WO2016080656A1 - 폴리케톤 제조방법 - Google Patents
폴리케톤 제조방법 Download PDFInfo
- Publication number
- WO2016080656A1 WO2016080656A1 PCT/KR2015/010952 KR2015010952W WO2016080656A1 WO 2016080656 A1 WO2016080656 A1 WO 2016080656A1 KR 2015010952 W KR2015010952 W KR 2015010952W WO 2016080656 A1 WO2016080656 A1 WO 2016080656A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polyketone
- polymerization
- palladium
- group
- catalyst
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G67/00—Macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing oxygen or oxygen and carbon, not provided for in groups C08G2/00 - C08G65/00
- C08G67/02—Copolymers of carbon monoxide and aliphatic unsaturated compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L73/00—Compositions of macromolecular compounds obtained by reactions forming a linkage containing oxygen or oxygen and carbon in the main chain, not provided for in groups C08L59/00 - C08L71/00; Compositions of derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B11/00—Obtaining noble metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B7/00—Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/20—Recycling
Definitions
- the present invention provides a gas phase polymerization method capable of increasing polyketone production, a solid phase catalyst for polyketone polymerization without a carrier, and a method for preparing the same, a method for easily recovering palladium by solid phase in a slurry polymerization process, and a small amount of additives.
- Manufacturing method with excellent anti-oxidation, heat resistance and UV protection effect, low melting point polyketone production method characterized by adding a hydride anion provider and basic for recovery of precious metal palladium from waste discharged from polyketone polymerization process It relates to a polyketone production method including a process technology.
- polymerization is a process in which molecules having a small molecular weight are continuously bonded to prepare one molecule having a large molecular weight.
- Korean Patent No. 10-0178527 and Korean Patent No. 10-0204812 to prepare a polyketone using a polymer of one or more olefinic unsaturated compounds and carbon monoxide. .
- carbon monoxide (CO), ethylene (Ethylene: C2H4), and propylene (Propylene: C3H6) are introduced into the liquid phase as a monomer, and palladium (Palladium: Pd II) and bidentate are used as a solid catalyst.
- Phosphine ligand Identity Phosphine Ligand
- acid acid
- the gas phase polymerization is the same as the liquid phase slurry polymerization in the gas phase, but carbon monoxide (CO) and ethylene (Ethylene: C2H4) and propylene (Propylene: C3H6), which are introduced as monomers, are introduced into the gas phase as a solid catalyst.
- Palladium (Palladium: Pd II) and the bidentate phosphine ligand (Bidentate Phosphine Ligand) and acid (Acid) is a polymerized reaction is made of a polyketone is produced in the configuration.
- Polyketone is manufactured through liquid slurry polymerization or gas phase polymerization.
- polyketone has been prepared by gas phase polymerization in order to improve the productivity of polyketone, simplify the manufacturing process, and reduce the cost. Is developing a technology for manufacturing polyketone.
- monomer gas composed of carbon monoxide (CO), ethylene (Ethylene: C2H4), and propylene (Propylene: C3H6) is introduced at the bottom of the polymerization reactor, and palladium (Palladium: Pd II) and bidentate are introduced.
- a solid catalyst comprising a phosphine ligand (Bidentate Phosphine Ligand) and an acid (Aid) is introduced, and a continuous polymerization process in which polymerization is performed while fluidization of the solid catalyst is generated in the polymerization reactor.
- the gas phase polymerization as described above has a problem that the activity of the gas phase polymerization is lowered because the catalytic activity is low during the polymerization reaction of the monomer gas and the catalyst introduced into the polymerization reactor.
- Copolymers of carbon monoxide with ethylenically unsaturated compounds in particular polyketones having a structure in which a repeating unit derived from carbon monoxide and a repeating unit derived from an ethylenically unsaturated compound are alternately connected, have excellent mechanical and thermal properties, and are excellent in wear resistance and chemical resistance. It is a useful material for various applications due to its high gas barrier property.
- the high molecular weight of the fully alternating copolyketone has higher mechanical and thermal properties and is useful as an economical engineering plastic material.
- an ultra high molecular weight polyketone having an intrinsic viscosity of 2 or more is used for the fiber, it is possible to achieve high magnification, and a fiber having high strength and high modulus that is oriented in the stretching direction, and is a belt, rubber hose reinforcement, tire cord, or concrete reinforcement. It is very suitable for building materials and industrial materials.
- a liquid slurry polymerization method is used as a polymerization method of such a polyketone.
- alcohol, acetic acid, and the like may be used as the liquid solvent, and each solvent is involved in the initiator of the transition metal catalyst and the chain transfer mechanism (Chain Transfer Mechanism) to advance the polymerization reaction, and carbon monoxide and ethylenically unsaturated compounds. Dissolution of the phosphorus monomer ensures easy reactivity of the catalyst and monomer.
- the polymerization method has a problem in that an additional step such as a solvent removal step is required.
- Conventional polyolefin production is mainly carried out by applying a gas phase polymerization reaction technology.
- a polymerization catalyst is supported on a carrier such as MaCl 2 / Silica and introduced into a polymerizer as a solid catalyst.
- the gas phase polymerization reaction technology using a solid catalyst carrying a polymerization catalyst on such a carrier can be applied to polyketone polymerization, but when applied to high strength fiber which is one of the uses of polyketone, the carrier introduced into the polymerization catalyst It may act as a drawback of reducing the rigidity, silica used as a carrier is expensive and there is a problem that the catalyst cost is increased.
- Polyketones mainly composed of repeating units composed of ethylene and carbon monoxide, have a high melting point of 200 or more, but under prolonged heating, thermal deformation such as three-dimensional crosslinking occurs, and moldability due to loss of fluidity decreases, and the melting point decreases. There was a problem that the mechanical and heat resistance performance of the molded body deteriorated.
- the most economical polyketone polymerization solvent known to date is MeOH containing a small amount of water, and water has an effect of preventing the ketalization of the polyketone polymer.
- MeOH and water used for polymerization are separated through a distillation column after use, and MeOH can be purified and reused, but water with a higher boiling point than MeOH cannot be reused as heavy end storage with various by-products. Stored.
- the polyketone polymerization catalyst is composed of palladium divalent, bidentate phosphine ligand, and acid of pK 4 or less.After the polymerization, about 50% of palladium remains in the polyketone polymer and the remaining 50% is discharged as solvent. After passing through the MeOH purification distillation column, it is released to the heavy end with water, and when cooled to room temperature, the structure is present as an incorrect precipitate.
- Pd obtained by polymerizing polyketone polymerized in acetone solvent with 2,4-pentanedione in Pd, 42 (2001) 6283-6287, It is disclosed to improve the heat resistance of polyketones by reducing the content to 20 ppm or less. Since this polyketone does not use alcohol as the polymerization solvent, the polymerization activity is very low under these conditions. Furthermore, complicated Pd extraction treatment is required after polymerization, and cannot be industrially employed in view of productivity and cost.
- palladium used for polyketone polymerization can be easily recovered by extracting palladium present in the heavy end which is a by-product of MeOH purification in the polymerization process.
- a technique for extracting palladium from a heavy end solution obtained as a by-product from a MeOH distillation column a technique for recovering palladium using an ion exchange resin described in KR 1200807 B1 may be mentioned. This is a method of pre-treating heavy end solution generated in methanol distillation column to proper pH, then passing the ion exchange resin to selectively adsorb palladium, and further separating the palladium through the desorption process and reusing the ion exchange resin.
- This technique is meaningful for the separation of selective palladium, but it burdens the cost of additional facilities such as acid tanks, titration tanks, and desorption solutions for pH adjustment of heavy end solutions and expensive ion exchange resins.
- polyketone can be utilized in various industrial fields by adding additives in addition to the mechanical and chemical properties inherent in the polyketone mentioned above.
- the polyketone pellets are formed as an agglomerate of additives when forming an industrial product. Due to the appearance of the defective product was high frequency, it was difficult to show sufficient oxidation prevention, heat stability or UV blocking effect.
- the inventors of the present invention have solved the above-mentioned problems by improving the process for producing polyketone.
- the most basic polyketone structure is a copolymer for fibers consisting of a copolymer of carbon monoxide (CO) and ethylene. It has a melting point of 250 to 260 ° C. and cannot be molded by heat processing. Therefore, the polymerization is carried out by the addition of propylene in addition to carbon monoxide (CO), ethylene as a monomer during the polymerization, the melting point is linearly reduced according to the content of propylene.
- polyketone for general extrusion injection mainly uses a polymer having a melting point of about 220 degrees Celsius by adding about 4 mol% of propylene.
- polyketone having a melting point of 220 degrees when used for low flow extrusion applications such as Film / Pipe / Stock Shape, it is difficult to secure processability with polyketone having a melting point of 220 degrees. This is due to the fast crystallization rate of polyketones, and further reduction of the melting point is required.
- Polyketone having a melting point of about 200 degrees can be polymerized sufficiently, but a higher amount of propylene is required, and the polymerization rate is slow due to the competition reaction between propylene and ethylene and the bulky nature of propylene compared to ethylene.
- the problem is that the productivity is very low. Due to the low polymerization rate, the productivity decreases and the residual amount of metal catalyst in the polymer increases, which has the side effect of promoting crosslinking during thermal processing.
- the inventors of the present invention have solved the above-mentioned problems by improving the process for producing polyketone.
- the polyketone polymerization process is a batch slurry process using methanol as a solvent. Since excess methanol is used, recovery of waste methanol using a fractional distillation unit is essential.
- the basic composition of the polyketone polymerization solvent is methanol containing about 20,000 ppm of water, and the waste methanol generated after the polymerization is a low molecular weight polyketone oligomer, in addition to the catalyst portion composed of Group VIII metal ion / bidentate phosphine ligand / acid, Polyketone fine particles and the like.
- Components other than methanol and water are not vaporized in the fractionation distillation unit for the purification of methanol, but accumulate at the bottom of the unit and transported to the heavy end tank for disposal.
- the Heavy End Black / Heavy End Powder can be obtained by using a filter having a pore size of less than 10um and has 82% of the total content of palladium discharged to the heavy end.
- palladium in the liquid phase cannot be recovered by physical methods, and thus, palladium must be recovered by using chemical methods such as ion exchange resins.
- Waste storage tank in the process is configured in a cylindrical shape for cost reduction, the solid material precipitated and settled on the tank bottom was difficult to recover.
- the present invention has been made to solve the above problems, it is possible to increase the activity of gas phase polymerization by promoting the flow of a solid catalyst in the production of polyketone by gas phase polymerization, thereby increasing the production of polyketone
- the present invention provides a solid catalyst for polyketone polymerization and a method for preparing the same, which do not use a carrier as a solid catalyst, and a method for producing polyketone using the solid catalyst for polyketone polymerization.
- the present invention provides a method for maximizing the precipitation of palladium by prescribing a simple base / reducing agent in a heavy end solution to increase the recovery of the palladium catalyst used in the polyketone polymerization.
- the present invention solves the problem of inputting a large amount of additives in the production of polyketone having anti-oxidation, heat resistance, or UV protection effect, and high frequency of defective products when forming polyketone industrial products, and sufficient oxidation prevention, heat resistance
- the present invention provides a polyketone manufacturing method and a polyketone prepared therefrom that exhibits a stable or UV-blocking effect, and a problem of lowering the polymerization rate and lowering of productivity that occur when polymerizing a low melting point polyketone by increasing the content of propylene.
- An improved low melting polyketone production method is to be solved.
- the present invention is to provide a method for easily separating the solid phase waste while simultaneously combining two devices obtained by filtering solid waste in real time and present in the liquid phase using palladium obtained by using an ion exchange resin.
- the present invention in the polyketone gas phase polymerization, methanol (MeOH) as a catalyst initiator to the monomer gas (Monomer Gas) and the solid catalyst which is introduced into the polymerization reactor during the polyketone gas phase polymerization Characterized in that the input.
- MeOH methanol
- methanol (MeOH) is vaporized and introduced into the polymerization reactor in a gaseous state.
- Methanol (MeOH) is then mixed with the monomer gas and introduced into the polymerization reactor.
- Group 8 transition metal compound as a method for producing a polyketone comprising the step of copolymerizing carbon monoxide and ethylenically unsaturated compound in the presence of the solid catalyst for the polyketone polymerization; Ligands having group 15 elements; And an anion of an acid having a pKa of 4 or less, and provides a solid catalyst for polyketone polymerization having a particle size of 5 nm to 100 ⁇ m.
- the Group 8 transition metal compound is palladium acetate
- the ligand having the Group 15 element is ((2,2-dimethyl-1,3-dioxane-5,5-diyl) bis (methylene)) bis (Bis (2-methoxyphenyl) phosphine)
- the anion of the acid having a pKa of 4 or less is preferably one selected from the group consisting of trifluoro acetic acid, trifluoromethane sulfonic acid, p-toluene sulfonic acid and sulfuric acid.
- the Group 8 transition metal compound in the solvent Ligands having group 15 elements; And adding an anion of an acid having a pKa of 4 or less, followed by stirring to form a three component complex; Removing the solvent from the three-component complex and then freezing at a temperature of -10 ° C or lower to form a single crystal; And it provides a method for producing a solid catalyst for polyketone polymerization comprising the step of pulverizing the single crystal to form a solid catalyst.
- the polyketone catalyst recovery method in the present invention by treating the base and the reducing agent in a clear solution containing about 2 ⁇ 4ppm of palladium in the heavy end by-product of the MeOH distillation purification apparatus used as a polyketone polymerization solvent in the liquid phase It provides a technique for converting palladium into a precipitated phase.
- organometallic complex catalyst comprising a group 9, 10 or 11 transition metal chemistry, a ligand having an element of group 15 and an anion of an acid having a pKa of 4 or less as a method for preparing a polyketone into which an additive is added.
- a mixed solvent consisting of methanol and water under water
- Preparing a methanol slurry by adding a mixed gas of carbon monoxide and an ethylenically unsaturated compound to a mixed solvent including the catalyst and in the method of producing a polyketone comprising the step of separating the polyketone from the methanol slurry, it provides a method for producing a polyketone comprising the step of adding an additive to the methanol slurry.
- the additive is any one or more selected from the group consisting of a heat stabilizer, an antioxidant and a sunscreen, the additive is in the form of a powder, the heat stabilizer provides a method for producing polyketone, characterized in that the tricalcium phosphate. .
- the present invention provides a polyketone, characterized in that the production method.
- the present invention provides a polyketone, characterized in that the increase in Viscosity with time using a rheometer is 1500 Pa * s / 10 min.
- the present invention relates to a low melting point polyketone production method in the presence of an organometallic complex catalyst comprising a Group 9, Group 10 or Group 11 transition metal chemical, a ligand having an element of Group 15 and an anion of an acid having a pKa of 4 or less.
- an organometallic complex catalyst comprising a Group 9, Group 10 or Group 11 transition metal chemical, a ligand having an element of Group 15 and an anion of an acid having a pKa of 4 or less.
- the hydride anion provider is lithium aluminum hydride or sodium borohydride
- the hydride anion provider is characterized in that the addition of 0.01% to 3% of the total weight of the polyketone slurry.
- the present invention is characterized by providing a low melting point polyketone, characterized in that produced by the above production method.
- the low melting point polyketone provides a polyketone having a melting point of 190 to 215 degrees and a ratio of the ketone group to the hydroxyl group of 95: 5 to 99.99: 0.01.
- the recovered liquid is to serve to agitate the heavy end sediment sinking to the bottom in a structure installed on the bottom of the heavy end reservoir (Fig. 4).
- the solution is passed through an additional filter to the liquid palladium recovery unit before being transferred to the wastewater treatment plant.
- methanol is added to the catalyst initiator (Initiator) during the gas phase polymerization of the polyketone to promote the flow of the solid catalyst in the polymerization reactor and at the same time the activity of the gas phase polymerization
- This can increase polyketone productivity, simplify and simplify the polymerization process, reduce the cost of polyketone production, and the like.
- the solid catalyst for polyketone polymerization does not use a carrier, the cost of preparing the catalyst can be reduced.
- an additional process such as a solvent removal process is unnecessary, thereby increasing process productivity and reducing production cost.
- the polyketone prepared using the solid catalyst for the polyketone polymerization of the present invention is made of high strength fibers and microfiber, defects such as stiffness lowered due to the carrier of the polymerization catalyst can be eliminated.
- the recovery process of the palladium catalyst is performed simply by precipitating palladium with room temperature cooling of a heavy end solution as a by-product of the MeOH fractional distillation unit and a small amount of base / reducing agent.
- a small amount of additives may be used to prepare a polyketone having sufficient or excellent anti-oxidation, heat stability, and UV protection effects.
- polyketones can be usefully applied to molded articles such as fibers, automotive engine parts, gears, mulch covers and connectors.
- a method of preparing a low-melting polyketone and a low-melting polycarbonate produced therein which can improve productivity while maintaining or improving the polymerization rate compared to the high melting point polyketone polymerization rate by the addition of a hydride anion provider during the production of polyketone.
- Ketones can be usefully applied to shaped bodies due to processing at low temperatures below 215 ° C. for compressed or film products.
- the solid / liquid phase is separated in real time to form a basic process of palladium recovery.
- the solid phase of the heavy end solution is obtained and dried to recover palladium through a noble metal specialist, and liquid waste can be recovered through a liquid precious metal recoverer prior to wastewater treatment to recover 99% or more of palladium present in the waste, contributing to cost reduction. have.
- Waste of this polyketone solvent recovery device maintains the slurry state at room temperature, so that the solid phase can be obtained through Filter / Centrifuge solid-liquid separator, and the liquid phase after the filter is processed in real time through the liquid recovery device for transport stability for process stability and palladium recovery.
- FIG. 1 is a schematic view showing a polyketone gas phase polymerization process line according to the present invention.
- Figure 2 is a schematic view showing an enlarged portion of the polyketone gas phase polymerization process line according to the present invention.
- Figure 3 shows the increase in Viscosity using a rheometer as a method of comparing the heat stability effect.
- FIG. 4 is a schematic view of the Pd noble metal recovery apparatus of the present invention.
- Figure 5 is a schematic diagram of a heavy end tank including an air bubbler device that serves to agitate the heavy end sediment in the heavy end tank of the present invention.
- FIG. 1 is a schematic view showing a polyketone gas phase polymerization process line according to the present invention
- Figure 2 is a schematic view showing an enlarged portion of a polyketone gas phase polymerization process line according to the present invention.
- a monomer gas (Monomer Gas) is introduced into the synthesis reactor 10 through the lower end of the polymerization reactor 10, the solid catalyst Into the polyketone polymerization reaction.
- a monomer gas composed of carbon monoxide (CO), ethylene (Ethylene: C 2 H 4 ), and propylene (Propylene: C 3 H 6 ) is introduced through the lower end of the polymerization reactor 10, and palladium (Palladium: Pd II) is introduced. ), And a solid catalyst consisting of Bidentate Phosphine Ligand and Acid are added to the polyketone polymerization reaction.
- methanol (MeOH) is introduced into the polymerization reactor 10 as a catalyst initiator. That is, methanol (MeOH) as a catalyst initiator (MeOH) through the methanol (MeOH) supply device 30 so that the polymerization is carried out while generating a fluidization of the solid catalyst when the monomer gas and the solid catalyst is introduced into the polymerization reactor (10). Input.
- the solid catalyst can be activated to increase the activity of the gas phase polymerization.
- the methanol (MeOH) introduced as a catalyst initiator is vaporized and introduced into the polymerization reactor 10 in a gaseous state.
- the methanol (MeOH) supply device 30 is provided with a high temperature vaporizer 40, methanol (MeOH) is vaporized by the vaporizer 40 is supplied to the polymerization reactor 10 in a gaseous state.
- the methanol (MeOH) is introduced into the polymerization reactor 10 in a gaseous state to form a methanol (MeOH) atmosphere in the polymerization reactor 10, and as a result, the solid catalyst introduced into the polymerization reactor 10 is fluidized so that the catalyst Methanol (MeOH), an initiator, is present inside the polymerization reactor 10 to increase activity.
- a monomer gas consisting of carbon monoxide (CO), ethylene (Ethylene: C 2 H 4 ), and propylene (Propylene: C 3 H 6 ) is introduced into the polymerization reactor 10, and palladium: A solid catalyst consisting of Pd II), Bidentate Phosphine Ligand, and Acid, and methanol (MeOH) as a catalyst initiator was added to the polymerization reactor (10). And each of the catalyst initiator is to be added individually, but it is also possible to mix the methanol (MeOH) as a catalyst initiator to the monomer gas first and then to be added to the polymerization reactor (10).
- a monomer gas and a solid catalyst are introduced into the polymerization reactor 10 of the polyketone gas phase polymerization process line 1.
- a monomer gas composed of carbon monoxide (CO), ethylene (Ethylene: C 2 H 4 ), and propylene (Propylene: C 3 H 6 ) is introduced into the polymerization reactor 10, and palladium (Palladium: Pd II) and bi
- a polyketone polymerization reaction is performed by introducing a solid catalyst consisting of a dentate phosphine ligand and an acid.
- the monomer gas is composed of an ethylenically unsaturated compound copolymerized with carbon monoxide
- examples of the ethylenically unsaturated compound include ethylene, propylene, 1-butene, 1-hexene, 4-methyl-1-pentene, 1-octene, ⁇ -olefins such as 1-decene, 1-dodecene, 1-tetradecene, 1-hexadecene and vinylcyclohexane; Alkenyl aromatic compounds such as styrene and ⁇ -methylstyrene; Cyclopentene, norbornene, 5-methylnorbornene, 5-phenylnorbornene, tetracyclododecene, tricyclododecene, tricycloundecene, pentacyclopentadecene, pentacyclohexadecene, 8-ethyltetra Cyclic ole
- the catalyst is (a) Group 9, Group 10 or Group 11 transition metal compound of the Periodic Table (IUPAC Inorganic Chemistry Nomenclature, 1989), (b) Ligands having elements of Group 15 and (c) pKa Is composed of an anion of an acid of 4 or less.
- Examples of the Group 9 transition metal compound among the Group 9, 10 or 11 transition metal compounds (a) include complexes of cobalt or ruthenium, carbonates, phosphates, carbamate salts, sulfonates, and the like. Specific examples thereof include cobalt acetate, cobalt acetylacetate, ruthenium acetate, trifluoro ruthenium acetate, ruthenium acetylacetate, and trifluoromethane sulfonic acid ruthenium.
- Examples of the Group 10 transition metal compound include a complex of nickel or palladium, carbonate, phosphate, carbamate, sulfonate, and the like, and specific examples thereof include nickel acetate, nickel acetylacetate, palladium acetate, and trifluoro. Palladium acetate, palladium acetylacetate, palladium chloride, bis (N, N-diethylcarbamate) bis (diethylamine) palladium, palladium sulfate and the like.
- Group 11 transition metal compound examples include copper or silver complexes, carbonates, phosphates, carbamates, sulfonates, and the like, and specific examples thereof include copper acetate, trifluoroacetate, copper acetylacetate, and acetic acid.
- silver, a trifluoro silver acetate, silver acetyl acetate, silver trifluoromethane sulfonic acid, etc. are mentioned.
- examples of the ligand (b) having an atom of group 15 include 2,2-bipyridyl, 4,4-dimethyl-2,2-bipyridyl, 2,2-bi-4-picolin, 2 Nitrogen ligands such as, 2-bikinolin, 1,2-bis (diphenylphosphino) ethane, 1,3-bis (diphenylphosphino) propane, 1,4-bis (diphenylphosphino) butane, 1 , 3-bis [di (2-methyl) phosphino] propane, 1,3-bis [di (2-isopropyl) phosphino] propane, 1,3-bis [di (2-methoxyphenyl) phosphino ] Propane, 1,3-bis [di (2-methoxy-4-sulfonic acid-phenyl) phosphino] propane, 1,2-bis (diphenylphosphino) cyclohexane, 1,2-bis (diphenylphos
- the ligand (b) having an element of Group 15 is a phosphorus ligand having an atom of Group 15, and particularly, in view of the yield of polyketone, a phosphorus ligand is preferably 1,3-bis [di (2- Methoxyphenyl) phosphino] propane, 1,2-bis [[di (2-methoxyphenyl) phosphino] methyl] benzene, and 2-hydroxy-1,3-bis [in terms of molecular weight of the polyketone.
- the ligand (b) having a preferred group 15 atom focused on improving the intrinsic viscosity and catalytic activity of the polyketone is 1,3-bis [di (2-methoxyphenyl) phosphino] propane or 1, 3-bis (diphenylphosphino) propane, most preferably 1,3-bis [di (2-methoxyphenyl) phosphino] propane.
- the amount of the Group 9, Group 10 or Group 11 transition metal compound (a) used varies widely depending on the type of ethylenically unsaturated compound selected and other polymerization conditions. Although not limited, it is usually 0.01 to 100 mmol, preferably 0.01 to 10 mmol, per liter of capacity of the reaction zone.
- the capacity of the reaction zone refers to the capacity of the liquid phase of the reactor 10.
- examples of the anion (c) of an acid (Acid) having a pKa of 4 or less include anions of an organic acid having a pKa of 4 or less, such as trifluoroacetic acid, trifluoromethane sulfonic acid, and p-toluene sulfonic acid; Anions of inorganic acids having a pKa of 4 or less, such as perchloric acid, sulfuric acid, nitric acid, phosphoric acid, heteropoly acid, tetrafluoroboric acid, hexafluorophosphoric acid, and fluorosilicic acid; And anions of boron compounds such as trispentafluorophenylborane, trisphenylcarbenium tetrakis (pentafluorophenyl) borate, and N, N-dimethylarinium tetrakis (pentafluorophenyl) borate.
- the monomer gas is introduced into the polymerization reactor 10 through the lower end of the polymerization reactor (10).
- methanol (MeOH) is introduced into the catalyst initiator (Initiator) when the monomer gas and the solid catalyst are introduced into the polymerization reactor (10). That is, when the monomer gas and the solid catalyst are introduced into the polymerization reactor 10, the methanol (MeOH) into the polymerization reactor 10 through the methanol (MeOH) supply device 30 connected to one side of the polymerization reactor 10 in a line. ) Is supplied.
- a monomer gas consisting of carbon monoxide (CO), ethylene (Ethylene: C 2 H 4 ), and propylene (Propylene: C 3 H 6 ) in the polymerization reactor (10), Palladium (Palladium: Pd II) And a solid catalyst consisting of Bidentate Phosphine Ligand and Acid, and adding methanol (MeOH) to the polymerization reactor 10 through the methanol (MeOH) feeder.
- Monomer gas, a solid catalyst and methanol (MeOH) are separately added to (10), but methanol (MeOH), which is a catalyst initiator, is first mixed with the monomer gas, and then the mixed gas is mixed into the polymerization reactor (10). It is also possible to inject.
- the methanol (MeOH) introduced into the polymerization reactor 10 as a catalyst initiator is vaporized while passing through a high temperature vaporizer 40 provided in the methanol (MeOH) supply device 30 and then polymerized in a gaseous state. It is put in (10).
- methanol (MeOH) supplied from the methanol (MeOH) supply device 30 to the polymerization reactor 10 is a high-temperature vaporizer 40 provided in the methanol (MeOH) supply device 30 Vaporized and converted into a gaseous state is then supplied to the polymerization reactor (10).
- methanol is supplied into the polymerization reactor 10 in a gaseous state to form a methanol (MeOH) atmosphere in the polymerization reactor 10, and the activity of the solid catalyst introduced into the polymerization reactor 10 is fluidized to increase activity. Let's do it.
- the present invention is a Group 8 transition metal compound; Ligands having group 15 elements; And an anion of an acid having a pKa of 4 or less, and provides a solid catalyst for polyketone polymerization having a particle size of 5 nm to 100 ⁇ m.
- Examples of the Group 8 transition metal compound include palladium, nickel, cobalt, iron, rhodium, ruthenium, osmium, iridium, or a complex of platinum, and specific examples thereof include nickel acetate, nickel acetylacetate, palladium acetate, Palladium chloride, bis (N, N-diethylcarbamate) bis (diethylamine) palladium, palladium sulfate, cobalt acetate, cobalt acetylacetate, ruthenium acetate, trifluoro ruthenium acetate, ruthenium acetylacetate, trifluoromethane sulfonic acid Ruthenium, and the like, but is not limited thereto.
- the inexpensive and economically preferable transition metal compound is a nickel compound, and in view of the yield and molecular weight of the polyketone, the transition metal compound is a palladium compound, and in terms of improving catalytic activity and intrinsic viscosity, Most preferably, palladium acetate is used.
- Examples of the ligand having a Group 15 element include 2,2-bipyridyl, 4,4-dimethyl-2,2-bipyridyl, 2,2-bi-4-picolin, 2,2-biquinoline Nitrogen ligands such as ((2,2-dimethyl-1,3-dioxane-5,5-diyl) bis (methylene) bis (bis (2-methoxyphenyl) phosphine), 1,2-bis ( Diphenylphosphino) ethane, 1,3-bis (diphenylphosphino) propane, 1,4-bis (diphenylphosphino) butane, 1,3-bis [di (2-methyl) phosphino] propane, 1,3-bis [di (2-isopropyl) phosphino] propane, 1,3-bis [di (2-methoxyphenyl) phosphino] propane, 1,3-bis [di (2-methoxy- 4-Sulfonate-phenyl)
- the ligand (b) having an element of Group 15 is a phosphorus ligand having an atom of Group 15, and particularly, in view of the yield of polyketone, a phosphorus ligand is preferably ((2,2-dimethyl-1, 3-dioxane-5,5-diyl) bis (methylene) bis (bis (2-methoxyphenyl) phosphine), 1,3-bis [di (2-methoxyphenyl) phosphino] propane, 1, 2-bis [[di (2-methoxyphenyl) phosphino] methyl] benzene, and 2-hydroxy-1,3-bis [di (2-methoxyphenyl) phosphino] in terms of molecular weight of polyketone Propane, 2,2-dimethyl-1,3-bis [di (2-methoxyphenyl) phosphino] propane, which is water-soluble 1,3-bis [di (2) in terms of safety without requiring an organic solvent.
- Examples of the anion of the acid having a pKa of 4 or less include anions of an organic acid having a pKa of 4 or less, such as trifluoro acetic acid, trifluoromethane sulfonic acid, and p-toluene sulfonic acid; Anions of inorganic acids having a pKa of 4 or less, such as perchloric acid, sulfuric acid, nitric acid, phosphoric acid, heteropoly acid, tetrafluoroboric acid, hexafluorophosphoric acid, and fluorosilicic acid; And anions of boron compounds such as trispentafluorophenylborane, trisphenylcarbenium tetrakis (pentafluorophenyl) borate, and N, N-dimethylarinium tetrakis (pentafluorophenyl) borate, but are not limited thereto. It doesn't work.
- the anion of an acid having a preferred pKa of 4 or less in the present invention is trifluoro acetic acid, which enables the production of a polyketone having not only high catalytic activity but also high intrinsic viscosity.
- the present invention provides a method for producing a solid catalyst for the polyketone polymerization.
- a Group 8 transition metal compound, a ligand having a Group 15 element, and an anion of an acid having a pKa of 4 or less are added to the solvent, followed by stirring to form a three component complex.
- the solvent is not particularly limited, but acetone is preferably used.
- Examples of the Group 8 transition metal compound, the ligand having a Group 15 element, and the anion of an acid having a pKa of 4 or less are as described above.
- a rotary evaporator is used to remove the solvent, but is not limited thereto.
- the solution is frozen at a temperature of -10 ° C or lower, and then left for a certain time to form a single crystal.
- the solution used for crystallization can be reused by concentrating on a rotary evaporator.
- the formed single crystal is washed several times with an inert hydrocarbon solvent such as hexane or heptane and then pulverized to form a solid catalyst.
- an inert hydrocarbon solvent such as hexane or heptane
- the particle size of the pulverized solid catalyst is preferably 5nm to 100 ⁇ m, when the particle size is in the above range, the catalyst activity is excellent.
- a polyketone comprising the step of copolymerizing carbon monoxide and ethylenically unsaturated compounds.
- gas phase polymerization as a polymerization method
- polymerization can use a well-known thing as it is or can process it.
- the polymerization temperature is not particularly limited, and is generally 40 to 180 ° C, preferably 50 to 120 ° C.
- polymerization is not specifically limited, either, It is normal pressure-20 MPa, Preferably it is 4-15 MPa.
- examples of the ethylenically unsaturated compound copolymerized with the carbon monoxide include ethylene, propylene, 1-butene, 1-hexene, 4-methyl-1-pentene, 1-octene, 1-decene, 1-dodecene, 1 ⁇ -olefins such as tetradecene, 1-hexadecene and vinylcyclohexane; Alkenyl aromatic compounds such as styrene and ⁇ -methylstyrene; Cyclopentene, norbornene, 5-methylnorbornene, 5-phenylnorbornene, tetracyclododecene, tricyclododecene, tricycloundecene, pentacyclopentadecene, pentacyclohexadecene, 8-ethyltetra Cyclic olefins such as cyclododecene; Vinyl halides
- Preferred ethylenically unsaturated compounds among these are ⁇ -olefins, more preferably ⁇ -olefins having 2 to 4 carbon atoms, and most preferably ethylene.
- the input ratio of carbon monoxide and an ethylenically unsaturated compound is not specifically limited, It is preferable to adjust to 1: 1-1: 2.
- the present invention in order to achieve the above object, by treating the base and the reducing agent in a clear solution containing about 2 ⁇ 4ppm of palladium in the heavy end by-product of the fractional distillation purification apparatus of MeOH used as a polyketone polymerization solvent present in the liquid phase Provided is a technique for converting palladium into a precipitated phase.
- Palladium exists as a divalent to tetravalent cation in the state of catalytic activity, dissolved in a solvent of polar and weak polarity, and is present as a black precipitate when converted to the form of palladium zero-valent (atomic) It does not dissolve in solvents other than strong acids. Therefore, palladium used as a polymerization catalyst is added with a bidentate phosphine ligand and an acid of pK4 or less in order to maintain a divalent ionic state, and then dissolved in acetone to store the catalyst solution.
- the present invention is intended to simplify the recovery process of palladium by converting the state of the heavy end solution to basic and adding an inexpensive reducing agent to make the state of palladium in the solution as precipitated as possible.
- the heavy end solution generated in the MeOH purification column is released as a brown clear solution of about 60 ⁇ 70 °C but it is precipitated as cooled to room temperature will have the configuration shown in Table 2.
- Palladium may be present in a zero divalent tetravalent cation state, the zero valent palladium maintains a black solid phase that is insoluble except for aqua regia / strong acid, and the divalent tetravalent cation is dissolved in a polar organic solvent.
- palladium divalent cation is used as a representative catalyst in a wide range of fields as a catalyst such as a polyketone polymerization catalyst or a hydroformylation reaction.
- polymerization process of polyketone is as follows. Polyketones are polymerized by reaction of an ethylenically unsaturated compound copolymerizing with carbon monoxide and a metal catalyst polymer.
- Examples of ethylenically unsaturated compounds copolymerized with carbon monoxide include ethylene, propylene, 1-butene, 1-hexene, 4-methyl-1-pentene, 1-octene, 1-decene, 1-dodecene, 1-tetradecene, 1 ⁇ -olefins such as hexadecene and vinylcyclohexane; Alkenyl aromatic compounds such as styrene and ⁇ -methylstyrene; Cyclopentene, norbornene, 5-methylnorbornene, 5-phenylnorbornene, tetracyclododecene, tricyclododecene, tricycloundecene, pentacyclopentadecene, pentacyclohexadecene, 8-ethyltetra Cyclic olefins such as cyclododecene; Vinyl halides such as vinyl
- ethylenically unsaturated compounds are used individually or in mixture of multiple types.
- Preferred ethylenically unsaturated compounds among these are ⁇ -olefins, more preferably ⁇ -olefins having 2 to 4 carbon atoms, and most preferably ethylene.
- the ratio in a reaction container of carbon monoxide and an ethylenically unsaturated compound is preferably 1/1 to 1 / 2.5 from the viewpoint of polymerization activity and recovery cost.
- the addition method of carbon monoxide and an ethylenically unsaturated compound You may add after mixing both previously, and may add each in a separate feed line.
- the mixture of carbon monoxide and the ethylenically unsaturated compound in a molar ratio of 1 / 2.5 and 1/1 was mixed in advance, and then a constant ratio of monomer was continuously added to increase the polymerization activity.
- the polymerization method a solution polymerization method using a liquid medium, a suspension polymerization method, a gas phase polymerization method in which a small amount of polymer is impregnated with a high concentration of a catalyst solution are used.
- the polymerization may be either batchwise or continuous.
- polymerization can use a well-known thing as it is, or can process and use it.
- polymerization Usually, it is normal pressure-20 MPa, Preferably it is 4-15 MPa.
- Palladium as a polyketone polymerization catalyst is introduced in the form of palladium acetate, and when combined with a bidentate phosphine ligand, pK 4 or less acid maintains a divalent stable state and forms an alternate co-polymerization of ethylenically unsaturated compound and carbon monoxide. After the polymerization process, it is reported that about 50% remains in the polyketone polymer and about 50% of palladium is released in the divalent form as MeOH, the polymerization solvent.
- the technology is designed to simplify the recovery process of palladium by precipitating more than 90% of the palladium present in the heavy end solution by adding a simple amount of base / reducing agent to the existing heavy end reservoir.
- the base used therein is any one selected from the group consisting of NaOH, KOH, LiOH, Mg (OH) 2 and NH 3, and reducing agents include sodium thiosulfate, ferrocyanide, Sodium Borohydride, Diborane, Lithium aluminum hydride, Sulfite Compound, and Hydrazine. Any one selected from the group is not limited thereto.
- the base and the reducing agent may be used independently of each other, or the base and the reducing agent may be used simultaneously.
- the content of the base is preferably 0.5 to 3 g / l, and the content of the reducing agent is preferably 0.5 to 2 g / l.
- a mixture of methanol and water in the presence of an organometallic complex catalyst consisting of a Group 9, Group 10 or Group 11 transition metal chemical, a ligand having an element of Group 15 and an anion of an acid having a pKa of 4 or less Adding to the solvent;
- an organometallic complex catalyst consisting of a Group 9, Group 10 or Group 11 transition metal chemical, a ligand having an element of Group 15 and an anion of an acid having a pKa of 4 or less Adding to the solvent;
- Preparing a methanol slurry by adding a mixed gas of carbon monoxide and an ethylenically unsaturated compound to a mixed solvent including the catalyst;
- a polyketone comprising the step of separating the polyketone from the methanol slurry, it provides a method for producing a polyketone comprising the step of adding an additive to the methanol slurry.
- the additive is any one or more selected from the group consisting of a heat stabilizer, an antioxidant and a sunscreen, the additive is in the form of a powder, the heat stabilizer is preferably tricalcium phosphate (TCP), but without limitation, various additives such as lubricants may be used.
- TCP tricalcium phosphate
- the dispersibility is improved, so that the amount of additive used may be reduced to 1/10 level than the physical mixing method of adding the additive to a dry powder.
- TCP which is used as a heat stabilizer
- methanol which is a polymerization solvent
- methanol which is a polymerization solvent
- the hydride anion provider is lithium aluminum hydride or sodium borohydride
- the hydride anion provider is characterized in that the addition of 0.01% to 3% by weight.
- the hydride anion donor used in the present invention is applicable to all conventional hydride anion donor providing hydride anion.
- sodium cyanoborohydride (NaCNBH3) or sodium hydride (NaH) may be used in addition to the above-mentioned lithium aluminum hydride (LAH) and sodium borohydride (NaBH 4), It will be apparent to those skilled in the art that the scope is not limited thereto.
- the present invention is characterized by providing a low melting point polyketone, characterized in that produced by the above production method.
- the method for producing a polyketone of the present invention comprises (a) palladium acetate as a Group 9, Group 10 or Group 11 transition metal compound, and (b) an element ligand of Group 15 as ((2,2-dimethyl- Carbon monoxide and ethylenically unsaturated using a mixed solvent of 1,3-dioxane-5,5-diyl) bis (methylene)) bis (bis (2-methoxyphenyl) phosphine) as methanol and water as a liquid medium Copolymerize the compound.
- Examples of the phosphine-based bi ligand ligands include 1,2-bis (diphenylphosphino) ethane, 1,3-bis (diphenylphosphino) propane, 1,4-bis (diphenylphosphino) butane, 1,3-bis [di (2-isopropyl) phosphino] propane, 1,3-bis [di (2-methoxyphenyl) phosphino] propane, 1,3-bis [di (2-methoxy- And phosphorus ligands such as 4-sodium sulfonate-phenyl) phosphino] propane.
- examples of the ethylenically unsaturated compound copolymerized with carbon monoxide include ethylene, propylene, 1-butene, 1-hexene, 4-methyl-1-pentene, 1-octene, 1-decene, 1-dodecene, 1 ⁇ -olefins such as tetradecene, 1-hexadecene and vinylcyclohexane; Alkenyl aromatic compounds such as styrene and ⁇ -methylstyrene; Cyclopentene, norbornene, 5-methylnorbornene, 5-phenylnorbornene, tetracyclododecene, tricyclododecene, tricycloundecene, pentacyclopentadecene, pentacyclohexadecene, 8-ethyltetra Cyclic olefins such as cyclododecene; Vinyl
- ethylenically unsaturated compounds are used individually or in mixture of multiple types.
- Preferred ethylenically unsaturated compounds among these are ⁇ -olefins, more preferably ⁇ -olefins having 2 to 4 carbon atoms, and most preferably ethylene.
- the ratio in a reaction container of carbon monoxide and an ethylenically unsaturated compound is preferably 1/1 to 1 / 2.5 from the viewpoint of polymerization activity and recovery cost.
- the addition method of carbon monoxide and an ethylenically unsaturated compound You may add after mixing both previously, and may add each in a separate feed line.
- a mixture of carbon monoxide and an ethylenically unsaturated compound having a molar ratio of 1 / 2.5 and 1/1 was mixed in advance, and then a constant ratio of monomer was continuously added to increase polymerization activity.
- the polymerization method a solution polymerization method using a liquid medium, a suspension polymerization method, and a gas phase polymerization method in which a small amount of polymer is impregnated with a high concentration of a catalyst solution are used.
- the polymerization may be either batchwise or continuous.
- polymerization can use a well-known thing as it is, or can process and use it.
- polymerization Usually, it is normal pressure-20 MPa, Preferably it is 4-15 MPa.
- the polymer ring of the preferred polyketone polymer in the present invention may be represented by the following formula (1).
- G is an ethylenically unsaturated hydrocarbon, in particular, a part obtained from ethylenically unsaturated hydrocarbon having at least three carbon atoms, and x: y is preferably at least 1: 0.01.
- the polyketone polymer is a copolymer composed of repeating units represented by General Formulas (1) and (2), and it is preferable that y / x is 0.03 to 0.3.
- y / x is 0.03 to 0.3.
- y / x is more preferably 0.03 to 0.1.
- the melting point of the polymer may be controlled by controlling the ratio of ethylene and propylene of the polyketone polymer.
- the melting point is about 220 ° C. when the molar ratio of ethylene: propylene: carbon monoxide is adjusted to 46: 4: 50, but the melting point is adjusted to 235 ° C. when the molar ratio is adjusted to 47.3: 2.7: 50.
- polyketone polymers having a number average molecular weight of 100 to 200,000, particularly 20,000 to 90,000, as measured by gel permeation chromatography.
- the physical properties of the polymer depend on the molecular weight, on whether the polymer is a copolymer or terpolymer, and in the case of terpolymers, on the nature of the second hydrocarbon moiety present.
- fusing point of the conversion of the polymer used by this invention is 175 degreeC-260 degreeC, and is 180 degreeC-215 degreeC generally.
- the ultimate viscosity number (LVN) of the polymer measured at 25 ° C.
- HFIP Hexafluoroisopropylalcohol
- the molecular weight distribution of the polyketone is preferably 1.5 to 2.5, more preferably 1.8 to 2.2. Less than 1.5 had a poor polymerization yield, and more than 2.5 had a problem of poor moldability.
- polyketone polymers for low-melting extrusion / film requires more than two to three times the initial propylene input compared to common injection / extrusion polymers with melting points of 220 degrees. Since the polymerization of polyketone is a complete alternating co-polymerization of carbon monoxide and olefins, the insertion reaction of ethylene and propylene takes place competitively. Insertion of ethylene that is not bulky compared to propylene occurs mainly, and there is a disadvantage that an excessive amount of propylene must be injected to increase the probability of insertion of propylene. Therefore, the polymerization rate is reduced to half level compared to general injection / extrusion, and it shows a side problem that a large amount of fouling occurs in the polymerization machine due to the late polymerization rate.
- the melting point of the polyketone prepared by the above method is 190 degrees, and the polymerization activity is 9 kg / g-Pd / hr. This is accompanied by a 220 degree melting point for general extrusion and a sharp drop in productivity relative to a polymerization activity of 17 kg / g-Pd / hr. Therefore, it is the core of the present invention to lower the melting point of the polyketone by a simple post-polymerization without deteriorating the polymerization activity.
- the configuration of an apparatus for recovering palladium, which is a noble metal in the polyketone catalyst is as follows.
- An apparatus for recovering precious metal palladium from heavy end wastes generated from a purification apparatus for a polyketone polymerization solvent comprising: a heavy end tank; Slurry pump (Slurry Pump) for transferring the slurry (Slurry) to the outlet located in the bottom of the heavy end tank; A centrifuge solid-liquid separator for separating the slurry transferred through the slurry pump into a solid phase and a liquid phase; A heavy end sludge obtaining device for recovering the suspended solids discharged through a centrifue solid-liquid separator; A three-way valve (3way-Valve) for recovering the liquid phase passed through the Sentry-fuge solid-liquid separator to a heavy-end tank or to a filter; A filter for filtering the liquid that has passed through the three-way valve; And a palladium recovery device for recovering palladium from the liquid phase passed through the filter.
- Slurry pump Slurry Pump
- a centrifuge solid-liquid separator for separating the slurry transferred through the slurry pump into a
- the heavy end tank may include an air bubbling device on an inner bottom edge thereof.
- the air gap of the filter is 10um or less
- the slurry pump is characterized in that the operation stops when the temperature inside the heavy ent tank rises above 30 degrees, it is preferable that the slurry pump is a diaphragm pump.
- the heavy end tank may be equipped with a cooling jacket.
- the process flow of the present invention is as follows. Insert the air line to the bottom of the tank in the heavy end storage tank (1) of Figure -1 and drilled in the direction of the center of the tank in the inner side of the circular air line to float the float in the tank while the floating port ( 3) move to. This is to prevent the phenomenon that the liquid floating material is immersed / stuck at the edge of the tank. Slurry coming out of the outlet (3) is sent through the slurry pump (4) and the solid suspended solids (6) discharged through the centrifuge (5) solid-liquid separator is dried and sent to the precious metal recovery company.
- the liquid that passed through the centrifuge (5) solid-liquid separator is returned to the tank (1) by 3way-valve (7), and part of it passes through the liquid palladium recovery device (9) through the filter (8) of 10um or less and Only palladium is adsorbed and then transferred to the wastewater treatment plant 10.
- the adjustment of the 3-way valve 7 can be added or subtracted according to the capacity of the liquid palladium recovery device 9 or the residual amount of slurry in the tank 1.
- the solution flowing into the heavy end tank (1) flows into a clear liquid of about 60 degrees Celsius or more, and solid suspended matter precipitates when cooled to about 30 degrees Celsius or less. Therefore, when the temperature inside the tank rises above 30 degrees, it is desirable to stop the operation of the slurry pump (4) and maintain only the air bubbling. It is also desirable to install a cooling jacket in the tank (1) to accelerate the deposition of suspended matter.
- Centrifuge solid / liquid separator 5 preferably has a resolution of 10um. Relatively inexpensive filter method can be applied, but if filter catridge is filled with float, excessive loss occurs when replacing catridge, and it can be additionally costly because it is difficult to reuse filter catridge.
- the slurry pump 4 is preferably a diaphragm pump using air pressure as an energy source. Slurry mixed with solid / liquid phase may have a drop in transfer capacity due to the accumulation of solids. However, it is unnecessary to use a pump using an electric motor because the concentration of solids is low and the property is strong.
- Intrinsic viscosity was calculated
- t and T are the times at which dilute solutions of polyketone dissolved in hexafluoroisopropanol and hexafluoroisopropanol with a purity of 98% or more were run through a viscosity tube at 25 ° C., and C is the gram unit in 100 ml of the solution. Is the solute mass value.
- the weight of polymerized resin / weight time of palladium (g-polyketone / g-Pdhr) is obtained.
- Vibratory shear rheology was measured using an MCR301 Model rheometer from Anton Paar.
- the test specimen was formed into a 30 mil inch (0.762 mm) thick circular specimen by compression mourning, and maintained a 25% strain at a rate of 1 rad / s at 275 degrees Celsius and measured the increase in viscosity for 10 minutes.
- Polyketones tend to increase in viscosity with increasing time due to the occurrence of chain breaking and crosslinking due to the presence of carbonyl groups at high temperatures. Therefore, it can be judged that the thermal stabilizing effect of the additive on the polyketone is excellent as the viscosity increase is slow when measuring the rheometer.
- the peak top temperature of the maximum endothermic peak at 2 was taken as the melting point.
- Monomer gas consisting of carbon monoxide (CO), ethylene (Ethylene: C 2 H 4 ), and propylene (Propylene: C 3 H 6 ) in a polyketone polymerization reactor, palladium (Pd II), and bidentate phosphine ligand (Bidentate)
- Pd II palladium
- Pd II bidentate phosphine ligand
- a solid catalyst consisting of Phosphine Ligand
- an acid was added, and 1.0 ml / min of gaseous methanol (MeOH) was added as a catalyst initiator to proceed with the polymerization reaction.
- Monomer gas consisting of carbon monoxide (CO), ethylene (Ethylene: C 2 H 4 ), and propylene (Propylene: C 3 H 6 ) in a polyketone polymerization reactor, palladium (Pd II), and bidentate phosphine ligand (Bidentate)
- Pd II palladium
- Pd II bidentate phosphine ligand
- a solid catalyst consisting of Phosphine Ligand
- an acid was added, and 1.5 ml / min of gaseous methanol (MeOH) was added as a catalyst initiator to proceed with the polymerization reaction.
- MeOH gaseous methanol
- Monomer gas consisting of carbon monoxide (CO), ethylene (Ethylene: C 2 H 4 ), and propylene (Propylene: C 3 H 6 ) in a polyketone polymerization reactor, palladium (Pd II), and bidentate phosphine ligand (Bidentate)
- Pd II palladium
- Pd II bidentate phosphine ligand
- a solid catalyst consisting of Phosphine Ligand
- an acid was added, and 2.0 ml / min of gaseous methanol (MeOH) was added as a catalyst initiator to proceed with the polymerization reaction.
- Monomer gas consisting of carbon monoxide (CO), ethylene (Ethylene: C 2 H 4 ), and propylene (Propylene: C 3 H 6 ) in a polyketone polymerization reactor, palladium (Pd II), and bidentate phosphine ligand (Bidentate)
- Pd II palladium
- Pd II bidentate phosphine ligand
- a solid catalyst consisting of Phosphine Ligand
- an acid was added thereto, and 2.5 ml / min of gaseous methanol (MeOH) was added as a catalyst initiator to proceed with the polymerization reaction.
- MeOH gaseous methanol
- Monomer gas consisting of carbon monoxide (CO), ethylene (Ethylene: C 2 H 4 ), and propylene (Propylene: C 3 H 6 ) in a polyketone polymerization reactor, palladium (Pd II), and bidentate phosphine ligand (Bidentate)
- Pd II carbon monoxide
- Pd II ethylene
- Pd II propylene
- Pd II bidentate phosphine ligand
- a solid catalyst consisting of Phosphine Ligand
- an acid was added to carry out a polymerization reaction.
- Example 1 Methanol feeding amount (ml / min) Polyketone Production (Product: g) Activity (kg / g.Pd / hr) Comparative Example 1 0 7.32 0.241 Example 1 1.0 33.74 1.112 Example 2 1.5 54.76 1.805 Example 3 2.0 62.79 2.070 Example 4 2.5 80.60 2.657
- the heavy end solution a by-product generated from the MeOH fractionation distillation system
- the temperature of the heavy end solution discharged was 65 ° C. It was a brown turbid solution, and brown precipitates formed upon cooling.
- a total of 15.77 kg of the solution was solid-liquid separated by a 10 um glass filter, and 582 g of a precipitate was obtained.
- Solid phase / liquid phase ICP-AES analysis showed 507 ppm (82%) of the solid phase and 4.2 ppm (18%) of palladium in the liquid phase.
- the heavy end liquid phase obtained in Comparative Example 2 was taken, NaOH and sodium thiosulfate were prescribed as shown in Table 4, stirred for 6 hours, filtered, and the solution phase was confirmed to decrease the residual amount of palladium in the solution phase through ICP-AES analysis. An increase in the amount of precipitated palladium in the solid phase was observed with increasing NaOH content in the heavy end liquid.
- the catalytic activity was 19.05 kg / g-Pd / hr and the inherent viscosity was 1.4 dl / g.
- a 30 mil-inch (0.762 mm) thick disc specimen was molded with Compression Mouling and maintained at 25% strain at a rate of 1 rad / s at 275 degrees Celsius, and the increase in viscosity was measured for 10 minutes and is shown in Table 5 and FIG. 3. .
- TCP 500ppm in the methanol slurry of Example 1 instead of TCP 500ppm in the methanol slurry of Example 1, except that the TCP 250ppm to the prepared polymer is the same as in Example 11.
- the catalytic activity was 19.21 kg / g-Pd / hr and the intrinsic viscosity was 1.4 dl / g.
- a 30 mil inch (0.762 mm) thick disc specimen was molded with Compression Mouling and maintained at 25% strain at a rate of 1 rad / s at 275 degrees Celsius, and the increase in viscosity was measured for 10 minutes and is shown in Table 5 and FIG. 3. .
- the polymerization process of polyketone was the same as that of Example 1, and after the process of methanol washing, filtration, and drying under reduced pressure without adding TCP, 5000 ppm TCP was mixed and extruded using a polyketone polymer and a tumbler in a dry state.
- the catalytic activity was 19.11 kg / g-Pd / hr and the inherent viscosity was 1.4 dl / g.
- a 30 mil inch (0.762 mm) thick disc specimen was molded with Compression Mouling and maintained at 25% strain at a rate of 1 rad / s at 275 degrees Celsius, and the increase in viscosity was measured for 10 minutes and is shown in Table 5 and FIG. 3. .
- Example 1 when the polyketone was prepared by copolymerizing carbon monoxide and an ethylenically unsaturated compound in a liquid medium, Example 1 in which TCP was added to a methanol slurry state exhibited the best thermal stability (Table 5 and FIG. 3). In particular, the polyketone of Example 1 exhibited a viscosity increase of 1,500 Pa * s or less using a rheometer for 10 minutes and was superior in heat resistance than the comparative example.
- the catalytic activity was 16.9 kg / g-Pd / hr and the inherent viscosity was 1.91 dl / g. 0.01% of NaBH 4 was added to the obtained polyketone polymer slurry and stirred for 1 hour. Methanol was washed and then dried under reduced pressure to obtain a low melting polyketone polymer. Melting point and Pd residue are shown in Table 6.
- a low melting polyketone was prepared in the same manner as in Example 12 except that 0.05% of NaBH 4 was added to the obtained polyketone polymer slurry, and the melting point and the Pd residue amount are shown in Table 6.
- a low melting point polyketone was prepared in the same manner as in Example 12 except that 0.10% of NaBH 4 was added to the obtained polyketone polymer slurry, and the melting point and Pd residue amount are shown in Table 6.
- the low melting point polyketone was prepared in the same manner as in Example 12 except that 0.25% of NaBH 4 was added to the obtained polyketone polymer slurry, and the melting point and the amount of Pd residue are shown in Table 1.
- Low melting polyketone was prepared in the same manner as in Example 12 except that 0.30% of NaBH 4 was added to the obtained polyketone polymer slurry, and the melting point and the Pd residue amount are shown in Table 6.
- the catalytic activity was 8.41 kg / g-Pd / hr and the intrinsic viscosity was 1.93 dl / g.
- the melting temperature (Tm) of the polyketone polymer was 190 degrees (see Table 6).
- Example 12 16.6kg / g-Pd / hr 0.01% 215 2.1 ppm
- Example 13 16.9kg / g-Pd / hr 0.05% 206 2.3 ppm
- Example 14 16.0kg / g-Pd / hr 0.10% 199 2.0 ppm
- Example 15 16.4kg / g-Pd / hr 0.25% 193 2.5 ppm
- Example 16 15.8kg / g-Pd / hr 0.30% 192 1.9 ppm Comparative Example 5 8.41 0.00% 190 5.8 ppm
- the productivity of the polymer in which NaBH 4 is added in a methanol slurry state (Example, 0.01 to 3% by weight) About two times more productivity was obtained than the polymerization of this propylene excess (Comparative Example 5), and the residual amount of Pd, a metal catalyst in the polymer, showed a content of less than half.
- the low melting point polyketone prepared according to Examples 1 to 5 by IR and NMR the ratio of the ketone group and hydroxyl group was 95: 5 to 99.99: 0.01.
- the low melting point polyketone prepared through the above process has been found to be suitable for application to a product or film for extrusion because of its high productivity and low Pd residue.
- the replacement cycle of the filer catridge was 30 minutes, and the loss of solid suspended solids was about 5%.
- the device as shown in FIG. 4 was configured to operate the device for one month.
- the slurry was dried through a Centrifuge solid / liquid separator (5) to obtain a total of 148 kg of solid phase suspension, and the liquid solution was confirmed that g of Pd adhered to the column in the liquid recovery device through the liquid recovery device.
- ICP Inductively Coupled Plama
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Polymers & Plastics (AREA)
- Medicinal Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Manufacturing & Machinery (AREA)
- Health & Medical Sciences (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Polyethers (AREA)
Abstract
본 발명은 폴리케톤 제조방법에 관한 것으로 폴리케톤 생산량을 증대시킬 수 있는 기상 중합 방법, 담체를 사용하지 않는 폴리케톤 중합용 고체상 촉매 및 이의 제조방법, 슬러리 중합공정에서 팔라듐을 고체상으로 침전시켜 용이하게 회수하는 방법, 적은 첨가제에도 우수한 산화방지, 내열안정 및 자외선 차단효과를 가지는 제조방법, 하이드라이드 음이온 제공체를 투입하는 것을 특징으로하는 저융점 폴리케톤 제조방법과 폴리케톤 중합공정에서 배출되는 폐기물에서 귀금속 팔라듐의 회수를 위한 기본 공정기술을 포함하는 것을 특징으로 한다.
Description
본 발명은 폴리케톤 생산량을 증대시킬 수 있는 기상 중합 방법, 담체를 사용하지 않는 폴리케톤 중합용 고체상 촉매 및 이의 제조방법, 슬러리 중합공정에서 팔라듐을 고체상으로 침전시켜 용이하게 회수하는 방법, 적은 첨가제에도 우수한 산화방지, 내열안정 및 자외선 차단효과를 가지는 제조방법, 하이드라이드 음이온 제공체를 투입하는 것을 특징으로하는 저융점 폴리케톤 제조방법과 폴리케톤 중합공정에서 배출되는 폐기물에서 귀금속 팔라듐의 회수를 위한 기본 공정기술을 포함하는 폴리케톤 제조방법에 관한 것이다.
일반적으로, 중합 반응(Polymerization)은 작은 분자량을 갖는 분자가 연속적으로 결합하여 큰 분자량을 갖는 하나의 분자를 제조하는 것이다.
상술한 바와 같은, 폴리케톤의 제조방법은 대한민국등록특허 제10-0178527호 및 대한민국등록특허 제10-0204812호에 하나 이상의 올레핀형 불포화 화합물과 일산화탄소의 중합체로 폴리케톤을 제조하는 방법이 개시되 있다.
한편, 중합 반응을 이용하는 폴리케톤의 제조방법으로는, 액상 슬러리(Slurry) 중합과 기상 중합으로 나뉜다.
여기서, 상기 액상 슬러리 중합은 모노머(Monomer)로 일산화탄소(CO)와 에틸렌(Ethylene : C2H4) 및 프로필렌(Propylene : C3H6)가 액상으로 투입되고, 고체 촉매로 팔라듐(Palladium : Pd II)과 바이덴테이트 포스핀 리간드(Bidentate Phosphine Ligand) 및 산(Acid)이 투입되며, 중합 반응기 내에서 모노머와 고체 촉매가 중합 반응하여 폴리케톤이 생성되는 구성으로 이루어진다.
그리고, 상기 기상 중합은 기상의 액상 슬러리 중합과 동일하나, 모노머 (Monomer)로 투입되는 일산화탄소(CO)와 에틸렌(Ethylene : C2H4) 및 프로필렌(Propylene : C3H6)이 기상으로 투입되어 고체 촉매로 투입되는 팔라듐(Palladium : Pd II)과 바이덴테이트 포스핀 리간드(Bidentate Phosphine Ligand) 및 산(Acid)과 중합 반응하여 폴리케톤이 생성되는 구성으로 이루어진다.
이렇게 액상 슬러리 중합 또는 기상 중합을 통하여 폴리케톤을 제조하고 있으나, 최근 들어 폴리케톤의 생산성 향상과 제조 공정의 간소화 및 원가 절감을 위하여 기상 중합에 의해 폴리케톤을 제조하고자 하고 있으며, 이를 위하여 기상 중합에 의해 폴리케톤을 제조하기 위한 기술을 개발 진행 중인 추세이다.
이러한 기상 중합은 중합 반응기의 하단에서 일산화탄소(CO)와 에틸렌(Ethylene : C2H4) 및 프로필렌(Propylene : C3H6)로 이루어지는 모노머 가스(Monomer Gas)가 투입되고, 팔라듐(Palladium : Pd II)과 바이덴테이트 포스핀 리간드(Bidentate Phosphine Ligand) 및 산(Acid)으로 이루어지는 고체 촉매가 투입되며, 중합 반응기 내부에서 고체 촉매의 유동화가 생성되면서 중합이 이루어지는 연속 중합 공정이다.
그러나, 상술한 바와 같은 기상 중합은 중합 반응기 내부로 투입되는 모노머 가스 및 촉매의 중합 반응 시 촉매 활성이 낮기 때문에 기상 중합의 활성이 저하된다는 문제점이 있었다.
또한, 모노머 가스 및 촉매의 중합 반응 시 기상 중합의 활성 저하로 인해 중합 반응에 의한 폴리케톤 제조 및 생산량이 저하된다는 문제점이 있었다.
일산화탄소와 에틸렌성 불포화 화합물과의 공중합체, 특히 일산화탄소 유래의 반복단위와 에틸렌성 불포화 화합물 유래의 반복단위가 실질적으로 교대로 연결된 구조의 폴리케톤은 기계적 성질 및 열적 성질이 우수하고, 내마모성, 내약품성, 가스배리어성이 높아서 여러 가지 용도에 유용한 재료이다. 완전교대 공중합 폴리케톤의 고분자량체는 더 높은 기계적 및 열적 성질을 가지고, 경제성이 우수한 엔지니어링 플라스틱재로서 유용하다.
특히, 내마모성이 높아서 자동차의 기어 등의 부품 등에 사용되고, 내약품성이 높아서 화학수송 파이프의 라이닝재 등에 사용되고, 가스배리어성이 높아서 경량 가솔린 탱크 등에 사용할 수 있다.
또한, 고유점도가 2 이상인 초고분자량 폴리케톤을 섬유에 이용한 경우, 고배율의 연신이 가능해지고, 연신방향으로 배향된 고강도 및 고탄성율을 가지는 섬유로서, 벨트, 고무호스의 보강재나 타이어 코드, 콘크리트 보강재 등, 건축재료나 산업자재 용도에 매우 적합한 재료가 된다.
이러한 폴리케톤의 중합 방법으로는 일반적으로, 액상 슬러리 중합 방법을 사용한다. 이때, 액상 용매로는 알코올, 초산 등이 사용가능하며, 각 용매들은 전이금속 촉매의 개시제 및 연쇄 이동 메커니즘(Chain Transfer Mechanism)에 관여하여 중합반응을 진행시키는 역할을 하며, 일산화탄소 및 에틸렌성 불포화 화합물인 단량체의 용해를 통해 촉매와 단량체의 용이한 반응성을 확보해 준다. 그러나, 상기 중합 방법은 용매 제거 공정 등의 추가 공정이 필요한 문제점이 있다.
따라서, 용매 제거 공정의 생략을 통한 공정 생산성의 증가 및 생산 장비의 간소화를 위해서는 기상 중합 반응 기술의 개발이 절실히 필요한 상황이다.
종래의 폴리올레핀 생산은 주로 기상 중합 반응 기술을 적용하여 이루어지고 있는데, 이때 MaCl2/Silica 등의 담체에 중합 촉매를 담지하여 고체상 촉매로 중합기에 투입하는 방법을 이용하고 있다.
이러한 담체에 중합 촉매를 담지한 고체상 촉매를 이용한 기상 중합 반응 기술은 폴리케톤 중합에도 적용이 가능하나, 폴리케톤의 용도 중 하나인 고강도 섬유에 적용시, 중합 촉매에 도입된 담체가 섬유 제조시에 강성을 떨어뜨리는 결점으로 작용할 수 있으며, 담체로 사용되는 실리카는 가격이 비싸 촉매 비용이 증가되는 문제점이 있다.
이에, 당 업계에서는 기상 중합용 고체상 촉매로 담체를 사용하지 않으면서도, 폴리케톤 중합 반응 공정에 적합한 고체상 촉매의 개발이 절실히 요구되고 있다.
에틸렌과 일산화탄소로 이루어지는 반복 단위를 주체로 하는 폴리케톤은 200 이상의 높은 융점을 갖지만 장시간의 가열 하에서는 3차원 가교 등의 열변성이 발생하고, 유동성의 소실에 의한 성형 가공성이 저하하고, 또한 융점의 저하에 의해서 성형체의 기계적, 내열 성능이 열화하는 문제가 있었다.
현재 사용되는 폴리케톤의 중합기술은 슬러리 중합기술로서 MeOH 또는 유기용매가 사용된다. 대량생산을 위한 파일롯 또는 상업화공장에서는 용매의 정제를 통한 재사용은 필수적이며, 대부분 분별 증류법을 이용하여 용매를 정제한다. 용매의 분별증류를 통한 정제과정중 불순물 및 정제대상 용매보다 끓는점이 높은 물질은 정제탑의 Heavy End로 위치하며, 이는 Heavy End 저장소에 보관 후 폐기물 처리를 하게 된다.
현재까지 알려진 가장 경제적인 폴리케톤의 중합용매는 소량의 물을 포함한 MeOH이며, 물은 폴리케톤 중합물의 케탈화를 방지하는 효과를 발휘한다. 중합에 사용된 MeOH과 물은 사용후 분별증류탑을 거쳐 분리작업이 이루어지며, MeOH는 정제되어 재사용이 가능하나, MeOH 보다 끓는점이 높은 물은 여러 부산물과 함께 Heavy End 저장고로 재사용이 불가한 상태로 저장된다.
폴리케톤 중합촉매는 팔라듐 2가와 바이덴테이트 포스핀리간드, pK 4이하의 산으로 이루어지며, 중합반응이 끝난 후 팔라듐의 약 50%는 폴리케톤 중합물에 잔존하며 나머지 약 50%는 용매로 배출되어 MeOH 정제 증류탑을 거치고 나면 물과 함께 Heavy End로 방출되어 상온으로 냉각시 구조가 정확하지 않은 침전물로 존재하게 된다.
중합 후 폴리케톤 중합물에 존재하는 팔라듐의 잔사량을 줄이는 방법으로는 문헌[Polymer,42(2001) 6283-6287]에 아세톤 용매 중에서 중합한 폴리케톤을 2,4-펜탄디온으로 추출 처리하여, Pd 함유량을 20ppm 이하로 감소시킴으로써 폴리케톤의 내열성을 향상시키는 것이 개시되어 있다. 이 폴리케톤은 중합 용매로 알코올을 사용하지 않기 때문에 이 조건에서는 중합 활성이 매우 낮다. 또한 중합 후 번잡한 Pd 추출 처리가 필요하고, 생산성 및 비용의 관점에서 공업적으로 채용할 수가 없다.
국제공개 WO00/09611호에는 Pd 함유량이 5ppm인 폴리케톤이 개시되어 있다. 그러나 이 폴리케톤은 80℃, 5MPa에서 중합한 후에, 중합체 중의 Pd를 용매추출에 의해 제거한 것으로, 장시간의 열처리를 필요로 하는 등의 문제가 있다.
따라서 폴리케톤 중합물 생산에 대한 경제성 공정안정성을 고려할 시 중합물에 잔존할 것으로 예상되는 약 50%의 팔라듐을 제거하는 방법은 용이하지 않다. 폴리케톤은 열을 받음으로써 Paal-Knorr반응에 의한 푸란환의 생성이나 알돌축합에 의한 분자내, 분자간 가교의 생성 등의 화학 반응을 일으켜, 열에 의한 열화가 진행되며 이러한 화학 반응은 폴리케톤 중에 잔존하는 중합 촉매(팔라듐)에 의해 가속화되나, 중합촉매의 활성향상 기술로써 중합물내 팔라듐의 잔존량은 5~10ppm 수준으로 낮출 시 열화에 대한 팔라듐의 영향은 문제의 소지가 되지 않는다.
그렇다면 폴리케톤 중합에 사용한 팔라듐을 용이하게 회수 할 수 있는 방법은 중합공정내 MeOH 정제과정의 부산물인 Heavy End 에 존재하는 팔라듐을 추출하는 방법이 최적이라 판단할 수 있다. MeOH 증류탑에서 부산물로 얻어지는 Heavy End 용액에서 팔라듐을 추출하는 기술로는 KR 1200807 B1 에 기재된 이온교환 수지를 이용한 팔라듐의 회수기술을 들 수 있다. 이는 메탄올 증류탑에서 발생하는 Heavy end 용액을 적정 pH로 전처리후 이온교환수지를 통과시켜 팔라듐을 선택적으로 흡착하고 추가로 탈착공정을 통해 팔라듐을 분리한후 이온교환수지를 재사용 하는 방법이다. 이 기술은 선택적인 팔라듐을 분리하는 데 의의가 있으나, Heavy End 용액의 pH조정을 위한 산탱크, 적정조, 탈착용액 등의 부대설비 비용부담 및 고가의 이온교환수지에 대한 부담을 안고 있다.
한편, 폴리케톤은 상기에서 언급된 폴리케톤 고유의 기계적 및 화학적 물성 이외에 첨가제를 첨가하여 다양한 산업분야로의 활용이 가능하다. 기존의 폴리케톤 제조방법은 폴리케톤의 중합 후 용매 슬러리 상태를 거쳐 중합이 완료되면 파우더 형태의 첨가제를 3 내지 4종을 혼합하여 물리적 혼합을 동반한 펠렛타이징(pelletizing)을 거쳐 펠렛(pellet) 형태로 제조하였다.
그러나 기존의 방식으로 제조 시 충분한 산화방지 효과, 내열안정효과 또는 자외선 차단효과를 위해 많은 양의 첨가제를 사용하여야 하는 문제점 이외에 물리적 혼합의 불량으로 인해 폴리케톤 펠렛을 산업용품으로 성형 시 첨가제의 뭉침으로 인해 외관상 불량인 제품의 발생빈도가 높았으며, 충분한 산화방지, 내열안정 또는 자외선 차단효과를 보이기 힘들었다.
이에 본 발명의 발명자들은 폴리케톤의 제조방법 공정을 개선함으로써 상기에서 지적된 문제점을 해결하기에 이르렀다.
가장 기본적인 폴리케톤의 구조는 일산화탄소(CO)와 에틸렌의 공중합으로 이루어진 섬유용 코폴리머이다. 이것은 융점이 250 내지 260℃에 이르며 열가공으로는 제품의 성형이 불가능하다. 따라서 중합 시 모노머로서 일산화탄소(CO), 에틸렌 이외에 프로필렌을 첨가하여 중합하며, 프로필렌의 함량에 따라 융점은 선형적으로 감소하는 효과를 보인다.
이를 바탕으로 일반적인 압출 사출용의 폴리케톤은 프로필렌의 함량을 약 4mol % 정도 첨가하여 약 섭씨 220도의 융점을 갖는 중합물을 주로 사용한다. 그러나 Film/Pipe/Stock Shape 등의 저유동 압출용도로 사용 시 220도의 융점을 갖는 폴리케톤으로는 가공성 안정성을 확보하기가 어렵다. 이는 폴리케톤의 빠른 결정화 속도로 인한 현상이며, 융점의 추가하락이 요구되는 사항이다. 약 200도 정도의 융점을 갖는 폴리케톤은 중합은 충분히 가능하나, 좀 더 높은 함량의 프로필렌 사용량이 요구되며, 중합 시 프로필렌과 에틸렌의 경쟁반응 및 에틸렌 대비 프로필렌의 bulky한 성질로 인해 중합속도가 늦어져 생산성이 매우 낮아지는 문제점이 발생한다. 낮은 중합속도로 인해 생산성의 하락과 동시에 중합물 내 금속촉매의 잔사량이 증가하여 열가공시 가교를 촉진하는 부작용을 갖게 된다.
이에 본 발명의 발명자들은 폴리케톤의 제조방법 공정을 개선함으로써 상기에서 지적된 문제점을 해결하기에 이르렀다.
폴리케톤 중합공정은 메탄올을 용매로 사용하는 Batch Slurry Process이며,과량의 메탄올이 사용되므로 분별증류장치를 사용한 폐메탄올의 회수는 필수적이다.
폴리케톤 중합용매의 기본 구성은 물을 약 20,000ppm 함유하는 메탄올이며, 중합후 발생하는 폐 메탄올에는 VIII족 금속이온/바이덴테이트 포스핀 리간드/산 으로 구성되는 촉매부분 이외에 저분자량 폴리케톤 올리고머, 폴리케톤 미세 입자 등이 포함될 수 있다. 메탄올과 물을 제외한 성분들은 메탄올의 정제를 위한 분별증류장치에서 기화되지 못하고 장치의 하부에 축적되어 Heavy End Tank로 이송되어 폐기처리된다.
Heavy End 로 분류된 용액은 분별증류장치에서 배출시 약 섭씨 60도 이상의 상태로 맑은 상태를 유지하나, 상온으로 냉각시 일부가 석출되어 고체 상태로 존재하게 된다. 석출된 고형분 및 액상의 성분은 다음 표 1과 같다.
Sample 분류 | 원소함량(ppm) | 발생량(g) | 잔존 Pd량(g) | Pd 잔존 비율 | MeOH 함량 (ppm) | |||
P | Fe | Pd | ||||||
고체 | Heavy End Black | 1,109.0 | 431.9 | 156.1 | 389 | 0.061 | 17% | N/A |
Heavy End powder | 395.1 | 127.9 | 1,211.0 | 193 | 0.234 | 65% | N/A | |
액체 | HE Solvent | 35.1 | 7.8 | 4.2 | 15,190 | 0.064 | 18% | 12.29 |
상기의 Heavy End Black/Heavy End Powder는 10um이하의 Pore Size를 갖는 Filter를 사용시 전량수득이 가능하며, Heavy End로 배출되는 팔라듐의 총 함량중 82%를 보유하고 있다. 반면 액상으로 존재하는 팔라듐은 물리적인 방법으로는 회수가 불가하여 이온 교환 수지등 화학적인 방법을 사용하여 회수하여야 한다.
공정상의 폐기물 보관 Tank는 비용절감을 위해 원통형으로 구성되며, 석출되어 Tank 바닥에 가라앉은 고체상의 물질은 회수가기가 어려운 문제가 있었다.
본 발명은 상기한 바와 같은 문제점을 해결하기 위하여 안출된 것으로, 기상 중합에 의한 폴리케톤의 제조 시 고체 촉매의 유동을 촉진시켜 기상 중합의 활성을 증가시킬 수 있으며, 이로 인해 폴리케톤의 생산량을 증대시킬 수 있는 기상 중합을 이용한 폴리케톤 제조방법을 제공한다.
또한, 본 발명은 고체상 촉매로 담체를 사용하지 않는 폴리케톤 중합용 고체상 촉매 및 이의 제조방법을 제공하고, 상기 폴리케톤 중합용 고체상 촉매를 이용하여 폴리케톤을 제조하는 방법을 제공한다.
더불어, 본 발명은 폴리케톤 중합에 사용되는 팔라듐촉매의 회수량을 증대하기 위하여 Heavy End 용액내 간단한 염기/환원제의 처방으로 팔라듐의 침전량을 최대화 하는 방법을 제공한다.
본 발명은 산화방지, 내열안정 또는 자외선 차단효과를 가지는 폴리케톤 제조 시 많은 양의 첨가제를 투입하는 문제점, 폴리케톤 산업용품 성형 시 불량 제품의 발생빈도가 높은 문제점을 해결하고, 충분한 산화방지, 내열안정 또는 자외선 차단효과를 나타내는 폴리케톤 제조방법 및 이로 제조된 폴리케톤을 제공하며, 프로필렌의 함량을 높여 저융점 폴리케톤을 중합하는 경우에 발생하는 중합속도의 저하와 생산성 저하의 문제를 본 발명의 개선된 저융점 폴리케톤 제조방법으로 해결하고자 한다.
또한, 고체상의 폐기물을 실시간으로 여과하여 수득하고 액상으로 존재하는 팔라듐은 이온교환 수지를 사용하여 수득하는 두 가지의 장치를 접목함과 동시에, 고체상의 폐기물을 용이하게 분리하는 방법을 제공하고자 한다.
상기한 바와 같은 목적을 달성하기 위하여 본 발명은, 폴리케톤 기상 중합에 있어서, 폴리케톤 기상 중합 시 중합 반응기 내에 투입되는 모노머 가스(Monomer Gas) 및 고체 촉매에 촉매 개시제(Initiator)로 메탄올(MeOH)을 투입하는 것을 특징으로 한다.
여기서, 메탄올(MeOH)을 기화하여 기체 상태로 중합 반응기에 투입한다.
그리고, 메탄올(MeOH)을 모노머 가스에 혼합하여 중합 반응기에 투입한다.
상기 폴리케톤 중합용 고체상 촉매의 존재 하에, 일산화탄소와 에틸렌성 불포화 화합물을 공중합하는 단계를 포함하는 폴리케톤의 제조방법으로 제8족 전이금속 화합물; 제15족 원소를 가지는 리간드; 및 pKa가 4 이하인 산의 음이온으로 이루어지며, 입자 크기가 5nm 내지 100㎛인 폴리케톤 중합용 고체상 촉매를 제공한다.
여기서, 상기 제8족 전이금속 화합물은 팔라듐 아세테이트이고, 상기 제15족 원소를 가지는 리간드는 ((2,2-디메틸-1,3-디옥산-5,5-디일)비스(메틸렌))비스(비스(2-메톡시페닐)포스핀)이며, 상기 pKa가 4 이하인 산의 음이온은 트리플루오로 아세트산, 트리플루오로메탄 술폰산, p-톨루엔 술폰산 및 황산으로 이루어진 군에서 선택된 1종인 것이 바람직하다.
또한, 용매에 제8족 전이금속 화합물; 제15족 원소를 가지는 리간드; 및 pKa가 4 이하인 산의 음이온을 첨가한 후, 교반하여 3성분 착물을 형성하는 단계; 상기 3성분 착물에서 용매를 제거한 후, -10℃ 이하의 온도에서 냉동하여 단결정을 형성하는 단계; 및 상기 단결정을 분쇄하여 고체상 촉매를 형성하는 단계를 포함하는 폴리케톤 중합용 고체상 촉매의 제조방법을 제공한다.
이 때, 폴리케톤 촉매 회수방법으로 본 발명에서는 폴리케톤 중합용매로 사용한 MeOH의 분별증류 정제장치의 Heavy End 부산물중 약 2~4ppm의 팔라듐을 함유한 맑은 용액에 염기 및 환원제를 처리하여 액상에 존재하는 팔라듐을 침전상으로 전환시키는 기술을 제공한다.
더불어, 첨가제를 투입하는 폴리케톤 제조방법으로 제9족, 제10족 또는 제11족 전이금속화학물, 제15족의 원소를 가지는 리간드 및 pKa가 4이하인 산의 음이온으로 이루어진 유기금속 착체 촉매 존재 하에서 메탄올과 물로 이루어진 혼합용매에 첨가하는 단계; 상기 촉매를 포함하는 혼합용매에 일산화탄소와 에틸렌성 불포화 화합물의 혼합기체를 첨가하여 메탄올 슬러리를 제조하는 단계; 및 상기 메탄올 슬러리에서 폴리케톤을 분리하는 단계를 포함하는 폴리케톤의 제조방법에 있어서, 상기 메탄올 슬러리에 첨가제를 투입하는 단계를 포함하는 것을 특징으로 하는 폴리케톤의 제조방법을 제공한다.
구체적으로 상기 첨가제는 내열안정제, 산화방지제 및 자외선차단제로 이루어진 군에서 선택된 어느 하나 이상이고, 상기 첨가제는 파우더형태이고, 상기 내열안정제는 트리칼슘포스페이트인 것을 특징으로 하는 폴리케톤의 제조방법을 제공한다.
또한, 본 발명은 상기 제조방법으로 제조된 것을 특징으로 하는 폴리케톤을 제공한다.
이에 더해, 본 발명은 리오미터를 사용한 시간에 따른 Viscosity의 증가가 1500 Pa*s/10 min 인 것을 특징으로 하는 폴리케톤을 제공한다.
저융점 폴리케톤 제조 방법으로 본 발명은 제9족, 제10족 또는 제11족 전이금속화학물, 제15족의 원소를 가지는 리간드 및 pKa가 4이하인 산의 음이온으로 이루어진 유기금속 착체 촉매 존재 하에서 메탄올과 물로 이루어진 혼합용매에 첨가하는 단계 및 상기 촉매를 포함하는 혼합용매에 일산화탄소와 에틸렌성 불포화 화합물의 혼합기체를 첨가하여 폴리케톤을 제조하는 방법에 있어서, 제조된 폴리케톤에 메탄올 용매하에서 하이드라이드 음이온 제공체를 첨가하는 단계를 포함하는 것을 특징으로 한다.
구체적으로, 상기 하이드라이드 음이온 제공체는 리튬알루미늄하이드라이드 또는 소듐보로하이드라이드이고, 상기 하이드라이드 음이온 제공체는 폴리케톤 슬러리 전체 중량대비 0.01%~3% 첨가되는 것을 특징으로 한다.
또한, 본 발명은 상기의 제조방법으로 제조된 것을 특징으로 하는 저융점 폴리케톤을 제공하는 것을 특징으로 한다.
이에 더해, 상기 저융점 폴리케톤은 융점이 190~215도 케톤기와 하이드록실기의 비가 95:5~99.99:0.01 인 것을 특징으로 하는 폴리케톤을 제공한다.
헤비 엔드 탱크(Heavy End Tank) 하단으로부터 배출되는 슬러리(Slurry)를 연속식 센트리퓨지(Centrifuge) 고액 분리장치로 공급하여 실시간 헤비 엔드(Heavy End) 침전물을 분리하고 액상은 다시 헤비 엔드 탱크(Heavy End Tank)로 회수한다.
회수된 액상은 Heavy End 저장조 바닥면에 설치된(도 4) 구조로 바닥에 가라앉아 있는 Heavy End 침전물을 교반하는 역할을 수행하도록 한다.
바닥에 침지된 침전물의 Filtering 작업성을 향상시키기 위한 방안으로는 교반기 장착, 에어 버블링(Air Bubbling) 또는 Heavy End 용액의 회수(Return) 등이 있다. 이 중 교반기의 사용은 비용적인 문제소지가 있으며, 본 장치의 교반은 정밀한 교반이 불필요한 사항이므로 물리적인 교반장치의 추가는 배제하도록 한다.
Heavy End 용액이 Centrifuge 고/액 분리장치를 거친 후 용액은 추가의 Filter를 거쳐 액상 팔라듐 회수장치를 거친 후 폐수처리장으로 이송된다.
이상에서 설명한 바와 같이 상기와 같은 구성을 갖는 본 발명은, 폴리케톤의 기상 중합 시 촉매 개시제(Initiator)로 메탄올(MeOH)을 투입하여 중합 반응기 내에 고체 촉매의 유동을 촉진시킴과 동시에 기상 중합의 활성을 증가시킬 수 있으며, 이로 인해 폴레케톤 생산성을 향상시킬 수 있고, 중합 공정을 간소화 및 단순화할 수 있으며, 폴리케톤 제조 원가를 절감시킬 수 있다는 등의 효과를 거둘 수 있다.
더불어, 폴리케톤 중합용 고체상 촉매는 담체를 사용하지 않음으로써, 촉매 제조의 비용을 절감할 수 있다. 또한, 본 발명의 폴리케톤 중합용 고체상 촉매를 이용하여 폴리케톤을 제조할 경우, 용매 제거 공정 등의 추가 공정이 불필요하여 공정 생산성이 증가하고, 생산 비용을 절감할 수 있다.
또한, 본 발명의 폴리케톤 중합용 고체상 촉매를 이용하여 제조된 폴리케톤을 고강도 섬유 및 극세사로 제조할 경우, 중합 촉매의 담체로 인하여 저하되는 강성 등의 결점 요인을 제거할 수 있다.
폴리케톤 중합공정에서 발생되는 부산물에서 팔라듐 촉매 회수량을 최대화 하는 간단하고 추가설비가 불필요한 기술을 제공한다. MeOH 분별증류장치의 부산물인 Heavy End 용액의 상온냉각과 염기/환원제의 소량 처방으로 팔라듐을 침전시켜 팔라듐 촉매의 회수 Process를 간단하게 수행한다.
폴리케톤 제조시 소량의 첨가제의 투입으로 충분 또는 우수한 산화방지, 내열안정 및 자외선 차단효과를 가지는 폴리케톤을 제조할 수 있다. 또한, 이러한 폴리케톤은 섬유, 자동차 엔진부품, 기어류, 훨커버 및 커넥터 등의 성형체에 유용하게 적용될 수 있다.
또한, 폴리케톤 제조 시 하이드라이드음이온 제공체의 투입으로 고융점 폴리케톤 중합속도 대비 중합속도를 유지 혹은 향상시키면서, 동시에 생산성을 향상시킬 수 있는 저융점 폴리케톤의 제조방법 및 이로 제조된 저융점 폴리케톤은 압축 혹은 필름용 제품에 대해서는 215℃ 이하의 낮은 온도에서의 가공으로 인해 성형체에 유용하게 적용될 수 있다.
폴리케톤 용매의 회수장치에서 발생된 폐기물로부터 귀금속 팔라듐을 회수하는 데 있어서 실시간으로 고/액 상을 분리하여 팔라듐 회수의 기초공정을 형성하는데 있다.
Heavy End 용액의 고체상은 수득 건조하여 귀금속 전문업체를 통해 팔라듐을 회수 하며, 액상의 폐기물은 폐수처리 이전에 액상 귀금속 회수기를 통해 회수하면 폐기물내 존재하는 팔라듐을 99%이상 회수하여 원가절감에 기여할 수 있다.
귀금속 회수 전문업체를 이용하기 위해서는 수송문제가 가장 심각하게 대두되며 이를 해결하기 위해서는 회수대상의 농축 또는 축소가 가장 시급한 사항이다.
본 폴리케톤 용매 회수 장치의 폐기물은 상온에서 슬러리 상태를 유지하므로 Filter/Centrifuge 고액 분리기를 통한 고체상의 수득, Filter이후의 액상은 액상회수기를 통한 실시간으로 처리하여 공정안정성 및 팔라듐 회수를 위한 수송문제를 해결하는데 있다.
도 1은 본 발명에 의한 폴리케톤 기상 중합 공정라인을 개략적으로 나타내는 구성도이다.
도 2는 본 발명에 의한 폴리케톤 기상 중합 공정라인의 일부분을 확대하여 개략적으로 나타내는 구성도이다.
도 3은 내열안정효과를 비교하는 방법으로 Rheometer를 이용한 Viscosity의 증가치를 나타내었다.
도 4는 본 발명의 Pd귀금속 회수장치에 개략도이다.
도 5는 본 발명의 헤비 엔드 탱크에서 Heavy End 침전물을 교반하는 역할을 수행하는 에어버블링 장치가 포함된 헤비 엔드 탱크의 개략도이다.
이하, 본 발명에 의한 바람직한 실시예를 첨부된 도면을 참조하면서 상세하게 설명한다. 또한, 본 실시예에서는 본 발명의 권리범위를 한정하는 것은 아니고, 단지 예시로 제시한 것이며, 그 기술적인 요지를 이탈하지 않는 범위 내에서 다양한 변경이 가능하다.
도 1은 본 발명에 의한 폴리케톤 기상 중합 공정라인을 개략적으로 나타내는 구성도이고, 도 2는 본 발명에 의한 폴리케톤 기상 중합 공정라인의 일부분을 확대하여 개략적으로 나타내는 구성도이다.
도면에서 도시하고 있는 바와 같이, 본 발명에 의한 기상 중합을 이용한 폴리케톤 제조방법은, 중합 반응기(10)의 하단을 통하여 종합 반응기(10) 내부에 모노머 가스(Monomer Gas)를 투입하고, 고체 촉매를 투입하여 폴리케톤 중합 반응을 진행한다.
즉, 상기 중합 반응기(10)의 하단을 통하여 일산화탄소(CO)와 에틸렌(Ethylene : C2H4) 및 프로필렌(Propylene : C3H6)으로 이루어지는 모노머 가스를 투입하고, 팔라듐(Palladium : Pd II)과 바이덴테이트 포스핀 리간드(Bidentate Phosphine Ligand) 및 산(Acid)으로 이루어지는 고체 촉매를 투입하여 폴리케톤 중합 반응을 진행한다.
이때, 상기 중합 반응기(10)에 촉매 개시제(Initiator)로 메탄올(MeOH)을 투입한다. 즉, 상기 중합 반응기(10)에 모노머 가스 및 고체 촉매의 투입 시 고체 촉매의 유동화를 생성하면서 중합이 이루어지도록 메탄올(MeOH) 공급장치(30)를 통하여 촉매 개시제(Initiator)로 메탄올(MeOH)을 투입한다.
상기한 바와 같이, 상기 중합 반응기(10)에서 폴리케톤 중합 반응 시 메탄올(MeOH)을 투입함으로써 팔라듐(Palladium : Pd II)과 바이덴테이트 포스핀 리간드(Bidentate Phosphine Ligand) 및 산(Acid)으로 이루어지는 고체 촉매를 활성화시킬 수 있어 기상 중합의 활성을 증가시킬 수 있다.
여기서, 촉매 개시제로 투입되는 상기 메탄올(MeOH)은 기화시켜 기체 상태로 중합 반응기(10)에 투입된다. 이를 위하여 상기 메탄올(MeOH) 공급장치(30)에는 고온의 기화기(40)가 구비되고, 상기 기화기(40)에 의하여 메탄올(MeOH)이 기화되어 기체 상태로 중합 반응기(10)에 공급된다.
이렇게 상기 메탄올(MeOH)이 기체 상태로 중합 반응기(10)에 투입됨으로써 상기 중합 반응기(10) 내부에 메탄올(MeOH) 분위기를 형성하고, 이로 인해 중합 반응기(10) 내에 투입된 고체 촉매가 유동화되면서 촉매 개시제인 메탄올(MeOH)이 중합 반응기(10) 내부에 존재하여 활성을 증가시킨다.
본 발명의 일 실시예에서는 상기 중합 반응기(10)에 일산화탄소(CO)와 에틸렌(Ethylene : C2H4) 및 프로필렌(Propylene : C3H6)로 이루어지는 모노머 가스를 투입하고, 팔라듐(Palladium : Pd II)과 바이덴테이트 포스핀 리간드(Bidentate Phosphine Ligand) 및 산(Acid)으로 이루어지는 고체 촉매를 투입하며, 메탄올(MeOH)을 촉매 개시제로 투입하는 등 중합 반응기(10)에 모노머 가스, 고체 촉매 및 촉매 개시제를 각각 개별적으로 투입하도록 이루어져 있으나, 상기 모노머 가스에 촉매 개시제인 메탄올(MeOH)을 먼저 혼합한 후 중합 반응기(10)에 투입하도록 이루어지는 것도 가능하다.
이하, 본 발명에 의한 폴리케톤 기상 중합 공정라인을 통하여 폴리케톤을 제조하는 과정을 도 1을 참조하여 설명한다.
먼저, 상기 폴리케톤 기상 중합 공정라인(1)의 중합 반응기(10)에 모노머 가스(Monomer Gas) 및 고체 촉매를 투입한다.
즉, 상기 중합 반응기(10)에 일산화탄소(CO)와 에틸렌(Ethylene : C2H4) 및 프로필렌(Propylene : C3H6)로 이루어지는 모노머 가스를 투입하고, 팔라듐(Palladium : Pd II)과 바이덴테이트 포스핀 리간드(Bidentate Phosphine Ligand) 및 산(Acid)으로 이루어지는 고체 촉매를 투입하여 폴리케톤 중합 반응을 진행한다.
여기서, 모노머 가스로는 일산화탄소와 공중합하는 에틸렌성 불포화 화합물로 이루어지고, 상기 에틸렌성 불포화 화합물의 예로는, 에틸렌, 프로필렌, 1-부텐, 1-헥센, 4-메틸-1-펜텐, 1-옥텐, 1-데센, 1-도데센, 1-테트라데센, 1-헥사데센, 비닐시클로헥산 등의 α-올레핀; 스티렌, α-메틸스티렌 등의 알케닐 방향족 화합물; 시클로펜텐, 노르보르넨, 5-메틸노르보르넨, 5-페닐노르보르넨, 테트라시클로도데센, 트리시클로도데센, 트리시클로운데센, 펜타시클로펜타데센, 펜타시클로헥사데센, 8-에틸테트라시클로도데센 등의 환상 올레핀; 염화비닐 등의 할로겐화 비닐; 에틸아크릴레이트, 메틸아크릴레이트 등의 아크릴산 에스테르 등을 들 수 있다. 이들 에틸렌성 불포화 화합물은 단독 또는 복수종의 혼합물로서 사용된다. 이들 중에서 바람직한 에틸렌성 불포화 화합물은 에틸렌, 프로필렌이다.
한편, 상기 촉매는 주기율표(IUPAC 무기화학 명명법 개정판, 1989)의 (a) 제 9족, 제 10족 또는 제 11족 전이금속 화합물, (b) 제 15족의 원소를 가지는 리간드 및 (c) pKa가 4 이하인 산의 음이온으로 이루어진다.
여기서, 제 9족, 제 10족 또는 제 11족 전이금속 화합물(a) 중 제 9족 전이금속 화합물의 예로서는, 코발트 또는 루테늄의 착체, 카본산염, 인산염, 카바민산염, 술폰산염 등을 들 수 있고, 그 구체예로서는 초산 코발트, 코발트 아세틸아세테이트, 초산 루테늄, 트리플루오로 초산 루테늄, 루테늄 아세틸아세테이트, 트리플루오로메탄 술폰산 루테늄 등을 들 수 있다.
그리고, 제 10족 전이금속 화합물의 예로서는, 니켈 또는 팔라듐의 착체, 카본산염, 인산염, 카바민산염, 술폰산염 등을 들 수 있고, 그 구체예로서는 초산 니켈, 니켈 아세틸아세테이트, 초산 팔라듐, 트리플루오로 초산 팔라듐, 팔라듐 아세틸아세테이트, 염화 팔라듐, 비스(N,N-디에틸카바메이트)비스(디에틸아민)팔라듐, 황산 팔라듐 등을 들 수 있다.
또한, 제 11족 전이금속 화합물의 예로서는, 구리 또는 은의 착체, 카본산염, 인산염, 카바민산염, 술폰산염 등을 들 수 있고, 그 구체예로서는 초산 구리, 트리플루오로 초산 구리, 구리 아세틸아세테이트, 초산 은, 트리플루오로 초산 은, 은 아세틸아세테이트, 트리플루오로메탄 술폰산 은 등을 들 수 있다.
한편, 제 15족의 원자를 가지는 리간드(b)의 예로서는, 2,2-비피리딜, 4,4-디메틸-2,2-비피리딜, 2,2-비-4-피콜린, 2,2-비키놀린 등의 질소 리간드, 1,2-비스(디페닐포스피노)에탄, 1,3-비스(디페닐포스피노)프로판, 1,4-비스(디페닐포스피노)부탄, 1,3-비스[디(2-메틸)포스피노]프로판, 1,3-비스[디(2-이소프로필)포스피노]프로판, 1,3-비스[디(2-메톡시페닐) 포스피노]프로판, 1,3-비스[디(2-메톡시-4-술폰산나트륨-페닐)포스피노] 프로판, 1,2-비스(디페닐포스피노)시클로헥산, 1,2-비스(디페닐포스피노)벤젠, 1,2-비스[(디페닐포스피노)메틸]벤젠, 1,2-비스[[디(2-메톡시페닐)포스피노] 메틸]벤젠, 1,2-비스[[디(2-메톡시-4-술폰산나트륨-페닐)포스피노]메틸] 벤젠, 1,1-비스(디페닐포스피노)페로센, 2-히드록시-1,3-비스[디(2-메톡시페닐)포스피노]프로판, 2,2-디메틸-1,3-비스[디(2-메톡시페닐) 포스피노]프로판 등의 인 리간드 등을 들 수 있다.
이들 중에서 바람직한 제 15족의 원소를 가지는 리간드(b)는, 제 15족의 원자를 가지는 인 리간드이고, 특히 폴리케톤의 수득량의 면에서 바람직한 인 리간드는 1,3-비스[디(2-메톡시페닐)포스피노]프로판, 1,2-비스[[디(2-메톡시페닐)포스피노]메틸]벤젠이고, 폴리케톤의 분자량의 측면에서는 2-히드록시-1,3-비스[디(2-메톡시페닐)포스피노]프로판, 2,2-디메틸-1,3-비스[디(2-메톡시페닐)포스피노]프로판이고, 유기용제를 필요로 하지 않고 안전하다는 면에서는 수용성의 1,3-비스[디(2-메톡시-4-술폰산나트륨-페닐)포스피노]프로판, 1,2-비스[[디(2-메톡시-4-술폰산 나트륨-페닐)포스피노]메틸]벤젠이고, 합성이 용이하고 대량으로 입수가 가능하고 경제면에 있어서 바람직한 것은 1,3-비스(디페닐포스피노)프로판, 1,4-비스(디페닐포스피노)부탄이다.
여기서, 폴리케톤의 고유점도 및 촉매활성의 향상에 중점을 둔 바람직한 제 15족의 원자를 가지는 리간드(b)는 1,3-비스[디(2-메톡시페닐)포스피노]프로판 또는 1,3-비스(디페닐포스피노)프로판이고, 가장 바람직하게는 1,3-비스[디(2-메톡시페닐)포스피노]프로판이다.
그리고, 제 9족, 제 10족 또는 제 11족 전이금속 화합물(a)의 사용량은, 선택되는 에틸렌성 불포화 화합물의 종류나 다른 중합조건에 따라 그 적합한 값이 달라지기 때문에, 일률적으로 그 범위를 한정할 수는 없으나, 통상 반응대역의 용량 1리터당 0.01 내지 100밀리몰, 바람직하게는 0.01 내지 10밀리몰이다. 반응대역의 용량이라는 것은, 반응기(10)의 액상의 용량을 말한다.
이때, pKa가 4 이하인 산(Acid)의 음이온(c)의 예로서는, 트리플루오로 초산, 트리플루오로메탄 술폰산, p-톨루엔 술폰산 등의 pKa가 4 이하인 유기산의 음이온; 과염소산, 황산, 질산, 인산, 헤테로폴리산, 테트라플루오로붕산, 헥사플루오로인산, 플루오로규산 등의 pKa가 4 이하인 무기산의 음이온; 트리스펜타플루오로페닐보란, 트리스페닐카르베늄 테트라키스(펜타플루오로 페닐)보레이트, N,N-디메틸아리늄 테트라키스(펜타플루오로페닐)보레이트 등의 붕소화합물의 음이온을 들 수 있다.
한편, 상기 모노머 가스는 중합 반응기(10)의 하단을 통하여 상기 중합 반응기(10) 내부로 투입된다.
여기서, 상기 중합 반응기(10)로 모노머 가스 및 고체 촉매의 투입 시 촉매 개시제(Initiator)로 메탄올(MeOH)이 투입된다. 즉, 상기 중합 반응기(10)에 모노머 가스 및 고체 촉매의 투입 시 상기 중합 반응기(10)의 일측에 라인으로 연결되는 메탄올(MeOH) 공급장치(30)를 통하여 중합 반응기(10) 내로 메탄올(MeOH)이 공급된다.
상기한 바와 같이, 상기 중합 반응기(10)에 모노머 가스 및 고체 촉매를 투입하고, 상기 메탄올(MeOH) 공급장치(30)를 통하여 중합 반응기(10)에 촉매 개시제로 메탄올(MeOH)을 투입하면, 고체 촉매가 유동화를 생성하면서 중합이 연속적으로 이루어지고, 기상 중합의 활성을 증가시키며, 촉매 활성을 증가시킨다.
본 발명의 일 실시예에서는 상기 중합 반응기(10)에 일산화탄소(CO)와 에틸렌(Ethylene : C2H4) 및 프로필렌(Propylene : C3H6)로 이루어지는 모노머 가스, 팔라듐(Palladium : Pd II)과 바이덴테이트 포스핀 리간드(Bidentate Phosphine Ligand) 및 산(Acid)으로 이루어지는 고체 촉매를 투입하고, 상기 메탄올(MeOH) 공급장치를 통하여 중합 반응기(10)에 메탄올(MeOH)을 투입하는 등 중합 반응기(10)에 모노머 가스, 고체 촉매 및 메탄올(MeOH)를 각각 개별적으로 투입하도록 이루어져 있으나, 상기 모노머 가스에 촉매 개시제인 메탄올(MeOH)을 먼저 혼합한 후 혼합된 혼합기체를 중합 반응기(10)에 투입하는 것도 가능하다.
한편, 상기 중합 반응기(10)에 촉매 개시제로 투입되는 상기 메탄올(MeOH)은 상기 메탄올(MeOH) 공급장치(30)에 구비되는 고온의 기화기(40)를 통과하면서 기화된 후 기체 상태로 중합 반응기(10)에 투입된다.
상기한 바와 같은 구조에 의하여 메탄올(MeOH) 공급장치(30)에서 중합 반응기(10)로 공급되는 메탄올(MeOH)은 상기 메탄올(MeOH) 공급장치(30)에 구비되는 고온의 기화기(40)를 통하여 기화되어 기체 상태로 변환된 후 중합 반응기(10)로 공급된다.
이렇게 상기 중합 반응기(10) 내부에 기체 상태로 메탄올(MeOH)이 공급됨으로써 중합 반응기(10) 내부에 메탄올(MeOH) 분위기가 형성되고, 중합 반응기(10) 내에 투입된 고체 촉매가 유동화되면서 활성을 증가시킨다.
본 발명은 제8족 전이금속 화합물; 제15족 원소를 가지는 리간드; 및 pKa가 4 이하인 산의 음이온으로 이루어지며, 입자 크기가 5nm 내지 100㎛인 폴리케톤 중합용 고체상 촉매를 제공한다.
상기 제8족 전이금속 화합물의 예로, 팔라듐, 니켈, 코발트, 철, 로듐, 루테늄, 오스뮴, 이리듐, 또는 백금의 착체 등을 들 수 있고, 그 구체적인 예로는 니켈 아세테이트, 니켈 아세틸아세테이트, 팔라듐 아세테이트, 염화 팔라듐, 비스(N,N-디에틸카바메이트)비스(디에틸아민)팔라듐, 황산 팔라듐, 코발트 아세테이트, 코발트 아세틸아세테이트, 루테늄 아세테이트, 트리플루오로 초산 루테늄, 루테늄 아세틸아세테이트, 트리플루오로메탄 술폰산 루테늄 등을 들 수 있으나, 이에 한정되지 않는다.
이러한 제8족 전이금속 화합물 중에서, 저렴하고 경제적으로 바람직한 전이금속 화합물은 니켈 화합물이고, 폴리케톤의 수득량 및 분자량의 면에서 바람직한 전이금속 화합물은 팔라듐 화합물이며, 촉매 활성 및 고유점도 향상의 면에서 팔라듐 아세테이트를 사용하는 것이 가장 바람직하다.
상기 제15족 원소를 가지는 리간드의 예로, 2,2-비피리딜, 4,4-디메틸-2,2-비피리딜, 2,2-비-4-피콜린, 2,2-비키놀린 등의 질소 리간드, ((2,2-디메틸-1,3-디옥산-5,5-디일)비스(메틸렌)비스(비스(2-메톡시페닐)포스핀), 1,2-비스(디페닐포스피노)에탄, 1,3-비스(디페닐포스피노)프로판, 1,4-비스(디페닐포스피노)부탄, 1,3-비스[디(2-메틸)포스피노]프로판, 1,3-비스[디(2-이소프로필)포스피노]프로판, 1,3-비스[디(2-메톡시페닐) 포스피노]프로판, 1,3-비스[디(2-메톡시-4-술폰산나트륨-페닐)포스피노] 프로판, 1,2-비스(디페닐포스피노)시클로헥산, 1,2-비스(디페닐포스피노)벤젠, 1,2-비스[(디페닐포스피노)메틸]벤젠, 1,2-비스[[디(2-메톡시페닐)포스피노] 메틸]벤젠, 1,2-비스[[디(2-메톡시-4-술폰산나트륨-페닐)포스피노]메틸] 벤젠, 1,1-비스(디페닐포스피노)페로센, 2-히드록시-1,3-비스[디(2-메톡시페닐)포스피노]프로판, 2,2-디메틸-1,3-비스[디(2-메톡시페닐) 포스피노]프로판 등의 인 리간드 등을 들 수 있으나, 이에 한정되지 않는다.
이들 중에서 바람직한 제 15족의 원소를 가지는 리간드(b)는, 제 15족의 원자를 가지는 인 리간드이고, 특히 폴리케톤의 수득량의 면에서 바람직한 인 리간드는 ((2,2-디메틸-1,3-디옥산-5,5-디일)비스(메틸렌)비스(비스(2-메톡시페닐)포스핀), 1,3-비스[디(2-메톡시페닐)포스피노]프로판, 1,2-비스[[디(2-메톡시페닐)포스피노]메틸]벤젠이고, 폴리케톤의 분자량의 측면에서는 2-히드록시-1,3-비스[디(2-메톡시페닐)포스피노]프로판, 2,2-디메틸-1,3-비스[디(2-메톡시페닐)포스피노]프로판이고, 유기용제를 필요로 하지 않고 안전하다는 면에서는 수용성의 1,3-비스[디(2-메톡시-4-술폰산나트륨-페닐)포스피노]프로판, 1,2-비스[[디(2-메톡시-4-술폰산 나트륨-페닐)포스피노]메틸]벤젠이고, 합성이 용이하고 대량으로 입수가 가능하고 경제면에 있어서 바람직한 것은 1,3-비스(디페닐포스피노)프로판, 1,4-비스(디페닐포스피노)부탄이다.
상기 pKa가 4 이하인 산의 음이온의 예로는, 트리플루오로 아세트산, 트리플루오로메탄 술폰산, p-톨루엔 술폰산 등의 pKa가 4 이하인 유기산의 음이온; 과염소산, 황산, 질산, 인산, 헤테로폴리산, 테트라플루오로붕산, 헥사플루오로인산, 플루오로규산 등의 pKa가 4 이하인 무기산의 음이온; 트리스펜타플루오로페닐보란, 트리스페닐카르베늄 테트라키스(펜타플루오로 페닐)보레이트, N,N-디메틸아리늄 테트라키스(펜타플루오로페닐)보레이트 등의 붕소화합물의 음이온을 들 수 있으나, 이에 한정되지 않는다.
특히, 본 발명에 있어서 바람직한 pKa가 4 이하인 산의 음이온은 트리플루오로 아세트산으로, 이는 높은 촉매활성을 가질 뿐 아니라 높은 고유점도를 가지는 폴리케톤의 제조가 가능해진다.
한편, 본 발명은 상기 폴리케톤 중합용 고체상 촉매의 제조방법을 제공한다.
먼저, 용매에 제8족 전이금속 화합물, 제15족 원소를 가지는 리간드 및 pKa가 4 이하인 산의 음이온을 첨가한 후, 교반하여 3성분 착물을 형성한다.
이때, 상기 용매는 특별히 한정되지 않으나, 아세톤을 사용하는 것이 바람직하다.
또한, 상기 제8족 전이금속 화합물, 제15족 원소를 가지는 리간드 및 pKa가 4 이하인 산의 음이온의 예는 전술한 바와 같다.
이후, 상기와 같이 형성된 3성분 착물에서 용매를 제거한다.
본 발명에서는 용매를 제거하기 위하여, 회전 증발기(Rotary Evaporator)를 사용하나, 이에 한정되는 것은 아니다.
용매를 제거한 용액을 -10℃ 이하의 온도에서 냉동한 후, 일정 시간 방치하여 단결정을 형성한다.
한편, 결정화에 사용한 용액은 회전 증발기로 농축하여 재사용이 가능하다.
이후, 형성된 단결정을 헥산 또는 헵탄과 같은 불활성 탄화수소 용매로 수회 세척한 후, 분쇄하여 고체상 촉매를 형성한다.
이때, 분쇄된 고체상 촉매의 입자 크기는 5nm 내지 100㎛인 것이 바람직한데, 입자 크기가 상기 범위일 경우, 촉매 활성이 우수하다.
전술한 바와 같은 과정을 통해 제조된 폴리케톤 중합용 고체상 촉매를 이용하여 폴리케톤을 제조하는 방법을 설명한다.
본 발명에서는 상기 폴리케톤 중합용 고체상 촉매의 존재 하에, 일산화탄소와 에틸렌성 불포화 화합물을 공중합하는 단계를 포함하여 폴리케톤을 제조한다.
이때, 중합법으로는 기상중합법을 사용하는 것이 바람직하며, 중합에 사용하는 반응기는 공지의 것을 그대로, 또는 가공하여 사용할 수 있다.
중합온도는 특별히 한정되지는 않으며, 일반적으로 40~180℃, 바람직하게는 50~120℃이다. 또한, 중합시의 압력도 특별히 한정되는 것은 아니며, 일반적으로 상압~20MPa, 바람직하게는 4~15MPa이다.
한편, 상기 일산화탄소와 공중합화는 에틸렌성 불포화 화합물의 예로는, 에틸렌, 프로필렌, 1-부텐, 1-헥센, 4-메틸-1-펜텐, 1-옥텐, 1-데센, 1-도데센, 1-테트라데센, 1-헥사데센, 비닐시클로헥산 등의 α-올레핀; 스티렌, α-메틸스티렌 등의 알케닐 방향족 화합물; 시클로펜텐, 노르보르넨, 5-메틸노르보르넨, 5-페닐노르보르넨, 테트라시클로도데센, 트리시클로도데센, 트리시클로운데센, 펜타시클로펜타데센, 펜타시클로헥사데센, 8-에틸테트라시클로도데센 등의 환상 올레핀; 염화비닐 등의 할로겐화 비닐; 에틸아크릴레이트, 메틸아크릴레이트 등의 아크릴산 에스테르 등을 들 수 있으나, 이에 한정되는 것은 아니다. 이들 에틸렌성 불포화 화합물은 단독 또는 복수종의 혼합물로서 사용할 수 있다.
이들 중에서 바람직한 에틸렌성 불포화 화합물은 α-올레핀이고, 더욱 바람직하게는 탄소수가 2~4인 α-올레핀, 가장 바람직하게는 에틸렌이다.
또한, 일산화탄소와 에틸렌성 불포화 화합물의 투입비는 특별히 한정되지 않으나, 1:1 내지 1:2로 조절하는 것이 바람직하다.
본 발명은 상기한 목적을 달성하기 위하여, 폴리케톤 중합용매로 사용한 MeOH의 분별증류 정제장치의 Heavy End 부산물중 약 2~4ppm의 팔라듐을 함유한 맑은 용액에 염기 및 환원제를 처리하여 액상에 존재하는 팔라듐을 침전상으로 전환시키는 기술을 제공한다.
팔라듐은 촉매활성을 가진 상태에서는 2가 내지 4가의 양이온으로 존재하며 극성 및 약한 극성의 용매에 용해된 상태로 존재하며, 팔라듐 0가(원자)의 형태로 변환시 검정색의 침전물로 존재하여 왕수/질산 등 강산 이외의 용매에서는 용해되지 않는다. 따라서 중합촉매로 사용되는 팔라듐은 2가의 이온상태를 안정하게 유지하기 위해 바이덴테이트 포스핀 리간드와 pK4 이하의 산을 첨가하여 아세톤에 용해후 보관 하여 촉매용액을 보관한다. 중합에 사용된 팔라듐의 약 50%는 폴리케톤 파우더 내부에 존재하며, 나머지 약 50%는 중합용매인 MeOH와 같이 배출되어 MeOH의 분별증류후 Heavy End에 남게 된다. 상기의 팔라듐의 분배 메카니즘은 아직 밝혀져 있지 않으나, 팔라듐-포스핀리간드를 사용한 촉매시시템에서는 상기와 같은 팔라듐의 존재비율은 일정하게 유지하고 있다. 팔라듐2가 이온은 용액이 산성인 상태에서 상대적으로 안정한 형태를 유지하고 있으며, 산의 부재시 장기간 보관에 따라 팔라듐 0가의 검은색 침전을 발생시킨다.
이러한 팔라듐 이온특성에 착안하여, 본 발명은 Heavy End 용액의 상태를 염기성으로 변환시키고 저렴한 환원제를 첨가하여 용액내 팔라듐의 상태를 최대한 침전상태로 제조하여 팔라듐의 회수Process를 간소화 하기 위함이다. MeOH 정제탑에서 발생하는 Heavy End 용액은 약 60~70℃의 갈색의 맑은 용액으로 방출되나 상온으로 냉각됨에 따라 침전을 유발하여 표 2과 같은 구성을 갖게 된다.
sample 분류 | 발생량 비중 | Pd 잔존비율 | MeOH 함량(ppm) |
침전물(solid) | 3.7% | 82% | N/A |
용액(liquid) | 96.3% | 18% | 12.29 |
팔라듐은 0가 2가 4가의 양이온 상태로 존재할 수 있으며, 0가의 팔라듐은 왕수/강산 이외에는 녹지않는 검정 고체상 형태를 유지하며, 2가 4가의 양이온은 극성의 유기용매에 용해된 상태로 존재한다. 특히 팔라듐 2가의 양이온은 폴리케톤 중합촉매 또는 하이드로 포르밀화 반응등 촉매로서 폭넓은 분야에 대표적인 촉매로 사용된다.
본 발명의 촉매금속 회수방법에 있어 폴리케톤의 중합공정은 다음과 같다. 폴리케톤은 일산화탄소와 공중합하는 에틸렌성 불포화 화합물과 금속촉매중합체와의 반응으로 중합된다. 일산화탄소와 공중합하는 에틸렌성 불포화 화합물의 예로는 에틸렌, 프로필렌, 1-부텐, 1-헥센, 4-메틸-1-펜텐, 1-옥텐, 1-데센, 1-도데센, 1-테트라데센, 1-헥사데센, 비닐시클로헥산 등의 α-올레핀; 스티렌, α-메틸스티렌 등의 알케닐 방향족 화합물; 시클로펜텐, 노르보르넨, 5-메틸노르보르넨, 5-페닐노르보르넨, 테트라시클로도데센, 트리시클로도데센, 트리시클로운데센, 펜타시클로펜타데센, 펜타시클로헥사데센, 8-에틸테트라시클로도데센 등의 환상 올레핀; 염화비닐 등의 할로겐화비닐; 에틸아크릴레이트, 메틸아크릴레이트 등의 아크릴산에스테르 등을 들 수 있다. 이들 에틸렌성 불포화 화합물은 단독 또는 복수종의 혼합물로서 사용된다. 이들 중에서 바람직한 에틸렌성 불포화 화합물은 α-올레핀이고, 더욱 바람직하게는 탄소수가 2~4인 α-올레핀, 가장 바람직하게는 에틸렌이다.
일산화탄소와 에틸렌성 불포화 화합물의 반응 용기 내에서의 비율은 중합 활성 및 회수 비용의 관점에서, 일산화탄소/에틸렌성 불포화 화합물의 몰비가 1/1 내지 1/2.5가 바람직하다. 일산화탄소와 에틸렌성 불포화 화합물의 첨가 방법에는 특별히 제한은 없고, 미리 양자를 혼합한 후 첨가할 수도 있고, 또 각각 별도의 공급 라인에서 첨가할 수도 있다. 본 발명에서는 일산화탄소와 에틸렌성 불포화 화합물의 몰비가 1/2.5와 1/1인 혼합 가스를 미리 혼합한 후 일정 비율의 모노머를 지속적으로 투입하여 중합 활성을 높일 수 있었다
본 발명을 실시함에 있어서, 중합법으로서는 액상 매체를 사용하는 용액중합법, 현탁중합법, 소량의 중합체에 고농도의 촉매 용액을 함침시키는 기상중합법 등이 사용된다. 중합은 배치식 또는 연속식 중 어느 것이어도 좋다. 중합에 사용하는 반응기는 공지의 것을 그대로 사용하거나 또는 가공하여 사용할 수 있다. 중합온도는 특별히 제한은 없고, 일반적으로 40~180℃, 바람직하게는 50~120℃이다. 중합시의 압력에 대해서도 제한은 없으나, 일반적으로 상압~20MPa, 바람직하게는 4~15MPa이다.
폴리케톤 중합촉매로서의 팔라듐은 초산팔라듐의 형태로 투입되며 바이덴테이트 포스핀 리간드와 결합하여 pK 4 이하의 산이 첨가되면 2가의 안정한 상태를 유지하며 에틸렌성 불포화 화합물과 일산화탄소의 교대공중합을 이루어 낸다. 중합공정 후에는 폴리케톤 중합물에 약 50%가 잔존하며 중합용매인 MeOH으로 약 50%의 팔라듐이 2가의 형태로 배출된다고 보고되어 있다.
본 기술은 이미 존재하고 있는 Heavy End 저장조에 단순 여과장치만 추가하여 염기/환원제의 일정량 첨가로 Heavy End 용액내 존재하는 팔라듐의 약 90% 이상을 침전화시켜 팔라듐의 회수process를 간소화하는데 있다. 이에 사용되는 염기는 NaOH, KOH, LiOH, Mg(OH)2 및 NH3로 이루어진 군에서 선택된 어느 하나이고, 환원제로는 Sodium thiosulfate, ferrocyanide, Sodium Borohydride, Diborane, Lithium aluminium hydride, Sulfite Compound 및 Hydrazine로 이루어진 군에서 선택된 어느 하나이나 이에 한정되지는 않는다. 염기와 환원제는 각각이 독립되어 사용될 수 있고, 염기와 환원제를 동시에 사용할 수도 있다.
염기의 함유량은 0.5 내지 3 g/l 가 바람직하며, 환원제의 함유량은 0.5 내지 2 g/l 가 바람직하다.
본 발명에 따르면, 제9족, 제10족 또는 제11족 전이금속화학물, 제15족의 원소를 가지는 리간드 및 pKa가 4이하인 산의 음이온으로 이루어진 유기금속 착체 촉매 존재 하에서 메탄올과 물로 이루어진 혼합용매에 첨가하는 단계; 상기 촉매를 포함하는 혼합용매에 일산화탄소와 에틸렌성 불포화 화합물의 혼합기체를 첨가하여 메탄올 슬러리를 제조하는 단계; 및 상기 메탄올 슬러리에서 폴리케톤을 분리하는 단계를 포함하는 폴리케톤의 제조방법에 있어서, 상기 메탄올 슬러리에 첨가제를 투입하는 단계를 포함하는 것을 특징으로 하는 폴리케톤의 제조방법을 제공한다.
구체적으로 상기 첨가제는 내열안정제, 산화방지제 및 자외선차단제로 이루어진 군에서 선택된 어느 하나 이상이고, 상기 첨가제는 파우더형태이고, 상기 내열안정제는 트리칼슘포스페이트(Tricalcium Phosphate, 이하 TCP)인 것이 바람직하나, 이에 한정되는 것은 아니며 윤활제등 다양한 첨가제가 사용될 수 있다.
상기 첨가제는 중합 후 메탄올 슬러리 상태에서 투입하면 분산력이 좋아져서 기존방법인 건조 파우더에 첨가제를 첨가하는 물리적 혼합방법 보다 첨가제 사용량을 1/10 수준으로 줄일 수 있다.
특히, 열안정제로 사용되는 TCP는 중합용매인 메탄올에 용해되지 않으나 콜로이드 형태로 분산이 되며, 폴리케톤 파우더와 메탄올의 분리 작업 시 메탄올 층으로 거의 방출되지 않는, 곱게 분산되어 폴리케톤 파우더에 균일 분산되는 효과가 있었다.
기존방법과 본 발명의 제조방법으로 TCP를 첨가한 경우, 리오미터(Rheometer)를 사용하여 시간에 따른 Viscosity 증가를 비교 시, 기존 상태의 5000ppm 수준대비 내열안정성을 본 발명의 제조방법으로는 500 ppm으로도 발현되는 효과를 보였다.
제9족, 제10족 또는 제11족 전이금속화학물, 제15족의 원소를 가지는 리간드 및 pKa가 4이하인 산의 음이온으로 이루어진 유기금속 착체 촉매 존재 하에서 메탄올과 물로 이루어진 혼합용매에 첨가하는 단계 및 상기 촉매를 포함하는 혼합용매에 일산화탄소와 에틸렌성 불포화 화합물의 혼합기체를 첨가하여 폴리케톤을 제조하는 방법에 있어서, 제조된 폴리케톤을 메탄올 용매하에서 하이드라이드음이온 제공체를 첨가하는 단계를 포함하는 것을 특징으로 하는 저융점 폴리케톤의 제조 방법을 제공하는 것을 특징으로 한다.
구체적으로, 상기 하이드라이드 음이온 제공체는 리튬알루미늄하이드라이드 또는 소듐보로하이드라이드이고, 상기 하이드라이드 음이온 제공체는 중량대비 0.01%~3% 첨가되는 것을 특징으로 한다. 본 발명에서 사용되는 하이드라이디 음이온 제공체는 하이드라이드 음이온을 제공하는 통상적인 하이드라이드 음이온 제공체 모두가 적용이 가능하다. 일예로, 상기에서 언급된 리튬알루미늄하이드라이드(LAH) 와 소듐보로하이드라이드(NaBH4) 이외에 소듐사이아노보로하이드라이드(NaCNBH3) 또는 소듐하이드라이드(NaH) 등이 사용될 수 있으며, 본 발명의 범위가 이에 한정되는 것이 아님은 본 발명분야 통상의 기술자에게 있어서 자명할 것이다.
또한, 본 발명은 상기의 제조방법으로 제조된 것을 특징으로 하는 저융점 폴리케톤을 제공하는 것을 특징으로 한다.
이하, 본 발명을 보다 구체적으로 설명한다.
본 발명의 폴리케톤의 제조방법은 (a) 제 9족, 제 10족 또는 제 11족 전이금속 화합물로는 초산 팔라듐을 (b)제 15족의 원소 리간드로는 ((2,2-디메틸-1,3-디옥산-5,5-디일)비스(메틸렌))비스(비스(2-메톡시페닐)포스핀)를, 액상 매체로서 메탄올과 물로 이루어지는 혼합용매를 사용하여 일산화탄소와 에틸렌성 불포화 화합물을 공중합 시킨다.
포스핀 계열의 이좌배위자 리간드의 예로는, 1,2-비스(디페닐포스피노)에탄, 1,3-비스(디페닐포스피노)프로판,1,4-비스(디페닐포스피노)부탄, 1,3-비스[디(2-이소프로필)포스피노]프로판, 1,3-비스[디(2-메톡시페닐)포스피노]프로판, 1,3-비스[디(2-메톡시-4-술폰산나트륨-페닐)포스피노]프로판등의 인 리간드를 들 수 있다.
본 발명에 있어서, 일산화탄소와 공중합하는 에틸렌성 불포화 화합물의 예로는 에틸렌, 프로필렌, 1-부텐, 1-헥센, 4-메틸-1-펜텐, 1-옥텐, 1-데센, 1-도데센, 1-테트라데센, 1-헥사데센, 비닐시클로헥산 등의 α-올레핀; 스티렌, α-메틸스티렌 등의 알케닐 방향족 화합물; 시클로펜텐, 노르보르넨, 5-메틸노르보르넨, 5-페닐노르보르넨, 테트라시클로도데센, 트리시클로도데센, 트리시클로운데센, 펜타시클로펜타데센, 펜타시클로헥사데센, 8-에틸테트라시클로도데센 등의 환상 올레핀; 염화비닐 등의 할로겐화비닐; 에틸아크릴레이트, 메틸아크릴레이트 등의 아크릴산에스테르 등을 들 수 있다. 이들 에틸렌성 불포화 화합물은 단독 또는 복수종의 혼합물로서 사용된다. 이들 중에서 바람직한 에틸렌성 불포화 화합물은 α-올레핀이고, 더욱 바람직하게는 탄소수가 2~4인 α-올레핀, 가장 바람직하게는 에틸렌이다.
일산화탄소와 에틸렌성 불포화 화합물의 반응 용기 내에서의 비율은 중합 활성 및 회수 비용의 관점에서, 일산화탄소/에틸렌성 불포화 화합물의 몰비가 1/1 내지 1/2.5가 바람직하다. 일산화탄소와 에틸렌성 불포화 화합물의 첨가 방법에는 특별히 제한은 없고, 미리 양자를 혼합한 후 첨가할 수도 있고, 또 각각 별도의 공급 라인에서 첨가할 수도 있다. 본 발명에서는 일산화탄소와 에틸렌성 불포화 화합물의 몰비가 1/2.5와 1/1인 혼합 가스를 미리 혼합한 후 일정 비율의 모노머를 지속적으로 투입하여 중합 활성을 높일 수 있었다.
본 발명을 실시함에 있어서, 중합법으로서는 액상 매체를 사용하는 용액중합법, 현탁중합법, 소량의 중합체에 고농도의 촉매 용액을 함침 시키는 기상중합법 등이 사용된다. 중합은 배치식 또는 연속식 중 어느 것이어도 좋다. 중합에 사용하는 반응기는 공지의 것을 그대로 사용하거나 또는 가공하여 사용할 수 있다. 중합온도는 특별히 제한은 없고, 일반적으로 40~180℃, 바람직하게는 50~120℃이다. 중합시의 압력에 대해서도 제한은 없으나, 일반적으로 상압~20MPa, 바람직하게는 4~15MPa이다.
본 발명에서 바람직한 폴리케톤 폴리머의 폴리머 고리는 하기 화학식 1로 나타낼 수 있다.
[화학식 1]
-[CO-(-CH2-CH2-)-]x-[CO-(G)]y-
상기 화학식 1 중, G는 에틸렌계 불포화 탄화수소로서, 특히 적어도 3개의 탄소 원자를 가지는 에틸렌계 불포화탄화수소로부터 얻어지는 부분이고, x:y는 적어도 1:0.01인 것이 바람직하다.
다른 구체예로, 상기 폴리케톤 폴리머는 일반식 (1)과 (2)로 표시되는 반복 단위로 이루어진 공중합체로서, y/x가 0.03~0.3 인 것이 바람직하다. 상기 y/x값의 수치가 0.03 미만인 경우, 용융성 및 가공성이 떨어지는 한계가 있고, 0.3을 초과하는 경우는 기계적 물성이 떨어진다. 또한 y/x는 더욱 바람직하게 0.03 내지 0.1이다.
-[-CH2CH2-CO]x- (1)
-[-CH2-CH(CH3)-CO]y- (2)
또한, 폴리케톤 폴리머의 에틸렌과 프로필렌의 비를 조절하여 폴리머의 융점을 조절할 수 있다. 일례로, 에틸렌 : 프로필렌 : 일산화탄소의 몰비를 46 : 4 : 50으로 조절하는 경우 융점은 약 220℃이나, 몰비를 47.3 : 2.7 : 50 으로 조절하는 경우의 융점은 235℃로 조절된다.
겔 투과 크로마토그래피(chromatography)에 의하여 측정한 수평균 분자량이 100~200,000 특별히 20,000~90,000의 폴리케톤 폴리머가 특히 바람직하다. 폴리머의 물리적 특성은 분자량에 따라서, 폴리머가 코폴리머인, 또는 터폴리머인 것에 따라서, 또 터폴리머의 경우에는 존재하는 제2의 탄화 수소부분의 성질에 따라서 정해진다. 본 발명에서 사용하는 폴리머의 통산의 융점은 175℃~260℃이고, 또한 일반적으로는 180℃~215℃ 이다. 표준 세관점도 측정장치를 사용하고 HFIP(Hexafluoroisopropylalcohol)로 25℃에 측정한 폴리머의 극한 점도 수(LVN)는0.5dl/g~10dl/g, 또한 바람직하게는 0.8dl/g~4dl/g이며, 더욱 바람직하게는, 1.0dl/g~2.0dl/g 이다. 이 때 극한 점도 수가 0.5dl/g 미만이면 기계적 물성이 떨어지고, 10dl/g 을 초과하면 가공성이 떨어지는 문제점이 발생한다.
한편, 폴리케톤의 분자량 분포는 1.5 내지 2.5인 것이 좋고, 보다 바람직하게는 1.8~2.2이 좋다. 1.5 미만은 중합수율이 떨어지며, 2.5 이상은 성형성이 떨어지는 문제점이 있었다. 상기 분자량 분포를 조절하기 위해서는 팔라듐 촉매의 양과 중합온도에 따라 비례하여 조절이 가능하다. 즉, 팔라듐 촉매의 양이 많아지거나, 중합온도가 100℃이상이면 분자량 분포가 커지는 양상을 보인다.
저융점 압출/Film용 폴리케톤 중합물의 생산은 융점 220도의 일반 사출/압출용 중합물 대비 2~3배 이상의 초기 프로필렌 투입량을 필요로 한다. 폴리케톤의 중합은 일산화탄소와 올레핀의 완전 교대공중합이므로 에틸렌과 프로필렌의 삽입반응기 경쟁적으로 일어나게 된다. 프로필렌 대비 Bulky 하지 않은 에틸렌의 삽입이 주요하게 발생하게 되며 프로필렌의 삽입 확률을 올리기 위해서는 프로필렌을 과량으로 주입해야 하는 단점이 발생한다. 따라서 중합속도는 일반 사출/압출물 대비 절반 수준으로 하락하게 되며, 늦은 중합속도로 인해 중합기내 Fouling이 다량 발생하는 부수적인 문제점을 나타낸다.
상기 제조방법으로 제조된 폴리케톤의 융점은 190도이고, 중합 활성은 9kg/g-Pd/hr이다. 이는 일반 압출용의 220도 융점과 17kg/g-Pd/hr의 중합 활성 대비 생산성의 급격한 하락이 동반된다. 따라서 중합 활성의 저하가 없이 간단한 중합 후 처방으로 폴리케톤의 융점을 하락시키는 것이 본 발명의 핵심이다.
본 발명의 폴리케톤 중합공정 후 폴리케톤 촉매 중 귀금속인 팔라듐을 회수하기 위한 장치의 구성은 하기와 같다.
폴리케톤 중합용매의 정제장치로부터 발생하는 헤비 엔드(Heavy End) 폐기물에서의 귀금속 팔라듐의 회수장치에 있어서, 헤비 엔드 탱크; 상기 헤비 엔드 탱크 중앙 하단에 위치한 배출구로 나오는 슬러리(Slurry)를 이송하기 위한 슬러리 펌프(Slurry Pump); 상기 슬러리 펌프를 통해 이송된 슬러리를 고체상과 액체상으로 분리하기 위한 센트리퓨지(Centrifuge) 고액 분리장치; 센트리 퓨지 고액 분리장치를 통해 배출된 고체상의 부유물을 회수하는 헤비 엔드 슬러지(Heavy End Sludge) 수득장치; 상기 센트리 퓨지 고액 분리장치를 통과한 액상을 헤비엔드 탱크로 회수하거나 필터로 이송시키는 쓰리 웨이 밸브(3way-Valve); 상기 쓰리 웨이 밸브를 거친 액상을 필터링 하는 필터(Filter); 및 상기 필터를 거친 액상에서 팔라듐을 회수하는 팔라듐 회수장치를 포함하는 것을 특징으로 귀금속 팔라듐의 회수장치로 구성된다.
구체적으로, 상기 헤비 엔드 탱크는 내부 하단 테두리에 에어버블링(Air Bubbling)장치를 포함할 수 있다. 또한, 상기 필터의 공극은 10um이하이며, 슬러리 펌프는 헤비 엔트 탱크 내부의 온도가 30도 이상으로 상승시 가동을 멈추는 것을 특징으로 하고, 상기 슬러리 펌프는 격막식 Pump인 것이 바람직하다.
이에 더해, 상기 헤비 엔드 탱크는 쿨링 재킷(Cooling Jacket)이 설치될 수 있다.
본 발명의 공정흐름은 다음과 같다. 도-1의 Heavy End Storage Tank(1)에 도-2와 같이 Tank 하단에 Air Line을 삽입하고 원형의 Air Line 의 안쪽에 Tank 중심방향으로 천공하여 Tank내 부유물을 부상시키면서 중앙 하단에 위치한 배출구(3)으로 이동시키는 역할을 수행한다. 이는 용액상 부유물이 Tank의 가장자리에서 침지/고착되는 현상을 방지하기 위함이다. 배출구(3)로 나오는 Slurry는 Slurry Pump를(4)를 통해 이송되며 Centrifuge(5) 고액 분리장치를 통하여 배출된 고체상의 부유물(6)은 건조작업을 거쳐 귀금속 회수업체로 송부된다. Centrifuge(5) 고액 분리장치를 통과한 액상은 3way-Valve(7)에 의해 Tank(1)로 Return 되며 일부는 10um이하의 Filter(8)를 거쳐 액상팔라듐 회수장치(9)를 통과하면서 컬럼에 팔라듐만 흡착된 후 폐수처리장(10)으로 이송된다. 3way Valve(7)의 조정은 액상 팔라듐 회수장치(9)의 용량이나, Tank(1)의 Slurry 잔량에 따라 가감 할 수 있다.
Heavy End Tank(1)로 유입되는 용액은 약 섭씨 60도 이상의 맑은 액상으로 유입되며 약 섭씨 30도 이하로 냉각시 고체상의 부유물이 석출된다. 따라서 Tank내 부의 온도가 30도 이상으로 상승시 Slurry Pump(4)의 가동을 멈추고 Air Bubbling 만을 유지하는 것이 바람직하다. 또한 부유물 석출을 가속화하기 위하여 Tank(1)에 Cooling Jacket을 설치 하는것도 바람직하다.
Centrifuge 고/액 분리장치(5)는 10um의 분리능을 갖추는 것이 바람직하다. 비교적 저렴한 Filter 방식을 적용하여도 무방하나, Filter Catridge가 부유물로 충진되는 경우 Catridge 교체시 과량의 손실이 발생되며, Filter Catridge의 재사용이 어려우므로 비용적인 부담이 추가로 발생 할 수 있다.
Slurry Pump(4)는 공기압을 에너지원으로 사용한 격막식 Pump면 바람직하다. 고/액 상이 혼합된 Slurry는 고형분의 축적에 따라 이송능력이 하락할 가능성은 소지하고 있으나 Slurry의 고형분의 농도가 낮고 부유성이 강한 성질이므로 굳이 전기모터를 사용하는 Pump의 사용은 불필요 하다.
(1) 폴리케톤 중 원소량
Pd, P, Fe 각 원소에 대해서 ICP-AES를 이용하여 측정하였다.
(2) 고유점도
고유 점도는 다음 수학식에 의하여 구하였다.
[수학식 1]
[η]= lim(T-t)/tC (dl/g)
식 중, t 및 T는 각각 순도 98% 이상의 헥사플루오로이소프로판올 및 헥사플루오로이소프로판올에 용해된 폴리케톤의 희석 용액이 25℃의 점도관을 통해 흘러내린 시간이고, C는 상기 용액 100ml 중 그램 단위의 용질 질량치이다.
(3) 촉매활성
중합된 수지의 중량/팔라듐의 중량시간(g-폴리케톤/g-Pdhr)으로 구한다.
(4) Rheometer를 이용한 Viscosity의 증가치 측정
진동성 전단 레올로지를 Anton Paar社의 MCR301 Model 레오미터(rheometer)를 사용하여 측정하였다. 측정시편은 두께 30mil inch(0.762mm)의 원판 시편을 Compression Mouling으로 성형하였으며, 섭씨 275도에서 1rad/s의 속도로 25%의 Strain을 유지하며 점도의 증가를 10분간 측정하였다. 폴리케톤은 고열에서 Carbonyl기의 존재로 인해 Chain Breaking 및 Crosslinking이 발생하여 시간의 증가에 따른 점도가 증가하는 추세를 보인다. 따라서 첨가제의 폴리케톤에 대한 열 안정효과는 Rheometer 측정시 점도의 증가가 느릴수록 효과가 우수하다고 판단할 수 있다.
(5) 융점 Tm 측정
시료 5mg을 질소 분위기하에서 시차주사열량계(Differential Scanning Calorimeter, DSC)를 사용하여 하기 조건으로 측정하였다.
분위기: 질소 유량 = 200ml/분
온도 조건: ① 20℃에서 1분간 유지, ② 20℃ → 250℃ (승온속도=20℃/분)
②에서의 최대 흡열 피크의 피크 톱 온도를 융점으로 하였다.
이하, 실시예 및 비교예를 가지고 본 발명의 구성 및 효과를 보다 상세히 설명하나, 이들 실시예는 단지 본 발명을 보다 명확하게 이해시키기 위한 것일 뿐, 본 발명의 범위를 한정하고자 하는 것은 아니다. 실시예 및 비교예에서 폴리케톤의 원소량, 촉매활성, 고유점도, 점도 증가치 및 융점은 하기와 같은 방법으로 평가하였다.
실시예
1
폴리케톤 중합 반응기에 일산화탄소(CO)와 에틸렌(Ethylene : C2H4) 및 프로필렌(Propylene : C3H6)로 이루어지는 모노머 가스와 팔라듐(Palladium : Pd II)과 바이덴테이트 포스핀 리간드(Bidentate Phosphine Ligand) 및 산(Acid)으로 이루어지는 고체 촉매를 투입하고, 촉매 개시제로 기체 상태의 메탄올(MeOH)을 1.0ml/min 투입하여 중합 반응을 진행하였다.
실시예
2
폴리케톤 중합 반응기에 일산화탄소(CO)와 에틸렌(Ethylene : C2H4) 및 프로필렌(Propylene : C3H6)로 이루어지는 모노머 가스와 팔라듐(Palladium : Pd II)과 바이덴테이트 포스핀 리간드(Bidentate Phosphine Ligand) 및 산(Acid)으로 이루어지는 고체 촉매를 투입하고, 촉매 개시제로 기체 상태의 메탄올(MeOH)을 1.5ml/min 투입하여 중합 반응을 진행하였다.
실시예
3
폴리케톤 중합 반응기에 일산화탄소(CO)와 에틸렌(Ethylene : C2H4) 및 프로필렌(Propylene : C3H6)로 이루어지는 모노머 가스와 팔라듐(Palladium : Pd II)과 바이덴테이트 포스핀 리간드(Bidentate Phosphine Ligand) 및 산(Acid)으로 이루어지는 고체 촉매를 투입하고, 촉매 개시제로 기체 상태의 메탄올(MeOH)을 2.0ml/min 투입하여 중합 반응을 진행하였다.
실시예
4
폴리케톤 중합 반응기에 일산화탄소(CO)와 에틸렌(Ethylene : C2H4) 및 프로필렌(Propylene : C3H6)로 이루어지는 모노머 가스와 팔라듐(Palladium : Pd II)과 바이덴테이트 포스핀 리간드(Bidentate Phosphine Ligand) 및 산(Acid)으로 이루어지는 고체 촉매를 투입하고, 촉매 개시제로 기체 상태의 메탄올(MeOH)을 2.5ml/min 투입하여 중합 반응을 진행하였다.
비교예
1
폴리케톤 중합 반응기에 일산화탄소(CO)와 에틸렌(Ethylene : C2H4) 및 프로필렌(Propylene : C3H6)로 이루어지는 모노머 가스와 팔라듐(Palladium : Pd II)과 바이덴테이트 포스핀 리간드(Bidentate Phosphine Ligand) 및 산(Acid)으로 이루어지는 고체 촉매를 투입하여 중합 반응을 진행하였다.
메탄올 공급량(MeOH Feeding : ml/min) | 폴리케톤 생산량(Product : g) | 활성도(kg/g.Pd/hr) | |
비교예 1 | 0 | 7.32 | 0.241 |
실시예 1 | 1.0 | 33.74 | 1.112 |
실시예 2 | 1.5 | 54.76 | 1.805 |
실시예 3 | 2.0 | 62.79 | 2.070 |
실시예 4 | 2.5 | 80.60 | 2.657 |
상기 [표 3]에서 나타난 바와 같이, 실시예 1에서 촉매 개시제로 기체 상태의 메탄올(MeOH)을 1.0ml/min 공급할 경우, 폴리케톤의 생산량은 33.74g이고, 활성도는 1.112kg/g이고, 실시예 2에서 촉매 개시제로 기체 상태의 메탄올(MeOH)을 1.5ml/min 공급할 경우, 폴리케톤의 생산량은 54.74g이고, 활성도는 1.805kg/g이며, 실시예 3에서 촉매 개시제로 기체 상태의 메탄올(MeOH)을 2.0ml/min 공급할 경우, 폴리케톤의 생산량은 62.79g이고, 활성도는 2.070kg/g이고, 실시예 4에서 촉매 개시제로 기체 상태의 메탄올(MeOH)을 2.5ml/min 공급할 경우, 폴리케톤의 생산량은 80.60g이고, 활성도는 2.657kg/g임을 확인할 수 있다.
이는, 촉매 개시제로 메탄올(MeOH)을 공급하지 않은 비교예 1에서의 폴리케톤 생산량 7.32g 및 활성도 0.241kg/g에 비하여 최대 20배 이상 촉매 활성이 증가된 것을 알 수 있으며, 촉매 개시제로 메탄올(MeOH)의 공급 및 투입량이 증가할 수록 활성이 증가함을 확인할 수 있다.
실시예
5
<단계 1> 3성분
착물의
제조
아세톤 용매 5L에 ((2,2-디메틸-1,3-디옥산-5,5-디일)비스(메틸렌)비스(비스(2-메톡시페닐)포스핀) 8.3035g(13.12mmol)을 첨가한 후, 30분 이상 자석교반기(Magnetic Stirrer)로 교반하여 완전히 용해시킨다. 이후, 팔라듐 아세테이트(Palladium Acetate)를 2.8061g(12.50mmol)을 첨가하여 30분간 교반하여 완전히 용해시킨다. 상기와 같은 2성분의 용해를 확인한 후, 트리플루오로 아세트산(Trifluoroacetic acid)을 14.25g(124.9mmol)을 첨가한 후, 30분간 교반하여 3성분 착물을 형성하였다.
<단계 2> 고체상 촉매의 제조
상기 단계 1에서 제조한 3성분 착물 용액을 회전 증발기를 이용하여 총 부피가 1L가 될 때까지 아세톤을 증발시킨 후, 남아있는 용액에 헥산 또는 헵탄 1L를 천천히 첨가하여 아세톤 용액과 섞이지 않도록 이층 구조의 용액층을 형성한다.
이후, -10℃ 이하의 냉동상태로 보관한다. 냉동상태에서 1일 동안 방치한 후, 적황색의 단결정을 얻을 수 있었다. 얻어진 단결정은 상온의 헥산으로 세척한 후, 초미분쇄기(Micronizer)를 이용하여 1㎛ 이하로 분쇄하여 고체상 촉매를 제조하였다. 제조된 고체상 촉매는 입도 분석을 통하여 입자 크기가 1㎛(D50)인 것을 확인하였다.
비교예
2
폴리케톤 중합설비의 가동시 실시간 가동중인 MeOH 분별증류장치에서 발생되는 부산물인 Heavy End 용액을 실시간으로 채취하여 상온(약 20℃)로 자연냉각 하였다. Heavy End 용액 배출시의 온도는 65℃ 였으며 갈색의 탁한 용액이었으며, 냉각에 따라 갈색의 침전물이 발생하였다. 총 15.77kg의 용액을 10um glass filter 로 고액분리 하였으며, 침전물 582g을 수득하였다. 고체상/액체상의 ICP-AES 분석을 통한 결과 고체상에 507ppm(82%), 액체상에 4.2ppm(18%)의 팔라듐이 잔존하였다.
실시예
6~10
비교예 2에서 수득한 Heavy End 액체상을 채취하여 NaOH 및 Sodium thiosulfate를 표 4와 같이 처방하여 6시간 교반후 여과하고 용액상을 ICP-AES 분석을 통해 용액상의 팔라듐 잔사량감소를 확인하였다. Heavy End Liquid 내 NaOH 첨가량 증가에 따른 고체상내 팔라듐 침전량의 증가 경향이 관찰되었다.
sample 분류 | NaOH 첨가량(g/l) | Na2S2O3 첨가량(g/l) | Pd 함유량 (ppm) | 발생량(g) | Pd 잔존비율(%) | |
비교예2 | Heavy End Solid | - | - | 507 | 582 | 82 |
Heavy End liquid | - | - | 4.2 | 15.190 | 18 | |
실시예6 | Heavy End Solid | - | - | 507 | 582 | 83 |
Heavy End liquid | 0.5 | - | 3.9 | 15.190 | 17 | |
실시예7 | Heavy End Solid | - | - | 507 | 582 | 85 |
Heavy End liquid | 1.0 | - | 3.5 | 15.190 | 15 | |
실시예8 | Heavy End Solid | - | - | 507 | 582 | 89 |
Heavy End liquid | 1.5 | - | 2.3 | 15.190 | 11 | |
실시예9 | Heavy End Solid | - | - | 507 | 582 | 97 |
Heavy End liquid | 2.0 | - | 1.4 | 15.190 | 7 | |
실시예10 | Heavy End Solid | - | - | 507 | 582 | 94 |
Heavy End liquid | 1.0 | 1.0 | 1.3 | 15.190 | 6 |
실시예
11
(2,2-디메틸-1,3-디옥산-5,5-디일)비스(메틸렌))비스(비스(2-메톡시페닐)포스핀) 8.3037g을 5L 아세톤에 용해 후 초산팔라듐 2.8061g을 추가하여 용해하였다. 중합시작 시점에 트리플로로초산 14.252g을 첨가 교반하여 촉매용액을 제조하였다. 1m3 스테인레스 반응기에 메탄올 490L, 물 7.9L, 시드용 폴리케톤 파우더 8.5kg를 투입 후, 이 용액을 3.5bar 질소 퍼지를 3회 수행하여 공기를 제거하였다. 프로필렌을 40kg 반응기에 정량 충진 후 반응기의 온도를 섭씨 78도로 상승시켰다. 교반기를 교반하면서 일산화탄소:에틸렌=1:1 비율로 56bar 까지 충진하였다. 상기에 제조된 촉매용액을 고압 Pump로 투입하면서 중합을 개시하였으며, 78도에서 1시간20분, 84도에서 2시간 50분 동안 중합기의 압력을 일산화탄소:에틸렌=1:1 으로 보충하여 56bar를 유지 하였다. 이후 25분간 Monomer 공급이 없이 유지하여 중합을 완료하였다.
중합후 메탄올 슬러리 상에 생성된 중합물 대비 TCP 500ppm을 투입하여 30 분간 교반하였다. 반응용액을 여과하고, 메탄올로 수 회 세정 후, 117.5kg의 중합물을 수득하였다. (중합활성 19.047kg/g-Pd/hr)
13C-NMR 및 IR 결과로부터 이 중합체가 실질적으로 일산화탄소 유래의 반복단위와 에틸렌 유래의 반복단위 및 프로필렌 유래의 반복단위로 구성된 폴리케톤인 것을 확인하였다.
촉매활성은 19.05kg/g-Pd/hr에 상당하고, 고유점도는 1.4dl/g였다.
두께 30mil inch(0.762mm)의 원판 시편을 Compression Mouling으로 성형하였으며, 섭씨 275도에서 1rad/s의 속도로 25%의 Strain을 유지하며 점도의 증가를 10분간 측정하여 표 5 및 도 3에 나타내었다.
비교예
3
실시예 1의 메탄올 슬러리에 TCP 500ppm을 투입하는 대신, 제조된 중합체에 TCP 250ppm을 투입하는 공정을 제외하고는 실시예 11과 동일하다.
13C-NMR 및 IR 결과로부터 이 중합체가 실질적으로 일산화탄소 유래의 반복단위와 에틸렌 유래의 반복단위 및 프로필렌 유래의 반복단위로 구성된 폴리케톤인 것을 확인하였다.
촉매활성은 19.21kg/g-Pd/hr에 상당하고, 고유점도는 1.4dl/g이었다.
두께 30mil inch (0.762mm)의 원판 시편을 Compression Mouling으로 성형하였으며, 섭씨 275도에서 1rad/s의 속도로 25%의 Strain을 유지하며 점도의 증가를 10분간 측정하여 표 5 및 도 3에 나타내었다.
비교예
4
폴리케톤의 중합과정은 실시예 1의 공정과 동일하며 TCP의 투입 없이 메탄올 세정, 여과, 감압건조의 과정을 거친 후 5000ppm의 TCP를 Drying상태에서 폴리케톤 중합물과 Tumbler를 사용하여 혼합, 압출하였다.
촉매활성은 19.11kg/g-Pd/hr에 상당하고, 고유점도는 1.4dl/g이었다.
두께 30mil inch (0.762mm)의 원판 시편을 Compression Mouling으로 성형하였으며, 섭씨 275도에서 1rad/s의 속도로 25%의 Strain을 유지하며 점도의 증가를 10분간 측정하여 표 5 및 도 3에 나타내었다.
본 발명에 의하면, 액상 매체 중에서 일산화탄소와 에틸렌성 불포화 화합물을 공중합하여 폴리케톤을 제조할 때, 메탄올 슬러리 상태에 TCP를 투입한 실시예 1의 경우가 가장 우수한 내열안정성을 발현하였다(표 5 및 도 3 참조). 특히, 실시예 1의 폴리케톤은 리오미터를 사용한 10분간의 점도증가가 1,500Pa*s 이하를 나타내어 비교예보다 내열성이 우수하였다.
항목 | TCP 함량 | TCP 투입방법 | Rheometer상 점도증가(10min) |
실시예11 | 500ppm | MeOH Slurry에 투입 | 1,280 |
비교예3 | 250ppm | MeOH Slurry에 투입 | 2,330 |
비교예4 | 5000ppm | Dry powder와 혼합 | 4,030 |
실시예
12
(2,2-디메틸-1,3-디옥산-5,5-디일)비스(메틸렌))비스(비스(2-메톡시페닐)포스핀) 8.3037g을 5L 아세톤에 용해 후 초산팔라듐 2.8061g을 추가하여 용해하였다. 중합시작 시점에 트리플로로초산 14.252g을 첨가 교반하여 촉매용액을 제조하였다. 1m3 스테인레스 반응기에 메탄올 490L, 물 7.9L, 시드용 폴리케톤 파우더 8.5kg를 투입 후, 이 용액을 3.5bar 질소 퍼지를 3회 수행하여 공기를 제거하였다. 프로필렌을 45kg 반응기에 정량 충진 후 반응기의 온도를 섭씨 72도로 상승시켰다. 교반기를 교반하면서 일산화탄소:에틸렌=1:1 비율로 56bar 까지 충진하였다. 상기에 제조된 촉매용액을 고압 Pump로 투입하면서 중합을 개시하였으며, 72도에서 2시간40분, 78도에서 3시간 10분 동안 중합기의 압력을 일산화탄소:에틸렌=1:1 으로 보충하여 56bar를 유지하였다. 이후 25분간 Monomer 공급이 없이 유지하여 중합을 완료하였다.
13C-NMR 및 IR 결과로부터 이 중합체가 실질적으로 일산화탄소 유래의 반복단위와 에틸렌 유래의 반복단위 및 프로필렌 유래의 반복단위로 구성된 폴리케톤인 것을 확인하였다.
촉매활성은 16.9kg/g-Pd/hr에 상당하고, 고유점도는 1.91dl/g였다. 수득된 폴리케톤 중합체슬러리에 NaBH4를 0.01%를 첨가하였고 1시간 교반하였다. 메탄올을 세정 후 감압건조하여 저융점 폴리케톤 중합체를 수득하였다. 융점과 Pd잔사량을 표 6에 나타내었다.
실시예
13
수득된 폴리케톤 중합체슬러리에 NaBH4를 0.05%를 첨가한 것을 제외하고는 실시예 12과 동일하게 저융점 폴리케톤을 제조하였으며 융점과 Pd잔사량을 표 6에 나타내었다.
실시예
14
수득된 폴리케톤 중합체슬러리에 NaBH4를 0.10%를 첨가한 것을 제외하고는 실시예 12과 동일하게 저융점 폴리케톤을 제조하였으며 융점과 Pd잔사량을 표 6에 나타내었다.
실시예
15
수득된 폴리케톤 중합체슬러리에 NaBH4를 0.25%를 첨가한 것을 제외하고는 실시예 12과 동일하게 저융점 폴리케톤을 제조하였으며 융점과 Pd잔사량을 표 1에 나타내었다.
실시예
16
수득된 폴리케톤 중합체슬러리에 NaBH4를 0.30%를 첨가한 것을 제외하고는 실시예 12과 동일하게 저융점 폴리케톤을 제조하였으며 융점과 Pd잔사량을 표 6에 나타내었다.
비교예
5
(2,2-디메틸-1,3-디옥산-5,5-디일)비스(메틸렌))비스(비스(2-메톡시페닐)포스핀) 8.3037g을 5L 아세톤에 용해 후 초산팔라듐 2.8061g을 추가하여 용해하였다. 중합시작 시점에 트리플로로초산 14.252g을 첨가 교반하여 촉매용액을 제조하였다. 1m3 스테인레스 반응기에 메탄올 490L, 물 7.9L, 시드용 폴리케톤 파우더 8.5kg를 투입 후, 이 용액을 3.5bar 질소 퍼지를 3회 수행하여 공기를 제거하였다. 프로필렌을 150kg 반응기에 정량 충진 후 반응기의 온도를 섭씨 62도로 상승시켰다. 교반기를 교반하면서 일산화탄소:에틸렌=1:1 비율로 56bar 까지 충진하였다. 상기에 제조된 촉매용액을 고압 Pump로 투입하면서 중합을 개시하였으며, 62도에서 2시간40분, 68도에서 3시간 10분 동안 중합기의 압력을 일산화탄소:에틸렌=1:1 으로 보충하여 56bar를 유지하였다. 이후 25분간 Monomer 공급이 없이 유지하여 중합을 완료하였다.
13C-NMR 및 IR 결과로부터 이 중합체가 실질적으로 일산화탄소 유래의 반복단위와 에틸렌 유래의 반복단위 및 프로필렌 유래의 반복단위로 구성된 폴리케톤인 것을 확인하였다.
촉매활성은 8.41kg/g-Pd/hr에 상당하고, 고유점도는 1.93dl/g였다. 이 때 폴리케톤 중합체의 용융온도(Tm)은 190도 이었다(표 6 참조).
항목 | 중합촉매 활성 | NaBH4 투입량 | 융점 | Pd 잔사량 |
실시예 12 | 16.6kg/g-Pd/hr | 0.01% | 215 | 2.1ppm |
실시예 13 | 16.9kg/g-Pd/hr | 0.05% | 206 | 2.3ppm |
실시예 14 | 16.0kg/g-Pd/hr | 0.10% | 199 | 2.0ppm |
실시예 15 | 16.4kg/g-Pd/hr | 0.25% | 193 | 2.5ppm |
실시예 16 | 15.8kg/g-Pd/hr | 0.30% | 192 | 1.9ppm |
비교예 5 | 8.41 | 0.00% | 190 | 5.8ppm |
본 발명에 의하면, 액상 매체 중에서 일산화탄소와 에틸렌성 불포화 화합물을 공중합하여 폴리케톤을 제조할 때, 메탄올 슬러리 상태에서 NaBH4를 투입한 중합물의 생산성(실시예, 중량대비 0.01% 내지 3%로 투입)이 프로필렌 과량투입으로 중합한(비교예 5)대비 약 2배 이상의 생산성을 확보하고 있으며, 중합물 내 금속촉매인 Pd의 잔사량이 절반이하의 함량을 나타내었다. 또한, IR 및 NMR로 확인결과 실시예 1 내지 5에 의해 제조된 저융점 폴리케톤은 케톤기와 하이드록실기의 비율은 95:5 내지 99.99:0.01였다.
상기의 과정을 거쳐 제조된 저융점 폴리케톤은 생산성이 우수하고, Pd 잔사량이 낮은 바 압출용 제품 또는 필름에 적용되기에 적합한 것으로 판명되었다.
비교예
6
도 4과 같은 공정에서 Centrifuge(5) 고액 분리장치를 대신하여 10um의 Filter Housing 장치를 구성하였며, Tank내 Air Line, 3-Way Valve(7), Filter(8), 액상 회수장치(9)가 생략된 장치로 Filter 작업을 1개월간 수행하였다. 수득한 Slurry를 건조하여 총 54kg의 고체상 부유물을 수득하였으며, 액상용액은 폐기처리 하였다. 수득한 Slurry의 ICP(Inductively Coupled Plama)분석결과 Pd 함량은 약 2050ppm 이었으며 폐기한 액상용액의 ICP 결과 Pd 함량은 4.1ppm 이었다.
1개월 간의 작업이 완료된 후 Heavy End Tank 내부를 관찰한 결과 Tank의 하단에 과량의 고체상 부유물이 배출되지 못한 것을 확인하였으며, 수득결과 약 90kg의 고체상 부유물이 Tank 내부에 남아 있는 것으로 확인되었다.
Filer catridge 의 교체주기는 30분이었으며, 매번 Filter 의 교체작업으로 인한 고체상 부유물의 손실은 약 5% 내외였다.
실시예
17
도 4과 같은 장치를 구성하여 1개월간 장치를 가동하였다. Centrifuge 고/액 분리장치(5)를 통한 Slurry를 건조하여 총 148kg의 고체상 부유물을 수득하였으며, 액상용액은 액상회수기를 통하여 g의 Pd가 액상 회수기내 컬럼에 부착하였음을 확인하였다. 수득한 Slurry의 ICP(Inductively Coupled Plama)분석결과 Pd 함량은 약 2015ppm 이었으며 폐기한 액상용액의 ICP 결과 Pd 함량은 0.5ppm 이었다.
고체상 | 액상회수기 | Pd 계(kg) | |||
수득량(kg) | Pd 함량(ppm) | Pd존재량(kg) | Pd 함량 | ||
비교예 | 54.21 | 2050 | 0.11 | - | 0.11 |
실시예 | 148.33 | 2015 | 0.30 | 0.06 | 0.36 |
상기 표 7에서와 같이 본 발명의 실시예를 통해 팔라듐 귀금속을 회수하는 경우 회수된 고체상 슬러지에서 높은 Pd 회수 효과를 보이는 것 뿐만 아니라, 액상회수기를 통해 Pd 귀금속을 회수할 수 있다.
Claims (31)
- 폴리케톤 기상 중합에 있어서,폴리케톤 기상 중합 시 중합 반응기 내에 투입되는 모노머 가스(Monomer Gas) 및 고체 촉매에 촉매 개시제(Initiator)로 메탄올(MeOH)을 투입하는 것을 특징으로 하는 기상 중합을 이용한 폴리케톤 제조방법.
- 청구항 1에 있어서,상기 메탄올(MeOH)을 기화하여 기체 상태로 중합 반응기에 투입하는 것을 특징으로 하는 기상 중합을 이용한 폴리케톤 제조방법.
- 청구항 1에 있어서,상기 메탄올(MeOH)을 모노머 가스에 혼합하여 중합 반응기에 투입하는 것을 특징으로 하는 기상 중합을 이용한 폴리케톤 제조방법.
- 제8족 전이금속 화합물; 제15족 원소를 가지는 리간드; 및 pKa가 4 이하인 산의 음이온으로 이루어지며,입자 크기가 5nm 내지 100㎛인 폴리케톤 중합용 고체상 촉매.
- 제4항에 있어서,상기 제8족 전이금속 화합물은 팔라듐 아세테이트이고,상기 제15족 원소를 가지는 리간드는 ((2,2-디메틸-1,3-디옥산-5,5-디일)비스(메틸렌))비스(비스(2-메톡시페닐)포스핀)이며,상기 pKa가 4 이하인 산의 음이온은 트리플루오로 아세트산, 트리플루오로메탄 술폰산, p-톨루엔 술폰산 및 황산으로 이루어진 군에서 선택된 1종인 것을 특징으로 하는 폴리케톤 중합용 고체상 촉매.
- 용매에 제8족 전이금속 화합물; 제15족 원소를 가지는 리간드; 및 pKa가 4 이하인 산의 음이온을 첨가한 후, 교반하여 3성분 착물을 형성하는 단계;상기 3성분 착물에서 용매를 제거한 후, -10℃ 이하의 온도에서 냉동하여 단결정을 형성하는 단계; 및상기 단결정을 분쇄하여 고체상 촉매를 형성하는 단계를 포함하는 폴리케톤 중합용 고체상 촉매의 제조방법.
- 제3항에 있어서,상기 고체상 촉매의 입자 크기가 5nm 내지 100㎛인 것을 특징으로 하는 폴리케톤 중합용 고체상 촉매의 제조방법.
- 제6항에 있어서,상기 제8족 전이금속 화합물은 팔라듐 아세테이트이고,상기 제15족 원소를 가지는 리간드는 ((2,2-디메틸-1,3-디옥산-5,5-디일)비스(메틸렌))비스(비스(2-메톡시페닐)포스핀)이며,상기 pKa가 4 이하인 산의 음이온은 트리플루오로 아세트산, 트리풀로오로메탄 술폰산, p-톨루엔 술폰산 및 황산으로 이루어진 군에서 선택된 1종인 것을 특징으로 하는 폴리케톤 중합용 고체상 촉매의 제조방법.
- 제6항에 기재된 제조방법으로 제조된 폴리케톤 중합용 고체상 촉매의 존재 하에, 일산화탄소와 에틸렌성 불포화 화합물을 공중합하는 단계를 포함하는 폴리케톤의 제조방법.
- 폴리케톤 중합공정의 팔라듐 금속 촉매 회수방법에 있어서,팔라듐-바이덴테이트 포스핀리간드-pK 4이하의 산으로 구성된 액상 폴리케톤 슬러리 중합공정의 분별증류 정제과정 중 발생하는 Heavy End Solution에서 팔라듐을 고체상으로 침전시키는 것을 특징으로 하는 팔라듐 금속 촉매 회수방법.
- 제 10에 있어서,상기 분별증류 정제과정 중 발생하는 Heavy End Solution에 염기 및/또는 환원제를 사용하는 것을 특징으로 하는 팔라듐 금속 촉매 회수방법.
- 제 10항에 있어서,상기 염기는 NaOH, KOH, LiOH, Mg(OH)2 및 NH3로 이루어진 군에서 선택된 어느 하나이고, 상기 환원제는 Sodium thiosulfate, ferrocyanide, Sodium Borohydride, Diborane, Lithium aluminium hydride, Sulfite Compound 및 Hydrazine로 이루어진 군에서 선택된 어느 하나 인 것을 특징으로 하는 팔라듐 금속 촉매 회수방법.
- 제 11항에 있어서,상기 염기의 함유량은 0.5 내지 3 g/l 이고, 상기 환원제의 함유량은 0.5 내지 2 g/l인 것을 특징으로 하는 팔라듐 금속 촉매 회수방법.
- 제9족, 제10족 또는 제11족 전이금속화학물, 제15족의 원소를 가지는 리간드 및 pKa가 4이하인 산의 음이온으로 이루어진 유기금속 착체 촉매 존재 하에서 메탄올과 물로 이루어진 혼합용매에 첨가하는 단계;상기 촉매를 포함하는 혼합용매에 일산화탄소와 에틸렌성 불포화 화합물의 혼합기체를 첨가하여 메탄올 슬러리를 제조하는 단계; 및상기 메탄올 슬러리에서 폴리케톤을 분리하는 단계를 포함하는 폴리케톤의 제조방법에 있어서,상기 메탄올 슬러리에 첨가제를 투입하는 단계를 포함하는 것을 특징으로 하는 폴리케톤의 제조방법.
- 제 14항에 있어서,상기 첨가제는 내열안정제, 산화방지제 및 자외선차단제로 이루어진 군에서 선택된 어느 하나 이상이고, 상기 첨가제는 파우더형태인 것을 특징으로 하는 폴리케톤의 제조방법.
- 제 15항에 있어서,상기 내열안정제는 트리칼슘포스페이트인 것을 특징으로 하는 폴리케톤의 제조방법.
- 제 14항 내지 제 16항 중 어느 한 항의 제조방법으로 제조된 것을 특징으로 하는 폴리케톤.
- 제 17항에 있어서,상기 폴리케톤은 리오미터를 사용한 10분간의 점도증가가 1,500Pa*s 이하인 것을 특징으로 하는 폴리케톤.
- 제9족, 제10족 또는 제11족 전이금속화학물, 제15족의 원소를 가지는 리간드 및 pKa가 4이하인 산의 음이온으로 이루어진 유기금속 착체 촉매 존재 하에서 메탄올과 물로 이루어진 혼합용매에 첨가하는 단계; 및 상기 촉매를 포함하는 혼합용매에 일산화탄소와 에틸렌성 불포화 화합물의 혼합기체를 첨가하여 폴리케톤을 제조하는 방법에 있어서,제조된 폴리케톤을 메탄올 용매하에서 하이드라이드 음이온 제공체를 첨가하는 단계를 포함하는 것을 특징으로 하는 저융점 폴리케톤의 제조 방법.
- 제 19항에 있어서,상기 하이드라이드 음이온 제공체는 리튬알루미늄하이드라이드 또는 소듐보로하이드라이드인 것을 특징으로 하는 저융점 폴리케톤의 제조방법.
- 제 19항에 있어서,상기 하이드라이드 음이온 제공체는 폴리케톤 중합체 슬러리 전체 중량대비 0.01% 내지 3%첨가되는 것을 특징으로 하는 저융점 폴리케톤의 제조방법.
- 제 19항 내지 제 21항 중 어느 한 항의 제조방법으로 제조된 것을 특징으로 하는 저융점 폴리케톤.
- 제 22항에 있어서,상기 저융점 폴리케톤은 융점이 190~215도 인 것을 특징으로 하는 저융점 폴리케톤.
- 제 22항에 있어서,상기 저융점 폴리케톤은 케톤기와 하이드록실기의 비가 95:5 내지 99.99:0.01 인 것을 특징으로 하는 저융점 폴리케톤.
- 제 22항에 있어서,상기 저융점 폴리케톤은 압출용 제품 또는 필름에 적용되는 것을 특징으로 하는 저융점 폴리케톤.
- 폴리케톤 중합용매의 정제장치로부터 발생하는 헤비 엔드(Heavy End) 폐기물에서의 귀금속 팔라듐의 회수장치에 있어서,헤비 엔드 탱크;상기 헤비 엔드 탱크 중앙 하단에 위치한 배출구로 나오는 슬러리(Slurry)를 이송하기 위한 슬러리 펌프(Slurry Pump);상기 슬러리 펌프를 통해 이송된 슬러리를 고체상과 액체상으로 분리하기 위한 센트리퓨지(Centrifuge) 고액 분리장치;상기 센트리 퓨지 고액 분리장치를 통해 배출된 고체상의 부유물을 회수하는 헤비 엔드 슬러지(Heavy End Sludge) 수득장치;상기 센트리 퓨지 고액 분리장치를 통과한 액상을 헤비엔드 탱크로 회수하거나 필터로 이송시키는 쓰리 웨이 밸브(3way-Valve);상기 쓰리 웨이 밸브를 거친 액상을 필터링 하는 필터(Filter); 및상기 필터를 거친 액상에서 팔라듐을 회수하는 팔라듐 회수장치를 포함하는 것을 특징으로 귀금속 팔라듐의 회수장치.
- 제 26항에 있어서,헤비 엔드 탱크는 내부 하단 테두리에 에어버블링(Air Bubbling)장치를 포함하는 것을 특징으로 귀금속 팔라듐의 회수장치.
- 제 26항에 있어서,상기 필터의 공극은 10um이하인 것을 특징으로 귀금속 팔라듐의 회수장치.
- 제 26항에 있어서,상기 슬러리 펌프는 헤비 엔트 탱크 내부의 온도가 30도 이상으로 상승시 가동을 멈추는 것을 특징으로 귀금속 팔라듐의 회수장치.
- 제 26항에 있어서,상기 슬러리 펌프는 격막식 펌프인 것을 특징으로 귀금속 팔라듐의 회수장치.
- 제 1항에 있어서,상기 헤비 엔드 탱크는 쿨링 재킷(Cooling Jacket)이 설치된 것을 특징으로 귀금속 팔라듐의 회수장치.
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2014-0161990 | 2014-11-19 | ||
KR1020140161990A KR101664921B1 (ko) | 2014-11-19 | 2014-11-19 | 저융점 폴리케톤의 제조방법 |
KR1020140161989A KR101664925B1 (ko) | 2014-11-19 | 2014-11-19 | 첨가제를 투입한 폴리케톤의 제조방법 |
KR10-2014-0161989 | 2014-11-19 | ||
KR1020140188414A KR101620570B1 (ko) | 2014-12-24 | 2014-12-24 | 폴리케톤 촉매를 회수하기 위한 장치 |
KR10-2014-0188414 | 2014-12-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016080656A1 true WO2016080656A1 (ko) | 2016-05-26 |
Family
ID=56014143
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2015/010952 WO2016080656A1 (ko) | 2014-11-19 | 2015-10-16 | 폴리케톤 제조방법 |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2016080656A1 (ko) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR0160116B1 (ko) * | 1988-09-29 | 1999-01-15 | 오노 알버어스 | 중합체 제조 방법 |
JP2003096187A (ja) * | 2001-09-19 | 2003-04-03 | Asahi Kasei Corp | ポリケトンの製造方法 |
JP2004059730A (ja) * | 2002-07-29 | 2004-02-26 | Asahi Kasei Corp | ポリケトンの製法 |
KR20100044422A (ko) * | 2008-10-22 | 2010-04-30 | 주식회사 효성 | 촉매 전구체를 사용한 폴리케톤의 제조방법 |
KR20150120097A (ko) * | 2014-04-17 | 2015-10-27 | 주식회사 효성 | 기상 중합을 이용한 폴리케톤 제조방법 |
-
2015
- 2015-10-16 WO PCT/KR2015/010952 patent/WO2016080656A1/ko active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR0160116B1 (ko) * | 1988-09-29 | 1999-01-15 | 오노 알버어스 | 중합체 제조 방법 |
JP2003096187A (ja) * | 2001-09-19 | 2003-04-03 | Asahi Kasei Corp | ポリケトンの製造方法 |
JP2004059730A (ja) * | 2002-07-29 | 2004-02-26 | Asahi Kasei Corp | ポリケトンの製法 |
KR20100044422A (ko) * | 2008-10-22 | 2010-04-30 | 주식회사 효성 | 촉매 전구체를 사용한 폴리케톤의 제조방법 |
KR20150120097A (ko) * | 2014-04-17 | 2015-10-27 | 주식회사 효성 | 기상 중합을 이용한 폴리케톤 제조방법 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2010013948A9 (en) | Novel coordination complexes and process of producing polycarbonate by copolymerization of carbon dioxide and epoxide using the same as catalyst | |
WO2016072641A1 (ko) | 내마모성이 우수한 폴리케톤 수지 조성물 | |
KR100851423B1 (ko) | 금속 화합물 촉매와 관련된 개선된 방법 | |
WO2012138017A1 (en) | Apparatus and method for continuously producing carbon nanotubes | |
WO2016010407A2 (ko) | 내유성이 우수한 폴리케톤 수지 조성물 | |
WO2020159085A1 (ko) | 폴리아미드 수지 필름 및 이를 이용한 수지 적층체 | |
WO2018074652A1 (en) | Catalyst and continuous process for mass production of multi-walled carbon nanotube | |
WO2011129519A2 (en) | Block and graft copolymers of poly (alkylene carbonate) and various polymers | |
WO2016010406A2 (ko) | 내수성이 우수한 폴리케톤 수지 조성물 | |
WO2016080656A1 (ko) | 폴리케톤 제조방법 | |
WO2015133805A1 (ko) | 크롬 화합물, 이를 포함하는 촉매 시스템 및 이를 이용한 에틸렌 3량화 방법 | |
WO2022060153A1 (ko) | 에스테르 작용기를 포함하는 고분자의 해중합 촉매 및 이를 이용한 해중합 방법 | |
WO2016072642A2 (ko) | 내충격성이 우수한 폴리케톤 수지 조성물 | |
WO2022045837A1 (ko) | 중수소화 방향족 화합물의 제조 방법 및 중수소화 반응 조성물 | |
WO2020190047A1 (ko) | 불균일계 수소화 촉매, 그의 제조 방법, 및 상기 촉매를 사용한 이산화탄소 수소화 방법 | |
KR101408611B1 (ko) | 폴리머의 정제 방법 및 폴리머 | |
WO2019088377A1 (ko) | 두 고리 구조를 갖는 포스포라미다이트 유도체, 이의 제조방법 및 그 용도 | |
WO2023191535A1 (ko) | 클릭반응을 이용한 패턴화된 cnt 필름 코팅 기판 및 이의 제조방법 | |
WO2022245079A1 (ko) | 수지 및 이의 제조방법 | |
WO2016060511A2 (ko) | 전도성이 우수한 폴리케톤 수지 조성물 | |
WO2023277347A1 (ko) | 트리사이클로데칸 디메탄올 조성물 및 이의 제조방법 | |
WO2023277624A1 (ko) | 폴리페닐렌 옥사이드의 제조방법 | |
WO2023163481A1 (ko) | 다단 해중합을 통한 재생 비스(2-히드록시에틸)테레프탈레이트의 제조방법 | |
WO2024167274A1 (ko) | 폴리알킬렌카보네이트 수지 조성물 및 이의 제조방법 | |
WO2021162304A1 (ko) | 음이온 중합 개시제, 음이온 중합 개시제 조성물 및 이의 제조방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15861433 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 15861433 Country of ref document: EP Kind code of ref document: A1 |