WO2016083557A1 - Verbindungselement, stromsammeleinrichtung und zugehöriges herstellungsverfahren - Google Patents

Verbindungselement, stromsammeleinrichtung und zugehöriges herstellungsverfahren Download PDF

Info

Publication number
WO2016083557A1
WO2016083557A1 PCT/EP2015/077870 EP2015077870W WO2016083557A1 WO 2016083557 A1 WO2016083557 A1 WO 2016083557A1 EP 2015077870 W EP2015077870 W EP 2015077870W WO 2016083557 A1 WO2016083557 A1 WO 2016083557A1
Authority
WO
WIPO (PCT)
Prior art keywords
connecting element
energy storage
sheet
flags
storage cells
Prior art date
Application number
PCT/EP2015/077870
Other languages
English (en)
French (fr)
Inventor
David VERGOSSEN
Heiner Fees
Andreas Track
Ralf Maisch
Alexander Eichhorn
Original Assignee
Audi Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Audi Ag filed Critical Audi Ag
Priority to US15/531,028 priority Critical patent/US10784484B2/en
Priority to CN201580064669.XA priority patent/CN107004819B/zh
Publication of WO2016083557A1 publication Critical patent/WO2016083557A1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/02Contact members
    • H01R13/22Contacts for co-operating by abutting
    • H01R13/24Contacts for co-operating by abutting resilient; resiliently-mounted
    • H01R13/2442Contacts for co-operating by abutting resilient; resiliently-mounted with a single cantilevered beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K11/00Resistance welding; Severing by resistance heating
    • B23K11/002Resistance welding; Severing by resistance heating specially adapted for particular articles or work
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/503Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the shape of the interconnectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/521Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the material
    • H01M50/522Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/02Contact members
    • H01R13/22Contacts for co-operating by abutting
    • H01R13/24Contacts for co-operating by abutting resilient; resiliently-mounted
    • H01R13/2464Contacts for co-operating by abutting resilient; resiliently-mounted characterized by the contact point
    • H01R13/2478Contacts for co-operating by abutting resilient; resiliently-mounted characterized by the contact point spherical
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/10Temperature sensitive devices
    • H01M2200/103Fuse
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/514Methods for interconnecting adjacent batteries or cells
    • H01M50/516Methods for interconnecting adjacent batteries or cells by welding, soldering or brazing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • H01M50/583Devices or arrangements for the interruption of current in response to current, e.g. fuses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R13/00Details of coupling devices of the kinds covered by groups H01R12/70 or H01R24/00 - H01R33/00
    • H01R13/02Contact members
    • H01R13/22Contacts for co-operating by abutting
    • H01R13/24Contacts for co-operating by abutting resilient; resiliently-mounted
    • H01R13/2464Contacts for co-operating by abutting resilient; resiliently-mounted characterized by the contact point
    • H01R13/2492Contacts for co-operating by abutting resilient; resiliently-mounted characterized by the contact point multiple contact points
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to a dacaselennent for at least two energy storage cells, with a sheet for electrically connecting the energy storage cells.
  • EP 1 691 431 A1 discloses a connecting element for connecting cells, which has two mutually opposite tongues which can be connected via a connection point to a corresponding pole of a cell.
  • the tongues of the connecting element are in this case connected by welding to the respective pole of the cell.
  • the invention is therefore based on the object of specifying an improved connection element.
  • the sheet at least has two openings for receiving in each case at least a portion of an energy storage cell, wherein in each case two provided on the sheet flags protrude into the openings.
  • the connecting element according to the invention is thus distinguished by the fact that the sheet for the electrical connection of the energy storage cells has openings which are designed to receive the energy storage cells or at least a part of the energy storage cells, for example the cell head.
  • each of the openings two flags.
  • the flags are preferably located on an upper edge of the sheet and protrude radially into the opening. It is of course also possible to form the flags such that they otherwise protrude into the opening. Thus, unlike an orientation of the flags parallel to the surface of the sheet, a course of the flags at an angle to the sheet surface is also possible.
  • the energy storage cells are introduced on the opposite side of the flags in the openings.
  • the shape of the opening can be adapted to the energy storage cells used or to the shape that is to be received in the openings.
  • the flags are made in one piece with the metal sheet. This can be done for example by punching the opening from the sheet, the flags are stamped in one piece with the sheet.
  • At least one flag has at least one depression.
  • each lug of the connecting element has such a depression.
  • the recess fulfills the purpose that for the welding of the energy storage cell with the connecting element in each case a probe is introduced into one of the two flags per aperture.
  • a probe is introduced into one of the two flags per aperture.
  • the probe By applying an electrical voltage, a current flows from one flag to the other flag, by means of the probe, which are introduced into the recesses, the contact with the cell head of the energy storage cell is made. Due to the applied electrical voltage, the current flows between the two flags via the cell head. With a corresponding current flow, at least parts of the flags merge with the cell head and thus ensure contacting of the cell head with the connecting element.
  • the recess can also be made by stamping or punching out of the sheet.
  • the flag on a side opposite to the recess side have a shape. This improves the connection element in such a way that the shape merges with the head of the energy storage cell when welding the lugs.
  • the current is chosen so that the recesses or the formations of the flags merge with the energy storage cell cohesively.
  • a development of the connecting element according to the invention may consist in that at least one flag has at least one taper of its cross section.
  • a fuse can be realized, which melts when exceeding an allowable current flowing from the energy storage cell in the sheet, and thus interrupts the flow of current.
  • the taper can in this case be produced as a constriction or material weakening of any shape, for example by a recess, or an opening in the flag.
  • a preferred embodiment of the connecting element may be that at least one flag protrudes into the opening, forming at least two radii.
  • the flag can in this case on the one hand in the sheet plane with formation of the radii protrude into the opening.
  • a fuse that melts when the current is exceeded at the formed by the two radii S-shape, and thus interrupts the flow of current.
  • a vertical arrangement of the flag, ie a vertical formation of the two radii is possible.
  • the connecting element in such a way that it has at least two interconnected plates whose at least two apertures are arranged coaxially, with only two tabs being provided on one plate, which protrude into the apertures.
  • the connecting element consists of at least two metal sheets which are connected to one another.
  • the sheets may consist of the same or different materials.
  • the openings of the sheets are arranged coaxially, so that the energy storage cells can be introduced into the openings.
  • only that sheet has flags into which the energy storage cells are not introduced.
  • the connecting element can be provided that at least one sheet has at least one recess for reducing mechanical stresses in the sheet.
  • This is particularly preferably, but not exclusively, possible in the embodiment in which the connecting element has at least two interconnected metal sheets and these consist of different metals.
  • a bimetallic effect can be set, which leads to a mechanical stress in the connecting element.
  • this bimetallic effect or the mechanical stress generated by it can be reduced.
  • the connecting element may have at least one second sheet with an opening arranged coaxially with an opening of the first sheet is, with only two flags are provided on the second plate, which protrude into the opening.
  • At least one second plate is arranged with an opening arranged coaxially with respect to one of the openings of the first plate on the first, continuous plate.
  • a second sheet is arranged at each opening of the first sheet.
  • the second sheets have a circular shape which extends around the opening of the first sheet. In this way, a bimetallic effect can also be reduced.
  • At least a part of at least one sheet may be coated.
  • only the energy storage cell facing side of the flags may be coated. It is particularly advantageous to produce a material equality between the surface of the flag and the surface of the energy storage cell. Accordingly, the sheet or the flags should either consist of the same material as the introduced into the opening part of the energy storage cell, or be coated with it. Alternatively, of course, the energy storage cell can be coated in such a way that material equality between the flags and the surface of the energy storage cell with which the flag is to be contacted exists.
  • the invention relates to a current collecting device comprising at least two energy storage cells and at least one connecting element according to one of the preceding claims.
  • the opening of the connecting element is designed such that an air gap is formed between the energy storage cells and the connecting element.
  • This air gap is an insulating layer, which prevents a connection of the energy storage cell with the sheet in addition to the flags. If the air gap is not present or too small, a possibly provided fuse no longer work, because even after melting the fuse an electrical connection between the sheet and the energy storage cell exists. The fuse will thus lose their effect.
  • the flag may be formed such that it protrudes beyond the opening, ie from the plane of the surface of the sheet. Such a "floating" flag ensures that after melting the fuse formed by the flag, the electrical connection between the energy storage cell and connecting element is disconnected.
  • the current collecting device is designed such that the flags are made of the same material as the surface of the energy storage cell or coated therewith.
  • the invention relates to a method for producing a current collecting device comprising at least two energy storage cells and at least one connecting element.
  • the first method step consists in that the energy storage cells or the at least one part of the energy storage cells are introduced into the openings of the connecting element and the flags are contacted with the energy storage cells or the at least one part of the respective energy storage cell. This can be done for example by a mechanical force or be achieved by the energy storage cells are introduced into the opening so far that they touch the flags.
  • the next process step is that the flags are contacted with a respective probe or a conductor tip.
  • an electrical voltage is applied to the probe or the conductor tips.
  • the electrical voltage is applied between each two conductor tips of two belonging to the same aperture flags.
  • a current flows from one flag to the other the head of the energy storage cell, whereby at least part of the flags merges with the energy storage cell and thus a welded joint is formed.
  • Fig. 1 is a perspective detail of an inventive
  • Fig. 2 is a plan view of a detail of an inventive
  • FIG. 3 shows a detail of the current collecting device according to the invention in a lateral cross section along the section line in FIG. 2;
  • FIG. 4 shows a section of a current collecting device according to the invention with floating flags in a lateral cross section
  • Fig. 5 is a plan view of a detail of an inventive
  • Fig. 6 is a plan view of a detail of an inventive
  • Fig. 7 is a plan view of a section of an inventive
  • the connecting element 1 shows a perspective cutout of a connecting element 1 for electrically connecting energy storage cells 2.
  • the energy storage cells are not shown in FIG. 1 for reasons of clarity.
  • the connecting element 1 has two sheets 3, 4, each having two openings 5, 6.
  • the connecting element 1 can of course, for example, depending on the number of energy storage cells to be connected 2, a plurality of openings 5, 6 in the sheets 3, 4 have.
  • the sheet 3 is connected to the sheet 4 cohesively at the joint 7.
  • the sheets 3, 4 consist in this embodiment of different metals.
  • the sheet 3 has flags 8, which are made in one piece from the sheet 3.
  • the sheet 3 was prepared as well as the sheet 4 by punching. According to this embodiment, these protrude radially into the perforations 5.
  • the openings 5, 6 of the connecting element 1 are in each case arranged coaxially. Due to the limited section of the connecting element 1, which is shown in Fig. 1, only two openings 5, 6 are visible.
  • the lugs 8 have a depression 10 on their upper side.
  • the recess 10 is adapted to receive in a manufacturing process conductor tips through which the flags 8 are contacted.
  • FIG. 2 shows a plan view of a detail of a current collecting device 11.
  • the current collecting device 1 1 has in this embodiment, a plurality of energy storage cells 2, which are introduced into the openings 5 of the connecting element 1 of FIG.
  • the flags 8 on its underside, ie the side facing the energy storage cells 2, coated.
  • nickel-plated steel strip has proved to be suitable as the material for the coating.
  • an air gap 14 is formed between the energy storage cells 2 and the apertures 5. The air gap 14 in this case causes an electrical insulation between the energy storage cells 2 and the openings 5 of the connecting element 1, ie the sheet 3.
  • FIG. 3 shows a lateral cross section in the direction of the sectional plane III - III from FIG. 2 through part of a current collecting device 15.
  • the current collecting device 15 has the connecting element 1 from FIG. 1 and a plurality of energy storage cells 2.
  • this partial section which is shown in FIG. 3, only the area around an energy storage cell 2 is shown for the sake of clarity.
  • the flags 8 can be seen, which are integrally formed with the sheet 3 and in the openings 5, 6, project, which are arranged coaxially with each other.
  • the flags On the opposite side of the recesses 10, the flags have 8 formations 16.
  • the connecting element 1 is welded to the top of the energy storage cell 2.
  • probes not shown in detail were introduced into the recesses 10 and applied an electrical voltage between them.
  • the resulting current flow through the lugs 8 via the upper side of the energy storage cell 2 at least parts of the lugs have been melted and welded to the upper side of the energy storage cell 2.
  • a cohesive connection of the formations 16 with the energy storage cell 2 has been achieved. This is particularly advantageous in the case of the current collecting device 15 due to a material equality between the sheet 3 and the energy storage cell 2.
  • the air gap 14 between the connecting element and the energy storage cell 2 is visible in FIG. 3.
  • the double arrow 17 indicates a width of the air gap 14.
  • the air gap 14 allows electrical insulation of the energy storage cell 2 of the connecting element. 1
  • the air gap 14 is in the in Fig. 3rd illustrated embodiment sufficiently large, so that an electrical insulation is ensured if the flags 8 by a current which is greater than the maximum allowable current, melt.
  • the flags 8 take over an implicit backup function. If the current exceeds a maximum permissible limit value, the lugs 8 heat up due to the electrical resistance to such an extent that they melt and interrupt the electrical connection between the energy storage cell 2 and the connection element 1. However, this is only possible as long as the size of the air gap 14 is sufficient. If the air gap 14 is too small, a bridging of the air gap can not be ruled out even with a molten lug 8. A solution for a too narrow air gap 14 is shown in Fig. 4.
  • FIG. 4 shows a current collecting device 18 which has two plates 3, 4, the plate 3 having lugs 8 which project into the opening 5.
  • the air gap 14 is here, indicated by the double arrow 17, narrower than, for example, in the current collecting device 15 of Fig. 3.
  • They are designed as a "floating" fuse
  • the elevation 19 is here formed as a radius By an oppositely curved radius 20, the flags 8 are returned to the plane of the sheet 3, in order to be in contact with the energy storage cell 2 If the flags 8 melt due to excessive current flowing through the current collector 18, the implicit electrical fuse function remains ensured.
  • the connecting element 21 has in the cutout two lugs 8 which protrude into the opening 5 with the formation of two radii 22, 23.
  • the flags 8 are in this case made in one piece by punching out of the sheet 3. By their S-shaped configuration, the flags 8 form a fuse.
  • the connecting element 21 has a single Sheet metal, which consists of the same material as in energy storage cells 2, in order to achieve a material connection. Of course, the connecting element 21 has a plurality of openings 5, which are not visible due to the limited section.
  • FIG. 6 shows a plan view of a section of a connecting element 24.
  • the connecting element 24 has lugs 8 which protrude into the opening 5. Due to the limited section in this case only one opening 5 is shown.
  • the lugs 8 have tapers 25 which reduce the cross section of the lugs 8. By this taper 25, the electrical resistance in the region of the taper 25 increases. Thus, a kind of "predetermined breaking point" is formed which melts when an admissible current value is exceeded and thus ensures an implicit fuse function.
  • the connecting element 24 has recesses 26, which are provided for reducing mechanical stresses in the sheet metal 3 of the connecting element 24.
  • the connecting element 24 has two sheets 3, 4, which communicate with each other and are made of different metals. To avoid or reduce the generated by the bimetal mechanical stresses the recesses 26 are provided in the sheet 3.
  • Fig. 7 shows a plan view of a portion of an alternative embodiment to the embodiments shown in Figs. 1-6.
  • a connecting element 27 is shown, the first sheet 28 and has a plurality of second sheets 29.
  • the openings 5 of the second sheets 29 are arranged coaxially with the openings 6 of the first sheet 28.
  • the second sheets 29 are in this case as a circular plates with the opening 5, the flags 8, shown.
  • a shape deviating from the circular shape is also possible.
  • the shape of the apertures 5, 6 and the second sheets 29 can be adapted to the shape of the energy storage cells 2 here.
  • the formation of the second metal sheets 29 as individual sheets significantly reduces the bimetal effect and the resulting mechanical stresses in the connecting element 27.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

Verbindungselement (1, 21) für wenigstens zwei Energiespeicherzellen (2), mit einem Blech (3, 4, 13, 28) zum elektrischen Verbinden der Energiespeicherzellen (2), wobei das Blech (3, 13, 28) wenigstens zwei Durchbrechungen (5) zur Aufnahme jeweils wenigstens eines Teils einer Energiespeicherzelle (2) aufweist, wobei jeweils zwei am Blech (3, 13, 28) vorgesehene Fahnen (8) in die Durchbrechungen (5) ragen.

Description

Verbindungselement, Stromsammeieinrichtung und zugehöriges Herstellungsverfahren
Die Erfindung betrifft ein Verbindungselennent für wenigstens zwei Energiespeicherzellen, mit einem Blech zum elektrischen Verbinden der Energiespeicherzellen.
Aus dem Stand der Technik sind Verbindungselemente bekannt, mit denen es möglich ist, mehrere Energiespeicherzellen, insbesondere Batteriezellen, mittels eines Blechs elektrisch zu verbinden. Aus EP 1 691 431 A1 ist ein Verbindungselement zur Verbindung von Zellen bekannt, das zwei einander gegenüberliegende Zungen aufweist, die über eine Verbindungsstelle mit einem entsprechenden Pol einer Zelle verbindbar sind. Die Zungen des Verbindungselements werden hierbei durch Schweißen mit dem jeweiligen Pol der Zelle verbunden.
Daneben ist es aus dem Stand der Technik bekannt, eine Verbindung zwischen Verbindungselement und Speicherzelle durch Laserschweißverfahren oder das Bonden eines Drahtes von einem Zellpolkopf auf das Verbindungselement herzustellen. Nachteilig an diesen Verfahren ist, dass diese zum einen aufwendig sind, und dass speziell bei der Kontaktierung des Verbindungselements durch Bonden eines Drahts hohe Übergangswiderstände zwischen Verbindungselement und Energiespeicherzelle entstehen, die zu einer erhöhten Verlustleistung führen.
Der Erfindung liegt daher die Aufgabe zugrunde, ein dahingehend verbessertes Verbindungselement anzugeben.
Zur Lösung dieser Aufgabe ist bei einem Verbindungselement der eingangs genannten Art erfindungsgemäß vorgesehen, dass das Blech wenigstens zwei Durchbrechungen zur Aufnahme jeweils wenigstens eines Teils einer Energiespeicherzelle aufweist, wobei jeweils zwei am Blech vorgesehene Fahnen in die Durchbrechungen ragen.
Das erfindungsgemäße Verbindungselement zeichnet sich somit dadurch aus, dass das Blech zum elektrischen Verbinden der Energiespeicherzellen Durchbrechungen aufweist, die dazu ausgebildet sind, die Energiespeicherzellen bzw. zumindest einen Teil der Energiespeicherzellen, beispielsweise den Zellkopf aufzunehmen.
Erfindungsgemäß ragen in jede der Durchbrechungen zwei Fahnen. Die Fahnen befinden sich bevorzugt an einer Oberkante des Blechs und ragen radial in die Durchbrechung. Es ist selbstverständlich ebenfalls möglich, die Fahnen derart auszubilden, dass diese anderweitig in die Durchbrechung ragen. Somit ist abweichend von einer Ausrichtung der Fahnen parallel zur Oberfläche des Blechs ein Verlauf der Fahnen unter einem Winkel zur Blechoberfläche ebenfalls möglich.
Die Energiespeicherzellen werden auf der den Fahnen gegenüberliegenden Seite in die Durchbrechungen eingeführt. Die Form der Durchbrechung kann an die verwendeten Energiespeicherzellen angepasst sein bzw. auf die Form, die in den Durchbrechungen aufgenommen werden soll. Bevorzugt werden Rundzellen verwendet, so dass die Durchbrechungen eine kreisrunde Form aufweisen. Abweichend davon ist insbesondere eine rechteckige, quadratische oder vieleckige Form denkbar.
Bevorzugt werden die Fahnen einstückig mit dem Blech hergestellt. Dies kann beispielsweise durch ein Ausstanzen der Durchbrechung aus dem Blech geschehen, wobei die Fahnen einstückig mit dem Blech gestanzt werden.
In einer Weiterbildung des erfindungsgemäßen Verbindungselements weist wenigstens eine Fahne wenigstens eine Vertiefung auf. Besonders bevorzugt weist jede Fahne des Verbindungselements eine solche Vertiefung auf. Die Vertiefung erfüllt den Zweck, dass zum Verschweißen der Energiespeicherzelle mit dem Verbindungselement jeweils eine Sonde in eine der beiden Fahnen pro Durchbrechung eingebracht wird. Durch das Anlegen einer elektrischen Spannung fließt ein Strom von der einen Fahnen zu der anderen Fahne, indem mittels der Sonde, die in die Vertiefungen eingebracht sind, der Kontakt mit dem Zellkopf der Energiespeicherzelle hergestellt wird. Durch die angelegte elektrische Spannung fließt der Strom zwischen den beiden Fahnen über den Zellkopf. Bei einem entsprechenden Stromfluss verschmelzen zumindest Teile der Fahnen mit dem Zellkopf und stellen somit eine Kontaktierung des Zellkopfes mit dem Verbindungselement sicher. Die Vertiefung kann hierbei ebenfalls durch Ausprägen bzw. Ausstanzen aus dem Blech hergestellt werden.
Ferner kann die Fahne auf einer der Vertiefung gegenüberliegenden Seite eine Ausformung aufweisen. Dies verbessert das Verbindungselement dahingehend, dass die Ausformung bei einem Verschweißen der Fahnen mit dem Kopf der Energiespeicherzelle verschmilzt. Der Strom wird hierbei so gewählt, dass die Vertiefungen bzw. die Ausformungen der Fahnen mit der Energiespeicherzelle stoffschlüssig verschmelzen.
Eine Weiterbildung des erfindungsgemäßen Verbindungselements kann darin bestehen, dass wenigstens eine Fahne wenigstens eine Verjüngung ihres Querschnitts aufweist. Über diese definierte Verjüngung des Querschnitts der Fahne kann eine Schmelzsicherung realisiert werden, die bei Überschreiten eines zulässigen Stroms, der von der Energiespeicherzelle in das Blech fließt, schmilzt und somit den Stromfluss unterbricht. Die Verjüngung kann hierbei als Einschnürung oder Materialschwächung jeglicher Form, beispielsweise durch eine Ausnehmung, oder eine Durchbrechung in der Fahne hergestellt werden.
Eine bevorzugte Ausgestaltung des Verbindungselements kann darin bestehen, dass wenigstens eine Fahne unter Ausbildung wenigstens zweier Radien in die Durchbrechung ragt. Die Fahne kann hierbei zum einen in der Blechebene unter Ausbildung der Radien in die Durchbrechung ragen. Hier- bei ergibt sich ebenfalls eine Schmelzsicherung, die bei Überschreiten des Stroms an der durch die beiden Radien gebildeten S-Form aufschmilzt, und somit den Stromfluss unterbricht. Ebenfalls ist eine dazu senkrechte Anordnung der Fahne, also eine senkrechte Ausbildung der beiden Radien möglich.
Es ist ebenso möglich, das Verbindungselement derart auszubilden, dass es wenigstens zwei miteinander verbundene Bleche aufweist, deren wenigstens zwei Durchbrechungen koaxial angeordnet sind, wobei nur an einem Blech jeweils zwei Fahnen vorgesehen sind, die in die Durchbrechungen ragen. In dieser Ausführungsform besteht das Verbindungselement aus wenigstens zwei Blechen, die miteinander verbunden sind. Die Bleche können hierbei aus demselben oder unterschiedlichen Materialien bestehen. In jedem Fall sind die Durchbrechungen der Bleche koaxial angeordnet, damit die Energiespeicherzellen in die Durchbrechungen eingebracht werden können. Hierbei weist nur dasjenige Blech Fahnen auf, in das die Energiespeicherzellen nicht eingebracht werden.
Als Weiterbildung des Verbindungselements kann vorgesehen sein, dass wenigstens ein Blech wenigstens eine Aussparung zur Reduzierung von mechanischen Spannungen im Blech aufweist. Besonders bevorzugt, aber nicht ausschließlich, ist dies in der Ausführungsform möglich, in der das Verbindungselement wenigstens zwei miteinander verbundene Bleche aufweist und diese aus verschiedenen Metallen bestehen. Durch einen Stromfluss durch die Energiespeicherzelle bzw. die Fahnen des Blechs oder durch anderweitige Erwärmung des Verbindungselements kann sich ein Bimetalleffekt einstellen, der zu einer mechanischen Spannung im Verbindungselement führt. Durch die Ausbildung wenigstens einer Aussparung kann dieser Bimetalleffekt bzw. die mechanische Spannung, die durch diesen erzeugt wird, reduziert werden.
Alternativ kann anstelle des zweiten durchgängigen Blechs das Verbindungselement wenigstens ein zweites Blech mit einer Durchbrechung aufweisen, die koaxial zu einer Durchbrechung des ersten Blechs angeordnet ist, wobei nur am zweiten Blech zwei Fahnen vorgesehen sind, die in die Durchbrechung ragen.
Alternativ zu der vorherigen Ausführungsform kann vorgesehen sein, dass an dem ersten, durchgängigen Blech wenigstens ein zweites Blech mit einer zu einer der Durchbrechungen des ersten Blechs koaxial angeordneten Durchbrechung angeordnet ist. Bevorzugt ist hierbei an jeder Durchbrechung des ersten Blechs ein zweites Blech angeordnet. Insbesondere weisen die zweiten Bleche eine kreisrunde Form auf, die sich um die Durchbrechung des ersten Blechs erstreckt. Auf diese Weise kann ein Bimetalleffekt ebenfalls verringert werden.
Bevorzugt kann wenigstens ein Teil wenigstens eines Blechs beschichtet sein. Beispielsweise kann nur die der Energiespeicherzelle zugewandte Seite der Fahnen beschichtet sein. Es ist hierbei insbesondere von Vorteil, eine Materialgleichheit zwischen der Oberfläche der Fahne und der Oberfläche der Energiespeicherzelle herzustellen. Demnach sollte das Blech bzw. die Fahnen entweder aus demselben Material bestehen, wie der in die Durchbrechung eingebrachte Teil der Energiespeicherzelle, oder damit beschichtet werden. Alternativ kann selbstverständlich auch die Energiespeicherzelle derart beschichtet werden, dass Materialgleichheit zwischen den Fahnen und der Oberfläche der Energiespeicherzelle, mit der die Fahne kontaktiert werden soll, besteht.
Daneben betrifft die Erfindung eine Stromsammeieinrichtung umfassend wenigstens zwei Energiespeicherzellen und wenigstens ein Verbindungselement nach einem der vorangehenden Ansprüche.
Besonders bevorzugt wird die Durchbrechung des Verbindungselements derart ausgebildet, dass zwischen den Energiespeicherzellen und dem Verbindungselement ein Luftspalt ausgebildet ist. Dieser Luftspalt stellt eine Isolationsschicht dar, die eine Verbindung der Energiespeicherzelle mit dem Blech zusätzlich zu den Fahnen verhindert. Ist der Luftspalt nicht vorhanden oder zu klein, kann eine gegebenenfalls vorgesehene Schmelzsicherung nicht mehr funktionieren, da auch nach Aufschmelzen der Schmelzsicherung eine elektrische Verbindung zwischen dem Blech und der Energiespeicherzelle besteht. Die Schmelzsicherung wird somit ihre Wirkung verlieren. Bevorzugt kann, in Fällen, in denen der Luftspalt zwischen Energiespeicherzelle und Verbindungselement gering ausgebildet ist, die Fahne derart ausgebildet sein, dass diese über die Durchbrechung hinaus, also aus der Ebene der Oberfläche des Blechs ragt. Eine solche„schwebende" Fahne stellt sicher, dass nach Schmelzen der durch die Fahne gebildeten Schmelzsicherung die elektrische Verbindung zwischen Energiespeicherzelle und Verbindungselement getrennt ist.
Besonders bevorzugt wird die Stromsammeieinrichtung derart ausgebildet, dass die Fahnen aus dem gleichen Material wie die Oberfläche der Energiespeicherzelle hergestellt oder damit beschichtet sind.
Zudem betrifft die Erfindung ein Verfahren zur Herstellung einer Stromsammeieinrichtung umfassend wenigstens zwei Energiespeicherzellen und wenigstens ein Verbindungselement. Der erste Verfahrensschritt besteht hierbei darin, dass die Energiespeicherzellen bzw. der wenigstens eine Teil der Energiespeicherzellen in die Durchbrechungen des Verbindungselements eingebracht werden und die Fahnen mit den Energiespeicherzellen bzw. dem wenigstens einen Teil der jeweiligen Energiespeicherzelle kontaktiert werden. Dies kann beispielsweise durch eine mechanische Kraft geschehen oder dadurch erreicht werden, dass die Energiespeicherzellen soweit in die Durchbrechung eingeführt werden, dass diese die Fahnen berühren.
Der nächste Verfahrensschritt besteht darin, dass die Fahnen mit jeweils einer Sonde bzw. einer Leiterspitze kontaktiert werden.
Anschließend wird an die Sonde bzw. die Leiterspitzen eine elektrische Spannung angelegt. Selbstverständlich ist dies so zu verstehen, dass zwischen jeweils zwei Leiterspitzen von zwei zu derselben Durchbrechung gehörenden Fahnen die elektrische Spannung angelegt wird. Durch diese beaufschlagte Spannung fließt ein Strom von einer Fahne zur anderen durch den Kopf der Energiespeicherzelle, wodurch wenigstens ein Teil der Fahnen mit der Energiespeicherzelle verschmilzt und somit eine Schweißverbindung ausgebildet wird.
Weitere Vorteile und Einzelheiten der Erfindung werden nachfolgend anhand von Ausführungsbeispielen unter Bezugnahme auf die Zeichnungen erläutert. Die Zeichnungen sind schematische Darstellungen und zeigen:
Fig. 1 einen perspektivischen Ausschnitt eines erfindungsgemäßen
Verbindungselements;
Fig. 2 eine Draufsicht eines Ausschnitts einer erfindungsgemäßen
Stromsammeieinrichtung;
Fig. 3 einen Ausschnitt der erfindungsgemäßen Stromsammeleinrich- tung in einem seitlichen Querschnitt entlang der Schnittlinie in Fig. 2;
Fig. 4 einen Ausschnitt einer erfindungsgemäßen Stromsammeieinrichtung mit schwebenden Fahnen in einem seitlichen Querschnitt;
Fig. 5 eine Draufsicht eines Ausschnitts eines erfindungsgemäßen
Verbindungselements mit S-förmigen Fahnen;
Fig. 6 eine Draufsicht eines Ausschnitts eines erfindungsgemäßen
Verbindungselements mit zwei verjüngten Fahnen; und
Fig. 7 eine Draufsicht auf einen Ausschnitt eines erfindungsgemäßen
Verbindungselements mit separaten zweiten Blechen
Fig. 1 zeigt einen perspektivischen Ausschnitt eines Verbindungselements 1 zum elektrischen Verbinden von Energiespeicherzellen 2. Die Energiespeicherzellen sind in Fig. 1 aus Gründen der Übersichtlichkeit nicht dargestellt. Das Verbindungselement 1 weist zwei Bleche 3, 4 auf, die jeweils zwei Durchbrechungen 5, 6 aufweisen. Das Verbindungselement 1 kann selbstverständlich, beispielsweise abhängig von der Anzahl der zu verbindenden Energiespeicherzellen 2, mehrere Durchbrechungen 5, 6 in den Blechen 3, 4 aufweisen.
Das Blech 3 ist mit dem Blech 4 stoffschlüssig an der Fügestelle 7 verbunden. Die Bleche 3, 4 bestehen in diesem Ausführungsbeispiel aus verschiedenen Metallen. Das Blech 3 weist Fahnen 8 auf, die einstückig aus dem Blech 3 hergestellt sind. Das Blech 3 wurde wie auch das Blech 4 durch Ausstanzen hergestellt. Die Fahnen 8 ragen in die Durchbrechung 5 des Blechs 3. Gemäß diesem Ausführungsbespiel ragen diese radial in die Durchbrechungen 5. Die Durchbrechungen 5, 6 des Verbindungselements 1 sind hierbei jeweils koaxial angeordnet. Aufgrund des begrenzten Ausschnitts des Verbindungselements 1 , der in Fig. 1 dargestellt ist, sind jeweils nur zwei Durchbrechungen 5, 6 sichtbar.
Ferner ist in Fig. 1 dargestellt, dass die Fahnen 8 an ihrer Oberseite eine Vertiefung 10 aufweisen. Die Vertiefung 10 ist dazu ausgebildet, bei einem Herstellungsprozess Leiterspitzen aufzunehmen, durch die die Fahnen 8 kontaktiert werden.
Fig. 2 zeigt in einer Draufsicht einen Ausschnitt auf eine Stromsammeieinrichtung 1 1 . Die Stromsammeieinrichtung 1 1 weist in diesem Ausführungsbeispiel mehrere Energiespeicherzellen 2 auf, die in die Durchbrechungen 5 des Verbindungselements 1 von Fig. 1 eingebracht sind. Um Materialgleichheit zwischen den Fahnen 8 und den Oberseiten der Energiespeicherzellen 2 herzustellen, sind die Fahnen 8 an ihrer Unterseite, also der Seite, die den Energiespeicherzellen 2 zugewandt ist, beschichtet. Als Material für die Be- schichtung hat sich hierbei insbesondere vernickeltes Stahlband als geeignet herausgestellt. Zudem ist in Fig. 2 dargestellt, dass zwischen den Energiespeicherzellen 2 und den Durchbrechungen 5 ein Luftspalt 14 ausgebildet ist. Der Luftspalt 14 bewirkt hierbei eine elektrische Isolation zwischen den Energiespeicherzellen 2 und den Durchbrechungen 5 des Verbindungselements 1 , also dem Blech 3.
Fig. 3 zeigt einen seitlichen Querschnitt in Richtung der Schnittebene III - III aus Fig. 2 durch einen Teil einer Stromsammeieinrichtung 15. Die Stromsammeieinrichtung 15 weist das Verbindungselement 1 aus Fig. 1 und mehrere Energiespeicherzellen 2 auf. In diesem Teilausschnitt, der in Fig. 3 dargestellt ist, ist der Übersichtlichkeit halber nur der Bereich um eine Energiespeicherzelle 2 dargestellt. In diesem seitlichen Querschnitt sind die Fahnen 8 erkennbar, die einstückig mit dem Blech 3 ausgebildet sind und in die Durchbrechungen 5, 6, ragen, die koaxial zueinander angeordnet sind.
Auf der gegenüberliegenden Seite der Vertiefungen 10 weisen die Fahnen 8 Ausformungen 16 auf. Mittels dieser Ausformungen ist das Verbindungselement 1 mit der Oberseite der Energiespeicherzelle 2 verschweißt. Hierzu wurden nicht näher dargestellte Sonden in die Vertiefungen 10 eingebracht und eine elektrische Spannung zwischen ihnen angelegt. Durch den daraus resultierenden Stromfluss durch die Fahnen 8 über die Oberseite der Energiespeicherzelle 2 wurden zumindest Teile der Fahnen aufgeschmolzen und mit der Oberseite der Energiespeicherzelle 2 verschweißt. Dadurch wurde eine stoffschlüssige Verbindung der Ausformungen 16 mit der Energiespeicherzelle 2 erreicht. Besonders vorteilhaft ist dies bei der Stromsammeieinrichtung 15 durch eine Materialgleichheit zwischen dem Blech 3 und der Energiespeicherzelle 2 erfolgt.
Ferner ist in Fig. 3 der Luftspalt 14 zwischen dem Verbindungselement und der Energiespeicherzelle 2 sichtbar. Der Doppelpfeil 17 deutet eine Breite des Luftspalts 14 an.
Der Luftspalt 14 ermöglicht eine elektrische Isolation der Energiespeicherzelle 2 von dem Verbindungselement 1 . Der Luftspalt 14 ist in dem in Fig. 3 dargestellten Ausführungsbeispiel ausreichend groß, so dass eine elektrische Isolation gewährleistet bleibt, falls die Fahnen 8 durch einen Strom, der größer ist als der maximal zulässige Strom, schmelzen.
Die Fahnen 8 übernehmen hierbei eine implizite Sicherungsfunktion. Übersteigt der Strom einen maximal zulässigen Grenzwert, so erwärmen sich die Fahnen 8 aufgrund des elektrischen Widerstands in einem solchen Maße, dass diese aufschmelzen und die elektrische Verbindung zwischen Energiespeicherzelle 2 und Verbindungselement 1 unterbrechen. Dies ist jedoch nur möglich, solange die Größe des Luftspalts 14 ausreichend ist. Ist der Luftspalt 14 zu klein, so kann auch bei einer geschmolzenen Fahne 8 eine Überbrückung des Luftspalts nicht ausgeschlossen werden. Eine Lösung für einen zu schmalen Luftspalt 14 ist in Fig. 4 dargestellt.
Fig. 4 zeigt eine Stromsammeieinrichtung 18, die zwei Bleche 3, 4 aufweist, wobei das Blech 3 Fahnen 8 aufweist, die in die Durchbrechung 5 ragen. Der Luftspalt 14 ist hierbei, angedeutet durch den Doppelpfeil 17, schmaler ausgebildet als beispielsweise in der Stromsammeieinrichtung 15 von Fig. 3. Um eine elektrische Sicherungsfunktion der Fahnen 8 zu gewährleisten, sind diese als„schwebende" Sicherung ausgebildet. Die Fahnen 8 weisen hierzu eine Erhöhung 19 auf, durch die sie aus der Ebene des Blechs 3 herausragen. Die Erhöhung 19 ist hierbei als Radius ausgebildet. Durch einen gegensätzlich gekrümmten Radius 20 werden die Fahnen 8 in die Ebene des Blechs 3 zurückgeführt, um mit der Energiespeicherzelle 2 in Kontakt zu kommen. Bei einem Aufschmelzen der Fahnen 8 aufgrund eines zu hohen Stroms durch die Stromsammeieinrichtung 18 bleibt die implizite elektrische Sicherungsfunktion gewährleistet.
Fig. 5 zeigt eine Draufsicht auf einen Ausschnitt eines Verbindungselements 21 . Das Verbindungselement weist in dem Ausschnitt zwei Fahnen 8 auf, die unter Ausbildung zweier Radien 22, 23 in die Durchbrechung 5 ragen. Die Fahnen 8 sind hierbei einstückig durch Ausstanzen aus dem Blech 3 hergestellt. Durch ihre S-förmige Ausgestaltung bilden die Fahnen 8 eine Schmelzsicherung aus. Das Verbindungselement 21 weist ein einzelnes Blech auf, das aus demselben Material besteht wie bei Energiespeicherzellen 2, um eine stoffschlüssige Verbindung zu erreichen. Selbstverständlich weist das Verbindungselement 21 mehrere Durchbrechungen 5 auf, die aufgrund des begrenzten Ausschnitts nicht sichtbar sind.
Fig. 6 zeigt eine Draufsicht auf einen Ausschnitt eines Verbindungselements 24. Das Verbindungselement 24 weist Fahnen 8 auf, die in die Durchbrechung 5 ragen. Aufgrund des begrenzten Ausschnitts ist hierbei nur eine Durchbrechung 5 abgebildet. Die Fahnen 8 weisen Verjüngungen 25 auf, die den Querschnitt der Fahnen 8 reduzieren. Durch diese Verjüngung 25 erhöht sich der elektrische Widerstand im Bereich der Verjüngung 25. Es wird somit eine Art„Sollbruchstelle" ausgebildet, die bei Überschreiten eines zulässigen Stromwerts aufschmilzt und somit eine implizite Sicherungsfunktion sicherstellt.
Zudem ist in Fig. 6 dargestellt, dass das Verbindungselement 24 Aussparungen 26 aufweist, die zur Reduzierung von mechanischen Spannungen im Blech 3 des Verbindungselements 24 vorgesehen sind. Das Verbindungselement 24 weist zwei Bleche 3, 4 auf, die miteinander in Verbindung stehen und aus verschiedenen Metallen hergestellt sind. Zur Vermeidung bzw. zum Abbau der durch den Bimetalleffekt erzeugbaren mechanischen Spannungen sind die Aussparungen 26 im Blech 3 vorgesehen.
Selbstverständlich ist es möglich, sämtliche Eigenschaften und Merkmale der einzelnen in den Fig. 1 bis 6 dargestellten Verbindungselemente bzw. Stromsammeieinrichtungen beliebig miteinander zu kombinieren. So ist es beispielsweise möglich Verjüngungen 25 mit den Erhöhungen 19 auch unter Ausbildung von Radien 22 oder 23 in einem Verbindungselement 1 , 12, 21 oder 24 mit einem Blech 3 oder mehreren Blechen 3, 4, 13 auszubilden und Aussparungen 26 vorzusehen.
Fig. 7 zeigt eine Draufsicht auf einen Ausschnitt einer alternativen Ausführungsform zu den in den Fig. 1 bis 6 gezeigten Ausgestaltungsformen. In Fig. 7 ist ein Verbindungselement 27 abgebildet, das ein erstes Blech 28 und mehrere zweite Bleche 29 aufweist. Die Durchbrechungen 5 der zweiten Bleche 29 sind dabei koaxial zu den Durchbrechungen 6 des ersten Blechs 28 angeordnet. Die zweiten Bleche 29 sind hierbei als kreisrunde Bleche mit der Durchbrechung 5, die Fahnen 8 aufweist, abgebildet. Eine von der kreisrunden Form abweichende Form ist selbstverständlich ebenso möglich. Die Form der Durchbrechungen 5, 6 und der zweiten Bleche 29 können hierbei an die Form der Energiespeicherzellen 2 angepasst sein. Durch die Ausbildung der zweiten Bleche 29 als Einzelbleche wird der Bimetalleffekt und die daraus resultierenden mechanischen Spannungen im Verbindungselement 27 deutlich reduziert.
Auch wenn dies nicht explizit in Fig. 7 dargestellt ist, ist es selbstverständlich ebenso möglich, die Fahnen 8 der zweiten Bleche 29 analog der in den Fig. 3 bis 6 dargestellten Ausführungsformen auszubilden. Ferner sind in sämtlichen Figuren die Anzahl der Durchbrechungen 5, 6 sowie die Anzahl der Bleche 3, 4, 28, die Anzahl der zweiten Bleche 29 und die Dimensionierung der Bleche 3, 4, 28, 29 beispielhaft und können selbstverständlich beliebig gewählt werden.

Claims

P A T E N T A N S P R Ü C H E
1 . Verbindungselement (1 , 21 ) für wenigstens zwei Energiespeicherzellen (2), mit einem Blech (3, 4, 13, 28) zum elektrischen Verbinden der Energiespeicherzellen (2),
dadurch gekennzeichnet,
dass das Blech (3, 13, 28) wenigstens zwei Durchbrechungen (5) zur Aufnahme jeweils wenigstens eines Teils einer Energiespeicherzelle (2) aufweist, wobei jeweils zwei am Blech (3, 13, 28) vorgesehene Fahnen (8) in die Durchbrechungen (5) ragen.
2. Verbindungselement nach Anspruch 1 ,
dadurch gekennzeichnet,
dass die Fahnen (8) einstückig mit dem Blech (3, 13, 28) hergestellt sind.
3. Verbindungselement nach Anspruch 1 oder 2,
dadurch gekennzeichnet,
dass wenigstens eine Fahne (8) wenigstens eine Vertiefung (10) aufweist.
4. Verbindungselement nach Anspruch 3,
dadurch gekennzeichnet,
dass die Fahne (8) auf einer der Vertiefung (10) gegenüberliegenden Seite der Fahne eine Ausformung (16) aufweist.
5. Verbindungselement nach einem der vorangehenden Ansprüche,
dadurch gekennzeichnet,
dass wenigstens eine Fahne (8) wenigstens eine Verjüngung (25) ihres Querschnitts aufweist.
6. Verbindungselement nach einem der vorangehenden Ansprüche,
dadurch gekennzeichnet, dass wenigstens eine Fahne (8) unter Ausbildung wenigstens zweier Radien (22, 23) in die Durchbrechung (5) ragt.
7. Verbindungselement nach einem der vorangehenden Ansprüche,
dadurch gekennzeichnet,
dass es wenigstens zwei miteinander verbundene Bleche (3, 4) aufweist, deren wenigstens zwei Durchbrechungen (5, 6) koaxial angeordnet sind, wobei nur an einem Blech (3) jeweils zwei Fahnen (8) vorgesehen sind, die in die Durchbrechungen (5) ragen.
8. Verbindungselement nach Anspruch 7,
dadurch gekennzeichnet,
dass wenigstens ein Blech (3, 4, 13, 28) wenigstens eine Aussparung (26) zur Reduzierung von mechanischen Spannungen im Blech (3, 4, 13, 28) aufweist.
9. Verbindungselement nach einem der Ansprüche 1 bis 6,
dadurch gekennzeichnet,
dass es wenigstens ein zweites Blech (29) mit einer Durchbrechung (5) aufweist, die koaxial zu einer Durchbrechung (6) des ersten Blechs (28) angeordnet ist, wobei nur am zweiten Blech (29) zwei Fahnen (8) vorgesehen sind, die in die Durchbrechung (5) ragen.
10. Verbindungselement nach einem der vorangehenden Ansprüche,
dadurch gekennzeichnet,
dass wenigstens ein Teil eines Blechs (3, 4, 13, 28, 29) beschichtet ist.
1 1 . Stromsammeieinrichtung umfassend wenigstens zwei Energiespeicherzellen (2) und wenigstens ein Verbindungselement (1 , 21 ) nach einem der vorangehenden Ansprüche.
12. Stromsammeieinrichtung nach Anspruch 1 1 ,
dadurch gekennzeichnet, dass die Durchbrechungen (5, 6) derart ausgebildet sind, dass zwischen den Energiespeicherzellen (2) und dem Verbindungselement (1 , 21 ) ein Luftspalt (14) ausgebildet ist.
Stromsammeieinrichtung nach Anspruch 1 1 oder 12,
dadurch gekennzeichnet,
dass die Fahnen (8) aus dem gleichen Material wie die Oberfläche der Energiespeicherzelle (2) hergestellt oder damit beschichtet sind.
Verfahren zur Herstellung einer Stromsammeieinrichtung nach einem der Ansprüche 1 1 bis 13, umfassend folgende Schritte:
- Einbringen des wenigstens einen Teils der Energiespeicherzellen (2) in die Durchbrechungen (5, 6) und Kontaktieren der Fahnen (8) mit den Energiespeicherzellen (2)
- Kontaktieren der Fahnen (8) mit jeweils einer Leiterspitze
- Anlegen einer elektrischen Spannung zwischen den Leiterspitzen um wenigstens einen Teil der Fahnen (8) mit den Energiespeicherzellen (2) zu verbinden
PCT/EP2015/077870 2014-11-27 2015-11-27 Verbindungselement, stromsammeleinrichtung und zugehöriges herstellungsverfahren WO2016083557A1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/531,028 US10784484B2 (en) 2014-11-27 2015-11-27 Connecting element, current-collecting device and associated production method
CN201580064669.XA CN107004819B (zh) 2014-11-27 2015-11-27 连接元件、汇流装置和对应的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102014017622.3A DE102014017622A1 (de) 2014-11-27 2014-11-27 Verbindungselement, Stromsammeleinrichtung und zugehöriges Herstellungsverfahren
DE102014017622.3 2014-11-27

Publications (1)

Publication Number Publication Date
WO2016083557A1 true WO2016083557A1 (de) 2016-06-02

Family

ID=54771084

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2015/077870 WO2016083557A1 (de) 2014-11-27 2015-11-27 Verbindungselement, stromsammeleinrichtung und zugehöriges herstellungsverfahren

Country Status (4)

Country Link
US (1) US10784484B2 (de)
CN (1) CN107004819B (de)
DE (1) DE102014017622A1 (de)
WO (1) WO2016083557A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10547042B2 (en) 2016-10-14 2020-01-28 Tiveni Mergeco, Inc. Hybrid contact plate arrangement configured to establish electrical bonds to battery cells in a battery module
JP7092063B2 (ja) * 2019-02-21 2022-06-28 トヨタ自動車株式会社 バスバー
DE102020207893A1 (de) 2020-06-25 2021-12-30 Robert Bosch Gesellschaft mit beschränkter Haftung Ableiterelement einer Elektrodenanordnung von einer Mehrzahl von elektrochemischen Zellen
CN116937073B (zh) * 2023-09-19 2024-01-30 宁德时代新能源科技股份有限公司 集流盘加工方法、集流盘、电池单体及用电装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1691431A1 (de) * 2005-02-14 2006-08-16 SAT Akkumulatoren Technik AG Verbindungselement zur Verbindung von Zellen zu Akkumulatoren
EP2230705A1 (de) * 2009-03-16 2010-09-22 SB LiMotive Co., Ltd. Batteriemodul
WO2011038908A1 (de) * 2009-10-01 2011-04-07 Diehl Stiftung & Co. Kg Einrichtung zum elektrischen zusammenschalten von zellen eines batteriepack mittels zellverbindem und batteriepack mit solchen zellverbindem
US20130089996A1 (en) * 2011-10-06 2013-04-11 Tyco Electronics Corporation Power terminal connector and system

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1921572U (de) * 1965-06-19 1965-08-19 Friemann & Wolf G M B H Verbindungselement fuer gasdichte knopfzellen.
FR2125768A5 (de) 1971-02-19 1972-09-29 Accumulateurs Fixes
JP3636603B2 (ja) 1998-09-29 2005-04-06 三桜工業株式会社 接続板及び接続板の接続方法
JP2000311575A (ja) 1999-02-26 2000-11-07 Sanyo Electric Co Ltd ヒューズとヒューズを内蔵するパック電池
US20070099073A1 (en) 2005-10-31 2007-05-03 White Daniel J Cell connection straps for battery cells of a battery pack
US7923144B2 (en) * 2007-03-31 2011-04-12 Tesla Motors, Inc. Tunable frangible battery pack system
FR2920913B1 (fr) * 2007-09-06 2009-11-13 Pellenc Sa Batterie constituee d'une pluralite de cellules positionnees et reliees entre elles, sans soudure.
CN201054368Y (zh) 2007-09-13 2008-04-30 王晏 一种复合电池极板
KR101621099B1 (ko) * 2009-12-18 2016-05-16 삼성에스디아이 주식회사 전지 팩 및 그의 제조 방법
DE102010019935A1 (de) * 2010-05-08 2011-11-10 Volkswagen Ag Kontaktelement
DE102010044455A1 (de) 2010-09-06 2012-03-08 Bmz Batterien-Montage-Zentrum Gmbh Verbindungelement für ein Energiespeichermodul und Energiespeichermodul
CN201845821U (zh) * 2010-10-25 2011-05-25 深圳市比克电池有限公司 一种电池外部载流片
DE102011052569A1 (de) * 2011-08-11 2013-02-14 Rehau Ag + Co. Verbindungsvorrichtung zum Verbinden von wenigstens zwei Batteriezellen
CN103715386B (zh) 2012-09-28 2016-08-31 统达能源股份有限公司 蓄电组的连结结构
CN202817065U (zh) 2012-10-15 2013-03-20 山西皇城相府中道能源有限公司 圆柱形动力电池组合装置
JP6006134B2 (ja) * 2013-02-08 2016-10-12 トヨタ自動車株式会社 接続部材
CN104134774A (zh) 2014-07-16 2014-11-05 苏州宇量电池有限公司 一种带熔断功能用于连接电池的焊片
US9147875B1 (en) * 2014-09-10 2015-09-29 Cellink Corporation Interconnect for battery packs

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1691431A1 (de) * 2005-02-14 2006-08-16 SAT Akkumulatoren Technik AG Verbindungselement zur Verbindung von Zellen zu Akkumulatoren
EP2230705A1 (de) * 2009-03-16 2010-09-22 SB LiMotive Co., Ltd. Batteriemodul
WO2011038908A1 (de) * 2009-10-01 2011-04-07 Diehl Stiftung & Co. Kg Einrichtung zum elektrischen zusammenschalten von zellen eines batteriepack mittels zellverbindem und batteriepack mit solchen zellverbindem
US20130089996A1 (en) * 2011-10-06 2013-04-11 Tyco Electronics Corporation Power terminal connector and system

Also Published As

Publication number Publication date
US20170317330A1 (en) 2017-11-02
CN107004819A (zh) 2017-08-01
DE102014017622A1 (de) 2016-06-02
CN107004819B (zh) 2020-11-17
US10784484B2 (en) 2020-09-22

Similar Documents

Publication Publication Date Title
EP3031564B1 (de) Hilfselement zum einpressen in eine ersten bauteil für ein schweissverfahren zwischen zwei nicht direkt miteinander verschweissbare bauteile
WO2016083557A1 (de) Verbindungselement, stromsammeleinrichtung und zugehöriges herstellungsverfahren
DE102016200120A1 (de) Energiespeichervorrichtung
DE102013017168B4 (de) Vorrichtung zum elektrischen Verbinden mehrerer Rundzellen sowie dazugehöriges Batteriemodul und Verfahren
WO2012048354A1 (de) Anschlussteil für einen elektrischen leiter
WO2012016644A1 (de) Elektrische verbindungsanordnung und elektrisches verbindungselement sowie akkumulatoranordnung dafür
DE102014220233A1 (de) Aufbau zum Verbinden eines Elektrodrahts mit einem Anschluss, Widerstandsschweißelektrode sowie Verfahren zum Verbinden eines Elektrodrahts mit einem Anschluss
WO2019092037A1 (de) Verfahren zum herstellen einer kontaktplatte für einen batteriestapel, kontaktplatte für einen batteriestapel sowie batteriestapel
EP3282501B1 (de) Batterie, batteriemodul für die batterie und stromschiene hierfür
DE102017215284B4 (de) Kontaktplatte für einen Batteriestapel, Batteriestapel sowie Verfahren zum Herstellen einer Kontaktplatte für einen Batteriestapel
EP3625837B1 (de) Verfahren zum anordnen eines kontaktelements, kontaktelement sowie batteriestapel
DE112014006851T5 (de) Anschlusselementverbindungsstruktur und Verfahren zum Herstellen derselben
DE102013019468B4 (de) Batterie mit einer Mehrzahl von Batteriezellen
DE102012201124B4 (de) Kontaktelement
DE102010037846A1 (de) Stockwerksbrücker
DE102019007902A1 (de) Batterie mit einer Mehrzahl von Batteriezellen und Verfahren zum Herstellen einer Batterie
EP2819217A1 (de) Batteriesystem mit einem Zellverbinder und Verfahren zur Herstellung
EP2437352A1 (de) Lötverbindung
DE102017200311A1 (de) Batterie, Trägerboard und Trägerboardelement mit Rastelementen
DE102013213710B4 (de) Batteriesystem und Verfahren zur Herstellung eines Batteriesystems
DE102018218345A1 (de) Kontaktfeder und Batteriemodul
DE102019127703A1 (de) Zellverbund, umfassend eine Mehrzahl von Energiespeicherzellen und Verfahren zu dessen Herstellung
EP3618147A1 (de) Batteriezelle und verfahren zur herstellung einer batteriezelle
DE102013106206A1 (de) Akkumulator und Verfahren zur Herstellung eines Akkumulators
DE102016110415B3 (de) Verfahren zum herstellen einer elektrischen verbindung sowie elektrische leitungsanordnung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15804089

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15531028

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 15804089

Country of ref document: EP

Kind code of ref document: A1