WO2016082321A1 - 起重机作业能量回收利用方法和系统、及起重机 - Google Patents

起重机作业能量回收利用方法和系统、及起重机 Download PDF

Info

Publication number
WO2016082321A1
WO2016082321A1 PCT/CN2015/070962 CN2015070962W WO2016082321A1 WO 2016082321 A1 WO2016082321 A1 WO 2016082321A1 CN 2015070962 W CN2015070962 W CN 2015070962W WO 2016082321 A1 WO2016082321 A1 WO 2016082321A1
Authority
WO
WIPO (PCT)
Prior art keywords
energy
hydraulic
hydraulic power
power unit
torque
Prior art date
Application number
PCT/CN2015/070962
Other languages
English (en)
French (fr)
Inventor
单增海
张正得
胡小冬
张海燕
袁丛林
Original Assignee
徐州重型机械有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201410680034.XA external-priority patent/CN105156412B/zh
Priority claimed from CN201410683575.8A external-priority patent/CN105443514B/zh
Application filed by 徐州重型机械有限公司 filed Critical 徐州重型机械有限公司
Priority to EP15862593.9A priority Critical patent/EP3225855B1/en
Priority to US15/528,649 priority patent/US10359063B2/en
Priority to BR112017010895A priority patent/BR112017010895A2/pt
Publication of WO2016082321A1 publication Critical patent/WO2016082321A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/14Energy-recuperation means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/18Control systems or devices
    • B66C13/20Control systems or devices for non-electric drives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/12Arrangements of means for transmitting pneumatic, hydraulic, or electric power to movable parts of devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66DCAPSTANS; WINCHES; TACKLES, e.g. PULLEY BLOCKS; HOISTS
    • B66D1/00Rope, cable, or chain winding mechanisms; Capstans
    • B66D1/28Other constructional details
    • B66D1/40Control devices
    • B66D1/42Control devices non-automatic
    • B66D1/44Control devices non-automatic pneumatic of hydraulic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B1/00Installations or systems with accumulators; Supply reservoir or sump assemblies
    • F15B1/02Installations or systems with accumulators
    • F15B1/024Installations or systems with accumulators used as a supplementary power source, e.g. to store energy in idle periods to balance pump load

Definitions

  • the invention relates to the field of engineering machinery, in particular to a method and a system for recovering and utilizing energy of a crane, and a crane.
  • the crane is a gravity working machine.
  • the hydraulic actuator of the crane releases a large amount of energy when it is lowered or braked.
  • the existing crane products generate a large amount of heavy potential energy during the hoisting and sag.
  • the present invention provides a method and system for recycling energy of a crane operation, and a crane, which realizes energy saving and emission reduction by reducing the energy released by the hydraulic actuator when descending, and reduces heat generation of the system.
  • a method for recycling energy of a crane operation comprising:
  • the first hydraulic power unit converts hydraulic energy generated by the hydraulic actuator into mechanical energy of the drive shaft
  • the drive shaft drives the second hydraulic power unit to rotate, and converts the mechanical energy of the drive shaft into the mechanical energy of the second hydraulic power unit;
  • the second hydraulic power unit charges the accumulator with pressurized oil, and converts the mechanical energy of the second hydraulic power unit into hydraulic energy for storage.
  • the hydraulic actuator includes a luffing cylinder
  • the first hydraulic power unit converts the hydraulic energy generated by the hydraulic actuator into the mechanical energy of the drive shaft, including:
  • variable amplitude cylinder converts the gravitational potential energy generated during the falling of the crane boom into a hydraulic energy
  • the first hydraulic power unit converts the hydraulic energy generated by the variable range cylinder into the mechanical energy of the drive shaft.
  • the hydraulic actuator comprises a hoisting motor
  • the first hydraulic power unit converts the hydraulic energy generated by the hydraulic actuator into the mechanical energy of the drive shaft, including:
  • the hoisting motor converts the gravitational potential energy generated by the heavy object during the heavy lifting process of the crane into hydraulic energy
  • the first hydraulic power unit converts the hydraulic energy generated by the hoisting motor into the mechanical energy of the drive shaft.
  • the method further includes:
  • T x max is not less than T h
  • the recovery torque T x T h of the second hydraulic power unit is made by adjusting the displacement of the second hydraulic power unit.
  • the method further includes:
  • the second hydraulic power unit converts hydraulic energy released by the accumulator into mechanical energy of the drive shaft when the crane needs to utilize energy to drive the hydraulic actuator to operate;
  • the main pump converts the mechanical energy of the drive shaft into hydraulic energy to drive the hydraulic actuator to perform the corresponding operation.
  • the hydraulic actuator includes a luffing cylinder
  • the main pump converts the mechanical energy of the drive shaft into hydraulic energy, and the steps of driving the hydraulic actuator to perform corresponding operations include:
  • the main pump converts the mechanical energy of the drive shaft into hydraulic energy to drive the variable amplitude cylinder to achieve the lifting and hoisting of the boom.
  • the hydraulic actuator comprises a hoisting motor
  • the main pump converts the mechanical energy of the drive shaft into hydraulic energy, and the steps of driving the hydraulic actuator to perform corresponding operations include:
  • the main pump converts the mechanical energy of the drive shaft into hydraulic energy to drive the hoisting motor to achieve the lifting and lifting of the heavy objects.
  • the method in the process of converting the hydraulic energy released by the accumulator into the mechanical energy of the drive shaft by the second hydraulic power unit, the method further comprises:
  • a crane work energy recycling system comprising: a hydraulic actuator, a first hydraulic power unit, a drive shaft, a second hydraulic power unit, and an accumulator, wherein:
  • a first hydraulic power unit for converting hydraulic energy generated by the hydraulic actuator into mechanical energy of the drive shaft
  • a drive shaft for driving the second hydraulic power unit to rotate, converting mechanical energy of the drive shaft into mechanical energy of the second hydraulic power unit
  • a second hydraulic power device for converting the mechanical energy of the second hydraulic power unit into hydraulic energy by charging the accumulator with pressure oil
  • the hydraulic actuator includes a luffing cylinder, wherein:
  • variable amplitude cylinder for converting gravitational potential energy generated during the falling of the crane boom into a hydraulic energy
  • the first hydraulic power unit is specifically configured to convert hydraulic energy generated by the variable amplitude cylinder into mechanical energy of the transmission shaft.
  • the hydraulic actuator includes a hoist motor, wherein:
  • a hoisting motor for converting gravitational potential energy generated by heavy objects during heavy lifting of a crane into hydraulic energy
  • the first hydraulic power unit is specifically configured to convert hydraulic energy generated by the hoisting motor into mechanical energy of the drive shaft.
  • the engine and the second hydraulic power unit are coupled to the first hydraulic power unit via a transfer case
  • the system further includes a first torque acquisition module, a second torque acquisition module, a first identification module, and a second displacement adjustment module, wherein:
  • a first torque acquiring module configured to: when the driving shaft drives the second hydraulic power device to rotate, convert the mechanical energy of the driving shaft into the mechanical energy of the second hydraulic power device, obtain the first hydraulic power device output to the transfer box in real time Load torque T h ;
  • a second torque acquiring module configured to acquire a maximum recovery torque T x max of the second hydraulic power device during the process of converting the hydraulic energy released by the accumulator into the mechanical energy of the transmission shaft by the second hydraulic power device;
  • a first identification module configured to determine whether T x max is less than T h ;
  • the system further includes a main pump, wherein:
  • the accumulator is also used to release stored hydraulic energy when the crane needs to utilize energy to drive the hydraulic actuator to operate;
  • the second hydraulic power unit is further configured to convert hydraulic energy released by the accumulator into mechanical energy of the transmission shaft;
  • the main pump is used to convert the mechanical energy of the drive shaft into hydraulic energy to drive the hydraulic actuator to perform the corresponding operation.
  • the hydraulic actuator includes a luffing cylinder, wherein:
  • the main pump is specifically configured to convert mechanical energy of the transmission shaft into hydraulic energy, and supply hydraulic energy to the variable amplitude cylinder;
  • a variable-speed cylinder for hoisting the boom with the hydraulic energy provided by the main pump.
  • the hydraulic actuator includes a hoist motor, wherein:
  • the main pump is specifically used to convert the mechanical energy of the drive shaft into hydraulic energy, and provide hydraulic energy to the hoisting motor;
  • the hoisting motor is used to achieve the lifting and lifting of heavy objects by using the hydraulic energy provided by the main pump.
  • the system further includes a third torque acquisition module, a fourth torque acquisition module, and a second identification module, wherein:
  • a third torque obtaining module a second hydraulic power means for the hydraulic energy accumulator releasing process of converting the mechanical energy of the drive shaft, acquired in real time load torque T d of the output of the main pump;
  • a fourth torque acquiring module configured to obtain a maximum driving torque T xc max that can be provided by the second hydraulic power device during the process of converting the hydraulic energy released by the accumulator into the mechanical energy of the transmission shaft by the second hydraulic power device;
  • a second identification module configured to determine whether T xc max is less than T d ;
  • a crane comprising the crane operating energy recovery system of any of the above embodiments is provided.
  • the invention can effectively recover the gravitational potential energy of the lifting process of the lifting and the variable working of the crane, and can reuse the recovered energy for the driving of the hoisting and the variable amplitude, thereby reducing the fuel consumption of the lifting operation, saving energy and reducing emissions.
  • the variable pump is used to adjust the speed of the weight drop, which replaces the current mode of balancing the valve, that is, the volume speed regulation is used instead of the throttle speed regulation, which reduces the heat generation of the system and prolongs the hydraulic components.
  • the service life and the power of the crane cooling system can be reduced.
  • FIG. 1 is a schematic view of an embodiment of a crane operating energy recovery and utilization system of the present invention.
  • FIG. 2 is a schematic view of a first embodiment of a crane operating energy recovery and utilization system of the present invention.
  • FIG. 3 is a schematic view of another embodiment of a crane operating energy recovery and utilization system of the present invention.
  • FIG. 4 is a schematic view of still another embodiment of a crane operation energy recovery and utilization system of the present invention.
  • Fig. 5 is a schematic view showing a second embodiment of the crane working energy recovery and utilization system of the present invention.
  • Fig. 6 is a schematic view showing a third embodiment of the crane working energy recovery and utilization system of the present invention.
  • Fig. 7 is a schematic view showing a first embodiment of a method for recovering and utilizing energy of a crane according to the present invention.
  • FIG. 8 is a schematic view showing a second embodiment of a method for recycling energy of a crane operation according to the present invention.
  • Fig. 9 is a schematic view showing a third embodiment of a method for recycling energy of a crane operation according to the present invention.
  • Fig. 10 is a schematic view showing a fourth embodiment of a method for recycling and utilizing energy of a crane according to the present invention.
  • FIG. 11 is a schematic diagram of a method for adjusting a recovery torque of a second hydraulic power unit according to an embodiment of the present invention.
  • Fig. 12 is a schematic view showing a fifth embodiment of a method for recycling energy of a crane operation according to the present invention.
  • FIG. 13 is a schematic diagram of a second hydraulic power unit driving torque adjustment method according to an embodiment of the present invention.
  • FIG. 1 is a schematic view of an embodiment of a crane operating energy recovery and utilization system of the present invention.
  • the illustrated crane work energy recovery system includes a hydraulic actuator 101, a first hydraulic power unit 2, a drive shaft 102, a second hydraulic power unit 4, and an accumulator 5, wherein:
  • the first hydraulic power unit 2 and the second hydraulic power unit 4 are connected by a transmission shaft 102.
  • a hydraulic actuator 101 for generating hydraulic energy for generating hydraulic energy.
  • the hydraulic actuator 101 includes a hydraulic motor and/or a hydraulic cylinder, wherein the hydraulic motor generates hydraulic energy when the weight is lowered, and the hydraulic cylinder generates hydraulic energy when it is lowered.
  • the first hydraulic power unit 2 is configured to convert hydraulic energy generated by the hydraulic actuator into mechanical energy of the drive shaft.
  • the transmission shaft 102 is configured to drive the second hydraulic power unit to rotate, and convert the mechanical energy of the transmission shaft into the mechanical energy of the second hydraulic power unit.
  • the second hydraulic power unit 4 is configured to convert the mechanical energy of the second hydraulic power unit into hydraulic energy by charging the accumulator with pressurized oil.
  • the accumulator 5 is for storing hydraulic energy.
  • the crane working energy recycling system provided by the above embodiment of the present invention realizes energy saving and emission reduction and reduces the heat generation of the system by recycling the energy released by the hydraulic actuator when descending.
  • FIG. 2 is a schematic view of a first embodiment of a crane operating energy recovery and utilization system of the present invention.
  • the hydraulic actuator 101 described in Fig. 1 is specifically a slewing cylinder.
  • the crane operation energy recovery and utilization system includes a luffing cylinder 1, a first hydraulic power device 2, a transfer case 3, a second hydraulic power device 4, an accumulator 5, a variable amplitude balance valve 10, and a first Main reversing valve 9, main pump 6 and engine 7, wherein:
  • the oil outlet of the main pump 6 communicates with the first working port P of the first main reversing valve 9, the second working port A of the first main reversing valve 9 and the first working port of the variable amplitude balancing valve 10.
  • C is connected, and the second working port D of the amplitude equalizing valve 10 is in communication with the rodless chamber of the variable amplitude cylinder 1.
  • the first working port C of the amplitude equalizing valve 10 is in communication with the oil inlet of the first hydraulic power unit 2, the first hydraulic power unit 2 is coaxially connected with the main pump 6 through the transmission shaft, and the transfer case 3 is connected to the engine 7.
  • the engine 7 On the output shaft of the main pump 6, the engine 7 is connected in parallel with the second hydraulic power unit 4 via the transfer case 3, and the second hydraulic power unit 4 is connected to the accumulator 5. through.
  • variable amplitude cylinder 1 is used for converting the gravitational potential energy generated during the falling of the crane boom into a hydraulic energy.
  • the first hydraulic power unit 2 is configured to convert hydraulic energy generated by the variable amplitude cylinder into mechanical energy of the transmission shaft.
  • the transfer case 3 is configured to drive the second hydraulic power unit to rotate by the mechanical energy of the drive shaft.
  • the second hydraulic power unit 4 is configured to convert the mechanical energy of the second hydraulic power unit into hydraulic energy by charging the accumulator with pressurized oil.
  • the accumulator 5 is for storing hydraulic energy.
  • the crane working energy recovery and utilization system provided by the above embodiments of the present invention can effectively recover the energy of the crane sling operation weight and the boom lowering process, and then reused, thereby reducing the fuel consumption of the lifting operation, saving energy and reducing emissions.
  • the accelerating device is filled with pressure oil to adjust the variable amplitude decreasing speed, which replaces the current method of adjusting the balance valve, reduces the heat generation of the system, and prolongs the hydraulic component.
  • the service life and the power of the crane cooling system can be reduced.
  • the transfer case 3 may be a gear set.
  • the first hydraulic power unit 2 includes a first variable pump and a first pump motor; the second hydraulic power unit 4 includes a second variable pump and a second pump motor.
  • the system further includes a pilot oil source, a first reversing valve 11, a second reversing valve 13, a first cartridge valve 12, and a shuttle valve 14, among them:
  • the oil outlet of the pilot oil source communicates with the first working oil port H of the first switching valve 11, and the second working oil port F of the first switching valve 11 communicates with the control oil port of the variable amplitude balancing valve.
  • the first oil inlet K of the second switching valve 13 communicates with the oil outlet of the shuttle valve 14 , and the first oil inlet N and the second oil inlet M of the shuttle valve 14 respectively correspond to the first cartridge valve 12 A working port R and a port S are connected.
  • the electromagnets 1Y, 4Y are energized, the variable amplitude cylinder 1 and the first hydraulic power unit 2 constitute a pump control cylinder circuit, and the first main reversing valve 9 is in the middle position, the main change The first working port P and the second working port A of the valve are not electrically connected.
  • the electromagnet 4Y is energized, the first reversing valve 11 is in the lower position, and the first working port H and the second working port F of the first reversing valve 11 are turned on, so that the pilot oil source flows into the pilot of the variable amplitude balancing valve 10.
  • the oil port E is such that the variable amplitude balance valve 10 is reversely turned on, and the pressure oil of the rodless chamber of the variable amplitude cylinder 1 flows through the variable amplitude balance valve 10 to the first working oil port R of the first cartridge valve.
  • the second reversing valve 13 When the electromagnet 1Y is energized, the second reversing valve 13 is in the left position, and the control port U of the cartridge valve 12 is free of pressure oil, whereby the first cartridge valve 12 will be opened, and the first cartridge valve 12 is first.
  • the working port R is in communication with the first working port C of the amplitude equalizing valve 10. Thereby, the first hydraulic power unit 2 and the slewing cylinder 1 form a passage to recover the sling weight and the gravitational potential energy generated by the jib during the falling of the jib.
  • the hydraulic energy generated by the slewing cylinder 1 drives the first hydraulic power unit 2 to rotate, and the first hydraulic power unit 2 converts the hydraulic energy generated by the slewing cylinder 1 into the mechanical energy of the transmission shaft.
  • the mechanical energy of the drive shaft drives the main pump 6, the transfer case 3, and the second hydraulic power unit 4 to rotate, thereby converting the mechanical energy of the drive shaft into the rotational kinetic energy of the second hydraulic power unit 4.
  • the second hydraulic power unit 4 will rotate, thereby charging the hydraulic oil into the accumulator 5, that is, completing the conversion of mechanical energy to hydraulic energy, and finally realizing the recovery of the variable amplitude energy.
  • the accumulator 5 is for storing hydraulic energy.
  • the balance valve is mainly used for locking the luffing cylinder.
  • the on-off valve can be used instead of the variable-amplitude balance valve to lock the cylinder, and the effect of variable-frequency energy recovery and reuse can also be achieved.
  • the first hydraulic power device can be locked by using an on-off valve instead of the first cartridge valve, and the variable-frequency energy recovery and reuse can also be achieved. Effect.
  • the first working port R of the first cartridge valve 12 may communicate with the second working port D of the amplitude equalizing valve 10 when the amplitude is falling, that is, the first insertion
  • the first working port R of the valve can be connected to the oil path between the balancing valve and the rodless chamber of the luffing cylinder. In this way, the effect of variable amplitude energy recovery and reuse can also be achieved.
  • the system further includes a first displacement adjustment module, wherein:
  • the first displacement adjusting module is configured to adjust the displacement of the first hydraulic power unit 2 during the entire variable amplitude falling of the lifting arm to control the speed of the lifting and lowering of the lifting arm, thereby preventing the variable amplitude from falling rapidly.
  • variable pump in the process of descending the weight, is used to adjust the descending speed of the heavy object, which replaces the current mode of adjusting the balance valve, that is, the volumetric speed control is used instead of the throttle speed regulation, thereby reducing the heat generation of the system. It extends the service life of the hydraulic components and reduces the power of the crane cooling system.
  • the crane controller outputs a current signal to control the displacement of the first hydraulic power unit 2 according to the angle of the joystick of the crane, thereby controlling the speed of the variable amplitude, thereby calculating the first
  • the torque that the hydraulic power unit 2 outputs to the transfer case shaft is also the recoverable energy torque T h .
  • the system may further include a first torque acquisition module 201, a second torque acquisition module 202, a first identification module 203, a second displacement adjustment module 204, and The first switch 17 and the second switch 18 as shown in FIG. 2, wherein:
  • the first torque acquisition module 201 is coupled to the first hydraulic power unit 2 of FIG. 2, and the second torque acquisition unit 202 is coupled to the second hydraulic power unit 4.
  • the first switch 17 is disposed between the second hydraulic power unit 4 and the transfer case 3, and the second switch is disposed between the engine 7 and the transfer case 3.
  • the first torque acquiring module 201 is configured to acquire the load torque T h outputted by the first hydraulic power unit 2 to the transfer case 3 in real time during the falling of the boom.
  • the first torque acquisition module 201 may acquire the load torque T h by acquiring the displacement of the first hydraulic power unit 2 and the measured value of the first pressure sensor 82.
  • the second torque acquisition module 202 is configured to acquire a maximum recovery torque T x max of the second hydraulic power device 4 .
  • the second torque acquisition module 202 may acquire the maximum recovery torque T by acquiring the maximum displacement of the second hydraulic power unit 4 and the pressure of the accumulator detected by the second pressure sensor 81. x max .
  • the first identification module 203 is configured to determine whether T x max is less than T h .
  • the second displacement adjustment module 204 is configured to adjust the displacement of the second hydraulic power unit 4 to the maximum when the T x max is less than T h according to the determination result of the first identification module 203, so that the second hydraulic power unit 4
  • the recovery torque T x T xmax and triggers the first switch 17 and the second switch 18 to close, and T h is jointly balanced by the braking torque of T x and the engine 7. That is, the second hydraulic power unit 4 can only partially recover the mechanical energy of the first hydraulic power unit 2 (i.e., partially recover the variable amplitude energy of the luffing mechanism).
  • the second displacement adjustment module 204 is further configured to adjust the displacement of the second hydraulic power unit 4 when the T x max is not less than T h according to the determination result of the first identification module 203.
  • the above embodiment of the present invention can adjust the displacement of the second hydraulic power device to adjust the recovery torque of the second hydraulic power device, thereby maximally recovering the variable amplitude energy of the luffing mechanism, thereby achieving better energy saving and emission reduction. Reduce the heat of the system.
  • both the first switch 17 and the second switch 18 may employ a clutch.
  • the system further includes a first pressure sensor 81, wherein:
  • the first pressure sensor 81 is connected to the accumulator 5 for detecting the pressure of the accumulator 5;
  • the first switch 17 is further configured to disconnect the second hydraulic power unit 4 from the transfer case 3 when the pressure detected by the first pressure sensor 81 reaches a predetermined maximum working pressure, and completely balance the Th by the braking torque of the engine 7. .
  • the pressure of the accumulator increases continuously.
  • the first disconnection is performed.
  • the connection of the two hydraulic power units 4 to the transfer case 3 relies entirely on the braking torque of the engine 7 to balance the Th .
  • the system further includes a third reversing valve 15 and a second cartridge valve 16, wherein:
  • the first working port X of the third reversing valve 15 is in communication with the oil return circuit
  • the second working port Y is in communication with the control port U1 of the second cartridge valve 16, the third working port Z and the accumulator 5 Connected.
  • the first working port V of the second cartridge valve 16 is in communication with the accumulator 5, and the second working port W is in communication with the second hydraulic power unit 4.
  • the electromagnet 3Y is energized, the third reversing valve 15 is in the left position, the control port U1 of the second cartridge valve 16 is not pressurized, and the second cartridge valve 16 is A working port V and a second working port W are electrically connected, and the accumulator 5 is in communication with the second hydraulic power unit 4 to realize recovery of the variable amplitude energy.
  • the electromagnet 3Y When the pressure detected by the first pressure sensor 81 reaches the predetermined maximum working pressure, the electromagnet 3Y is de-energized, the third reversing valve 15 is in the right position, the control port U1 of the second cartridge valve 16 is pressurized with oil, and the second insertion is performed. The first working port V and the second working port W of the valve 16 are disconnected, and the accumulator 5 is disconnected from the second hydraulic power unit 4, and the braking torque of the engine 7 is completely relied on to balance the Th .
  • the energy storage device can be locked by using an on-off valve instead of the second cartridge valve 16, and the effect of variable amplitude energy recovery and reuse can also be achieved.
  • the system further includes a relief valve 19 in communication with the accumulator 5, wherein:
  • the relief valve 19 when the pressure detected by the first pressure sensor 81 reaches a predetermined maximum working pressure (i.e., when the accumulator is full), opens so that the accumulator maintains a constant pressure and energy recovery stops.
  • the accumulator 5 is also used to release stored hydraulic energy to provide a driving force to the hydraulic actuator of the crane when the crane is in the on-board operation and the accumulator has excess energy.
  • the hydraulic actuator may include at least one of a hydraulic actuator such as a luffing cylinder, a hoisting motor, a swing motor, or the like.
  • the electromagnets 3Y, 5Y are energized, and the open pump control cylinder circuit composed of the main pump and the variable amplitude cylinder realizes the driving of the luffing system. .
  • the electromagnet 3Y is energized, the third reversing valve 15 is in the left position, the control port U1 of the second cartridge valve 16 is free of pressure oil, and the first working port V of the second cartridge valve 16 is The second working port W is turned on, and the accumulator 5 is in communication with the second hydraulic power unit 4, and the high pressure oil in the accumulator 5 drives the second hydraulic power unit 4 to rotate through the second cartridge valve 16.
  • the second hydraulic power unit 4 drives the transfer case to rotate by the first switch 1, thereby transmitting mechanical energy to the drive shaft, and together with the engine, provides a driving force to the drive shaft, thereby realizing the reuse of the stored hydraulic energy.
  • the electromagnet 5Y is energized, the first main reversing valve 9 is in the left position, and the first working port P and the second working port A of the main reversing valve of the main reversing valve are electrically connected.
  • the main pump 6 is also used to convert the mechanical energy of the drive shaft into hydraulic energy to drive the luffing cylinder 1 to achieve a swell of the boom. At this time, the lifting of the luffing cylinder can be provided by the main pump or the variable pump/motor.
  • system further includes a third displacement adjustment module, wherein:
  • the third displacement adjustment module is configured to adjust the displacement of the main pump 6 during the lifting and hoisting of the boom to control the swelling speed.
  • the crane controller outputs a current signal to control the displacement of the main pump according to the angle of the joystick of the crane, thereby controlling the speed of the variable amplitude, thereby obtaining the output torque T of the main pump. d .
  • the system may further include a third torque acquisition module 301, a fourth torque acquisition module 302, and a second identification module 303 as shown in FIG. 4, wherein:
  • the third torque acquiring device 301 is in communication with the main pump, and the fourth torque acquiring device 302 is in communication with the second hydraulic power device; the second identifying module 303 is in communication with the third torque acquiring module and the fourth torque acquiring module, respectively.
  • the third torque acquiring module 301 is configured to acquire the load torque T d output by the main pump 6 in real time during the lifting and lifting of the boom.
  • the third torque acquisition module 301 can acquire the load torque T d output by the main pump 6 by acquiring the displacement of the main pump 6 and the measured value of the third pressure sensor 83.
  • the fourth torque acquisition module 302 is configured to acquire a maximum driving torque T xc max that the second hydraulic power device 4 can provide.
  • the second torque acquisition module 202 may acquire the maximum driving torque T by acquiring the maximum displacement of the second hydraulic power device 4 and the pressure of the accumulator detected by the second pressure sensor 81. Xc max .
  • the second identification module 303 is configured to determine whether T xc max is less than T d .
  • the second displacement adjustment module 204 is further configured to adjust the displacement of the second hydraulic power device 4 to the maximum when the T xc max is less than T d according to the determination result of the second identification module 303, so that the second hydraulic power device 4
  • the supplied driving torque T xc T xcmax ; while the first switch and the second switch are triggered to be closed, the main pump 6 is driven together by the driving torque T xc of the second hydraulic power unit 4 and the driving torque of the engine 7.
  • the above embodiment of the present invention can adjust the displacement of the second hydraulic power device and adjust the driving torque of the second hydraulic power device, thereby maximally utilizing the energy stored by the accumulator, thereby achieving better energy saving, emission reduction, and reduction.
  • the purpose of the system to generate heat.
  • the second displacement adjustment module 204 is further configured to adjust the displacement of the second hydraulic power unit 4 when T xc max is not less than T d according to the determination result of the second identification module 303.
  • the first switch 17 is further configured to disconnect the second hydraulic power unit 4 from the transfer case 3 when the pressure detected by the first pressure sensor 81 reaches a predetermined minimum working pressure, and simultaneously close The second switch relies entirely on the engine 7 to drive the main pump 6.
  • the lifting weight rises, the high pressure oil in the accumulator is released, the pressure of the accumulator is continuously reduced, and when the pressure of the accumulator is higher than the accumulator inflation pressure
  • the displacement control signal of the second hydraulic power unit is set to zero, the electromagnet 3Y is de-energized, the second cartridge valve 16 is opened, the first switch 17 is opened, and the engine is completely powered.
  • the luffing cylinder 1 and the first hydraulic power unit 2 constitute an open pump control cylinder circuit for hoisting and lifting of the crane boom during the falling of the boom.
  • the gravitational potential energy is converted into the mechanical energy of the first hydraulic power unit 2.
  • the luffing cylinder 1 and the first hydraulic power unit 2 may also constitute a closed pump control cylinder circuit to hoist the weight of the crane boom during the falling of the crane and the gravity generated by the boom. The potential energy is converted into the mechanical energy of the first hydraulic power unit 2.
  • the crane working energy recycling system according to the second embodiment of the present invention is a crane variable amplitude energy recycling system.
  • Fig. 5 is a schematic view showing a second embodiment of the crane working energy recovery and utilization system of the present invention.
  • the hydraulic actuator 101 described in Fig. 1 is specifically a hoisting motor.
  • the crane operation energy recycling system includes a hoisting horse. Up to 21, first hydraulic power unit 2, transfer case 3, second hydraulic power unit 4 and accumulator 5, balancing valve 30, second main reversing valve 32, main pump 6 and engine 7, wherein:
  • the oil outlet of the main pump 6 communicates with the oil inlet of the second main directional control valve 32, and the first working oil port of the second main directional control valve 32 communicates with the first working oil port of the balancing valve 30, and the balance valve 30
  • the second working port is in communication with the opening of the hoisting motor 21.
  • the second working port of the balancing valve 30 is in communication with the oil inlet of the first hydraulic power unit 2, the first hydraulic power unit 2 is coaxially connected to the main pump 6, and the transfer case 3 is connected to the output of the engine 7 to the main pump 6.
  • the engine 7 is connected in parallel with the second hydraulic power unit 4 via the transfer case 3, and the second hydraulic power unit 4 is in communication with the accumulator 5.
  • the hoisting motor 21 and the first hydraulic power unit 2 constitute a closed pump control motor circuit for converting the gravitational potential energy generated by the weight during the heavy lifting of the crane into hydraulic energy.
  • the first hydraulic power unit 2 (primary element) is used to convert the hydraulic energy generated by the hoisting motor into the mechanical energy of the drive shaft.
  • the transfer case 3 is configured to drive the second hydraulic power unit to rotate by the mechanical energy of the drive shaft.
  • the second hydraulic power unit 4 (secondary secondary element) is configured to convert the mechanical energy of the second hydraulic power unit into hydraulic energy by charging the accumulator with pressurized oil.
  • the accumulator 5 is for storing hydraulic energy.
  • the hoisting motor and the first hydraulic power device are combined into a closed pump control system during the lifting process of the lifting system, and the first hydraulic power device is further driven by the second hydraulic power device.
  • the hydraulic power unit fills the accumulator with pressure oil and recovers the energy of the heavy material falling process, so that the energy of the lifting process of the crane lifting work can be effectively recovered, and then reused, thereby reducing the fuel consumption of the lifting work and saving energy. Reduce emissions.
  • the first hydraulic power unit 2 includes a first change a quantity pump and a first pump motor; the second hydraulic power unit 4 includes a second variable pump and a second pump motor.
  • the system further includes a reversing valve 31, a reversing valve 26, a cartridge valve 25, a shuttle valve 27, a reversing valve 23, a cartridge valve 22, Shuttle valve 24, cartridge valve 29 and reversing valve 28, wherein:
  • the electromagnets 11Y, 10Y, 8Y, and 9Y are energized, and the first hydraulic power unit 2 and the hoisting motor 21 form a passage to recover the entangled potential energy.
  • the hoisting potential energy forms hydraulic energy through a reel, a hoisting reducer, and a hoisting motor, and the hoisting motor 21 and the first hydraulic power unit 2 form a closed pump-controlled motor circuit to convert the potential energy of the weight into mechanical energy.
  • the torque generated by the weight drives the first hydraulic power unit to rotate, and the mechanical energy drives the second hydraulic power unit 4 (secondary secondary component variable pump/motor) to charge the accumulator with pressure oil, and convert the mechanical energy into hydraulic energy for storage. .
  • the reversing valve 26 When the electromagnet 11Y is energized, the reversing valve 26 is in the left position, and the control port of the cartridge valve 25 is in communication with the cylinder, that is, the control port is free of pressure oil, whereby the cartridge valve 25 is opened.
  • the reversing valve 23 When the electromagnet 10Y is energized, the reversing valve 23 is in the left position, and the control port of the cartridge valve 22 is in communication with the cylinder, that is, the control port is free of pressure oil, whereby the cartridge valve 22 is opened.
  • the reversing valve 31 When the electromagnet 8Y is energized, the reversing valve 31 is in the lower position, so that the pilot port of the balancing valve 30 communicates with the cylinder, that is, the pilot port has no pressure oil, and the balance valve 30 is kept closed, so that the potential energy of the counterweight is not from the balancing valve. The throttling is lost, but can be recovered by the first hydraulic power unit 2.
  • the reversing valve 28 When the electromagnet 9Y is energized, the reversing valve 28 is in the right position, and the control port of the cartridge valve 29 is in communication with the oil return circuit of the first hydraulic power unit 2, that is, the control port has pressurized oil, and the cartridge valve 29 is disconnected. Therefore, it is ensured that the oil return of the first hydraulic power unit 2 can be replenished to the low pressure chamber (falling mouth) of the hoisting motor in time.
  • the solenoid valves 7Y and 6Y are not energized, the main reversing valve is in the neutral state, the main pump is in a low pressure overflow state, and the main oil passage does not participate in energy recovery.
  • the electromagnets 11Y, 10Y, 8Y, and 9Y are energized, the first hydraulic power unit 2 and the hoisting motor 21 form a closed pump-controlled motor circuit, and the potential energy of the weight is converted into mechanical energy.
  • the plucking potential energy forms hydraulic energy through the reel, the hoisting reducer, and the hoisting motor, and the hydraulic energy generated by the hoisting motor 21 pushes the first hydraulic power unit 2 to rotate, the first hydraulic power
  • the device 2 converts the hydraulic energy generated by the hoisting motor 21 into mechanical energy of the drive shaft.
  • the mechanical energy of the drive shaft drives the main pump 6, the transfer case 3, and the second hydraulic power unit 4 to rotate, thereby converting the mechanical energy of the drive shaft into the rotational kinetic energy of the second hydraulic power unit 4.
  • the second hydraulic power unit 4 will rotate, thereby charging the hydraulic oil into the accumulator 5, that is, completing the conversion of mechanical energy to hydraulic energy, and finally achieving the recovery of the hoisting energy.
  • the energy recovery of the hoisting motor is mainly performed by a balancing valve for locking the hoisting motor.
  • the first hydraulic power unit 2 can be used for the drive of the swing motor without energy recovery.
  • the hoisting motor nozzle hydraulic oil may be supplied by an additional oil pump in addition to the second variable pump of the first hydraulic power unit.
  • the hoisting motor can be locked by using an on-off valve instead of the balancing valve, and the hoisting energy recovery and reuse effect can also be achieved.
  • the first hydraulic power unit can be locked by using the on-off valve instead of the cartridge valve 22 and the cartridge valve 25, and the effect of hoisting energy recovery and reuse can be achieved.
  • the main valve can be locked by using an on-off valve instead of the cartridge valve 29, and the effect of hoisting energy recovery and reuse can also be achieved.
  • the system further includes a first displacement adjustment mode Block, where:
  • the first displacement adjustment module is configured to adjust the displacement of the first hydraulic power unit 2 during the heavy drop process to control the weight falling speed, thereby preventing the heavy object from falling quickly.
  • variable pump in the process of descending the weight, is used to adjust the descending speed of the weight, instead of the current method of adjusting the speed of the balancing valve, the heat generation of the system is reduced, and the service life of the hydraulic component is prolonged, and It can reduce the power of the crane cooling system.
  • the crane controller outputs a current signal to control the displacement of the first hydraulic power unit 2 according to the angle of the crane operating handle, thereby controlling the weight falling speed, thereby calculating the first
  • the torque that the hydraulic power unit 2 outputs to the transfer case shaft is also the recoverable energy torque T h .
  • the system of the embodiment shown in FIG. 5 may further include a first switch 17, a second switch 18, and a first torque acquisition module 201, a second torque acquisition module 202, a first identification module 203, and a A second displacement adjustment module 204, wherein:
  • the first torque acquisition module 201 is coupled to the first hydraulic power unit 2 of FIG. 5, and the second torque acquisition unit 202 is coupled to the second hydraulic power unit 4.
  • the first switch 17 is disposed between the second hydraulic power unit 4 and the transfer case 3, and the second switch is disposed between the engine 7 and the transfer case 3.
  • the first torque acquiring module 201 is configured to acquire the load torque T h outputted by the first hydraulic power device 2 to the transfer case 3 in real time during the hoisting and falling process.
  • the first torque acquisition module 201 may acquire the load torque T h by acquiring the displacement of the first hydraulic power unit 2 and the measured value of the first pressure sensor 82.
  • the second torque acquisition module 202 is configured to acquire a maximum recovery torque T x max of the second hydraulic power device 4 .
  • the second torque acquisition module 202 may acquire the maximum recovery torque T by acquiring the maximum displacement of the second hydraulic power unit 4 and the pressure of the accumulator detected by the second pressure sensor 81. x max .
  • the first identification module 203 is configured to determine whether T x max is less than T h .
  • the second displacement adjustment module 204 is configured to adjust the displacement of the second hydraulic power unit 4 to the maximum when the T x max is less than T h according to the determination result of the first identification module 203, so that the second hydraulic power unit 4
  • the recovery torque T x T xmax and triggers the first switch 17 and the second switch 18 to close, and T h is jointly balanced by the braking torque of T x and the engine 7. That is, the second hydraulic power unit 4 can only partially recover the mechanical energy of the first hydraulic power unit 2 (i.e., partially recover the hoisting energy of the hoisting mechanism).
  • the second displacement adjustment module 204 is further configured to adjust the displacement of the second hydraulic power unit 4 when the T x max is not less than T h according to the determination result of the first identification module 203.
  • the above embodiment of the present invention can adjust the recovery torque of the second hydraulic power device by adjusting the displacement of the second hydraulic power device, thereby maximally recovering the hoisting energy of the hoisting mechanism, thereby achieving better energy saving, emission reduction and reduction.
  • the purpose of the system to generate heat.
  • both the first switch 17 and the second switch 18 may employ a clutch.
  • the system further includes a first pressure sensor 81, wherein:
  • the first pressure sensor 81 is connected to the accumulator 5 for detecting the pressure of the accumulator 5;
  • the first switch 17 is further configured to disconnect the second hydraulic power unit 4 from the transfer case 3 when the pressure detected by the first pressure sensor 81 reaches a predetermined maximum working pressure, and completely balance the Th by the braking torque of the engine 7. .
  • the pressure of the accumulator increases continuously, and when the pressure of the accumulator reaches the maximum working pressure set by the accumulator, the second hydraulic pressure is disconnected.
  • the connection of the power unit 4 to the transfer case 3 relies entirely on the braking torque of the engine 7 to balance T h .
  • the system further includes a reversing valve 15 and a cartridge valve 16, wherein:
  • the electromagnet 3Y is energized, the fifth reversing valve 15 is in the left position, the control port of the cartridge valve 16 is not pressurized, the fourth cartridge valve 16 is closed, and the accumulator 5 is The two hydraulic power units 4 are connected to realize the recovery of the hoisting energy.
  • the electromagnet 3Y When the pressure detected by the first pressure sensor 81 reaches the predetermined maximum working pressure, the electromagnet 3Y is de-energized, the reversing valve 15 is in the right position, the control port U1 of the cartridge valve 16 is pressurized with oil, and the cartridge valve 29 is disconnected.
  • the accumulator 5 is disconnected from the second hydraulic power unit 4 and relies entirely on the braking torque of the engine 7 to balance Th .
  • the energy storage device can be locked by using an on-off valve instead of the cartridge valve 16, and the effect of hoisting energy recovery and reuse can also be achieved.
  • system further includes a relief valve 19 in communication with the accumulator 5, wherein:
  • the relief valve 19 when the pressure detected by the first pressure sensor 81 reaches a predetermined maximum working pressure (i.e., when the accumulator is full), opens so that the accumulator maintains a constant pressure and energy recovery stops.
  • the accumulator 5 is further configured to release stored hydraulic energy to provide a driving force to the hydraulic actuator of the crane when the crane is engaged in the vehicle and detects the available energy.
  • the hydraulic actuator may include at least one of a hydraulic actuator such as a luffing cylinder, a hoisting motor, a swing motor, or the like.
  • the first hydraulic power unit is further configured to disconnect the hoisting motor when the crane is hoisted down (the cartridge valve 12 is disconnected) without energy. Recycling; the main pump is also used to connect the hoisting motor to the right when the connection between the first hydraulic power unit and the hoisting motor is disconnected (the main reversing valve is in the right position, The cartridge valve 29 is turned on, the balancing valve is reverse-conducted, and the winding motor forms an open circuit, and the system realizes an open type drop.
  • the electromagnet 7Y when the hoisting weight of the boom is lifted, the electromagnet 7Y is energized, and the open pump-controlled motor circuit is formed by the main pump and the hoisting motor to realize the hoisting.
  • the driver of the system when the hoisting weight of the boom is lifted, the electromagnet 7Y is energized, and the open pump-controlled motor circuit is formed by the main pump and the hoisting motor to realize the hoisting. The driver of the system.
  • the electromagnet 7Y is energized, the second main reversing valve 32 is in the left position, the electromagnet 8Y is not energized, the balancing valve is forwardly guided, and the main pump outlet port is in communication with the hoisting motor.
  • the main pump 6 is used to convert the mechanical energy of the drive shaft into hydraulic energy to drive the hoisting motor 21 to achieve hoisting lift. At this time, the lifting of the hoisting motor can provide hydraulic oil through the main pump.
  • the second hydraulic power unit 4 drives the transfer case to rotate through the first switch 17, thereby transmitting the mechanical energy to the drive shaft, and providing the drive shaft with the driving force to realize the storage. Reuse of hydraulic energy.
  • the hoisting motor and the first hydraulic power unit are combined to form a closed pump control motor system, and the first hydraulic power unit drives the second hydraulic power unit to store energy.
  • the device is filled with pressure oil to recover the energy of the heavy material falling process. The recovered energy can be re-released to drive the drive shaft to rotate and provide the driving force to the main system together with the engine.
  • the working energy recycling system of the invention can be used not only for cranes of open pump control systems, but also for cranes for load sensitive pump valve control systems and closed pump control systems.
  • system further includes a third displacement adjustment module, wherein:
  • the third displacement adjustment module is configured to adjust the displacement of the main pump 6 during the hoisting lifting process to control the hoisting lifting speed.
  • the crane controller outputs a current signal to control the displacement of the main pump according to the angle of the crane operating handle, thereby controlling the speed of the lifting and lifting, thereby obtaining the output torque of the main pump. T d .
  • the system may further include a third torque acquisition module 301, a fourth torque acquisition module 302, and a second identification module 303 as shown in FIG. 4, wherein:
  • the third torque acquiring device 301 is in communication with the main pump, and the fourth torque acquiring device 302 is in communication with the second hydraulic power device; the second identifying module 303 is in communication with the third torque acquiring module and the fourth torque acquiring module, respectively.
  • the third torque acquiring module 301 is configured to acquire the load torque T d output by the main pump 6 in real time during the hoisting and lifting process.
  • the third torque acquisition module 301 can acquire the load torque T d output by the main pump 6 by acquiring the displacement of the main pump 6 and the measured value of the third pressure sensor 83.
  • the fourth torque acquisition module 302 is configured to acquire a maximum driving torque T xc max that the second hydraulic power device 4 can provide.
  • the second torque acquisition module 202 may acquire the maximum driving torque T by acquiring the maximum displacement of the second hydraulic power device 4 and the pressure of the accumulator detected by the second pressure sensor 81. Xc max .
  • the second identification module 303 is configured to determine whether T xc max is less than T d .
  • the second displacement adjustment module 204 is further configured to adjust the displacement of the second hydraulic power device 4 to the maximum when the T xc max is less than T d according to the determination result of the second identification module 303, so that the second hydraulic power device 4
  • the supplied driving torque T xc T xcmax ; while the first switch and the second switch are triggered to be closed, the main pump 6 is driven together by the driving torque T xc of the second hydraulic power unit 4 and the driving torque of the engine 7.
  • the second displacement adjustment module 204 is further configured to adjust the displacement of the second hydraulic power unit 4 when T xc max is not less than T d according to the determination result of the second identification module 303.
  • the above embodiment of the present invention can adjust the displacement of the second hydraulic power device and adjust the driving torque of the second hydraulic power device, thereby maximally utilizing the energy stored by the accumulator, thereby achieving better energy saving, emission reduction, and reduction.
  • the purpose of the system to generate heat.
  • the first switch is further configured to disconnect the communication between the second hydraulic power unit 4 and the transfer case 3 when the pressure detected by the first pressure sensor 81 reaches a predetermined minimum working pressure, and simultaneously close the first
  • the second switch relies entirely on the engine 7 to drive the main pump 6.
  • the lifting weight rises, the high pressure oil in the accumulator is released, the pressure of the accumulator is continuously reduced, and when the pressure of the accumulator is reduced to a set minimum allowable pressure
  • the displacement control signal of the second hydraulic power unit is set to zero, the electromagnet 3Y is de-energized, the fourth cartridge valve 16 is opened, the first switch 17 is opened, and the engine is completely powered.
  • the first hydraulic power unit 2 and the hoisting motor 21 form a closed pump-controlled motor circuit that converts the potential energy of the weight during the hoisting down to mechanical energy.
  • the first hydraulic power unit 2 and the hoisting motor 21 may also constitute an open pump-controlled motor circuit that converts the potential energy of the weight into mechanical energy, and the recovery of the hoisting energy can also be achieved.
  • the crane working energy recycling system according to the second embodiment of the present invention is a crane hoisting (motor) energy recycling system.
  • Fig. 6 is a schematic view showing a third embodiment of the crane working energy recovery and utilization system of the present invention.
  • the hydraulic actuator 101 described in FIG. 1 specifically includes a hoisting motor and a luffing cylinder to achieve recycling of the hoisting energy and/or variator energy of the crane.
  • the structure of the crane operation energy recovery and utilization system shown in FIG. 6 is the crane variable amplitude cylinder energy recovery utilization system shown in FIG. 2, and the crane hoisting shown in FIG. A combination of motor energy recycling systems. That is, the crane working energy recovery and utilization system shown in FIG. 6 includes a crane slewing cylinder energy recovery and utilization subsystem and a crane hoisting motor energy recovery and utilization subsystem.
  • Figure 5 is a crane hoist motor energy recovery system and the crane hoist motor energy recovery subsystem shown in Fig. 6, an open system (an open pump control motor circuit composed of a main pump 6 and a hoist motor 21) and The closed system (the closed pump-controlled motor energy recovery circuit composed of the first hydraulic power mechanism 2 and the hoisting motor 21) is configured in parallel, and is driven by an open system when the hoist is lifted; if the weight falls, if the energy is met For the recovery conditions, the closed system is used for energy recovery. If the conditions are not met, the open system is still used for the control of heavy material decentralization.
  • an open system an open pump control motor circuit composed of a main pump 6 and a hoist motor 21
  • the closed system the closed pump-controlled motor energy recovery circuit composed of the first hydraulic power mechanism 2 and the hoisting motor 21
  • the closed system is used for energy recovery. If the conditions are not met, the open system is still used for the control of heavy material decentralization.
  • Figure 2 is a crane luffing cylinder energy recovery utilization system and the crane luffing cylinder energy recovery utilization subsystem shown in Fig. 6, and an open system (an open pump control cylinder circuit composed of a main pump 6 and a variable amplitude cylinder 1) and
  • the pump-controlled cylinder speed control system (the first hydraulic power mechanism 2 and the open-type pump-controlled cylinder energy recovery circuit composed of the variable-amplitude cylinder 1) is configured in parallel, and when the variable-amplitude operation is performed, the open system is used for driving, and the main pump supplies Oil; when changing the amplitude, if the energy recovery condition is met, the pump-controlled cylinder speed control system is used for energy recovery. If the condition is not met, the open system is still used for the weight reduction control.
  • the crane operation energy recovery utilization system of the embodiment shown in FIG. 6 adds a variable-speed cylinder energy recovery utilization component based on the embodiment shown in FIG. 5, wherein the variable-speed cylinder energy recovery utilization component includes Amplifier cylinder 1, variable amplitude balance valve 10, third main reversing valve 33, pilot oil source, first reversing valve 11, second reversing valve 13, first cartridge valve 12 and shuttle valve 14, cartridge valve 34 and the reversing valve 35.
  • the variable-speed cylinder energy recovery utilization component includes Amplifier cylinder 1, variable amplitude balance valve 10, third main reversing valve 33, pilot oil source, first reversing valve 11, second reversing valve 13, first cartridge valve 12 and shuttle valve 14, cartridge valve 34 and the reversing valve 35.
  • the difference cylinder energy recovery utilization assembly shown in FIG. 6 differs from the variable amplitude cylinder energy recovery utilization assembly shown in FIG. 2 only in that the first main reversing valve 9 is replaced with the third main reversing valve 33, and is increased.
  • the cartridge valve 34 and the reversing valve 35 are provided.
  • the third main reversing valve 33 functions in the same manner as the first main reversing valve 9, and both of the variable amplitude lifting and the falling can be switched.
  • the insertion valve 34 and the reversing valve 35 are added to the oil outlet of the first hydraulic motor device 2 for controlling the passage of the energy recovery circuit of the open pump control cylinder Broken, in order to switch between the open pump control cylinder energy recovery loop and the closed pump control motor energy recovery loop.
  • the first hydraulic motor device 2 and the hoisting motor constitute a closed pump control motor energy recovery circuit; at the same time, the first hydraulic motor device 2 is also combined with the variable amplitude cylinder Pump control cylinder energy recovery circuit.
  • the crane operation energy recovery and utilization system can realize the recovery of the hoisting energy and the variator energy by controlling the power loss of the electromagnetic valve during energy recovery, or can be separately recovered. Hoisting energy or variable amplitude energy.
  • Lifting system hoisting drop process When falling, if the energy recovery conditions are met, the electromagnets 11Y, 10Y, 3Y, 8Y, 9Y are energized, and the hoisting motor 21 and the first hydraulic power unit form a closed pump-controlled motor circuit.
  • the cartridge valves 22 and 25 When 11Y, 10Y are energized, the cartridge valves 22 and 25 will open, and the first hydraulic power unit 2 and the hoisting motor form a passage to recover the plunged potential energy.
  • the hoisting potential energy forms hydraulic energy through the reel, the hoisting reducer, and the hoisting motor, and pushes the first hydraulic power unit 2 through the cartridge valve 22 to convert the hydraulic energy into the mechanical energy of the propeller shaft.
  • the mechanical energy of the drive shaft will drive the main pump 6, the transfer case 3, and the second hydraulic power unit 4 to rotate, so that the mechanical energy of the drive shaft is converted into the rotational kinetic energy of the second hydraulic power unit 4, and the second hydraulic power unit 4 will Will rotate.
  • the clutch 18 of the engine can be in an open or closed state, primarily determined by the system torque balance during energy recovery.
  • control terminals 5Y and 6Y of the second main reversing valve 32 are not energized, the second main reversing valve 32 is in the neutral state, the main pump is in a low pressure overflow state, and the main oil passage does not participate in energy recovery.
  • Energy recovery uses a constant torque control strategy that ensures a reasonable distribution of load torque, recovery torque and engine braking torque.
  • the controller calculates the load torque outputted by the first hydraulic power unit 2 to the transfer case shaft according to the pressure, the flow rate, etc.; the pressure of the accumulator is detected by the pressure sensor 81, and according to the displacement of the second hydraulic power unit 4, The recovery torque of the current energy recovery unit can be calculated.
  • the operating state of the engine (providing drive torque or providing brake torque) is determined by determining the relationship between the load torque and the recovery torque in real time.
  • variable amplitude falling process the magnets 4Y, 1Y, 3Y, and 12Y are energized, and the variable amplitude cylinder and the first hydraulic power unit 2 constitute a pump control cylinder circuit.
  • the gravitational potential energy of the luffing mechanism is converted into hydraulic energy, thereby driving the first hydraulic power unit 2 to rotate through the cartridge valve 12, thereby converting the hydraulic energy into the rotational kinetic energy of the first hydraulic power unit 2, and the first hydraulic power unit 2 drives The drive shaft rotates, thereby driving the rotation of the main pump 6 and the second hydraulic power unit 4, thereby transferring energy, and finally the second hydraulic power unit 4 converts mechanical energy into hydraulic energy, and stores the hydraulic energy in the accumulator. , complete the recovery of the potential energy of the luffing mechanism.
  • the speed of the variable amplitude falling is adjusted by changing the displacement of the first hydraulic power unit 2 to prevent the amplitude from falling rapidly.
  • the pressure of the accumulator increases continuously, and when the pressure of the accumulator reaches the maximum working pressure set by the accumulator, the displacement of the second hydraulic power unit 4 is performed.
  • the control signal is set to zero, the electromagnet 3Y is de-energized, the clutch 17 is opened, and the engine is completely braked.
  • the main pump 6 and the hoisting motor constitute an open pump-controlled motor energy utilization circuit in the arrangement of the energy utilization circuit; at the same time, the first hydraulic motor device 2 also forms an open pump control with the variable amplitude cylinder Cylinder energy utilization loop.
  • the crane operation energy recovery and utilization system can control the power loss of the electromagnetic valve by controlling the power loss of the electromagnetic valve when the energy is reused, so that the energy output by the accumulator simultaneously drives the hoisting motor to lift the weight.
  • the object and the luffing cylinder perform the variable amplitude operation; the energy output from the accumulator can only drive the lifting motor to lift the heavy object, or the variable amplitude cylinder performs the variable amplitude operation.
  • Lifting system hoisting and rising process When lifting, the open system is used for control, that is, the solenoid valves 11Y and 10Y are not energized, the cartridge valves 22 and 25 are closed, and the circuit of the first hydraulic power unit 2 and the hoisting motor 21 is cut off. . At the same time, the electromagnet 7Y is energized, and the main pump and the hoisting motor constitute an open pump control system to realize the control of the hoisting and lifting.
  • the driving force of the main pump can be provided by the engine and the energy recovery unit, and it is also necessary to judge the relationship between the load torque and the driving torque of the energy recovery unit.
  • the driving torque of the energy recovery unit is greater than the load torque, the driving force can be separately provided by the energy recovery unit.
  • the electromagnetic valve 3Y is energized, the high-pressure oil of the accumulator is released, and the second hydraulic power unit 4 is driven to rotate, and the hydraulic pressure is applied. It can be converted into the rotational kinetic energy of the variable pump/motor output shaft, which in turn drives the entire drive shaft to rotate, and finally drives the main pump to work, realizing the conversion of stored hydraulic energy to mechanical energy.
  • the engine can be controlled to participate in the supply of the driving torque, and when the energy storage is not available, the solenoid valve 3Y is de-energized; if the driving torque of the energy recovery unit is insufficient to drive With load torque, the energy recovery unit will not provide drive torque or provide a small portion of drive torque, and the rest of the drive torque is provided by the engine.
  • the electromagnets 3Y and 13Y are energized, and the luffing system is realized by the main pump 6 and the variable amplitude cylinder 1 forming an open pump control cylinder circuit.
  • High-pressure oil in the accumulator passes through the cartridge valve 16 drives the second hydraulic power unit 4 to rotate, and the second hydraulic power unit 4 drives the transfer case to rotate by the clutch 17, thereby transmitting mechanical energy to the transmission shaft, and providing driving force to the transmission shaft together with the engine, thereby realizing the stored hydraulic pressure.
  • the lifting of the luffing cylinder can be provided by the main pump or the second hydraulic power unit, which are all covered by the patent.
  • the high-pressure oil in the accumulator is released, and the pressure of the accumulator is continuously reduced.
  • the displacement control signal of the second hydraulic power unit 4 is set to zero, the electromagnet 3Y is de-energized, the clutch 17 is opened, and the engine is completely powered.
  • the accumulator energy is used alone for variable amplitude lifting and for the case of hoisting and lifting separately
  • the accumulator energy can be used simultaneously.
  • the energy stored by the accumulator can also be used to drive other mechanisms that require energy, such as a swing motor.
  • the crane working capacity recycling system provided by the above embodiments of the present invention can effectively recover the gravitational potential energy of the lifting and/or luffing work heavy object falling process, and can reuse the recovered energy for the hoisting and/or luffing. Driven, reducing the fuel consumption of lifting operations, energy saving and emission reduction.
  • the variable pump is used to adjust the speed of the weight drop, which replaces the current mode of balancing valve speed regulation, that is, the volume speed regulation is used instead of the throttle speed regulation, which reduces the heat generation of the system and prolongs the hydraulic components.
  • the service life and the power of the crane cooling system can be reduced.
  • the crane working capacity recycling system of FIG. 6 may further include a first torque acquiring module 201, a second torque acquiring module 202, a first identifying module 203, and a second as shown in FIG. a displacement adjustment module 204; and a third torque acquisition module 301, a fourth torque acquisition module 302, a second identification module 303 as shown in FIG. 4, and a third mentioned in the first and second embodiments of the present invention Displacement adjustment Section module.
  • the functions and connection relationships of these modules are the same as those of the first and second embodiments of the present invention and will not be described in detail herein.
  • variable amplitude cylinder 1 and the first hydraulic power unit 2 constitute an open pump control cylinder circuit for hoisting and lifting of the crane boom during the falling of the boom.
  • the gravitational potential energy is converted into the mechanical energy of the first hydraulic power unit 2;
  • the first hydraulic power unit 2 and the hoisting motor 21 form a closed pump control motor circuit that converts the potential energy of the weight during the hoisting down process into mechanical energy.
  • the luffing cylinder 1 and the first hydraulic power unit 2 may also constitute a closed pump control cylinder circuit to hoist the weight of the crane boom during the falling of the crane and the gravity generated by the boom. The potential energy is converted into the mechanical energy of the first hydraulic power unit 2.
  • the first hydraulic power unit 2 and the hoisting motor 21 may also constitute an open pump-controlled motor circuit that converts the potential energy of the weight into mechanical energy, and the recovery of the hoisting energy can also be achieved.
  • a crane comprising the crane working capacity recycling system described in any of the above embodiments.
  • the gravitational potential energy of the lifting and/or luffing work weight falling process can be effectively recovered, and the recovered energy can be reused for the hoisting and/or luffing driving, which is reduced.
  • the variable pump is used to adjust the speed of the weight drop, which replaces the current mode of balancing valve speed regulation, that is, the volume speed regulation is used instead of the throttle speed regulation, which reduces the heat generation of the system and prolongs the hydraulic components.
  • the service life and the power of the crane cooling system can be reduced.
  • Fig. 7 is a schematic view showing a first embodiment of a method for recovering and utilizing energy of a crane according to the present invention.
  • the embodiment can be performed by the crane operating energy recycling system of any of the embodiments of Figures 2-6 of the present invention.
  • the method includes the following steps:
  • Step 401 the first hydraulic power device generates hydraulic energy generated by the hydraulic actuator Converted to mechanical energy of the drive shaft.
  • the hydraulic actuator includes a hydraulic motor and/or a hydraulic cylinder, wherein the hydraulic motor generates hydraulic energy when the weight is lowered, and the hydraulic cylinder generates hydraulic energy when it is lowered.
  • Step 402 The transmission shaft drives the second hydraulic power unit to rotate, and converts the mechanical energy of the transmission shaft into the mechanical energy of the second hydraulic power unit.
  • step 403 the second hydraulic power unit charges the accumulator with pressurized oil, and converts the mechanical energy of the second hydraulic power unit into hydraulic energy for storage.
  • the method for recycling and utilizing the working energy of the crane provided by the above-mentioned embodiments of the present invention achieves energy saving and emission reduction by reducing the energy released by the hydraulic actuator when descending, and reduces the heat generation of the system.
  • FIG. 8 is a schematic view showing a second embodiment of a method for recycling energy of a crane operation according to the present invention.
  • the present embodiment can be performed by the crane luff energy recovery utilization system shown in Fig. 2 or Fig. 6 of the present invention.
  • the method includes the following steps:
  • step 501 the slewing cylinder 1 converts the sling weight and the gravitational potential energy generated by the hoisting arm into hydraulic energy during the falling of the crane boom.
  • Step 502 the first hydraulic power unit 2 converts the hydraulic energy generated by the slewing cylinder 1 into the mechanical energy of the transmission shaft, wherein the first hydraulic power unit 2 is in coaxial communication with the main pump 6.
  • Step 503 the drive shaft drives the second hydraulic power unit 4 to rotate through the transfer case 3, and converts the mechanical energy of the drive shaft into the mechanical energy of the second hydraulic power unit, wherein the transfer case 3 is connected to the output shaft of the engine 7, the engine 7
  • the transfer case 3 is connected in parallel with the second hydraulic power unit 4.
  • step 504 the second hydraulic power unit 4 charges the accumulator 5 with pressurized oil, and converts the mechanical energy of the second hydraulic power unit 4 into hydraulic energy for storage.
  • the energy recovery and utilization method of the crane operation provided by the above embodiments of the present invention can effectively recover the energy of the crane hoisting work weight and the boom lowering process, and then reused, thereby reducing the fuel consumption of the lifting operation, saving energy and reducing emissions. .
  • the method may further include: adjusting the displacement of the first hydraulic power unit 2 during the falling of the boom, to control the speed of the variable arm of the boom.
  • variable pump in the process of descending the weight, is used to adjust the descending speed of the heavy object, which replaces the current mode of adjusting the balance valve, that is, the volumetric speed control is used instead of the throttle speed regulation, thereby reducing the heat generation of the system. It extends the service life of the hydraulic components and reduces the power of the crane cooling system.
  • Fig. 9 is a schematic view showing a third embodiment of a method for recycling energy of a crane operation according to the present invention.
  • the present embodiment can be performed by the crane working energy recycling system described in FIG. 5 or FIG. 6 of the present invention.
  • the method includes the following steps:
  • step 601 the hoisting motor converts the gravitational potential energy generated by the weight during the heavy lifting of the crane into hydraulic energy.
  • the hoisting motor 1 and the first hydraulic power unit form a closed pump control circuit for converting the gravitational potential energy generated by the weight during the heavy lifting of the crane into hydraulic energy.
  • Step 602 the first hydraulic power unit 2 converts the hydraulic energy generated by the hoisting motor 1 into the mechanical energy of the drive shaft, wherein the first hydraulic power unit 2 is in coaxial communication with the main pump 6.
  • Step 603 the drive shaft drives the second hydraulic power unit 4 to rotate through the transfer case 3, and converts the mechanical energy of the drive shaft into the mechanical energy of the second hydraulic power unit, wherein the transfer case 3 is connected to the output shaft of the engine 7, the engine 7 The transfer case 3 is connected in parallel with the second hydraulic power unit 4.
  • step 604 the second hydraulic power unit 4 charges the accumulator 5 with pressurized oil, and converts the mechanical energy of the second hydraulic power unit 4 into hydraulic energy for storage.
  • the hoisting motor and the first hydraulic power unit form a closed pump control system during the lifting process of the lifting system, and the first hydraulic power device drives the second
  • the hydraulic power unit fills the accumulator with pressure oil and recovers the energy of the heavy material falling process, so that the energy of the lifting process of the crane lifting work can be effectively recovered, and then reused to reduce the lifting. Work fuel consumption, energy saving and emission reduction.
  • the method may further include: adjusting the displacement of the first hydraulic power unit 2 during the hoisting of the weight to control the weight falling speed.
  • variable pump in the process of descending the weight, is used to adjust the descending speed of the weight, instead of the current method of adjusting the speed of the balancing valve, the heat generation of the system is reduced, and the service life of the hydraulic component is prolonged, and It can reduce the power of the crane cooling system.
  • Fig. 10 is a schematic view showing a fourth embodiment of a method for recycling and utilizing energy of a crane according to the present invention.
  • the present embodiment can be performed by the crane operating energy recycling system of the present invention.
  • the method includes the following steps:
  • step 701 the slewing cylinder 1 converts the sling weight and the gravitational potential energy generated by the hoisting arm into hydraulic energy during the falling of the crane boom.
  • step 702 the hoisting motor converts the gravitational potential energy generated by the weight during the heavy lifting of the crane into hydraulic energy.
  • the hoisting motor 1 and the first hydraulic power unit form a closed pump control circuit for converting the gravitational potential energy generated by the weight during the heavy lifting of the crane into hydraulic energy.
  • Step 703 the first hydraulic power unit 2 converts the hydraulic energy generated by the hoisting motor 1 into the mechanical energy of the drive shaft, wherein the first hydraulic power unit 2 is in coaxial communication with the main pump 6.
  • Step 704 the drive shaft drives the second hydraulic power unit 4 to rotate through the transfer case 3, and converts the mechanical energy of the drive shaft into the mechanical energy of the second hydraulic power unit, wherein the transfer case 3 is connected to the output shaft of the engine 7, and the engine 7 The transfer case 3 is connected in parallel with the second hydraulic power unit 4.
  • step 705 the second hydraulic power unit 4 charges the accumulator 5 with pressurized oil, and converts the mechanical energy of the second hydraulic power unit 4 into hydraulic energy for storage.
  • the crane working energy recovery and utilization method provided by the above embodiments of the present invention can effectively recover the gravitational potential energy of the lifting and/or luffing work heavy object falling process, And the recovered energy can be used again for the driving of the hoisting and/or variable amplitude, which reduces the fuel consumption of the lifting operation, saves energy and reduces emissions.
  • the method may further include: adjusting the displacement of the first hydraulic power unit 2 during the hoisting and dropping process to control the weight falling speed; during the falling of the boom The displacement of the first hydraulic power unit 2 is adjusted to control the speed reduction speed of the boom.
  • variable pump in the process of descending the boom and/or the weight, is used to adjust the descending speed of the weight, instead of the current method of adjusting the speed of the balancing valve, that is, the volume speed is used instead of the throttle speed. It reduces the heat generation of the system, prolongs the service life of the hydraulic components, and reduces the power of the crane cooling system.
  • FIG. 11 is a schematic diagram of a method for adjusting a recovery torque of a second hydraulic power unit according to an embodiment of the present invention.
  • the method for recycling energy of the crane operation according to FIG. 7 to FIG. 10 in the process that the transmission shaft drives the second hydraulic power unit to rotate and convert the mechanical energy of the transmission shaft into the mechanical energy of the second hydraulic power unit, the method further include:
  • step 801 during the falling of the crane boom, the load torque T h outputted by the first hydraulic power unit 2 to the transfer case 3 is acquired in real time.
  • Step 802 obtaining a maximum recovery torque T x max of the second hydraulic power unit 4.
  • step 803 it is determined whether T x max is less than T h . If T x max is less than T h , step 804 is performed; otherwise, if T x max is not less than T h , step 805 is performed.
  • the present invention can only partially recover the mechanical energy of the first hydraulic power unit 2 (i.e., partially recover the variable amplitude energy of the luffing mechanism and/or the hoisting energy of the hoisting mechanism).
  • the above embodiment of the present invention can adjust the displacement of the second hydraulic power unit by adjusting the displacement of the second hydraulic power unit, thereby maximally recovering the variable amplitude energy of the luffing mechanism and/or the hoisting energy of the hoisting mechanism. Therefore, the purpose of energy saving and emission reduction and the heat generation of the system can be better realized.
  • the embodiment described in FIG. 8 can be executed by the first torque acquisition module 201, the second torque acquisition module 202, the first identification module 203, and the second displacement adjustment module 204 shown in FIG.
  • the method may further comprise: disconnecting the second hydraulic power unit 4 from the transfer case 3 when the pressure of the accumulator 5 reaches a predetermined maximum working pressure, completely relying on the engine 7 Braking torque to balance T h .
  • the pressure of the accumulator increases continuously.
  • the first disconnection is performed.
  • the connection of the two hydraulic power units 4 to the transfer case 3 relies entirely on the braking torque of the engine 7 to balance the Th .
  • the method further comprises: when the crane is in the on-board operation, the accumulator 5 releases the stored hydraulic energy to provide a driving force to the hydraulic actuator of the crane.
  • the hydraulic actuator may include at least one of a hydraulic actuator such as a luffing cylinder, a hoisting motor, a swing motor, or the like.
  • Fig. 12 is a schematic view showing a fifth embodiment of a method for recycling energy of a crane operation according to the present invention.
  • the method of Figure 12 further includes:
  • step 901 when the crane boom is hoisted and the accumulator has remaining energy, the second hydraulic power unit converts the hydraulic energy released by the accumulator into the mechanical energy of the transmission shaft.
  • step 902 the main pump converts the mechanical energy of the drive shaft into hydraulic energy to drive the hydraulic actuator to perform the corresponding operation.
  • step 902 may include: the main pump will drive The mechanical energy of the shaft is converted into hydraulic energy to drive the luffing cylinder to achieve a swell of the boom.
  • the method further comprises: adjusting the displacement of the main pump 6 during the boom raising and lowering to control the variable amplitude lifting speed.
  • step 902 can include the main pump converting mechanical energy of the drive shaft to hydraulic energy to drive the hoisting motor to effect a lifting of the weight.
  • the method further comprises: adjusting the displacement of the main pump 6 during the hoisting hoisting to control the weight lifting speed.
  • FIG. 13 is a schematic diagram of a second hydraulic power unit driving torque adjustment method according to an embodiment of the present invention.
  • the method further includes:
  • Step 1001 obtaining real time load torque T d 6 output from the main pump.
  • step 1002 the maximum driving torque T xc max that the second hydraulic power unit 4 can provide is obtained.
  • step 1003 it is determined whether T xc max is less than T d . If T xc max is less than T d , step 1004 is performed; otherwise, if T xc max is not less than T d , step 1005 is performed.
  • the above embodiment of the present invention can adjust the displacement of the second hydraulic power device and adjust the driving torque of the second hydraulic power device, thereby maximally utilizing the energy stored by the accumulator, thereby achieving better energy saving, emission reduction, and reduction. System heat purpose.
  • the method may further include: when the pressure of the accumulator 5 reaches a predetermined minimum working pressure, disconnecting the second hydraulic power unit 4 and the minute The communication of the movable box 3 relies entirely on the engine 7 to drive the main pump 6.
  • the lifting weight rises the high pressure oil in the accumulator is released, the pressure of the accumulator is continuously reduced, and when the pressure of the accumulator is higher than the accumulator inflation pressure
  • the displacement control signal of the second hydraulic power unit is set to zero, the electromagnet 3Y is de-energized, and the second cartridge valve 16 is Disconnected, the first switch 17 is opened and powered entirely by the engine.
  • the embodiment described in FIG. 8 can be executed by the third torque acquisition module 301, the fourth torque acquisition module 302, the second identification module 303, and the second displacement adjustment module 204 shown in FIG.
  • the first torque acquisition module 201, the second torque acquisition module 202, the first identification module 203, the second displacement adjustment module 204, the third torque acquisition module 301, the fourth torque acquisition module 302, and the second identification described above are described.
  • Functional units such as module 303 are implemented as general purpose processors, programmable logic controllers (PLCs), digital signal processors (DSPs), application specific integrated circuits (ASICs), field programmable gate arrays (for performing the functions described herein).
  • FPGA or other programmable logic device, discrete gate or transistor logic device, discrete hardware component, or any suitable combination thereof.
  • the first torque acquisition module 201, the second torque acquisition module 202, the first identification module 203, the second displacement adjustment module 204, the third torque acquisition module 301, the fourth torque acquisition module 302, and the second identification described above are described.
  • the function of the functional unit such as the module 303 can be implemented by the crane controller.
  • a person skilled in the art may understand that all or part of the steps of implementing the above embodiments may be completed by hardware, or may be instructed by a program to execute related hardware, and the program may be stored in a computer readable storage medium.
  • the storage medium mentioned may be a read only memory, a magnetic disk or an optical disk or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Automation & Control Theory (AREA)
  • Control And Safety Of Cranes (AREA)
  • Fluid-Pressure Circuits (AREA)

Abstract

公开了一种起重机作业能量回收利用方法和系统、及起重机。其中起重机作业能量回收利用方法包括:第一液压动力装置(2)将液压执行机构(101)产生的液压能转换为传动轴(102)的机械能;传动轴(102)带动第二液压动力装置(4)进行旋转,将传动轴(102)的机械能转换为第二液压动力装置(4)的机械能;第二液压动力装置(4)给蓄能器(5)充入压力油,将第二液压动力装置(4)的机械能转换成液压能储存起来。该方法可以有效地回收起重机起升和变幅作业重物下落过程的重力势能,并且可以将回收的能量再次用于卷扬和变幅的驱动,降低了起重作业的燃油消耗,节能减排。

Description

起重机作业能量回收利用方法和系统、及起重机 技术领域
本发明涉及工程机械领域,特别涉及一种起重机作业能量回收利用方法和系统、及起重机。
背景技术
起重机是一种重力作业机械,起重机的液压执行机构在下降或制动时会释放大量的能量,例如:现有起重机产品在卷扬和变幅下落过程中会产生大量的重物势能。
现有技术在卷扬和变幅下落过程中,通过控制平衡阀的节流口面积实现卷扬和变幅下落过程的速度调速,将重物下落过程产生的能量全部转化为热能,造成能量的浪费,同时会导致液压油温度升高,降低液压元件的可靠性。此外,为了降低油温升高,还需要增大散热器的功率,增加了设计成本。
发明内容
鉴于以上技术问题,本发明提供了一种起重机作业能量回收利用方法和系统、及起重机,通过回收利用液压执行机构在下降时释放的能量,实现了节能减排,并降低了系统的发热。
根据本发明的一个方面,提供一种起重机作业能量回收利用方法,包括:
第一液压动力装置将液压执行机构产生的液压能转换为传动轴的机械能;
传动轴带动第二液压动力装置进行旋转,将传动轴的机械能转换为第二液压动力装置的机械能;
第二液压动力装置给蓄能器充入压力油,将第二液压动力装置的机械能转换成液压能储存起来。
在本发明的一个实施例中,液压执行机构包括变幅油缸;
第一液压动力装置将液压执行机构产生的液压能转换为传动轴的机械能的步骤包括:
变幅油缸将起重机起重臂变幅下落过程中产生的重力势能转换为液压能;
第一液压动力装置将变幅油缸产生的液压能转换为传动轴的机械能。
在本发明的一个实施例中,液压执行机构包括卷扬马达;
第一液压动力装置将液压执行机构产生的液压能转换为传动轴的机械能的步骤包括:
卷扬马达将起重机吊重下落过程中重物产生的重力势能转换为液压能;
第一液压动力装置将卷扬马达产生的液压能转换为传动轴的机械能。
在本发明的一个实施例中,在传动轴带动第二液压动力装置进行旋转,将传动轴的机械能转换为第二液压动力装置的机械能的过程中,所述方法还包括:
实时获取第一液压动力装置输出给分动箱的负载扭矩Th,其中发动机和第二液压动力装置通过分动箱与第一液压动力装置连接;
获取第二液压动力装置的最大回收扭矩Tx max
判断Tx max是否小于Th
若Tx max小于Th,则将第二液压动力装置的排量调整到最大,使得第二液压动力装置的回收扭矩Tx=Txmax,通过Tx和发动机制动力矩来共同平衡Th
若Tx max不小于Th,则通过调整第二液压动力装置的排量使得第二液压动力装置的回收扭矩Tx=Th
在本发明的一个实施例中,所述方法还包括:
在起重机需要利用能量以驱动液压执行机构进行操作时,第二液压动力装置将蓄能器释放的液压能转换为传动轴的机械能;
主泵将传动轴的机械能转换为液压能,以驱动液压执行机构执行相应操作。
在本发明的一个实施例中,液压执行机构包括变幅油缸;
主泵将传动轴的机械能转换为液压能,以驱动液压执行机构执行相应操作的步骤包括:
主泵将传动轴的机械能转换为液压能,以驱动变幅油缸实现起重臂的变幅起升。
在本发明的一个实施例中,液压执行机构包括卷扬马达;
主泵将传动轴的机械能转换为液压能,以驱动液压执行机构执行相应操作的步骤包括:
主泵将传动轴的机械能转换为液压能,以驱动卷扬马达实现重物的卷扬起升。
在本发明的一个实施例中,在第二液压动力装置将蓄能器释放的液压能转换为传动轴的机械能的过程中,所述方法还包括:
实时获取主泵输出的负载扭矩Td
获取第二液压动力装置可提供的最大驱动扭矩Txc max
判断Txc max是否小于Td
若Txc max小于Td,则将第二液压动力装置的排量调到最大,使得第二液压动力装置提供的驱动扭矩Txc=Txcmax,通过Txc和发动机驱动力矩来共同驱动主泵;
若Txc max不小于Td,则调整第二液压动力装置的排量,使第二液压动力装置提供的驱动扭矩Txc=Td
根据本发明的另一方面,提供一种起重机作业能量回收利用系统,包括:液压执行机构、第一液压动力装置、传动轴、第二液压动力装置和蓄能器,其中:
液压执行机构,用于产生液压能;
第一液压动力装置,用于将液压执行机构产生的液压能转换为传动轴的机械能;
传动轴,用于带动第二液压动力装置进行旋转,将传动轴的机械能转换为第二液压动力装置的机械能;
第二液压动力装置,用于通过给蓄能器充入压力油,将第二液压动力装置的机械能转换成液压能储存起来;
蓄能器,用于存储液压能。
在本发明的一个实施例中,液压执行机构包括变幅油缸,其中:
变幅油缸,用于将起重机起重臂变幅下落过程中产生的重力势能转换为液压能;
第一液压动力装置具体用于将变幅油缸产生的液压能转换为传动轴的机械能。
在本发明的一个实施例中,液压执行机构包括卷扬马达,其中:
卷扬马达,用于将起重机吊重下落过程中重物产生的重力势能转换为液压能;
第一液压动力装置具体用于将卷扬马达产生的液压能转换为传动轴的机械能。
在本发明的一个实施例中,发动机和第二液压动力装置通过分动箱与第一液压动力装置连接;
所述系统还包括第一力矩获取模块、第二力矩获取模块、第一识别模块和第二排量调节模块,其中:
第一力矩获取模块,用于在传动轴带动第二液压动力装置进行旋转,将传动轴的机械能转换为第二液压动力装置的机械能的过程中,实时获取第一液压动力装置输出给分动箱的负载扭矩Th
第二力矩获取模块,用于在第二液压动力装置将蓄能器释放的液压能转换为传动轴的机械能的过程中,获取第二液压动力装 置的最大回收扭矩Tx max
第一识别模块,用于判断Tx max是否小于Th
第二排量调节模块,用于根据第一识别模块的判断结果,在Tx max小于Th时,将第二液压动力装置的排量调整到最大,使得第二液压动力装置的回收扭矩Tx=Txmax,通过Tx和发动机制动力矩来共同平衡Th;在Tx max不小于Th时,通过调整第二液压动力装置的排量使得第二液压动力装置的回收扭矩Tx=Th
在本发明的一个实施例中,所述系统还包括主泵,其中:
蓄能器还用于在起重机需要利用能量以驱动液压执行机构进行操作时,释放存储的液压能;
第二液压动力装置还用于将蓄能器释放的液压能转换为传动轴的机械能;
主泵,用于将传动轴的机械能转换为液压能,以驱动液压执行机构执行相应操作。
在本发明的一个实施例中,液压执行机构包括变幅油缸,其中:
主泵具体用于将传动轴的机械能转换为液压能,并将液压能提供给变幅油缸;
变幅油缸,用于利用主泵提供的液压能实现起重臂的变幅起升。
在本发明的一个实施例中,液压执行机构包括卷扬马达,其中:
主泵具体用于将传动轴的机械能转换为液压能,并将液压能提供给卷扬马达;
卷扬马达,用于利用主泵提供的液压能实现重物的卷扬起升。
在本发明的一个实施例中,所述系统还包括第三力矩获取模块、第四力矩获取模块、第二识别模块,其中:
第三力矩获取模块,用于在第二液压动力装置将蓄能器释放 的液压能转换为传动轴的机械能的过程中,实时获取主泵输出的负载扭矩Td
第四力矩获取模块,用于在第二液压动力装置将蓄能器释放的液压能转换为传动轴的机械能的过程中,获取第二液压动力装置可提供的最大驱动扭矩Txc max
第二识别模块,用于判断Txc max是否小于Td
第二排量调节模块还用于根据第二识别模块的判断结果,在Txc max小于Td时,将第二液压动力装置的排量调到最大,使得第二液压动力装置提供的驱动扭矩Txc=Txcmax,通过Txc和发动机驱动力矩来共同驱动主泵;在Txc max不小于Td时,调整第二液压动力装置的排量,使第二液压动力装置提供的驱动扭矩Txc=Td
根据本发明的另一方面,提供一种起重机,包括上述任一实施例所述的起重机作业能量回收利用系统。
本发明可以有效地回收起重机起升和变幅作业重物下落过程的重力势能,并且可以将回收的能量再次用于卷扬和变幅的驱动,降低了起重作业的燃油消耗,节能减排;同时重物下落过程中,采用变量泵调节重物下降速度,取代了目前平衡阀调速的方式,即采用容积调速取代节流调速,降低了系统的发热量,延长了液压元件的使用寿命,并且可以减小起重机散热系统功率。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明起重机作业能量回收利用系统一个实施例的示意图。
图2为本发明起重机作业能量回收利用系统第一具体实施例的示意图。
图3为本发明起重机作业能量回收利用系统另一实施例的示意图。
图4为本发明起重机作业能量回收利用系统又一实施例的示意图。
图5为本发明起重机作业能量回收利用系统第二具体实施例的示意图。
图6为本发明起重机作业能量回收利用系统第三具体实施例的示意图。
图7为本发明起重机作业能量回收利用方法第一实施例的示意图。
图8为本发明起重机作业能量回收利用方法第二实施例的示意图。
图9为本发明起重机作业能量回收利用方法第三实施例的示意图。
图10为本发明起重机作业能量回收利用方法第四实施例的示意图。
图11为本发明一个实施例中第二液压动力装置回收扭矩调整方法的示意图。
图12为本发明起重机作业能量回收利用方法第五实施例的示意图。
图13为本发明一个实施例中第二液压动力装置驱动扭矩调整方法的示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明 一部分实施例,而不是全部的实施例。以下对至少一个示例性实施例的描述实际上仅仅是说明性的,决不作为对本发明及其应用或使用的任何限制。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
除非另外具体说明,否则在这些实施例中阐述的部件和步骤的相对布置、数字表达式和数值不限制本发明的范围。
同时,应当明白,为了便于描述,附图中所示出的各个部分的尺寸并不是按照实际的比例关系绘制的。
对于相关领域普通技术人员已知的技术、方法和设备可能不作详细讨论,但在适当情况下,所述技术、方法和设备应当被视为授权说明书的一部分。
在这里示出和讨论的所有示例中,任何具体值应被解释为仅仅是示例性的,而不是作为限制。因此,示例性实施例的其它示例可以具有不同的值。
应注意到:相似的标号和字母在下面的附图中表示类似项,因此,一旦某一项在一个附图中被定义,则在随后的附图中不需要对其进行进一步讨论。
图1为本发明起重机作业能量回收利用系统一个实施例的示意图。如图1所示,所示起重机作业能量回收利用系统包括:液压执行机构101、第一液压动力装置2、传动轴102、第二液压动力装置4和蓄能器5,其中:
第一液压动力装置2和第二液压动力装置4之间通过传动轴102连接。
液压执行机构101,用于产生液压能。
优选的,液压执行机构101包括液压马达和/或液压油缸,其中,液压马达在重物下降时会产生液压能,液压油缸在下降时会产生液压能。
第一液压动力装置2,用于将液压执行机构产生的液压能转换为传动轴的机械能。
传动轴102,用于带动第二液压动力装置进行旋转,将传动轴的机械能转换为第二液压动力装置的机械能。
第二液压动力装置4,用于通过给蓄能器充入压力油,将第二液压动力装置的机械能转换成液压能储存起来。
蓄能器5,用于存储液压能。
基于本发明上述实施例提供的起重机作业能量回收利用系统,通过回收利用液压执行机构在下降时释放的能量,实现了节能减排,并降低了系统的发热。
下面通过三个具体实施例对本发明起重机作业能量回收利用系统进行进一步介绍。
第一具体实施例:
图2为本发明起重机作业能量回收利用系统第一具体实施例的示意图。在图2所示实施例中,图1中所述的液压执行机构101具体为变幅油缸。
如图2所示,起重机作业能量回收利用系统包括变幅油缸1、第一液压动力装置2、分动箱3、第二液压动力装置4和蓄能器5、变幅平衡阀10、第一主换向阀9、主泵6和发动机7,其中:
主泵6的出油口与第一主换向阀9的第一工作油口P连通,第一主换向阀9的第二工作油口A与变幅平衡阀10的第一工作油口C连通,变幅平衡阀10的第二工作油口D与变幅油缸1的无杆腔连通。
变幅平衡阀10的第一工作油口C与第一液压动力装置2的进油口连通,第一液压动力装置2与主泵6通过传动轴同轴连接,分动箱3连接在发动机7到主泵6的输出轴上,发动机7通过分动箱3与第二液压动力装置4并联,第二液压动力装置4与蓄能器5连 通。
变幅油缸1,用于将起重机起重臂变幅下落过程中产生的重力势能转换为液压能。
第一液压动力装置2,用于将变幅油缸产生的液压能转换为传动轴的机械能。
分动箱3,用于通过传动轴的机械能带动第二液压动力装置进行旋转。
第二液压动力装置4,用于通过给蓄能器充入压力油,将第二液压动力装置的机械能转换成液压能储存起来。
蓄能器5,用于存储液压能。
基于本发明上述实施例提供的起重机作业能量回收利用系统,可以有效地回收起重机变幅作业吊重和起重臂下降过程的能量,然后加以再利用,降低了起重作业燃油消耗,节能减排。本发明在变幅下降过程中,采用给蓄能器充入压力油的方式调节变幅下降速度,取代了目前的采用平衡阀调速的方式,降低了系统的发热量,延长了液压元件的使用寿命,并且可以减小起重机散热系统功率。
在本发明的一个实施例中,分动箱3可以是齿轮组。
在本发明的一个实施例中,第一液压动力装置2包括第一变量泵和第一泵马达;第二液压动力装置4包括第二变量泵和第二泵马达。
在本发明的一个实施例中,如图2所示,所述的系统还包括先导油源、第一换向阀11、第二换向阀13、第一插装阀12和梭阀14,其中:
先导油源的出油口与第一换向阀11的第一工作油口H连通,第一换向阀11的第二工作油口F与变幅平衡阀的控制油口连通。
第二换向阀13的第一进油口K与梭阀14的出油口连通,梭阀14的第一进油口N、第二进油口M分别与第一插装阀12的第一工作油口R和出油口S连通。
如图2所示,在变幅下落过程中,电磁铁1Y、4Y通电,变幅油缸1与第一液压动力装置2组成泵控缸回路,第一主换向阀9处于中位,主换向阀的第一工作油口P和第二工作油口A不导通。
电磁铁4Y得电,第一换向阀11处于下位,第一换向阀11的第一工作油口H和第二工作油口F导通,使得先导油源流入变幅平衡阀10的先导油口E,从而使的变幅平衡阀10反向导通,变幅油缸1无杆腔的压力油通过变幅平衡阀10流向第一插装阀的第一工作油口R。
电磁铁1Y通电,则第二换向阀13处于左位,插装阀12的控制油口U无压力油,由此第一插装阀12将会打开,第一插装阀12的第一工作油口R与变幅平衡阀10的第一工作油口C连通。由此,第一液压动力装置2和变幅油缸1形成通路,以回收起重臂变幅下落过程中吊重和起重臂产生的重力势能。
变幅油缸1产生的液压能,推动第一液压动力装置2进行旋转,第一液压动力装置2将变幅油缸1产生的液压能将转换为传动轴的机械能。
传动轴的机械能带动主泵6、分动箱3、第二液压动力装置4进行旋转,从而使传动轴的机械能转换成第二液压动力装置4的旋转动能。
第二液压动力装置4将会旋转,从而将液压油充入蓄能器5中,即完成机械能到液压能的转换,最终实现变幅能量的回收。
蓄能器5,用于存储液压能。
在本发明的上述实施例中,针对变幅系统进行能量的回收,主要采用的是平衡阀进行变幅油缸的锁止。
在本发明的一个实施例中,可以采用开关阀替代变幅平衡阀对油缸进行锁止,同样可以达到变幅能量回收和再利用的效果。
在本发明的一个实施例中,可以采用开关阀替代第一插装阀对第一液压动力装置进行锁止,同样可以达到变幅能量回收和再利用 的效果。
在本发明的一个实施例中,在变幅下落时,第一插装阀12的第一工作油口R可以与变幅平衡阀10的第二工作油口D连通,即,第一插装阀的第一工作油口R可以连接到平衡阀与变幅油缸无杆腔之间的油路。如此,同样可以达到变幅能量回收和再利用的效果。
在本发明的一个实施例中,所述系统还包括第一排量调节模块,其中:
第一排量调节模块,用于在起重臂整个变幅下落过程中,调整第一液压动力装置2的排量,以控制起重臂的变幅下降速度,从而防止变幅快速下落。
本发明的上述实施例中,在重物下降过程,采用变量泵调节重物下降速度,取代了目前平衡阀调速的方式,即采用容积调速取代节流调速,降低了系统的发热量,延长了液压元件的使用寿命,并且可以减小起重机散热系统功率。
在本发明的一个实施例中,起重机工作过程中,起重机控制器根据起重机操纵手柄的角度,输出电流信号控制第一液压动力装置2的排量,进而控制变幅下降速度,进而计算出第一液压动力装置2输出给分动箱轴的扭矩也就是可回收的能量扭矩Th
在本发明的一个实施例中,所述系统还可以包括如图3所示的第一力矩获取模块201、第二力矩获取模块202、第一识别模块203、第二排量调节模块204、以及如图2所示的第一开关17和第二开关18,其中:
第一力矩获取模块201与图2中的第一液压动力装置2连接,第二力矩获取装置202与第二液压动力装置4连接。
如图2所示,第一开关17设置在第二液压动力装置4与分动箱3之间,第二开关设置在发动机7与分动箱3之间。
第一力矩获取模块201,用于在起重臂变幅下落过程中,实时获取第一液压动力装置2输出给分动箱3的负载扭矩Th
在本发明的一个实施例中,第一力矩获取模块201可以通过获取第一液压动力装置2的排量以及第一压力传感器82的测量值来获取所述负载扭矩Th
第二力矩获取模块202,用于获取第二液压动力装置4的最大回收扭矩Tx max
在本发明的一个实施例中,第二力矩获取模块202可以通过获取第二液压动力装置4的最大排量、以及第二压力传感器81检测的蓄能器的压力来获取所述最大回收扭矩Tx max
第一识别模块203,用于判断Tx max是否小于Th
第二排量调节模块204,用于根据第一识别模块203的判断结果,在Tx max小于Th时,将第二液压动力装置4的排量调整到最大,使得第二液压动力装置4的回收扭矩Tx=Txmax,并触发第一开关17和第二开关18闭合,通过Tx和发动机7的制动力矩来共同平衡Th。即,第二液压动力装置4只能部分回收第一液压动力装置2的机械能(即部分回收变幅机构的变幅能量)。
在本发明的一个实施例中,第二排量调节模块204还用于根据第一识别模块203的判断结果,在Tx max不小于Th时,通过调整第二液压动力装置4的排量使得第二液压动力装置4的回收扭矩Tx=Th,同时触发第一开关闭合、第二开关断开,完全依靠通过Tx来平衡Th。即,第二液压动力装置4可以全部回收第一液压动力装置2的机械能(即全部回收变幅机构的变幅能量)。
本发明的上述实施例可以通过调整第二液压动力装置的排量,调整第二液压动力装置的回收扭矩,从而最大限度地回收变幅机构的变幅能量,从而更好地实现节能减排、降低系统发热量的目的。
在本发明的一个实施例中,第一开关17和第二开关18均可以采用离合器。
在本发明的一个实施例中,如图2所示,所述系统还包括第一压力传感器81,其中:
第一压力传感器81与蓄能器5连接,用于检测蓄能器5的压力;
第一开关17还用于在第一压力传感器81检测的压力达到预定最大工作压力时,断开第二液压动力装置4与分动箱3的连接,完全依靠发动机7制动力矩来平衡Th
本发明上述实施例中,随着起升重物下落,能量回收的进行,蓄能器的压力不断增大,当蓄能器的压力达到蓄能器设定的最大工作压力时,断开第二液压动力装置4与分动箱3的连接,完全依靠发动机7制动力矩来平衡Th
在本发明的一个实施例中,如图2所示,所述系统还包括第三换向阀15和第二插装阀16,其中:
第三换向阀15的第一工作油口X与回油回路连通,第二工作油口Y与第二插装阀16的控制油口U1连通,第三工作油口Z与蓄能器5连通。
第二插装阀16的第一工作油口V与蓄能器5连通,第二工作油口W与第二液压动力装置4连通。
起重机起重臂变幅下落的过程中,电磁铁3Y得电,第三换向阀15处于左位,第二插装阀16的控制油口U1无压力油,第二插装阀16的第一工作油口V和第二工作油口W导通,蓄能器5与第二液压动力装置4连通,实现变幅能量的回收。
在第一压力传感器81检测的压力达到预定最大工作压力时,电磁铁3Y断电,第三换向阀15处于右位,第二插装阀16的控制油口U1有压力油,第二插装阀16的第一工作油口V和第二工作油口W断开,蓄能器5与第二液压动力装置4断开,完全依靠发动机7制动力矩来平衡Th
在本发明的一个实施例中,可以采用开关阀替代第二插装阀16对储能器进行锁止,同样可以达到变幅能量回收和再利用的效果。
在本发明的一个实施例中,如图2所示,所述系统还包括与蓄能器5连通的溢流阀19,其中:
溢流阀19,用于第一压力传感器81检测的压力达到预定最大工作压力时(即,在当蓄能器充满时),打开,使得蓄能器保持恒定的压力,能量回收停止。
在本发明的一个实施例中,蓄能器5还用于在起重机进行上车操作且蓄能器有剩余能量时,释放存储的液压能,为起重机的液压执行机构提供驱动力。
在本发明的一个实施例中,所述液压执行机构可以包括变幅油缸、卷扬马达、回转马达等液压执行机构中的至少一个。
在本发明的一个实施例中,在起重臂的变幅起升时,电磁铁3Y、5Y通电,通过主泵与变幅油缸组成的开式泵控缸回路,实现对变幅系统的驱动。
具体而言,电磁铁3Y得电,第三换向阀15处于左位,第二插装阀16的控制油口U1无压力油,第二插装阀16的第一工作油口V和第二工作油口W导通,蓄能器5与第二液压动力装置4连通,蓄能器5中高压油通过第二插装阀16驱动第二液压动力装置4进行旋转。
第二液压动力装置4通过第一开关1带动分动箱进行旋转,从而将机械能传递至传动轴,与发动机一起给传动轴提供驱动力,从而实现存储的液压能的再利用。
电磁铁5Y得电,第一主换向阀9处于左位,主换向阀的主换向阀的第一工作油口P和第二工作油口A导通。主泵6还用于将传动轴的机械能转换为液压能,以驱动变幅油缸1实现起重臂的变幅起升。此时变幅油缸的起升,可通过主泵或变量泵/马达进行提供液压油。
在本发明的一个实施例中,所述系统还包括第三排量调节模块,其中:
第三排量调节模块,用于在起重臂变幅起升过程中,调整主泵6的排量,以控制变幅起升速度。
在本发明的一个实施例中,起重机工作过程中,起重机控制器根据起重机操纵手柄的角度,输出电流信号控制主泵的排量,进而控制变幅起的速度,进而获取主泵的输出力矩Td
在本发明的一个实施例中,所述系统还可以包括如图4所示的第三力矩获取模块301、第四力矩获取模块302、第二识别模块303,其中:
第三力矩获取装置301与主泵连通,第四力矩获取装置302与第二液压动力装置连通;第二识别模块303分别与第三力矩获取模块和第四力矩获取模块连通。
第三力矩获取模块301,用于在起重臂变幅起升过程中,实时获取主泵6输出的负载扭矩Td
在本发明的一个实施例中,第三力矩获取模块301可以通过获取主泵6的排量以及第三压力传感器83的测量值来获取所述主泵6输出的负载扭矩Td
第四力矩获取模块302,用于获取第二液压动力装置4可提供的最大驱动扭矩Txc max
在本发明的一个实施例中,第二力矩获取模块202可以通过获取第二液压动力装置4的最大排量、以及第二压力传感器81检测的蓄能器的压力来获取所述最大驱动扭矩Txc max
第二识别模块303,用于判断Txc max是否小于Td
第二排量调节模块204还用于根据第二识别模块303的判断结果,在Txc max小于Td时,将第二液压动力装置4的排量调到最大,使得第二液压动力装置4提供的驱动扭矩Txc=Txcmax;同时触发第一开关和第二开关闭合,通过第二液压动力装置4的驱动扭矩Txc和发动机7的驱动力矩来共同驱动主泵6。
本发明的上述实施例可以通过调整第二液压动力装置的排量,调整第二液压动力装置的驱动扭矩,从而最大限度地利用蓄能器存储的能量,从而更好地实现节能减排、降低系统发热量的目的。
在本发明的一个实施例中,第二排量调节模块204还用于根据第二识别模块303的判断结果,在Txc max不小于Td时,调整第二液压动力装置4的排量使第二液压动力装置4提供的驱动扭矩Txc=Td;同时触发第一开关17闭合、第二开关18断开。即,完全依靠第二液压动力装置来驱动主泵。
在本发明的一个实施例中,第一开关17还用于在第一压力传感器81检测的压力达到预定最低工作压力时,断开第二液压动力装置4与分动箱3的连通,同时闭合第二开关,完全依靠发动机7驱动主泵6。
在本发明的一个实施例中,随着起升重物上升,蓄能器中的高压油液被放出,蓄能器的压力不断减小,当蓄能器的压力高于蓄能器充气压力的某一设定值时,将第二液压动力装置的排量控制信号置零,电磁铁3Y断电,第二插装阀16断开,第一开关17断开,完全依靠发动机提供动力。
在本发明图2所述的实施例中,变幅油缸1与第一液压动力装置2组成开式泵控缸回路,以将起重机起重臂变幅下落过程中吊重和起重臂产生的重力势能转换为第一液压动力装置2的机械能。
在本发明的一个实施例中,变幅油缸1与第一液压动力装置2也可以组成闭式泵控缸回路,以将起重机起重臂变幅下落过程中吊重和起重臂产生的重力势能转换为第一液压动力装置2的机械能。
本发明第二具体实施例所述的起重机作业能量回收利用系统是一种起重机变幅能量回收利用系统。
第二具体实施例
图5为本发明起重机作业能量回收利用系统第二具体实施例的示意图。在图5所示实施例中,图1中所述的液压执行机构101具体为卷扬马达。
如图5所示,所述起重机作业能量回收利用系统包括卷扬马 达21、第一液压动力装置2、分动箱3、第二液压动力装置4和蓄能器5、平衡阀30、第二主换向阀32、主泵6和发动机7,其中:
主泵6的出油口与第二主换向阀32的进油口连通,第二主换向阀32的第一工作油口与平衡阀30的第一工作油口连通,平衡阀30的第二工作油口与卷扬马达21的起口连通。
平衡阀30的第二工作油口与第一液压动力装置2的进油口连通,第一液压动力装置2与主泵6同轴连接,分动箱3连接在发动机7到主泵6的输出轴上,发动机7通过分动箱3与第二液压动力装置4并联,第二液压动力装置4与蓄能器5连通。
卷扬马达21与第一液压动力装置2组成闭式泵控马达回路,用于将起重机吊重下落过程中重物产生的重力势能转换为液压能。
第一液压动力装置2(一级二次元件),用于将卷扬马达产生的液压能转换为传动轴的机械能。
分动箱3,用于通过传动轴的机械能带动第二液压动力装置进行旋转。
第二液压动力装置4(二级二次元件),用于通过给蓄能器充入压力油,将第二液压动力装置的机械能转换成液压能储存起来。
蓄能器5,用于存储液压能。
基于本发明上述实施例提供的起重机作业能量回收利用系统,在起升系统重物下降过程,将卷扬马达与第一液压动力装置组成闭式泵控系统,第一液压动力装置再带动第二液压动力装置给蓄能器充入压力油,回收重物下降过程的能量,从而可以有效地回收起重机起升作业重物下降过程的能量,然后加以再利用,降低了起重作业燃油消耗,节能减排。
在本发明的一个实施例中,第一液压动力装置2包括第一变 量泵和第一泵马达;第二液压动力装置4包括第二变量泵和第二泵马达。
在本发明的一个实施例中,如图5所示,所述的系统还包括换向阀31、换向阀26、插装阀25、梭阀27、换向阀23、插装阀22、梭阀24、插装阀29和换向阀28,其中:
如图5所示,吊重下落过程种,电磁铁11Y、10Y、8Y、9Y通电,第一液压动力装置2和卷扬马达21形成通路,以回收卷扬的势能。卷扬的势能会通过卷筒、卷扬减速机、卷扬马达形成液压能,卷扬马达21与第一液压动力装置2组成闭式泵控马达回路,将重物的势能转换成机械能。重物产生的力矩带动第一液压动力装置回转,机械能再带动第二液压动力装置4(二级二次元件变量泵/马达)给蓄能器充入压力油,将机械能转换成液压能储存起来。
具体而言:
电磁铁11Y得电,则换向阀26处于左位,插装阀25的控制油口与油缸连通,即控制油口无压力油,由此插装阀25将会打开。
电磁铁10Y得电,则换向阀23处于左位,插装阀22的控制油口与油缸连通,即控制油口无压力油,由此插装阀22将会打开。
电磁铁8Y得电,则换向阀31处于下位,使得平衡阀30的先导油口与油缸连通,即先导油口无压力油,保持平衡阀30处于关闭状态,保证重物势能不从平衡阀节流损失掉,而是能够通过第一液压动力装置2进行回收。
电磁铁9Y得电,则换向阀28处于右位,插装阀29的控制油口与第一液压动力装置2的回油回路连通,即控制油口有压力油,插装阀29断开,从而保证第一液压动力装置2的回油能够及时补充到卷扬马达的低压腔(落口)。
此时电磁阀7Y和6Y不得电,主换向阀处于中位状态,主泵处于低压溢流状态,主油路不参与能量回收。
由此,电磁铁11Y、10Y、8Y、9Y通电时,第一液压动力装置2和卷扬马达21形成闭式泵控马达回路,将重物的势能转换成机械能。
吊重下落过程种,卷扬的势能会通过卷筒、卷扬减速机、卷扬马达形成液压能,卷扬马达21产生的液压能,推动第一液压动力装置2进行旋转,第一液压动力装置2将卷扬马达21产生的液压能将转换为传动轴的机械能。
传动轴的机械能带动主泵6、分动箱3、第二液压动力装置4进行旋转,从而使传动轴的机械能转换成第二液压动力装置4的旋转动能。
第二液压动力装置4将会旋转,从而将液压油充入蓄能器5中,即完成机械能到液压能的转换,最终实现卷扬能量的回收。
在本发明的上述实施例中,针对卷扬马达进行能量的回收,主要采用的是平衡阀进行卷扬马达的锁止。
在本发明的一个实施例中,在不进行能量回收时,第一液压动力装置2可以用于回转马达的驱动。
在本发明的一个实施例中,卷扬下落时,卷扬马达落口液压油除了第一液压动力装置的第二变量泵可提供补油之外,也可以通过额外设置的补油泵进行供油。
在本发明的一个实施例中,可以采用开关阀替代平衡阀对卷扬马达进行锁止,同样可以达到卷扬能量回收和再利用的效果。
在本发明的一个实施例中,可以采用开关阀替代插装阀22、插装阀25对第一液压动力装置进行锁止,同样可以达到卷扬能量回收和再利用的效果。
在本发明的一个实施例中,可以采用开关阀替代插装阀29对主换向阀进行锁止,同样可以达到卷扬能量回收和再利用的效果。
在本发明的一个实施例中,所述系统还包括第一排量调节模 块,其中:
第一排量调节模块,用于在吊重下落过程中,调整第一液压动力装置2的排量,以控制重物下降速度,从而防止重物快速下落。
本发明的上述实施例,在重物下降过程,采用变量泵调节重物下降速度,取代了目前的采用平衡阀调速的方式,降低了系统的发热量,延长了液压元件的使用寿命,并且可以减小起重机散热系统功率。
在本发明的一个实施例中,起重机工作过程中,起重机控制器根据起重机操纵手柄的角度,输出电流信号控制第一液压动力装置2的排量,进而控制重物下降速度,进而计算出第一液压动力装置2输出给分动箱轴的扭矩也就是可回收的能量扭矩Th
图5所示的实施例的系统还可以包括第一开关17、第二开关18,以及如图3所示的第一力矩获取模块201、第二力矩获取模块202、第一识别模块203、第二排量调节模块204,其中:
第一力矩获取模块201与图5中的第一液压动力装置2连接,第二力矩获取装置202与第二液压动力装置4连接。
如图5所示,第一开关17设置在第二液压动力装置4与分动箱3之间,第二开关设置在发动机7与分动箱3之间。
第一力矩获取模块201,用于在吊重下落过程中,实时获取第一液压动力装置2输出给分动箱3的负载扭矩Th
在本发明的一个实施例中,第一力矩获取模块201可以通过获取第一液压动力装置2的排量以及第一压力传感器82的测量值来获取所述负载扭矩Th
第二力矩获取模块202,用于获取第二液压动力装置4的最大回收扭矩Tx max
在本发明的一个实施例中,第二力矩获取模块202可以通过获取第二液压动力装置4的最大排量、以及第二压力传感器81 检测的蓄能器的压力来获取所述最大回收扭矩Tx max
第一识别模块203,用于判断Tx max是否小于Th
第二排量调节模块204,用于根据第一识别模块203的判断结果,在Tx max小于Th时,将第二液压动力装置4的排量调整到最大,使得第二液压动力装置4的回收扭矩Tx=Txmax,并触发第一开关17和第二开关18闭合,通过Tx和发动机7的制动力矩来共同平衡Th。即,第二液压动力装置4只能部分回收第一液压动力装置2的机械能(即部分回收卷扬机构的卷扬能量)。
在本发明的一个实施例中,第二排量调节模块204还用于根据第一识别模块203的判断结果,在Tx max不小于Th时,通过调整第二液压动力装置4的排量使得第二液压动力装置4的回收扭矩Tx=Th,同时触发第一开关闭合、第二开关断开,完全依靠通过Tx来平衡Th。即,第二液压动力装置4可以全部回收第一液压动力装置2的机械能(即全部回收卷扬机构的卷扬能量)。
本发明的上述实施例可以通过调整第二液压动力装置的排量,调整第二液压动力装置的回收扭矩,从而最大限度地回收卷扬机构的卷扬能量,从而更好地实现节能减排、降低系统发热量的目的。
在本发明的一个实施例中,第一开关17和第二开关18均可以采用离合器。
在本发明的一个实施例中,如图1所示,所述系统还包括第一压力传感器81,其中:
第一压力传感器81与蓄能器5连接,用于检测蓄能器5的压力;
第一开关17还用于在第一压力传感器81检测的压力达到预定最大工作压力时,断开第二液压动力装置4与分动箱3的连接,完全依靠发动机7制动力矩来平衡Th
本发明上述实施例中,随着吊重下落,能量回收的进行,蓄 能器的压力不断增大,当蓄能器的压力达到蓄能器设定的最大工作压力时,断开第二液压动力装置4与分动箱3的连接,完全依靠发动机7制动力矩来平衡Th
在本发明的一个实施例中,如图5所示,所述系统还包括换向阀15和插装阀16,其中:
起重机吊重下落的过程中,电磁铁3Y得电,第五换向阀15处于左位,插装阀16的控制油口无压力油,第四插装阀16闭合,蓄能器5与第二液压动力装置4连通,实现卷扬能量的回收。
在第一压力传感器81检测的压力达到预定最大工作压力时,电磁铁3Y断电,换向阀15处于右位,插装阀16的控制油口U1有压力油,插装阀29断开,蓄能器5与第二液压动力装置4断开,完全依靠发动机7制动力矩来平衡Th
在本发明的一个实施例中,可以采用开关阀替代插装阀16对储能器进行锁止,同样可以达到卷扬能量回收和再利用的效果。
在本发明的一个实施例中,如图1所示,所述系统还包括与蓄能器5连通的溢流阀19,其中:
溢流阀19,用于第一压力传感器81检测的压力达到预定最大工作压力时(即,在当蓄能器充满时),打开,使得蓄能器保持恒定的压力,能量回收停止。
在本发明的一个实施例中,蓄能器5还用于在起重机进行上车操作且检测有可利用能量时,释放存储的液压能,为起重机的液压执行机构提供驱动力。
在本发明的一个实施例中,所述液压执行机构可以包括变幅油缸、卷扬马达、回转马达等液压执行机构中的至少一个。
在本发明的一个实施例中,如图5所示,第一液压动力装置还用于在起重机吊重下落时,断开与卷扬马达的连接(插装阀12断开),不进行能量回收;主泵还用于在第一液压动力装置与卷扬马达的连接断开时,与卷扬马达落口连接(主换向阀处于右位, 插装阀29导通,平衡阀反向导通),与卷扬马达组成开式回路,系统实现开式下落。
在本发明的一个实施例中,如图5所示,在起重臂的吊重起升时,电磁铁7Y通电,通过主泵与卷扬马达组成开式泵控马达回路,实现对卷扬系统的驱动。
具体而言:
电磁铁7Y得电,第二主换向阀32处于左位,电磁铁8Y不得电,平衡阀正向导通,主泵出油口与卷扬马达起口连通。主泵6用于将传动轴的机械能转换为液压能,以驱动卷扬马达21实现吊重起升。此时卷扬马达的起升,可通过主泵提供液压油。
在蓄能器检测有可利用能量时,第二液压动力装置4通过第一开关17带动分动箱进行旋转,从而将机械能传递至传动轴,与发动机一起给传动轴提供驱动力,从而实现存储的液压能的再利用。
本发明上述实施例中,在起升系统重物下降过程中,将卷扬马达与第一液压动力装置组成闭式泵控马达系统,第一液压动力装置再带动第二液压动力装置给蓄能器充入压力油,回收重物下降过程的能量。回收的能量能够重新被释放,用于驱动传动轴旋转,和发动机一起给主系统提供驱动力。
本发明作业能量回收利用系统不仅可以用于开式泵控系统的起重机,还可以用于负载敏感泵阀控系统和闭式泵控系统的起重机。
在本发明的一个实施例中,所述系统还包括第三排量调节模块,其中:
第三排量调节模块,用于在吊重起升过程中,调整主泵6的排量,以控制吊重起升速度。
在本发明的一个实施例中,起重机工作过程中,起重机控制器根据起重机操纵手柄的角度,输出电流信号控制主泵的排量, 进而控制吊重起升的速度,进而获取主泵的输出力矩Td
在本发明的图5所述的实施例中,所述系统还可以包括如图4所示的第三力矩获取模块301、第四力矩获取模块302、第二识别模块303,其中:
第三力矩获取装置301与主泵连通,第四力矩获取装置302与第二液压动力装置连通;第二识别模块303分别与第三力矩获取模块和第四力矩获取模块连通。
第三力矩获取模块301,用于在吊重起升过程中,实时获取主泵6输出的负载扭矩Td
在本发明的一个实施例中,第三力矩获取模块301可以通过获取主泵6的排量以及第三压力传感器83的测量值来获取所述主泵6输出的负载扭矩Td
第四力矩获取模块302,用于获取第二液压动力装置4可提供的最大驱动扭矩Txc max
在本发明的一个实施例中,第二力矩获取模块202可以通过获取第二液压动力装置4的最大排量、以及第二压力传感器81检测的蓄能器的压力来获取所述最大驱动扭矩Txc max
第二识别模块303,用于判断Txc max是否小于Td
第二排量调节模块204还用于根据第二识别模块303的判断结果,在Txc max小于Td时,将第二液压动力装置4的排量调到最大,使得第二液压动力装置4提供的驱动扭矩Txc=Txcmax;同时触发第一开关和第二开关闭合,通过第二液压动力装置4的驱动扭矩Txc和发动机7的驱动力矩来共同驱动主泵6。
在本发明的一个实施例中,第二排量调节模块204还用于根据第二识别模块303的判断结果,在Txc max不小于Td时,调整第二液压动力装置4的排量使第二液压动力装置4提供的驱动扭矩Txc=Td;同时触发第一开关闭合、第二开关断开。即,完全依靠第二液压动力装置来驱动主泵。
本发明的上述实施例可以通过调整第二液压动力装置的排量,调整第二液压动力装置的驱动扭矩,从而最大限度地利用蓄能器存储的能量,从而更好地实现节能减排、降低系统发热量的目的。
在本发明的一个实施例中,第一开关还用于在第一压力传感器81检测的压力达到预定最低工作压力时,断开第二液压动力装置4与分动箱3的连通,同时闭合第二开关,完全依靠发动机7驱动主泵6。
在本发明的一个实施例中,随着起升重物上升,蓄能器中的高压油液被放出,蓄能器的压力不断减小,当蓄能器的压力降低至设定最低允许压力值时,将第二液压动力装置的排量控制信号置零,电磁铁3Y断电,第四插装阀16断开,第一开关17断开,完全依靠发动机提供动力。
在本发明图5所述的实施例中,第一液压动力装置2和卷扬马达21形成闭式泵控马达回路将卷扬下落过程中重物的势能转换成机械能。
在本发明的一个实施例中,第一液压动力装置2和卷扬马达21也可以构成开式泵控马达回路将重物的势能转换成机械能,同样可以实现卷扬能量的回收。
本发明第二具体实施例所述的起重机作业能量回收利用系统是一种起重机卷扬(马达)能量回收利用系统。
第三具体实施例
图6为本发明起重机作业能量回收利用系统第三具体实施例的示意图。在图6所示实施例中,图1中所述的液压执行机构101具体包括卷扬马达和变幅油缸,以实现起重机卷扬能量和/或变幅能量的回收利用。
如图6所示的起重机作业能量回收利用系统的结构是图2所示的起重机变幅油缸能量回收利用系统、以及图5所示的起重机卷扬 马达能量回收利用系统的结合。即,图6所示的起重机作业能量回收利用系统包括起重机变幅油缸能量回收利用子系统以及起重机卷扬马达能量回收利用子系统。
图5的起重机卷扬马达能量回收利用系统和图6所示的起重机卷扬马达能量回收利用子系统,由开式系统(主泵6和卷扬马达21组成的开式泵控马达回路)和闭式系统(第一液压动力机构2和卷扬马达21组成的闭式泵控马达能量回收回路)并联构成,卷扬起升时,采用开式系统进行驱动;重物下落时,如果符合能量回收条件,则采用闭式系统进行能量回收,如果不满足条件,则仍采用开式系统进行重物下放的控制。
图2的起重机变幅油缸能量回收利用系统和图6所示的起重机变幅油缸能量回收利用子系统,由开式系统(主泵6和变幅油缸1组成的开式泵控油缸回路)和泵控油缸调速系统(第一液压动力机构2和变幅油缸1组成的开式泵控油缸能量回收回路)并联构成,变幅起操作时,采用开式系统进行驱动,由主泵进行供油;变幅落时,如果符合能量回收条件,则采用泵控油缸调速系统进行能量回收,如果不满足条件,则仍采用开式系统进行重物下放的控制。
具体而言,图6所示实施例的起重机作业能量回收利用系统在图5所示实施例的基础上,增加了变幅油缸能量回收利用组件,其中所述变幅油缸能量回收利用组件包括变幅油缸1、变幅平衡阀10、第三主换向阀33、先导油源、第一换向阀11、第二换向阀13、第一插装阀12和梭阀14、插装阀34和换向阀35。
图6所示的变幅油缸能量回收利用组件与图2所示的变幅油缸能量回收利用组件的差别仅在于:将第一主换向阀9替换为第三主换向阀33,并增加了插装阀34和换向阀35。
具体而言,第三主换向阀33与第一主换向阀9功能一致,均可实现变幅起升和下落的切换。在第一液压动机装置2的出油口增加插装阀34和换向阀35,用于控制开式泵控油缸能量回收回路的通 断,以便于开式泵控油缸能量回收回路与闭式泵控马达能量回收回路进行切换。
本发明第三具体实施例在能量回收回路的设置上,在第一液压动机装置2与卷扬马达组成闭式泵控马达能量回收回路;同时第一液压动机装置2还与变幅油缸组成开式泵控油缸能量回收回路。
因此,本发明第三具体实施例所述的起重机作业能量回收利用系统,在进行能量回收时,可以通过控制电磁阀的得失电,同时实现卷扬能量和变幅能量的回收;也可以单独回收卷扬能量或变幅能量。
1、单独回收卷扬能量
起升系统吊重下落过程:下落时,如果符合能量回收条件,电磁铁11Y、10Y、3Y、8Y、9Y通电,卷扬马达21与第一液压动力装置组成闭式泵控马达回路。
11Y、10Y得电,则插装阀22和25将会打开,第一液压动力装置2和卷扬马达形成通路,以回收卷扬的势能。卷扬的势能会通过卷筒、卷扬减速机、卷扬马达形成液压能,经过插装阀22,推动第一液压动力装置2旋转,从而将液压能转换成传动轴的机械能。传动轴的机械能将会带动主泵6、分动箱3、第二液压动力装置4进行旋转,从而使传动轴的机械能转换成第二液压动力装置4的旋转动能,第二液压动力装置4将会旋转。
3Y得电,使得插装阀16闭合,第二液压动力装置4将液压油打入蓄能器中,即完成机械能到液压能的转换,最终实现卷扬势能的回收。此时发动机的离合器18可以处于开启或闭合状态,主要由能量回收时的系统扭矩平衡决定。
8Y得电,保持平衡阀30处于关闭状态,保证重物势能不从平衡阀节流损失掉,而是能够通过第一液压动力装置2进行回收。同时9Y得电,保证第一液压动力装置2的回油能够及时补充到卷扬马达的低压腔。
此时第二主换向阀32的控制端5Y和6Y不得电,第二主换向阀32处于中位状态,主泵处于低压溢流状态,主油路不参与能量回收。
能量回收采用恒扭矩的控制策略,即保证负载扭矩、回收扭矩和发动机制动扭矩的合理分配。控制器根据压力、流量等可参数计算出第一液压动力装置2输出给分动箱轴的负载扭矩;通过压力传感器81检测蓄能器的压力,并根据第二液压动力装置4的排量,可以计算当前能量回收单元的回收扭矩。通过实时判断负载扭矩和回收扭矩之间的关系,来确定发动机的工作状态(提供驱动扭矩还是提供制动扭矩)。
2、单独回收变幅能量
变幅下落过程:磁铁4Y、1Y、3Y、12Y通电,变幅油缸与第一液压动力装置2组成泵控缸回路。变幅机构的重力势能转换成液压能,从而通过插装阀12驱动第一液压动力装置2进行旋转,从而将液压能转换成第一液压动力装置2的旋转动能,第一液压动力装置2带动传动轴进行旋转,进而带动主泵6、第二液压动力装置4的旋转,进而将能量进行传递,最终第二液压动力装置4将机械能转换成液压能,并将液压能存储在蓄能器中,完成变幅机构势能的回收。整个变幅下落时,通过改变第一液压动力装置2的排量来调节变幅下落的速度,防止变幅快速下落。
随着起升重物下落,能量回收的进行,蓄能器的压力不断增大,当蓄能器的压力达到蓄能器设定的最大工作压力时,将第二液压动力装置4的排量控制信号置零,电磁铁3Y断电,离合器17断开,完全依靠发动机进行制动。
3、同时回收卷扬能量和变幅能量
综合前述两种情况(单独回收卷扬能量以及单独回收变幅能量的情况),则可以同时卷扬落和变幅落时起重臂和重物产生的重力势能,具体实现情形参见上述两种情况。
本发明第三具体实施例在能量利用回路的设置上,主泵6与卷扬马达组成开式泵控马达能量利用回路;同时,第一液压动机装置2还与变幅油缸组成开式泵控油缸能量利用回路。
因此,本发明第三具体实施例所述的起重机作业能量回收利用系统,在进行能量再利用时,可以通过控制电磁阀的得失电,使得蓄能器输出的能量同时驱动卷扬马达起升重物以及变幅油缸进行变幅起操作;也可以使得蓄能器输出的能量只驱动卷扬马达起升重物,或变幅油缸进行变幅起操作。
1、蓄能器能量单独用于卷扬起升
起升系统吊重上升过程:起升时,采用开式系统进行控制,即电磁阀11Y和10Y不得电,插装阀22和25关闭,切断第一液压动力装置2与卷扬马达21的回路。同时,电磁铁7Y通电,主泵与卷扬马达组成开式泵控系统实现卷扬起升的控制。
起升时,主泵的驱动力可以由发动机和能量回收单元进行提供,同样需要判断负载扭矩与能量回收单元的驱动扭矩之间的关系。当能量回收单元的驱动扭矩大于负载扭矩时,可以由能量回收单元单独提供驱动力,此时电磁阀3Y得电,蓄能器的高压油释放,驱动第二液压动力装置4进行旋转,将液压能转换成变量泵/马达输出轴的旋转动能,进而带动整个传动轴进行旋转,最终驱动主泵进行工作,实现存储的液压能到机械能的转换。随着能量回收单元能够提供的驱动扭矩的逐渐减小,可控制发动机参与驱动扭矩的提供,当蓄能器不能进行能量供应时,电磁阀3Y失电;如果能量回收单元的驱动扭矩不足以驱动负载扭矩,则能量回收单元将不提供驱动扭矩或提供小部分驱动扭矩,其余的驱动扭矩由发动机进行提供。
2、蓄能器能量单独用于变幅起升
变幅起过程中:电磁铁3Y、13Y通电,变幅系统通过主泵6与变幅油缸1组成开式泵控缸回路实现。蓄能器中高压油通过插装阀 16驱动第二液压动力装置4进行旋转,第二液压动力装置4通过离合器17带动分动箱进行旋转,从而将机械能传递至传动轴,与发动机一起给传动轴提供驱动力,从而实现存储的液压能的再利用。此时变幅油缸的起升,可通过主泵或第二液压动力装置进行提供液压油,均属于本专利保护范围。
随着起升重物上升,蓄能器中的高压油液被放出,蓄能器的压力不断减小,当蓄能器的压力高于蓄能器充气压力的某一设定值时,将第二液压动力装置4的排量控制信号置零,电磁铁3Y断电,离合器17断开,完全依靠发动机提供动力。
3、蓄能器能量同时用于变幅起升和卷扬起升
综合前述两种情况(蓄能器能量单独用于变幅起升以及单独用于卷扬起升的情况),同时给电磁铁7Y、13Y、3Y通电,则可以将蓄能器能量同时用于变幅起升和卷扬起升,具体实现情形参见上述两种情况。
当然蓄能器存储的能量也可以用于驱动回转马达等其它需要利用能量的机构。
本发明上述实施例提供的起重机作业能力回收利用系统,可以有效回收起升和/或变幅作业重物下落过程的重力势能,并且可以将回收的能量再次用于卷扬和/或变幅的驱动,降低了起重作业的燃油消耗,节能减排。同时,重物下落过程中,采用变量泵调节重物下降速度,取代了目前平衡阀调速的方式,即采用容积调速取代节流调速,降低了系统的发热量,延长了液压元件的使用寿命,并且可以减小起重机散热系统功率。
在本发明一个实施例中,图6所述的起重机作业能力回收利用系统还可以包括如图3所示的第一力矩获取模块201、第二力矩获取模块202、第一识别模块203、第二排量调节模块204;以及如图4所示的第三力矩获取模块301、第四力矩获取模块302、第二识别模块303,以及本发明第一和第二具体实施例中提到的第三排量调 节模块。这些模块的功能以及连接关系与本发明第一和第二具体实施例相同,这里不再详述。
在本发明图6所述的实施例中,变幅油缸1与第一液压动力装置2组成开式泵控缸回路,以将起重机起重臂变幅下落过程中吊重和起重臂产生的重力势能转换为第一液压动力装置2的机械能;第一液压动力装置2和卷扬马达21形成闭式泵控马达回路将卷扬下落过程中重物的势能转换成机械能。
在本发明的一个实施例中,变幅油缸1与第一液压动力装置2也可以组成闭式泵控缸回路,以将起重机起重臂变幅下落过程中吊重和起重臂产生的重力势能转换为第一液压动力装置2的机械能。
在本发明的一个实施例中,第一液压动力装置2和卷扬马达21也可以构成开式泵控马达回路将重物的势能转换成机械能,同样可以实现卷扬能量的回收。
根据本发明的另一方面,提供一种起重机,包括上述任意一项实施例中所述的起重机作业能力回收利用系统。
基于本发明上述实施例提供的起重机,可以有效回收起升和/或变幅作业重物下落过程的重力势能,并且可以将回收的能量再次用于卷扬和/或变幅的驱动,降低了起重作业的燃油消耗,节能减排。同时,重物下落过程中,采用变量泵调节重物下降速度,取代了目前平衡阀调速的方式,即采用容积调速取代节流调速,降低了系统的发热量,延长了液压元件的使用寿命,并且可以减小起重机散热系统功率。
图7为本发明起重机作业能量回收利用方法第一实施例的示意图。优选的,本实施例可由本发明图2-图6任一实施例所述的起重机作业能量回收利用系统执行。该方法包括以下步骤:
步骤401,第一液压动力装置将液压执行机构产生的液压能 转换为传动轴的机械能。
优选的,所述液压执行机构包括液压马达和/或液压油缸,其中,液压马达在重物下降时会产生液压能,液压油缸在下降时会产生液压能。
步骤402,传动轴带动第二液压动力装置进行旋转,将传动轴的机械能转换为第二液压动力装置的机械能。
步骤403,第二液压动力装置给蓄能器充入压力油,将第二液压动力装置的机械能转换成液压能储存起来。
基于本发明上述实施例提供的起重机作业能量回收利用方法,通过回收利用液压执行机构在下降时释放的能量,实现了节能减排,并降低了系统的发热。
图8为本发明起重机作业能量回收利用方法第二实施例的示意图。优选的,本实施例可由本发明图2或图6所示的起重机变幅能量回收利用系统执行。该方法包括以下步骤:
步骤501,变幅油缸1将起重机起重臂变幅下落过程中吊重和起重臂产生的重力势能转换为液压能。
步骤502,第一液压动力装置2将变幅油缸1产生的液压能转换为传动轴的机械能,其中第一液压动力装置2与主泵6同轴连通。
步骤503,传动轴通过分动箱3带动第二液压动力装置4进行旋转,将传动轴的机械能转换为第二液压动力装置的机械能,其中分动箱3连通在发动机7输出轴上,发动机7通过分动箱3与第二液压动力装置4并联。
步骤504,第二液压动力装置4给蓄能器5充入压力油,将第二液压动力装置4的机械能转换成液压能储存起来。
基于本发明上述实施例提供的起重机作业能量回收利用方法,可以有效地回收起重机变幅作业吊重和起重臂下降过程的能量,然后加以再利用,降低了起重作业燃油消耗,节能减排。
在本发明的一个实施例中,所述方法还可以包括:在起重臂变幅下落过程中,调整第一液压动力装置2的排量,以控制起重臂的变幅下降速度。
本发明的上述实施例中,在重物下降过程,采用变量泵调节重物下降速度,取代了目前平衡阀调速的方式,即采用容积调速取代节流调速,降低了系统的发热量,延长了液压元件的使用寿命,并且可以减小起重机散热系统功率。
图9为本发明起重机作业能量回收利用方法第三实施例的示意图。优选的,本实施例可由本发明图5或图6所述的起重机作业能量回收利用系统执行。该方法包括以下步骤:
步骤601,卷扬马达将起重机吊重下落过程中重物产生的重力势能转换为液压能。
优选的,卷扬马达1与第一液压动力装置组成闭式泵控回路,将起重机吊重下落过程中重物产生的重力势能转换为液压能。
步骤602,第一液压动力装置2将卷扬马达1产生的液压能转换为传动轴的机械能,其中第一液压动力装置2与主泵6同轴连通。
步骤603,传动轴通过分动箱3带动第二液压动力装置4进行旋转,将传动轴的机械能转换为第二液压动力装置的机械能,其中分动箱3连通在发动机7输出轴上,发动机7通过分动箱3与第二液压动力装置4并联。
步骤604,第二液压动力装置4给蓄能器5充入压力油,将第二液压动力装置4的机械能转换成液压能储存起来。
基于本发明上述实施例提供的起重机作业能量回收利用方法,在起升系统重物下降过程,将卷扬马达与第一液压动力装置组成闭式泵控系统,第一液压动力装置再带动第二液压动力装置给蓄能器充入压力油,回收重物下降过程的能量,从而可以有效地回收起重机起升作业重物下降过程的能量,然后加以再利用,降低了起重 作业燃油消耗,节能减排。
在本发明的一个实施例中,所述方法还可以包括:在吊重下落过程中,调整第一液压动力装置2的排量,以控制重物下降速度。
本发明的上述实施例,在重物下降过程,采用变量泵调节重物下降速度,取代了目前的采用平衡阀调速的方式,降低了系统的发热量,延长了液压元件的使用寿命,并且可以减小起重机散热系统功率。
图10为本发明起重机作业能量回收利用方法第四实施例的示意图。优选的,本实施例可由本发明图6所述的起重机作业能量回收利用系统执行。该方法包括以下步骤:
步骤701,变幅油缸1将起重机起重臂变幅下落过程中吊重和起重臂产生的重力势能转换为液压能。
步骤702,卷扬马达将起重机吊重下落过程中重物产生的重力势能转换为液压能。
优选的,卷扬马达1与第一液压动力装置组成闭式泵控回路,将起重机吊重下落过程中重物产生的重力势能转换为液压能。
步骤703,第一液压动力装置2将卷扬马达1产生的液压能转换为传动轴的机械能,其中第一液压动力装置2与主泵6同轴连通。
步骤704,传动轴通过分动箱3带动第二液压动力装置4进行旋转,将传动轴的机械能转换为第二液压动力装置的机械能,其中分动箱3连通在发动机7输出轴上,发动机7通过分动箱3与第二液压动力装置4并联。
步骤705,第二液压动力装置4给蓄能器5充入压力油,将第二液压动力装置4的机械能转换成液压能储存起来。
基于本发明上述实施例提供的起重机作业能量回收利用方法,可以有效回收起升和/或变幅作业重物下落过程的重力势能, 并且可以将回收的能量再次用于卷扬和/或变幅的驱动,降低了起重作业的燃油消耗,节能减排。
在本发明的一个实施例中,所述方法还可以包括:在吊重下落过程中,调整第一液压动力装置2的排量,以控制重物下降速度;在起重臂变幅下落过程中,调整第一液压动力装置2的排量,以控制起重臂的变幅下降速度。
本发明的上述实施例,在起重臂和/或重物下降过程,采用变量泵调节重物下降速度,取代了目前的采用平衡阀调速的方式,即采用容积调速取代节流调速,降低了系统的发热量,延长了液压元件的使用寿命,并且可以减小起重机散热系统功率。
图11为本发明一个实施例中第二液压动力装置回收扭矩调整方法的示意图。在图7-图10所述起重机作业能量回收利用方法中,在传动轴带动第二液压动力装置进行旋转,将传动轴的机械能转换为第二液压动力装置的机械能的过程中,所述方法还包括:
步骤801,起重机起重臂变幅下落过程中,实时获取第一液压动力装置2输出给分动箱3的负载扭矩Th
步骤802,获取第二液压动力装置4的最大回收扭矩Tx max
步骤803,判断Tx max是否小于Th。若Tx max小于Th,则执行步骤804;否则,若Tx max不小于Th,则执行步骤805。
步骤804,将第二液压动力装置4的排量调整到最大,使得第二液压动力装置4的回收扭矩Tx=Txmax,通过Tx和发动机7制动力矩来共同平衡Th,之后不再执行本实施例的其它步骤。即,这种情况下,本发明只能部分回收第一液压动力装置2的机械能(即部分回收变幅机构的变幅能量和/或卷扬机构的卷扬能量)。
步骤805,通过调整第二液压动力装置4的排量使得第二液压动力装置4的回收扭矩Tx=Th。即,这种情况下,本发明可以全部回收第一液压动力装置2的机械能(即全部回收变幅机构的变幅能量和/或卷扬机构的卷扬能量)。
本发明的上述实施例可以通过调整第二液压动力装置的排量,调整第二液压动力装置的回收扭矩,从而最大限度地回收变幅机构的变幅能量和/或卷扬机构的卷扬能量,从而更好地实现节能减排、降低系统发热量的目的。
优选的,图8所述的实施例可以由图3所示的第一力矩获取模块201、第二力矩获取模块202、第一识别模块203、第二排量调节模块204执行。
在本发明的一个实施例中,所述方法还可以包括:在蓄能器5的压力达到预定最大工作压力时,断开第二液压动力装置4与分动箱3的连通,完全依靠发动机7制动力矩来平衡Th
本发明上述实施例中,随着起升重物下落,能量回收的进行,蓄能器的压力不断增大,当蓄能器的压力达到蓄能器设定的最大工作压力时,断开第二液压动力装置4与分动箱3的连接,完全依靠发动机7制动力矩来平衡Th
在本发明的一个实施例中,所述方法还包括:在起重机进行上车操作时,蓄能器5释放存储的液压能,为起重机的液压执行机构提供驱动力。
在本发明的一个实施例中,所述液压执行机构可以包括变幅油缸、卷扬马达、回转马达等液压执行机构中的至少一个。
图12为本发明起重机作业能量回收利用方法第五实施例的示意图。与图7-图10任一实施例所述的方法相比,在起重机需要利用能量以驱动液压执行机构进行操作时,图12所述方法还包括:
步骤901,在起重机起重臂变幅起升且蓄能器有剩余能量时,第二液压动力装置将蓄能器释放的液压能转换为传动轴的机械能。
步骤902,主泵将传动轴的机械能转换为液压能,以驱动液压执行机构执行相应操作。
在本发明的一个实施例中,步骤902可以包括:主泵将传动 轴的机械能转换为液压能,以驱动变幅油缸实现起重臂的变幅起升。
在本发明的一个实施例中,所述方法还包括:在起重臂变幅起升过程中,调整主泵6的排量,以控制变幅起升速度。
在本发明的一个实施例中,步骤902可以包括:主泵将传动轴的机械能转换为液压能,以驱动卷扬马达实现重物的卷扬起升。
在本发明的一个实施例中,所述方法还包括:在吊重卷扬起升过程中,调整主泵6的排量,以控制重物起升速度。
图13为本发明一个实施例中第二液压动力装置驱动扭矩调整方法的示意图。在图12所示实施例的步骤901中,在第二液压动力装置将蓄能器释放的液压能转换为传动轴的机械能的过程中,所述方法还包括:
步骤1001,实时获取主泵6输出的负载扭矩Td
步骤1002,获取第二液压动力装置4可提供的最大驱动扭矩Txc max
步骤1003,判断Txc max是否小于Td。若Txc max小于Td,则执行步骤1004;否则,若Txc max不小于Td,则执行步骤1005。
步骤1004,若Txc max小于Td,则将第二液压动力装置4的排量调到最大,使得第二液压动力装置4提供的驱动扭矩Txc=Txcmax;同时触发第一开关和第二开关闭合,通过第二液压动力装置的驱动扭矩4Txc和发动机7的驱动力矩来共同驱动主泵6。
步骤1005,在本发明的一个实施例中,所述方法还包括:若Txc max不小于Td,则调整第二液压动力装置4的排量,使第二液压动力装置4提供的驱动扭矩Txc=Td;同时触发第一开关闭合、第二开关断开。即,完全依靠第二液压动力装置来驱动主泵。
本发明的上述实施例可以通过调整第二液压动力装置的排量,调整第二液压动力装置的驱动扭矩,从而最大限度地利用蓄能器存储的能量,从而更好地实现节能减排、降低系统发热量的 目的。
在本发明的一个实施例中,在图12所示的步骤901之后,所述方法还可以包括:当蓄能器5的压力达到预定最低工作压力时,断开第二液压动力装置4与分动箱3的连通,完全依靠发动机7驱动主泵6。
在本发明的一个实施例中,随着起升重物上升,蓄能器中的高压油液被放出,蓄能器的压力不断减小,当蓄能器的压力高于蓄能器充气压力的某一设定值时,当蓄能器的压力高于蓄能器的充气1MPa时,将第二液压动力装置的排量控制信号置零,电磁铁3Y断电,第二插装阀16断开,第一开关17断开,完全依靠发动机提供动力。
优选的,图8所述的实施例可以由图3所示的第三力矩获取模块301、第四力矩获取模块302、第二识别模块303、第二排量调节模块204来执行。
在上面所描述的第一力矩获取模块201、第二力矩获取模块202、第一识别模块203、第二排量调节模块204、第三力矩获取模块301、第四力矩获取模块302、第二识别模块303等功能单元实现为用于执行本申请所描述功能的通用处理器、可编程逻辑控制器(PLC)、数字信号处理器(DSP)、专用集成电路(ASIC)、现场可编程门阵列(FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件或者其任意适当组合。
在上面所描述的第一力矩获取模块201、第二力矩获取模块202、第一识别模块203、第二排量调节模块204、第三力矩获取模块301、第四力矩获取模块302、第二识别模块303等功能单元的功能可以由起重机控制器实现。
至此,已经详细描述了本发明。为了避免遮蔽本发明的构思,没有描述本领域所公知的一些细节。本领域技术人员根据上面的描述,完全可以明白如何实施这里公开的技术方案。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
本发明的描述是为了示例和描述起见而给出的,而并不是无遗漏的或者将本发明限于所公开的形式。很多修改和变化对于本领域的普通技术人员而言是显然的。选择和描述实施例是为了更好说明本发明的原理和实际应用,并且使本领域的普通技术人员能够理解本发明从而设计适于特定用途的带有各种修改的各种实施例。

Claims (17)

  1. 一种起重机作业能量回收利用方法,其特征在于,包括:
    第一液压动力装置将液压执行机构产生的液压能转换为传动轴的机械能;
    传动轴带动第二液压动力装置进行旋转,将传动轴的机械能转换为第二液压动力装置的机械能;
    第二液压动力装置给蓄能器充入压力油,将第二液压动力装置的机械能转换成液压能储存起来。
  2. 根据权利要求1所述的方法,其特征在于,液压执行机构包括变幅油缸;
    第一液压动力装置将液压执行机构产生的液压能转换为传动轴的机械能的步骤包括:
    变幅油缸将起重机起重臂变幅下落过程中产生的重力势能转换为液压能;
    第一液压动力装置将变幅油缸产生的液压能转换为传动轴的机械能。
  3. 根据权利要求1或2所述的方法,其特征在于,液压执行机构包括卷扬马达;
    第一液压动力装置将液压执行机构产生的液压能转换为传动轴的机械能的步骤包括:
    卷扬马达将起重机吊重下落过程中重物产生的重力势能转换为液压能;
    第一液压动力装置将卷扬马达产生的液压能转换为传动轴的机械能。
  4. 根据权利要求1所述的方法,其特征在于,在传动轴带动第二液压动力装置进行旋转,将传动轴的机械能转换为第二液压动力装置的机械能的过程中,还包括:
    实时获取第一液压动力装置输出给分动箱的负载扭矩Th,其中发动机和第二液压动力装置通过分动箱与第一液压动力装置连接;
    获取第二液压动力装置的最大回收扭矩Txmax
    判断Txmax是否小于Th
    若Txmax小于Th,则将第二液压动力装置的排量调整到最大,使得第二液压动力装置的回收扭矩Tx=Txmax,通过Tx和发动机制动力矩来共同平衡Th
    若Txmax不小于Th,则通过调整第二液压动力装置的排量使得第二液压动力装置的回收扭矩Tx=Th
  5. 根据权利要求4所述的方法,其特征在于,还包括:
    在起重机需要利用能量以驱动液压执行机构进行操作时,第二液压动力装置将蓄能器释放的液压能转换为传动轴的机械能;
    主泵将传动轴的机械能转换为液压能,以驱动液压执行机构执行相应操作。
  6. 根据权利要求5所述的方法,其特征在于,液压执行机构包括变幅油缸;
    主泵将传动轴的机械能转换为液压能,以驱动液压执行机构执行相应操作的步骤包括:
    主泵将传动轴的机械能转换为液压能,以驱动变幅油缸实现起重臂的变幅起升。
  7. 根据权利要求5或6所述的方法,其特征在于,液压执行 机构包括卷扬马达;
    主泵将传动轴的机械能转换为液压能,以驱动液压执行机构执行相应操作的步骤包括:
    主泵将传动轴的机械能转换为液压能,以驱动卷扬马达实现重物的卷扬起升。
  8. 根据权利要求7所述的方法,其特征在于,在第二液压动力装置将蓄能器释放的液压能转换为传动轴的机械能的过程中,还包括:
    实时获取主泵输出的负载扭矩Td
    获取第二液压动力装置可提供的最大驱动扭矩Txcmax
    判断Txcmax是否小于Td
    若Txcmax小于Td,则将第二液压动力装置的排量调到最大,使得第二液压动力装置提供的驱动扭矩Txc=Txcmax,通过Txc和发动机驱动力矩来共同驱动主泵;
    若Txcmax不小于Td,则调整第二液压动力装置的排量,使第二液压动力装置提供的驱动扭矩Txc=Td
  9. 一种起重机作业能量回收利用系统,其特征在于,包括:液压执行机构、第一液压动力装置、传动轴、第二液压动力装置和蓄能器,其中:
    液压执行机构,用于产生液压能;
    第一液压动力装置,用于将液压执行机构产生的液压能转换为传动轴的机械能;
    传动轴,用于带动第二液压动力装置进行旋转,将传动轴的机械能转换为第二液压动力装置的机械能;
    第二液压动力装置,用于通过给蓄能器充入压力油,将第二液压动力装置的机械能转换成液压能储存起来;
    蓄能器,用于存储液压能。
  10. 根据权利要求9所述的系统,其特征在于,液压执行机构包括变幅油缸,其中:
    变幅油缸,用于将起重机起重臂变幅下落过程中产生的重力势能转换为液压能;
    第一液压动力装置具体用于将变幅油缸产生的液压能转换为传动轴的机械能。
  11. 根据权利要求9或10所述的系统,其特征在于,液压执行机构包括卷扬马达,其中:
    卷扬马达,用于将起重机吊重下落过程中重物产生的重力势能转换为液压能;
    第一液压动力装置具体用于将卷扬马达产生的液压能转换为传动轴的机械能。
  12. 根据权利要求9所述的系统,其特征在于,发动机和第二液压动力装置通过分动箱与第一液压动力装置连接;
    所述系统还包括第一力矩获取模块、第二力矩获取模块、第一识别模块和第二排量调节模块,其中:
    第一力矩获取模块,用于在传动轴带动第二液压动力装置进行旋转,将传动轴的机械能转换为第二液压动力装置的机械能的过程中,实时获取第一液压动力装置输出给分动箱的负载扭矩Th
    第二力矩获取模块,用于在第二液压动力装置将蓄能器释放的液压能转换为传动轴的机械能的过程中,获取第二液压动力装置的最大回收扭矩Txmax
    第一识别模块,用于判断Txmax是否小于Th
    第二排量调节模块,用于根据第一识别模块的判断结果,在 Txmax小于Th时,将第二液压动力装置的排量调整到最大,使得第二液压动力装置的回收扭矩Tx=Txmax,通过Tx和发动机制动力矩来共同平衡Th;在Txmax不小于Th时,通过调整第二液压动力装置的排量使得第二液压动力装置的回收扭矩Tx=Th
  13. 根据权利要求12所述的系统,其特征在于,还包括主泵,其中:
    蓄能器还用于在起重机需要利用能量以驱动液压执行机构进行操作时,释放存储的液压能;
    第二液压动力装置还用于将蓄能器释放的液压能转换为传动轴的机械能;
    主泵,用于将传动轴的机械能转换为液压能,以驱动液压执行机构执行相应操作。
  14. 根据权利要求13所述的系统,其特征在于,液压执行机构包括变幅油缸,其中:
    主泵具体用于将传动轴的机械能转换为液压能,并将液压能提供给变幅油缸;
    变幅油缸,用于利用主泵提供的液压能实现起重臂的变幅起升。
  15. 根据权利要求13或14所述的系统,其特征在于,液压执行机构包括卷扬马达,其中:
    主泵具体用于将传动轴的机械能转换为液压能,并将液压能提供给卷扬马达;
    卷扬马达,用于利用主泵提供的液压能实现重物的卷扬起升。
  16. 根据权利要求15所述的系统,其特征在于,还包括第三 力矩获取模块、第四力矩获取模块、第二识别模块,其中:
    第三力矩获取模块,用于在第二液压动力装置将蓄能器释放的液压能转换为传动轴的机械能的过程中,实时获取主泵输出的负载扭矩Td
    第四力矩获取模块,用于在第二液压动力装置将蓄能器释放的液压能转换为传动轴的机械能的过程中,获取第二液压动力装置可提供的最大驱动扭矩Txcmax
    第二识别模块,用于判断Txcmax是否小于Td
    第二排量调节模块还用于根据第二识别模块的判断结果,在Txcmax小于Td时,将第二液压动力装置的排量调到最大,使得第二液压动力装置提供的驱动扭矩Txc=Txcmax,通过Txc和发动机驱动力矩来共同驱动主泵;在Txcmax不小于Td时,调整第二液压动力装置的排量,使第二液压动力装置提供的驱动扭矩Txc=Td
  17. 一种起重机,其特征在于,包括如权利要求9至16中任意一项所述的起重机作业能量回收利用系统。
PCT/CN2015/070962 2014-11-24 2015-01-19 起重机作业能量回收利用方法和系统、及起重机 WO2016082321A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP15862593.9A EP3225855B1 (en) 2014-11-24 2015-01-19 Method and system for recovering and utilizing duty energy of crane, and crane
US15/528,649 US10359063B2 (en) 2014-11-24 2015-01-19 Method and system for recovering and utilizing operating energy of crane, and crane
BR112017010895A BR112017010895A2 (pt) 2014-11-24 2015-01-19 método e sistema para recuperar e utilizar energia de operação de guindaste, e guindaste

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201410680034.XA CN105156412B (zh) 2014-11-24 2014-11-24 起重机变幅能量回收与再利用方法和系统、及起重机
CN201410683575.8A CN105443514B (zh) 2014-11-24 2014-11-24 卷扬能量回收与再利用复合控制方法和系统、及起重机
CN201410683575.8 2014-11-24
CN201410680034.X 2014-11-24

Publications (1)

Publication Number Publication Date
WO2016082321A1 true WO2016082321A1 (zh) 2016-06-02

Family

ID=56073433

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/070962 WO2016082321A1 (zh) 2014-11-24 2015-01-19 起重机作业能量回收利用方法和系统、及起重机

Country Status (4)

Country Link
US (1) US10359063B2 (zh)
EP (1) EP3225855B1 (zh)
BR (1) BR112017010895A2 (zh)
WO (1) WO2016082321A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3135625B1 (de) * 2015-08-25 2018-05-23 XCMG European Research Center GmbH Hydrauliksteuerung für einen hydraulisch betätigten hebbaren und absenkbaren haken eines krans
EP3839269A1 (en) * 2019-12-20 2021-06-23 Dana Motion Systems Italia S.R.L. Hydraulic system with energy recovery
CN112408200B (zh) * 2020-10-10 2022-11-22 武汉船用机械有限责任公司 起重机的升降系统
EP4086216B1 (en) 2021-05-04 2023-11-29 Hiab AB An energy efficient crane, and a method of the crane
EP4086215B1 (en) 2021-05-04 2023-11-15 Hiab AB An energy efficient crane, and a method of the crane
CN113958474B (zh) * 2021-09-30 2023-06-13 三一汽车起重机械有限公司 能量消耗方法、装置及作业机械
CN114873461B (zh) * 2022-06-24 2024-05-07 尤洛卡(山东)矿业科技有限公司 一种单轨吊机车起吊梁液压控制系统及其工作方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006322578A (ja) * 2005-05-20 2006-11-30 Shin Caterpillar Mitsubishi Ltd 流体圧回路
CN101846121A (zh) * 2010-06-01 2010-09-29 湖南山河智能机械股份有限公司 液压执行机构的能量回收系统
CN201679802U (zh) * 2010-06-01 2010-12-22 湖南山河智能机械股份有限公司 一种液压执行机构的能量回收系统
US20120160796A1 (en) * 2010-12-22 2012-06-28 Terex Demag Gmbh Crane and method for operating a crane using recovery of energy from crane operations as a secondary energy source
CN103896156A (zh) * 2014-04-24 2014-07-02 徐州重型机械有限公司 一种起重机用节能液压系统及起重机

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4686828A (en) * 1984-01-13 1987-08-18 Dynamic Hydraulic Systems, Inc. Hydraulically operated clamshell device
JP3881915B2 (ja) 2002-03-13 2007-02-14 株式会社タダノ 油圧アクチュエータの駆動装置
CN100535454C (zh) 2007-06-25 2009-09-02 哈尔滨工业大学 二次调节流量耦联液压蓄能器储能静液传动装置
DE102007046696A1 (de) 2007-09-28 2009-04-09 Liebherr-Werk Nenzing Gmbh Hydraulisches Antriebssystem
CN101230871A (zh) 2008-02-27 2008-07-30 哈尔滨工业大学 飞轮储能型二次调节流量耦联系统
US8037678B2 (en) * 2009-09-11 2011-10-18 Sustainx, Inc. Energy storage and generation systems and methods using coupled cylinder assemblies
JP2009292553A (ja) 2008-06-03 2009-12-17 Toyota Industries Corp フォークリフトの荷役回生装置、及びフォークリフト
CN102241379B (zh) 2010-05-13 2014-05-07 济南谨恒节能技术有限公司 节能型行走式液压搬运机械
GB2485570A (en) 2010-11-18 2012-05-23 Nat Oilwell Varco Norway As Heave compensating system
JP2014524549A (ja) * 2011-08-12 2014-09-22 イートン コーポレーション 慣性エネルギーを回生するための方法及び装置
CN102606549B (zh) 2012-03-23 2014-09-10 三一集团有限公司 液压节能系统及液压起重设备
JP6120499B2 (ja) 2012-07-13 2017-04-26 Kybエンジニアリングアンドサービス株式会社 荷台昇降機構の制御装置
CN103671365B (zh) 2012-09-23 2015-12-02 山重建机有限公司 一种能量回收和再利用装置
CN103470544A (zh) 2013-09-16 2013-12-25 愚公机械股份有限公司 液压起重机节能起升系统
CN103626057B (zh) 2013-12-16 2016-03-23 三一汽车起重机械有限公司 起重机及其液压系统
KR101815411B1 (ko) * 2014-05-16 2018-01-04 히다찌 겐끼 가부시키가이샤 작업 기계의 압유 에너지 회생 장치
CN203833526U (zh) 2014-05-19 2014-09-17 福田雷沃国际重工股份有限公司 一种旋挖钻机主卷扬下放能量回收再利用系统
JP6205339B2 (ja) * 2014-08-01 2017-09-27 株式会社神戸製鋼所 油圧駆動装置
JP6270704B2 (ja) * 2014-12-10 2018-01-31 川崎重工業株式会社 建設機械の油圧駆動システム
EP3358201B1 (en) * 2015-09-29 2023-02-15 Hitachi Construction Machinery Co., Ltd. Pressure oil energy regeneration device of work machine
US10145396B2 (en) * 2016-12-15 2018-12-04 Caterpillar Inc. Energy recovery system and method for hydraulic tool

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006322578A (ja) * 2005-05-20 2006-11-30 Shin Caterpillar Mitsubishi Ltd 流体圧回路
CN101846121A (zh) * 2010-06-01 2010-09-29 湖南山河智能机械股份有限公司 液压执行机构的能量回收系统
CN201679802U (zh) * 2010-06-01 2010-12-22 湖南山河智能机械股份有限公司 一种液压执行机构的能量回收系统
US20120160796A1 (en) * 2010-12-22 2012-06-28 Terex Demag Gmbh Crane and method for operating a crane using recovery of energy from crane operations as a secondary energy source
CN103896156A (zh) * 2014-04-24 2014-07-02 徐州重型机械有限公司 一种起重机用节能液压系统及起重机

Also Published As

Publication number Publication date
EP3225855B1 (en) 2021-08-25
EP3225855A1 (en) 2017-10-04
EP3225855A4 (en) 2018-09-05
US10359063B2 (en) 2019-07-23
US20170268541A1 (en) 2017-09-21
BR112017010895A2 (pt) 2017-12-26

Similar Documents

Publication Publication Date Title
WO2016082321A1 (zh) 起重机作业能量回收利用方法和系统、及起重机
CN102575690B (zh) 工程机械的液压系统
EP2524995B1 (en) Drive controller of operating machine
CA2799104C (en) An apparatus and method for recuperation of hydraulic energy
US9951795B2 (en) Integration of swing energy recovery and engine anti-idling systems
JP4942699B2 (ja) ハイブリッド建設機械の制御装置
CN204400467U (zh) 起重机卷扬能量回收与再利用系统及起重机
CN102491173B (zh) 起重机以及起重机用闭式卷扬负功率控制系统
JP2021532040A (ja) 荷役車両用の油圧システム
CA2296156C (en) Control and hydraulic system for a liftcrane
CN113511601B (zh) 回转液压系统、工程机械及回转控制方法
CN102431899B (zh) 超起卷扬控制系统及应用该系统的起重机
CN105156412A (zh) 起重机变幅能量回收与再利用方法和系统、及起重机
JP2008169621A (ja) 旋回電動油圧モータ装置
CN204327665U (zh) 起重机变幅能量回收与再利用系统及起重机
CN105438988A (zh) 起重机卷扬能量回收与再利用方法和系统、及起重机
CN115744699A (zh) 双动力卷扬系统、控制方法和桩工机械
JP5646310B2 (ja) 油圧アクチュエータの駆動装置
CN213679680U (zh) 基于多液压马达-蓄能器组合电动叉车的能量回收系统
CN114873461A (zh) 一种单轨吊机车起吊梁液压控制系统及其工作方法
CN108087362A (zh) 开放式液压流体流动回路设备和控制液压回路的方法
CN105443514A (zh) 卷扬能量回收与再利用复合控制方法和系统、及起重机
CN103287999A (zh) 工程机械及其卷扬变幅液压系统、作业方法
CN109019339B (zh) 一种轮胎吊液压控制阀总成及分工况控制方法
CN217051416U (zh) 一种绞车液压系统及绞车控制系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15862593

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15528649

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017010895

Country of ref document: BR

REEP Request for entry into the european phase

Ref document number: 2015862593

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 112017010895

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20170524