sent from the liquid reservoir 3 and a part of the refrigerant that has flowed through the first flow path 41 on the downstream side of the supercooling device 4. And a second flow path 45 through which the refrigerant expanded by the expansion device 42 and converted into a low-pressure two-phase gas is provided. That is, the refrigerant that has become low-pressure two-phase gas expanded by the second expansion device 42 enters the supercooling device 4 and exchanges heat with the high-pressure liquid refrigerant flowing through the first flow path 41. The low-pressure two-phase gas that has entered the supercooling device 4 exchanges heat with the liquid refrigerant on the high-pressure side of the first flow path 41, passes through the injection pipe 43, and enters the intermediate pressure (intermediate port) of the compressor 1. The low-pressure two-phase gas refrigerant that has entered the intermediate pressure of the compressor 1 is suppressed to a discharge temperature rise of the compressor 1 and is compressed into a high-temperature and high-pressure superheated gas.
Of the liquid refrigerant supercooled at high pressure by the supercooling device 4, the liquid refrigerant flowing toward the load device 200 exits the heat source device 100, passes through the pipe 300, and enters the load device 200. The supercooled liquid refrigerant that has entered the load device 200 is expanded by the first expansion device 5 into a low-pressure two-phase gas, and is heat-exchanged with the surrounding air and water in the evaporator 6 to be in a state of low-temperature and low-pressure superheated gas It becomes. The low-temperature and low-pressure superheated gas leaves the load device 200, passes through the pipe 400, and returns to the heat source device 100. Then, it is again sucked into the compressor 1 and compressed into a high-temperature and high-pressure superheated gas. Thereafter, the above refrigerant circuit cycle is repeated.
 このように、上記の冷凍サイクル装置500では、凝縮器2を出た液冷媒は、過冷却装置4により、液冷媒温度を低下させることで、冷凍サイクル装置500の能力を増大させることができる。しかし、過冷却装置4によって、配管300の配管温度が周囲の露点温度を下回ると、配管表面から結露が発生する。例えば、配管300が配置されている店舗の天井裏などに結露水が垂れることになる。これを回避するために、実施の形態1の冷凍サイクル装置500には、以下のような手段が採用されている。 Thus, in the refrigeration cycle apparatus 500 described above, the liquid refrigerant that has exited the condenser 2 can increase the capacity of the refrigeration cycle apparatus 500 by lowering the liquid refrigerant temperature by the supercooling apparatus 4. However, when the pipe temperature of the pipe 300 is lower than the surrounding dew point temperature by the supercooling device 4, dew condensation occurs from the pipe surface. For example, condensed water hangs down the ceiling of a store where the pipe 300 is disposed. In order to avoid this, the following means is adopted in the refrigeration cycle apparatus 500 of the first embodiment.
(凝縮器ファン7の制御)
 制御装置10は、冷凍サイクル装置500が起動すると、その動作中、凝縮器2の空気吸込温度を検出する外気温度センサ8、及び熱源装置100内で過冷却装置4の下流の配管300の温度を検出する配管温度センサ9の各検出値を取り込んで、それらの値を比較する。そして、配管300の配管温度が、凝縮器2の吸込空気温度とほぼ等しい場合には、制御装置10は、特別な制御を行わず現状のまま運転を継続する。これに対して、凝縮器2の吸込温度の値から配管300の配管温度の値を引いた温度差が、設定値を超える場合には、凝縮器ファン7を停止するか、又は減速を行うように制御する。例えば、凝縮器2の吸込空気温度が、配管300の配管温度より6K高い場合に、凝縮器ファン7の回転速度を、通常の回転速度の80%を上限に減速するように制御する。
 凝縮器ファン7の回転速度が低下すると、凝縮器2に送り込まれる単位時間当たりの空気の量が低下するため、凝縮器2での冷媒の温度の低下が抑制される。すると、過冷却装置4に流れ込む冷媒の温度が上がり、配管300を通過する冷媒の温度も上がるため、凝縮器ファン7の回転速度が低下する前と比較すると、配管300の温度は上昇することになる。
(Control of condenser fan 7)
When the refrigeration cycle apparatus 500 is activated, the control device 10 determines the temperature of the outside air temperature sensor 8 that detects the air suction temperature of the condenser 2 and the temperature of the pipe 300 downstream of the supercooling device 4 in the heat source device 100 during the operation. The detected values of the pipe temperature sensor 9 to be detected are taken in and compared with each other. And when the piping temperature of the piping 300 is substantially equal to the suction air temperature of the condenser 2, the control apparatus 10 continues operation | movement as it is, without performing special control. On the other hand, when the temperature difference obtained by subtracting the pipe temperature value of the pipe 300 from the suction temperature value of the condenser 2 exceeds the set value, the condenser fan 7 is stopped or decelerated. To control. For example, when the intake air temperature of the condenser 2 is 6K higher than the pipe temperature of the pipe 300, the rotation speed of the condenser fan 7 is controlled to be reduced to an upper limit of 80% of the normal rotation speed.
When the rotational speed of the condenser fan 7 decreases, the amount of air per unit time fed into the condenser 2 decreases, so that a decrease in the refrigerant temperature in the condenser 2 is suppressed. Then, the temperature of the refrigerant flowing into the supercooling device 4 rises and the temperature of the refrigerant passing through the pipe 300 also rises, so that the temperature of the pipe 300 rises compared to before the rotational speed of the condenser fan 7 is lowered. Become.
 以上のように、本実施の形態の冷凍サイクル装置500によれば、凝縮器2の吸込み空気温度が32℃の場合、配管300の配管温度が26℃より低くなると、配管300の温度が26℃以上になるまで、凝縮器ファン7の回転速度が100%から80%に減速する。配管温度が26℃の場合、配管300の表面が結露する相対湿度は、RH=62%である。よって、冷凍サイクル装置500の設置環境が、相対湿度RH=62%以下であれば、配管300に結露を発生せずに、最大限の過冷却を確保できる能力を発揮することができるようになる。
 例えば上記のように冷凍サイクル装置500を制御し、配管300に結露を発生させないことにより、配管300を店舗の天井裏に設置した場合において、結露水による天井裏のカビなどの繁殖や、天井からの水漏れを防止できる。また、配管300に結露が発生しない範囲内で冷媒の過冷却を取ることができるので、天井裏などに配置された液配管に断熱処理を施すなどの大がかりな工事も不要となり、冷凍サイクル装置500の設置工事費を安価にすることが可能となる。さらに、既に配管が施工された既存店舗の冷凍サイクル装置に対して冷凍能力を大きくするために過冷却装置を追加する場合に、過冷却装置4の適用が容易に可能となる。
As described above, according to the refrigeration cycle apparatus 500 of the present embodiment, when the intake air temperature of the condenser 2 is 32 ° C., when the pipe temperature of the pipe 300 becomes lower than 26 ° C., the temperature of the pipe 300 becomes 26 ° C. Until this is reached, the rotational speed of the condenser fan 7 is reduced from 100% to 80%. When the pipe temperature is 26 ° C., the relative humidity at which the surface of the pipe 300 is condensed is RH = 62%. Therefore, if the installation environment of the refrigeration cycle apparatus 500 is a relative humidity RH = 62% or less, it is possible to exhibit the ability to ensure maximum supercooling without causing condensation in the pipe 300. .
For example, by controlling the refrigeration cycle apparatus 500 as described above and preventing the condensation on the pipe 300, when the pipe 300 is installed on the ceiling of the store, breeding of mold on the ceiling due to condensed water, or from the ceiling Can prevent water leakage. In addition, since the refrigerant can be supercooled within a range in which condensation does not occur in the pipe 300, a large-scale work such as heat insulation treatment is not required for the liquid pipe disposed on the ceiling or the like, and the refrigeration cycle apparatus 500 is eliminated. It is possible to reduce the installation cost of the installation. Furthermore, the supercooling device 4 can be easily applied when a supercooling device is added to increase the refrigeration capacity with respect to the refrigeration cycle device of an existing store where piping has already been installed.
 実施の形態2.
 実施の形態1では、凝縮器2の吸込温度の値から配管300の配管温度の値を引いた温度差が、設定値を超える場合に凝縮器ファン7を停止又は減速する方法について述べたが、本実施の形態では、さらに設定値を熱源装置100から変更可能にし、凝縮器ファン7の風量の変更を設定値に応じて可能にした場合の構成について述べる。
Embodiment 2. FIG.
In the first embodiment, the method of stopping or decelerating the condenser fan 7 when the temperature difference obtained by subtracting the pipe temperature value of the pipe 300 from the suction temperature value of the condenser 2 exceeds the set value has been described. In the present embodiment, a configuration in which the set value can be changed from the heat source device 100 and the air volume of the condenser fan 7 can be changed according to the set value will be described.
 本実施の形態に係る冷凍サイクル装置500は、熱源装置100内の制御装置10に設定値等の表示部と設定値の入力部である設定装置11を備えている。
 本実施の形態に係る冷凍サイクル装置500の冷媒回路図と動作は、実施の形態1と同じである。
 制御装置10は、定期的に、圧縮機1の高圧側圧力及び低圧側圧力の各圧力を検出する圧力センサの検出値と、配管300の温度を検出する配管温度センサ9の検出値と、凝縮器2の空気吸込温度を検出する外気温度センサ8の検出値とを読み取り、凝縮器2の空気吸込温度と配管300の温度との温度差の設定値を超えないように予測し、凝縮器ファン7の風量の調整を行う。
The refrigeration cycle apparatus 500 according to the present embodiment includes a control unit 10 in the heat source apparatus 100 including a display unit for setting values and a setting device 11 that is a setting value input unit.
The refrigerant circuit diagram and operation of the refrigeration cycle apparatus 500 according to the present embodiment are the same as those in the first embodiment.
The control device 10 periodically detects the detection value of the pressure sensor that detects the high-pressure side pressure and the low-pressure side pressure of the compressor 1, the detection value of the pipe temperature sensor 9 that detects the temperature of the pipe 300, and condensation. The detected value of the outside air temperature sensor 8 that detects the air suction temperature of the condenser 2 is read, and it is predicted not to exceed the set value of the temperature difference between the air suction temperature of the condenser 2 and the temperature of the pipe 300, and the condenser fan The air volume of 7 is adjusted.
 ここでは、スイッチ又は、ボタンなどで、凝縮器2の空気吸込温度と配管300の温度との温度差の設定値を入力するとしたが、スケジュール機能を持ち、あらかじめ日々の時間帯ごとの設定値を決めておき、時間帯ごとに設定値を変更してもよい。また、熱源装置100と負荷装置200との間で電気的に通信で接続され、負荷装置200側からの操作により、凝縮器2の空気吸込温度と配管300の温度との温度差の設定値を変更する構成でもよい。
 また、制御装置10に入力される値は、凝縮器2の空気吸込温度と配管300の温度との差に代えて、相対湿度を入力しても良い。その場合は、入力した相対湿度と凝縮器2の空気吸込温度の検出値とから露点を算出し、必要となる配管300の温度を算出する。そして、配管300の温度が算出した温度を下回らないように、冷凍サイクル装置500の運転状態に合わせ、凝縮器ファン7の風量を調整する。
Here, the switch or button is used to input the set value of the temperature difference between the air suction temperature of the condenser 2 and the temperature of the pipe 300, but it has a schedule function and sets the set value for each daily time zone in advance. The set value may be changed for each time zone. In addition, the heat source device 100 and the load device 200 are electrically connected to each other by communication, and a set value of a temperature difference between the air suction temperature of the condenser 2 and the temperature of the pipe 300 is set by an operation from the load device 200 side. The configuration may be changed.
In addition, as a value input to the control device 10, relative humidity may be input instead of the difference between the air suction temperature of the condenser 2 and the temperature of the pipe 300. In that case, the dew point is calculated from the input relative humidity and the detected value of the air suction temperature of the condenser 2, and the required temperature of the pipe 300 is calculated. Then, the air volume of the condenser fan 7 is adjusted in accordance with the operating state of the refrigeration cycle apparatus 500 so that the temperature of the pipe 300 does not fall below the calculated temperature.
 以上のように、本実施の形態によれば、外部から設定値を入力することにより、凝縮器ファン7の風量を調整できるようになる。適当な設定値を入力することにより、配管300の配管温度は、常に結露しない温度で制御することができる。これにより、実施の形態1で述べた効果に加え、冷凍サイクル装置が設置される現地の環境に合わせ、柔軟に設定値の変更をすることができる。 As described above, according to the present embodiment, the air volume of the condenser fan 7 can be adjusted by inputting a set value from the outside. By inputting an appropriate set value, the pipe temperature of the pipe 300 can be controlled at a temperature that does not always cause condensation. Thereby, in addition to the effects described in the first embodiment, the set value can be flexibly changed in accordance with the local environment where the refrigeration cycle apparatus is installed.
 実施の形態3.
 本実施の形態では、実施の形態1及び2に係る冷凍サイクル装置500が、凝縮器ファン7の風量調整だけでなく、さらに第2膨張装置42の開度調整による結露抑制を併用した場合の構成について述べる。
Embodiment 3 FIG.
In the present embodiment, the refrigeration cycle apparatus 500 according to the first and second embodiments is configured not only to adjust the air volume of the condenser fan 7 but also to suppress condensation by adjusting the opening degree of the second expansion device 42. Is described.
[第2膨張装置42の開度調整による結露抑制をしたときの冷媒サイクルの流れ]
 本実施の形態に係る冷凍サイクル装置500は、実施の形態1及び2と同じ冷媒回路である。
 設定装置11から制御装置10に指示をすることにより、冷凍サイクル装置500は、過冷却装置4を経た冷媒に過冷却度を大きくつける運転モードである冷凍能力優先モードと、過冷却度を大きくしないモードである結露抑制優先モードを切り替えて運転することができる。
[Flow of refrigerant cycle when dew condensation is suppressed by adjusting opening of second expansion device 42]
The refrigeration cycle apparatus 500 according to the present embodiment is the same refrigerant circuit as in the first and second embodiments.
By instructing the control device 10 from the setting device 11, the refrigeration cycle device 500 does not increase the degree of supercooling and the refrigeration capacity priority mode, which is an operation mode in which the degree of supercooling is increased for the refrigerant that has passed through the supercooling device 4. It is possible to operate by switching the dew condensation suppression priority mode that is the mode.
 図1を参照しながら、過冷却装置4などを流れる冷媒の流れについて説明する。
 液溜め3から流出した高圧の冷媒は、過冷却装置4の第1流路41に流入する。そして、この第1流路41に流入した冷媒は、第2流路45に流入した冷媒と熱交換を行って冷却され、過冷却をつける。
The flow of the refrigerant flowing through the supercooling device 4 and the like will be described with reference to FIG.
The high-pressure refrigerant that has flowed out of the liquid reservoir 3 flows into the first flow path 41 of the supercooling device 4. The refrigerant that has flowed into the first flow path 41 is cooled by exchanging heat with the refrigerant that has flowed into the second flow path 45, and is supercooled.
 過冷却装置4の第1流路41から流出し、過冷却された冷媒の一部は、配管300を介して熱源装置100から流出し、負荷装置200へと流入する。過冷却装置4の第1流路41から流出した冷媒の残りは、インジェクション配管43に流入して配管300の流れから分岐し、第2膨張装置42を通り減圧されて温度が低下する。そして、この温度が低下した冷媒は、過冷却装置4の第2流路45に流入し、第1流路41の冷媒と熱交換する。 A part of the supercooled refrigerant that flows out from the first flow path 41 of the supercooling device 4 flows out from the heat source device 100 via the pipe 300 and flows into the load device 200. The remainder of the refrigerant that has flowed out of the first flow path 41 of the supercooling device 4 flows into the injection pipe 43 and branches off from the flow of the pipe 300, is reduced in pressure through the second expansion device 42, and decreases in temperature. Then, the refrigerant having the lowered temperature flows into the second flow path 45 of the supercooling device 4 and exchanges heat with the refrigerant in the first flow path 41.
 過冷却装置4の第2流路45から流出した冷媒は、インジェクション配管43を通って、圧縮機1の中間ポートに流入し圧縮機1から吐出するガス冷媒の温度を下げるのに利用される。すなわち、過冷却装置4の第2流路45から流出した冷媒は、圧縮機1にインジェクションされて、圧縮機1から吐出されるガス冷媒の温度上昇を抑制し、冷凍機油の劣化の抑制などに利用される。 The refrigerant that has flowed out from the second flow path 45 of the supercooling device 4 is used to lower the temperature of the gas refrigerant that flows into the intermediate port of the compressor 1 through the injection pipe 43 and is discharged from the compressor 1. That is, the refrigerant that has flowed out of the second flow path 45 of the supercooling device 4 is injected into the compressor 1 to suppress the temperature rise of the gas refrigerant discharged from the compressor 1, and to suppress deterioration of the refrigeration machine oil. Used.
 第2膨張装置42の開度を大きくすると、配管300から分岐してインジェクション配管43に供給される冷媒の流量が多くなる一方で、減圧量が小さいため圧縮機1の中間ポートに入る冷媒圧力(中間圧圧力)は高くなり、冷媒温度も高くなる傾向にある。それに伴い、圧縮機1から吐出されるガスの圧力(高圧圧力)も上昇する。逆に、第2膨張装置42の開度を小さくすると、配管300から分岐してインジェクション配管43に供給される冷媒の流量が小さくなり、冷媒圧力(中間圧圧力)は低くなり、冷媒温度も小さくなる。それに伴い、圧縮機1から吐出されるガスの圧力(高圧圧力)も低下する。 When the opening degree of the second expansion device 42 is increased, the flow rate of the refrigerant branched from the pipe 300 and supplied to the injection pipe 43 is increased. On the other hand, the refrigerant pressure entering the intermediate port of the compressor 1 is small because the pressure reduction amount is small. The intermediate pressure (pressure) increases and the refrigerant temperature tends to increase. Accordingly, the pressure of the gas discharged from the compressor 1 (high pressure) also increases. Conversely, when the opening degree of the second expansion device 42 is reduced, the flow rate of the refrigerant branched from the pipe 300 and supplied to the injection pipe 43 is reduced, the refrigerant pressure (intermediate pressure pressure) is reduced, and the refrigerant temperature is also reduced. Become. Along with this, the pressure of the gas discharged from the compressor 1 (high pressure) also decreases.
[冷凍サイクル装置500のモリエル線図]
 図2は、実施の形態3に係る冷凍サイクル装置500のモリエル線図である。図2のモリエル線図を参照して第2膨張装置42の開度に応じた冷媒状態を説明する。
 なお、図2の説明では、第2膨張装置42の開度を(1)小さくした場合、及び(2)この(1)よりも相対的に大きくした場合、について定性的な説明をするものとする。
 また、(1)及び(2)のいずれの場合においても、第1膨張装置5で減圧した後の圧力である「低圧圧力」が同じとした場合について説明する。
 なお、(1)の場合が、図2の実線に対応しており、(2)の場合が、図2の点線に対応している。
[Mollier diagram of refrigeration cycle apparatus 500]
FIG. 2 is a Mollier diagram of the refrigeration cycle apparatus 500 according to the third embodiment. A refrigerant state corresponding to the opening degree of the second expansion device 42 will be described with reference to the Mollier diagram of FIG.
In the description of FIG. 2, qualitative explanation is given for the case where the opening degree of the second expansion device 42 is (1) smaller and (2) the case where it is relatively larger than (1). To do.
In both cases (1) and (2), the case where the “low pressure”, which is the pressure after depressurization by the first expansion device 5, is assumed to be the same, will be described.
The case (1) corresponds to the solid line in FIG. 2, and the case (2) corresponds to the dotted line in FIG.
 まず、(1)の場合について説明する。
 第2膨張装置42の開度を(2)の場合よりも小さくすると、図2の実線に示すように、中間圧圧力及び高圧圧力(冷媒凝縮温度=冷媒飽和液温度)は低くなる。
 この(1)の場合には、圧縮機1から凝縮器2に流入する冷媒及び凝縮器2から流出する冷媒の圧力である「高圧圧力」が、(2)の場合よりも相対的に低くなる(図2のP1とQ1を参照)。このため、凝縮器2での放熱性能が同じである場合には、凝縮器2から流出する冷媒温度(≒冷媒凝縮温度=冷媒飽和液温度となる)は、(2)の場合よりも相対的に低くなる。
First, the case of (1) will be described.
When the opening degree of the second expansion device 42 is made smaller than in the case (2), the intermediate pressure and the high pressure (refrigerant condensation temperature = refrigerant saturated liquid temperature) are lowered as shown by the solid line in FIG.
In the case of (1), the “high pressure” which is the pressure of the refrigerant flowing into the condenser 2 from the compressor 1 and the refrigerant flowing out of the condenser 2 is relatively lower than in the case of (2). (See P1 and Q1 in FIG. 2). For this reason, when the heat dissipation performance in the condenser 2 is the same, the refrigerant temperature flowing out of the condenser 2 (≈refrigerant condensation temperature = refrigerant saturated liquid temperature) is more relative than in the case of (2). It becomes low.
 また、(1)の場合には、第2膨張装置42を通過し、インジェクション配管43を流れる冷媒の圧力である「中間圧圧力」も、(2)の場合よりも相対的に低くなる(図2のP2とQ2を参照)。
 すなわち、(2)の場合と比較すると、(1)の場合には、「高圧圧力の低下」及び「過冷却装置4の第1流路41を通過し、第2膨張装置42に流入する前の冷媒温度の低下(高圧液冷媒の温度の低下)」をしており(P1参照)、第2膨張装置42で減圧される「中間圧圧力」の冷媒の温度も低下する(P2参照)。
 したがって、(1)の場合には、過冷却装置4で熱交換された後の液冷媒が、(2)の場合と比較すると、低い温度で流出することとなる。すなわち、第1膨張装置5には、低い温度の冷媒が流れることになり、蒸発器6の冷媒流入側と冷媒流出側とでのエンタルピ差が大きくすることができ、冷凍サイクル装置500の冷凍能力が向上する。
In the case of (1), the “intermediate pressure” that is the pressure of the refrigerant passing through the second expansion device 42 and flowing through the injection pipe 43 is also relatively lower than in the case of (2) (FIG. 2 P2 and Q2).
That is, as compared with the case of (2), in the case of (1), before “lowering the high pressure” and “passing through the first flow path 41 of the supercooling device 4 and flowing into the second expansion device 42” (Refer to P1), and the temperature of the “intermediate pressure” refrigerant reduced by the second expansion device 42 also decreases (see P2).
Therefore, in the case of (1), the liquid refrigerant after heat exchange in the supercooling device 4 flows out at a lower temperature than in the case of (2). That is, low temperature refrigerant flows through the first expansion device 5, and the enthalpy difference between the refrigerant inflow side and the refrigerant outflow side of the evaporator 6 can be increased, and the refrigeration capacity of the refrigeration cycle apparatus 500 can be increased. Will improve.
 さらに、(1)の場合には、「高圧圧力」が低下することにより、圧縮機1の必要動力も小さくなることから、消費電力も低下する。したがって、COP(冷凍能力と消費電力の比)が大きくなり省エネルギーとなる。 Furthermore, in the case of (1), since the required power of the compressor 1 is reduced due to the decrease in the “high pressure”, the power consumption is also reduced. Therefore, COP (ratio of refrigerating capacity and power consumption) is increased and energy is saved.
 なお、(1)の場合のように、第2膨張装置42の開度を小さくすると、(2)の場合と比較すると、「高圧液冷媒の温度の低下」をすると述べたが、必要以上に第2膨張装置42の開度を小さくしすぎると、インジェクション配管43における冷媒流量が小さくなりすぎ、過冷却装置4で第1流路41と第2流路45との間の熱交換が行われなくなり、第1流路41の高圧液冷媒の温度が逆に高くなる場合があることに注意する必要がある。
 また、第2膨張装置42は、圧縮機1の吐出冷媒の温度を下げるインジェクションとしての役割も兼ねている。このため、必要以上に第2膨張装置42の開度を小さくしすぎると、圧縮機1の吐出冷媒温度が上昇し圧縮機1が故障にいたる可能性もある。そこで、圧縮機1が故障しない最低限の開度を維持しておく必要があることにも注意する。
In addition, as described in (1), when the opening degree of the second expansion device 42 is reduced, it is described that “the temperature of the high-pressure liquid refrigerant is decreased” compared to the case of (2). If the opening degree of the second expansion device 42 is too small, the refrigerant flow rate in the injection pipe 43 becomes too small, and heat exchange between the first flow path 41 and the second flow path 45 is performed in the supercooling device 4. It should be noted that the temperature of the high-pressure liquid refrigerant in the first flow path 41 may increase instead.
The second expansion device 42 also serves as an injection for lowering the temperature of the refrigerant discharged from the compressor 1. For this reason, if the opening degree of the second expansion device 42 is made smaller than necessary, the discharge refrigerant temperature of the compressor 1 may rise and the compressor 1 may break down. Therefore, it should be noted that it is necessary to maintain a minimum opening degree at which the compressor 1 does not break down.
 次に、(2)の場合について説明する。
 第2膨張装置42の開度を大きくした場合は、(1)とは逆となる。すなわち、(1)と比較して、「高圧圧力の上昇」及び「過冷却装置4の第1流路41を通過し、第2膨張装置42に流入する前の冷媒温度の上昇」をしており(Q1参照)、第2膨張装置42で減圧される「中間圧圧力」の冷媒の温度も上昇している(Q2参照)。
 なお、(2)の場合の注意点としては、圧縮機1の中間ポートに流入する冷媒流量が、(1)と比較すると相対的に多くなり、吐出冷媒温度が低くなり、圧縮機1の故障の原因となることである。
Next, the case of (2) will be described.
When the opening degree of the second expansion device 42 is increased, this is the reverse of (1). That is, as compared with (1), “increase in high pressure” and “increase in refrigerant temperature before passing through the first flow path 41 of the supercooling device 4 and flowing into the second expansion device 42”. (Refer to Q1), the temperature of the “intermediate pressure” refrigerant decompressed by the second expansion device 42 is also increased (see Q2).
Note that in the case of (2), the flow rate of the refrigerant flowing into the intermediate port of the compressor 1 is relatively larger than that in (1), the discharged refrigerant temperature is lowered, and the compressor 1 is broken. It is to cause.
 このように、第2膨張装置42の開度に応じて冷媒状態を変化させることができる。
 冷凍サイクル装置500において冷凍能力優先モードを実行することは、図2の実線に示すモリエル線図に近づけることに対応し、冷凍サイクル装置500において結露抑制優先モードを実行することは、図2の点線に示すモリエル線図に近づけることに対応している。
 図2に基づいて冷凍能力優先モード及び結露抑制優先モードの定性的な説明をしたが、次に、第2膨張装置42の開度調整による結露抑制優先モードについての具体的な制御方法について説明する。
Thus, the refrigerant state can be changed according to the opening degree of the second expansion device 42.
Executing the refrigeration capacity priority mode in the refrigeration cycle apparatus 500 corresponds to approaching the Mollier diagram shown by the solid line in FIG. 2, and executing the dew condensation suppression priority mode in the refrigeration cycle apparatus 500 is indicated by the dotted line in FIG. This corresponds to approaching the Mollier diagram shown in FIG.
The refrigeration capacity priority mode and the dew condensation suppression priority mode have been qualitatively described based on FIG. 2, and then a specific control method for the dew condensation suppression priority mode by adjusting the opening of the second expansion device 42 will be described. .
[第2膨張装置42の開度調整による結露抑制優先モードでの制御フロー]
 図3は、本実施の形態に係る冷凍サイクル装置500の第2膨張装置42の開度調整による結露抑制優先モードの制御フローの一例である。また、図4の制御開始(START)は、第2膨張装置42の開度調整による結露抑制優先モードに設定した時点である。図3を参照して、第2膨張装置42の開度調整による結露抑制優先モードについて説明する。
[Control flow in the dew condensation suppression priority mode by adjusting the opening of the second expansion device 42]
FIG. 3 is an example of a control flow of the dew condensation suppression priority mode by adjusting the opening of the second expansion device 42 of the refrigeration cycle apparatus 500 according to the present embodiment. Also, the control start (START) in FIG. 4 is the time when the dew condensation suppression priority mode is set by adjusting the opening of the second expansion device 42. With reference to FIG. 3, the dew condensation suppression priority mode by the opening degree adjustment of the second expansion device 42 will be described.
(ステップU0)
 制御装置10は、第2膨張装置42の開度調整による結露抑制優先モードの制御に移行する。
(Step U0)
The control device 10 shifts to control in the dew condensation suppression priority mode by adjusting the opening of the second expansion device 42.
(ステップU1)
 制御装置10は、圧縮機1の吐出冷媒温度が、予め設定された値(下限規定値)以上であるか否かを判定する。なお、予め設定された値は、たとえば、70℃などに設定される。予め設定された値以上である場合には、ステップU2に移行する。予め設定された値以上でない場合には、ステップU3に移行する。
(Step U1)
The control device 10 determines whether or not the discharge refrigerant temperature of the compressor 1 is equal to or higher than a preset value (lower limit specified value). The preset value is set to 70 ° C., for example. If the value is equal to or greater than the preset value, the process proceeds to step U2. If it is not equal to or greater than the preset value, the process proceeds to step U3.
(ステップU2)
 制御装置10は、第2膨張装置42の開度を大きくする。
 圧縮機1の吐出冷媒温度が下限規定値(たとえば70℃)以上の場合には、第2膨張装置42の開度を大きくし、「高圧圧力」及び「中間圧圧力」を大きくすることで、「高圧液冷媒」の温度を高くする。この「高圧液冷媒」が配管300を流れる冷媒であるが、「高圧液冷媒」の温度が高くなる分、配管300の温度も上昇し、結露が抑制される。
 なお、本ステップU2における第2膨張装置42の開度は、後述のステップU3における第2膨張装置42の開度よりも大きい。
(Step U2)
The control device 10 increases the opening degree of the second expansion device 42.
When the refrigerant discharge temperature of the compressor 1 is equal to or higher than a lower limit specified value (for example, 70 ° C.), the opening degree of the second expansion device 42 is increased, and the “high pressure” and “intermediate pressure” are increased, Increase the temperature of the “high-pressure liquid refrigerant”. This “high-pressure liquid refrigerant” is a refrigerant that flows through the pipe 300, but as the temperature of the “high-pressure liquid refrigerant” increases, the temperature of the pipe 300 also increases, and condensation is suppressed.
In addition, the opening degree of the 2nd expansion apparatus 42 in this step U2 is larger than the opening degree of the 2nd expansion apparatus 42 in below-mentioned step U3.
(ステップU3)
 制御装置10は、第2膨張装置42の開度を小さくする。
 圧縮機1の吐出冷媒温度が下限規定値以下の場合には、圧縮機1の吐出冷媒温度が低すぎて故障の原因となる。そこで、第2膨張装置42の開度を小さくし、圧縮機1にインジェクションされる冷媒の流量を小さくし、圧縮機1の吐出冷媒を冷却するインジェクション流量を減らすことにより、圧縮機1の吐出冷媒温度を上昇させる。
 ただし、本ステップU3では、配管300が結露しない範囲の温度になるように、第2膨張装置42の開度を小さくする。
(Step U3)
The control device 10 reduces the opening degree of the second expansion device 42.
When the discharge refrigerant temperature of the compressor 1 is equal to or lower than the lower limit specified value, the discharge refrigerant temperature of the compressor 1 is too low, causing a failure. Therefore, the discharge refrigerant of the compressor 1 is reduced by reducing the opening degree of the second expansion device 42, reducing the flow rate of the refrigerant injected into the compressor 1, and reducing the injection flow rate for cooling the discharge refrigerant of the compressor 1. Increase temperature.
However, in this step U3, the opening degree of the second expansion device 42 is reduced so that the temperature of the pipe 300 is in a range where condensation does not occur.
[凝縮器ファン7の風量調整に第2膨張装置42の開度調整による結露抑制優先モードを併用した場合の制御]
 本実施の形態での、凝縮器ファン7の風量調整に加えて第2膨張措置の開度調整による結露抑制優先モードを併用した場合の制御について説明する。
 凝縮器ファン7の回転速度を減速させる制御をした場合は、凝縮器2から流出する冷媒の温度低下が抑制されるため、配管300の温度が上昇し、結露を抑制する方向に制御される。
 一方、上記で述べた結露抑制優先モードにおいて結露することを抑制する制御手段は、インジェクション配管43と第2膨張装置42を使うものであり、圧縮機1の高圧高温の吐出冷媒温度を、液バックしない程度まで下げるようにするものである。つまり、第2膨張装置42の開度を大きくし、圧縮機1の中間圧へのインジェクション流量を増やすようにしている。インジェクション流量が増大すると、圧縮機1内での入力(仕事量)が大きくなり、凝縮器2の高圧圧力とインジェクション配管43の中間圧圧力が、上昇することになる。よって、過冷却装置4での熱交換後の配管300の液温度は、中間圧圧力の飽和温度になるため、インジェクション流量の増加は、配管300の液温度を上げることになる(図2のQ1及びQ2を参照)。つまり、凝縮器2の空気吸込温度よりも配管300の配管温度が低い場合に、凝縮器2の空気吸込温度から配管300の配管温度を引いた差は小さくなるため、配管300の結露を抑制する方向に制御することができる。
[Control when Condensation Suppression Priority Mode is Adjusted by Adjusting Opening of Second Expansion Device 42 for Adjusting Air Volume of Condenser Fan 7]
In the present embodiment, the control in the case where the dew condensation suppression priority mode based on the opening degree adjustment of the second expansion measure is used together with the air volume adjustment of the condenser fan 7 will be described.
When control is performed to reduce the rotational speed of the condenser fan 7, the temperature of the pipe 300 is increased and the condensation is suppressed in order to suppress the temperature drop of the refrigerant flowing out of the condenser 2.
On the other hand, the control means for suppressing condensation in the condensation suppression priority mode described above uses the injection pipe 43 and the second expansion device 42, and the high-pressure and high-temperature discharge refrigerant temperature of the compressor 1 is changed to the liquid back. It should be lowered to the extent that it does not. That is, the opening degree of the second expansion device 42 is increased, and the injection flow rate to the intermediate pressure of the compressor 1 is increased. When the injection flow rate increases, the input (work amount) in the compressor 1 increases, and the high pressure of the condenser 2 and the intermediate pressure of the injection pipe 43 increase. Therefore, since the liquid temperature of the pipe 300 after heat exchange in the supercooling device 4 becomes the saturation temperature of the intermediate pressure, an increase in the injection flow rate increases the liquid temperature of the pipe 300 (Q1 in FIG. 2). And Q2). That is, when the pipe temperature of the pipe 300 is lower than the air suction temperature of the condenser 2, the difference obtained by subtracting the pipe temperature of the pipe 300 from the air suction temperature of the condenser 2 is reduced, so that dew condensation on the pipe 300 is suppressed. Can be controlled in the direction.
 すなわち、凝縮器ファン7の風量調整と第2膨張装置42の開度調整による結露抑制優先モードとの併用は、配管300の結露防止効果をさらに向上させることが可能となる。
 特に、凝縮器2の熱交換器容量が大きい場合においては、上記で述べた結露抑制優先モードでの第2膨張装置42の開度を大きくしても(例えば、図3のU2の場合)、インジェクション配管43の流量(つまり中間圧圧力)の上昇幅が小さく、圧縮機1の吐出側が高圧ならず、配管300の配管温度の上昇幅が小さい。また、第2膨張装置42の開度を大きくしすぎると、圧縮機1の吐出冷媒を冷却しすぎてしまい、吐出冷媒温度が低くなり圧縮機1の故障に至るような場合もある。このような場合に、凝縮器2の吸い込み空気温度と配管300の温度の差を検出し、その差の値が設定値を超えていた場合は凝縮器ファン7の回転速度を減速させることにより、配管300の温度を上昇させることができる。つまり、凝縮器ファン7の風量調整に第2膨張装置42の開度調整による結露抑制優先モードを併用することにより、第2膨張装置42の開度を過度に大きくすることなく、配管300の結露防止効果を確保することができる。
That is, the combined use of the dew condensation suppression priority mode by adjusting the air volume of the condenser fan 7 and adjusting the opening of the second expansion device 42 can further improve the dew condensation prevention effect of the pipe 300.
In particular, when the heat exchanger capacity of the condenser 2 is large, even if the opening of the second expansion device 42 in the dew condensation suppression priority mode described above is increased (for example, in the case of U2 in FIG. 3), The increase rate of the flow rate (that is, intermediate pressure) of the injection pipe 43 is small, the discharge side of the compressor 1 is not high pressure, and the increase range of the pipe temperature of the pipe 300 is small. Moreover, if the opening degree of the second expansion device 42 is increased too much, the refrigerant discharged from the compressor 1 is cooled too much, and the temperature of the refrigerant discharged becomes low, leading to failure of the compressor 1 in some cases. In such a case, the difference between the intake air temperature of the condenser 2 and the temperature of the pipe 300 is detected, and if the difference value exceeds the set value, the rotational speed of the condenser fan 7 is reduced, The temperature of the piping 300 can be raised. That is, by using together with the dew condensation suppression priority mode by adjusting the opening degree of the second expansion device 42 for adjusting the air volume of the condenser fan 7, the dew condensation of the pipe 300 is prevented without excessively increasing the opening degree of the second expansion device 42. The prevention effect can be ensured.
 また、凝縮器ファン7の回転速度を減速させる制御と第2膨張装置42の開度調整による結露抑制優先モードを併用した場合には、第2膨張装置42の開度を過度に大きくする必要がなく、圧縮機1の中間圧へのインジェクション流量が過度に大きくなることはないため、圧縮機1の中間圧での液バックは生じなくなる。 Further, when the control for decelerating the rotation speed of the condenser fan 7 and the dew condensation suppression priority mode by adjusting the opening of the second expansion device 42 are used in combination, it is necessary to excessively increase the opening of the second expansion device 42. In addition, since the injection flow rate to the intermediate pressure of the compressor 1 does not become excessively large, liquid back at the intermediate pressure of the compressor 1 does not occur.
1 圧縮機、2 凝縮器(放熱器)、3 液溜め、4 過冷却装置、5 第1膨張装置、6 蒸発器、7 凝縮器ファン、8 外気温度センサ、9 配管温度センサ、10 制御装置、11 設定装置、41 第1流路、42 第2膨張装置、43 インジェクション配管、45 第2流路、100 熱源装置、200 負荷装置、300 (液冷媒が通る)配管、400 (吸入ガスが通る)配管、500 冷凍サイクル装置。 1 compressor, 2 condenser (radiator), 3 liquid reservoir, 4 subcooling device, 5 first expansion device, 6 evaporator, 7 condenser fan, 8 outside air temperature sensor, 9 pipe temperature sensor, 10 control device, 11 setting device, 41 1st flow path, 42 2nd expansion device, 43 injection pipe, 45 2nd flow path, 100 heat source device, 200 load device, 300 (liquid refrigerant passes), 400 (suction gas passes) Piping, 500 refrigeration cycle equipment.

Claims (4)

  1.  圧縮機、凝縮器、第1膨張装置、及び蒸発器を冷媒配管で接続した冷媒回路を有し、前記圧縮機及び前記凝縮器が搭載される熱源装置と、前記蒸発器が搭載される負荷装置とを備えている冷凍サイクル装置において、
     前記凝縮器に空気を送る凝縮器ファンと、
     前記凝縮器の下流側であって前記第1膨張装置の上流側に接続され、前記凝縮器から流出した冷媒を過冷却する過冷却装置と、
     前記過冷却装置から流出した冷媒が流れる、前記熱源装置と前記負荷装置とを接続している冷媒配管の温度を検出する配管温度検出手段と、
     前記凝縮器に吸込まれる空気の温度を検出する外気温度検出手段と、
     前記凝縮器に吸込まれる空気の温度から前記熱源装置と前記負荷装置とを接続している冷媒配管の温度を引いた差が設定値を超えないように、前記凝縮器ファンの回転速度を制御する制御装置とを備える、冷凍サイクル装置。
    A heat source device having a compressor, a condenser, a first expansion device, and a refrigerant circuit in which an evaporator is connected by a refrigerant pipe, and in which the compressor and the condenser are mounted, and a load device in which the evaporator is mounted In the refrigeration cycle apparatus comprising:
    A condenser fan that sends air to the condenser;
    A subcooling device connected to the downstream side of the condenser and upstream of the first expansion device, and for supercooling the refrigerant flowing out of the condenser;
    A pipe temperature detecting means for detecting a temperature of a refrigerant pipe connecting the heat source device and the load device through which the refrigerant flowing out of the supercooling device flows;
    An outside air temperature detecting means for detecting the temperature of the air sucked into the condenser;
    The rotational speed of the condenser fan is controlled so that the difference obtained by subtracting the temperature of the refrigerant pipe connecting the heat source device and the load device from the temperature of the air sucked into the condenser does not exceed a set value. A refrigeration cycle apparatus comprising:
  2.  前記設定値を入力する設定装置を備えた、請求項1に記載の冷凍サイクル装置。 The refrigeration cycle apparatus according to claim 1, further comprising a setting device for inputting the set value.
  3.  一端が前記圧縮機に接続され、他端が前記過冷却装置と前記第1膨張装置との間に接続されているインジェクション配管と、
     前記インジェクション配管を流れる冷媒を減圧させる第2膨張装置と、を有し、
     前記過冷却装置は、
     上流側が前記凝縮器に接続され、下流側が前記第1膨張装置及び前記インジェクション配管の他端に接続される第1流路と、
     前記第2膨張装置の下流側の前記インジェクション配管に接続される第2流路とを有し、
     前記第1流路を流れる冷媒と前記第2流路を流れる冷媒とを熱交換させる熱交換器で構成した、請求項1又は2に記載の冷凍サイクル装置。
    An injection pipe having one end connected to the compressor and the other end connected between the supercooling device and the first expansion device;
    A second expansion device that depressurizes the refrigerant flowing through the injection pipe,
    The supercooling device is:
    A first flow path whose upstream side is connected to the condenser and whose downstream side is connected to the other end of the first expansion device and the injection pipe;
    A second flow path connected to the injection pipe on the downstream side of the second expansion device,
    The refrigeration cycle apparatus according to claim 1 or 2, comprising a heat exchanger that exchanges heat between the refrigerant flowing through the first flow path and the refrigerant flowing through the second flow path.
  4.  前記制御装置は、
     前記圧縮機の吐出冷媒温度が予め設定される下限値以上である場合には、前記圧縮機の吐出冷媒温度が予め設定される下限値未満である場合よりも、前記第2膨張装置の開度を大きくする、請求項3に記載の冷凍サイクル装置。
    The controller is
    When the discharge refrigerant temperature of the compressor is equal to or higher than a preset lower limit value, the opening degree of the second expansion device is larger than when the discharge refrigerant temperature of the compressor is less than a preset lower limit value. The refrigeration cycle apparatus according to claim 3, wherein
PCT/JP2014/081282 2014-11-26 2014-11-26 Refrigeration cycle device WO2016084174A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016561147A JP6316452B2 (en) 2014-11-26 2014-11-26 Refrigeration cycle equipment
PCT/JP2014/081282 WO2016084174A1 (en) 2014-11-26 2014-11-26 Refrigeration cycle device
CN201480082499.3A CN106796056B (en) 2014-11-26 2014-11-26 Refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/081282 WO2016084174A1 (en) 2014-11-26 2014-11-26 Refrigeration cycle device

Publications (1)

Publication Number Publication Date
WO2016084174A1 true WO2016084174A1 (en) 2016-06-02

Family

ID=56073794

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/081282 WO2016084174A1 (en) 2014-11-26 2014-11-26 Refrigeration cycle device

Country Status (3)

Country Link
JP (1) JP6316452B2 (en)
CN (1) CN106796056B (en)
WO (1) WO2016084174A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107843037B (en) * 2017-10-31 2021-02-23 广东美的暖通设备有限公司 Multi-split air conditioning system and supercooling control device and method thereof
CN112005062B (en) * 2018-04-23 2022-06-14 三菱电机株式会社 Refrigeration cycle device and refrigeration device
WO2020100228A1 (en) * 2018-11-14 2020-05-22 三菱電機株式会社 Air conditioner

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004325023A (en) * 2003-04-28 2004-11-18 Daikin Ind Ltd Refrigeration unit
JP2007078205A (en) * 2005-09-12 2007-03-29 Sanyo Electric Co Ltd Refrigerator
JP2007225258A (en) * 2006-02-27 2007-09-06 Mitsubishi Electric Corp Refrigeration unit
JP2014085097A (en) * 2012-10-26 2014-05-12 Mitsubishi Electric Corp Refrigeration cycle device
JP2014089024A (en) * 2012-10-31 2014-05-15 Daikin Ind Ltd Freezer
JP2014153036A (en) * 2013-02-13 2014-08-25 Mitsubishi Electric Corp Refrigerator

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060112702A1 (en) * 2004-05-18 2006-06-01 George Martin Energy efficient capacity control for an air conditioning system
JP6139097B2 (en) * 2012-10-26 2017-05-31 シャープ株式会社 Air conditioner

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004325023A (en) * 2003-04-28 2004-11-18 Daikin Ind Ltd Refrigeration unit
JP2007078205A (en) * 2005-09-12 2007-03-29 Sanyo Electric Co Ltd Refrigerator
JP2007225258A (en) * 2006-02-27 2007-09-06 Mitsubishi Electric Corp Refrigeration unit
JP2014085097A (en) * 2012-10-26 2014-05-12 Mitsubishi Electric Corp Refrigeration cycle device
JP2014089024A (en) * 2012-10-31 2014-05-15 Daikin Ind Ltd Freezer
JP2014153036A (en) * 2013-02-13 2014-08-25 Mitsubishi Electric Corp Refrigerator

Also Published As

Publication number Publication date
CN106796056A (en) 2017-05-31
JPWO2016084174A1 (en) 2017-04-27
JP6316452B2 (en) 2018-04-25
CN106796056B (en) 2019-12-20

Similar Documents

Publication Publication Date Title
US11761686B2 (en) Methods and systems for controlling integrated air conditioning systems
JP6479162B2 (en) Air conditioner
JP5784121B2 (en) Refrigeration cycle equipment
US10208987B2 (en) Heat pump with an auxiliary heat exchanger for compressor discharge temperature control
JP2009243793A (en) Heat pump type hot water supply outdoor unit
US20220196259A1 (en) Three-pipe multi-split air-conditioning system and control method thereof
JP4738237B2 (en) Air conditioner
JP6223573B2 (en) Refrigeration air conditioner
JPWO2016194098A1 (en) Air conditioning apparatus and operation control apparatus
KR20190005445A (en) Method for controlling multi-type air conditioner
JP6038382B2 (en) Air conditioner
JP6316452B2 (en) Refrigeration cycle equipment
JP2006017427A (en) Cooling system
JP6422590B2 (en) Heat source system
JP6072559B2 (en) Refrigeration equipment
JP5150300B2 (en) Heat pump type water heater
JP5313774B2 (en) Air conditioner
JP2008138979A (en) Refrigeration system
JP2016223743A (en) Air conditioner
JP2009293887A (en) Refrigerating device
GB2578533A (en) Refrigeration cycle device
JP2013174374A (en) Chilling unit
WO2017138243A1 (en) Refrigeration cycle device
KR101145051B1 (en) Air Conditioner for Preventing High Pressure
KR101369808B1 (en) Heat pump equipped with a constant pressure maintenance unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14907075

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016561147

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14907075

Country of ref document: EP

Kind code of ref document: A1