WO2016080350A1 - Multilayer capacitor - Google Patents

Multilayer capacitor Download PDF

Info

Publication number
WO2016080350A1
WO2016080350A1 PCT/JP2015/082131 JP2015082131W WO2016080350A1 WO 2016080350 A1 WO2016080350 A1 WO 2016080350A1 JP 2015082131 W JP2015082131 W JP 2015082131W WO 2016080350 A1 WO2016080350 A1 WO 2016080350A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
external
side connection
connection portion
multilayer capacitor
Prior art date
Application number
PCT/JP2015/082131
Other languages
French (fr)
Japanese (ja)
Inventor
畠中 英文
啓太 前原
Original Assignee
京セラ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京セラ株式会社 filed Critical 京セラ株式会社
Priority to JP2016560210A priority Critical patent/JPWO2016080350A1/en
Publication of WO2016080350A1 publication Critical patent/WO2016080350A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/228Terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/002Details
    • H01G4/228Terminals
    • H01G4/232Terminals electrically connecting two or more layers of a stacked or rolled capacitor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G4/00Fixed capacitors; Processes of their manufacture
    • H01G4/30Stacked capacitors

Definitions

  • the present invention relates to a multilayer capacitor, and particularly to a multilayer capacitor mounted on a substrate by a pair of external terminals provided on a pair of external electrodes.
  • a multilayer capacitor dielectric layers and internal electrodes are alternately laminated.
  • a ceramic material constituting the dielectric layer a ferroelectric material such as barium titanate having a relatively high dielectric constant is generally used. It is used.
  • the vibration of the multilayer capacitor propagates to the substrate on which the multilayer capacitor is mounted via solder or the like, the substrate resonates with the vibration propagated to the substrate, and the vibration is amplified, and vibration sound is generated in the substrate.
  • the vibration frequency of the substrate becomes an audible frequency band, an audible sound is generated from the substrate.
  • a multilayer capacitor having a multilayer capacitor body having a pair of external electrodes on a pair of opposed end faces and a pair of external terminals joined to the pair of external electrodes is used. ing.
  • a pair of external terminals are joined to a pair of external electrodes, and the multilayer capacitor body is mounted on the substrate separately from the substrate using the pair of external terminals.
  • Such a configuration makes it difficult for vibration generated in the multilayer capacitor body to propagate to the substrate and suppresses generation of vibration noise on the substrate due to the multilayer capacitor body.
  • An example of such a multilayer capacitor is disclosed in Patent Document 1.
  • the above-mentioned multilayer capacitor suppresses the noise by making the multilayer capacitor body difficult to propagate to the substrate by providing the multilayer capacitor body away from the substrate using a pair of external terminals.
  • the pair of external terminals are joined to the external electrodes via solder over the entire surface facing the pair of external electrodes, and it is difficult to further propagate the vibration of the multilayer capacitor body to the substrate. There was a problem.
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to make it difficult for vibration generated in the multilayer capacitor body to propagate to the substrate and to suppress noise. It is to provide a capacitor.
  • a multilayer capacitor includes a plurality of dielectric layers stacked, a rectangular parallelepiped stacked body having a first end surface and a second end surface facing each other, and the above-described stacked body in the stacked body.
  • a plurality of internal electrodes arranged at intervals in the stacking direction of the plurality of dielectric layers, and arranged on the first end face and the second end face, respectively, and electrically connected to different internal electrodes
  • a second external terminal having a second substrate-side connection portion arranged so as to be orthogonal to the electrode-side connection portion, wherein the first external terminal is on the first electrode side
  • the connecting portion has a first protruding portion that faces the first external electrode with a gap and protrudes toward the first external electrode, and the first protruding portion and the The second external terminal is joined to the first external electrode, and the second electrode side connecting portion is connected to the second external terminal.
  • the electrode has a second protruding portion that protrudes toward the second external electrode facing the gap with a gap, and the second protruding portion and the second external electrode are joined to each other It is characterized by being.
  • the pair of external terminals are provided with protrusions that protrude toward the external electrode side, and the vibration generated in the multilayer capacitor body is formed by joining the external electrodes at the protrusions. Propagation can be made difficult.
  • FIG. 1 is a schematic perspective view showing a multilayer capacitor according to a first embodiment.
  • 1 is a multilayer capacitor body of the multilayer capacitor shown in FIG. 1, wherein (a) is a schematic perspective view showing the multilayer capacitor body, and (b) is an AA line view of the multilayer capacitor body shown in FIG. (C) is a cross-sectional view of another example of the multilayer capacitor body shown in (b).
  • FIG. 2A is a cross-sectional view taken along the line AA of the multilayer capacitor shown in FIG. 1
  • FIG. 1 is a multilayer capacitor body of the multilayer capacitor shown in FIG. 1, wherein (a) is a schematic perspective view showing the multilayer capacitor body, and (b) is an AA line view of the multilayer capacitor body shown in FIG. (C) is
  • FIG. 1 is a schematic perspective view showing a state in which the multilayer capacitor shown in FIG. 1 is mounted on a substrate, and (b) is a cross-sectional view taken along the line CC of the multilayer capacitor shown in (a). is there.
  • (A) And (b) is explanatory drawing for demonstrating the manufacturing method of the multilayer capacitor
  • (A) And (b) is explanatory drawing for demonstrating the manufacturing method of the multilayer capacitor
  • condenser shown in FIG. 6 is a schematic perspective view showing a multilayer capacitor according to a second embodiment.
  • FIG. FIG. 9A is a cross-sectional view taken along line DD of the multilayer capacitor shown in FIG. 8, and FIG.
  • FIG. 9B is a cross-sectional view taken along line EE of the multilayer capacitor shown in FIG.
  • FIG. 9A is a schematic perspective view showing a state in which the multilayer capacitor shown in FIG. 8 is mounted on a substrate
  • FIG. 9B is a cross-sectional view of the multilayer capacitor shown in FIG. is there.
  • (A) And (b) is explanatory drawing for demonstrating the manufacturing method of the multilayer capacitor
  • A) And (b) is explanatory drawing for demonstrating the manufacturing method of the multilayer capacitor
  • FIG. 1 is a schematic perspective view showing a multilayer capacitor 10A according to Embodiment 1 of the present invention.
  • the multilayer capacitor 10A includes a multilayer capacitor body 10 and a pair of external electrodes 3 ( A pair of external terminals 4 (first external terminal 4a and second external terminal 4b) joined to the first external electrode 3a and the second external electrode 3b) are provided.
  • the pair of external terminals 4 are joined to the pair of external electrodes 3 by the first protrusion 4a3 and the second protrusion 4b3.
  • the multilayer capacitor 10A is mounted via a solder 6 on a circuit board (hereinafter referred to as a board 9).
  • the substrate 9 is used, for example, in a notebook computer, a smartphone, a mobile phone, or the like.
  • an electric circuit to which the multilayer capacitor 10A is electrically connected is formed on the surface.
  • the substrate 9 is provided with, for example, a substrate electrode 9a and a substrate electrode 9b on the surface on which the multilayer capacitor 10A is mounted, and a wiring 9c extends from the substrate electrode 9a.
  • the wiring 9d extends from the substrate electrode 9b.
  • the first external terminal 4a and the substrate electrode 9a are soldered by soldering
  • the second external terminal 4b and the substrate electrode 9b are soldered by soldering.
  • the multilayer capacitor body 10 will be described below with reference to the drawings.
  • the multilayer capacitor body 10 includes a multilayer body 1, internal electrodes 2 (first internal electrode 2a and second internal electrode 2b) formed in the multilayer body 1, a pair of The external electrode 3 (the 1st external electrode 3a and the 2nd external electrode 3b) is provided.
  • the first external electrode 3a and the second external electrode 3b are respectively disposed on the first end surface 1c and the second end surface 1d of the multilayer body 1, and are drawn out to the first end surface 1c or the second end surface 1d.
  • the internal electrode 2 is electrically connected.
  • the multilayer body 1 is formed in a rectangular parallelepiped shape by laminating a plurality of dielectric layers, and the first end surface 1c and the second end surface 1d facing each other are the first main surface 1a and the second main surface.
  • the first side surface 1e and the second side surface 1f that are connected to each other and that face each other are between the first main surface 1a and the second main surface 1b, and between the first end surface 1c and the second side surface 1f.
  • the end faces 1d are connected.
  • the rectangular parallelepiped shape includes not only a cubic shape or a rectangular parallelepiped shape, but also includes, for example, a shape in which a ridge line portion of a cube or a rectangular parallelepiped is chamfered so that the ridge line portion has an R shape.
  • the laminated body 1 is a sintered body obtained by laminating a plurality of dielectric layers and forming a rectangular parallelepiped, and laminating and firing a plurality of ceramic green sheets serving as dielectric layers.
  • the laminated body 1 is formed in a rectangular parallelepiped shape, and is orthogonal to the first main surface 1a and the second main surface 1b facing each other, and the first main surface 1a and the second main surface 1b.
  • the laminate 1 has a rectangular plane that is a cross-section (XY plane) orthogonal to the stacking direction (Z direction) of the dielectric layers.
  • each ridge line portion of the multilayer body 1 may be rounded.
  • the dimension of the multilayer capacitor body 10 having such a configuration is such that the length in the longitudinal direction (X direction) is, for example, 0.6 (mm) to 2.2 (mm), and the length in the short direction (Y direction).
  • the length in the height direction (Z direction) is, for example, 0.3 (mm) to 1.5 (mm).
  • the dielectric layer has a rectangular shape in plan view from the stacking direction, and the thickness per layer is, for example, 0.5 ( ⁇ m) to 3 ( ⁇ m).
  • the laminate 1 for example, a plurality of dielectric layers composed of, for example, 10 (layers) to 1000 (layers) and internal electrodes 2 are laminated in the Z direction.
  • the number of internal electrodes 2 in the multilayer body 1 is appropriately designed according to the characteristics of the multilayer capacitor body 10.
  • the dielectric layer is, for example, barium titanate (BaTiO 3 ), calcium titanate (CaTiO 3 ), strontium titanate (SrTiO 3 ), or calcium zirconate (CaZrO 3 ).
  • the dielectric layer preferably uses barium titanate as a ferroelectric material having a high dielectric constant from the viewpoint of a high dielectric constant.
  • the plurality of internal electrodes 2 include a first internal electrode 2a and a second internal electrode 2b, and the first internal electrode 2a and the second internal electrode 2b are arranged at a predetermined interval in the stacking direction of the dielectric layers. 2b and 2c, the plurality of dielectric layers in the multilayer body 1 are alternately arranged at predetermined intervals in the laminating direction, as shown in FIG. 2 (b) and FIG. 2 (c).
  • the laminated body 1 is provided so as to be substantially parallel to the first main surface 1a and the second main surface 1b, respectively.
  • the first internal electrodes 2 a and the second internal electrodes 2 b form a pair of internal electrodes 2 and are alternately arranged in the stacked body 1.
  • the first internal electrode 2a and the second internal electrode 2b are arranged at a predetermined interval in the stacking direction of the plurality of dielectric layers in the stacked body 1, and are separated by the dielectric layers, Further, they are arranged to face each other, and at least one dielectric layer is sandwiched between the first internal electrode 2a and the second internal electrode 2b.
  • a plurality of dielectric layers on which the internal electrodes 2 are formed are laminated to form the multilayer body 1 of the multilayer capacitor body 10.
  • the plurality of internal electrodes 2 are formed in the multilayer body 1 and have a rectangular shape in plan view from the stacking direction, and are arranged at intervals in the stacking direction of the plurality of dielectric layers in the stack body 1. Has been.
  • the multilayer capacitor body 10 as shown in FIGS. 2B and 2C, one end of the first internal electrode 2a is drawn out to the first end face 1c, and the second internal electrode As for 2b, one edge part is pulled out by the 2nd end surface 1d which opposes the 1st end surface 1c.
  • the internal electrode 2 is provided so as to be exposed to one end face of the first end face 1c and the second end face 1d and not to be exposed to the first side face 1e and the second side face 1f.
  • the conductive material of the first internal electrode 2a and the second internal electrode 2b is, for example, a metal material such as nickel (Ni), copper (Cu), silver (Ag), palladium (Pd), or gold (Au), or for example, an alloy material such as an Ag—Pd alloy containing one or more of these metal materials.
  • the first internal electrode 2a and the second internal electrode 2b have an electrode thickness of, for example, 0.5 ( ⁇ m) to 2 ( ⁇ m), and the thickness may be set appropriately depending on the application.
  • the first internal electrode 2a and the second internal electrode 2b are preferably formed of the same metal material or alloy material.
  • the multilayer capacitor body 10 is disposed between the pair of external terminals 4 so that the internal electrode 2 is parallel to the XY plane. Absent.
  • the multilayer capacitor body 10 may be disposed between the pair of external terminals 4 so that the internal electrode 2 is parallel to the XZ plane.
  • the 1st protrusion part 4a3 and the 2nd protrusion part 4b3 may each be located in the edge part of a Y direction.
  • the pair of external electrodes 3 are respectively disposed on the first end surface 1c and the second end surface 1d, and are electrically connected to the internal electrode 2 drawn out to the first end surface 1c or the second end surface 1d.
  • the first external electrode 3a is disposed on the first end face 1c, and is electrically connected to the first internal electrode 2a drawn out to the first end face 1c.
  • the second external electrode 3b is disposed on the second end surface 1d, and is electrically connected to the second internal electrode 2b drawn to the second end surface 1d.
  • the pair of external electrodes 3 includes the first external electrode 3a and the second external electrode 3b, and is formed so as to cover the first end surface 1c and the second end surface 1d.
  • the external electrode 3a and the second external electrode 3b are arranged so as to face each other. Further, as shown in FIG. 2, the pair of external electrodes 3 is formed so as to cover the first end face 1 c and the second end face 1 d, and in the stacked body 1, the first end face 1 c and the second end face 1 d are formed.
  • the first main surface 1a and the second main surface 1b are respectively extended from the end surface 1d to the surfaces of the first main surface 1a and the second main surface 1b, and the first side surface 1e and the second side surface 1d are connected to the first end surface 1c and the second main surface 1d.
  • Each of the side surfaces 1f is formed to extend.
  • the pair of external electrodes 3 includes a base electrode 3c and a plating layer 3d as shown in FIG. 2 (b).
  • the base electrode 3c is electrically connected to the internal electrode 2 drawn out to the first end face 1c or the second end face 1d, and the plating layer 3d is formed on the surface of the base electrode 3c so as to cover the base electrode 3c. Is formed.
  • the plating layer 3d is formed to protect the base electrode 3c, and is formed to improve the bonding property between the pair of external electrodes 3 and the pair of external terminals 4 in the melt bonding.
  • the pair of external electrodes 3 is not limited to the plating layer 3 d, but may be any metal layer that can be bonded to the pair of external terminals 4 so as to cover the base electrode 3 c.
  • the pair of external electrodes 3 is preferably provided with a metal layer that can be melt bonded to the pair of external terminals 4 so as to cover the base electrode 3c.
  • the conductive material of the base electrode 3c includes, for example, a metal material such as nickel (Ni), copper (Cu), silver (Ag), palladium (Pd), or gold (Au), or one or more of these metal materials.
  • a metal material such as nickel (Ni), copper (Cu), silver (Ag), palladium (Pd), or gold (Au), or one or more of these metal materials.
  • an alloy material such as an Ag—Pd alloy.
  • the pair of base electrodes 3c is preferably formed of the same metal material or alloy material.
  • the base electrode 3c has a thickness on the first main surface 1a and the second main surface 1b of, for example, 4 ( ⁇ m) to 10 ( ⁇ m), and a thickness on the first end surface 1c and the second end surface 1d,
  • the thickness is 10 ( ⁇ m) to 25 ( ⁇ m)
  • the thickness on the first side surface 1e and the second side surface 1f is, for example, 4 ( ⁇ m) to 10 ( ⁇ m).
  • the base electrode 3c is formed to extend from the first end surface 1c and the second end surface 1d to the first main surface 1a and the second main surface 1b, and the first end surface 1c and the first end surface 1c
  • the second end surface 1d is formed to extend from the first side surface 1e and the second side surface 1f.
  • the plating layer 3 d is formed on the surface of the base electrode 3 c so as to cover the base electrode 3 c formed on the surface of the multilayer body 1.
  • the first external electrode 3a and the second external electrode 3b have the plating layer 3d formed on the surface of the base electrode 3c.
  • the plating layer 3d is formed using, for example, an electrolytic plating method.
  • the first external electrode 3a and the second external electrode 3b are formed with a single plating layer 3d, but as shown in FIG.
  • it may be composed of a plurality of plating layers.
  • the pair of external electrodes 3 is a laminate composed of a first plating layer 3d1 and a second plating layer 3d2 formed on the surface of the first plating layer 3d1. It may be formed on the surface.
  • the pair of external electrodes 3 has a laminate in which the plating layer 3d is composed of the first plating layer 3d1 and the second plating layer 3d2.
  • the configuration of the plating layer 3d is not limited to this.
  • a Ni plating layer (first plating layer 3d1) is formed on the surface of the base electrode 3c, and a Sn plating layer (second plating layer 3d2) is formed on the surface of the Ni plating layer.
  • the plating layer 3d may be formed of a laminate of a Ni plating layer and a Sn plating layer.
  • the first plating layer 3d1 has a thickness of, for example, 5 ( ⁇ m) to 10 ( ⁇ m)
  • the second plating layer 3d2 has a thickness of, for example, 3 ( ⁇ m) to 5 ( ⁇ m).
  • the pair of external terminals 4 includes a first external terminal 4a and a second external terminal 4b, which are joined to the first external electrode 3a and the second external electrode 3b, respectively. ing.
  • the pair of external terminals 4 is for disposing the multilayer capacitor body 10 away from the surface of the substrate 9 on which the multilayer capacitor 10A is mounted.
  • the first external terminal 4a is joined to the first external electrode 3a so that the multilayer capacitor body 10 is arranged away from the surface of the substrate 9, and the second external terminal 4b is The multilayer capacitor main body 10 is bonded to the second external electrode 3b so as to be disposed away from the surface of the substrate 9.
  • the first external terminal 4a has a first electrode side connection portion 4a1 and a first substrate side connection portion 4a2.
  • the first electrode side connection portion 4a1 is disposed to face the first external electrode 3a, is joined to the first external electrode 3a, and extends below the first external electrode 3a.
  • the first substrate-side connection portion 4a2 is disposed at the end of the portion where the first electrode-side connection portion 4a1 extends so as to be orthogonal to the first electrode-side connection portion 4a1.
  • the first substrate-side connection portion 4a2 is connected to one end of the first electrode-side connection portion 4a1, and the longitudinal direction of the multilayer capacitor body 10 from the first electrode-side connection portion 4a1. It extends to.
  • the second external terminal 4b has a second electrode side connection portion 4b1 and a second substrate side connection portion 4b2.
  • the second electrode side connection portion 4b1 is disposed opposite to the second external electrode 3b, joined to the second external electrode 3b, and extends below the second external electrode 3b.
  • the second substrate-side connection portion 4b2 is disposed at the end of the portion where the second electrode-side connection portion 4b1 extends so as to be orthogonal to the second electrode-side connection portion 4b1.
  • the second substrate-side connecting portion 4b2 is connected to one end of the second electrode-side connecting portion 4b1, and the longitudinal direction of the multilayer capacitor body 10 from the second electrode-side connecting portion 4b1. It extends to.
  • the first substrate-side connecting portion 4a2 is orthogonal to the first electrode-side connecting portion 4a1, and the first substrate-side connecting portion 4a2 is opposite to the laminate 1 from the first electrode-side connecting portion 4a1.
  • positioned toward the side of the laminated body 1 are included. That is, the first board side connection portion 4a2 includes those extending toward the outside of the multilayer capacitor body 10 and those extending toward the inside.
  • the second substrate-side connection portion 4b2 is orthogonal to the second electrode-side connection portion 4b1, and the second substrate-side connection portion 4b2 extends from the second electrode-side connection portion 4b1 to the laminate 1. And those arranged toward the side of the laminate 1 are included. That is, the second board side connection portion 4b2 includes those extending toward the outside of the multilayer capacitor body 10 and those extending toward the inside.
  • the first substrate-side connection portion 4a2 is arranged orthogonal to the first electrode-side connection portion 4a1 and is disposed toward the opposite side of the stacked body 1, and the second substrate-side connection portion 4b2 is orthogonal to the second electrode side connection portion 4b1 and is disposed toward the opposite side of the laminate 1.
  • the first external terminal 4a has a first substrate side connection portion 4a2 extending in a substantially vertical direction toward the opposite side of the multilayer body 1 with respect to the first electrode side connection portion 4a1.
  • the first substrate-side connection portion 4a2 is bent at a substantially right angle toward the outside of the multilayer capacitor body 10 with respect to the first electrode-side connection portion 4a1.
  • the first external terminal 4a has an L-shaped side surface as viewed from the side (Y direction) orthogonal to the first side surface 1e or the second side surface 1f, and has a single plate-like body. Is bent at a substantially right angle.
  • substantially perpendicular means that the angle formed by the first electrode side connection portion 4a1 and the first substrate side connection portion 4a2 is in the range of 85 (°) to 95 (°).
  • the second external terminal 4b is formed symmetrically with the first external terminal 4a, and the second substrate side connection portion 4b2 is based on the second electrode side connection portion 4b1. Thus, it extends in a substantially vertical direction toward the opposite side of the laminate 1. That is, in the second external terminal 4b, the second substrate side connection portion 4b2 is bent at a substantially right angle toward the outside of the multilayer capacitor body 10 with respect to the second electrode side connection portion 4b1.
  • the second external terminal 4b has a L-shaped side surface when viewed from the side (Y direction) orthogonal to the first side surface 1e or the second side surface 1f, and is a single plate-like body. Is bent at a substantially right angle. Note that the substantially right angle means that the angle formed by the second electrode side connection portion 4b1 and the second substrate side connection portion 4b2 is within a range of 85 (°) to 95 (°).
  • the pair of external terminals 4 are provided such that the first substrate side connection portion 4a2 and the second substrate side connection portion 4b2 extend in opposite directions toward the opposite side of the multilayer body 1.
  • the first electrode side connection portion 4a1 and the first substrate side connection portion 4a2 are substantially perpendicular to each other, and the second electrode side connection portion 4b1 and the second substrate side connection portion 4b2 Is almost at right angles.
  • the first external terminal 4a has the first electrode side connection portion 4a1 disposed so as to face the first external electrode 3a, and is joined to the first external electrode 3a. ing. Further, the first external terminal 4a is provided so as to be substantially perpendicular to the first electrode side connection portion 4a1 so that the first substrate side connection portion 4a2 faces the substrate 9. The substrate-side connection portion 4a2 is electrically connected to the substrate electrode 9a.
  • the first external terminal 4a is such that the first electrode side connection portion 4a1 faces the first external electrode 3a with a gap, and the first protruding portion 4a3 is opposed to the first external terminal 4a.
  • the first protrusion 4a3 protrudes toward the first external electrode 3a.
  • the first protrusion 4a3 and the first external electrode 3a are joined using, for example, solder joining or welding.
  • the first external terminal 4a is joined to the first external electrode 3a at the first protrusion 4a3 by using, for example, spot welding. Specifically, as shown in FIG. 3, the first external terminal 4a is formed by welding the first external electrode 3a and the first protruding portion 4a3 so that the welded portion 5 is connected to the first protruding portion 4a3. As a result, the first external electrode 3a and the first protrusion 4a3 are joined. In addition, the first external terminal 4a is joined to the first external electrode 3a only by the first protrusion 4a3, and the portions other than the first protrusion 4a3 are connected to the first external electrode 3a via a gap. Opposite to. In addition, the first external terminal 4a is preferably bonded so that the first protrusion 4a3 is in contact with the first external electrode 3a in order to ensure the bonding strength with the first external electrode 3a. .
  • the second substrate-side connection portion 4b1 is arranged to face the second external electrode 3b, and is joined to the second external electrode 3b.
  • the second external terminal 4b is provided so as to be substantially perpendicular to the second electrode side connection portion 4b1 so that the second substrate side connection portion 4b2 faces the substrate 9.
  • the substrate-side connecting portion 4b2 is electrically connected to the substrate electrode 9b.
  • the second external terminal 4b has the second electrode side connection portion 4b1 opposed to the second external electrode 3b with a gap, and the second protruding portion 4b3. And the second protrusion 4b3 protrudes toward the second external electrode 3b.
  • the second protrusion 4b3 and the second external electrode 3b are joined using, for example, solder joining or welding.
  • the second external terminal 4b is joined to the second external electrode 3b at the second protrusion 4b3 by using, for example, spot welding. Specifically, as shown in FIG. 3, the second external terminal 4b is formed by welding the second external electrode 3b and the second protruding portion 4b3 so that the welded portion 5 is connected to the second protruding portion 4b3. As a result, the second external electrode 3b and the second protrusion 4b3 are joined. In addition, the second external terminal 4b is joined to the second external electrode 3b only by the second protrusion 4b3, and a portion other than the second protrusion 4b3 is connected to the second external electrode 3b via a gap. Opposite to. The second external terminal 4b is preferably joined so that the second protruding portion 4b3 is in contact with the second external electrode 3b in order to ensure the bonding strength with the second external electrode 3b. .
  • the first protrusion 4a3 and the second protrusion 4b3 have a protrusion amount of, for example, 0.05 (mm) to 0.15 (mm).
  • the first protrusion 4a3 is viewed from the direction (X direction) perpendicular to the first electrode side connection part 4a1, and the second protrusion 4b3 is perpendicular to the second electrode side connection part 4b1.
  • the major axis is 0.15 (mm) to 0.45 (mm)
  • the minor axis is 0.1 (mm) to 0.3 (mm).
  • the first protrusion 4a3 is provided in the first electrode side connection part 4a1
  • the second protrusion 4b3 is provided in the second electrode side connection part 4b1.
  • first protrusions 4a3 and two second protrusions 4b3 are provided in the first electrode side connection part 4a1 and the second electrode side connection part 4b1, respectively.
  • the number of the first protrusions 4a3 and the second protrusions 4b3 is not limited to this, but one or three or more depending on the size of the multilayer capacitor body 10 or the bonding strength between the pair of external electrodes 3 and the like. It may be.
  • a plurality of first protrusions 4a3 are located in the first diagonal direction D1 of the first end face 1c, and the second protrusions 4b3 are in the first diagonal direction D1 of the second end face 1d.
  • a plurality may be located in the second diagonal direction D2 (not shown) that intersects.
  • two first protrusions 4a3 are located in the first diagonal direction D1 of the first end face 1c, and the second protrusion 4b3 is the second protrusion 4b3.
  • Two end faces 1d are located in a second diagonal direction D2 that intersects the first diagonal direction D1. Note that the first diagonal direction D1 intersects with the second diagonal direction D2 as seen through from the direction (X direction) perpendicular to the first electrode-side connecting portion 4a1.
  • the first protrusion 4a3 on the lower side (substrate 9 side)
  • the joint portion of the second projecting portion 4b3 is likely to be peeled off
  • the joint can be held by the upper first projecting portion 4a3 (second projecting portion 4b3).
  • substrate 9 bends below
  • the junction part of the 1st protrusion part (2nd protrusion part) of an upper side may peel easily, but a lower side (board
  • the first protrusion (second protrusion) located at the position can hold the joint.
  • two each of the first projecting portion 4a3 and the second projecting portion 4b3 are provided, but the present invention is not limited to this, and three or more may be provided.
  • the multilayer capacitor 10A is joined to the pair of external electrodes 3 so that the pair of external terminals 4 are disposed away from the surface of the substrate 9.
  • the distance between the surface of the substrate 9 and the second main surface 1b of the multilayer capacitor body 10 is the size of the multilayer capacitor body 10, the mounting stability between the multilayer capacitor 10A and the substrate 9, or the substrate 9
  • the lengths of the first electrode side connection portion 4a1 and the second electrode side connection portion 4b1 can be adjusted according to the number of the multilayer capacitors 10A mounted on the first electrode side connection portion 4a1.
  • the pair of external terminals 4 includes a first electrode-side connection portion 4a1 and a second electrode-side connection portion 4b1 that are rectangular plates, and the first external electrode 3a and the second external terminal 4b. It is substantially parallel to the electrode 3b, joined to the first external electrode 3a by the first protrusion 4a3, and joined to the second external electrode 3b by the second protrusion 4b3.
  • the pair of external terminals 4 includes a substrate electrode 9a and a substrate of the substrate 9 on which the multilayer capacitor 10A is mounted, in which the first substrate side connection portion 4a2 and the second substrate side connection portion 4b2 are rectangular plates.
  • the shape of the first electrode side connection portion 4a1 and the second electrode side connection portion 4b1 and the shape of the first substrate side connection portion 4a2 and the second substrate side connection portion 4b2 are not limited to a rectangular plate-like body, but a pair
  • the external electrode 3 is appropriately set according to the shape of the substrate electrode 9a and the shape of the substrate electrode 9b.
  • the pair of external terminals 4 is, for example, a metal material such as iron (Fe), nickel (Ni), chromium (Cr), copper (Cu), silver (Ag), or cobalt (Co), or a kind of these metal materials.
  • a metal material such as iron (Fe), nickel (Ni), chromium (Cr), copper (Cu), silver (Ag), or cobalt (Co), or a kind of these metal materials.
  • an alloy material such as a stainless alloy or a copper alloy is included.
  • the first external terminal 4a and the second external terminal 4b are preferably formed of the same metal material or alloy material.
  • the thicknesses of the first electrode side connection portion 4a1 and the second electrode side connection portion 4b1 are 0.1 (mm) to 0.15 (mm), for example. Therefore, the thickness may be set appropriately according to the size or use of the multilayer capacitor body 10 so that the effect of suppressing vibration noise can be obtained.
  • first electrode side connection portion 4a1 and the second electrode side connection portion 4b1 have a thickness of, for example, 0.05 (mm) to 0.08 (mm) in order to improve the bondability in spot welding. Preferably there is.
  • first electrode side connection portion 4a1 and the second electrode side connection portion 4b1 are thick, it is necessary to increase the output of laser light, for example, at the time of spot welding. When the output is increased, the laser beam reaches the base electrode 3c of the pair of external electrodes 3 and melts the base electrode 3c, so that the welded portion 5 and the internal electrode 2 are easily short-circuited, and the reliability is lowered.
  • the thickness of the first substrate side connection portion 4a2 and the second substrate side connection portion 4b2 is larger than the thickness of the first electrode side connection portion 4a1 and the second electrode side connection portion 4b1. That is, the first electrode-side connection portion 4a1 and the second electrode-side connection portion 4b1 are improved in spot weldability by reducing the thickness, and the first substrate-side connection portion 4a2 and the second electrode-side connection portion 4a2
  • the board-side connection portion 4b2 is improved in bondability with the board 9 by increasing the thickness.
  • the first external terminal 4a and the second external terminal 4b have rigidity when the thickness of the first electrode side connection portion 4a1 and the second electrode side connection portion 4b1 is less than 0.1 (mm). Get smaller.
  • the multilayer capacitor 10A is likely to absorb the vibration caused by the distortion generated in the multilayer capacitor body 10 by the first external terminal 4a and the second external terminal 4b.
  • the multilayer capacitor 10 ⁇ / b> A the deformation of the multilayer capacitor body 10 is not easily transmitted to the substrate 9, and the vibration sound of the substrate 9 is likely to be reduced.
  • the mounting stability is deteriorated.
  • the portions not joined to the pair of external electrodes 3 absorb vibration due to distortion.
  • the first external terminal 4a and the second external terminal 4b are rigid when the thickness of the first electrode side connection portion 4a1 and the second electrode side connection portion 4b1 is greater than 0.15 (mm). Becomes larger. As a result, the multilayer capacitor 10A is less likely to be absorbed by the first external terminal 4a and the second external terminal 4b due to distortion generated in the multilayer capacitor body 10. In the multilayer capacitor 10A, the deformation of the multilayer capacitor body 10 is easily transmitted to the substrate 9, and the vibration noise of the substrate 9 is likely to increase. Therefore, in the multilayer capacitor 10A, the thickness of the first external terminal 4a and the second external terminal 4b is set in consideration of the effect of suppressing vibration noise generated in the substrate 9 and the mounting stability.
  • first external terminal 4a and the second external terminal 4b are configured so that the length of the first electrode side connection portion 4a1 and the second electrode side connection portion 4b1 is the size or use of the multilayer capacitor body 10. Accordingly, it may be set appropriately so as to obtain an effect of suppressing vibration noise.
  • the rigidity of the first external terminal 4a and the second external terminal 4b increases as the length of the first electrode side connection portion 4a1 and the second electrode side connection portion 4b1 decreases.
  • the vibration due to the distortion generated in the multilayer capacitor body 10 is hardly absorbed by the first external terminal 4a and the second external terminal 4b, and the deformation of the multilayer capacitor body 10 is applied to the substrate 9. It is easy to be transmitted, and the vibration sound of the substrate 9 is likely to increase.
  • the lengths of the first external terminal 4a and the second external terminal 4b are set in consideration of the effect of suppressing vibration noise generated in the substrate 9 and the mounting stability.
  • the pair of external terminals 4 has a plating layer 7 formed on the surface for solder bonding to the substrate electrode 9 a and the substrate electrode 9 b, and the plating layer 7 formed on the surface Is included. Further, the plating layer 7 performs a masking process or the like on a region of the pair of external terminals 4 where the plating layer 7 is not formed. For example, by using an electrolytic plating method or the like, the first substrate side connection portion 4a2 and the second substrate 2 It is formed in a region including the substrate side connection portion 4b2, and is also formed in a region at the lower end portion of the first electrode side connection portion 4a1 and the second electrode side connection portion 4b1. Note that the plating layer 7 may be formed not only on both main surfaces of the pair of external terminals 4 but also on a side surface located between both main surfaces.
  • the plating layer 7 is composed of a first plating layer and a second plating layer formed on the surface of the first plating layer.
  • the first plating layer includes the first external terminal 4a and the first plating layer.
  • the surface of the second external terminal 4b is covered, and the second plating layer is formed on the surface of the first plating layer and covers the surface of the first plating layer.
  • Each of the first plating layer and the second plating layer may be composed of a plurality of plating layers.
  • the first plating layer is made of, for example, a metal material such as nickel (Ni), silver (Ag), or tin (Sn), or an alloy material containing one or more of these metal materials, such as an Sn—Ag alloy. is there.
  • the first plating layer is made of a metal material of nickel (Ni) or an alloy material containing nickel (Ni) as a main component, and has a thickness of, for example, 1 ( ⁇ m) to 2 ( ⁇ m).
  • the second plating layer is made of, for example, a metal material such as nickel (Ni), silver (Ag), or tin (Sn), or an alloy material of, for example, Sn—Ag alloy containing one or more of these metal materials. It is.
  • the second plating layer is made of a metal material of tin (Sn) or an alloy material containing tin (Sn) as a main component, and has a thickness of, for example, 1 ( ⁇ m) to 2 ( ⁇ m).
  • the first external terminal 4a has a plating layer 7 formed on the first electrode side connection portion 4a1 and the first substrate side connection portion 4a2, and is laminated via solder 6 as shown in FIG.
  • the second external terminal 4b has the plating layer 7 of the second electrode side connection portion 4b1 and the second substrate side connection portion 4b2.
  • the multilayer capacitor 10 ⁇ / b> A is mounted on the substrate 9 via the solder 6.
  • the first external terminal 4a is connected to the substrate electrode 9a on the substrate 9 via the solder 6, and the solder 6 is connected to the first electrode side connection portion 4a1.
  • a solder fillet is formed from the lower end portion to the first substrate side connection portion 4a2 and the substrate electrode 9a.
  • the second external terminal 4b is connected to the substrate electrode 9b on the substrate 9 via the solder 6, and the solder 6 is connected to the lower end portion of the second electrode side connection portion 4b1. From this, the solder fillet is formed over the second substrate side connection portion 4b2 and the substrate electrode 9b.
  • the solder for example, Sn—Sb or Sn—Ag—Cu solder material can be used.
  • the multilayer capacitor for example, when the multilayer capacitor main body is composed mainly of barium titanate (BaTiO 3 ), etc. as a dielectric layer, when an AC voltage is applied to the multilayer capacitor main body, Due to the electrostrictive effect, distortion occurs in the dielectric layer in accordance with the magnitude of the AC voltage. In the multilayer capacitor, the distortion causes vibration in the multilayer capacitor body itself, and the vibration propagates to the substrate to vibrate the substrate. When this vibration is in an audible frequency band, the vibration of the substrate appears as vibration sound.
  • barium titanate BaTiO 3
  • the effect of suppressing vibration sound is improved by using a pair of external terminals, but the pair of external terminals is connected to a pair of external terminals via solder.
  • the entire surface of the portion facing the electrode is joined to the external electrode, and it becomes difficult to further prevent the vibration of the multilayer capacitor body from propagating to the substrate 9.
  • the first external terminal 4a and the first external electrode 3a are joined to each other by the weld 5 at the first protrusion 4a3.
  • the external terminal 4b and the second external electrode 3b are joined by the weld 5 at the second protrusion 4b3.
  • the joint between the first external terminal 4a and the first external electrode 3a is in point contact
  • the joint between the second external terminal 4b and the second external electrode 3b is in point contact. Therefore, the vibration of the multilayer capacitor main body 10 can be further prevented from propagating to the substrate 9.
  • the point contact means having a circular joint portion (welded portion 5) having a diameter of 30 ( ⁇ m) to 50 ( ⁇ m).
  • the first external terminal 4a and the first external electrode 3a are joined by point contact by the welded portion 5, and the first external terminal 4a is connected to the first external electrode 3a. Further, the second external terminal 4b and the second external electrode 4a are joined by point contact by the welded portion 5, and the second external terminal 4b is restrained by the second external electrode 3b. It becomes difficult to be done.
  • the multilayer capacitor 10A vibration due to distortion of the multilayer capacitor body 10 is easily absorbed by the first external terminal 4a and the second external terminal 4b, and the vibration of the multilayer capacitor body 10 is absorbed by the first external terminal 4a. Propagation to the substrate 9 via the terminal 4a and the second external terminal 4b can be effectively suppressed. Thus, since the multilayer capacitor 10A suppresses the generation of vibration noise, it is difficult for noise to occur and the effect of suppressing vibration noise can be improved.
  • the first external terminal 4a has a first protruding portion 4a3 provided at an end in the Y direction of the first electrode side connecting portion 4a1, and the second external terminal 4b
  • the protruding portion 4b3 is provided at the end portion in the Y direction of the second electrode side connecting portion 4b1.
  • the position of a lamination direction (Z direction) will not be specifically limited.
  • the first protruding portion 4a3 and the second protruding portion 4b3 are the central portions in the left-right direction (Y direction) of the first outer electrode 3a and the second outer electrode 3b, that is, Since the pair of external electrodes 3 are not located in the central portion in the direction orthogonal to the stacking direction of the multilayer body 1, the pair of external terminals 4 are formed at portions where deformation caused by the electrostrictive effect of the multilayer capacitor body 10 is smaller. And the pair of external electrodes 3 are joined together, so that noise can be effectively suppressed.
  • the first projecting portion 4a3 and the second projecting portion 4b3 are not positioned at the center in the left-right direction (Y direction) of the first outer electrode 3a and the second outer electrode 3b. Furthermore, by being positioned at the center in the stacking direction (Z direction) of the stacked body 1, bonding can be performed in a region where vibration is small.
  • the first external terminal 4a is joined to the first external electrode 3a at the bottom of the first projecting portion 4a3, and the joining area of the welded portion 5 at the joint with the first external electrode 3a is reduced.
  • the second external terminal 4b is joined to the second external electrode 3b at the bottom of the second protrusion 4b3, and the joint region of the welded portion 5 that is a joint with the second external electrode 3b. Can be reduced. Therefore, in the multilayer capacitor 10A, the first external terminal 4a is not easily restrained by the first external electrode 3a, and the first external terminal 4b is hardly restrained by the second external electrode 3b. Vibration due to distortion of the capacitor body 10 is easily absorbed. For example, in the case of laser spot welding, the size of the joining region can be adjusted by the beam diameter of the irradiated laser beam or the laser emission output.
  • the pair of external terminals 4 are joined only by the first protrusion 4a3 and the second protrusion 4b3, and the first external terminal 4a has a portion other than the first protrusion 4a3 through a gap.
  • the second external terminal 4b is opposed to the first external electrode 3a, and the second external terminal 4b is opposed to the second external electrode 3b with a gap other than the second protrusion 4b3. Therefore, the pair of external terminals 4 are likely to be elastically deformed, and easily absorb the vibration of the multilayer capacitor body 10 along with the elastic deformation. Therefore, the multilayer capacitor 10A can suppress the generation of vibration noise on the substrate 9, so that it is difficult for noise to occur and the effect of suppressing vibration noise can be improved.
  • the first ceramic green sheet is to form the first internal electrode 2a
  • the second ceramic green sheet is to form the second internal electrode 2b.
  • the plurality of first ceramic green sheets have the first internal electrode 2a arranged so that the pattern shape of the first internal electrode 2a is arranged on the ceramic green sheet.
  • a conductor paste layer is formed using a conductor paste for the first internal electrode 2a.
  • a plurality of first internal electrodes 2 a are formed in one ceramic green sheet in order to obtain a large number of multilayer capacitor bodies 10.
  • the plurality of second ceramic green sheets are formed so that the pattern shape of the second internal electrode 2b is arranged on the ceramic green sheet in order to form the second internal electrode 2b.
  • a 2b conductor paste layer is formed using a conductor paste for the second internal electrode 2b.
  • a plurality of second internal electrodes 2b are formed in one ceramic green sheet in order to obtain a large number of multilayer capacitor bodies 10.
  • the conductive paste layer of the first internal electrode 2a and the conductive paste layer of the second internal electrode 2b described above are each formed in a predetermined pattern shape on the ceramic green sheet by using, for example, a screen printing method or the like. It is formed by printing.
  • the first and second ceramic green sheets are dielectric layers, the conductive paste layer of the first internal electrode 2a is the first internal electrode 2a, and the conductive paste layer of the second internal electrode 2b is the second internal electrode 2a. It becomes the internal electrode 2b.
  • Examples of the material of the ceramic green sheet used as the dielectric layer include dielectric ceramics such as barium titanate (BaTiO 3 ), calcium titanate (CaTiO 3 ), strontium titanate (SrTiO 3 ), or calcium zirconate (CaZrO 3 ). Is the main component. For example, a Mn compound, Fe compound, Cr compound, Co compound, or Ni compound may be added as the accessory component.
  • the first and second ceramic green sheets are produced by adding a suitable organic solvent to the dielectric ceramic raw material powder and the organic binder and mixing them, and using a doctor blade method or the like. Obtained by molding.
  • the conductive paste for the first internal electrode 2a and the second internal electrode 2b is formed by adding additives (dielectric materials), binders, solvents, dispersants, etc. to the above-described conductive material (metal material) powders of the internal electrodes. It is produced by adding and kneading.
  • the conductive material of the first and second internal electrodes 2a, 2b is, for example, a metal material such as nickel (Ni), copper (Cu), silver (Ag), palladium (Pd) or gold (Au), or these metal materials
  • an alloy material such as an Ag—Pd alloy is included.
  • the first internal electrode 2a and the second internal electrode 2b are preferably formed of the same metal material or alloy material.
  • the first ceramic green sheet is formed with a first internal electrode 2a
  • the second ceramic green sheet is formed with a second internal electrode 2b.
  • a plurality of the ceramic green sheets 2 are alternately stacked, and the ceramic green sheets not formed with the internal electrodes are stacked on the outermost layer in the stacking direction, thereby manufacturing a stacked body made of the ceramic material.
  • the laminated body composed of the plurality of first and second ceramic green sheets is pressed and integrated to form a large-sized raw laminated body including a large number of raw laminated bodies.
  • a green laminate that becomes the laminate 1 of the multilayer capacitor 10 shown in FIG. 1 can be obtained.
  • the large green laminate can be cut using, for example, a dicing blade.
  • the laminate 1 can be obtained by firing the green laminate at, for example, 800 (° C.) to 1300 (° C.).
  • the plurality of first and second ceramic green sheets become dielectric layers
  • the conductive paste layer of the first internal electrode 2a becomes the first internal electrode 2a
  • the conductive paste layer of the second internal electrode 2b Becomes the second internal electrode 2b.
  • the laminated body 1 can round a corner
  • the laminated body 1 becomes a thing which a corner
  • the base electrode 3c of the external electrode 3 is applied to the first end face 1c and the second end face 1d of the multilayer body 1 by applying and baking a conductive paste for the base electrode 3c to be the base electrode 3c of the external electrode 3. Form.
  • the conductive paste for the base electrode 3c is prepared by adding a binder, a solvent, a dispersant, and the like to the metal material powder constituting the base electrode 3c and kneading.
  • the conductive material of the base electrode includes, for example, a metal material such as nickel (Ni), copper (Cu), silver (Ag), palladium (Pd), or gold (Au), or one or more of these metal materials.
  • a metal material such as nickel (Ni), copper (Cu), silver (Ag), palladium (Pd), or gold (Au), or one or more of these metal materials.
  • an alloy material such as an Ag—Pd alloy.
  • a thin film forming method such as a vapor deposition method, a plating method, or a sputtering method may be used in addition to the method of baking the conductor paste.
  • a plating layer 3d is formed on the surface of the base electrode 3c so as to cover the base electrode 3c of the external electrode 3.
  • the plating layer 3d is formed on the surface of the base electrode 3c using, for example, an electrolytic plating method or the like.
  • the plating layer 3d is, for example, a nickel (Ni) plating layer, a copper (Cu) plating layer, a gold (Au) plating layer, a tin (Sn) plating layer, or the like.
  • the plating layer 3d may be formed from a single plating layer.
  • the plating layer 3d is composed of a first plating layer 3d1 and a second plating layer 3d2, and these multilayer bodies are formed on the surface.
  • the first plating layer 3d1 is a nickel (Ni) plating layer
  • the second plating layer 3d2 is a tin (Sn) plating layer
  • the second plating layer 3d2 has a tin ( The Sn) plating layer is formed so as to cover the nickel (Ni) plating layer of the first plating layer 3d1.
  • the band-shaped metal plate has a thickness of, for example, 0.1 (mm) to 0.15 (mm), a length of, for example, 100 (mm) to 250 (mm), and is made of, for example, a stainless alloy.
  • the first external terminal 4aa serving as the first external terminal 4a and the second external terminal 4bb serving as the second external terminal 4b are arranged to face each other. Then, according to the pattern shape of each of the first external terminal 4aa and the first external terminal 4bb, for example, a punching process is performed on the band-shaped metal plate using a press punching process. In this way, the strip-shaped metal plate is punched, and as shown in FIG. 6A, the strip-shaped metal plate has a pair of external terminals composed of the first external terminal 4aa and the second external terminal 4bb. A plurality of 8a are provided. In the following description, a strip-shaped metal plate formed with a plurality of external terminal bodies 8a is used as the lead frame 8. As described above, the plurality of multilayer capacitors 10 ⁇ / b> A can be efficiently manufactured by using the lead frame 8.
  • the first protrusion 4a3 and the second protrusion 4b3 are formed in the first electrode side connection part 4a1 and the second electrode side connection part 4b1 by deep drawing using, for example, pressing. be able to.
  • the lead frame 8 is formed with a plating layer 7 by plating the plurality of external terminal pairs 8a.
  • the lead frame 8 is subjected to plating by masking a non-formation region of the plating layer 7 in the central portion in the longitudinal direction.
  • the external terminal pair 8a includes a region including the first electrode-side connection portion 4a1 and the first substrate-side connection portion 4a2 of the first external terminal 4aa and the second substrate-side connection portion 4a2.
  • the plating layer 7 is formed in the region including the second electrode side connection portion 4b1 and the second substrate side connection portion 4b2 of the external terminal 4bb by using, for example, an electrolytic plating method.
  • the plating layer 7 is formed in a region including the front surface, the back surface, and the side surface of the external terminal pair 8a.
  • the masking can be performed using, for example, a low hardness rubber sheet or the like.
  • the lead frame 8 is subjected to a plating process after being punched.
  • the lead frame 8 may be subjected to a punching process after being plated.
  • the processing order is appropriately set in consideration of the shape of the first external terminal 4aa and the second external terminal 4bb.
  • the lead frame 8 includes a first fold line L1 and a second fold line L1, as shown in FIG.
  • the folding line L2 is set, and the bending process is performed along the first folding line L1 and the second folding line L2.
  • the lead frame 8 is set with a first fold line L1 and a second fold line L2.
  • the first fold line L1 is set at the boundary between the first electrode side connection portion 4a1 and the first substrate side connection portion 4a2, and the second fold line L2 is set between the second electrode side connection portion 4b1 and the second electrode side connection portion 4b1. Is set at the boundary with the board-side connecting portion 4b2.
  • the 1st bending line L1 and the 2nd bending line L2 are shown by the dotted line in Fig.6 (a).
  • the bending process is performed by bending the first electrode side connection portion 4a1 upward with respect to the first bend line L1, and the first electrode side connection portion 4a1.
  • the boundary portion with the first substrate side connection portion 4a2 is bent at a substantially right angle
  • the second electrode side connection portion 4b1 is bent upward with respect to the second bending line L2
  • the second A boundary portion between the electrode side connection portion 4b1 and the second substrate side connection portion 4b2 is bent at a substantially right angle.
  • the first external terminal 4aa is connected to the first electrode side connecting portion 4a1 and the first substrate side.
  • the second external terminal 4bb is bent between the second electrode side connection portion 4b1 and the second substrate side connection portion 4b2 and has a structure having a bent portion (bending portion) between the connection portion 4a2. It becomes a structure which has a part (bending part).
  • the first external terminal 4aa and the second external terminal 4bb are bent so as to have a bent portion at a substantially right angle.
  • the bending process is performed on the first fold line L1 and the second fold line L2 using, for example, a bending die that matches the shape of the bent portion.
  • the first external terminal 4aa and the second external terminal 4bb which are bent are stacked.
  • a capacitor body 10 is mounted.
  • the first external terminal 4aa and the first external electrode 3a are applied to the first protrusion 4a3 and the second protrusion 4b3 by using, for example, laser spot welding.
  • the second external terminal 4bb and the second external electrode 3b are joined by the welded portion 5.
  • the first external terminal 4aa has the first projecting portion 4a3 in contact with the first external electrode 3a and joined by the welded portion 5, and the second external terminal 4bb It is preferable that the protruding portion 4b3 contacts the second external electrode 3b and is joined by the welded portion 5.
  • the joining process is greatly simplified, and the process is excellent in mass productivity.
  • the multilayer capacitor 10A since the pair of external electrodes 3 and the pair of external terminals 4 are welded, soldering is not necessary, and the multilayer capacitor 10A has a joint (welded portion) between the pair of external electrodes 3 and the pair of external terminals 4. 5) is less affected by the soldering temperature when mounted on the substrate 9, and the deterioration of reliability is suppressed.
  • the multilayer capacitor 10A includes a pair of external electrodes 3 and the first protrusions 4a3 and 4a3 by welding the first protrusions 4a3 and the second protrusions 4b3 and the pair of external electrodes 3 by welding.
  • the second protrusion 4a3 can be reliably joined.
  • the welding joint is spot welding such as arc spot welding or laser spot welding.
  • spot welding for example, an energy beam such as a YAG laser is spot-irradiated to the first protrusion 4a3 and the second protrusion 4b3, and the first protrusion 4a3 and the first external electrode 3a are irradiated. And the second projecting portion 4b3 and the second external electrode 3b are joined together.
  • the first protrusion 4a3 and the second protrusion 4b3 are locally heated, for example, When the melting temperature of the stainless alloy of the pair of external terminals 4 reaches 1400 (° C.) to 1450 (° C.), the first protrusion 4a3 and the second protrusion 4b3 and the pair of external electrodes 3 are melted, The first protrusion 4a3 and the second protrusion 4b3 are joined to the pair of external electrodes 3.
  • the multilayer capacitor 10A when a nickel (Ni) plating layer is used for the plating layer 3d of the pair of external electrodes 3 and a stainless alloy is used for the pair of external terminals 4, the nickel (Ni) plating layer and the stainless alloy are melted. The temperatures are similar, and the bondability between the pair of external terminals 4 and the pair of external electrodes 3 can be improved. As described above, the multilayer capacitor 10A has similar melting temperatures to the plating layer 3d of the pair of external electrodes 3 and the pair of external terminals 4 in joining the pair of external electrodes 3 and the pair of external terminals 4. By using the material, it becomes easy to control the joining region of the welded portion 5.
  • the multilayer capacitor body 10 uses the spot welding to join the first external terminal 4aa to the first external electrode 3a by the weld 5 and the second external terminal 4bb to the first external terminal 4bb.
  • the two external electrodes 3b are joined by the welded portion 5.
  • the lead frame 8 has the first cutting line S1 and the second cutting line S2, and the first cutting line S1 and the second cutting line S2. Is cut.
  • the external terminal pair 8 a on which the multilayer capacitor main body 10 is mounted is separated from the lead frame 8 using a cutting die.
  • a plurality of multilayer capacitors 10A are obtained from the lead frame 8, as shown in FIG.
  • the first cutting line S1 and the second cutting line S2 are indicated by dotted lines in FIG.
  • the multilayer capacitor 10A shown in FIG. 1 can be efficiently manufactured.
  • the pair of external terminals 4 are joined to the pair of external electrodes 3 by welding, and the pair of external terminals 4 are heated by soldering the multilayer capacitor 10A onto the substrate 9. Can be prevented from separating from the pair of external electrodes 3.
  • the present invention is not limited to the multilayer capacitor 10A of the first embodiment described above, and various modifications and improvements can be made without departing from the scope of the present invention.
  • other embodiments will be described. Note that, among the multilayer capacitors according to other embodiments, the same portions as those of the multilayer capacitor 10A according to the first embodiment are denoted by the same reference numerals, and description thereof will be omitted as appropriate.
  • the pair of external terminals 40 includes a first external terminal 4A and a second external terminal 4B, and the first external terminal 4A is a first board-side connection portion.
  • 4a2 is arranged from the first electrode side connection portion 4a1 toward the laminated body 1 side, and the second external terminal 4B has the second substrate side connection portion 4b2 as the second electrode side connection portion. It arrange
  • the pair of external terminals 40 has the end portion of the first board side connection portion 4a2 and the end portion of the second board side connection portion 4b2 facing each other below the multilayer capacitor body 10, and
  • the first board-side connecting portion 4a2 and the second board-side connecting portion 4b2 face the second main surface 1b of the multilayer capacitor body 10, respectively.
  • the multilayer capacitor 10B is different from the multilayer capacitor 10A according to the first embodiment in that the first substrate-side connection portion 4a2 of the first external terminal 4A and the second substrate-side connection portion 4b2 of the second external terminal 4B.
  • the first substrate side connecting portion 4a2 is arranged from the first electrode side connecting portion 4a1 toward the laminated body 1 side
  • the second substrate side connecting portion 4b2 is the second electrode. It arrange
  • the first external terminal 4A has the first extending portion 4a4 at the end of the first electrode side connecting portion 4a1 opposite to the first substrate side connecting portion 4a2.
  • the second extending portion 4b4 is provided at the end of the second electrode side connecting portion 4b1 opposite to the second substrate side connecting portion 4b2.
  • the first extension portion 4a4 is formed in the first electrode side connection portion 4a1.
  • the second extending portion 4b4 may be formed in the second electrode side connecting portion 4a1.
  • the 1st extension part 4a4 and the 2nd extension part 4b4 do not need to be formed.
  • the first external terminal 4A has a first electrode side connection portion 4a1 and a first substrate side connection portion 4a2.
  • the first electrode-side connecting portion 4a1 is disposed to face the first external electrode 3a and is joined to the first external electrode 3a and the first external electrode. It extends below 3a.
  • the first substrate-side connection portion 4a2 is disposed at the end of the portion where the first electrode-side connection portion 4a1 extends so as to be orthogonal to the first electrode-side connection portion 4a1.
  • the first substrate side connection portion 4a2 is arranged in a substantially vertical direction toward the laminated body 1 with respect to the first electrode side connection portion 4a1.
  • the first electrode side connection portion 4a1 is disposed to face the first external electrode 3a, is disposed on the first end face 1c side, and is joined to the first external electrode 3a.
  • the first substrate side connection portion 4a2 is provided so as to face the substrate 9 on which the multilayer capacitor 10B is mounted, and is electrically connected to the substrate electrode 9a.
  • the first external terminal 4A has the first electrode side connection portion 4a1 opposed to the first external electrode 3a with a gap, and has the first protrusion 4a3.
  • the protruding portion 4a3 protrudes toward the first external electrode 3a.
  • the first protrusion 4a3 and the first external electrode 3a are joined using, for example, solder joining or welding.
  • the first projecting portion 4a3 is provided in the first electrode side connecting portion 4a1 by using, for example, a press working method.
  • the first external terminal 4A is joined to the first external electrode 3a at the first protrusion 4a3 by using, for example, spot welding. That is, by welding the first external electrode 3a and the first protruding portion 4a3, as shown in FIG. 9, the welded portion 5 is formed, and the first external electrode 3a and the first protruding portion are formed. 4a3 is joined.
  • the first external terminal 4A is joined to the first external electrode 3a only by the first protrusion 4a3, and the portions other than the first protrusion 4a3 are connected to the first external electrode 3a via a gap. Opposite to.
  • the first external terminal A may be melt-bonded with the first protruding portion 4a3 coming into contact with the first external electrode 3a in order to ensure the bonding strength with the first external electrode 3a. preferable.
  • the first external terminal 4B has a second electrode side connection portion 4b1 and a second substrate side connection portion 4b2. Similar to the first external terminal 4b, the second electrode-side connecting portion 4b1 is disposed so as to face the second external electrode 3b and is joined to the second external electrode 3b and the second external electrode. It extends below 3b.
  • the second substrate-side connection portion 4b2 is disposed at the end of the portion where the second electrode-side connection portion 4b1 extends so as to be orthogonal to the second electrode-side connection portion 4b1.
  • the second substrate side connection portion 4b2 is disposed in a substantially vertical direction toward the laminate 1 with respect to the second electrode side connection portion 4b1.
  • the second electrode side connection portion 4b1 is disposed to face the second external electrode 3b, is disposed on the second end face 1d side, and is joined to the second external electrode 3b.
  • the second substrate side connection portion 4b2 is provided so as to face the substrate 9 on which the multilayer capacitor 10B is mounted, and is electrically connected to the substrate electrode 9b.
  • the second external terminal 4B has the second electrode-side connecting portion 4b1 facing the second external electrode 3b with a gap, and has the first protruding portion 4a3.
  • the protruding portion 4b3 protrudes toward the second external electrode 3b.
  • the first protrusion 4a3 and the first external electrode 3a are joined using, for example, solder joining or welding.
  • the second protruding portion 4b3 is provided in the second electrode side connecting portion 4b1, for example, using a press working method.
  • the second external terminal 4B is joined to the second external electrode 3b at the second protrusion 4b3 using, for example, spot welding. That is, the second external electrode 3b and the second protrusion 4b3 are welded to form a weld 5 as shown in FIG. 9, and the second external electrode 3b and the second protrusion are formed. 4b3 is joined. Further, the second external terminal 4B is joined to the second external electrode 3b only by the first protrusion 4b3, and the second external electrode 3b is interposed through a gap at a portion other than the second protrusion 4b3. Opposite to. Further, the first external terminal A is preferably joined with the first protruding portion 4a3 being in contact with the first external electrode 3a in order to ensure the bonding strength with the second external electrode 3b. .
  • the first substrate side connection portion 4a2 is connected to the substrate electrode 9a of the substrate 9, and the first electrode side connection portion 4a1 is connected to the first external electrode 3a.
  • the second external terminal 4B is formed symmetrically with the first external terminal 4A, the second substrate side connection portion 4b2 is connected to the substrate electrode 9b of the substrate 9, and the second external terminal 4B is connected to the substrate electrode 9b of the substrate 9.
  • the electrode side connection portion 4b1 is connected to the second external electrode 3b.
  • the multilayer capacitor 10B is provided on the first external electrode 3a so that the first external terminal 4A is separated from the surface of the substrate 9, and the second external terminal 4B is laminated from the surface of the substrate 9.
  • the capacitor body 10 is provided on the second external electrode 3b so as to be separated.
  • the first substrate side connection portion 4a2 faces the multilayer capacitor main body 10, is provided so as to be substantially parallel to the substrate 9, and is laminated at the boundary with the first electrode side connection portion 4a1.
  • the capacitor body 10 is bent inward toward the center.
  • the first substrate-side connection portion 4b2 faces the multilayer capacitor body 10 and is provided so as to be substantially parallel to the substrate 9, and at the boundary with the first electrode-side connection portion 4b1.
  • the multilayer capacitor body 10 is bent inwardly toward the center.
  • the multilayer capacitor 10B includes the first substrate-side external connection portion 4a2 that is bent at a substantially right angle inside the multilayer capacitor body 10 with respect to the first electrode-side connection portion 4a1.
  • the connection portion 4a1 is provided so as to extend toward the central portion of the multilayer capacitor body 10, and the second substrate side connection portion 4b2 is provided with respect to the second electrode side connection portion 4b1. Is bent at a substantially right angle to extend from the second electrode side connection portion 4b1 toward the center of the multilayer capacitor body 10.
  • the multilayer capacitor 10B can shorten the distance between the first substrate side connection portion 4a2 and the second substrate side connection portion 4b2 in the X direction.
  • the substantially right angle means an angle formed between the first electrode side connection portion 4a1 and the first substrate side connection portion 4a2 and an angle formed between the second electrode side connection portion 4b1 and the second substrate side connection portion 4b2. Is in the range of 85 (°) to 95 (°).
  • the first external terminal 4A and the second external terminal 4B are side-viewed from the direction (Y direction) orthogonal to the first side surface 1e or the second side surface 1f, and the side surfaces are L-shaped. And a single plate-like body bent at a substantially right angle.
  • the multilayer capacitor 10B includes a multilayer capacitor such that the first substrate side connection portion 4a2 and the second substrate side connection portion 4b2 are positioned below the multilayer capacitor body 10 as shown in FIG. It is provided so as to bend inside the main body 10 (center side), and the vibration of the substrate 9 is suppressed, making it difficult for noise to occur, and the effect of suppressing vibration noise can be improved. Since the length can be shortened, the mounting area is reduced and high-density mounting is possible. Also, the multilayer capacitor 10B is different from the multilayer capacitor 10A of the first embodiment in that the first substrate-side connection portion 4a2 and the second substrate-side connection portion 4b2 are located on the inner side (center side) of the multilayer capacitor body 10. ), The length in the X direction is shortened by the amount bent.
  • the band-shaped metal plate has a thickness of, for example, 0.1 (mm) to 0.15 (mm), a length of, for example, 100 (mm) to 250 (mm), and is made of, for example, a stainless alloy.
  • the first external terminal 4Aa to be the first external terminal 4A and the second external terminal 4Bb to be the second external terminal 4B are arranged to face each other. Then, in accordance with the pattern shapes of the first external terminal 4A and the first external terminal 4B, for example, a punching process is performed on the band-shaped metal plate using a press punching process. In this way, the strip metal plate is punched, and as shown in FIG. 10A, the strip metal plate is formed of the first external terminal 4Aa and the second external terminal 4Bb.
  • a plurality of terminal pairs 8a are provided.
  • a strip metal plate having a plurality of external terminal bodies 8a is used as the lead frame 8A.
  • the plurality of multilayer capacitors 10B can be efficiently manufactured by using the lead frame 8A.
  • the first protrusion 4a3 and the second protrusion 4b3 are formed in the first electrode side connection part 4a1 and the second electrode side connection part 4b1 by deep drawing using, for example, pressing. be able to.
  • the plating layer 7 is formed by plating the plurality of external terminal pairs 8a.
  • the lead frame 8A performs plating by masking the non-formation region of the plating layer 7 in the central portion in the longitudinal direction.
  • the external terminal pair 8a (the first external terminal 4Aa and the second external terminal 4Bb) is connected to the first board-side connecting portion 4a2 of the first external terminal 4Aa.
  • an electrolytic plating method is used for the region including the first electrode side connection portion 4a1 and the region including the second substrate side connection portion 4b2 and the second electrode side connection portion 4b1 of the second external terminal 4Bb.
  • the plating layer 7 is formed.
  • the plating layer 7 is formed in a region including the front surface, the back surface, and the side surface of the external terminal pair 8a.
  • the masking can be performed using, for example, a low hardness rubber sheet or the like.
  • the plating is performed after the lead frame 8A is punched, but the punching may be performed after the lead frame 8A is plated.
  • the processing order is appropriately set in consideration of the shape of the terminal 40 and the like.
  • the first external terminal 4Aa and the second external terminal 4Bb are connected to the boundary between the first electrode side connection portion 4a1 and the first substrate side connection portion 4a2 and to the second electrode side connection.
  • the lead frame 8A has a structure having a bent portion at the boundary between the portion 4b1 and the second substrate side connecting portion 4b2, as shown in FIG. To L6 are set, and bending is performed along the first to fourth folding lines L3 to L6. Specifically, the first fold line L3 to the fourth fold line L4 are set in the lead frame 8A.
  • the first fold line L3 is set at the boundary between the first electrode side connection portion 4a1 and the first substrate side connection portion 4a2, and the second fold line L4 is set to the second electrode side connection portion 4b1 and the second side. Is set at the boundary with the board-side connecting portion 4b2.
  • the third fold line L5 is set at the boundary between the first electrode side connection portion 4a1 and the first extension portion 4a4, and the fourth fold line L6 is connected to the second electrode side connection portion 4b1. 2 is set at the boundary with the extended portion 4b4. Note that the first fold line L3 to the fourth fold line L6 are indicated by dotted lines in FIG.
  • the first substrate side connection portion 4a2 is bent upward with respect to the first bend line L3, and the first electrode side connection portion 4a1
  • the second electrode side connection is formed by bending the boundary portion with the first substrate side connection portion 4a2 at a substantially right angle and bending the second substrate side connection portion 4b2 upward with respect to the second fold line L3.
  • the boundary portion between the portion 4b1 and the second substrate side connection portion 4b2 is bent at a substantially right angle.
  • first electrode-side connection portion 4a1 is bent downward with respect to the third fold line L5, and the boundary portion between the first electrode-side connection portion 4a1 and the first extension portion 4a4 is made substantially perpendicular.
  • the second electrode side connection portion 4b1 is bent downward with respect to the fourth bend line L6, and the boundary portion between the second electrode side connection portion 4b1 and the second extension portion 4b4 is made substantially perpendicular. Bend it.
  • the first external terminal 4Aa is connected to the first electrode side connection portion 4a1 and the first substrate side connection portion 4a2.
  • the structure has a bent portion (bent portion) between the connection portion 4b1 and the first substrate side connection portion 4b2 and between the second electrode side connection portion 4b1 and the second extension portion 4b4.
  • the first external terminal 4Aa and the second external terminal 4Bb have substantially right-angled bent portions.
  • the bending process is performed on the first folding line L3 and the second folding line L4, and the folding process is performed on the third folding line L5 and the fourth folding line L6. This is done by using a bending die that matches the shape of.
  • the lead frame 8A has a pair of external terminals 8a (first external terminal 4Aa and second external terminal 4Bb) bent and includes, for example, a suction nozzle.
  • the multilayer capacitor body 10 is mounted between the bent first external terminal 4Aa and the second external terminal 4Bb using an automatic mounting machine. Then, after mounting the multilayer capacitor body 10, the first external terminal 4Aa and the first external electrode 3a are applied to the first protrusion 4a3 and the second protrusion 4b3 by using, for example, laser spot welding. And the second external terminal 4Bb and the second external electrode 3b are joined by the welded portion 5.
  • the first external terminal 4Aa is joined by the welded portion 5 with the first protruding portion 4a3 contacting the first external electrode 3a, and the second external terminal 4Bb is connected to the first external terminal 4Aa. It is preferable that the protruding portion 4b3 contacts the second external electrode 3b and is joined by the welded portion 5. In this way, by joining the pair of external electrodes 3 and the pair of external terminals 40 with the welded portion 5, the joining process is greatly simplified, and the process is excellent in mass productivity.
  • the multilayer capacitor 10B has a joint portion (welded portion) between the pair of external electrodes 3 and the pair of external terminals 40. 5) is less affected by the soldering temperature when mounted on the substrate 9, and the deterioration of reliability is suppressed.
  • the first external terminal 4Aa is joined to the first external electrode 3a by the welding portion 5, and the second external terminal 4Bb is welded.
  • the portion 5 is joined to the second external electrode 3b.
  • the first cutting line S3 and the second cutting line S4 are set, and the first cutting line S3 and the second cutting line S4 are set. Is cut.
  • the lead frame 8A is separated from the lead frame 8A by using a cutting die in which the external terminal pair 8a on which the multilayer capacitor body 10 is mounted.
  • FIG. 12B a plurality of multilayer capacitors 10B are obtained from the lead frame 8A.
  • the first cutting line S3 and the second cutting line S4 are indicated by dotted lines in FIG.
  • the multilayer capacitor 10B shown in FIG. 8 can be efficiently manufactured by using the lead frame 8A.
  • a pair of external terminals 40 are joined to the pair of external electrodes 3 by welding, and the pair of external terminals 40 are heated by soldering the multilayer capacitor 10B on the substrate 9. Can be prevented from separating from the pair of external electrodes 3.
  • the present invention is not particularly limited to Embodiment 1 and Embodiment 2 described above, and various modifications and improvements can be made within the scope of the present invention.

Abstract

A multilayer capacitor wherein: a first external terminal 4a is connected to a first external electrode 3a, and has a first electrode-side connection part 4a1 that is connected to the first external electrode 3a and a first substrate-side connection part 4a2 that is connected to a substrate; a second external terminal 4b is connected to a second external electrode 3b, and has a second electrode-side connection part 4b1 that is connected to the second external electrode 3b and a second substrate-side connection part 4b2 that is connected to the substrate; the first and second electrode-side connection parts 4a1, 4b1 have first and second projections 4a3, 4b3 that protrude toward the first and second external electrodes 3a, 3b; and the pair of external terminals 4 are joined with the pair of external electrodes 3 by means of the first and second projections 4a3, 4b3.

Description

積層型コンデンサMultilayer capacitor
 本発明は、積層型コンデンサに関し、特に、一対の外部電極に設けられた一対の外部端子によって基板に実装される積層型コンデンサに関するものである。 The present invention relates to a multilayer capacitor, and particularly to a multilayer capacitor mounted on a substrate by a pair of external terminals provided on a pair of external electrodes.
 積層型コンデンサは、誘電体層と内部電極とが交互に積層されており、誘電体層を構成するセラミック材料としては、誘電率が比較的高いチタン酸バリウム等の強誘電体材料が一般的に用いられている。このような積層型コンデンサに交流電圧を印加すると、電歪効果から誘電体層に歪みが発生して積層型コンデンサ自体に振動が生じる。積層型コンデンサの振動は、積層型コンデンサがはんだ等を介して実装された基板に伝播し、基板に伝播した振動によって基板が共鳴して振動が増幅され、基板において振動音が発生する。そして、基板の振動周波数が可聴周波数帯域になると、基板から可聴音が発生する。すなわち、いわゆる、「音鳴き」という現象が生じる。具体的には、積層型コンデンサは、一対の外部電極と基板電極とをはんだを介して実装する場合には、一対の外部電極に付着するはんだを介して積層型コンデンサの振動が基板を変形させるので、基板において振動音が発生することになる。 In a multilayer capacitor, dielectric layers and internal electrodes are alternately laminated. As a ceramic material constituting the dielectric layer, a ferroelectric material such as barium titanate having a relatively high dielectric constant is generally used. It is used. When an AC voltage is applied to such a multilayer capacitor, distortion occurs in the dielectric layer due to the electrostrictive effect, and vibration occurs in the multilayer capacitor itself. The vibration of the multilayer capacitor propagates to the substrate on which the multilayer capacitor is mounted via solder or the like, the substrate resonates with the vibration propagated to the substrate, and the vibration is amplified, and vibration sound is generated in the substrate. When the vibration frequency of the substrate becomes an audible frequency band, an audible sound is generated from the substrate. That is, a so-called “sounding” phenomenon occurs. Specifically, in a multilayer capacitor, when a pair of external electrodes and a substrate electrode are mounted via solder, the vibration of the multilayer capacitor deforms the substrate via the solder attached to the pair of external electrodes. Therefore, vibration sound is generated in the substrate.
 基板における振動音を低減するために、対向する一対の端面に一対の外部電極を有する積層型コンデンサ本体と、一対の外部電極に接合された一対の外部端子とを備えた積層型コンデンサが用いられている。このような積層型コンデンサは、一対の外部端子が一対の外部電極に接合されており、一対の外部端子を用いて積層型コンデンサ本体を基板から離して基板に実装している。このような構成にすることによって積層型コンデンサ本体で発生した振動を基板に伝播しにくくし、積層型コンデンサ本体に起因して振動音が基板に発生するのを抑制している。このような積層型コンデンサは、例えば、特許文献1に開示されているものがある。 In order to reduce vibration noise in the substrate, a multilayer capacitor having a multilayer capacitor body having a pair of external electrodes on a pair of opposed end faces and a pair of external terminals joined to the pair of external electrodes is used. ing. In such a multilayer capacitor, a pair of external terminals are joined to a pair of external electrodes, and the multilayer capacitor body is mounted on the substrate separately from the substrate using the pair of external terminals. Such a configuration makes it difficult for vibration generated in the multilayer capacitor body to propagate to the substrate and suppresses generation of vibration noise on the substrate due to the multilayer capacitor body. An example of such a multilayer capacitor is disclosed in Patent Document 1.
特開2012-212861号公報JP 2012-212681 A
 しかしながら、上述の積層型コンデンサは、一対の外部端子を用いて積層型コンデンサ本体を基板から離して設けることによって、積層型コンデンサ本体の振動を基板に伝播しにくくして、音鳴きを抑制しているものの、一対の外部端子が一対の外部電極との対向部の全面にわたってはんだを介して外部電極に接合されており、積層型コンデンサ本体の振動を基板にさらに伝播しにくくすることが困難であるという問題点があった。 However, the above-mentioned multilayer capacitor suppresses the noise by making the multilayer capacitor body difficult to propagate to the substrate by providing the multilayer capacitor body away from the substrate using a pair of external terminals. However, the pair of external terminals are joined to the external electrodes via solder over the entire surface facing the pair of external electrodes, and it is difficult to further propagate the vibration of the multilayer capacitor body to the substrate. There was a problem.
 本発明は、上記の問題点に鑑みてなされたものであり、その目的は、積層型コンデンサ本体で発生する振動を基板に対して伝播しにくくして、音鳴きを抑制することができる積層型コンデンサを提供することにある。 The present invention has been made in view of the above-described problems, and an object of the present invention is to make it difficult for vibration generated in the multilayer capacitor body to propagate to the substrate and to suppress noise. It is to provide a capacitor.
 本発明の一実施形態に係る積層型コンデンサは、複数の誘電体層が積層されており、互いに対向する第1の端面および第2の端面を有する直方体状の積層体と、該積層体内の前記複数の誘電体層の積層方向に間隔をおいて配置された複数の内部電極と、前記第1の端面および前記第2の端面にそれぞれ配置されており、互いに異なる前記内部電極に電気的に接続されている第1の外部電極および第2の外部電極と、前記第1の外部電極および前記第2の外部電極にそれぞれ接合された一対の外部端子とを備えており、該一対の外部端子は、前記第1の外部電極に対向して配置されて該第1の外部電極に接合されているとともに該第1の外部電極の下方に延びている第1の電極側接続部および該第1の電極側接続部の延びている部分の端部に前記第1の電極側接続部に対して直交するように配置されている第1の基板側接続部を有する第1の外部端子と、前記第2の外部電極に対向して配置されて該第2の外部電極に接合されているとともに該第2の外部電極の下方に延びている第2の電極側接続部および該第2の電極側接続部の延びている部分の端部に前記第2の電極側接続部に対して直交するように配置されている第2の基板側接続部を有する第2の外部端子とを含んでおり、前記第1の外部端子は、前記第1の電極側接続部が前記第1の外部電極に隙間を有して対向して前記第1の外部電極側に向かって突出する第1の突出部を有しているとともに、該第1の突出部と前記第1の外部電極とが接合されており、前記第2の外部端子は、前記第2の電極側接続部が前記第2の外部電極に隙間を有して対向して前記第2の外部電極側に向かって突出する第2の突出部を有しているとともに、該第2の突出部と前記第2の外部電極とが接合されていることを特徴とするものである。 A multilayer capacitor according to an embodiment of the present invention includes a plurality of dielectric layers stacked, a rectangular parallelepiped stacked body having a first end surface and a second end surface facing each other, and the above-described stacked body in the stacked body. A plurality of internal electrodes arranged at intervals in the stacking direction of the plurality of dielectric layers, and arranged on the first end face and the second end face, respectively, and electrically connected to different internal electrodes A first external electrode and a second external electrode, and a pair of external terminals joined to the first external electrode and the second external electrode, respectively. A first electrode-side connecting portion disposed opposite to the first external electrode and joined to the first external electrode and extending below the first external electrode; and the first external electrode At the end of the extended part of the electrode side connection A first external terminal having a first substrate-side connection portion disposed so as to be orthogonal to the first electrode-side connection portion, and disposed opposite to the second external electrode. The second electrode-side connection portion that is joined to the second external electrode and extends below the second external electrode, and the second electrode-side connection portion extends to the end of the second electrode-side connection portion. And a second external terminal having a second substrate-side connection portion arranged so as to be orthogonal to the electrode-side connection portion, wherein the first external terminal is on the first electrode side The connecting portion has a first protruding portion that faces the first external electrode with a gap and protrudes toward the first external electrode, and the first protruding portion and the The second external terminal is joined to the first external electrode, and the second electrode side connecting portion is connected to the second external terminal. The electrode has a second protruding portion that protrudes toward the second external electrode facing the gap with a gap, and the second protruding portion and the second external electrode are joined to each other It is characterized by being.
 本発明の積層型コンデンサによれば、一対の外部端子に外部電極側に向かって突出する突出部を設けて、突出部で外部電極と接合することによって、積層型コンデンサ本体で発生する振動を基板に伝播しにくくすることができる。 According to the multilayer capacitor of the present invention, the pair of external terminals are provided with protrusions that protrude toward the external electrode side, and the vibration generated in the multilayer capacitor body is formed by joining the external electrodes at the protrusions. Propagation can be made difficult.
実施の形態1に係る積層型コンデンサを示す概略の斜視図である。1 is a schematic perspective view showing a multilayer capacitor according to a first embodiment. 図1に示す積層型コンデンサの積層型コンデンサ本体であって、(a)は積層型コンデンサ本体を示す概略の斜視図であり、(b)は図1に示す積層型コンデンサ本体をA-A線で切断した断面図であり、(c)は(b)に示す積層型コンデンサ本体の他の例の断面図である。1 is a multilayer capacitor body of the multilayer capacitor shown in FIG. 1, wherein (a) is a schematic perspective view showing the multilayer capacitor body, and (b) is an AA line view of the multilayer capacitor body shown in FIG. (C) is a cross-sectional view of another example of the multilayer capacitor body shown in (b). (a)は図1に示す積層型コンデンサのA-A線で切断した断面図であり、(b)は(a)に示す積層型コンデンサのB-B線で切断した断面図である。FIG. 2A is a cross-sectional view taken along the line AA of the multilayer capacitor shown in FIG. 1, and FIG. 2B is a cross-sectional view taken along the line BB of the multilayer capacitor shown in FIG. 実施の形態1に係る積層型コンデンサの他の例を示す概略の斜視図である。6 is a schematic perspective view illustrating another example of the multilayer capacitor in accordance with Embodiment 1. FIG. (a)は図1に示す積層型コンデンサを基板上に実装した状態を示す概略の斜視図であり、(b)は(a)に示す積層型コンデンサのC-C線で切断した断面図である。(A) is a schematic perspective view showing a state in which the multilayer capacitor shown in FIG. 1 is mounted on a substrate, and (b) is a cross-sectional view taken along the line CC of the multilayer capacitor shown in (a). is there. (a)および(b)は、図1に示す積層型コンデンサの製造方法を説明するための説明図である。(A) And (b) is explanatory drawing for demonstrating the manufacturing method of the multilayer capacitor | condenser shown in FIG. (a)および(b)は、図1に示す積層型コンデンサの製造方法を説明するための説明図である。(A) And (b) is explanatory drawing for demonstrating the manufacturing method of the multilayer capacitor | condenser shown in FIG. 実施の形態2に係る積層型コンデンサを示す概略の斜視図である。6 is a schematic perspective view showing a multilayer capacitor according to a second embodiment. FIG. (a)は図8に示す積層型コンデンサのD-D線で切断した断面図であり、(b)は(a)に示す積層型コンデンサのE-E線で切断した断面図である。FIG. 9A is a cross-sectional view taken along line DD of the multilayer capacitor shown in FIG. 8, and FIG. 9B is a cross-sectional view taken along line EE of the multilayer capacitor shown in FIG. (a)は図8に示す積層型コンデンサを基板上に実装した状態を示す概略の斜視図であり、(b)は(a)に示す積層型コンデンサのF-F線で切断した断面図である。FIG. 9A is a schematic perspective view showing a state in which the multilayer capacitor shown in FIG. 8 is mounted on a substrate, and FIG. 9B is a cross-sectional view of the multilayer capacitor shown in FIG. is there. (a)および(b)は、図8に示す積層型コンデンサの製造方法を説明するための説明図である。(A) And (b) is explanatory drawing for demonstrating the manufacturing method of the multilayer capacitor | condenser shown in FIG. (a)および(b)は、図8に示す積層型コンデンサの製造方法を説明するための説明図である。(A) And (b) is explanatory drawing for demonstrating the manufacturing method of the multilayer capacitor | condenser shown in FIG.
 <実施の形態1>
 以下、本発明の実施の形態1に係る積層型コンデンサ10Aについて図面を参照しながら説明する。
<Embodiment 1>
Hereinafter, the multilayer capacitor 10A according to the first embodiment of the present invention will be described with reference to the drawings.
 図1は本発明の実施の形態1に係る積層型コンデンサ10Aを示す概略の斜視図であり、積層型コンデンサ10Aは、積層型コンデンサ本体10と、積層型コンデンサ本体10の一対の外部電極3(第1の外部電極3aおよび第2の外部電極3b)に接合された一対の外部端子4(第1の外部端子4aおよび第2の外部端子4b)とを備えている。一対の外部端子4は、第1の突出部4a3および第2の突出部4b3で一対の外部電極3と接合されている。 FIG. 1 is a schematic perspective view showing a multilayer capacitor 10A according to Embodiment 1 of the present invention. The multilayer capacitor 10A includes a multilayer capacitor body 10 and a pair of external electrodes 3 ( A pair of external terminals 4 (first external terminal 4a and second external terminal 4b) joined to the first external electrode 3a and the second external electrode 3b) are provided. The pair of external terminals 4 are joined to the pair of external electrodes 3 by the first protrusion 4a3 and the second protrusion 4b3.
 また、積層型コンデンサ本体10は、セラミック材料の誘電体層と内部電極2(第1の内部電極2aと第2の内部電極2b)とを有し、誘電体層と内部電極2とが交互に積層されており、一対の外部電極3(第1の外部電極3aと第2の外部電極3b)が第1の端面1cまたは第2の端面1dに引き出された内部電極2に電気的に接続されている。すなわち、内部電極2は、第1の内部電極2aが第1の外部電極3aに電気的に接続されており、第2の内部電極2bが第2の外部電極3bに電気的に接続されている。また、積層型コンデンサ10Aは、便宜的に、直交座標系XYZを定義するとともに、Z方向の正側を上方としている。なお、各図面において、同じ部材および同じ部分に関しては、共通の符号を用いて、重複する説明は省略する。 The multilayer capacitor body 10 includes a dielectric layer made of a ceramic material and internal electrodes 2 (first internal electrode 2a and second internal electrode 2b). The dielectric layers and the internal electrodes 2 are alternately arranged. A pair of external electrodes 3 (first external electrode 3a and second external electrode 3b) are electrically connected to the internal electrode 2 drawn out to the first end face 1c or the second end face 1d. ing. That is, in the internal electrode 2, the first internal electrode 2a is electrically connected to the first external electrode 3a, and the second internal electrode 2b is electrically connected to the second external electrode 3b. . For convenience, the multilayer capacitor 10A defines an orthogonal coordinate system XYZ and has the positive side in the Z direction upward. In addition, in each drawing, about the same member and the same part, the overlapping description is abbreviate | omitted using a common code | symbol.
 積層型コンデンサ10Aは、回路基板(以下、基板9という)上にはんだ6を介して実装されるものである。基板9は、例えば、ノートパソコン、スマートフォンまたは携帯電話等に用いられており、例えば、表面に積層型コンデンサ10Aが電気的に接続される電気回路が形成されているものである。 The multilayer capacitor 10A is mounted via a solder 6 on a circuit board (hereinafter referred to as a board 9). The substrate 9 is used, for example, in a notebook computer, a smartphone, a mobile phone, or the like. For example, an electric circuit to which the multilayer capacitor 10A is electrically connected is formed on the surface.
 また、基板9は、図5に示すように、例えば、積層型コンデンサ10Aが実装される表面には、基板電極9aおよび基板電極9bが設けられており、基板電極9aからは配線9cが延びており、また、基板電極9bからは配線9dが延びている。積層型コンデンサ10Aは、例えば、第1の外部端子4aと基板電極9aとがはんだ付けによりはんだ接合され、また、第2の外部端子4bと基板電極9bとがはんだ付けによりはんだ接合される。 As shown in FIG. 5, the substrate 9 is provided with, for example, a substrate electrode 9a and a substrate electrode 9b on the surface on which the multilayer capacitor 10A is mounted, and a wiring 9c extends from the substrate electrode 9a. The wiring 9d extends from the substrate electrode 9b. In the multilayer capacitor 10A, for example, the first external terminal 4a and the substrate electrode 9a are soldered by soldering, and the second external terminal 4b and the substrate electrode 9b are soldered by soldering.
 まず、積層型コンデンサ本体10について、図面を参照しながら以下に説明する。 First, the multilayer capacitor body 10 will be described below with reference to the drawings.
 積層型コンデンサ本体10は、図2に示すように、積層体1と、積層体1内に形成されている内部電極2(第1の内部電極2aおよび第2の内部電極2b)と、一対の外部電極3(第1の外部電極3aおよび第2の外部電極3b)とを備えている。第1の外部電極3aおよび第2の外部電極3bは、積層体1の第1の端面1cおよび第2の端面1dにそれぞれ配置されており、第1の端面1cまたは第2の端面1dに引き出された内部電極2に電気的に接続されている。 As shown in FIG. 2, the multilayer capacitor body 10 includes a multilayer body 1, internal electrodes 2 (first internal electrode 2a and second internal electrode 2b) formed in the multilayer body 1, a pair of The external electrode 3 (the 1st external electrode 3a and the 2nd external electrode 3b) is provided. The first external electrode 3a and the second external electrode 3b are respectively disposed on the first end surface 1c and the second end surface 1d of the multilayer body 1, and are drawn out to the first end surface 1c or the second end surface 1d. The internal electrode 2 is electrically connected.
 積層体1は、複数の誘電体層が積層されて直方体状に形成されており、互いに対向する第1の端面1cおよび第2の端面1dは、第1の主面1aおよび第2の主面1b間を連結しており、また、互いに対向する第1の側面1eおよび第2の側面1fは、第1の主面1aおよび第2の主面1b間および第1の端面1cおよび第2の端面1d間を連結している。なお、直方体状とは、立方体形状または直方体形状のみならず、例えば、立方体または直方体の稜線部分に面取りが施されて稜線部分がR形状となるものを含んでいる。 The multilayer body 1 is formed in a rectangular parallelepiped shape by laminating a plurality of dielectric layers, and the first end surface 1c and the second end surface 1d facing each other are the first main surface 1a and the second main surface. The first side surface 1e and the second side surface 1f that are connected to each other and that face each other are between the first main surface 1a and the second main surface 1b, and between the first end surface 1c and the second side surface 1f. The end faces 1d are connected. Note that the rectangular parallelepiped shape includes not only a cubic shape or a rectangular parallelepiped shape, but also includes, for example, a shape in which a ridge line portion of a cube or a rectangular parallelepiped is chamfered so that the ridge line portion has an R shape.
 積層体1は、複数の誘電体層が積層されて直方体状に形成されており、誘電体層となるセラミックグリーンシートを複数枚積層して焼成することで得られる焼結体である。このように、積層体1は、直方体状に形成されており、互いに対向する第1の主面1aおよび第2の主面1bと、第1の主面1aおよび第2の主面1bに直交しており、互いに対向する第1の端面1cおよび第2の端面1dと、第1の端面1cおよび第2の端面1dに直交しており、互いに対向する第1の側面1eおよび第2の側面1fとを有している。また、積層体1は、誘電体層の積層方向(Z方向)に対して、直交する断面(XY面)となる平面が長方形状となっている。また、積層型コンデンサ本体10は、積層体1の各稜線部が丸みを有していてもよい。 The laminated body 1 is a sintered body obtained by laminating a plurality of dielectric layers and forming a rectangular parallelepiped, and laminating and firing a plurality of ceramic green sheets serving as dielectric layers. Thus, the laminated body 1 is formed in a rectangular parallelepiped shape, and is orthogonal to the first main surface 1a and the second main surface 1b facing each other, and the first main surface 1a and the second main surface 1b. The first side face 1c and the second end face 1d facing each other, and the first side face 1e and the second side face facing each other perpendicular to the first end face 1c and the second end face 1d. 1f. In addition, the laminate 1 has a rectangular plane that is a cross-section (XY plane) orthogonal to the stacking direction (Z direction) of the dielectric layers. In the multilayer capacitor body 10, each ridge line portion of the multilayer body 1 may be rounded.
 このような構成の積層型コンデンサ本体10の寸法は、長手方向(X方向)の長さが、例えば0.6(mm)~2.2(mm)、短手方向(Y方向)の長さが、例えば0.3(mm)~1.5(mm)、高さ方向(Z方向)の長さが、例えば0.3(mm)~1.2(mm)である。 The dimension of the multilayer capacitor body 10 having such a configuration is such that the length in the longitudinal direction (X direction) is, for example, 0.6 (mm) to 2.2 (mm), and the length in the short direction (Y direction). However, the length in the height direction (Z direction) is, for example, 0.3 (mm) to 1.5 (mm).
 誘電体層は、積層方向からの平面視において長方形状であり、1層当たりの厚みが、例えば0.5(μm)~3(μm)である。積層体1は、例えば10(層)~1000(層)からなる複数の誘電体層と内部電極2とがZ方向に積層されている。また、積層体1内の内部電極2の積層数は、積層型コンデンサ本体10の特性等に応じて適宜に設計される。 The dielectric layer has a rectangular shape in plan view from the stacking direction, and the thickness per layer is, for example, 0.5 (μm) to 3 (μm). In the laminate 1, for example, a plurality of dielectric layers composed of, for example, 10 (layers) to 1000 (layers) and internal electrodes 2 are laminated in the Z direction. In addition, the number of internal electrodes 2 in the multilayer body 1 is appropriately designed according to the characteristics of the multilayer capacitor body 10.
 誘電体層は、例えばチタン酸バリウム(BaTiO)、チタン酸カルシウム(CaTiO)、チタン酸ストロンチウム(SrTiO)またはジルコン酸カルシウム(CaZrO)等である。また、誘電体層は、高い誘電率の点から、特に、誘電率の高い強誘電体材料としてチタン酸バリウムを用いることが好ましい。 The dielectric layer is, for example, barium titanate (BaTiO 3 ), calcium titanate (CaTiO 3 ), strontium titanate (SrTiO 3 ), or calcium zirconate (CaZrO 3 ). The dielectric layer preferably uses barium titanate as a ferroelectric material having a high dielectric constant from the viewpoint of a high dielectric constant.
 複数の内部電極2は、第1の内部電極2aと第2の内部電極2bとを含んでおり、第1の内部電極2aおよび第2の内部電極2bは、誘電体層の積層方向に所定間隔を介して互いに対向しており、図2(b)および図2(c)に示すように、積層体1内の複数の誘電体層の積層方向に所定間隔をおいて交互に配置されており、積層体1の第1の主面1aおよび第2の主面1bに略平行となるようにそれぞれ設けられている。なお、第1の内部電極2aと第2の内部電極2bとが一対の内部電極2となって、積層体1内に交互に配置されている。 The plurality of internal electrodes 2 include a first internal electrode 2a and a second internal electrode 2b, and the first internal electrode 2a and the second internal electrode 2b are arranged at a predetermined interval in the stacking direction of the dielectric layers. 2b and 2c, the plurality of dielectric layers in the multilayer body 1 are alternately arranged at predetermined intervals in the laminating direction, as shown in FIG. 2 (b) and FIG. 2 (c). The laminated body 1 is provided so as to be substantially parallel to the first main surface 1a and the second main surface 1b, respectively. The first internal electrodes 2 a and the second internal electrodes 2 b form a pair of internal electrodes 2 and are alternately arranged in the stacked body 1.
 このように、第1の内部電極2aおよび第2の内部電極2bは、積層体1内の複数の誘電体層の積層方向に所定間隔をおいて配置されており、誘電体層で隔てられ、かつ互いに対向して配置されており、第1の内部電極2aと第2の内部電極2bとの間には少なくとも1層の誘電体層がそれぞれ挟まれている。これらの内部電極2が形成された誘電体層が複数枚積層されて積層型コンデンサ本体10の積層体1が形成される。 Thus, the first internal electrode 2a and the second internal electrode 2b are arranged at a predetermined interval in the stacking direction of the plurality of dielectric layers in the stacked body 1, and are separated by the dielectric layers, Further, they are arranged to face each other, and at least one dielectric layer is sandwiched between the first internal electrode 2a and the second internal electrode 2b. A plurality of dielectric layers on which the internal electrodes 2 are formed are laminated to form the multilayer body 1 of the multilayer capacitor body 10.
 複数の内部電極2は、積層体1内に形成されており、積層方向からの平面視において長方形状であり、また、積層体1内の複数の誘電体層の積層方向に間隔をおいて配置されている。積層型コンデンサ本体10において、図2(b)および図2(c)に示すように、第1の内部電極2aは、一方の端部が第1の端面1cに引き出され、第2の内部電極2bは、一方の端部が第1の端面1cに対向する第2の端面1dに引き出されている。 The plurality of internal electrodes 2 are formed in the multilayer body 1 and have a rectangular shape in plan view from the stacking direction, and are arranged at intervals in the stacking direction of the plurality of dielectric layers in the stack body 1. Has been. In the multilayer capacitor body 10, as shown in FIGS. 2B and 2C, one end of the first internal electrode 2a is drawn out to the first end face 1c, and the second internal electrode As for 2b, one edge part is pulled out by the 2nd end surface 1d which opposes the 1st end surface 1c.
 また、内部電極2は、第1の端面1cおよび第2の端面1dのうちの一方の端面に露出するとともに、第1の側面1eおよび第2の側面1fに露出しないように設けられている。 Further, the internal electrode 2 is provided so as to be exposed to one end face of the first end face 1c and the second end face 1d and not to be exposed to the first side face 1e and the second side face 1f.
 第1の内部電極2aおよび第2の内部電極2bの導電材料は、例えばニッケル(Ni)、銅(Cu)、銀(Ag)、パラジウム(Pd)または金(Au)等の金属材料、あるいは、これらの金属材料の一種以上を含む、例えばAg-Pd合金等の合金材料である。また、第1の内部電極2aおよび第2の内部電極2bは、電極の厚みが、例えば0.5(μm)~2(μm)であり、用途に応じて厚みを適宜に設定すればよい。また、第1の内部電極2aおよび第2の内部電極2bは、同一の金属材料または合金材料によって形成することが好ましい。 The conductive material of the first internal electrode 2a and the second internal electrode 2b is, for example, a metal material such as nickel (Ni), copper (Cu), silver (Ag), palladium (Pd), or gold (Au), or For example, an alloy material such as an Ag—Pd alloy containing one or more of these metal materials. The first internal electrode 2a and the second internal electrode 2b have an electrode thickness of, for example, 0.5 (μm) to 2 (μm), and the thickness may be set appropriately depending on the application. The first internal electrode 2a and the second internal electrode 2b are preferably formed of the same metal material or alloy material.
 また、積層型コンデンサ10Aは、図3に示すように、内部電極2がXY面に平行になるように積層型コンデンサ本体10が一対の外部端子4の間に配置されているが、これに限らない。積層型コンデンサ10Aは、内部電極2がXZ面に平行になるように積層型コンデンサ本体10が一対の外部端子4の間に配置されていてもよい。この場合には、第1の突出部4a3および第2の突出部4b3は、Y方向の端部にそれぞれ位置していてもよい。 In the multilayer capacitor 10A, as shown in FIG. 3, the multilayer capacitor body 10 is disposed between the pair of external terminals 4 so that the internal electrode 2 is parallel to the XY plane. Absent. In the multilayer capacitor 10A, the multilayer capacitor body 10 may be disposed between the pair of external terminals 4 so that the internal electrode 2 is parallel to the XZ plane. In this case, the 1st protrusion part 4a3 and the 2nd protrusion part 4b3 may each be located in the edge part of a Y direction.
 一対の外部電極3は、第1の端面1cおよび第2の端面1dにそれぞれ配置されており、第1の端面1cまたは第2の端面1dに引き出された内部電極2に電気的に接続されている。具体的には、第1の外部電極3aは、第1の端面1cに配置されており、第1の端面1cに引き出された第1の内部電極2aに電気的に接続されている。また、第2の外部電極3bは、第2の端面1dに配置されており、第2の端面1dに引き出された第2の内部電極2bに電気的に接続されている。 The pair of external electrodes 3 are respectively disposed on the first end surface 1c and the second end surface 1d, and are electrically connected to the internal electrode 2 drawn out to the first end surface 1c or the second end surface 1d. Yes. Specifically, the first external electrode 3a is disposed on the first end face 1c, and is electrically connected to the first internal electrode 2a drawn out to the first end face 1c. The second external electrode 3b is disposed on the second end surface 1d, and is electrically connected to the second internal electrode 2b drawn to the second end surface 1d.
 このように、一対の外部電極3は、第1の外部電極3aと第2の外部電極3bとからなり、第1の端面1cおよび第2の端面1dを覆うように形成されており、第1の外部電極3aと第2の外部電極3bとが互いに対向するように配置されている。また、一対の外部電極3は、図2に示すように、第1の端面1cおよび第2の端面1dを覆うように形成されており、積層体1において、第1の端面1cおよび第2の端面1dから第1の主面1aおよび第2の主面1bの表面にそれぞれ延設して形成され、また、第1の端面1cおよび第2の端面1dから第1の側面1eおよび第2の側面1fの表面にそれぞれ延設して形成されている。 As described above, the pair of external electrodes 3 includes the first external electrode 3a and the second external electrode 3b, and is formed so as to cover the first end surface 1c and the second end surface 1d. The external electrode 3a and the second external electrode 3b are arranged so as to face each other. Further, as shown in FIG. 2, the pair of external electrodes 3 is formed so as to cover the first end face 1 c and the second end face 1 d, and in the stacked body 1, the first end face 1 c and the second end face 1 d are formed. The first main surface 1a and the second main surface 1b are respectively extended from the end surface 1d to the surfaces of the first main surface 1a and the second main surface 1b, and the first side surface 1e and the second side surface 1d are connected to the first end surface 1c and the second main surface 1d. Each of the side surfaces 1f is formed to extend.
 また、一対の外部電極3は、図2(b)に示すように、下地電極3cとめっき層3dとを含んでいる。下地電極3cは、第1の端面1cまたは第2の端面1dに引き出された内部電極2に電気的に接続されており、めっき層3dは、下地電極3cを覆うように下地電極3cの表面上に形成されている。めっき層3dは、下地電極3cを保護するために形成されており、また、溶融接合においては一対の外部電極3と一対の外部端子4との接合性を向上させるために形成されている。なお、一対の外部電極3は、めっき層3dに限らず、下地電極3cを覆うように一対の外部端子4に対して接合可能な金属層が設けられていればよい。特に、一対の外部電極3は、下地電極3cを覆うように一対の外部端子4に対して溶融接合可能な金属層が設けられていることが好ましい。 The pair of external electrodes 3 includes a base electrode 3c and a plating layer 3d as shown in FIG. 2 (b). The base electrode 3c is electrically connected to the internal electrode 2 drawn out to the first end face 1c or the second end face 1d, and the plating layer 3d is formed on the surface of the base electrode 3c so as to cover the base electrode 3c. Is formed. The plating layer 3d is formed to protect the base electrode 3c, and is formed to improve the bonding property between the pair of external electrodes 3 and the pair of external terminals 4 in the melt bonding. Note that the pair of external electrodes 3 is not limited to the plating layer 3 d, but may be any metal layer that can be bonded to the pair of external terminals 4 so as to cover the base electrode 3 c. In particular, the pair of external electrodes 3 is preferably provided with a metal layer that can be melt bonded to the pair of external terminals 4 so as to cover the base electrode 3c.
 下地電極3cの導電材料は、例えばニッケル(Ni)、銅(Cu)、銀(Ag)、パラジウム(Pd)または金(Au)等の金属材料、あるいは、これらの金属材料の一種以上を含む、例えばAg-Pd合金等の合金材料である。また、一対の下地電極3cは、同一の金属材料または合金材料によって形成することが好ましい。 The conductive material of the base electrode 3c includes, for example, a metal material such as nickel (Ni), copper (Cu), silver (Ag), palladium (Pd), or gold (Au), or one or more of these metal materials. For example, an alloy material such as an Ag—Pd alloy. The pair of base electrodes 3c is preferably formed of the same metal material or alloy material.
 下地電極3cは、第1の主面1aおよび第2の主面1bにおける厚みが、例えば4(μm)~10(μm)であり、第1の端面1cおよび第2の端面1dにおける厚みが、例えば10(μm)~25(μm)であり、第1の側面1eおよび第2の側面1fにおける厚みが、例えば4(μm)~10(μm)である。 The base electrode 3c has a thickness on the first main surface 1a and the second main surface 1b of, for example, 4 (μm) to 10 (μm), and a thickness on the first end surface 1c and the second end surface 1d, For example, the thickness is 10 (μm) to 25 (μm), and the thickness on the first side surface 1e and the second side surface 1f is, for example, 4 (μm) to 10 (μm).
 また、下地電極3cは、第1の端面1cおよび第2の端面1dから第1の主面1aおよび第2の主面1bに延在するように形成され、また、第1の端面1cおよび第2の端面1dから第1の側面1eおよび第2の側面1fに延在するように形成されている。めっき層3dは、積層体1の表面に形成された下地電極3cを覆うように下地電極3cの表面上に形成されている。 The base electrode 3c is formed to extend from the first end surface 1c and the second end surface 1d to the first main surface 1a and the second main surface 1b, and the first end surface 1c and the first end surface 1c The second end surface 1d is formed to extend from the first side surface 1e and the second side surface 1f. The plating layer 3 d is formed on the surface of the base electrode 3 c so as to cover the base electrode 3 c formed on the surface of the multilayer body 1.
 このように、第1の外部電極3aおよび第2の外部電極3bは、図2(b)に示すように、めっき層3dが下地電極3cの表面に形成されており、めっき層3dは、例えばニッケル(Ni)めっき層、銅(Cu)めっき層、金(Au)めっき層またはスズ(Sn)めっき層等である。また、めっき層3dは、例えば、電解めっき法を用いて形成される。 Thus, as shown in FIG. 2B, the first external electrode 3a and the second external electrode 3b have the plating layer 3d formed on the surface of the base electrode 3c. A nickel (Ni) plating layer, a copper (Cu) plating layer, a gold (Au) plating layer, a tin (Sn) plating layer, or the like. Moreover, the plating layer 3d is formed using, for example, an electrolytic plating method.
 また、第1の外部電極3aおよび第2の外部電極3bは、図2(b)に示すように、単一のめっき層3dが形成されているが、図2(c)に示すように、下地電極3cの保護を確実にするために、複数層のめっき層で構成されていてもよい。例えば、一対の外部電極3は、図2(c)に示すように、第1のめっき層3d1と第1のめっき層3d1の表面に形成された第2のめっき層3d2とからなる積層体が表面に形成されていてもよい。なお、本実施の形態では、一対の外部電極3は、めっき層3dが第1のめっき層3d1と第2のめっき層3d2とからなる積層体を有している。なお、めっき層3dの構成は、これに限らない。 In addition, as shown in FIG. 2B, the first external electrode 3a and the second external electrode 3b are formed with a single plating layer 3d, but as shown in FIG. In order to ensure the protection of the base electrode 3c, it may be composed of a plurality of plating layers. For example, as shown in FIG. 2 (c), the pair of external electrodes 3 is a laminate composed of a first plating layer 3d1 and a second plating layer 3d2 formed on the surface of the first plating layer 3d1. It may be formed on the surface. In the present embodiment, the pair of external electrodes 3 has a laminate in which the plating layer 3d is composed of the first plating layer 3d1 and the second plating layer 3d2. The configuration of the plating layer 3d is not limited to this.
 例えば、一対の外部電極3は、下地電極3cの表面にNiめっき層(第1のめっき層3d1)を形成し、Niめっき層の表面にSnめっき層(第2のめっき層3d2)を形成して、めっき層3dがNiめっき層とSnめっき層との積層体で形成されていてもよい。第1のめっき層3d1は、厚みが、例えば5(μm)~10(μm)であり、第2のめっき層3d2は、厚みが、例えば3(μm)~5(μm)である。 For example, in the pair of external electrodes 3, a Ni plating layer (first plating layer 3d1) is formed on the surface of the base electrode 3c, and a Sn plating layer (second plating layer 3d2) is formed on the surface of the Ni plating layer. In addition, the plating layer 3d may be formed of a laminate of a Ni plating layer and a Sn plating layer. The first plating layer 3d1 has a thickness of, for example, 5 (μm) to 10 (μm), and the second plating layer 3d2 has a thickness of, for example, 3 (μm) to 5 (μm).
 ここで、一対の外部端子4(第1の外部端子4aおよび第2の外部端子4b)について図面を参照しながら以下に説明する。 Here, the pair of external terminals 4 (first external terminal 4a and second external terminal 4b) will be described below with reference to the drawings.
 一対の外部端子4は、図1に示すように、第1の外部端子4aと第2の外部端子4bとを含んでおり、第1の外部電極3aおよび第2の外部電極3bにそれぞれ接合されている。一対の外部端子4は、図5に示すように、積層型コンデンサ10Aが実装される基板9の表面から積層型コンデンサ本体10を離れて配置させるものである。具体的には、第1の外部端子4aは、積層型コンデンサ本体10が基板9の表面から離れて配置するように第1の外部電極3aに接合されており、第2の外部端子4bは、積層型コンデンサ本体10が基板9の表面から離れて配置するように第2の外部電極3bに接合されている。 As shown in FIG. 1, the pair of external terminals 4 includes a first external terminal 4a and a second external terminal 4b, which are joined to the first external electrode 3a and the second external electrode 3b, respectively. ing. As shown in FIG. 5, the pair of external terminals 4 is for disposing the multilayer capacitor body 10 away from the surface of the substrate 9 on which the multilayer capacitor 10A is mounted. Specifically, the first external terminal 4a is joined to the first external electrode 3a so that the multilayer capacitor body 10 is arranged away from the surface of the substrate 9, and the second external terminal 4b is The multilayer capacitor main body 10 is bonded to the second external electrode 3b so as to be disposed away from the surface of the substrate 9.
 第1の外部端子4aは、図3に示すように、第1の電極側接続部4a1および第1の基板側接続部4a2を有している。第1の電極側接続部4a1は、第1の外部電極3aに対向して配置されて第1の外部電極3aに接合されているとともに第1の外部電極3aの下方に延びている。第1の基板側接続部4a2は、第1の電極側接続部4a1の延びている部分の端部に第1の電極側接続部4a1に対して直交するように配置されている。このように、第1の基板側接続部4a2は、第1の電極側接続部4a1の一方の端部に接続しており、第1の電極側接続部4a1から積層型コンデンサ本体10の長手方向に延在している。 As shown in FIG. 3, the first external terminal 4a has a first electrode side connection portion 4a1 and a first substrate side connection portion 4a2. The first electrode side connection portion 4a1 is disposed to face the first external electrode 3a, is joined to the first external electrode 3a, and extends below the first external electrode 3a. The first substrate-side connection portion 4a2 is disposed at the end of the portion where the first electrode-side connection portion 4a1 extends so as to be orthogonal to the first electrode-side connection portion 4a1. Thus, the first substrate-side connection portion 4a2 is connected to one end of the first electrode-side connection portion 4a1, and the longitudinal direction of the multilayer capacitor body 10 from the first electrode-side connection portion 4a1. It extends to.
 また、第2の外部端子4bは、第2の電極側接続部4b1および第2の基板側接続部4b2を有している。第2の電極側接続部4b1は、第2の外部電極3bに対向して配置されて第2の外部電極3bに接合されているとともに第2の外部電極3bの下方に延びている。第2の基板側接続部4b2は、第2の電極側接続部4b1の延びている部分の端部に第2の電極側接続部4b1に対して直交するように配置されている。このように、第2の基板側接続部4b2は、第2の電極側接続部4b1の一方の端部に接続しており、第2の電極側接続部4b1から積層型コンデンサ本体10の長手方向に延在している。 The second external terminal 4b has a second electrode side connection portion 4b1 and a second substrate side connection portion 4b2. The second electrode side connection portion 4b1 is disposed opposite to the second external electrode 3b, joined to the second external electrode 3b, and extends below the second external electrode 3b. The second substrate-side connection portion 4b2 is disposed at the end of the portion where the second electrode-side connection portion 4b1 extends so as to be orthogonal to the second electrode-side connection portion 4b1. As described above, the second substrate-side connecting portion 4b2 is connected to one end of the second electrode-side connecting portion 4b1, and the longitudinal direction of the multilayer capacitor body 10 from the second electrode-side connecting portion 4b1. It extends to.
 第1の基板側接続部4a2が第1の電極側接続部4a1に対して直交しているとは、第1の基板側接続部4a2が第1の電極側接続部4a1から積層体1の反対側に向かって配置されるものおよび積層体1の側に向かって配置されるものを含んでいる。すなわち、第1の基板側接続部4a2が積層型コンデンサ本体10の外側に向かって延びているものおよび内側に向かって延びているものを含んでいる。 The first substrate-side connecting portion 4a2 is orthogonal to the first electrode-side connecting portion 4a1, and the first substrate-side connecting portion 4a2 is opposite to the laminate 1 from the first electrode-side connecting portion 4a1. The thing arrange | positioned toward the side and the thing arrange | positioned toward the side of the laminated body 1 are included. That is, the first board side connection portion 4a2 includes those extending toward the outside of the multilayer capacitor body 10 and those extending toward the inside.
 また、第2の基板側接続部4b2が第2の電極側接続部4b1に対して直交しているとは、第2の基板側接続部4b2が第2の電極側接続部4b1から積層体1の反対側に向かって配置されるものおよび積層体1の側に向かって配置されるものを含んでいる。すなわち、第2の基板側接続部4b2が積層型コンデンサ本体10の外側に向かって延びているものおよび内側に向かって延びているものを含んでいる。実施の形態1は、第1の基板側接続部4a2が第1の電極側接続部4a1に対して直交するとともに積層体1の反対側に向かって配置されており、第2の基板側接続部4b2が第2の電極側接続部4b1に対して直交するとともに積層体1の反対側に向かって配置されている。 In addition, the second substrate-side connection portion 4b2 is orthogonal to the second electrode-side connection portion 4b1, and the second substrate-side connection portion 4b2 extends from the second electrode-side connection portion 4b1 to the laminate 1. And those arranged toward the side of the laminate 1 are included. That is, the second board side connection portion 4b2 includes those extending toward the outside of the multilayer capacitor body 10 and those extending toward the inside. In the first embodiment, the first substrate-side connection portion 4a2 is arranged orthogonal to the first electrode-side connection portion 4a1 and is disposed toward the opposite side of the stacked body 1, and the second substrate-side connection portion 4b2 is orthogonal to the second electrode side connection portion 4b1 and is disposed toward the opposite side of the laminate 1.
 第1の外部端子4aは、図3に示すように、第1の基板側接続部4a2が第1の電極側接続部4a1を基準にして積層体1の反対側に向かって略垂直方向に延在している。すなわち、第1の外部端子4aは、第1の基板側接続部4a2が第1の電極側接続部4a1に対して積層型コンデンサ本体10の外側に向かって略直角に折り曲げられている。第1の外部端子4aは、第1の側面1eまたは第2の側面1fに直交する方向(Y方向)から側面視して、側面がL字形状を有しており、1枚の板状体を略直角に折り曲げたものである。なお、略直角とは、第1の電極側接続部4a1と第1の基板側接続部4a2との成す角度が、85(°)~95(°)の範囲内にあることをいう。 As shown in FIG. 3, the first external terminal 4a has a first substrate side connection portion 4a2 extending in a substantially vertical direction toward the opposite side of the multilayer body 1 with respect to the first electrode side connection portion 4a1. Exist. That is, in the first external terminal 4a, the first substrate-side connection portion 4a2 is bent at a substantially right angle toward the outside of the multilayer capacitor body 10 with respect to the first electrode-side connection portion 4a1. The first external terminal 4a has an L-shaped side surface as viewed from the side (Y direction) orthogonal to the first side surface 1e or the second side surface 1f, and has a single plate-like body. Is bent at a substantially right angle. The term “substantially perpendicular” means that the angle formed by the first electrode side connection portion 4a1 and the first substrate side connection portion 4a2 is in the range of 85 (°) to 95 (°).
 また、第2の外部端子4bは、図3に示すように、第1の外部端子4aと対称に形成されており、第2の基板側接続部4b2が第2の電極側接続部4b1を基準にして積層体1の反対側に向かって略垂直方向に延在している。すなわち、第2の外部端子4bは、第2の基板側接続部4b2が第2の電極側接続部4b1に対して積層型コンデンサ本体10の外側に向かって略直角に折り曲げられている。第2の外部端子4bは、第1の側面1eまたは第2の側面1fに直交する方向(Y方向)から側面視して、側面がL字形状を有しており、1枚の板状体を略直角に折り曲げたものである。なお、略直角とは、第2の電極側接続部4b1と第2の基板側接続部4b2との成す角度が、85(°)~95(°)の範囲内にあることをいう。 Further, as shown in FIG. 3, the second external terminal 4b is formed symmetrically with the first external terminal 4a, and the second substrate side connection portion 4b2 is based on the second electrode side connection portion 4b1. Thus, it extends in a substantially vertical direction toward the opposite side of the laminate 1. That is, in the second external terminal 4b, the second substrate side connection portion 4b2 is bent at a substantially right angle toward the outside of the multilayer capacitor body 10 with respect to the second electrode side connection portion 4b1. The second external terminal 4b has a L-shaped side surface when viewed from the side (Y direction) orthogonal to the first side surface 1e or the second side surface 1f, and is a single plate-like body. Is bent at a substantially right angle. Note that the substantially right angle means that the angle formed by the second electrode side connection portion 4b1 and the second substrate side connection portion 4b2 is within a range of 85 (°) to 95 (°).
 積層型コンデンサ10Aでは、一対の外部端子4は、第1の基板側接続部4a2および第2の基板側接続部4b2が積層体1の反対側に向かって互いに逆方向に延在するように設けられており、第1の電極側接続部4a1と第1の基板側接続部4a2とが略直角になっており、また、第2の電極側接続部4b1と第2の基板側接続部4b2とが略直角になっている。 In the multilayer capacitor 10A, the pair of external terminals 4 are provided such that the first substrate side connection portion 4a2 and the second substrate side connection portion 4b2 extend in opposite directions toward the opposite side of the multilayer body 1. The first electrode side connection portion 4a1 and the first substrate side connection portion 4a2 are substantially perpendicular to each other, and the second electrode side connection portion 4b1 and the second substrate side connection portion 4b2 Is almost at right angles.
 このように、第1の外部端子4aは、図3に示すように、第1の電極側接続部4a1が第1の外部電極3aに対向して配置され、第1の外部電極3aに接合されている。また、第1の外部端子4aは、第1の基板側接続部4a2が基板9に対向するように第1の電極側接続部4a1に対して略直角となるように設けられており、第1の基板側接続部4a2が基板電極9aに電気的に接続される。 In this way, as shown in FIG. 3, the first external terminal 4a has the first electrode side connection portion 4a1 disposed so as to face the first external electrode 3a, and is joined to the first external electrode 3a. ing. Further, the first external terminal 4a is provided so as to be substantially perpendicular to the first electrode side connection portion 4a1 so that the first substrate side connection portion 4a2 faces the substrate 9. The substrate-side connection portion 4a2 is electrically connected to the substrate electrode 9a.
 また、第1の外部端子4aは、図3に示すように、第1の電極側接続部4a1が第1の外部電極3aに隙間を有して対向し、また、第1の突出部4a3を有しており、第1の突出部4a3が第1の外部電極3a側に向かって突出している。第1の突出部4a3と第1の外部電極3aとが、例えば、はんだ接合または溶接等を用いて接合される。 Further, as shown in FIG. 3, the first external terminal 4a is such that the first electrode side connection portion 4a1 faces the first external electrode 3a with a gap, and the first protruding portion 4a3 is opposed to the first external terminal 4a. The first protrusion 4a3 protrudes toward the first external electrode 3a. The first protrusion 4a3 and the first external electrode 3a are joined using, for example, solder joining or welding.
 第1の外部端子4aは、第1の突出部4a3で第1の外部電極3aと、例えば、スポット溶接等を用いて接合される。具体的には、第1の外部端子4aは、図3に示すように、第1の外部電極3aと第1の突出部4a3とを溶接することによって第1の突出部4a3に溶接部5が形成されて、第1の外部電極3aと第1の突出部4a3とが接合されることになる。また、第1の外部端子4aは、第1の突出部4a3のみで第1の外部電極3aに接合されており、第1の突出部4a3以外の部分は隙間を介して第1の外部電極3aに対向している。また、第1の外部端子4aは、第1の外部電極3aとの接合強度を確保するために、第1の突出部4a3が第1の外部電極3aに接触して接合されていることが好ましい。 The first external terminal 4a is joined to the first external electrode 3a at the first protrusion 4a3 by using, for example, spot welding. Specifically, as shown in FIG. 3, the first external terminal 4a is formed by welding the first external electrode 3a and the first protruding portion 4a3 so that the welded portion 5 is connected to the first protruding portion 4a3. As a result, the first external electrode 3a and the first protrusion 4a3 are joined. In addition, the first external terminal 4a is joined to the first external electrode 3a only by the first protrusion 4a3, and the portions other than the first protrusion 4a3 are connected to the first external electrode 3a via a gap. Opposite to. In addition, the first external terminal 4a is preferably bonded so that the first protrusion 4a3 is in contact with the first external electrode 3a in order to ensure the bonding strength with the first external electrode 3a. .
 第1の外部端子4bは、図3に示すように、第2の基板側接続部4b1が第2の外部電極3bに対向して配置され、第2の外部電極3bに接合されている。また、第2の外部端子4bは、第2の基板側接続部4b2が基板9に対向するように第2の電極側接続部4b1に対して略直角となるように設けられており、第2の基板側接続部4b2が基板電極9bに電気的に接続される。 In the first external terminal 4b, as shown in FIG. 3, the second substrate-side connection portion 4b1 is arranged to face the second external electrode 3b, and is joined to the second external electrode 3b. The second external terminal 4b is provided so as to be substantially perpendicular to the second electrode side connection portion 4b1 so that the second substrate side connection portion 4b2 faces the substrate 9. The substrate-side connecting portion 4b2 is electrically connected to the substrate electrode 9b.
 また、第2の外部端子4bは、図3に示すように、第2の電極側接続部4b1が第2の外部電極3bに隙間を有して対向し、また、第2の突出部4b3を有しており、第2の突出部4b3が第2の外部電極3b側に向かって突出している。第2の突出部4b3と第2の外部電極3bとが、例えば、はんだ接合または溶接等を用いて接合される。 As shown in FIG. 3, the second external terminal 4b has the second electrode side connection portion 4b1 opposed to the second external electrode 3b with a gap, and the second protruding portion 4b3. And the second protrusion 4b3 protrudes toward the second external electrode 3b. The second protrusion 4b3 and the second external electrode 3b are joined using, for example, solder joining or welding.
 第2の外部端子4bは、第2の突出部4b3で第2の外部電極3bと、例えば、スポット溶接等を用いて接合される。具体的には、第2の外部端子4bは、図3に示すように、第2の外部電極3bと第2の突出部4b3とを溶接することによって第2の突出部4b3に溶接部5が形成されて、第2の外部電極3bと第2の突出部4b3とが接合されることになる。また、第2の外部端子4bは、第2の突出部4b3のみで第2の外部電極3bに接合されており、第2の突出部4b3以外の部分は隙間を介して第2の外部電極3bに対向している。また、第2の外部端子4bは、第2の外部電極3bとの接合強度を確保するために、第2の突出部4b3が第2の外部電極3bに接触して接合されていることが好ましい。 The second external terminal 4b is joined to the second external electrode 3b at the second protrusion 4b3 by using, for example, spot welding. Specifically, as shown in FIG. 3, the second external terminal 4b is formed by welding the second external electrode 3b and the second protruding portion 4b3 so that the welded portion 5 is connected to the second protruding portion 4b3. As a result, the second external electrode 3b and the second protrusion 4b3 are joined. In addition, the second external terminal 4b is joined to the second external electrode 3b only by the second protrusion 4b3, and a portion other than the second protrusion 4b3 is connected to the second external electrode 3b via a gap. Opposite to. The second external terminal 4b is preferably joined so that the second protruding portion 4b3 is in contact with the second external electrode 3b in order to ensure the bonding strength with the second external electrode 3b. .
 第1の突出部4a3および第2の突出部4b3は、突出量が、例えば0.05(mm)~0.15(mm)である。第1の突出部4a3は、第1の電極側接続部4a1に垂直な方向(X方向)から視て、また、第2の突出部4b3は、第2の電極側接続部4b1に垂直な方向(X方向)から視て、例えば、円形状であり、例えば、長径が0.15(mm)~0.45(mm)であり、短径が0.1(mm)~0.3(mm)である。例えば、プレス加工法を用いて、第1の突出部4a3は第1の電極側接続部4a1に設けられ、第2の突出部4b3は第2の電極側接続部4b1に設けられる。 The first protrusion 4a3 and the second protrusion 4b3 have a protrusion amount of, for example, 0.05 (mm) to 0.15 (mm). The first protrusion 4a3 is viewed from the direction (X direction) perpendicular to the first electrode side connection part 4a1, and the second protrusion 4b3 is perpendicular to the second electrode side connection part 4b1. When viewed from the (X direction), for example, it is circular, for example, the major axis is 0.15 (mm) to 0.45 (mm), and the minor axis is 0.1 (mm) to 0.3 (mm). ). For example, using the press working method, the first protrusion 4a3 is provided in the first electrode side connection part 4a1, and the second protrusion 4b3 is provided in the second electrode side connection part 4b1.
 また、積層型コンデンサ10Aは、第1の突出部4a3および第2の突出部4b3が第1の電極側接続部4a1および第2の電極側接続部4b1にそれぞれ2個ずつ設けられているが、第1の突出部4a3および第2の突出部4b3の個数は、これに限らず、積層型コンデンサ本体10の大きさまたは一対の外部電極3との接合強度等に応じて1個または3個以上であってもよい。 In the multilayer capacitor 10A, two first protrusions 4a3 and two second protrusions 4b3 are provided in the first electrode side connection part 4a1 and the second electrode side connection part 4b1, respectively. The number of the first protrusions 4a3 and the second protrusions 4b3 is not limited to this, but one or three or more depending on the size of the multilayer capacitor body 10 or the bonding strength between the pair of external electrodes 3 and the like. It may be.
 第1の突出部4a3は、第1の端面1cの第1の対角線方向D1に複数個が位置し、また、第2の突出部4b3は、第2の端面1dの第1の対角線方向D1に交差する第2の対角線方向D2(図示せず)に複数個が位置していてもよい。 A plurality of first protrusions 4a3 are located in the first diagonal direction D1 of the first end face 1c, and the second protrusions 4b3 are in the first diagonal direction D1 of the second end face 1d. A plurality may be located in the second diagonal direction D2 (not shown) that intersects.
 例えば、図4に示すように、第1の突出部4a3は、第1の端面1cの第1の対角線方向D1に2個が位置しており、また、第2の突出部4b3は、第2の端面1dの第1の対角線方向D1に交差する第2の対角線方向D2に2個が位置している。なお、第1の対角線方向D1は、第1の電極側接続部4a1に垂直な方向(X方向)から透視して第2の対角線方向D2と互いに交差している。 For example, as shown in FIG. 4, two first protrusions 4a3 are located in the first diagonal direction D1 of the first end face 1c, and the second protrusion 4b3 is the second protrusion 4b3. Two end faces 1d are located in a second diagonal direction D2 that intersects the first diagonal direction D1. Note that the first diagonal direction D1 intersects with the second diagonal direction D2 as seen through from the direction (X direction) perpendicular to the first electrode-side connecting portion 4a1.
 このような構成にすることによって、例えば、積層型コンデンサ10Aが実装された基板9が上方に向かって撓んだ場合には、下方側(基板9側)に位置する第1の突出部4a3(第2の突出部4b3)の接合部が剥がれやすくなる虞があるが、上方側の第1の突出部4a3(第2の突出部4b3)で接合を保持することができる。また、基板9が下方に向かって撓んだ場合には、上方側の第1の突出部(第2の突出部)の接合部が剥がれやすくなる虞があるが、下方側(基板9側)に位置する第1の突出部(第2の突出部)で接合を保持することができる。また、第1の突出部4a3および第2の突出部4b3は、図4に示すように、それぞれ2個ずつ設けられているが、これに限らず、3個以上設けられていてもよい。 With such a configuration, for example, when the substrate 9 on which the multilayer capacitor 10A is mounted is bent upward, the first protrusion 4a3 (on the lower side (substrate 9 side)) ( Although there is a possibility that the joint portion of the second projecting portion 4b3) is likely to be peeled off, the joint can be held by the upper first projecting portion 4a3 (second projecting portion 4b3). Moreover, when the board | substrate 9 bends below, there exists a possibility that the junction part of the 1st protrusion part (2nd protrusion part) of an upper side may peel easily, but a lower side (board | substrate 9 side) The first protrusion (second protrusion) located at the position can hold the joint. Further, as shown in FIG. 4, two each of the first projecting portion 4a3 and the second projecting portion 4b3 are provided, but the present invention is not limited to this, and three or more may be provided.
 上述のように、積層型コンデンサ10Aは、一対の外部端子4が基板9の表面から積層型コンデンサ本体10が離れて配置されるように、一対の外部電極3に接合されている。また、基板9の表面と積層型コンデンサ本体10の第2の主面1bとの間の距離は、積層型コンデンサ本体10の大きさ、積層型コンデンサ10Aと基板9との実装安定性または基板9に実装される積層型コンデンサ10Aの個数等に応じて第1の電極側接続部4a1および第2の電極側接続部4b1の長さで調整することができる。 As described above, the multilayer capacitor 10A is joined to the pair of external electrodes 3 so that the pair of external terminals 4 are disposed away from the surface of the substrate 9. The distance between the surface of the substrate 9 and the second main surface 1b of the multilayer capacitor body 10 is the size of the multilayer capacitor body 10, the mounting stability between the multilayer capacitor 10A and the substrate 9, or the substrate 9 The lengths of the first electrode side connection portion 4a1 and the second electrode side connection portion 4b1 can be adjusted according to the number of the multilayer capacitors 10A mounted on the first electrode side connection portion 4a1.
 一対の外部端子4は、図1に示すように、第1の電極側接続部4a1および第2の電極側接続部4b1が矩形板状体であり、第1の外部電極3aおよび第2の外部電極3bと略平行となっており、第1の突出部4a3で第1の外部電極3aに接合され、第2の突出部4b3で第2の外部電極3bに接合されている。また、一対の外部端子4は、第1の基板側接続部4a2および第2の基板側接続部4b2が矩形板状体であり、積層型コンデンサ10Aが実装される基板9の基板電極9aおよび基板電極9bと略平行となっており、図5に示すように、はんだ6を介して基板電極9aおよび基板電極9bに接続される。第1の電極側接続部4a1および第2の電極側接続部4b1の形状、第1の基板側接続部4a2および第2の基板側接続部4b2の形状は、矩形板状体に限らず、一対の外部電極3の形状、基板電極9aおよび基板電極9bの形状に応じて適宜に設定される。 As shown in FIG. 1, the pair of external terminals 4 includes a first electrode-side connection portion 4a1 and a second electrode-side connection portion 4b1 that are rectangular plates, and the first external electrode 3a and the second external terminal 4b. It is substantially parallel to the electrode 3b, joined to the first external electrode 3a by the first protrusion 4a3, and joined to the second external electrode 3b by the second protrusion 4b3. The pair of external terminals 4 includes a substrate electrode 9a and a substrate of the substrate 9 on which the multilayer capacitor 10A is mounted, in which the first substrate side connection portion 4a2 and the second substrate side connection portion 4b2 are rectangular plates. It is substantially parallel to the electrode 9b and is connected to the substrate electrode 9a and the substrate electrode 9b via solder 6 as shown in FIG. The shape of the first electrode side connection portion 4a1 and the second electrode side connection portion 4b1 and the shape of the first substrate side connection portion 4a2 and the second substrate side connection portion 4b2 are not limited to a rectangular plate-like body, but a pair The external electrode 3 is appropriately set according to the shape of the substrate electrode 9a and the shape of the substrate electrode 9b.
 一対の外部端子4は、例えば鉄(Fe)、ニッケル(Ni)、クロム(Cr)、銅(Cu)、銀(Ag)またはコバルト(Co)等の金属材料、あるいは、これらの金属材料の一種以上を含む、例えば、ステンレス合金または銅合金等の合金材料である。また、第1の外部端子4aおよび第2の外部端子4bは、同一の金属材料または合金材料によって形成することが好ましい。 The pair of external terminals 4 is, for example, a metal material such as iron (Fe), nickel (Ni), chromium (Cr), copper (Cu), silver (Ag), or cobalt (Co), or a kind of these metal materials. For example, an alloy material such as a stainless alloy or a copper alloy is included. The first external terminal 4a and the second external terminal 4b are preferably formed of the same metal material or alloy material.
 第1の外部端子4aおよび第2の外部端子4bは、第1の電極側接続部4a1および第2の電極側接続部4b1の厚みが、例えば0.1(mm)~0.15(mm)であり、積層型コンデンサ本体10の大きさまたは用途等に応じて振動音の抑制効果が得られるように厚みを適宜に設定すればよい。 In the first external terminal 4a and the second external terminal 4b, the thicknesses of the first electrode side connection portion 4a1 and the second electrode side connection portion 4b1 are 0.1 (mm) to 0.15 (mm), for example. Therefore, the thickness may be set appropriately according to the size or use of the multilayer capacitor body 10 so that the effect of suppressing vibration noise can be obtained.
 また、第1の電極側接続部4a1および第2の電極側接続部4b1は、スポット溶接での接合性を高めるために、例えば、厚みが0.05(mm)~0.08(mm)であることが好ましい。第1の電極側接続部4a1および第2の電極側接続部4b1は、厚みが厚くなると、スポット溶接の際に、例えば、レーザ光の出力を大きくする必要がある。出力を大きくすると、レーザ光が一対の外部電極3の下地電極3cまで到達して下地電極3cを溶融し、溶接部5と内部電極2とが短絡しやすくなり、信頼性が低下する。 Further, the first electrode side connection portion 4a1 and the second electrode side connection portion 4b1 have a thickness of, for example, 0.05 (mm) to 0.08 (mm) in order to improve the bondability in spot welding. Preferably there is. When the first electrode side connection portion 4a1 and the second electrode side connection portion 4b1 are thick, it is necessary to increase the output of laser light, for example, at the time of spot welding. When the output is increased, the laser beam reaches the base electrode 3c of the pair of external electrodes 3 and melts the base electrode 3c, so that the welded portion 5 and the internal electrode 2 are easily short-circuited, and the reliability is lowered.
 第1の基板側接続部4a2および第2の基板側接続部4b2の厚みは、第1の電極側接続部4a1および第2の電極側接続部4b1の厚みよりも厚くすることが好ましい。すなわち、第1の電極側接続部4a1および第2の電極側接続部4b1は、厚みを薄くすることによってスポット溶接の接合性が向上し、また、第1の基板側接続部4a2および第2の基板側接続部4b2は、厚みを厚くすることによって基板9との接合性が向上する。 It is preferable that the thickness of the first substrate side connection portion 4a2 and the second substrate side connection portion 4b2 is larger than the thickness of the first electrode side connection portion 4a1 and the second electrode side connection portion 4b1. That is, the first electrode-side connection portion 4a1 and the second electrode-side connection portion 4b1 are improved in spot weldability by reducing the thickness, and the first substrate-side connection portion 4a2 and the second electrode-side connection portion 4a2 The board-side connection portion 4b2 is improved in bondability with the board 9 by increasing the thickness.
 例えば、第1の外部端子4aおよび第2の外部端子4bは、第1の電極側接続部4a1および第2の電極側接続部4b1の厚みが0.1(mm)よりも薄くなると、剛性が小さくなる。これによって、積層型コンデンサ10Aは、積層型コンデンサ本体10で発生した歪みによる振動が第1の外部端子4aおよび第2の外部端子4bで吸収されやすくなる。積層型コンデンサ10Aは、積層型コンデンサ本体10の変形が基板9に伝わりにくく、基板9の振動音が小さくなりやすくなるが、一方、基板9に実装した場合には実装安定性が悪くなる。なお、第1の電極側接続部4a1および第2の電極側接続部4b1は、一対の外部電極3に接合されていない部分が歪みによる振動を吸収することになる。 For example, the first external terminal 4a and the second external terminal 4b have rigidity when the thickness of the first electrode side connection portion 4a1 and the second electrode side connection portion 4b1 is less than 0.1 (mm). Get smaller. As a result, the multilayer capacitor 10A is likely to absorb the vibration caused by the distortion generated in the multilayer capacitor body 10 by the first external terminal 4a and the second external terminal 4b. In the multilayer capacitor 10 </ b> A, the deformation of the multilayer capacitor body 10 is not easily transmitted to the substrate 9, and the vibration sound of the substrate 9 is likely to be reduced. However, when mounted on the substrate 9, the mounting stability is deteriorated. In the first electrode side connection portion 4a1 and the second electrode side connection portion 4b1, the portions not joined to the pair of external electrodes 3 absorb vibration due to distortion.
 逆に、第1の外部端子4aおよび第2の外部端子4bは、第1の電極側接続部4a1および第2の電極側接続部4b1の厚みが0.15(mm)よりも厚くなると、剛性が大きくなる。これによって、積層型コンデンサ10Aは、積層型コンデンサ本体10で発生した歪みによる振動が第1の外部端子4aおよび第2の外部端子4bで吸収されにくくなる。積層型コンデンサ10Aは、積層型コンデンサ本体10の変形が基板9に伝わりやすく、基板9の振動音が大きくなりやすくなる。したがって、積層型コンデンサ10Aは、基板9において発生する振動音の抑制効果と実装安定性とを考慮して第1の外部端子4aおよび第2の外部端子4bの厚みが設定される。 Conversely, the first external terminal 4a and the second external terminal 4b are rigid when the thickness of the first electrode side connection portion 4a1 and the second electrode side connection portion 4b1 is greater than 0.15 (mm). Becomes larger. As a result, the multilayer capacitor 10A is less likely to be absorbed by the first external terminal 4a and the second external terminal 4b due to distortion generated in the multilayer capacitor body 10. In the multilayer capacitor 10A, the deformation of the multilayer capacitor body 10 is easily transmitted to the substrate 9, and the vibration noise of the substrate 9 is likely to increase. Therefore, in the multilayer capacitor 10A, the thickness of the first external terminal 4a and the second external terminal 4b is set in consideration of the effect of suppressing vibration noise generated in the substrate 9 and the mounting stability.
 また、第1の外部端子4aおよび第2の外部端子4bは、第1の電極側接続部4a1および第2の電極側接続部4b1の長さを積層型コンデンサ本体10の大きさまたは用途等に応じて振動音の抑制効果が得られるように適宜に設定すればよい。 In addition, the first external terminal 4a and the second external terminal 4b are configured so that the length of the first electrode side connection portion 4a1 and the second electrode side connection portion 4b1 is the size or use of the multilayer capacitor body 10. Accordingly, it may be set appropriately so as to obtain an effect of suppressing vibration noise.
 例えば、第1の外部端子4aおよび第2の外部端子4bは、第1の電極側接続部4a1および第2の電極側接続部4b1の長さが長くなると、剛性が小さくなる。これによって、積層型コンデンサ10Aは、積層型コンデンサ本体10で発生した歪みによる振動が第1の外部端子4aおよび第2の外部端子4bで吸収されやすく、積層型コンデンサ本体10の変形が基板9に伝わりにくくなり、基板9の振動音が小さくなりやすくなるが、一方、基板9に実装した場合には実装安定性が悪くなる。 For example, the rigidity of the first external terminal 4a and the second external terminal 4b decreases as the length of the first electrode side connection portion 4a1 and the second electrode side connection portion 4b1 increases. Thereby, in the multilayer capacitor 10A, vibration due to distortion generated in the multilayer capacitor body 10 is easily absorbed by the first external terminal 4a and the second external terminal 4b, and the deformation of the multilayer capacitor body 10 is applied to the substrate 9. However, when mounted on the substrate 9, the mounting stability is deteriorated.
 逆に、第1の外部端子4aおよび第2の外部端子4bは、第1の電極側接続部4a1および第2の電極側接続部4b1の長さが短くなると、剛性が大きくなる。これによって、積層型コンデンサ10Aは、積層型コンデンサ本体10で発生した歪みによる振動が第1の外部端子4aおよび第2の外部端子4bで吸収されにくく、積層型コンデンサ本体10の変形が基板9に伝わりやすく、基板9の振動音が大きくなりやすくなる。積層型コンデンサ10Aは、基板9において発生する振動音の抑制効果と実装安定性とを考慮して第1の外部端子4aおよび第2の外部端子4bの長さが設定される。 Conversely, the rigidity of the first external terminal 4a and the second external terminal 4b increases as the length of the first electrode side connection portion 4a1 and the second electrode side connection portion 4b1 decreases. Thereby, in the multilayer capacitor 10A, the vibration due to the distortion generated in the multilayer capacitor body 10 is hardly absorbed by the first external terminal 4a and the second external terminal 4b, and the deformation of the multilayer capacitor body 10 is applied to the substrate 9. It is easy to be transmitted, and the vibration sound of the substrate 9 is likely to increase. In the multilayer capacitor 10A, the lengths of the first external terminal 4a and the second external terminal 4b are set in consideration of the effect of suppressing vibration noise generated in the substrate 9 and the mounting stability.
 一対の外部端子4は、図6および図7に示すように、基板電極9aおよび基板電極9bとはんだ接合するために、表面にめっき層7が形成されており、表面に形成されためっき層7を含むものである。また、めっき層7は、一対の外部端子4のうちめっき層7を形成しない領域にマスキング処理等を行ない、例えば、電解めっき法等を用いて、第1の基板側接続部4a2および第2の基板側接続部4b2を含む領域に形成されており、また、第1の電極側接続部4a1および第2の電極側接続部4b1の下端部の領域にも形成されている。なお、めっき層7は、一対の外部端子4の両主面だけでなく、両主面間に位置する側面に形成されていてもよい。 As shown in FIGS. 6 and 7, the pair of external terminals 4 has a plating layer 7 formed on the surface for solder bonding to the substrate electrode 9 a and the substrate electrode 9 b, and the plating layer 7 formed on the surface Is included. Further, the plating layer 7 performs a masking process or the like on a region of the pair of external terminals 4 where the plating layer 7 is not formed. For example, by using an electrolytic plating method or the like, the first substrate side connection portion 4a2 and the second substrate 2 It is formed in a region including the substrate side connection portion 4b2, and is also formed in a region at the lower end portion of the first electrode side connection portion 4a1 and the second electrode side connection portion 4b1. Note that the plating layer 7 may be formed not only on both main surfaces of the pair of external terminals 4 but also on a side surface located between both main surfaces.
 また、めっき層7は、第1のめっき層と第1のめっき層の表面に形成される第2のめっき層とから構成されており、第1のめっき層は、第1の外部端子4aおよび第2の外部端子4bの表面を覆うものであり、第2のめっき層は、第1のめっき層の表面に形成されて第1のめっき層の表面を覆うものである。なお、第1のめっき層および第2のめっき層は、それぞれ複数のめっき層で構成されていてもよい。 The plating layer 7 is composed of a first plating layer and a second plating layer formed on the surface of the first plating layer. The first plating layer includes the first external terminal 4a and the first plating layer. The surface of the second external terminal 4b is covered, and the second plating layer is formed on the surface of the first plating layer and covers the surface of the first plating layer. Each of the first plating layer and the second plating layer may be composed of a plurality of plating layers.
 第1のめっき層は、例えばニッケル(Ni)、銀(Ag)またはスズ(Sn)等の金属材料、あるいは、これらの金属材料の一種以上を含む、例えば、Sn-Ag合金等の合金材料である。例えば、第1のめっき層は、ニッケル(Ni)の金属材料またはニッケル(Ni)を主成分として含む合金材料からなり、厚みが、例えば1(μm)~2(μm)である。 The first plating layer is made of, for example, a metal material such as nickel (Ni), silver (Ag), or tin (Sn), or an alloy material containing one or more of these metal materials, such as an Sn—Ag alloy. is there. For example, the first plating layer is made of a metal material of nickel (Ni) or an alloy material containing nickel (Ni) as a main component, and has a thickness of, for example, 1 (μm) to 2 (μm).
 また、第2のめっき層は、例えばニッケル(Ni)、銀(Ag)またはスズ(Sn)等の金属材料、あるいは、これらの金属材料の一種以上を含む、例えば、Sn-Ag合金の合金材料である。例えば、第2のめっき層は、スズ(Sn)の金属材料またはスズ(Sn)を主成分として含む合金材料からなり、厚みが、例えば1(μm)~2(μm)である。 The second plating layer is made of, for example, a metal material such as nickel (Ni), silver (Ag), or tin (Sn), or an alloy material of, for example, Sn—Ag alloy containing one or more of these metal materials. It is. For example, the second plating layer is made of a metal material of tin (Sn) or an alloy material containing tin (Sn) as a main component, and has a thickness of, for example, 1 (μm) to 2 (μm).
 また、第1の外部端子4aは、めっき層7が第1の電極側接続部4a1および第1の基板側接続部4a2に形成されており、図5に示すように、はんだ6を介して積層型コンデンサ10Aが実装される基板9上に実装されることになり、同様に、第2の外部端子4bは、めっき層7が第2の電極側接続部4b1および第2の基板側接続部4b2に形成されており、積層型コンデンサ10Aが実装される基板9上にはんだ6を介して実装されることになる。 The first external terminal 4a has a plating layer 7 formed on the first electrode side connection portion 4a1 and the first substrate side connection portion 4a2, and is laminated via solder 6 as shown in FIG. Similarly, the second external terminal 4b has the plating layer 7 of the second electrode side connection portion 4b1 and the second substrate side connection portion 4b2. The multilayer capacitor 10 </ b> A is mounted on the substrate 9 via the solder 6.
 このように、第1の外部端子4aは、図5に示すように、はんだ6を介して基板9上の基板電極9aに接続されており、はんだ6は、第1の電極側接続部4a1の下端部から第1の基板側接続部4a2および基板電極9aにかけてはんだフィレットを形成することになる。また、第2の外部端子4bは、図5に示すように、はんだ6を介して基板9上の基板電極9bに接続されており、はんだ6は、第2の電極側接続部4b1の下端部から第2の基板側接続部4b2および基板電極9bにかけてはんだフィレットを形成することになる。また、はんだは、例えば、Sn-Sb系またはSn-Ag-Cu系のはんだ材料等を用いることができる。 Thus, as shown in FIG. 5, the first external terminal 4a is connected to the substrate electrode 9a on the substrate 9 via the solder 6, and the solder 6 is connected to the first electrode side connection portion 4a1. A solder fillet is formed from the lower end portion to the first substrate side connection portion 4a2 and the substrate electrode 9a. Further, as shown in FIG. 5, the second external terminal 4b is connected to the substrate electrode 9b on the substrate 9 via the solder 6, and the solder 6 is connected to the lower end portion of the second electrode side connection portion 4b1. From this, the solder fillet is formed over the second substrate side connection portion 4b2 and the substrate electrode 9b. As the solder, for example, Sn—Sb or Sn—Ag—Cu solder material can be used.
 積層型コンデンサは、例えば、積層型コンデンサ本体が誘電体層としてチタン酸バリウム(BaTiO)、等を主成分として構成されている場合には、積層型コンデンサ本体に交流電圧が印加されると、電歪効果によって交流電圧の大きさに応じて誘電体層に歪みが発生する。積層型コンデンサは、この歪みによって積層型コンデンサ本体自体に振動が生じ、基板に振動が伝播して基板を振動させる。この振動が可聴周波数帯域である場合には、基板の振動が振動音となって現れることになる。 In the multilayer capacitor, for example, when the multilayer capacitor main body is composed mainly of barium titanate (BaTiO 3 ), etc. as a dielectric layer, when an AC voltage is applied to the multilayer capacitor main body, Due to the electrostrictive effect, distortion occurs in the dielectric layer in accordance with the magnitude of the AC voltage. In the multilayer capacitor, the distortion causes vibration in the multilayer capacitor body itself, and the vibration propagates to the substrate to vibrate the substrate. When this vibration is in an audible frequency band, the vibration of the substrate appears as vibration sound.
 このような積層型コンデンサは、振動音の抑制効果を向上させるために、一対の外部端子を用いて振動音の抑制効果を向上させているものの、一対の外部端子がはんだを介して一対の外部電極との対向部の全面にわたって外部電極に接合されており、積層型コンデンサ本体の振動を基板9に対してさらに伝播しにくくすることが困難となる。 In such a multilayer capacitor, in order to improve the effect of suppressing vibration noise, the effect of suppressing vibration sound is improved by using a pair of external terminals, but the pair of external terminals is connected to a pair of external terminals via solder. The entire surface of the portion facing the electrode is joined to the external electrode, and it becomes difficult to further prevent the vibration of the multilayer capacitor body from propagating to the substrate 9.
 しかしながら、実施の形態1に係る積層型コンデンサ10Aは、第1の外部端子4aと第1の外部電極3aとが第1の突出部4a3で溶接部5によって接合されており、また、第2の外部端子4bと第2の外部電極3bとが第2の突出部4b3で溶接部5によって接合されている。このように、第1の外部端子4aと第1の外部電極3aとの接合部が点接触となり、また、第2の外部端子4bと第2の外部電極3bとの接合部が点接触となっており、積層型コンデンサ本体10の振動を基板9にさらに伝播しにくくすることができる。なお、ここでは、点接触は、30(μm)~50(μm)の直径を有する円形状の接合部(溶接部5)を有することを意味する。 However, in the multilayer capacitor 10A according to the first embodiment, the first external terminal 4a and the first external electrode 3a are joined to each other by the weld 5 at the first protrusion 4a3. The external terminal 4b and the second external electrode 3b are joined by the weld 5 at the second protrusion 4b3. In this way, the joint between the first external terminal 4a and the first external electrode 3a is in point contact, and the joint between the second external terminal 4b and the second external electrode 3b is in point contact. Therefore, the vibration of the multilayer capacitor main body 10 can be further prevented from propagating to the substrate 9. Here, the point contact means having a circular joint portion (welded portion 5) having a diameter of 30 (μm) to 50 (μm).
 このように、積層型コンデンサ10Aは、第1の外部端子4aと第1の外部電極3aとが溶接部5によって点接触で接合されており、第1の外部端子4aが第1の外部電極3aに拘束されにくくなり、また、第2の外部端子4bと第2の外部電極4aとが溶接部5によって点接触で接合されており、第2の外部端子4bが第2の外部電極3bに拘束されにくくなる。 As described above, in the multilayer capacitor 10A, the first external terminal 4a and the first external electrode 3a are joined by point contact by the welded portion 5, and the first external terminal 4a is connected to the first external electrode 3a. Further, the second external terminal 4b and the second external electrode 4a are joined by point contact by the welded portion 5, and the second external terminal 4b is restrained by the second external electrode 3b. It becomes difficult to be done.
 したがって、積層型コンデンサ10Aは、第1の外部端子4aおよび第2の外部端子4bでもって積層型コンデンサ本体10の歪みによる振動が吸収されやすくなり、積層型コンデンサ本体10の振動が第1の外部端子4aおよび第2の外部端子4bを介して基板9に伝播するのを効果的に抑制することができる。このように、積層型コンデンサ10Aは、振動音の発生を抑制するので、音鳴きが起りにくくなり、振動音の抑制効果を向上させることができる。 Therefore, in the multilayer capacitor 10A, vibration due to distortion of the multilayer capacitor body 10 is easily absorbed by the first external terminal 4a and the second external terminal 4b, and the vibration of the multilayer capacitor body 10 is absorbed by the first external terminal 4a. Propagation to the substrate 9 via the terminal 4a and the second external terminal 4b can be effectively suppressed. Thus, since the multilayer capacitor 10A suppresses the generation of vibration noise, it is difficult for noise to occur and the effect of suppressing vibration noise can be improved.
 また、第1の外部端子4aは、第1の突出部4a3が第1の電極側接続部4a1のY方向の端部に設けられており、また、第2の外部端子4bは、第2の突出部4b3が第2の電極側接続部4b1のY方向の端部に設けられている。なお、Y方向の端部であれば、積層方向(Z方向)の位置は特に限定されない。このように、積層型コンデンサ10Aは、第1の突出部4a3および第2の突出部4b3が第1の外部電極3aおよび第2の外部電極3bの左右方向(Y方向)における中央部、すなわち、一対の外部電極3の積層体1の積層方向に直交する方向における中央部には位置していないので、積層型コンデンサ本体10の電歪効果によって生じる変形がより小さい部分でもって一対の外部端子4と一対の外部電極3とを接合しているので、音鳴きを効果的に抑制することができる。 The first external terminal 4a has a first protruding portion 4a3 provided at an end in the Y direction of the first electrode side connecting portion 4a1, and the second external terminal 4b The protruding portion 4b3 is provided at the end portion in the Y direction of the second electrode side connecting portion 4b1. In addition, if it is an edge part of a Y direction, the position of a lamination direction (Z direction) will not be specifically limited. Thus, in the multilayer capacitor 10A, the first protruding portion 4a3 and the second protruding portion 4b3 are the central portions in the left-right direction (Y direction) of the first outer electrode 3a and the second outer electrode 3b, that is, Since the pair of external electrodes 3 are not located in the central portion in the direction orthogonal to the stacking direction of the multilayer body 1, the pair of external terminals 4 are formed at portions where deformation caused by the electrostrictive effect of the multilayer capacitor body 10 is smaller. And the pair of external electrodes 3 are joined together, so that noise can be effectively suppressed.
 第1の突出部4a3および前記第2の突出部4b3は、図1に示すように、第1の外部電極3aおよび第2の外部電極3bの左右方向(Y方向)の中央部に位置せず、さらに、積層体1の積層方向(Z方向)における中央部に位置することによって、振動の小さい領域で接合することができる。 As shown in FIG. 1, the first projecting portion 4a3 and the second projecting portion 4b3 are not positioned at the center in the left-right direction (Y direction) of the first outer electrode 3a and the second outer electrode 3b. Furthermore, by being positioned at the center in the stacking direction (Z direction) of the stacked body 1, bonding can be performed in a region where vibration is small.
 また、第1の外部端子4aは、第1の突出部4a3の底部で第1の外部電極3aと接合されており、第1の外部電極3aとの接合部の溶接部5の接合領域を小さくでき、また、第2の外部端子4bは、第2の突出部4b3の底部で第2の外部電極3bと接合されており、第2の外部電極3bとの接合部の溶接部5の接合領域を小さくできる。したがって、積層型コンデンサ10Aは、第1の外部端子4aが第1の外部電極3aに拘束されにくくなり、また、第1の外部端子4bが第2の外部電極3bに拘束されにくくなり、積層型コンデンサ本体10の歪みによる振動が吸収されやすくなる。なお、接合領域の大きさは、例えば、レーザスポット溶接の場合には、照射するレーザ光のビーム径またはレーザ射出出力で調整することができる。 The first external terminal 4a is joined to the first external electrode 3a at the bottom of the first projecting portion 4a3, and the joining area of the welded portion 5 at the joint with the first external electrode 3a is reduced. In addition, the second external terminal 4b is joined to the second external electrode 3b at the bottom of the second protrusion 4b3, and the joint region of the welded portion 5 that is a joint with the second external electrode 3b. Can be reduced. Therefore, in the multilayer capacitor 10A, the first external terminal 4a is not easily restrained by the first external electrode 3a, and the first external terminal 4b is hardly restrained by the second external electrode 3b. Vibration due to distortion of the capacitor body 10 is easily absorbed. For example, in the case of laser spot welding, the size of the joining region can be adjusted by the beam diameter of the irradiated laser beam or the laser emission output.
 また、一対の外部端子4は、第1の突出部4a3および第2の突出部4b3のみで接合されており、第1の外部端子4aは第1の突出部4a3以外の部分が隙間を介して第1の外部電極3aに対向しており、第2の外部端子4bは第2の突出部4b3以外の部分が隙間を介して第2の外部電極3bに対向している。したがって、一対の外部端子4は、弾性変形が生じやすく、この弾性変形に伴って積層型コンデンサ本体10の振動を吸収しやすくなる。したがって、積層型コンデンサ10Aは、振動音が基板9に発生するのを抑制することができるので、音鳴きが起りにくくなり、振動音の抑制効果を向上させることができる。 The pair of external terminals 4 are joined only by the first protrusion 4a3 and the second protrusion 4b3, and the first external terminal 4a has a portion other than the first protrusion 4a3 through a gap. The second external terminal 4b is opposed to the first external electrode 3a, and the second external terminal 4b is opposed to the second external electrode 3b with a gap other than the second protrusion 4b3. Therefore, the pair of external terminals 4 are likely to be elastically deformed, and easily absorb the vibration of the multilayer capacitor body 10 along with the elastic deformation. Therefore, the multilayer capacitor 10A can suppress the generation of vibration noise on the substrate 9, so that it is difficult for noise to occur and the effect of suppressing vibration noise can be improved.
 ここで、図1に示す積層型コンデンサ10Aの製造方法の一例について以下に説明する。 Here, an example of a manufacturing method of the multilayer capacitor 10A shown in FIG. 1 will be described below.
 まず、積層型コンデンサ本体10の製造方法について以下に説明する。 First, a method for manufacturing the multilayer capacitor body 10 will be described below.
 複数の第1および第2のセラミックグリーンシートを準備する。第1のセラミックグリーンシートは、第1の内部電極2aを形成するものであり、第2のセラミックグリーンシートは、第2の内部電極2bを形成するものである。 Prepare a plurality of first and second ceramic green sheets. The first ceramic green sheet is to form the first internal electrode 2a, and the second ceramic green sheet is to form the second internal electrode 2b.
 複数の第1のセラミックグリーンシートは、第1の内部電極2aを形成するために、セラミックグリーンシート上に、第1の内部電極2aのパターン形状が配列するように、第1の内部電極2aの導体ペースト層が第1の内部電極2a用の導体ペースト用いて形成される。なお、第1のセラミックグリーンシートは、多数個の積層型コンデンサ本体10を得るために、1枚のセラミックグリーンシート内に複数の第1の内部電極2aが形成される。 In order to form the first internal electrode 2a, the plurality of first ceramic green sheets have the first internal electrode 2a arranged so that the pattern shape of the first internal electrode 2a is arranged on the ceramic green sheet. A conductor paste layer is formed using a conductor paste for the first internal electrode 2a. In the first ceramic green sheet, a plurality of first internal electrodes 2 a are formed in one ceramic green sheet in order to obtain a large number of multilayer capacitor bodies 10.
 また、複数の第2のセラミックグリーンシートは、第2の内部電極2bを形成するために、セラミックグリーンシート上に、第2の内部電極2bのパターン形状が配列するように、第2の内部電極2bの導体ペースト層が第2の内部電極2b用の導体ペースト用いて形成される。なお、第2のセラミックグリーンシートは、多数個の積層型コンデンサ本体10を得るために、1枚のセラミックグリーンシート内に複数の第2の内部電極2bが形成される。 Further, the plurality of second ceramic green sheets are formed so that the pattern shape of the second internal electrode 2b is arranged on the ceramic green sheet in order to form the second internal electrode 2b. A 2b conductor paste layer is formed using a conductor paste for the second internal electrode 2b. In the second ceramic green sheet, a plurality of second internal electrodes 2b are formed in one ceramic green sheet in order to obtain a large number of multilayer capacitor bodies 10.
 上述の第1の内部電極2aの導体ペースト層および第2の内部電極2bの導体ペースト層は、例えば、スクリーン印刷法等を用いて、セラミックグリーンシート上に、それぞれの導体ペーストを所定のパターン形状で印刷して形成される。 The conductive paste layer of the first internal electrode 2a and the conductive paste layer of the second internal electrode 2b described above are each formed in a predetermined pattern shape on the ceramic green sheet by using, for example, a screen printing method or the like. It is formed by printing.
 なお、第1および第2のセラミックグリーンシートは誘電体層となり、第1の内部電極2aの導体ペースト層は第1の内部電極2aとなり、第2の内部電極2bの導体ペースト層は第2の内部電極2bとなる。 The first and second ceramic green sheets are dielectric layers, the conductive paste layer of the first internal electrode 2a is the first internal electrode 2a, and the conductive paste layer of the second internal electrode 2b is the second internal electrode 2a. It becomes the internal electrode 2b.
 誘電体層となるセラミックグリーンシートの材料としては、例えばチタン酸バリウム(BaTiO)、チタン酸カルシウム(CaTiO)、チタン酸ストロンチウム(SrTiO)またはジルコン酸カルシウム(CaZrO)等の誘電体セラミックスを主成分とするものである。副成分として、例えば、Mn化合物、Fe化合物、Cr化合物、Co化合物またはNi化合物等が添加されたものであってもよい。 Examples of the material of the ceramic green sheet used as the dielectric layer include dielectric ceramics such as barium titanate (BaTiO 3 ), calcium titanate (CaTiO 3 ), strontium titanate (SrTiO 3 ), or calcium zirconate (CaZrO 3 ). Is the main component. For example, a Mn compound, Fe compound, Cr compound, Co compound, or Ni compound may be added as the accessory component.
 第1および第2のセラミックグリーンシートは、誘電体セラミックスの原料粉末および有機バインダに適当な有機溶剤等を添加して混合することによって泥漿状のセラミックスラリーを作製し、ドクターブレード法等を用いて成形することによって得られる。 The first and second ceramic green sheets are produced by adding a suitable organic solvent to the dielectric ceramic raw material powder and the organic binder and mixing them, and using a doctor blade method or the like. Obtained by molding.
 第1の内部電極2aおよび第2の内部電極2b用の導体ペーストは、上述したそれぞれの内部電極の導体材料(金属材料)の粉末に添加剤(誘電体材料)、バインダ、溶剤、分散剤等を加えて混練することで作製される。第1および第2の内部電極2a、2bの導電材料は、例えばニッケル(Ni)、銅(Cu)、銀(Ag)、パラジウム(Pd)または金(Au)等の金属材料あるいはこれらの金属材料の一種以上を含む、例えばAg-Pd合金等の合金材料が挙げられる。第1の内部電極2aおよび第2の内部電極2bは、同一の金属材料または合金材料によって形成することが好ましい。 The conductive paste for the first internal electrode 2a and the second internal electrode 2b is formed by adding additives (dielectric materials), binders, solvents, dispersants, etc. to the above-described conductive material (metal material) powders of the internal electrodes. It is produced by adding and kneading. The conductive material of the first and second internal electrodes 2a, 2b is, for example, a metal material such as nickel (Ni), copper (Cu), silver (Ag), palladium (Pd) or gold (Au), or these metal materials For example, an alloy material such as an Ag—Pd alloy is included. The first internal electrode 2a and the second internal electrode 2b are preferably formed of the same metal material or alloy material.
 第1のセラミックグリーンシートは、第1の内部電極2aが形成されており、第2のセラミックグリーンシートは、第2の内部電極2bが形成されており、これらの第1のセラミックグリーンシートと第2のセラミックグリーンシートとを交互に複数積層して、内部電極を形成していないセラミックグリーンシートを積層方向の最外層にそれぞれ積層することによって、セラミック材料からなる積層体を作製する。 The first ceramic green sheet is formed with a first internal electrode 2a, and the second ceramic green sheet is formed with a second internal electrode 2b. A plurality of the ceramic green sheets 2 are alternately stacked, and the ceramic green sheets not formed with the internal electrodes are stacked on the outermost layer in the stacking direction, thereby manufacturing a stacked body made of the ceramic material.
 このように、複数の第1および第2のセラミックグリーンシートからなる積層体は、プレスして一体化することで、多数個の生積層体を含む大型の生積層体となる。この大型の生積層体を切断することによって、図1に示す積層型コンデンサ10の積層体1となる生積層体を得ることができる。大型の生積層体の切断は、例えば、ダイシングブレード等を用いて行なうことができる。 As described above, the laminated body composed of the plurality of first and second ceramic green sheets is pressed and integrated to form a large-sized raw laminated body including a large number of raw laminated bodies. By cutting this large green laminate, a green laminate that becomes the laminate 1 of the multilayer capacitor 10 shown in FIG. 1 can be obtained. The large green laminate can be cut using, for example, a dicing blade.
 そして、積層体1は、生積層体を、例えば800(℃)~1300(℃)で焼成することによって得ることができる。この工程によって、複数の第1および第2のセラミックグリーンシートが誘電体層となり、第1の内部電極2aの導体ペースト層が第1の内部電極2aとなり、第2の内部電極2bの導体ペースト層が第2の内部電極2bとなる。また、積層体1は、例えば、バレル研磨等の研磨手段を用いて角部または辺部を丸めることができる。積層体1は、角部または辺部を丸めることにより角部または辺部が欠けにくいものとなる。 The laminate 1 can be obtained by firing the green laminate at, for example, 800 (° C.) to 1300 (° C.). By this step, the plurality of first and second ceramic green sheets become dielectric layers, the conductive paste layer of the first internal electrode 2a becomes the first internal electrode 2a, and the conductive paste layer of the second internal electrode 2b Becomes the second internal electrode 2b. Moreover, the laminated body 1 can round a corner | angular part or a side part using grinding | polishing means, such as barrel grinding | polishing, for example. The laminated body 1 becomes a thing which a corner | angular part or a side part cannot be easily chipped by rounding a corner | angular part or a side part.
 次に、積層体1の第1の端面1cおよび第2の端面1dに外部電極3の下地電極3cとなる下地電極3c用の導電ペーストを塗布し、焼き付けることによって外部電極3の下地電極3cを形成する。 Next, the base electrode 3c of the external electrode 3 is applied to the first end face 1c and the second end face 1d of the multilayer body 1 by applying and baking a conductive paste for the base electrode 3c to be the base electrode 3c of the external electrode 3. Form.
 また、下地電極3c用の導電ペーストは、下地電極3cを構成する金属材料の粉末にバインダ、溶剤、分散剤等を加えて混練することで作製される。なお、下地電極の導電材料は、例えばニッケル(Ni)、銅(Cu)、銀(Ag)、パラジウム(Pd)または金(Au)等の金属材料、あるいは、これらの金属材料の一種以上を含む、例えばAg-Pd合金等の合金材料である。また、下地電極3cの形成方法としては、導体ペーストを焼き付ける方法以外に、蒸着法、めっき法またはスパッタリング法等の薄膜形成法を用いてもよい。 The conductive paste for the base electrode 3c is prepared by adding a binder, a solvent, a dispersant, and the like to the metal material powder constituting the base electrode 3c and kneading. Note that the conductive material of the base electrode includes, for example, a metal material such as nickel (Ni), copper (Cu), silver (Ag), palladium (Pd), or gold (Au), or one or more of these metal materials. For example, an alloy material such as an Ag—Pd alloy. Further, as a method for forming the base electrode 3c, a thin film forming method such as a vapor deposition method, a plating method, or a sputtering method may be used in addition to the method of baking the conductor paste.
 次に、外部電極3の下地電極3cを覆うように下地電極3cの表面にめっき層3dを形成する。めっき層3dは、例えば、電解めっき法等を用いて、下地電極3cの表面に形成される。めっき層3dは、例えばニッケル(Ni)めっき層、銅(Cu)めっき層、金(Au)めっき層またはスズ(Sn)めっき層等である。めっき層3dは、単一のめっき層から形成されていてもよい。積層型コンデンサ本体10は、めっき層3dが第1のめっき層3d1と第2のめっき層3d2とからなり、これらの積層体を表面に形成している。例えば、積層型コンデンサ本体10は、第1のめっき層3d1がニッケル(Ni)めっき層であり、第2のめっき層3d2が錫(Sn)めっき層であり、第2のめっき層3d2の錫(Sn)めっき層が第1のめっき層3d1のニッケル(Ni)めっき層を覆うように形成されている。 Next, a plating layer 3d is formed on the surface of the base electrode 3c so as to cover the base electrode 3c of the external electrode 3. The plating layer 3d is formed on the surface of the base electrode 3c using, for example, an electrolytic plating method or the like. The plating layer 3d is, for example, a nickel (Ni) plating layer, a copper (Cu) plating layer, a gold (Au) plating layer, a tin (Sn) plating layer, or the like. The plating layer 3d may be formed from a single plating layer. In the multilayer capacitor main body 10, the plating layer 3d is composed of a first plating layer 3d1 and a second plating layer 3d2, and these multilayer bodies are formed on the surface. For example, in the multilayer capacitor body 10, the first plating layer 3d1 is a nickel (Ni) plating layer, the second plating layer 3d2 is a tin (Sn) plating layer, and the second plating layer 3d2 has a tin ( The Sn) plating layer is formed so as to cover the nickel (Ni) plating layer of the first plating layer 3d1.
 次に、積層型コンデンサ10Aの製造方法の一例について図6および図7を参照しながら以下に説明する。 Next, an example of a method for manufacturing the multilayer capacitor 10A will be described below with reference to FIGS.
 まず、一対の外部端子4の製造方法の一例について説明する。1枚の帯状金属板を準備する。帯状金属板は、厚みが、例えば0.1(mm)~0.15(mm)であり、長さが、例えば100(mm)~250(mm)であり、例えばステンレス合金からなる。 First, an example of a method for manufacturing the pair of external terminals 4 will be described. One strip-shaped metal plate is prepared. The band-shaped metal plate has a thickness of, for example, 0.1 (mm) to 0.15 (mm), a length of, for example, 100 (mm) to 250 (mm), and is made of, for example, a stainless alloy.
 例えば、図6(a)に示すように、第1の外部端子4aとなる第1の外部端子4aaと第2の外部端子4bとなる第2の外部端子4bbとが互いに対向するように配置して、第1の外部端子4aaおよび第1の外部端子4bbのそれぞれのパターン形状に合わせて、例えば、プレス打ち抜き加工法を用いて帯状金属板に対して打ち抜き加工を行なう。このようにして、帯状金属板に対して打ち抜き加工を行なって、図6(a)に示すように、帯状金属板に第1の外部端子4aaと第2の外部端子4bbとからなる外部端子対8aを複数個設ける。なお、以下の説明において、帯状金属板に複数の外部端子体8aが形成されたものをリードフレーム8として用いる。このように、複数の積層型コンデンサ10Aは、リードフレーム8を用いることによって効率よく作製することができる。 For example, as shown in FIG. 6A, the first external terminal 4aa serving as the first external terminal 4a and the second external terminal 4bb serving as the second external terminal 4b are arranged to face each other. Then, according to the pattern shape of each of the first external terminal 4aa and the first external terminal 4bb, for example, a punching process is performed on the band-shaped metal plate using a press punching process. In this way, the strip-shaped metal plate is punched, and as shown in FIG. 6A, the strip-shaped metal plate has a pair of external terminals composed of the first external terminal 4aa and the second external terminal 4bb. A plurality of 8a are provided. In the following description, a strip-shaped metal plate formed with a plurality of external terminal bodies 8a is used as the lead frame 8. As described above, the plurality of multilayer capacitors 10 </ b> A can be efficiently manufactured by using the lead frame 8.
 また、第1の突出部4a3および第2の突出部4b3は、例えば、プレス加工を用いて、深絞りすることによって第1の電極側接続部4a1および第2の電極側接続部4b1に形成することができる。 The first protrusion 4a3 and the second protrusion 4b3 are formed in the first electrode side connection part 4a1 and the second electrode side connection part 4b1 by deep drawing using, for example, pressing. be able to.
 リードフレーム8は、複数の外部端子対8aに対してめっき加工を行なうことによってめっき層7が形成される。リードフレーム8は、長手方向の中央部のめっき層7の非形成領域にマスキングをして、めっき加工を行なう。そして、図6(a)に示すように、外部端子対8aは、第1の外部端子4aaの第1の電極側接続部4a1と第1の基板側接続部4a2とを含む領域および第2の外部端子4bbの第2の電極側接続部4b1と第2の基板側接続部4b2とを含む領域に、例えば、電解メッキ法を用いて、めっき層7が形成される。また、めっき層7は、外部端子対8aの表面、裏面および側面を含む領域に形成される。なお、マスキングは、例えば、低硬度ゴムシート等を用いて行なうことができる。 The lead frame 8 is formed with a plating layer 7 by plating the plurality of external terminal pairs 8a. The lead frame 8 is subjected to plating by masking a non-formation region of the plating layer 7 in the central portion in the longitudinal direction. As shown in FIG. 6A, the external terminal pair 8a includes a region including the first electrode-side connection portion 4a1 and the first substrate-side connection portion 4a2 of the first external terminal 4aa and the second substrate-side connection portion 4a2. The plating layer 7 is formed in the region including the second electrode side connection portion 4b1 and the second substrate side connection portion 4b2 of the external terminal 4bb by using, for example, an electrolytic plating method. The plating layer 7 is formed in a region including the front surface, the back surface, and the side surface of the external terminal pair 8a. The masking can be performed using, for example, a low hardness rubber sheet or the like.
 また、上述の加工では、リードフレーム8に対して、打ち抜き加工を行なった後にめっき加工を行なっているが、リードフレーム8に対して、めっき加工を行なった後に打ち抜き加工を行なってもよく、第1の外部端子4aaおよび第2の外部端子4bbの形状等を考慮して加工の順番は適宜に設定される。 In the above-described processing, the lead frame 8 is subjected to a plating process after being punched. However, the lead frame 8 may be subjected to a punching process after being plated. The processing order is appropriately set in consideration of the shape of the first external terminal 4aa and the second external terminal 4bb.
 第1の外部端子4aaおよび第2の外部端子4bbは、図1に示すように、第1の電極側接続部4a1と第1の基板側接続部4a2との境界部および第2の電極側接続部4b1と第2の基板側接続部4b2との境界部に屈曲部を有する構造にするために、リードフレーム8は、図6(a)に示すように、第1の折り曲げ線L1および第2の折り曲げ線L2が設定され、第1の折り曲げ線L1および第2の折り曲げ線L2に沿って折り曲げ加工が施される。具体的には、リードフレーム8は、第1の折り曲げ線L1および第2の折り曲げ線L2が設定される。第1の折り曲げ線L1が第1の電極側接続部4a1と第1の基板側接続部4a2との境界部に設定され、第2の折り曲げ線L2が第2の電極側接続部4b1と第2の基板側接続部4b2との境界部に設定される。なお、第1の折り曲げ線L1および第2の折り曲げ線L2は、図6(a)において点線によって示している。 As shown in FIG. 1, the first external terminal 4aa and the second external terminal 4bb are connected to the boundary between the first electrode side connection portion 4a1 and the first substrate side connection portion 4a2, and to the second electrode side connection. In order to obtain a structure having a bent portion at the boundary between the portion 4b1 and the second substrate side connecting portion 4b2, the lead frame 8 includes a first fold line L1 and a second fold line L1, as shown in FIG. The folding line L2 is set, and the bending process is performed along the first folding line L1 and the second folding line L2. Specifically, the lead frame 8 is set with a first fold line L1 and a second fold line L2. The first fold line L1 is set at the boundary between the first electrode side connection portion 4a1 and the first substrate side connection portion 4a2, and the second fold line L2 is set between the second electrode side connection portion 4b1 and the second electrode side connection portion 4b1. Is set at the boundary with the board-side connecting portion 4b2. In addition, the 1st bending line L1 and the 2nd bending line L2 are shown by the dotted line in Fig.6 (a).
 折り曲げ加工は、図6(b)に示すように、第1の折り曲げ線L1に対して、第1の電極側接続部4a1を上方に起こすように折り曲げて、第1の電極側接続部4a1と第1の基板側接続部4a2との境界部を略直角に折り曲げ、さらに、第2の折り曲げ線L2に対して、第2の電極側接続部4b1を上方に起こすように折り曲げて、第2の電極側接続部4b1と第2の基板側接続部4b2との境界部を略直角に折り曲げる。 As shown in FIG. 6B, the bending process is performed by bending the first electrode side connection portion 4a1 upward with respect to the first bend line L1, and the first electrode side connection portion 4a1. The boundary portion with the first substrate side connection portion 4a2 is bent at a substantially right angle, and the second electrode side connection portion 4b1 is bent upward with respect to the second bending line L2, and the second A boundary portion between the electrode side connection portion 4b1 and the second substrate side connection portion 4b2 is bent at a substantially right angle.
 このように、リードフレーム8に対して、折り曲げ加工を用いることによって、図6(b)に示すように、第1の外部端子4aaは、第1の電極側接続部4a1と第1の基板側接続部4a2との間に屈曲部(折り曲げ部)を有する構造となり、また、第2の外部端子4bbは、第2の電極側接続部4b1と第2の基板側接続部4b2との間に屈曲部(折り曲げ部)を有する構造となる。第1の外部端子4aaおよび第2の外部端子4bbは、折り曲げ加工されて略直角の折り曲げ部を有するものとなる。なお、折り曲げ加工は、第1の折り曲げ線L1および第2の折り曲げ線L2に対して、例えば、折り曲げ部の形状に合わせた折り曲げ金型を用いて行なう。 In this way, by using a bending process for the lead frame 8, as shown in FIG. 6B, the first external terminal 4aa is connected to the first electrode side connecting portion 4a1 and the first substrate side. The second external terminal 4bb is bent between the second electrode side connection portion 4b1 and the second substrate side connection portion 4b2 and has a structure having a bent portion (bending portion) between the connection portion 4a2. It becomes a structure which has a part (bending part). The first external terminal 4aa and the second external terminal 4bb are bent so as to have a bent portion at a substantially right angle. The bending process is performed on the first fold line L1 and the second fold line L2 using, for example, a bending die that matches the shape of the bent portion.
 次に、図7(a)に示すように、例えば、吸引ノズルを備えた自動実装機を用いて、この折り曲げ加工された第1の外部端子4aaと第2の外部端子4bbとの間に積層型コンデンサ本体10を搭載する。そして、積層型コンデンサ本体10を搭載後、第1の突出部4a3および第2の突出部4b3に対して、例えば、レーザスポット溶接を用いて、第1の外部端子4aaと第1の外部電極3aとを溶接部5でもって接合し、第2の外部端子4bbと第2の外部電極3bとを溶接部5でもって接合する。 Next, as shown in FIG. 7A, for example, using an automatic mounting machine equipped with a suction nozzle, the first external terminal 4aa and the second external terminal 4bb which are bent are stacked. A capacitor body 10 is mounted. Then, after mounting the multilayer capacitor main body 10, the first external terminal 4aa and the first external electrode 3a are applied to the first protrusion 4a3 and the second protrusion 4b3 by using, for example, laser spot welding. And the second external terminal 4bb and the second external electrode 3b are joined by the welded portion 5.
 この場合には、第1の外部端子4aaは、第1の突出部4a3が第1の外部電極3aに接触して溶接部5で接合され、また、第2の外部端子4bbは、第1の突出部4b3が第2の外部電極3bに接触して溶接部5で接合されていることが好ましい。このように、一対の外部電極3と一対の外部端子4とを溶接部5で接合することによって、接合工程が非常に簡略化されて、量産性に優れた工程となる。 In this case, the first external terminal 4aa has the first projecting portion 4a3 in contact with the first external electrode 3a and joined by the welded portion 5, and the second external terminal 4bb It is preferable that the protruding portion 4b3 contacts the second external electrode 3b and is joined by the welded portion 5. Thus, by joining the pair of external electrodes 3 and the pair of external terminals 4 with the welded portion 5, the joining process is greatly simplified, and the process is excellent in mass productivity.
 また、一対の外部電極3と一対の外部端子4とが溶接されるので、はんだ接合が不要となり、積層型コンデンサ10Aは、一対の外部電極3と一対の外部端子4との接合部(溶接部5)が基板9に実装する際のはんだ付け温度の影響を受けにくくなるので、信頼性の劣化が抑制される。 In addition, since the pair of external electrodes 3 and the pair of external terminals 4 are welded, soldering is not necessary, and the multilayer capacitor 10A has a joint (welded portion) between the pair of external electrodes 3 and the pair of external terminals 4. 5) is less affected by the soldering temperature when mounted on the substrate 9, and the deterioration of reliability is suppressed.
 また、積層型コンデンサは、例えば、第1の突出部4a3および第2の突出部4b3の周辺部と一対の外部電極3とをはんだを介して接合する場合には、はんだが下方に流動しやすくなり、接合性を十分確保することができない。一方、積層型コンデンサ10Aは、第1の突出部4a3および第2の突出部4b3と一対の外部電極3とを溶接で接合をすることによって、一対の外部電極3と第1の突出部4a3および第2の突出部4a3とを確実に接合することができる。 In the multilayer capacitor, for example, when the peripheral portions of the first protrusion 4a3 and the second protrusion 4b3 and the pair of external electrodes 3 are joined via solder, the solder easily flows downward. Therefore, sufficient bondability cannot be ensured. On the other hand, the multilayer capacitor 10A includes a pair of external electrodes 3 and the first protrusions 4a3 and 4a3 by welding the first protrusions 4a3 and the second protrusions 4b3 and the pair of external electrodes 3 by welding. The second protrusion 4a3 can be reliably joined.
 また、溶接接合は、例えば、アークスポット溶接またはレーザスポット溶接等のスポット溶接である。レーザスポット溶接は、例えば、YAGレーザ等のエネルギービームを第1の突出部4a3および第2の突出部4b3に対してスポット的に照射して、第1の突出部4a3と第1の外部電極3aとを接合するものであり、第2の突出部4b3と第2の外部電極3bとを接合するものである。第1の突出部4a3および第2の突出部4b3に対してエネルギービームをスポット的に照射することにより、第1の突出部4a3および第2の突出部4b3が局所的に昇温して、例えば、一対の外部端子4のステンレス合金の溶融温度の1400(℃)~1450(℃)になると、第1の突出部4a3および第2の突出部4b3と一対の外部電極3とが溶融して、第1の突出部4a3および第2の突出部4b3が一対の外部電極3に接合することになる。 Further, the welding joint is spot welding such as arc spot welding or laser spot welding. In laser spot welding, for example, an energy beam such as a YAG laser is spot-irradiated to the first protrusion 4a3 and the second protrusion 4b3, and the first protrusion 4a3 and the first external electrode 3a are irradiated. And the second projecting portion 4b3 and the second external electrode 3b are joined together. By irradiating the first protrusion 4a3 and the second protrusion 4b3 with an energy beam in a spot manner, the first protrusion 4a3 and the second protrusion 4b3 are locally heated, for example, When the melting temperature of the stainless alloy of the pair of external terminals 4 reaches 1400 (° C.) to 1450 (° C.), the first protrusion 4a3 and the second protrusion 4b3 and the pair of external electrodes 3 are melted, The first protrusion 4a3 and the second protrusion 4b3 are joined to the pair of external electrodes 3.
 積層型コンデンサ10Aは、一対の外部電極3のめっき層3dにニッケル(Ni)めっき層を用い、また、一対の外部端子4にステンレス合金を用いると、ニッケル(Ni)めっき層とステンレス合金の溶融温度が類似しており、一対の外部端子4と一対の外部電極3との接合性を向上させることができる。このように、積層型コンデンサ10Aは、一対の外部電極3と一対の外部端子4との接合において、一対の外部電極3のめっき層3dおよび一対の外部端子4に対して互いに溶融温度が類似した材料を用いることによって、溶接部5の接合領域を制御しやすくなる。 In the multilayer capacitor 10A, when a nickel (Ni) plating layer is used for the plating layer 3d of the pair of external electrodes 3 and a stainless alloy is used for the pair of external terminals 4, the nickel (Ni) plating layer and the stainless alloy are melted. The temperatures are similar, and the bondability between the pair of external terminals 4 and the pair of external electrodes 3 can be improved. As described above, the multilayer capacitor 10A has similar melting temperatures to the plating layer 3d of the pair of external electrodes 3 and the pair of external terminals 4 in joining the pair of external electrodes 3 and the pair of external terminals 4. By using the material, it becomes easy to control the joining region of the welded portion 5.
 このようにして、積層型コンデンサ本体10は、スポット溶接を用いることによって、第1の外部端子4aaが溶接部5によって第1の外部電極3aに接合され、また、第2の外部端子4bbが第2の外部電極3bに溶接部5によって接合されることになる。 In this way, the multilayer capacitor body 10 uses the spot welding to join the first external terminal 4aa to the first external electrode 3a by the weld 5 and the second external terminal 4bb to the first external terminal 4bb. The two external electrodes 3b are joined by the welded portion 5.
 次に、図7(a)に示すように、リードフレーム8は、第1の切断線S1および第2の切断線S2が設定され、第1の切断線S1および第2の切断線S2に対して切断加工が施される。例えば、切断金型を用いて、積層型コンデンサ本体10が搭載された外部端子対8aがリードフレーム8から切り離される。これによって、図7(b)に示すように、リードフレーム8から複数の積層型コンデンサ10Aが得られる。なお、第1の切断線S1および第2の切断線S2は、図7(a)において点線によって示している。 Next, as shown in FIG. 7A, the lead frame 8 has the first cutting line S1 and the second cutting line S2, and the first cutting line S1 and the second cutting line S2. Is cut. For example, the external terminal pair 8 a on which the multilayer capacitor main body 10 is mounted is separated from the lead frame 8 using a cutting die. As a result, a plurality of multilayer capacitors 10A are obtained from the lead frame 8, as shown in FIG. The first cutting line S1 and the second cutting line S2 are indicated by dotted lines in FIG.
 上述のように、リードフレーム8を用いることによって、図1に示す積層型コンデンサ10Aを効率よく作製することができる。また、積層型コンデンサ10Aは、一対の外部端子4が溶接を用いて一対の外部電極3に接合されており、積層型コンデンサ10Aを基板9上にはんだ付けする際の加熱によって一対の外部端子4が一対の外部電極3から離脱するのを防止することができる。 As described above, by using the lead frame 8, the multilayer capacitor 10A shown in FIG. 1 can be efficiently manufactured. In the multilayer capacitor 10A, the pair of external terminals 4 are joined to the pair of external electrodes 3 by welding, and the pair of external terminals 4 are heated by soldering the multilayer capacitor 10A onto the substrate 9. Can be prevented from separating from the pair of external electrodes 3.
 本発明は、上述の実施の形態1の積層型コンデンサ10Aに限定されるものではなく、本発明の要旨を逸脱しない範囲において種々の変更、改良等が可能である。以下、他の実施の形態について説明する。なお、他の実施の形態に係る積層型コンデンサのうち、実施の形態1に係る積層型コンデンサ10Aと同様な部分については、同一の符号を付して適宜説明を省略する。 The present invention is not limited to the multilayer capacitor 10A of the first embodiment described above, and various modifications and improvements can be made without departing from the scope of the present invention. Hereinafter, other embodiments will be described. Note that, among the multilayer capacitors according to other embodiments, the same portions as those of the multilayer capacitor 10A according to the first embodiment are denoted by the same reference numerals, and description thereof will be omitted as appropriate.
 <実施の形態2>
 以下、本発明の実施の形態2に係る積層型コンデンサ10Bについて図面を参照しながら説明する。
<Embodiment 2>
Hereinafter, the multilayer capacitor 10B according to the second embodiment of the present invention will be described with reference to the drawings.
 積層型コンデンサ10Bは、図8に示すように、一対の外部端子40が第1の外部端子4Aおよび第2の外部端子4Bからなり、第1の外部端子4Aは、第1の基板側接続部4a2が第1の電極側接続部4a1から積層体1の側に向かって配置されており、また、第2の外部端子4Bは、第2の基板側接続部4b2が第2の電極側接続部4b1から積層体1の側に向かって配置されている。このように、一対の外部端子40は、積層型コンデンサ本体10の下方で第1の基板側接続部4a2の端部と第2の基板側接続部4b2の端部とが互いに向かい合っており、また、第1の基板側接続部4a2および第2の基板側接続部4b2は、積層型コンデンサ本体10の第2の主面1bにそれぞれ対向している。積層型コンデンサ10Bは、実施の形態1に係る積層型コンデンサ10Aとは、第1の外部端子4Aの第1の基板側接続部4a2および第2の外部端子4Bの第2の基板側接続部4b2の折り曲げ方向が異なっており、第1の基板側接続部4a2が第1の電極側接続部4a1から積層体1の側に向かって配置され、第2の基板側接続部4b2が第2の電極側接続部4b1から積層体1の側に向かって配置されている。 In the multilayer capacitor 10B, as shown in FIG. 8, the pair of external terminals 40 includes a first external terminal 4A and a second external terminal 4B, and the first external terminal 4A is a first board-side connection portion. 4a2 is arranged from the first electrode side connection portion 4a1 toward the laminated body 1 side, and the second external terminal 4B has the second substrate side connection portion 4b2 as the second electrode side connection portion. It arrange | positions toward the laminated body 1 side from 4b1. In this way, the pair of external terminals 40 has the end portion of the first board side connection portion 4a2 and the end portion of the second board side connection portion 4b2 facing each other below the multilayer capacitor body 10, and The first board-side connecting portion 4a2 and the second board-side connecting portion 4b2 face the second main surface 1b of the multilayer capacitor body 10, respectively. The multilayer capacitor 10B is different from the multilayer capacitor 10A according to the first embodiment in that the first substrate-side connection portion 4a2 of the first external terminal 4A and the second substrate-side connection portion 4b2 of the second external terminal 4B. The first substrate side connecting portion 4a2 is arranged from the first electrode side connecting portion 4a1 toward the laminated body 1 side, and the second substrate side connecting portion 4b2 is the second electrode. It arrange | positions toward the laminated body 1 side from the side connection part 4b1.
 また、図8に示すように、第1の外部端子4Aは、第1の延在部4a4が第1の電極側接続部4a1の第1の基板側接続部4a2とは反対側の端部に設けられており、第2の外部端子4Bは、第2の延在部4b4が第2の電極側接続部4b1の第2の基板側接続部4b2とは反対側の端部に設けられている。なお、第1の外部端子4Aおよび第2の外部端子4Bは、後述するリードフレーム8Aを用いて作製する場合には、第1の電極側接続部4a1に第1の延在部4a4が形成され、第2の電極側接続部4a1に第2の延在部4b4が形成されることがある。また、第1の延在部4a4および第2の延在部4b4は形成されていなくてもよい。 Further, as shown in FIG. 8, the first external terminal 4A has the first extending portion 4a4 at the end of the first electrode side connecting portion 4a1 opposite to the first substrate side connecting portion 4a2. In the second external terminal 4B, the second extending portion 4b4 is provided at the end of the second electrode side connecting portion 4b1 opposite to the second substrate side connecting portion 4b2. . When the first external terminal 4A and the second external terminal 4B are manufactured using a lead frame 8A described later, the first extension portion 4a4 is formed in the first electrode side connection portion 4a1. The second extending portion 4b4 may be formed in the second electrode side connecting portion 4a1. Moreover, the 1st extension part 4a4 and the 2nd extension part 4b4 do not need to be formed.
 第1の外部端子4Aは、図8に示すように、第1の電極側接続部4a1および第1の基板側接続部4a2を有している。第1の外部端子4aと同様に、第1の電極側接続部4a1は、第1の外部電極3aに対向して配置されて第1の外部電極3aに接合されているとともに第1の外部電極3aの下方に延びている。第1の基板側接続部4a2は、第1の電極側接続部4a1の延びている部分の端部に第1の電極側接続部4a1に対して直交するように配置されている。第1の基板側接続部4a2が第1の電極側接続部4a1を基準にして積層体1の側に向かって略垂直方向に配置されている。第1の電極側接続部4a1が、第1の外部電極3aに対向して配置され、第1の端面1c側に配設されており、第1の外部電極3aに接合されている。また、第1の基板側接続部4a2は、積層型コンデンサ10Bが実装される基板9に対向するように設けられており、基板電極9aに電気的に接続される。 As shown in FIG. 8, the first external terminal 4A has a first electrode side connection portion 4a1 and a first substrate side connection portion 4a2. Similarly to the first external terminal 4a, the first electrode-side connecting portion 4a1 is disposed to face the first external electrode 3a and is joined to the first external electrode 3a and the first external electrode. It extends below 3a. The first substrate-side connection portion 4a2 is disposed at the end of the portion where the first electrode-side connection portion 4a1 extends so as to be orthogonal to the first electrode-side connection portion 4a1. The first substrate side connection portion 4a2 is arranged in a substantially vertical direction toward the laminated body 1 with respect to the first electrode side connection portion 4a1. The first electrode side connection portion 4a1 is disposed to face the first external electrode 3a, is disposed on the first end face 1c side, and is joined to the first external electrode 3a. The first substrate side connection portion 4a2 is provided so as to face the substrate 9 on which the multilayer capacitor 10B is mounted, and is electrically connected to the substrate electrode 9a.
 また、第1の外部端子4Aは、第1の電極側接続部4a1が第1の外部電極3aに隙間を有して対向し、また、第1の突出部4a3を有しており、第1の突出部4a3が第1の外部電極3a側に向かって突出している。第1の突出部4a3と第1の外部電極3aとが、例えばはんだ接合または溶接等を用いて接合される。第1の突出部4a3は、例えば、プレス加工法用いて、第1の電極側接続部4a1に設けられる。 Further, the first external terminal 4A has the first electrode side connection portion 4a1 opposed to the first external electrode 3a with a gap, and has the first protrusion 4a3. The protruding portion 4a3 protrudes toward the first external electrode 3a. The first protrusion 4a3 and the first external electrode 3a are joined using, for example, solder joining or welding. The first projecting portion 4a3 is provided in the first electrode side connecting portion 4a1 by using, for example, a press working method.
 第1の外部端子4Aは、第1の突出部4a3で第1の外部電極3aと、例えば、スポット溶接等を用いて接合される。すなわち、第1の外部電極3aと第1の突出部4a3とが溶接されることによって、図9に示すように、溶接部5が形成されて、第1の外部電極3aと第1の突出部4a3とが接合されることになる。また、第1の外部端子4Aは、第1の突出部4a3のみで第1の外部電極3aに接合されており、第1の突出部4a3以外の部分は隙間を介して第1の外部電極3aに対向している。また、第1の外部端子Aは、第1の外部電極3aとの接合強度を確保するために、第1の突出部4a3が第1の外部電極3aに接触して溶融接合されていることが好ましい。 The first external terminal 4A is joined to the first external electrode 3a at the first protrusion 4a3 by using, for example, spot welding. That is, by welding the first external electrode 3a and the first protruding portion 4a3, as shown in FIG. 9, the welded portion 5 is formed, and the first external electrode 3a and the first protruding portion are formed. 4a3 is joined. In addition, the first external terminal 4A is joined to the first external electrode 3a only by the first protrusion 4a3, and the portions other than the first protrusion 4a3 are connected to the first external electrode 3a via a gap. Opposite to. In addition, the first external terminal A may be melt-bonded with the first protruding portion 4a3 coming into contact with the first external electrode 3a in order to ensure the bonding strength with the first external electrode 3a. preferable.
 第1の外部端子4Bは、図8に示すように、第2の電極側接続部4b1および第2の基板側接続部4b2を有している。第1の外部端子4bと同様に、第2の電極側接続部4b1は、第2の外部電極3bに対向して配置されて第2の外部電極3bに接合されているとともに第2の外部電極3bの下方に延びている。第2の基板側接続部4b2は、第2の電極側接続部4b1の延びている部分の端部に第2の電極側接続部4b1に対して直交するように配置されている。第2の基板側接続部4b2が第2の電極側接続部4b1を基準にして積層体1の側に向かって略垂直方向に配置されている。第2の電極側接続部4b1が、第2の外部電極3bに対向して配置され、第2の端面1d側に配設されており、第2の外部電極3bに接合されている。また、第2の基板側接続部4b2は、積層型コンデンサ10Bが実装される基板9に対向するように設けられており、基板電極9bに電気的に接続される。 As shown in FIG. 8, the first external terminal 4B has a second electrode side connection portion 4b1 and a second substrate side connection portion 4b2. Similar to the first external terminal 4b, the second electrode-side connecting portion 4b1 is disposed so as to face the second external electrode 3b and is joined to the second external electrode 3b and the second external electrode. It extends below 3b. The second substrate-side connection portion 4b2 is disposed at the end of the portion where the second electrode-side connection portion 4b1 extends so as to be orthogonal to the second electrode-side connection portion 4b1. The second substrate side connection portion 4b2 is disposed in a substantially vertical direction toward the laminate 1 with respect to the second electrode side connection portion 4b1. The second electrode side connection portion 4b1 is disposed to face the second external electrode 3b, is disposed on the second end face 1d side, and is joined to the second external electrode 3b. The second substrate side connection portion 4b2 is provided so as to face the substrate 9 on which the multilayer capacitor 10B is mounted, and is electrically connected to the substrate electrode 9b.
 また、第2の外部端子4Bは、第2の電極側接続部4b1が第2の外部電極3bに隙間を有して対向し、また、第1の突出部4a3を有しており、第2の突出部4b3が第2の外部電極3b側に向かって突出している。第1の突出部4a3と第1の外部電極3aとが、例えばはんだ接合または溶接等を用いて接合される。第2の突出部4b3は、例えば、プレス加工法を用いて、第2の電極側接続部4b1に設けられる。 The second external terminal 4B has the second electrode-side connecting portion 4b1 facing the second external electrode 3b with a gap, and has the first protruding portion 4a3. The protruding portion 4b3 protrudes toward the second external electrode 3b. The first protrusion 4a3 and the first external electrode 3a are joined using, for example, solder joining or welding. The second protruding portion 4b3 is provided in the second electrode side connecting portion 4b1, for example, using a press working method.
 第2の外部端子4Bは、第2の突出部4b3で第2の外部電極3bと、例えば、スポット溶接等を用いて接合される。すなわち、第2の外部電極3bと第2の突出部4b3とが溶接されることによって、図9に示すように、溶接部5が形成されて、第2の外部電極3bと第2の突出部4b3とが接合されることになる。また、第2の外部端子4Bは、第1の突出部4b3のみで第2の外部電極3bに接合されており、第2の突出部4b3以外の部分では隙間を介して第2の外部電極3bに対向している。また、第1の外部端子Aは、第2の外部電極3bとの接合強度を確保するために、第1の突出部4a3が第1の外部電極3aに接触して接合されていることが好ましい。 The second external terminal 4B is joined to the second external electrode 3b at the second protrusion 4b3 using, for example, spot welding. That is, the second external electrode 3b and the second protrusion 4b3 are welded to form a weld 5 as shown in FIG. 9, and the second external electrode 3b and the second protrusion are formed. 4b3 is joined. Further, the second external terminal 4B is joined to the second external electrode 3b only by the first protrusion 4b3, and the second external electrode 3b is interposed through a gap at a portion other than the second protrusion 4b3. Opposite to. Further, the first external terminal A is preferably joined with the first protruding portion 4a3 being in contact with the first external electrode 3a in order to ensure the bonding strength with the second external electrode 3b. .
 図10に示すように、第1の外部端子4Aは、第1の基板側接続部4a2が基板9の基板電極9aに接続され、第1の電極側接続部4a1が第1の外部電極3aに接続されており、また、第2の外部端子4Bは、第1の外部端子4Aと対称に形成されており、第2の基板側接続部4b2が基板9の基板電極9bに接続され、第2の電極側接続部4b1が第2の外部電極3bに接続されている。積層型コンデンサ10Bは、第1の外部端子4Aが基板9の表面から積層型コンデンサ本体10が離れるように第1の外部電極3aに設けられ、第2の外部端子4Bが基板9の表面から積層型コンデンサ本体10が離れるように第2の外部電極3bに設けられている。 As shown in FIG. 10, in the first external terminal 4A, the first substrate side connection portion 4a2 is connected to the substrate electrode 9a of the substrate 9, and the first electrode side connection portion 4a1 is connected to the first external electrode 3a. The second external terminal 4B is formed symmetrically with the first external terminal 4A, the second substrate side connection portion 4b2 is connected to the substrate electrode 9b of the substrate 9, and the second external terminal 4B is connected to the substrate electrode 9b of the substrate 9. The electrode side connection portion 4b1 is connected to the second external electrode 3b. The multilayer capacitor 10B is provided on the first external electrode 3a so that the first external terminal 4A is separated from the surface of the substrate 9, and the second external terminal 4B is laminated from the surface of the substrate 9. The capacitor body 10 is provided on the second external electrode 3b so as to be separated.
 第1の基板側接続部4a2は、積層型コンデンサ本体10に対向しており、基板9と略平行となるように設けられており、第1の電極側接続部4a1との境界部で積層型コンデンサ本体10の中央部に向かって内側に折り曲げられている。また、第1の基板側接続部4b2は、積層型コンデンサ本体10に対向しており、基板9と略平行となるように設けられており、第1の電極側接続部4b1との境界部で積層型コンデンサ本体10の中央部に向かって内側に折り曲げられている。 The first substrate side connection portion 4a2 faces the multilayer capacitor main body 10, is provided so as to be substantially parallel to the substrate 9, and is laminated at the boundary with the first electrode side connection portion 4a1. The capacitor body 10 is bent inward toward the center. The first substrate-side connection portion 4b2 faces the multilayer capacitor body 10 and is provided so as to be substantially parallel to the substrate 9, and at the boundary with the first electrode-side connection portion 4b1. The multilayer capacitor body 10 is bent inwardly toward the center.
 このように、積層型コンデンサ10Bは、第1の基板側外部接続部4a2が第1の電極側接続部4a1に対して積層型コンデンサ本体10の内側に略直角に折り曲げられて第1の電極側接続部4a1から積層型コンデンサ本体10の中央部に向かって延びるように設けられており、また、第2の基板側接続部4b2が第2の電極側接続部4b1に対して積層型コンデンサ本体10の内側に略直角に折り曲げられて第2の電極側接続部4b1から積層型コンデンサ本体10の中央部に向かって延びるように設けられている。 As described above, the multilayer capacitor 10B includes the first substrate-side external connection portion 4a2 that is bent at a substantially right angle inside the multilayer capacitor body 10 with respect to the first electrode-side connection portion 4a1. The connection portion 4a1 is provided so as to extend toward the central portion of the multilayer capacitor body 10, and the second substrate side connection portion 4b2 is provided with respect to the second electrode side connection portion 4b1. Is bent at a substantially right angle to extend from the second electrode side connection portion 4b1 toward the center of the multilayer capacitor body 10.
 したがって、積層型コンデンサ10Bは、X方向において、第1の基板側接続部4a2と第2の基板側接続部4b2との間の距離を短くすることができる。なお、略直角とは、第1の電極側接続部4a1と第1の基板側接続部4a2との成す角度および第2の電極側接続部4b1と第2の基板側接続部4b2との成す角度が、85(°)~95(°)の範囲内にあることをいう。このように、第1の外部端子4Aおよび第2の外部端子4Bは、第1の側面1eまたは第2の側面1fに直交する方向(Y方向)から側面視して、側面がL字形状を有しており、1枚の板状体を略直角に折り曲げたものである。 Therefore, the multilayer capacitor 10B can shorten the distance between the first substrate side connection portion 4a2 and the second substrate side connection portion 4b2 in the X direction. The substantially right angle means an angle formed between the first electrode side connection portion 4a1 and the first substrate side connection portion 4a2 and an angle formed between the second electrode side connection portion 4b1 and the second substrate side connection portion 4b2. Is in the range of 85 (°) to 95 (°). As described above, the first external terminal 4A and the second external terminal 4B are side-viewed from the direction (Y direction) orthogonal to the first side surface 1e or the second side surface 1f, and the side surfaces are L-shaped. And a single plate-like body bent at a substantially right angle.
 このように、積層型コンデンサ10Bは、図10に示すように、第1の基板側接続部4a2および第2の基板側接続部4b2が積層型コンデンサ本体10の下方に位置するように積層型コンデンサ本体10の内側(中央部側)に曲がるように設けられており、基板9の振動が抑制されて、音鳴きが起りにくくなり、振動音の抑制効果を向上させることができるとともに、X方向の長さを短くすることができるので、実装領域が小さくなり、高密度実装が可能となる。また、積層型コンデンサ10Bは、実施の形態1の積層型コンデンサ10Aと比べると、第1の基板側接続部4a2および第2の基板側接続部4b2が積層型コンデンサ本体10の内側(中央部側)に屈曲した分だけX方向の長さが短くなっている。 As described above, the multilayer capacitor 10B includes a multilayer capacitor such that the first substrate side connection portion 4a2 and the second substrate side connection portion 4b2 are positioned below the multilayer capacitor body 10 as shown in FIG. It is provided so as to bend inside the main body 10 (center side), and the vibration of the substrate 9 is suppressed, making it difficult for noise to occur, and the effect of suppressing vibration noise can be improved. Since the length can be shortened, the mounting area is reduced and high-density mounting is possible. Also, the multilayer capacitor 10B is different from the multilayer capacitor 10A of the first embodiment in that the first substrate-side connection portion 4a2 and the second substrate-side connection portion 4b2 are located on the inner side (center side) of the multilayer capacitor body 10. ), The length in the X direction is shortened by the amount bent.
 ここで、積層型コンデンサ10Bの製造方法の一例について図11および図12を参照しながら以下に説明する。 Here, an example of a method for manufacturing the multilayer capacitor 10B will be described below with reference to FIGS.
 まず、一対の外部端子40の製造方法の一例について説明する。1枚の帯状金属板を準備する。帯状金属板は、厚みが、例えば0.1(mm)~0.15(mm)であり、長さが、例えば100(mm)~250(mm)であり、例えば、ステンレス合金からなる。 First, an example of a method for manufacturing the pair of external terminals 40 will be described. One strip-shaped metal plate is prepared. The band-shaped metal plate has a thickness of, for example, 0.1 (mm) to 0.15 (mm), a length of, for example, 100 (mm) to 250 (mm), and is made of, for example, a stainless alloy.
 例えば、図11(a)に示すように、第1の外部端子4Aとなる第1の外部端子4Aaと第2の外部端子4Bとなる第2の外部端子4Bbとが互いに対向するように配置して、第1の外部端子4Aおよび第1の外部端子4Bのそれぞれのパターン形状に合わせて、例えば、プレス打ち抜き加工法を用いて帯状金属板に対して打ち抜き加工を行なう。このようにして、帯状金属板に対して打ち抜き加工を行なって、図10(a)に示すように、帯状金属板に対して第1の外部端子4Aaと第2の外部端子4Bbとからなる外部端子対8aを複数個設ける。なお、以下の説明において、帯状金属板に複数の外部端子体8aが形成されたものをリードフレーム8Aとして用いる。このように、複数の積層型コンデンサ10Bは、リードフレーム8Aを用いることによって効率よく作製することができる。 For example, as shown in FIG. 11A, the first external terminal 4Aa to be the first external terminal 4A and the second external terminal 4Bb to be the second external terminal 4B are arranged to face each other. Then, in accordance with the pattern shapes of the first external terminal 4A and the first external terminal 4B, for example, a punching process is performed on the band-shaped metal plate using a press punching process. In this way, the strip metal plate is punched, and as shown in FIG. 10A, the strip metal plate is formed of the first external terminal 4Aa and the second external terminal 4Bb. A plurality of terminal pairs 8a are provided. In the following description, a strip metal plate having a plurality of external terminal bodies 8a is used as the lead frame 8A. Thus, the plurality of multilayer capacitors 10B can be efficiently manufactured by using the lead frame 8A.
 また、第1の突出部4a3および第2の突出部4b3は、例えば、プレス加工を用いて、深絞りすることによって第1の電極側接続部4a1および第2の電極側接続部4b1に形成することができる。 The first protrusion 4a3 and the second protrusion 4b3 are formed in the first electrode side connection part 4a1 and the second electrode side connection part 4b1 by deep drawing using, for example, pressing. be able to.
 リードフレーム8Aは、複数の外部端子対8aに対してめっき加工を行なうことによってめっき層7が形成される。リードフレーム8Aは、長手方向の中央部のめっき層7の非形成領域にマスキングをして、めっき加工を行なう。そして、図11(a)に示すように、外部端子対8a(第1の外部端子4Aaおよび第2の外部端子4Bb)は、第1の外部端子4Aaの第1の基板側接続部4a2と第1の電極側接続部4a1とを含む領域および第2の外部端子4Bbの第2の基板側接続部4b2と第2の電極側接続部4b1とを含む領域に、例えば、電解メッキ法を用いて、めっき層7が形成される。また、めっき層7は、外部端子対8aの表面、裏面および側面を含む領域に形成される。なお、マスキングは、例えば、低硬度ゴムシート等を用いて行なうことができる。 In the lead frame 8A, the plating layer 7 is formed by plating the plurality of external terminal pairs 8a. The lead frame 8A performs plating by masking the non-formation region of the plating layer 7 in the central portion in the longitudinal direction. As shown in FIG. 11A, the external terminal pair 8a (the first external terminal 4Aa and the second external terminal 4Bb) is connected to the first board-side connecting portion 4a2 of the first external terminal 4Aa. For example, an electrolytic plating method is used for the region including the first electrode side connection portion 4a1 and the region including the second substrate side connection portion 4b2 and the second electrode side connection portion 4b1 of the second external terminal 4Bb. Then, the plating layer 7 is formed. The plating layer 7 is formed in a region including the front surface, the back surface, and the side surface of the external terminal pair 8a. The masking can be performed using, for example, a low hardness rubber sheet or the like.
 また、上記では、リードフレーム8Aに対して、打ち抜き加工を行なった後にめっき加工を行なっているが、リードフレーム8Aに対して、めっき加工を行なった後に打ち抜き加工を行なってもよく、一対の外部端子40の形状等を考慮して加工の順番は適宜に設定される。 In the above description, the plating is performed after the lead frame 8A is punched, but the punching may be performed after the lead frame 8A is plated. The processing order is appropriately set in consideration of the shape of the terminal 40 and the like.
 第1の外部端子4Aaおよび第2の外部端子4Bbが、図8に示すように、第1の電極側接続部4a1と第1の基板側接続部4a2との境界部および第2の電極側接続部4b1と第2の基板側接続部4b2との境界部に屈曲部を有する構造になるように、リードフレーム8Aは、図11(a)に示すように、第1~第4の折り曲げ線L3~L6が設定され、第1~第4の折り曲げ線L3~L6に沿って折り曲げ加工が施される。具体的には、リードフレーム8Aは、第1の折り曲げ線L3~第4の折り曲げ線L4が設定されている。第1の折り曲げ線L3が第1の電極側接続部4a1と第1の基板側接続部4a2との境界部に設定され、第2の折り曲げ線L4が第2の電極側接続部4b1と第2の基板側接続部4b2との境界部に設定されている。また、第3の折り曲げ線L5が第1の電極側接続部4a1と第1の延在部4a4との境界部に設定され、第4の折り曲げ線L6が第2の電極側接続部4b1と第2の延在部4b4との境界部に設定されている。なお、第1の折り曲げ線L3~第4の折り曲げ線L6は、図11(a)において点線によって示している。 As shown in FIG. 8, the first external terminal 4Aa and the second external terminal 4Bb are connected to the boundary between the first electrode side connection portion 4a1 and the first substrate side connection portion 4a2 and to the second electrode side connection. As shown in FIG. 11 (a), the lead frame 8A has a structure having a bent portion at the boundary between the portion 4b1 and the second substrate side connecting portion 4b2, as shown in FIG. To L6 are set, and bending is performed along the first to fourth folding lines L3 to L6. Specifically, the first fold line L3 to the fourth fold line L4 are set in the lead frame 8A. The first fold line L3 is set at the boundary between the first electrode side connection portion 4a1 and the first substrate side connection portion 4a2, and the second fold line L4 is set to the second electrode side connection portion 4b1 and the second side. Is set at the boundary with the board-side connecting portion 4b2. The third fold line L5 is set at the boundary between the first electrode side connection portion 4a1 and the first extension portion 4a4, and the fourth fold line L6 is connected to the second electrode side connection portion 4b1. 2 is set at the boundary with the extended portion 4b4. Note that the first fold line L3 to the fourth fold line L6 are indicated by dotted lines in FIG.
 折り曲げ加工は、図11(b)に示すように第1の折り曲げ線L3に対して、第1の基板側接続部4a2を上方に起こすように折り曲げて、第1の電極側接続部4a1と第1の基板側接続部4a2との境界部を略直角に折り曲げ、第2の折り曲げ線L3に対して、第2の基板側接続部4b2を上方に起こすように折り曲げて、第2の電極側接続部4b1と第2の基板側接続部4b2との境界部を略直角に折り曲げる。 In the bending process, as shown in FIG. 11B, the first substrate side connection portion 4a2 is bent upward with respect to the first bend line L3, and the first electrode side connection portion 4a1 The second electrode side connection is formed by bending the boundary portion with the first substrate side connection portion 4a2 at a substantially right angle and bending the second substrate side connection portion 4b2 upward with respect to the second fold line L3. The boundary portion between the portion 4b1 and the second substrate side connection portion 4b2 is bent at a substantially right angle.
 そして、第3の折り曲げ線L5に対して、第1の電極側接続部4a1を下方に折り曲げて、第1の電極側接続部4a1と第1の延在部4a4との境界部を略直角に折り曲げ、第4の折り曲げ線L6に対して、第2の電極側接続部4b1を下方に折り曲げて、第2の電極側接続部4b1と第2の延在部4b4との境界部を略直角に折り曲げる。 Then, the first electrode-side connection portion 4a1 is bent downward with respect to the third fold line L5, and the boundary portion between the first electrode-side connection portion 4a1 and the first extension portion 4a4 is made substantially perpendicular. The second electrode side connection portion 4b1 is bent downward with respect to the fourth bend line L6, and the boundary portion between the second electrode side connection portion 4b1 and the second extension portion 4b4 is made substantially perpendicular. Bend it.
 このように、リードフレーム8Aに対して、折り曲げ加工を用いることによって、図7に示すように、第1の外部端子4Aaは、第1の電極側接続部4a1と第1の基板側接続部4a2との間および第1の電極側接続部4a1と第1の延在部4a4との間に屈曲部(折り曲げ部)を有する構造となり、また、第2の外部端子4Bbは、第2の電極側接続部4b1と第1の基板側接続部4b2との間および第2の電極側接続部4b1と第2の延在部4b4との間に屈曲部(折り曲げ部)を有する構造となる。第1の外部端子4Aaおよび第2の外部端子4Bbは略直角の折り曲げ部を有するものとなる。なお、折り曲げ加工は、第1の折り曲げ線L3および第2の折り曲げ線L4に対して、また、折り曲げ加工は、第3の折り曲げ線L5および第4の折り曲げ線L6に対して、例えば、折り曲げ部の形状に合わせた折り曲げ金型を用いて行なう。 In this way, by using a bending process for the lead frame 8A, as shown in FIG. 7, the first external terminal 4Aa is connected to the first electrode side connection portion 4a1 and the first substrate side connection portion 4a2. Between the first electrode side connecting portion 4a1 and the first extending portion 4a4, and the second external terminal 4Bb is connected to the second electrode side. The structure has a bent portion (bent portion) between the connection portion 4b1 and the first substrate side connection portion 4b2 and between the second electrode side connection portion 4b1 and the second extension portion 4b4. The first external terminal 4Aa and the second external terminal 4Bb have substantially right-angled bent portions. The bending process is performed on the first folding line L3 and the second folding line L4, and the folding process is performed on the third folding line L5 and the fourth folding line L6. This is done by using a bending die that matches the shape of.
 次に、図12(a)に示すように、リードフレーム8Aは、外部端子対8a(第1の外部端子4Aaおよび第2の外部端子4Bb)が折り曲げ加工されており、例えば、吸引ノズルを備えた自動実装機を用いて、この折り曲げ加工された第1の外部端子4Aaと第2の外部端子4Bbとの間に積層型コンデンサ本体10を搭載する。そして、積層型コンデンサ本体10を搭載後、第1の突出部4a3および第2の突出部4b3に対して、例えば、レーザスポット溶接を用いて、第1の外部端子4Aaと第1の外部電極3aとを溶接部5でもって接合し、第2の外部端子4Bbと第2の外部電極3bとを溶接部5でもって接合する。この場合には、第1の外部端子4Aaは、第1の突出部4a3が第1の外部電極3aに接触して溶接部5で接合され、また、第2の外部端子4Bbは、第1の突出部4b3が第2の外部電極3bに接触して溶接部5で接合されていることが好ましい。このように、一対の外部電極3と一対の外部端子40とを溶接部5で接合することによって、接合工程が非常に簡略化されて、量産性に優れた工程となる。 Next, as shown in FIG. 12A, the lead frame 8A has a pair of external terminals 8a (first external terminal 4Aa and second external terminal 4Bb) bent and includes, for example, a suction nozzle. The multilayer capacitor body 10 is mounted between the bent first external terminal 4Aa and the second external terminal 4Bb using an automatic mounting machine. Then, after mounting the multilayer capacitor body 10, the first external terminal 4Aa and the first external electrode 3a are applied to the first protrusion 4a3 and the second protrusion 4b3 by using, for example, laser spot welding. And the second external terminal 4Bb and the second external electrode 3b are joined by the welded portion 5. In this case, the first external terminal 4Aa is joined by the welded portion 5 with the first protruding portion 4a3 contacting the first external electrode 3a, and the second external terminal 4Bb is connected to the first external terminal 4Aa. It is preferable that the protruding portion 4b3 contacts the second external electrode 3b and is joined by the welded portion 5. In this way, by joining the pair of external electrodes 3 and the pair of external terminals 40 with the welded portion 5, the joining process is greatly simplified, and the process is excellent in mass productivity.
 また、一対の外部電極3と一対の外部端子40とが溶接されるので、はんだ接合が不要となり、積層型コンデンサ10Bは、一対の外部電極3と一対の外部端子40との接合部(溶接部5)が基板9に実装する際のはんだ付け温度の影響を受けにくくなるので、信頼性の劣化が抑制される。 In addition, since the pair of external electrodes 3 and the pair of external terminals 40 are welded, solder joining is not necessary, and the multilayer capacitor 10B has a joint portion (welded portion) between the pair of external electrodes 3 and the pair of external terminals 40. 5) is less affected by the soldering temperature when mounted on the substrate 9, and the deterioration of reliability is suppressed.
 このようにして、積層型コンデンサ本体10Bは、スポット溶接を用いることによって、第1の外部端子4Aaが溶接部5によって第1の外部電極3aに接合され、また、第2の外部端子4Bbが溶接部5によって第2の外部電極3bに接合されることになる。 In this way, in the multilayer capacitor body 10B, by using spot welding, the first external terminal 4Aa is joined to the first external electrode 3a by the welding portion 5, and the second external terminal 4Bb is welded. The portion 5 is joined to the second external electrode 3b.
 次に、図12(a)に示すように、リードフレーム8Aは、第1の切断線S3および第2の切断線S4が設定され、第1の切断線S3および第2の切断線S4に対して切断加工が施される。例えば、切断金型を用いて、リードフレーム8Aは、積層型コンデンサ本体10が搭載された外部端子対8aがリードフレーム8Aから切り離される。これによって、図12(b)に示すように、リードフレーム8Aから複数の積層型コンデンサ10Bが得られる。なお、第1の切断線S3および第2の切断線S4は、図12(a)において点線によって示している。 Next, as shown in FIG. 12A, in the lead frame 8A, the first cutting line S3 and the second cutting line S4 are set, and the first cutting line S3 and the second cutting line S4 are set. Is cut. For example, the lead frame 8A is separated from the lead frame 8A by using a cutting die in which the external terminal pair 8a on which the multilayer capacitor body 10 is mounted. As a result, as shown in FIG. 12B, a plurality of multilayer capacitors 10B are obtained from the lead frame 8A. The first cutting line S3 and the second cutting line S4 are indicated by dotted lines in FIG.
 上述のように、リードフレーム8Aを用いることによって、図8に示す積層型コンデンサ10Bを効率よく作製することができる。また、積層型コンデンサ10Bは、一対の外部端子40が溶接を用いて一対の外部電極3に接合されており、積層型コンデンサ10Bを基板9上にはんだ付けする際の加熱によって一対の外部端子40が一対の外部電極3から離脱するのを防止することができる。 As described above, the multilayer capacitor 10B shown in FIG. 8 can be efficiently manufactured by using the lead frame 8A. In the multilayer capacitor 10B, a pair of external terminals 40 are joined to the pair of external electrodes 3 by welding, and the pair of external terminals 40 are heated by soldering the multilayer capacitor 10B on the substrate 9. Can be prevented from separating from the pair of external electrodes 3.
 本発明は、上述した実施の形態1および実施の形態2に特に限定されるものではなく、本発明の範囲内で種々の変更および改良が可能である。 The present invention is not particularly limited to Embodiment 1 and Embodiment 2 described above, and various modifications and improvements can be made within the scope of the present invention.
1 積層体
1a 第1の主面
1b 第2の主面
1c 第1の端面
1d 第2の端面
1e 第1の側面
1f 第2の側面
2 内部電極
2a 第1の内部電極
2b 第2の内部電極
3 外部電極
3a 第1の外部電極
3b 第2の外部電極
3c 下地電極
3d めっき層
3d1 第1のめっき層
3d2 第2のめっき層
4 外部端子
4a、4A 第1の外部端子
4a1 第1の基板側接続部
4a2 第1の電極側接続部
4a3 第1の突出部
4b、4B 第2の外部端子
4b1 第2の基板側接続部
4b2 第2の電極側接続部
4b3 第2の突出部
5 溶接部
6 はんだ
7 めっき層
8、8A リードフレーム
8a 外部端子対
9 基板
9a、9b 基板電極
9c、9d 配線
10 積層型コンデンサ本体
10A、10B 積層型コンデンサ
L1~L6 折り曲げ線
S1~S4 切断線
 
DESCRIPTION OF SYMBOLS 1 Laminate 1a 1st main surface 1b 2nd main surface 1c 1st end surface 1d 2nd end surface 1e 1st side surface 1f 2nd side surface 2 Internal electrode 2a 1st internal electrode 2b 2nd internal electrode 3 external electrode 3a first external electrode 3b second external electrode 3c ground electrode 3d plating layer 3d1 first plating layer 3d2 second plating layer 4 external terminal 4a, 4A first external terminal 4a1 first substrate side Connection part 4a2 1st electrode side connection part 4a3 1st protrusion part 4b, 4B 2nd external terminal 4b1 2nd board | substrate side connection part 4b2 2nd electrode side connection part 4b3 2nd protrusion part 5 Welding part 6 Solder 7 Plating layer 8, 8A Lead frame 8a External terminal pair 9 Substrate 9a, 9b Substrate electrode 9c, 9d Wiring 10 Multilayer capacitor main body 10A, 10B Multilayer capacitor L1-L6 Bending line S1-S4 Cutting line

Claims (7)

  1.  複数の誘電体層が積層されており、互いに対向する第1の端面および第2の端面を有する直方体状の積層体と、該積層体内の前記複数の誘電体層の積層方向に間隔をおいて配置された複数の内部電極と、前記第1の端面および前記第2の端面にそれぞれ配置されており、互いに異なる前記内部電極に電気的に接続されている第1の外部電極および第2の外部電極と、前記第1の外部電極および前記第2の外部電極にそれぞれ接合された一対の外部端子とを備えており、
    該一対の外部端子は、前記第1の外部電極に対向して配置されて該第1の外部電極に接合されているとともに該第1の外部電極の下方に延びている第1の電極側接続部および該第1の電極側接続部の延びている部分の端部に前記第1の電極側接続部に対して直交するように配置されている第1の基板側接続部を有する第1の外部端子と、前記第2の外部電極に対向して配置されて該第2の外部電極に接合されているとともに該第2の外部電極の下方に延びている第2の電極側接続部および該第2の電極側接続部の延びている部分の端部に前記第2の電極側接続部に対して直交するように配置されている第2の基板側接続部を有する第2の外部端子とを含んでおり、
    前記第1の外部端子は、前記第1の電極側接続部が前記第1の外部電極に隙間を有して対向して前記第1の外部電極側に向かって突出する第1の突出部を有しているとともに、該第1の突出部と前記第1の外部電極とが接合されており、前記第2の外部端子は、前記第2の電極側接続部が前記第2の外部電極に隙間を有して対向して前記第2の外部電極側に向かって突出する第2の突出部を有しているとともに、該第2の突出部と前記第2の外部電極とが接合されていることを特徴とする積層型コンデンサ。
    A plurality of dielectric layers are laminated, and a rectangular parallelepiped laminate having a first end face and a second end face facing each other, and an interval in the lamination direction of the plurality of dielectric layers in the laminate. A plurality of arranged internal electrodes, and a first external electrode and a second external electrode arranged on the first end face and the second end face, respectively, and electrically connected to the different internal electrodes An electrode, and a pair of external terminals respectively joined to the first external electrode and the second external electrode;
    The pair of external terminals are arranged opposite to the first external electrode, joined to the first external electrode, and extended below the first external electrode. And a first substrate-side connection portion disposed so as to be orthogonal to the first electrode-side connection portion at an end portion of the portion extending from the first electrode-side connection portion. An external terminal, a second electrode-side connecting portion disposed opposite to the second external electrode and joined to the second external electrode and extending below the second external electrode; and A second external terminal having a second substrate-side connection portion disposed at an end of the extending portion of the second electrode-side connection portion so as to be orthogonal to the second electrode-side connection portion; Contains
    The first external terminal includes a first projecting portion in which the first electrode side connection portion faces the first external electrode with a gap and projects toward the first external electrode side. And the first projecting portion and the first external electrode are joined, and the second external terminal is connected to the second external electrode by the second electrode side connecting portion. The second projecting portion projecting toward the second external electrode side with a gap therebetween and the second projecting portion and the second external electrode are joined to each other. A multilayer capacitor characterized by comprising:
  2.  前記第1の外部端子は、前記第1の突出部と前記第1の外部電極とが溶接部によって接合されており、前記第2の外部端子は、前記第1の突出部と前記第2の外部電極とが溶接部によって接合されていることを特徴とする請求項1に記載の積層型コンデンサ。 In the first external terminal, the first protruding portion and the first external electrode are joined by a welding portion, and the second external terminal is connected to the first protruding portion and the second external terminal. The multilayer capacitor according to claim 1, wherein the external electrode is joined by a welded portion.
  3.  前記第1の基板側接続部は、前記第1の電極側接続部から前記積層体の反対側に向かって配置されており、前記第2の基板側接続部は、前記第2の電極側接続部から前記積層体の反対側に向かって配置されていることを特徴とする請求項1または請求項2に記載の積層型コンデンサ。 The first substrate-side connection portion is disposed from the first electrode-side connection portion toward the opposite side of the stacked body, and the second substrate-side connection portion is the second electrode-side connection. 3. The multilayer capacitor according to claim 1, wherein the multilayer capacitor is disposed from a portion toward the opposite side of the multilayer body.
  4.  前記第1の基板側接続部は、前記第1の電極側接続部から前記積層体の側に向かって配置されており、前記第2の基板側接続部は、前記第2の電極側接続部から前記積層体の側に向かって配置されていることを特徴とする請求項1または請求項2に記載の積層型コンデンサ。 The first substrate-side connection portion is disposed from the first electrode-side connection portion toward the laminated body, and the second substrate-side connection portion is the second electrode-side connection portion. The multilayer capacitor according to claim 1, wherein the multilayer capacitor is disposed toward the side of the multilayer body.
  5.  前記第1の突出部および前記第2の突出部は、前記第1の外部電極および前記第2の外部電極の前記積層体の積層方向に直交する方向における中央部には位置していないことを特徴とする請求項1乃至請求項4のいずれかに記載の積層型コンデンサ。 The first projecting portion and the second projecting portion are not located in a central portion in a direction perpendicular to the stacking direction of the stacked body of the first external electrode and the second external electrode. The multilayer capacitor according to any one of claims 1 to 4, wherein the multilayer capacitor is characterized in that:
  6.  前記第1の突出部および前記第2の突出部は、前記第1の外部電極および前記第2の外部電極の前記積層体の積層方向における中央部に位置していることを特徴とする請求項1乃至請求項5のいずれかに記載の積層型コンデンサ。 The first projecting portion and the second projecting portion are located in a central portion of the first external electrode and the second external electrode in the stacking direction of the stacked body. The multilayer capacitor according to any one of claims 1 to 5.
  7.  前記第1の突出部は、前記第1の端面の第1の対角線方向に複数個が位置しており、前記第2の突出部は、前記第2の端面の前記第1の対角線方向に交差する第2の対角線方向に複数個が位置していることを特徴とする請求項1乃至請求項6のいずれかに記載の積層型コンデンサ。
     
    A plurality of the first protrusions are located in the first diagonal direction of the first end face, and the second protrusions intersect the first diagonal direction of the second end face. The multilayer capacitor according to claim 1, wherein a plurality of capacitors are located in the second diagonal direction.
PCT/JP2015/082131 2014-11-17 2015-11-16 Multilayer capacitor WO2016080350A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016560210A JPWO2016080350A1 (en) 2014-11-17 2015-11-16 Multilayer capacitor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014-232774 2014-11-17
JP2014232774 2014-11-17

Publications (1)

Publication Number Publication Date
WO2016080350A1 true WO2016080350A1 (en) 2016-05-26

Family

ID=56013887

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/082131 WO2016080350A1 (en) 2014-11-17 2015-11-16 Multilayer capacitor

Country Status (2)

Country Link
JP (1) JPWO2016080350A1 (en)
WO (1) WO2016080350A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150114697A1 (en) * 2013-10-29 2015-04-30 Kemet Electronics Corporation Ceramic Capacitors with Improved Lead Designs
US20170287645A1 (en) * 2016-03-31 2017-10-05 Tdk Corporation Electronic component
JP2021027053A (en) * 2019-07-31 2021-02-22 太陽誘電株式会社 Laminated ceramic electronic component and electronic component mounting board
JP2021515417A (en) * 2018-02-27 2021-06-17 テーデーカー エレクトロニクス アーゲー Multilayer element with external contacts
US20220084750A1 (en) * 2020-09-17 2022-03-17 Murata Manufacturing Co., Ltd. Multilayer ceramic electronic component and mounting structure of the multilayer ceramic electronic component

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000223359A (en) * 1999-01-29 2000-08-11 Murata Mfg Co Ltd Ceramic electronic component
JP2000235931A (en) * 1998-12-15 2000-08-29 Murata Mfg Co Ltd Multilayer ceramic capacitor
JP2012023322A (en) * 2010-07-13 2012-02-02 Maruwa Co Ltd Chip type laminated ceramic capacitor and method for manufacturing the same
JP2012033659A (en) * 2010-07-29 2012-02-16 Tdk Corp Ceramic capacitor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014187322A (en) * 2013-03-25 2014-10-02 Murata Mfg Co Ltd Electronic component

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000235931A (en) * 1998-12-15 2000-08-29 Murata Mfg Co Ltd Multilayer ceramic capacitor
JP2000223359A (en) * 1999-01-29 2000-08-11 Murata Mfg Co Ltd Ceramic electronic component
JP2012023322A (en) * 2010-07-13 2012-02-02 Maruwa Co Ltd Chip type laminated ceramic capacitor and method for manufacturing the same
JP2012033659A (en) * 2010-07-29 2012-02-16 Tdk Corp Ceramic capacitor

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150114697A1 (en) * 2013-10-29 2015-04-30 Kemet Electronics Corporation Ceramic Capacitors with Improved Lead Designs
US10056320B2 (en) * 2013-10-29 2018-08-21 Kemet Electronics Corporation Ceramic capacitors with improved lead designs
US20170287645A1 (en) * 2016-03-31 2017-10-05 Tdk Corporation Electronic component
US10242805B2 (en) * 2016-03-31 2019-03-26 Tdk Corporation Electronic device with external terminal
JP2021515417A (en) * 2018-02-27 2021-06-17 テーデーカー エレクトロニクス アーゲー Multilayer element with external contacts
JP7090747B2 (en) 2018-02-27 2022-06-24 テーデーカー エレクトロニクス アーゲー Multilayer element with external contacts
US11387045B2 (en) 2018-02-27 2022-07-12 Tdk Electronics Ag Multilayer component with external contact
JP2021027053A (en) * 2019-07-31 2021-02-22 太陽誘電株式会社 Laminated ceramic electronic component and electronic component mounting board
JP7319133B2 (en) 2019-07-31 2023-08-01 太陽誘電株式会社 Laminated ceramic electronic components and electronic component mounting substrates
US20220084750A1 (en) * 2020-09-17 2022-03-17 Murata Manufacturing Co., Ltd. Multilayer ceramic electronic component and mounting structure of the multilayer ceramic electronic component
US11887787B2 (en) * 2020-09-17 2024-01-30 Murata Manufacturing Co., Ltd. Multilayer ceramic electronic component including metal terminals with recess portions and mounting structure of the multilayer ceramic electronic component

Also Published As

Publication number Publication date
JPWO2016080350A1 (en) 2017-07-13

Similar Documents

Publication Publication Date Title
JP6441961B2 (en) Multilayer capacitor and mounting structure
WO2016080350A1 (en) Multilayer capacitor
JP5375877B2 (en) Multilayer capacitor and multilayer capacitor manufacturing method
JP5857847B2 (en) Ceramic electronic components
US10580577B2 (en) Multilayer ceramic electronic component and mounting structure thereof
KR20100087622A (en) Multilayer capacitor and method for manufacturing the same
CN104051153A (en) Monolithic capacitor
JP2017028229A (en) Laminated capacitor and implementation structure therefor
US20180374642A1 (en) Multilayer ceramic electronic component and mounting structure thereof
JP2017175105A (en) Capacitor and manufacturing method for the same
JP6483400B2 (en) Multilayer capacitor and mounting structure
JP4952728B2 (en) Multilayer capacitor and multilayer capacitor manufacturing method
US9374908B2 (en) Electronic component and selection method
JP2020004950A (en) Laminated electronic component and mounting board thereof
CN110612780B (en) Multi-connection wiring board, package for housing electronic component, and electronic device
JP6272196B2 (en) Multilayer capacitor
JP6555875B2 (en) Multilayer capacitor
JP2014229868A (en) Ceramic electronic component and method of manufacturing the same
JP6643358B2 (en) Multilayer capacitor and its mounting structure
JP6571469B2 (en) Multilayer capacitor and its mounting structure
WO2017090530A1 (en) Multilayer capacitor and mounting structure therefor
JP5299417B2 (en) Electronic components
JP2012134436A (en) Capacitor and electronic apparatus
WO2023189718A1 (en) Multilayer ceramic capacitor
JP2018148059A (en) Multilayer ceramic electronic component with heat-shrinkable tube and mounting method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15861369

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016560210

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15861369

Country of ref document: EP

Kind code of ref document: A1