WO2016080795A1 - 두 개의 벡터로부터 발현된 cas9 단백질을 이용한 유전자 발현 조절 방법 - Google Patents

두 개의 벡터로부터 발현된 cas9 단백질을 이용한 유전자 발현 조절 방법 Download PDF

Info

Publication number
WO2016080795A1
WO2016080795A1 PCT/KR2015/012503 KR2015012503W WO2016080795A1 WO 2016080795 A1 WO2016080795 A1 WO 2016080795A1 KR 2015012503 W KR2015012503 W KR 2015012503W WO 2016080795 A1 WO2016080795 A1 WO 2016080795A1
Authority
WO
WIPO (PCT)
Prior art keywords
domain
cas9 protein
cas9
vector
cell
Prior art date
Application number
PCT/KR2015/012503
Other languages
English (en)
French (fr)
Inventor
김진수
구태영
Original Assignee
기초과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 기초과학연구원 filed Critical 기초과학연구원
Priority to CN201580069646.8A priority Critical patent/CN107109422B/zh
Priority to US15/527,837 priority patent/US10858662B2/en
Priority to JP2017527208A priority patent/JP2017534294A/ja
Priority to EP15861198.8A priority patent/EP3222728B1/en
Publication of WO2016080795A1 publication Critical patent/WO2016080795A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • C12N15/746Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for lactic acid bacteria (Streptococcus; Lactococcus; Lactobacillus; Pediococcus; Enterococcus; Leuconostoc; Propionibacterium; Bifidobacterium; Sporolactobacillus)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/635Externally inducible repressor mediated regulation of gene expression, e.g. tetR inducible by tetracyline
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • C12N15/864Parvoviral vectors, e.g. parvovirus, densovirus
    • C12N15/8645Adeno-associated virus
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • C12N15/867Retroviral vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/16Hydrolases (3) acting on ester bonds (3.1)
    • C12N9/22Ribonucleases RNAses, DNAses
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Definitions

  • the present invention provides a method of controlling genes, comprising introducing into a cell a recombinant vector expressing a first domain comprising a N-terminus of a Cas9 protein and a recombinant vector expressing a second domain comprising a C-terminus, respectively.
  • the present invention relates to a composition comprising the recombinant vector, a kit for controlling gene expression, and a method for intracellular production of Cas9 protein.
  • the present invention further relates to a composition
  • a composition comprising a viral vector packaging the first domain and a transformed cell into which the viral vector packaging the second domain is introduced and a virus produced therefrom.
  • restriction enzymes are one of the most important tools of current molecular biology research.
  • various attempts have been made in response to the recognition of new DNA sequences and the need for a "rare cutter", that is, a restriction enzyme capable of recognizing and cutting 9 bp or more DNA, as a restriction enzyme useful for handling genome-sized DNA.
  • meganucleases and zinc-finger nucleases are tools that can cause endogenous gene mutations, insertion of target genes, and chromosomal rearrangements in cells and organisms.
  • artificial nucleases such as TAL-effector nucleases (TALENs) have been developed and can be usefully used in fields such as biotechnology and medicine as powerful and versatile tools in genetic engineering.
  • RGEN RNA-guided Engineered Nuclease
  • CRISPR / Cas system known as the immune system of microorganisms
  • Such artificial nucleases recognize specific target sequences in cells and cause DNA double strand breaks (DSBs). Induced intracellular DSB can be repaired by two intrinsic DNA repair mechanisms of cells, distinguished by homologous recombination (HR) and nonhomologous end joining (NHEJ), wherein target specific mutations and Genetic modifications will occur.
  • HR homologous recombination
  • NHEJ nonhomologous end joining
  • HR homologous recombination
  • NHEJ nonhomologous end joining
  • the Cas9 protein of the CRISPR / Cas system is a useful tool for designing genetic modifications in eukaryotic cells and organisms
  • the size of the gene encoding it is large so that it can be inserted into the viral vector and delivered into the cell. Due to limitations, there is a problem in that virus production efficiency and delivery efficiency into cells are inferior. Thus, there is a need for research to express Cas9 proteins through viral vectors.
  • the present inventors earnestly endeavored to overcome the packaging limitations of the viral vector and develop a system capable of expressing the Cas9 protein using the viral vector.
  • the Cas9 protein is divided into two domains that can be packaged into the viral vector.
  • the present invention was introduced by introducing the recombinant vector into a cell to confirm that each domain was fused to exhibit an Indel (insertion or deletion) effect on the target DNA on the genome. Completed.
  • An object of the present invention includes introducing into a cell a recombinant vector expressing a first domain comprising the N-terminus of the Cas9 protein and a recombinant vector expressing a second domain comprising the C-terminus of the Cas9 protein, respectively.
  • the present invention provides a composition comprising a recombinant vector expressing a first domain comprising the N-terminus of the Cas9 protein of the present invention and a recombinant vector expressing a second domain comprising the C-terminus of the Cas9 protein.
  • Still another object of the present invention is to provide a kit for controlling gene expression comprising the composition.
  • Still another object of the present invention is to provide a transgenic cell into which a viral vector packaging a first domain comprising the N-terminus of the Cas9 protein and a viral vector packaging a second domain comprising the C-terminus of the Cas9 protein are introduced. It is.
  • Still another object of the present invention is to provide a composition comprising the culture solution or cell lysate of the cells.
  • Another object of the present invention is to introduce into the cell a recombinant vector expressing a first domain comprising the N-terminus of the Cas9 protein and a recombinant vector expressing a second domain comprising the C-terminus of the Cas9 protein, respectively. It provides a method for intracellular production of Cas9 protein comprising.
  • the present invention can improve the target specificity of the Cas9 protein, and also can be applied to the viral vector Cas9 protein, it can be usefully used for gene expression control using the Cas9 protein.
  • FIG. 1 is a recombinant vector comprising a first domain and a second domain of the Cas9 protein, respectively, and then introduced into a cell, whereby each of these proteins is fused in the cell and the intact Cas9 protein (named Split-Cas9). It shows a schematic diagram forming.
  • FIG. 2 shows the results confirmed by the T7E1 analysis that the Split-Cas9 protein is formed in the cell to work with sgRNA to induce Indel in all of the HPRT, DMD and CCR5 genes.
  • Figure 3 shows the results of analyzing the mutation efficiency of the target gene of the Split-Cas9 protein through the next-generation sequencing.
  • Figure 4 shows the results of analyzing the specificity of the target gene of the Split-Cas9 protein. Genetic mutation efficiency at on-target sites and at off-target sites in (a) Hela cells and (b) Hep1 cells is analyzed by next-generation sequencing. . Specificity was analyzed by the ratio of specificity ratios divided by the variance efficiencies of the target positions by the respective variability efficiencies at the four non-target positions.
  • Figure 5 shows the results of confirming the vector production and function of split-Cas9.
  • (a) and (b) Adenovirus vector construction that delivers split-Cas9 is modeled.
  • a viral vector was packaged into a vector by inserting a U6 promoter, an sgRNA, an EFS promoter, and a first domain sequentially into an adenovirus vector.
  • adeno-associated viruses were prepared that could include the second domain or package the second domain, U6 promoter, and sgRNA simultaneously.
  • One embodiment of the present invention for achieving the above object is a recombinant vector expressing a first domain comprising the N-terminal of the Cas9 protein and a recombinant vector expressing a second domain comprising the C-terminal of the Cas9 protein, respectively Provided is a method of controlling gene expression, comprising the step of introducing into a cell.
  • the term "gene expression control” refers to any action that increases or decreases the expression of a gene.
  • the gene expression regulation may be performed by the Cas9 protein.
  • any method for increasing or decreasing gene expression using Cas9 protein may be included without limitation in the scope of the present invention.
  • the regulation of gene expression may mean genome correction, increased gene expression or reduced gene expression.
  • genomic editing is a technique capable of introducing mutations targeted to genome sequences of animal and plant cells, including human cells, and knocks out or knocks down a specific gene. -in) or introducing a mutation into a non-coding DNA sequence that does not produce a protein.
  • genome correction allows deletion, duplication, inversion, replacement or rearrangement of DNA on the genome.
  • “deleted” refers to a mutation caused by missing part of a chromosome or part of a base on a DNA.
  • “duplicate” means that two or more of the same genes are present in the genome.
  • inversion refers to a portion of the genome that is placed upside down as compared to the original genome.
  • replacement means that one nucleotide sequence is replaced with each other (i.e., replacement of informational sequences), and that only one polynucleotide is chemically or physically replaced with another polynucleotide. It does not mean.
  • “rearrangement” means a structural change that causes a change in the position and sequence of genes on a chromosome, and includes translocation factors such as transposons or the like. In addition, it may include the conversion of genetic information by base rearrangement in the DNA molecule.
  • Cas9 protein is a major protein component of the CRISPR / Cas9 system, complexes with crRNA (CRISPR RNA) and tracrRNA (trans-activating crRNA) to form an activated endonuclease or nickase.
  • Cas9 protein or gene information can be obtained from a known database such as GenBank of the National Center for Biotechnology Information (NCBI), but is not limited thereto.
  • the Cas9 protein may be encoded by the nucleotide sequence of SEQ ID NO: 1 or SEQ ID NO: 2, but is not limited thereto, as long as it can have target specific nuclease activity with guide RNA, all of the present invention May be included in the scope.
  • Cas9 protein may also be linked to a protein transduction domain.
  • the protein transfer domain may be, but is not limited to, poly-arginine or HIV derived TAT protein.
  • the Cas9 protein may be appropriately linked to additional domains by those skilled in the art depending on the purpose.
  • the Cas9 protein may include both wild type Cas9 as well as variants of Cas9 such as inactivated Cas9 (dCas9), or Cas9 nickases.
  • the inactivated Cas9 may be an RNA-guided FokI Nuclease (RFN) linking a FokI nuclease domain to dCas9, or a transcription activator or repressor domain to dCas9,
  • the Cas9 nickase may be, but is not limited to, D10A Cas9 or H840A Cas9.
  • the Cas9 protein of the present invention is not limited in its origin either.
  • the Cas9 protein is Streptococcus pyogenes , Francisella novicea novicida ), Streptococcus thermophilus , Legionella pneumophila ( Legionella) pneumophila ), Listeria innocua ( Listeria innocua ), or Streptococcus mutans .
  • the Cas9 protein may be one that cannot be effectively expressed in a viral vector due to its size, but is not limited thereto.
  • a vector capable of expressing a part of Cas9 was prepared to express Cas9 in a viral vector. That is, the Cas9 protein was divided into sizes that can be packaged in a viral vector and expressed in each vector.
  • the first domain and the second domain of the Cas9 protein refer to a part of the Cas9 protein, and are expressed in a separate vector so that they are fused in a cell.
  • the Cas9 protein produced in the above manner was named "split-Cas9" (FIG. 1).
  • the split-Cas9 of the present invention is technically characterized in that the Cas9 protein, which is large in size and has not been packaged through a viral vector, is divided into packageable sizes and each of them is expressed through the vector so that its function is not lost in the cell. .
  • first domain refers to a domain comprising the N-terminal region of the original Cas9 protein when expressing a portion of Cas9 cleaved for this purpose
  • second domain refers to that of the original Cas9 protein.
  • first domain and the second domain are fused to constitute the entire original Cas9 protein, the size of one domain is obtained by subtracting the size of the other domain from the size of the entire Cas9 protein.
  • the first domain was introduced into the plasmid vector and the viral vector with 2.1 kbp and the second domain as 1.9 kbp.
  • split-Cas9 was Indel at the target position. It was confirmed that can be induced.
  • first domain and the second domain may be prepared by adding a nucleotide having a specific function by those skilled in the art according to the purpose, for example, a nuclear localization signal (NLS), a tag sequence, or a splice And may further comprise a splicing donor / splicing acceptor sequence and the like.
  • NLS nuclear localization signal
  • present invention is not limited thereto, but the first domain may be encoded by the nucleotide of SEQ ID NO: 3, and the second domain may be encoded by the nucleotide of SEQ ID NO: 5.
  • vector refers to a gene construct that is an expression vector capable of expressing a protein of interest in a suitable host cell, and which contains essential regulatory elements operably linked to express the gene insert.
  • operably linked refers to a functional linkage of a nucleic acid expression control sequence and a nucleic acid sequence encoding a protein of interest to perform a general function.
  • a sequence encoding a DNA first domain or a DNA second domain of a nuclease of the present invention is operably linked to a promoter such that expression of the coding sequence is under the influence or control of this promoter.
  • Two nucleic acid sequences (a sequence encoding a DNA first domain or a DNA second domain and a promoter region sequence at the 5 'end of the sequence) are operably linked when the coding sequence is transcribed by inducing promoter action, and Linkage properties between the two sequences do not induce frame-shift mutations and are operably linked when expression control sequences do not inhibit the ability to govern expression of each of these domains.
  • Operable linkage with recombinant vectors can be made using genetic recombination techniques well known in the art, and site-specific DNA cleavage and ligation can employ enzymes commonly known in the art.
  • the vector of the present invention may include a signal sequence or leader sequence for membrane targeting or secretion in addition to expression control elements such as promoters, operators, initiation codons, termination codons, polyadenylation signals, enhancers, and may be variously prepared according to the purpose. Can be.
  • the promoter of the vector may be constitutive or inducible.
  • the expression vector may include a selectable marker for selecting a host cell containing the vector, and in the case of a replicable expression vector, may include a replication origin. Vectors can self replicate or integrate into host DNA.
  • the vector may include a plasmid vector, a cosmid vector or a viral vector, and specifically, may be a viral vector.
  • Viral vectors are retroviruses such as Human immunodeficiency virus HIV (Murine leukemia virus) Avian sarcoma / leukosis (ASLV), Spleen necrosis virus (SNV), Rous sarcoma virus (RSV) and Mouse mammary (MMTV).
  • tumor viruses such as, but not limited to, vectors derived from Adenovirus, Adeno-associated virus, Herpes simplex virus, and the like.
  • introducing into a cell may use any method known in the art, and may introduce foreign DNA into the cell by transfection or transduction.
  • Transfections include sugars such as calcium phosphate-DNA coprecipitation, DEAE-dextran-mediated transfection, polybrene-mediated transfection, electroshock, microinjection, liposome fusion, lipofectamine and protoplast fusion. It can be carried out by various methods known in the art.
  • each recombinant vector encoding the first domain and the second domain of the Cas9 protein was prepared (FIG. 1), and then introduced into the cell, thereby expressing each domain in the cell by integrating the intact cells. It was found to function as a Cas9 protein in form. Specifically, the Cas9 protein formed by fusion after expression of each half domain from recombinant vectors expressing each half domain of the first domain and the second domain acts together with the sgRNA to generate Indel (insertion or deletion) in all target genes. Induction was confirmed (FIGS. 2 and 3).
  • split-Cas9 was expressed using an adeno-associated virus vector, and that Indel was effectively induced as a result of infecting the produced virus with cells (FIG. 5).
  • Indel was effectively induced as a result of infecting the produced virus with cells
  • sequence specific guide RNA when introduced into the cell, sequence specific guide RNA may be introduced. More specifically, the introduction of each vector, guide RNA may be performed simultaneously, sequentially or in reverse order.
  • guide RNA may consist of two RNAs, crRNA (CRISPR RNA) and tracrRNA (trans-activating crRNA). Or sgRNA (single-chain RNA) made by fusion of crRNA and major portions of tracrRNA.
  • the guide RNA may be dual RNA including crRNA and tracrRNA.
  • RGEN known as third generation gene shears, may consist of Cas protein and dual RNA, or may consist of Cas protein and sgRNA.
  • the guide RNA may comprise one or more additional nucleotides at the 5 'end of the crRNA of the sgRNA or dualRNA and may be delivered into the cell in the form of RNA or DNA encoding said RNA.
  • compositions comprising a recombinant vector expressing a first domain comprising the N-terminus of the Cas9 protein and a recombinant vector expressing a second domain comprising the C-terminus of the Cas9 protein do.
  • the composition may be introduced into cells to regulate expression of a desired gene.
  • the composition may further comprise a sequence specific guide RNA.
  • Cas9 protein and recombinant vector are as described above.
  • a recombinant vector expressing the first domain and a recombinant vector expressing the second domain are introduced into a cell.
  • This is for more efficient delivery and expression of Cas9 protein having a size difficult to package in the vector, it is possible to more easily express the Cas9 protein in the cell using the composition comprising the respective recombinant vector.
  • the composition may include, without limitation, any material necessary for introducing the composition for the medium or the recombinant vector capable of maintaining the cell into the cell.
  • kits for controlling gene expression comprising a recombinant vector expressing a first domain and a recombinant vector expressing a second domain.
  • the kit may further comprise a sequence specific guide RNA.
  • the kit is not only a composition for a medium for maintaining a substance or a cell that allows expression or promotion of a recombinant vector, but also a composition for facilitating the production of a recombinant vector or introduction into a cell, a recombinant vector. Instructions for the preparation or introduction into cells.
  • Another embodiment of the present invention provides a transformed cell into which a viral vector packaging the first domain of the Cas9 protein and a viral vector packaging the second domain are introduced.
  • transformed cell refers to a cell into which a polynucleotide of interest is introduced into a host cell. Transformation can be accomplished by the "introduction” method described above and can be carried out by selecting appropriate standard techniques depending on the host cell as is known in the art.
  • the “host cell” refers to a eukaryotic or prokaryotic cell into which one or more DNAs or vectors are introduced, and should be understood to refer not only to a particular subject cell but also to its progeny or potential progeny. Even if the progeny are not completely identical to the parent cell by mutation or environmental influence, they can still be included within the scope of the term as used herein.
  • the transgenic cells are introduced with a viral vector encoding each half domain, from which a virus packaging the nucleotides encoding the respective domains of Cas9 can be obtained.
  • the virus may be obtained from the culture solution of the transformed cells or the lysate of the cells.
  • the cells may include prokaryotic cells such as E. coli , yeast, fungi, protozoa, higher plants, eukaryotic cells such as insects, mammalian cells such as CHO, HeLa, HEK293, and COS-1, and the like. It doesn't happen.
  • somatic cells such as somatic cells, germ cells, induced pluripotent stem cells, adult stem cells.
  • the somatic cell refers to all cells except germ cells obtained from the body of a child, adult as well as embryo, and may include genetically modified cells derived from them.
  • the adult stem cells include cord blood stem cells, placenta stem cells, as well as all adult stem cells obtained from the body of human embryos, newborns and adults. Include extraembryonic stem cells such as witch stem cells, amniotic fluid stem cells, amniotic epithelial cells, and genetically modified cells derived therefrom. Can be.
  • the cells may be cultured cells (in vitro), grafts and primary cultures (in vitro and ex vivo) and cells in vivo, without any limitation as the cells commonly used in the art.
  • compositions comprising a culture solution or cell lysate of the transformed cells.
  • Transformed cells, their cultures and lysates are as described above. Since the composition comprises a virus packaging a nucleotide encoding each domain, it can be used for gene expression control.
  • the present invention overcomes the limitations of vector packaging for the Cas9 protein and produces a recombinant vector expressing each of the two cleaved sites of the Cas9 protein independently and delivers it into the cell to express the efficiency of delivery of the Cas9 protein into the cell. Is increased. Therefore, by using the principles of the present invention developed by the present inventors can be applied regardless of the type of cell, the type of Cas9 protein to increase the efficiency of delivery into the cell can efficiently regulate gene expression.
  • Each half domain allowed independent expression to be induced by the CMV promoter.
  • the stop codon was inserted into the cleavage 3'-end site of the first domain through PCR cloning to complete expression, and the start codon was inserted into the cleavage 5'-end site of the second domain. It was produced so that the expression can be started by connecting.
  • HA tag and NLS are sequentially inserted below the start codon of the 5-end region of the first domain and between 3'end and stop codon of the second domain.
  • the NLS site and the HA tag were sequentially inserted into the nucleus, and the protein expression level was measured using the HA antibody.
  • Example 2 a recombinant vector expressing each half domain sgRNA Introduction into cells and target Gene Knockout (knock out) check
  • Recombinant vectors expressing each half domain prepared in Example 1 and plasmids expressing sgRNA (single guide RNA) for each of CCR5, HPRT and DMD genes were transfected using lipofectamin. Delivery in Hela cells.
  • the target sequence that can be used for allelic knockout of the CCR5 gene was a conserved sequence common to all humans, and the 5'- TGACATCAATTATTATACATCGG -3 'sequence (SEQ ID NO: 11) was targeted.
  • 5'-GCCCCCCTTGAGCACACAGAGGG-3 'sequence (SEQ ID NO: 12) present in HPRT exon 3 was targeted as a target sequence that can be used for allele knockout of the HPRT gene.
  • the 5'-TCCTACTCAGACTGTTACTCTGG-3 'sequence (SEQ ID NO: 13) present in DMD exon 51 was targeted.
  • genomic DNA was extracted from Hela cells, target sequence sites in HPRT, DMD, and CCR5 genes were amplified by PCR.
  • T7E1 T7 endonuclease I mutation detection assay
  • FIG. 2 T7E1 assay was performed by a method known in the art.
  • genomic DNA was isolated using the DNeasy Blood & Tissue Kit (G-DEX IIc Genomic extraction kit) according to the manufacturer's instructions.
  • each half domain is fused after expression to form a Cas9 protein (named Split-Cas9) together with the sgRNA.
  • Indel was induced in all of the HPRT, DMD and CCR5 genes.
  • the target sequence region was amplified by PCR, and then analyzed by the next generation assay.
  • 27.1% of HPRT gene, 23.75% of DMD gene and 20.27% of CCR5 gene showed Indel effect.
  • each half domain can be fused after normal expression to form an intact Cas9 protein, thereby exhibiting an Indel effect on the target gene together with the sgRNA. I could see that.
  • the first and second domains are independently introduced into cells for fusion of Cas9, which is less efficient for delivery into cells due to the size of the Cas9 expression cassette beyond the size that can be packaged in the viral vector, and then fused after each expression. The ability to function solves the problem of packaging Cas9 proteins into vectors.
  • each of the first domain and the second domain was cloned into an Adeno-associated virus vector plasmid (FIGS. 5A and 5B).
  • a splicing donor was linked to the C-terminal region of the first domain and a splicing acceptor was linked to the N-terminal region of the second domain.
  • Viruses packaging each half domain were produced, harvested, delivered intracellularly, and analyzed for cleavage of the target sequence site.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Plant Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Medicinal Chemistry (AREA)
  • Virology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Peptides Or Proteins (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

본 발명은 Cas9 단백질의 N-말단을 포함하는 제1 도메인을 발현하는 재조합 벡터 및 C-말단을 포함하는 제2 도메인을 발현하는 재조합 벡터를 각각 세포 내에 도입하는 단계를 포함하는, 유전자 조절 방법, 상기 재조합 벡터를 포함하는 조성물, 유전자 발현 조절용 키트, 및 Cas9 단백질의 세포 내 제조 방법에 관한 것이다. 또한, 본 발명은 상기 제1 도메인을 패키징하는 바이러스 벡터 및 제2 도메인을 패키징하는 바이러스 벡터가 도입된 형질전환 세포 및 이로부터 생산된 바이러스를 포함하는 조성물에 관한 것이다.

Description

두 개의 벡터로부터 발현된 CAS9 단백질을 이용한 유전자 발현 조절 방법
본 발명은 Cas9 단백질의 N-말단을 포함하는 제1 도메인을 발현하는 재조합 벡터 및 C-말단을 포함하는 제2 도메인을 발현하는 재조합 벡터를 각각 세포 내에 도입하는 단계를 포함하는, 유전자 조절 방법, 상기 재조합 벡터를 포함하는 조성물, 유전자 발현 조절용 키트, 및 Cas9 단백질의 세포 내 제조 방법에 관한 것이다.
또한, 본 발명은 상기 제1 도메인을 패키징하는 바이러스 벡터 및 제2 도메인을 패키징하는 바이러스 벡터가 도입된 형질전환 세포 및 이로부터 생산된 바이러스를 포함하는 조성물에 관한 것이다.
현재 유전공학에서 널리 유용하게 쓰이고 있는 도구로서 제한효소는 현재 분자생물학 연구의 가장 중요한 도구의 하나이다. 그러나 게놈 크기의 DNA를 다루기에 유용한 제한효소로서 새로운 DNA 염기서열의 인지와 "rare cutter", 즉 9bp 이상의 DNA를 인지하고 자를 수 있는 제한효소의 필요성이 대두됨에 따라 여러 가지 다양한 시도가 있어왔다.
그 일환으로, 세포 및 생물 내에서 내생 유전자의 변이, 타겟 유전자의 삽입, 및 염색체 재배열을 일으킬 수 있는 도구로서 메가뉴클레아제 (meganuclease), 징크-핑거 뉴클레아제 (zinc-finger nucleases, ZFNs) 및 TAL-이펙터 뉴클레아제 (TAL-effector nucleases, TALENs)와 같은 인공 뉴클레아제가 개발되었으며, 유전 공학에서 강력하고 다재다능한 도구로서 생명공학, 의약 등의 분야에서 유용히 사용될 수 있다. 최근 미생물의 면역체계로 알려진 CRISPR/Cas 시스템을 이용한 3세대 유전자 가위, RGEN (RNA-guided Engineered Nuclease)이 개발되면서 생명공학 분야의 모든 분야에서 새로운 발견과 혁신을 가져오고 있다 (Kim, H. etc., Nat Rev Genet, 2014, 15: 321-334).
상기와 같은 인공 뉴클레아제는 세포 내에서 특이적인 표적 염기 서열을 인식하여 DNA 이중가닥 손상 (DNA double strand breaks, DSBs)을 일으킨다. 유발된 세포 내 DSB는 상동 재조합 (homologous recombination, HR)과 비상동 말단 접합 (nonhomologous end joining, NHEJ)으로 구별되는 세포의 두 가지 내재적 DNA 수선 기작에 의해 복구될 수 있는데, 이때 표적 특이적인 돌연변이 및 유전자 변형이 일어나게 된다. 진핵세포 및 생물체 내에서 상동의 DNA 제공자가 부재할 때는, 뉴클레아제에 의해 유도된 DSB는 HR에 비해 월등하게 NHEJ 기전으로 복구될 수 있다. HR에 의한 변이는 HR 제공자 DNA에 있는 서열이 정확히 복사되어 일어나지만, NHEJ에 의한 변이는 무작위로 일어나게 된다. NHEJ은 오류 발생이 쉬운 (error-prone) 수리 기전이기 때문에 DSB가 일어난 부위에서 작은 크기의 삽입/결실 (insertion/deletion: indel 돌연변이)이 일어날 수 있으며, 이는 프레임-이동 (frame-shift) 돌연변이를 유발하여 유전자 변이를 일으킨다.
특히 CRISPR/Cas 시스템의 Cas9 단백질은 진핵세포 및 생물체 내 유전자 변형을 설계하는데 유용한 도구임에도 불구하고, 이를 코딩하는 유전자의 사이즈가 크기 때문에 바이러스 벡터 내에 삽입하여 세포 내로 전달하고자 하는 경우 바이러스 벡터의 패키징의 한계에 의해 바이러스 생산 효율 및 세포 내로의 전달 효율이 떨어지는 문제가 있다. 이에, Cas9 단백질을 바이러스 벡터를 통해 발현시키기 위한 연구가 필요한 실정이다.
본 발명자들은 바이러스 벡터의 패키징 한계를 극복하고, 바이러스 벡터를 이용하여 Cas9 단백질을 발현시킬 수 있는 시스템을 개발하기 위하여 예의 노력한 결과, Cas9 단백질을 바이러스 벡터에 패키징 될 수 있는 크기의 두 도메인으로 나눈 뒤, 상기 각각의 도메인을 발현시킬 수 있는 재조합 벡터를 제작하였으며, 상기 재조합 벡터를 세포 내에 도입하여 각 도메인이 융합되어 유전체 상의 표적 DNA에 대해 Indel (insertion or deletion) 효과를 나타내는 것을 확인함으로써 본 발명을 완성하였다.
본 발명의 목적은 Cas9 단백질의 N-말단을 포함하는 제1 도메인을 발현하는 재조합 벡터 및 Cas9 단백질의 C-말단을 포함하는 제2 도메인을 발현시키는 재조합 벡터를 각각 세포 내에 도입하는 단계를 포함하는, 유전자 발현 조절 방법을 제공하는 것이다.
본 발명의 Cas9 단백질의 N-말단을 포함하는 제1 도메인을 발현하는 재조합 벡터 및 Cas9 단백질의 C-말단을 포함하는 제2 도메인을 발현하는 재조합 벡터를 포함하는 조성물을 제공하는 것이다.
본 발명의 또 다른 목적은 상기 조성물을 포함하는 유전자 발현 조절용 키트를 제공하는 것이다.
본 발명의 또 다른 목적은 Cas9 단백질의 N-말단을 포함하는 제1 도메인을 패키징하는 바이러스 벡터 및 Cas9 단백질의 C-말단을 포함하는 제2 도메인을 패키징하는 바이러스 벡터가 도입된 형질전환 세포를 제공하는 것이다.
본 발명의 또 다른 목적은 상기 세포의 배양액 또는 세포 용해물을 포함하는 조성물을 제공하는 것이다.
본 발명의 또 다른 목적은 Cas9 단백질의 N-말단을 포함하는 제1 도메인을 발현하는 재조합 벡터 및 Cas9 단백질의 C-말단을 포함하는 제2 도메인을 발현하는 재조합 벡터를 각각 세포 내에 도입하는 단계를 포함하는, Cas9 단백질의 세포 내 제조 방법을 제공하는 것이다.
본 발명은 Cas9 단백질의 표적 특이성을 향상시킬 수 있으며, 또한 Cas9 단백질을 바이러스 벡터에도 적용할 수 있도록 하므로, Cas9 단백질을 이용한 유전자 발현 조절에 유용하게 사용될 수 있다.
도 1은 Cas9 단백질의 제1 도메인과 제2 도메인을 각각 포함하는 재조합 벡터를 제작한 후 세포 내에 도입시켜 발현시킴으로써, 이들 각각의 단백질이 세포 내에서 융합하여 온전한 Cas9 단백질(Split-Cas9으로 명명)을 형성하는 모식도를 나타낸 것이다.
도 2는 세포 내에서 Split-Cas9 단백질이 형성되어 sgRNA와 함께 작용하여 HPRT, DMD 및 CCR5 유전자 모두에 Indel을 유도하는 것을 T7E1 분석을 통해 확인한 결과를 나타낸 것이다. 1) Split-Cas9 + sgRNA, 2) 제2 도메인 + sgRNA, 3) 제1 도메인 + sgRNA, 4) 세포만.
도 3은 Split-Cas9 단백질의 표적 유전자에 대한 변이 효율을 next-generation 시퀀싱을 통해 분석한 결과를 나타낸 것이다.
도 4는 Split-Cas9 단백질의 표적 유전자에 대한 특이성을 분석한 결과를나타낸 것이다. (a) Hela 세포 및 (b) Hep1 세포에서 표적 위치 (on-target site)와 각각의 비표적 위치 (off-target site)에서의 유전자변이 효율을 next-generation 시퀀싱을 통해 분석한 결과를 나타낸 것이다. 특이성은 표적 위치의 변이효율을 4 개의 비표적 위치에서의 각각의 변이효율로 나눈 비율 (specificity ratio) 로 분석하였다.
도 5는 split-Cas9의 벡터 제작 및 기능을 확인한 결과를 나타낸 것이다. (a) 및 (b) split-Cas9을 전달하는 아데노부속바이러스 벡터 제작을 모식화한것이다. 아데노부속바이러스 벡터 내에 U6 프로모터, sgRNA, EFS 프로모터, 제1 도메인이 순차적으로 삽입되어 한 벡터 내에 패키징하는 바이러스벡터를 제작하였다. 또한 제2 도메인을 포함하거나 제2 도메인과 U6 프로모터, sgRNA를 동시에 패키징할 수 있는 아데노부속바이러스를 제작하였다. (c) 아데노부속바이러스 벡터 내에 U6 프로모터, sgRNA, EFS 프로모터, 제1 도메인이 패키징되어 있는 바이러스와 제2 도메인을 패키징하는 바이러스를 각각 10, 50, 100 MOI (multiplicity of infectivity)로 Hela 세포에 동시 감염시킨 후 5 일, 7 일, 10 일 후에 DMD 유전자에 변이를 유도하는 것을 next-generation 시퀀싱을 통해 분석한 결과를 나타낸 것이다.
상기 목적을 달성하기 위한 본 발명의 일 구현예는 Cas9 단백질의 N-말단을 포함하는 제1 도메인을 발현하는 재조합 벡터 및 Cas9 단백질의 C-말단을 포함하는 제2 도메인을 발현하는 재조합 벡터를 각각 세포 내에 도입하는 단계를 포함하는, 유전자 발현 조절 방법을 제공한다.
본 발명에서 용어, "유전자 발현 조절"은 유전자의 발현을 증가시키거나 감소시키는 모든 행위를 말한다. 특히 본 발명의 목적상, 상기 유전자 발현 조절은 Cas9 단백질에 의해 수행되는 것일 수 있다. 구체적으로, Cas9 단백질을 이용하여 유전자 발현을 증가 또는 감소시키는 모든 방법이 본 발명의 범위에 제한 없이 포함될 수 있다. 예컨대, 상기 유전자 발현 조절은 유전체 교정, 유전자 발현 증가 또는 유전자 발현 감소를 의미할 수 있다.
본 발명에서 용어, "유전체 교정 (genome editing)"은 인간세포를 비롯한 동식물 세포의 유전체 염기서열에 표적화된 돌연변이를 도입할 수 있는 기술로서, 특정 유전자를 낙아웃 (knock-out) 또는 낙인 (knock-in)하거나, 단백질을 생성하지 않는 비-코딩 DNA 서열에 변이를 도입하는 것을 말한다. 또한, 유전체 교정을 통해 유전체 상의 DNA를 결실, 중복, 역위, 교체 또는 재배열시킬 수 있다.
본 발명에서, "결실"이란, 염색체의 일부 또는 DNA 상 염기의 일부가 누락되어 일어나는 돌연변이를 말한다.
본 발명에서, "중복"이란, 게놈 내에 같은 유전자가 2개 또는 그 이상 존재하는 것을 말한다.
본 발명에서, "역위"는 게놈의 일부가 원래의 게놈과 비교할 때 거꾸로 배치된 것을 말한다.
본 발명에서, "교체"는 하나의 뉴클레오티드 서열이 서로 교체되는 것(즉, 정보를 지닌 서열의 교체)를 의미하며, 반드시 하나의 폴리뉴클레오티드가 다른 폴리뉴클레티드로 화학적 또는 물리적으로 교체되는 것만을 의미하는 것은아니다.
본 발명에서, "재배열"이란 염색체 상의 유전자의 위치 및 순서의 변화를 일으키는 구조적 변화를 의미하며, 트랜스포존 등과 같이 전이인자가 삽입되는 것도 포함된다. 아울러, DNA 분자 내에서 염기 재배열에 의한 유전 정보의 변환을 포함할 수 있다.
본 발명에서, "Cas9 단백질”은 CRISPR/Cas9 시스템의 주요 단백질 구성 요소로, crRNA(CRISPR RNA) 및 tracrRNA(trans-activating crRNA)와 복합체를 형성하여 활성화된 엔도뉴클레아제 또는 nickase를 형성한다.
Cas9 단백질 또는 유전자 정보는 NCBI(National Center for Biotechnology Information)의 GenBank와 같은 공지의 데이터 베이스에서 얻을 수 있으나, 이에 제한되지 않는다. 예를 들어, 상기 Cas9 단백질은 서열번호 1 또는 서열번호 2의 뉴클레오티드 서열로 코딩되는 것일 수 있으나, 이에 제한되는 것은 아니며 가이드 RNA와 함께 표적 특이적 뉴클레아제 활성을 가질 수 있는 것이라면 모두 본 발명의 범위에 포함될 수 있다. 또한, Cas9 단백질은 단백질 전달 도메인(protein transduction domain)과 연결될 수 있다. 상기 단백질 전달 도메인은 폴리-아르기닌 또는 HIV 유래의 TAT 단백질일 수 있으나, 이에 제한되지 않는다. 나아가, 상기 Cas9 단백질은 그 목적에 따라 당업자에 의해 추가적인 도메인이 적절하게 연결될 수 있다.
또한, 상기 Cas9 단백질은 야생형 Cas9 뿐만 아니라, 불활성화된 Cas9 (dCas9), 또는 Cas9 니케이즈 (nickase)와 같은 Cas9의 변이체를 모두 포함할 수 있다. 상기 불활성화된 Cas9은 dCas9에 FokI 뉴클레아제 도메인을 연결한 RFN (RNA-guided FokI Nuclease), 또는 dCas9에 전사활성인자 (transcription activator) 또는 억제자 도메인 (repressor domain)을 연결한 것일 수 있고, 상기 Cas9 니케이즈는 D10A Cas9 또는 H840A Cas9일 수 있으나, 이에 제한되는 것은 아니다.
본 발명의 Cas9 단백질은 그 유래에도 제한되지 않는다. 예컨대 상기 Cas9 단백질은 스트렙토코커스 피요제네스(Streptococcus pyogenes), 프란시셀라 노비시다 (Francisella novicida), 스트렙토코커스 써모필러스 (Streptococcus thermophilus), 레지오넬라 뉴모필라 (Legionella pneumophila), 리스테리아 이노큐아 (Listeria innocua), 또는 스트렙토코커스 뮤탄스 (Streptococcus mutans) 유래일 수 있다. 본 발명의 목적상 상기 Cas9 단백질은 사이즈가 커 바이러스 벡터에서 효과적으로 발현될 수 없는 것일 수 있으나, 이에 제한되는 것은 아니다.
본 발명에서는 Cas9을 바이러스 벡터에서 발현시키기 위해 Cas9의 일부를발현할 수 있는 벡터를 제작하였다. 즉, Cas9 단백질을 바이러스 벡터에서 패키징이 가능한 크기로 나누어 각각의 벡터에서 발현시키고자 하였다. 본 발명에서 Cas9 단백질의 제1 도메인 및 제2 도메인은 Cas9 단백질의 일부 부위를 지칭하는 것으로, 이들이 별도의 벡터에서 발현되어 세포 내에서 융합되도록 한 것이다. 본 발명에서는 상기와 같은 방식으로 제작된 Cas9 단백질을 "split-Cas9"이라 명명하였다 (도 1).
본 발명의 split-Cas9은 기존에 크기가 커서 바이러스 벡터 등을 통해 패키징되지 않던 Cas9 단백질을 패키징 가능한 크기로 나누어서 이들 각각을 벡터를 통해 발현시키더라도 세포 내에서 그 기능을 잃지 않는다는 것을 기술적 특징으로 한다.
본 발명에서 용어, "제1 도메인"은 상기와 같은 목적으로 절단된 Cas9의 일부분을 발현시키는 경우 원래 Cas9 단백질의 N-말단 부위를 포함하는 도메인을 말하며, "제2 도메인은" 원래 Cas9 단백질의 C-말단 부위를 포함하는 도메인을 말한다. 이들 각각의 도메인은 본 발명에서 "하프 도메인"이라는 용어와 혼용하여 사용하였다. 상기 각각의 도메인은 바이러스 벡터에서 발현시키기 위한 것이므로, 각각 바이러스 벡터에서 패키징될 수 있는 크기인 400 bp 내지 3.7 kbp의 크기일 수 있다. 구체적으로, 본 발명에서는 상기 제1 도메인 및 제2 도메인이 융합되어 원래의 Cas9 단백질 전체를 구성하므로, 하나의 도메인의 크기는 Cas9 단백질 전체의 크기에서 다른 하나의 도메인의 크기를 뺀 것이 된다.
본 발명의 구체적인 일 실시예에서는 제1 도메인을 2.1 kbp, 제2 도메인을 1.9 kbp로 하여 플라스미드 벡터 및 바이러스 벡터에 도입하였으며, 상기 각각의 벡터를 이용하여 세포 내에서 split-Cas9이 표적위치에서 Indel을 유도할 수 있음을 확인하였다.
또한, 상기 제1 도메인 및 제2 도메인은 그 목적에 따라 당업자에 의해 특정 기능을 가지는 뉴클레오티드를 추가하여 제조될 수 있으며, 예를 들어 NLS (nuclear localization signal), 태그 (tag) 서열, 또는 스플라이싱 도너 (splicing donor) / 스플라이싱 억셉터 (splicing acceptor) 서열 등을 추가로 포함할 수 있다. 나아가, 이에 제한되는 것은 아니나 상기 제1 도메인은 서열번호 3의 뉴클레오티드로 코딩되는 것일 수 있고, 제2 도메인은 서열번호 5의 뉴클레오티드로 코딩되는 것일 수 있다.
본 발명에서, "벡터"란, 적당한 숙주세포에서 목적 단백질을 발현할 수 있는 발현 벡터로서, 유전자 삽입물이 발현되도록 작동 가능하게 연결된 필수적인 조절 요소를 포함하는 유전자 작제물을 말한다.
본 발명에서 용어, "작동 가능하게 연결된(operably linked)"은 일반적 기능을 수행하도록 핵산 발현조절 서열과 목적하는 단백질을 코딩하는 핵산 서열이 기능적으로 연결(functional linkage)되어 있는 것을 말한다. 예를 들어, 본 발명의 뉴클레아제의 DNA 제1 도메인 또는 DNA 제2 도메인을 암호화하는 서열은 프로모터에 작동 가능하게 연결시킴으로써, 상기 암호화 서열의 발현은 이 프로모터의 영향 또는 조절 하에 있게 된다. 2 개의 핵산 서열(DNA 제1 도메인 또는 DNA 제2 도메인을 암호화하는 서열과 이 서열의 5' 말단의 프로모터 부위 서열)은 프로모터 작용이 유도됨으로써 상기 암호화 서열이 전사되는 경우 작동 가능하게 연결된 것이며, 상기 두 서열 사이의 연결 특성이 프레임 변경 돌연변이(frame-shift mutation)를 유도하지 않으며, 발현 조절서열이 상기 각 도메인의 발현을 지배하는 능력을 저해하지 않는 경우 작동 가능하게 연결되었다. 재조합 벡터와의 작동 가능한 연결은 당해 기술 분야에서 잘 알려진 유전자 재조합 기술을 이용하여 제조할 수 있으며, 부위-특이적 DNA 절단 및 연결은 당해 기술 분야에서 일반적으로 알려진 효소 등을 이용할 수 있다.
본 발명의 벡터는 프로모터, 오퍼레이터, 개시코돈, 종결코돈, 폴리아데닐화 시그널, 인핸서와 같은 발현 조절 요소 외에도 막 표적화 또는 분비를 위한 신호 서열 또는 리더 서열을 포함할 수 있으며, 목적에 따라 다양하게 제조될 수 있다. 벡터의 프로모터는 구성적 또는 유도성일 수 있다. 또한, 발현벡터는 벡터를 함유하는 숙주 세포를 선택하기 위한 선택성 마커를 포함할 수 있으며, 복제 가능한 발현벡터인 경우 복제 기원을 포함할 수 있다. 벡터는 자가 복제하거나 숙주 DNA에 통합될 수 있다. 상기 벡터는 플라스미드 벡터, 코즈미드 벡터 또는 바이러스 벡터 등을 포함할 수 있으며 구체적으로는 바이러스 벡터일 수 있다. 바이러스 벡터는 레트로바이러스(Retrovirus), 예를 들어 HIV(Human immunodeficiency virus) MLV(Murine leukemia virus) ASLV(Avian sarcoma/leukosis), SNV(Spleen necrosis virus), RSV(Rous sarcoma virus), MMTV(Mouse mammary tumor virus) 등, 아데노바이러스(Adenovirus), 아데노 부속 바이러스(Adeno-associated virus), 헤르페스 심플렉스 바이러스(Herpes simplex virus) 등에서 유래한 벡터를 포함하나, 이에 제한되지 않는다.
본 발명에서, "세포 내에 도입하는 단계"는 당업계에 알려진 공지의 어떠한 방법도 사용할 수 있으며, 형질감염 (transfection) 또는 형질도입 (transduction)에 의해 외래 DNA를 세포로 유입시킬 수도 있다. 형질감염은 칼슘포스페이트-DNA 공침전법, DEAE-덱스트란-매개 형질감염법, 폴리브렌-매개 형질감염법, 전기충격법, 미세주사법, 리포좀 융합법, 리포펙타민 및 원형질체 융합법 등의 당분야에 공지된 여러 방법에 의해 수행될 수 있다.
본 발명의 일 실시예에서는 Cas9 단백질 중 제1 도메인과 제2 도메인을 각각 코딩하는 각각의 재조합 벡터를 제작한 뒤 (도 1), 이를 세포 내로 도입시켜 발현된 각 도메인이 세포 내에서 융합하여 온전한 형태의 Cas9 단백질로서 기능하는 것을 확인하였다. 구체적으로, 각 하프 도메인인 제1 도메인 및 제2 도메인을 각각 발현하는 재조합 벡터들로부터 각 하프 도메인이 발현 후 융합하여 형성된 Cas9 단백질이 sgRNA와 함께 작용하여 타겟 유전자 모두에 Indel(insertion or deletion)을 유도하는 것을 확인하였다 (도 2 및 도 3).
본 발명의 다른 일 실시예에서는 Hela 세포 및 Hep1 세포에서 split-Cas9 단백질을 이용하여 표적 특이성을 확인한 결과 야생형 Cas9의 특이성에 비해 80 배 내지 220 배 수준으로 현저히 증가하는 것을 확인하였다 (도 4). 이는, 본 발명의 split-Cas9을 세포 내에서 발현시키는 경우 비표적 효과 (off-target)를 최소화하여 원하는 표적 위치에 작용하도록 할 수 있다는 것을 시사한다.
나아가, 본 발명의 다른 일 실시예에서는 split-Cas9을 아데노부속 바이러스 (adeno-associated virus) 벡터를 이용하여 발현시키고, 생산된 바이러스를 세포에 감염시킨 결과 유효하게 Indel을 유도하는 것을 확인하였다 (도 5). 이에 본 발명의 split-Cas9을 사용하여 바이러스 벡터를 통해서도 효과적으로 Cas9 단백질을 이용할 수 있음을 확인하였다.
구체적으로, 상기 세포 내 도입 시, 서열 특이적인 가이드 RNA (guide RNA)를 추가로 도입할 수 있다. 보다 구체적으로, 상기 각각의 벡터, 가이드 RNA의 도입은 동시, 순차 또는 역순으로 수행될 수 있다.
본 발명에서, "가이드 RNA(guide RNA)"는 두 개의 RNA, 즉, crRNA (CRISPR RNA) 및 tracrRNA(trans-activating crRNA)로 구성될 수 있다. 또는 crRNA 및 tracrRNA의 주요 부분의 융합으로 제조된 sgRNA (single-chain RNA)일 수 있다. 또한, 상기 가이드 RNA는 crRNA 및 tracrRNA를 포함하는 dual RNA 일 수 있다.
3세대 유전자 가위로 알려진 RGEN은 Cas 단백질 및 dual RNA로 구성되거나, Cas 단백질 및 sgRNA로 구성될 수 있다. 가이드 RNA는 sgRNA 또는 dualRNA의 crRNA의 5' 말단에 하나 이상의 추가의 뉴클레오티드를 포함할 수 있으며, RNA 또는 상기 RNA를 코딩하는 DNA형태로 세포 내로 전달될 수 있다.
본 발명의 또 다른 일 구현예는 Cas9 단백질의 N-말단을 포함하는 제1 도메인을 발현하는 재조합 벡터 및 Cas9 단백질의 C-말단을 포함하는 제2 도메인을 발현하는 재조합 벡터를 포함하는 조성물을 제공한다. 상기 조성물을 세포에 도입하여 원하는 유전자의 발현을 조절할 수 있다. 상기 조성물은 서열 특이적인 가이드 RNA를 추가로 포함할 수 있다. Cas9 단백질 및 재조합 벡터는 앞서 설명한 바와 같다.
본 발명 일 실시예에서는 상기 제1 도메인을 발현하는 재조합 벡터 및 제2 도메인를 발현하는 재조합 벡터를 세포 내에 도입하였다. 이는 벡터 내에 패키징이 어려운 크기를 가지는 Cas9 단백질을 보다 효율적으로 세포 내에 전달하여 발현시키기 위한 것으로, 상기 각각의 재조합 벡터를 포함하는 조성물을 이용하여 세포 내에서 Cas9 단백질을 보다 용이하게 발현시킬 수 있다. 상기 조성물은 제1 도메인을 발현하는 재조합 벡터 및 제2 도메인을 발현하는 재조합 벡터 외에도 세포를 유지할 수 있는 배지용 조성물 또는 재조합 벡터를 세포 내에 도입하는데 필요한 물질은 제한 없이 포함할 수 있다.
본 발명의 또 다른 일 구현예는 상기 Cas9 단백질의 제1 도메인을 발현하는 재조합 벡터 및 제2 도메인를 발현하는 재조합 벡터를 포함하는, 유전자 발현 조절용 키트를 제공한다. 구체적으로 상기 키트는 서열 특이적인 가이드 RNA를 추가로 포함하는 것일 수 있다.
또한, 상기 키트는 재조합 벡터의 발현이 이루어지거나 촉진될 수 있도록 하는 물질 또는 세포를 유지할 수 있도록 하는 배지용 조성물 뿐 아니라 재조합 벡터의 제작 또는 세포 내로의 도입 등을 용이하게 할 수 있는 조성물, 재조합 벡터의 제작 또는 세포 내로의 도입을 위한 설명서 등을 포함할 수 있다.
본 발명의 또 다른 일 구현예는 상기 Cas9 단백질의 제1 도메인을 패키징하는 바이러스 벡터 및 제2 도메인을 패키징하는 바이러스 벡터가 도입된 형질전환 세포를 제공한다.
본 발명에서 용어, "형질전환 세포"는 숙주세포에 목적으로 하는 폴리뉴클레오티드를 도입한 세포를 의미한다. 형질전환은 상기 "도입" 방법에 의해 이루어질 수 있고, 당 분야에서 공지된 바와 같이 숙주세포에 따라 적합한 표준 기술을 선택하여 수행할 수 있다.
상기 "숙주 세포"는 하나 이상의 DNA 또는 벡터가 도입되는 진핵 또는 원핵 세포를 가리키며, 특정 대상 세포만이 아니라 그 자손 혹은 잠재적 자손까지도 가리키는 것으로 이해되어야 한다. 돌연변이 혹은 환경적 영향에 의해 상기 자손이 부모 세포와 완전히 동일하지 않더라도, 본 명세서에서 사용된 바와 같이 상기 용어의 범주 내에서 여전히 포함될 수 있다. 본 발명에서 상기 형질전환 세포는 각각의 하프 도메인을 코딩하는 바이러스 벡터가 도입된 것으로, 이로부터 Cas9의 각각의 도메인을 코딩하는 뉴클레오티드를 패키징하는 바이러스를 수득할 수 있다. 구체적으로, 상기 형질전환 세포의 배양액 또는 상기 세포의 용해물로부터 상기 바이러스를 수득할 수 있다.
상기 세포는 E. coli와 같은 원핵세포, 이스트, 진균, 원생동물, 고등식물, 곤충 등의 진핵 세포, CHO, HeLa, HEK293, COS-1과 같은 포유류 세포 등이 포함될 수 있으며, 상기 예시에 제한되는 것은 아니다.
또한, 체세포, 생식세포, 역분화줄기세포 (induced pluripotent stem cells), 성체줄기세포 등 인간의 모든 세포에 적용할 수 있다.
상기 체세포는 배아 뿐 아니라 어린아이, 성인의 몸에서 얻을 수 있는 생식세포를 제외한 모든 세포를 말하며, 이들로부터 유래된 유전자변형 세포들까지 포함될 수 있다. 또한, 상기 성체줄기세포는 인간 배아 (embryo), 신생아 및 성인의 몸에서 얻을 수 있는 모든 성체줄기세포들 뿐만 아니라 제대혈유래 줄기세포 (cord blood stem cells), 태반유래 줄기세포 (placenta stem cells), 탯줄줄기세포 (Wharton's jelly stem cells), 양수줄기세포 (amniotic fluid stem cells), 양막상피줄기세포 (amniotic epithelial cells) 등 배외줄기세포 (extraembryonic stem cells)들과 이들로부터 파생된 유전자변형 세포들을 포함할 수 있다.
또한, 상기 세포는 배양된 세포 (시험관내), 이식편 및 1차 배양물 (시험관내 및 생체외) 및 생체 내 세포일 수도 있으며, 당업계에서 통상적으로 사용되는 세포로서 그 제한을 두지 않는다.
본 발명의 또 다른 일 구현예는 상기 형질전환 세포의 배양액 또는 세포 용해물을 포함하는 조성물을 제공한다. 형질전환 세포, 이의 배양액 및 용해물은 상기 설명한 바와 같다. 상기 조성물은 각각의 도메인을 코딩하는 뉴클레오티드를 패키징하는 바이러스를 포함하므로, 유전자 발현 조절 용도로 사용될 수 있다.
본 발명은 Cas9 단백질에 대한 벡터 패키징의 한계를 극복하고, 상기 Cas9 단백질의 절단된 두 개의 부위 각각을 독립적으로 발현시키는 재조합 벡터를 제작하여 이를 세포 내로 전달하여 발현시킴으로써 Cas9 단백질의 세포 내로의 전달 효율을 증가시킨 것이다. 따라서, 본 발명자들이 개발한 본 발명의 원리를 이용하여 세포의 종류, Cas9 단백질의 종류에 상관없이 적용하여 세포 내로의 전달 효율을 증가시켜 유전자 발현을 효율적으로 조절할 수 있다.
이하, 본 발명을 실시예에 의해 상세히 설명한다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명이 하기 실시예에 의해 한정되는 것은 아니다.
실시예 1. Cas9 단백질의 제1 도메인 및 제2 도메인 각각을 발현시키는 재조합 벡터의 제작
야생형 (Wild-type, WT) Cas9 (CRISPR associated protein 9) 단백질(서열번호 2)의 중간부위에 존재하는 disordered linker(서열번호 9;agcggccagggc; SGQG 아미노산을 인코팅하는 시퀀스)의 중간 부위를 절단하여 SG 아미노산과 QG 아미노산이 제1 도메인과 제2 도메인에 각각 연결된 두 개의 하프 도메인을 제작하였다.
각각의 하프 도메인은 CMV 프로모터에 의해 독립적인 발현이 유도될 수 있도록 하였다. 제1 도메인의 절단 3'-end 부위에 정지코돈 (Stop codon)을 PCR 클로닝을 통해 삽입함으로써 발현이 완료될 수 있도록 하였으며, 제2 도메인의 절단 5'-end 부위에 시작코돈 (Start codon)을 연결하여 발현이 시작될 수 있도록 제작하였다. 제 1 도메인의 5 -end 부위의 시작코돈 (start codon) 아래쪽으로 HA 태그 (tag)와 NLS (nuclear localization signal)이 순차적으로 삽입되어 있고 제 2 도메인의 3'end 와 정지코돈 (stop codon)사이에 NLS 부위와 HA 태그를 순차적으로 삽입하여 핵 내로의 전달 및 HA 항체로 단백질 발현량을 측정할 수 있게 제작하였다.
실시예 2. 각 하프 도메인을 발현시키는 재조합 벡터와 sgRNA의 세포 내로의 도입 및 타겟 유전자의 넉아웃 (knock out) 확인
상기 실시예 1에서 제작한 각 하프 도메인을 발현시키는 재조합 벡터들과 CCR5, HPRT 및 DMD 각 유전자에 대한 sgRNA(single guide RNA)를 발현하는 각각의 플라스미드들을 리포펙타민(lipofectamin)을 이용한 형질주입으로 Hela 세포 내에 전달하였다.
CCR5 유전자의 대립 유전자 넉아웃을 위해 사용할 수 있는 표적 서열 (target sequence)은 모든 인간에 공통적으로 존재하는 보존된 서열을 사용하였으며, CCR5 엑손 2에 존재하는 5'- TGACATCAATTATTATACATCGG -3' 서열(서열번호 11)을 표적으로 하였다.
또한, HPRT 유전자의 대립 유전자 넉아웃을 위해 사용할 수 있는 표적 서열로서, HPRT 엑손 3에 존재하는 5'- GCCCCCCTTGAGCACACAGAGGG -3'서열(서열번호 12)을 표적으로 하였다.
또한, DMD 유전자의 대립 유전자 넉아웃을 위해 사용할 수 있는 표적 서열로서, DMD 엑손 51에 존재하는 5'- TCCTACTCAGACTGTTACTCTGG-3'서열(서열번호 13)을 표적으로 하였다.
이후 Hela 세포로부터 유전체 DNA를 추출한 후 HPRT, DMD 및 CCR5 각 유전자 내의 표적 서열 부위를 PCR로 증폭시켰다.
이후 Indel (insertion or deletion)이 유도되었는지를 T7E1 (T7 endonuclease I) mutation detection assay로 분석을 하였으며, 아가로스 겔 분석 결과를 도 2에 나타내었다. T7E1 분석 (T7E1 assay)은 기존에 공지된 방법으로 수행하였다. 요약하면, 제조사의 지시에 따라 유전체 DNA를 DNeasy Blood & Tissue Kit (G-DEX IIc Genomic extraction kit)를 이용하여 분리하였다.
도 2에 나타낸 바와 같이, 세포 내에 도입된 실시예 1에서 제작한 각 하프 도메인을 발현하는 재조합 벡터들로부터 각 하프 도메인이 발현 후 융합되어 Cas9 단백질 (Split-Cas9으로 명명)을 형성함으로써 sgRNA와 함께 작용하여 HPRT, DMD 및 CCR5 유전자 모두에 Indel을 유도하는 것을 알 수 있었다.
실시예 3. Split- Cas9과 타겟유전자 특이적 sgRNA에 의한 넉아웃 효율 분석
타겟 유전자의 넉아웃 효율을 분석하기 위해 타겟 시퀀스 부위를 PCR로 증폭시킨 후 next generation assay로 표적 서열을 분석하였다. 분석 결과, HPRT 유전자에서 27.1 %, DMD 유전자에서 23.75 %, CCR5 유전자에서 20.27 % 의 Indel 효과가 나타났다. 대조군으로 제1 또는 제2 도메인에 대한 한 개의 하프 도메인만 세포 내에 주입하여 발현시켰으며, 이러한 경우에는 Indel이 나타나지 않았다 (도 3).
상기와 같은 결과로부터 Cas9에 대한 각 하프 도메인을 발현시키는 재조합벡터를 세포 내에 주입한 경우, 각 하프 도메인이 정상적으로 발현 후 융합되어 온전한 Cas9 단백질을 형성함으로써 sgRNA와 함께 표적 유전자에 대해 Indel 효과를 나타낼 수 있음을 알 수 있었다. 본 발명은 바이러스 벡터 내 패키징이 가능한 크기를 넘어서는 Cas9 발현 카세트의 크기로 인해 세포 내로의 전달 효율이 떨어지는 Cas9에 대해 제1 도메인 및 제2 도메인 각각을 독립적으로 세포 내에 도입하여 각각의 발현 후 융합되어 기능할 수 있도록 함으로써 Cas9 단백질의 벡터 내로의 패키징 문제를 해결한 것이다.
실시예 4. Split- Cas9의 표적 서열 부위 절단 특이성 분석
타겟 유전자의 비표적 (off-target) 효과를 분석하기 위해 세포에 split-Cas9과 야생형 Cas9 플라스미드를 각각 처리 후 3 일 뒤 HBB 유전자 표적 (on-target) 서열과 서열 불일치를 가지고 있는 유사 시퀀스 부위를 PCR로 증폭시킨후 next generation assay로 표적 서열을 분석하였다.
Hela 세포 내에서 표적 효율을 비표적 효율로 나누었을 때 split-Cas9에 의한 특이성이 야생형 Cas9의 특이성에 비해 최대 220 배 이상 증가하는 것을 확인하였다 (도 4a). 또한, Hep1 세포내에서 split-Cas9의 특이성이 야생형 Cas9에 비해 최대 80 배 증가하는 것을 확인하였다 (도 4b).
실시예 5. Split- Cas9을 발현하는 아데노부속바이러스에 의한 표적 서열 부위 절단 특이성 분석
Split-Cas9이 바이러스 벡터를 이용한 경우에도 효과적으로 작용하는가를 확인하기 위해, 제1 도메인 및 제2 도메인 각각을 아데노부속바이러스 (Adeno-associated virus) 벡터 플라스미드에 클로닝하였다 (도 5a 및 5b).
제1 도메인의 C-말단 부위에 스플라이싱 도너 (splicing donor)를 연결했고 제2 도메인의 N-말단 부위에 스플라이싱 억셉터 (splicing acceptor)를 연결했다. 각 하프 도메인을 패키징하는 바이러스를 생산하고, 이를 회수하여 세포 내 전달한 다음, 표적 서열 부위의 절단율을 분석했다.
그 결과, 각 하프 도메인이 융합된 후 full-length Cas9 단백질을 형성함으로써 유전자 절단 효과를 나타낼 수 있음을 알 수 있었다. Split-Cas9을 전달하는 아데노부속바이러스를 Hela 세포 내 10, 50, 100 MOI (multiplicity of infectivity)로 감염시킨 뒤 5, 7, 10 일 후 표적 서열 절단율을 분석한 결과 약 5 %의 표적 서열 절단 효과를 확인할 수 있었다 (도 5c). 이에, 본 발명의 split-Cas9이 바이러스 벡터를 이용할 경우에도 효과적으로 작동하는 것을 알 수 있었다.
이상의 설명으로부터, 본 발명이 속하는 기술분야의 당업자는 본 발명이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 이와 관련하여, 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로서 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허 청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.

Claims (25)

  1. Cas9 단백질의 N-말단을 포함하는 제1 도메인을 발현하는 재조합 벡터 및 Cas9 단백질의 C-말단을 포함하는 제2 도메인을 발현하는 재조합 벡터를 각각 세포 내에 도입하는 단계를 포함하는, 유전자 발현 조절 방법으로서,
    상기 Cas9 단백질은 상기 제1 도메인 및 제2 도메인으로 이루어지는 것인, 방법.
  2. 제1항에 있어서, 상기 유전자 발현 조절은 유전체 교정, 유전자 발현 증가 또는 유전자 발현 감소인 것인, 방법.
  3. 제2항에 있어서, 상기 유전체 교정은 유전자 낙인 (knock-in) 또는 낙아웃 (knock-out)인 것인, 방법.
  4. 제2항에 있어서, 상기 유전체 교정은 유전체 상에 표적화된 돌연변이를 도입하거나, 유전체 상의 DNA를 결실, 중복, 역위, 교체 또는 재배열시키는 것인, 방법.
  5. 제1항에 있어서, 상기 Cas9 단백질은 야생형 Cas9, 불활성화된 Cas9 (dCas9), 또는 Cas9 니케이즈 (nickase) 인 것인, 방법.
  6. 제5항에 있어서, 상기 불활성화된 Cas9은 dCas9에 FokI 뉴클레아제 도메인을 연결한 RFN (RNA-guided FokI Nuclease), 또는 dCas9에 전사활성인자 (transcription activator) 또는 억제자 도메인 (repressor domain)을 연결한 것인, 방법.
  7. 제5항에 있어서, 상기 Cas9 니케이즈는 D10A Cas9 또는 H840A Cas9인 것인, 방법.
  8. 제1항에 있어서, 상기 Cas9 단백질은 스트렙토코커스 피요제네스(Streptococcus pyogenes), 프란시셀라 노비시다 (Francisella novicida), 스트렙토코커스 써모필러스 (Streptococcus thermophilus), 레지오넬라 뉴모필라 (Legionella pneumophila), 리스테리아 이노큐아 (Listeria innocua), 및 스트렙토코커스 뮤탄스 (Streptococcus mutans)로 이루어진 군에서 선택되는 어느 하나의 유래인 것인, 방법.
  9. 제1항에 있어서, 상기 재조합 벡터는 플라스미드 벡터, 코즈미드 벡터, 또는 바이러스 벡터인 것인, 방법.
  10. 제9항에 있어서, 상기 바이러스 벡터는 레트로바이러스 (retrovirus) 벡터, 아데노바이러스 (adenovirus) 벡터, 아데노부속바이러스 (adeno-associated virus) 벡터, 및 헤르페스 심플렉스 바이러스 (herpes simplex virus) 벡터로 이루어진 군에서 선택되는 것인, 방법.
  11. 제1항에 있어서, 상기 도입된 각각의 벡터로부터 발현된 제1 도메인 및 제2 도메인이 융합되어, Cas9 단백질을 형성하는 단계를 추가로 포함하는 것인, 방법.
  12. 제1항에 있어서, 상기 제1 도메인 및 제2 도메인은 각각 400 bp (base pair) 내지 3.7 kbp (kilo base pair) 크기의 뉴클레오티드로 코딩되는 것인, 방법.
  13. 제1항에 있어서, 상기 제1 도메인 및 제2 도메인은 각각 NLS (nuclear localization signal), HA-태그, 스플라이싱 도너 (splicing donor) 서열, 스플라이싱 억셉터 (splicing acceptor) 서열 또는 이들의 조합을 추가로 포함하는 것인, 방법.
  14. 제1항에 있어서, 상기 제1 도메인은 서열번호 3의 뉴클레오티드로 코딩되는 것이고, 제2 도메인은 서열번호 5의 뉴클레오티드로 코딩되는 것인, 방법.
  15. 제1항에 있어서, 상기 세포 내에 도입하는 단계에서 서열 특이적인 가이드 RNA(guide RNA)를 추가로 도입하는 방법.
  16. 제15항에 있어서, 상기 각각의 벡터, 가이드 RNA의 도입은 동시, 순차 또는 역순으로 수행되는 것인 방법.
  17. Cas9 단백질의 N-말단을 포함하는 제1 도메인을 발현하는 재조합 벡터 및 Cas9 단백질의 C-말단을 포함하는 제2 도메인를 발현하는 재조합 벡터를 포함하는 조성물로서,
    상기 Cas9 단백질은 상기 제1 도메인 및 제2 도메인으로 이루어지는 것인, 조성물.
  18. 제17항에 있어서, 상기 조성물은 유전자 발현 조절용인 것인, 조성물.
  19. 제17항에 있어서, 상기 조성물은 서열 특이적인 가이드 RNA를 추가로 포함하는 것인, 조성물.
  20. 제17항의 조성물을 포함하는 유전자 발현 조절용 키트.
  21. 제20항에 있어서, 상기 키트는 서열 특이적인 가이드 RNA를 추가로 포함하는 것인, 키트.
  22. Cas9 단백질의 N-말단을 포함하는 제1 도메인을 패키징하는 바이러스 벡터 및 Cas9 단백질의 C-말단을 포함하는 제2 도메인을 패키징하는 바이러스 벡터가 도입된 형질전환 세포로서,
    상기 Cas9 단백질은 상기 제1 도메인 및 제2 도메인으로 이루어지는 것인, 세포.
  23. 제22항의 세포의 배양액 또는 세포 용해물을 포함하는, 조성물.
  24. 제23항에 있어서, 상기 조성물은 유전자 발현 조절용인 것인, 조성물.
  25. Cas9 단백질의 N-말단을 포함하는 제1 도메인을 발현하는 재조합 벡터 및 Cas9 단백질의 C-말단을 포함하는 제2 도메인을 발현하는 재조합 벡터를 각각 세포 내에 도입하는 단계를 포함하는, Cas9 단백질의 세포 내 제조 방법으로서,
    상기 Cas9 단백질은 상기 제1 도메인 및 제2 도메인으로 이루어지는 것인, 방법.
PCT/KR2015/012503 2014-11-19 2015-11-19 두 개의 벡터로부터 발현된 cas9 단백질을 이용한 유전자 발현 조절 방법 WO2016080795A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201580069646.8A CN107109422B (zh) 2014-11-19 2015-11-19 使用由两个载体表达的拆分的Cas9的基因组编辑
US15/527,837 US10858662B2 (en) 2014-11-19 2015-11-19 Genome editing with split Cas9 expressed from two vectors
JP2017527208A JP2017534294A (ja) 2014-11-19 2015-11-19 二つのベクターから発現されたcas9タンパク質を利用した遺伝子発現調節方法
EP15861198.8A EP3222728B1 (en) 2014-11-19 2015-11-19 Method for regulating gene expression using cas9 protein expressed from two vectors

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2014-0161809 2014-11-19
KR20140161809 2014-11-19

Publications (1)

Publication Number Publication Date
WO2016080795A1 true WO2016080795A1 (ko) 2016-05-26

Family

ID=56014239

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/012503 WO2016080795A1 (ko) 2014-11-19 2015-11-19 두 개의 벡터로부터 발현된 cas9 단백질을 이용한 유전자 발현 조절 방법

Country Status (6)

Country Link
US (1) US10858662B2 (ko)
EP (1) EP3222728B1 (ko)
JP (2) JP2017534294A (ko)
KR (2) KR20160059994A (ko)
CN (1) CN107109422B (ko)
WO (1) WO2016080795A1 (ko)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9999671B2 (en) 2013-09-06 2018-06-19 President And Fellows Of Harvard College Delivery of negatively charged proteins using cationic lipids
US10113163B2 (en) 2016-08-03 2018-10-30 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US10167457B2 (en) 2015-10-23 2019-01-01 President And Fellows Of Harvard College Nucleobase editors and uses thereof
US10323236B2 (en) 2011-07-22 2019-06-18 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity
US10465176B2 (en) 2013-12-12 2019-11-05 President And Fellows Of Harvard College Cas variants for gene editing
US10508298B2 (en) 2013-08-09 2019-12-17 President And Fellows Of Harvard College Methods for identifying a target site of a CAS9 nuclease
US10597679B2 (en) 2013-09-06 2020-03-24 President And Fellows Of Harvard College Switchable Cas9 nucleases and uses thereof
US10704062B2 (en) 2014-07-30 2020-07-07 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US10745677B2 (en) 2016-12-23 2020-08-18 President And Fellows Of Harvard College Editing of CCR5 receptor gene to protect against HIV infection
US10858639B2 (en) 2013-09-06 2020-12-08 President And Fellows Of Harvard College CAS9 variants and uses thereof
JP2021503279A (ja) * 2017-11-16 2021-02-12 アストラゼネカ・アクチエボラーグAstrazeneca Aktiebolag Cas9ベースノックイン方針の効力を改善するための組成物及び方法
US11046948B2 (en) 2013-08-22 2021-06-29 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
US11268082B2 (en) 2017-03-23 2022-03-08 President And Fellows Of Harvard College Nucleobase editors comprising nucleic acid programmable DNA binding proteins
US11306324B2 (en) 2016-10-14 2022-04-19 President And Fellows Of Harvard College AAV delivery of nucleobase editors
US11319532B2 (en) 2017-08-30 2022-05-03 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11447770B1 (en) 2019-03-19 2022-09-20 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11542496B2 (en) 2017-03-10 2023-01-03 President And Fellows Of Harvard College Cytosine to guanine base editor
US11542509B2 (en) 2016-08-24 2023-01-03 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
US11560566B2 (en) 2017-05-12 2023-01-24 President And Fellows Of Harvard College Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation
US11661590B2 (en) 2016-08-09 2023-05-30 President And Fellows Of Harvard College Programmable CAS9-recombinase fusion proteins and uses thereof
US11732274B2 (en) 2017-07-28 2023-08-22 President And Fellows Of Harvard College Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE)
US11795443B2 (en) 2017-10-16 2023-10-24 The Broad Institute, Inc. Uses of adenosine base editors
US11898179B2 (en) 2017-03-09 2024-02-13 President And Fellows Of Harvard College Suppression of pain by gene editing
US11912985B2 (en) 2020-05-08 2024-02-27 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11168141B2 (en) 2018-08-02 2021-11-09 Dyne Therapeutics, Inc. Muscle targeting complexes and uses thereof for treating dystrophinopathies
EP4053284A4 (en) * 2019-11-01 2024-03-06 Suzhou Qi Biodesign biotechnology Company Limited METHOD FOR TARGETED MODIFICATION OF PLANT GENOME SEQUENCE
WO2022114815A1 (ko) * 2020-11-25 2022-06-02 연세대학교 산학협력단 트랜스-스플라이싱 아데노-연관 바이러스 벡터를 포함하는 프라임에디팅용 조성물
WO2022169235A1 (ko) * 2021-02-04 2022-08-11 연세대학교 산학협력단 교정 효율이 개선된 프라임에디팅용 조성물

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070161067A1 (en) * 2006-01-10 2007-07-12 Gambhir Sanjiv S Split protein self complementing fragments, systems, and methods of use thereof
WO2014089290A1 (en) * 2012-12-06 2014-06-12 Sigma-Aldrich Co. Llc Crispr-based genome modification and regulation
US20140273234A1 (en) * 2012-12-12 2014-09-18 The Board Institute, Inc. Engineering and optimization of improved systems, methods and enzyme compositions for sequence manipulation
US20140295556A1 (en) * 2013-03-15 2014-10-02 The General Hospital Corporation Using RNA-guided FokI Nucleases (RFNs) to Increase Specificity for RNA-Guided Genome Editing

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9637739B2 (en) * 2012-03-20 2017-05-02 Vilnius University RNA-directed DNA cleavage by the Cas9-crRNA complex
AU2014273085B2 (en) 2013-05-29 2020-10-22 Cellectis New compact scaffold of Cas9 in the type II CRISPR system
JP2016538782A (ja) 2013-11-18 2016-12-08 インタラクティブ・インテリジェンス・インコーポレイテッド 通信のルーティングシステムおよび方法
KR101381368B1 (ko) 2013-12-12 2014-04-04 유상근 휴대용 가스레인지의 폭발 방지장치
JP2017503485A (ja) * 2013-12-12 2017-02-02 ザ・ブロード・インスティテュート・インコーポレイテッド 遺伝子産物の発現、構造情報、及び誘導性モジュラーcas酵素を変更するためのcrispr−cas系並びに方法
US20160304893A1 (en) * 2013-12-13 2016-10-20 Cellectis Cas9 nuclease platform for microalgae genome engineering

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070161067A1 (en) * 2006-01-10 2007-07-12 Gambhir Sanjiv S Split protein self complementing fragments, systems, and methods of use thereof
WO2014089290A1 (en) * 2012-12-06 2014-06-12 Sigma-Aldrich Co. Llc Crispr-based genome modification and regulation
US20140273234A1 (en) * 2012-12-12 2014-09-18 The Board Institute, Inc. Engineering and optimization of improved systems, methods and enzyme compositions for sequence manipulation
US20140295556A1 (en) * 2013-03-15 2014-10-02 The General Hospital Corporation Using RNA-guided FokI Nucleases (RFNs) to Increase Specificity for RNA-Guided Genome Editing

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HYUN, YOUBONG ET AL.: "Site-Directed Mutagenesis in Arabidopsis Thaliana using Dividing Tissue-Targeted RGEN of the CRISPR/Cas System to Generate Heritable Null Alleles", PLANTA, vol. 241, no. 1, 1 October 2014 (2014-10-01), pages 271 - 284, XP035417502 *

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12006520B2 (en) 2011-07-22 2024-06-11 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity
US10323236B2 (en) 2011-07-22 2019-06-18 President And Fellows Of Harvard College Evaluation and improvement of nuclease cleavage specificity
US11920181B2 (en) 2013-08-09 2024-03-05 President And Fellows Of Harvard College Nuclease profiling system
US10954548B2 (en) 2013-08-09 2021-03-23 President And Fellows Of Harvard College Nuclease profiling system
US10508298B2 (en) 2013-08-09 2019-12-17 President And Fellows Of Harvard College Methods for identifying a target site of a CAS9 nuclease
US11046948B2 (en) 2013-08-22 2021-06-29 President And Fellows Of Harvard College Engineered transcription activator-like effector (TALE) domains and uses thereof
US10597679B2 (en) 2013-09-06 2020-03-24 President And Fellows Of Harvard College Switchable Cas9 nucleases and uses thereof
US10682410B2 (en) 2013-09-06 2020-06-16 President And Fellows Of Harvard College Delivery system for functional nucleases
US9999671B2 (en) 2013-09-06 2018-06-19 President And Fellows Of Harvard College Delivery of negatively charged proteins using cationic lipids
US11299755B2 (en) 2013-09-06 2022-04-12 President And Fellows Of Harvard College Switchable CAS9 nucleases and uses thereof
US10858639B2 (en) 2013-09-06 2020-12-08 President And Fellows Of Harvard College CAS9 variants and uses thereof
US10912833B2 (en) 2013-09-06 2021-02-09 President And Fellows Of Harvard College Delivery of negatively charged proteins using cationic lipids
US11124782B2 (en) 2013-12-12 2021-09-21 President And Fellows Of Harvard College Cas variants for gene editing
US11053481B2 (en) 2013-12-12 2021-07-06 President And Fellows Of Harvard College Fusions of Cas9 domains and nucleic acid-editing domains
US10465176B2 (en) 2013-12-12 2019-11-05 President And Fellows Of Harvard College Cas variants for gene editing
US10704062B2 (en) 2014-07-30 2020-07-07 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US11578343B2 (en) 2014-07-30 2023-02-14 President And Fellows Of Harvard College CAS9 proteins including ligand-dependent inteins
US12043852B2 (en) 2015-10-23 2024-07-23 President And Fellows Of Harvard College Evolved Cas9 proteins for gene editing
US11214780B2 (en) 2015-10-23 2022-01-04 President And Fellows Of Harvard College Nucleobase editors and uses thereof
US10167457B2 (en) 2015-10-23 2019-01-01 President And Fellows Of Harvard College Nucleobase editors and uses thereof
US10113163B2 (en) 2016-08-03 2018-10-30 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US10947530B2 (en) 2016-08-03 2021-03-16 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US11702651B2 (en) 2016-08-03 2023-07-18 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US11999947B2 (en) 2016-08-03 2024-06-04 President And Fellows Of Harvard College Adenosine nucleobase editors and uses thereof
US11661590B2 (en) 2016-08-09 2023-05-30 President And Fellows Of Harvard College Programmable CAS9-recombinase fusion proteins and uses thereof
US11542509B2 (en) 2016-08-24 2023-01-03 President And Fellows Of Harvard College Incorporation of unnatural amino acids into proteins using base editing
US11306324B2 (en) 2016-10-14 2022-04-19 President And Fellows Of Harvard College AAV delivery of nucleobase editors
US10745677B2 (en) 2016-12-23 2020-08-18 President And Fellows Of Harvard College Editing of CCR5 receptor gene to protect against HIV infection
US11820969B2 (en) 2016-12-23 2023-11-21 President And Fellows Of Harvard College Editing of CCR2 receptor gene to protect against HIV infection
US11898179B2 (en) 2017-03-09 2024-02-13 President And Fellows Of Harvard College Suppression of pain by gene editing
US11542496B2 (en) 2017-03-10 2023-01-03 President And Fellows Of Harvard College Cytosine to guanine base editor
US11268082B2 (en) 2017-03-23 2022-03-08 President And Fellows Of Harvard College Nucleobase editors comprising nucleic acid programmable DNA binding proteins
US11560566B2 (en) 2017-05-12 2023-01-24 President And Fellows Of Harvard College Aptazyme-embedded guide RNAs for use with CRISPR-Cas9 in genome editing and transcriptional activation
US11732274B2 (en) 2017-07-28 2023-08-22 President And Fellows Of Harvard College Methods and compositions for evolving base editors using phage-assisted continuous evolution (PACE)
US11319532B2 (en) 2017-08-30 2022-05-03 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11932884B2 (en) 2017-08-30 2024-03-19 President And Fellows Of Harvard College High efficiency base editors comprising Gam
US11795443B2 (en) 2017-10-16 2023-10-24 The Broad Institute, Inc. Uses of adenosine base editors
JP7423520B2 (ja) 2017-11-16 2024-01-29 アストラゼネカ・アクチエボラーグ Cas9ベースノックイン方針の効力を改善するための組成物及び方法
JP2021503279A (ja) * 2017-11-16 2021-02-12 アストラゼネカ・アクチエボラーグAstrazeneca Aktiebolag Cas9ベースノックイン方針の効力を改善するための組成物及び方法
US11795452B2 (en) 2019-03-19 2023-10-24 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11643652B2 (en) 2019-03-19 2023-05-09 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11447770B1 (en) 2019-03-19 2022-09-20 The Broad Institute, Inc. Methods and compositions for prime editing nucleotide sequences
US11912985B2 (en) 2020-05-08 2024-02-27 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence
US12031126B2 (en) 2020-05-08 2024-07-09 The Broad Institute, Inc. Methods and compositions for simultaneous editing of both strands of a target double-stranded nucleotide sequence

Also Published As

Publication number Publication date
CN107109422B (zh) 2021-08-13
KR102021585B1 (ko) 2019-09-16
JP2017534294A (ja) 2017-11-24
KR20180012834A (ko) 2018-02-06
JP7335200B2 (ja) 2023-08-29
KR20160059994A (ko) 2016-05-27
CN107109422A (zh) 2017-08-29
EP3222728B1 (en) 2021-07-14
US20170349905A1 (en) 2017-12-07
JP2020141683A (ja) 2020-09-10
US10858662B2 (en) 2020-12-08
EP3222728A1 (en) 2017-09-27
EP3222728A4 (en) 2018-09-12

Similar Documents

Publication Publication Date Title
WO2016080795A1 (ko) 두 개의 벡터로부터 발현된 cas9 단백질을 이용한 유전자 발현 조절 방법
US20220017883A1 (en) Variants of CRISPR from Prevotella and Francisella 1 (Cpf1)
JP6745391B2 (ja) 遺伝子操作CRISPR−Cas9ヌクレアーゼ
KR102243243B1 (ko) 신규한 cho 통합 부위 및 이의 용도
ES2784754T3 (es) Métodos y composiciones para modificar un locus objetivo
JP6700788B2 (ja) Rna誘導性ヒトゲノム改変
WO2017215648A1 (zh) 基因敲除方法
WO2016082135A1 (zh) 一种利用定点切割系统对猪h11位点定点插入的方法
WO2012093833A2 (en) Genome engineering via designed tal effector nucleases
WO2019120193A1 (zh) 拆分型单碱基基因编辑系统及其应用
Valton et al. Efficient strategies for TALEN-mediated genome editing in mammalian cell lines
JP7109009B2 (ja) 遺伝子ノックアウト方法
US20230193322A1 (en) CAS9 Fusion Proteins and Related Methods
Dettmer et al. Design and Derivation of Multi‐Reporter Pluripotent Stem Cell Lines via CRISPR/Cas9n‐Mediated Homology‐Directed Repair
JP2021164447A (ja) ゲノム改変方法及びゲノム改変キット
JP2024501892A (ja) 新規の核酸誘導型ヌクレアーゼ
WO2015182941A9 (ko) 신규 카탈라아제 신호서열 및 이를 이용한 카탈라아제 발현방법
TW202204611A (zh) 基因組修飾方法及基因組修飾套組
CN113355354A (zh) 控制细胞行为的系统和方法
Bao et al. Genetic Engineering in Stem Cell Biomanufacturing
Roy λ-integrase mediated seamless vector transgenesis platform
Sterckel CRISPR-Cas genome engineering explained from A to T: Understanding CRISPR genome engineering via a rainbow human embryonic stem cell reporter line to identify pacemaker cells and a MEF2c construct production
WO2024038168A1 (en) Novel rna-guided nucleases and nucleic acid targeting systems comprising such
WO2024042168A1 (en) Novel rna-guided nucleases and nucleic acid targeting systems comprising such rna-guided nucleases
WO2024042165A2 (en) Novel rna-guided nucleases and nucleic acid targeting systems comprising such rna-guided nucleases

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15861198

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15527837

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017527208

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015861198

Country of ref document: EP