WO2016078577A1 - 聚合物修饰的丹参酮i化合物或其纳米胶束、其制备方法和用途 - Google Patents

聚合物修饰的丹参酮i化合物或其纳米胶束、其制备方法和用途 Download PDF

Info

Publication number
WO2016078577A1
WO2016078577A1 PCT/CN2015/094876 CN2015094876W WO2016078577A1 WO 2016078577 A1 WO2016078577 A1 WO 2016078577A1 CN 2015094876 W CN2015094876 W CN 2015094876W WO 2016078577 A1 WO2016078577 A1 WO 2016078577A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
pharmaceutically acceptable
acceptable salt
compound
polymer
Prior art date
Application number
PCT/CN2015/094876
Other languages
English (en)
French (fr)
Inventor
荣风光
谢福文
Original Assignee
杭州本生药业有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州本生药业有限公司 filed Critical 杭州本生药业有限公司
Publication of WO2016078577A1 publication Critical patent/WO2016078577A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/74Synthetic polymeric materials
    • A61K31/765Polymers containing oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F283/00Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G
    • C08F283/02Macromolecular compounds obtained by polymerising monomers on to polymers provided for in subclass C08G on to polycarbonates or saturated polyesters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/30Post-polymerisation treatment, e.g. recovery, purification, drying

Definitions

  • the present invention relates to a compound of the formula I or a pharmaceutically acceptable salt thereof, or a nanomicelle thereof, or a pharmaceutically acceptable salt thereof, and a process for the preparation thereof and use thereof.
  • the present invention specifically relates to a compound comprising an amphiphilic block polymer and a tanshinone I compound (e.g., BS-TA-B17), or a pharmaceutically acceptable salt thereof, or a nanomicelle thereof, or a pharmaceutically acceptable salt thereof; A pharmaceutical composition of the compound, or a pharmaceutically acceptable salt thereof, or a nanomicelle thereof, or a pharmaceutically acceptable salt thereof; the compound or a pharmaceutically acceptable salt thereof, or a nanomicelle thereof or a pharmaceutically acceptable salt thereof And a use of the compound or a pharmaceutically acceptable salt thereof, or a nanomicelle thereof, or a pharmaceutically acceptable salt thereof, for the preparation of an antitumor drug.
  • Tanshinone I is a natural fat-soluble active ingredient extracted from Salvia mihiorrhiza Bunge.
  • a number of studies have shown that tanshinone I and its compounds have a certain anti-tumor effect, can be used to treat various cancers such as liver cancer, lung cancer, stomach cancer, leukemia, cervical cancer.
  • Chenyu Lee et al found that tanshinone I has a certain inhibitory effect on non-small cell lung cancer (NSCLC).
  • NSCLC non-small cell lung cancer
  • Zou Qiaogen et al found that sodium tanshinone I sulfonate has a good inhibitory effect on hepatoma cells (HepG2), colon cancer cells (HT-29), and rectal cancer cells (HRT-18), and can inhibit live tumor-bearing nude mice.
  • HepG2 hepatoma cells
  • HT-29 colon cancer cells
  • HRT-18 rectal cancer cells
  • tanshinone I and its compounds are lipophilic and have poor solubility in water, thus making them less bioavailable in vivo. This limits their application.
  • the polymer nanomicelles are a class of nanomicelle systems consisting of a hydrophilic outer shell and a lipophilic core formed spontaneously after the amphiphilic polymer is dissolved in water.
  • the outer shell formed by the hydrophilic segments of the amphiphilic polymer surrounds the hydrophobic core aggregated by the hydrophobic segments of the polymer.
  • This structure can prolong the circulation time of the drug in the living body, maintain a constant blood concentration, and increase the solubility of the water-insoluble or water-insoluble drug. Due to the isolation of the hydrophobic core from the external environment, it is also beneficial to improve the stability of the formulation.
  • the invention explores different molecular weight polymers, bonding conditions and self-assembled nano micelle preparation schemes, and finally determines better experimental materials and methods, and significantly improves the drug loading of nanomicelles and nanometer micelle size. Wait.
  • the invention explores the characterization method of the polymer modified compound, the nano micelle and the specific detection conditions, and finally determines a better characterization method.
  • the water solubility of the polymer modified compounds of the present invention is significantly enhanced prior to unmodified.
  • the in vitro activity test results of the polymer-modified tanshinone I compound prepared by the present invention show that the polymer-modified compound is comparable in activity to the unmodified compound (active drug) itself, and the polymer-modified compound is There is no theoretically speculated activity that would decrease.
  • One of the objects of the present invention is to provide a polymer-modified tanshinone I compound (for example, BS-TA-B17) or a pharmaceutically acceptable salt thereof, or a nanomicelle or a pharmaceutically acceptable salt thereof formed.
  • the polymer-modified tanshinone I compound (for example, BS-TA-B17) or a pharmaceutically acceptable salt thereof, or a nanomicelle or a pharmaceutically acceptable salt thereof formed by the present invention, and a fat-soluble compound tanshinone I compound ( For example, BS-TA-B17) improves bioavailability compared to enhanced water solubility.
  • the formula (I) of the polymer-modified tanshinone I compound of the present invention for example, BS-TA-B17 or a pharmaceutically acceptable salt thereof is as follows:
  • n is an integer representing the number of repeating units of the methoxypolyethylene glycol (MPEG) moiety, m is an integer selected from 11 to 227, preferably an integer selected from 11 to 113, more preferably an integer selected from 44 to 113.
  • MPEG methoxypolyethylene glycol
  • the methoxypolyethylene glycol (MPEG) moiety has a molecular weight in the range of from 500 to 10,000, preferably from 500 to 5,000, more preferably from 2000 to 5,000, most preferably 2000 or 5000; n is an integer representing the number of repeating units of the polylactic acid (PLA) moiety, and n is an integer selected from 7 to 70, preferably an integer selected from 7-14, more preferably an integer of 14, correspondingly,
  • the polylactic acid moiety has a molecular weight in the range of from 500 to 5,000, preferably from 500 to 1,000, more preferably 1,000, and the range of n is from 7 to 70, preferably from 7-14, more preferably 14;
  • a and A' are the same or different, and A or A' may be selected from the group consisting of:
  • a substituted or unsubstituted C 3-10 cycloalkylene group a C 3-10 cycloalkenylene group, for example selected from the group consisting of cyclopropylene, cyclobutylene, cyclopentylene, cyclohexylene, cycloheptylene, a cyclopropylene group, a cyclocyclobutenyl group, a cyclopentylene group, a cyclohexylene group, a cycloheptylene group, or the like;
  • hetero atom is selected from one or more of N, O or S, for example selected from the group consisting of ethylene oxide and pyrrolidine , tetrahydrofuran, piperidine, piperazine, imidazoline, imidazolidin, diazepine , 1,3-dioxolane, dioxane, sulfadiene, imidazolium, isoisoxazole, isooxazoline, isooxazolidine;
  • C 4-10 heteroarylene C 4-10 arylene wherein the hetero atom is selected from one or more of N, O or S, for example selected from phenylene, benzylidene, sub-2 -phenylethyl, phenylene-3-phenylpropyl, 2-naphthalen-2-ylethyl, furan, imidazole, isoisothiazole, pyridinium, pyrazine, pyridene, thiophene, etc.;
  • each of x, y, and z is 0 or 1, with the proviso that x, y, and z are not 0 at the same time.
  • the invention is of the formula I-1 below
  • the invention is of the following formula I-2,
  • a second object of the present invention is to provide a nanomicelle or a pharmaceutically acceptable salt preparation method of a polymer modified tanshinone I compound (for example, BS-TA-B17): (1) a polymer and a tanshinone I compound (for example, BS) -TA-B17) linked to provide a polymer modified tanshinone I compound (eg, BS-TA-B17) or a pharmaceutically acceptable salt thereof, and (2) a polymer modified tanshinone I compound (eg, BS-TA- B17) or a pharmaceutically acceptable salt thereof, which is dissolved in a suitable solvent, is self-assembled to prepare a nanomicelle or a pharmaceutically acceptable salt thereof, and (3) optionally characterizes the final product.
  • a polymer modified tanshinone I compound for example, BS-TA-B17
  • a polymer and a tanshinone I compound for example, BS) -TA-B17
  • a third object of the present invention is to provide a pharmaceutical composition
  • a pharmaceutical composition comprising a polymer modified tanshinone I compound (for example, BS-TA-B17) or a pharmaceutically acceptable salt thereof, or a nanomicelle formed thereof or a pharmaceutically acceptable salt thereof
  • the pharmaceutical composition comprises at least one polymer-modified tanshinone I compound (for example, BS-TA-B17) or a pharmaceutically acceptable salt thereof, or a nanomicelle or a pharmaceutically acceptable salt thereof, and A pharmaceutically acceptable carrier is selected.
  • a fourth object of the present invention is to provide a polymer-modified tanshinone I compound (for example, BS-TA-B17) or a pharmaceutically acceptable salt thereof, or a nanomicelle or a pharmaceutically acceptable salt thereof, for preparing a medicament, particularly It is used in anti-tumor drugs.
  • the present invention provides a method of treating a tumor patient comprising administering to a patient in need of treatment a therapeutically effective amount of a polymer modified tanshinone I compound (eg, BS-TA-B17) or a pharmaceutically acceptable salt thereof, or a pharmaceutically acceptable salt thereof Nanomicelle or a pharmaceutically acceptable salt thereof.
  • the present invention also provides a polymer-modified tanshinone I compound (for example, BS-TA-B17) or a pharmaceutically acceptable salt thereof, or a nanomicelle or a pharmaceutically acceptable salt thereof, for use in the treatment of cancer.
  • the cancer of the present invention is selected from the group consisting of leukemia, multiple myeloma, lymphoma, liver cancer, gastric cancer, breast cancer, cholangiocarcinoma, pancreatic cancer, lung cancer, colon cancer, osteosarcoma, melanoma, human cervical cancer, glioma , nasopharyngeal cancer, laryngeal cancer, esophageal cancer, middle ear tumor, prostate cancer and other tumors.
  • the tanshinone I compound of the present invention is preferably BS-TA-B17 and has the following structure:
  • the polymer to which the present invention relates is an amphiphilic block polymer, preferably methoxypolyethylene glycol-polylactic acid (MPEG-PLA) having the general formula:
  • n is an integer representing the number of repeating units of the methoxypolyethylene glycol (MPEG) moiety, m is an integer selected from 11 to 227, preferably an integer selected from 11 to 113, more preferably an integer selected from 44 to 113.
  • MPEG methoxypolyethylene glycol
  • the methoxypolyethylene glycol (MPEG) moiety has a molecular weight in the range of from 500 to 10,000, preferably from 500 to 5,000, more preferably from 2000 to 5,000, most preferably 2000 or 5000; n is an integer representing the number of repeating units of the polylactic acid (PLA) moiety, and n is an integer selected from 7 to 70, preferably an integer selected from 7-14, more preferably an integer of 14, correspondingly,
  • the polylactic acid moiety has a molecular weight in the range of 500 to 5,000, preferably 500 to 1,000, more preferably 1,000, and n is in the range of 7 to 70, preferably 7-14, more preferably 14.
  • the amphiphilic block polymer methoxypolyethylene glycol-polylactic acid (MPEG-PLA) according to the present invention is obtained by polymerizing methoxypolyethylene glycol with polylactic acid, or they are commercially available, For example, from Changchun Shengbo Ma Biomaterials Co., Ltd.
  • the MPEG-PLA terminal is a hydroxyl group, which is disadvantageous for forming a chemical bond with the BS-TA-B17 hydroxyl group. Therefore, the present invention connects MPEG-PLA and BS-TA-B17 through link X.
  • the linker X of the present invention has the following Dicarboxylic acid structure:
  • a and A' are the same or different, and A or A' may be selected from the group consisting of:
  • a substituted or unsubstituted C 3-10 cycloalkylene group a C 3-10 cycloalkenylene group, for example selected from the group consisting of cyclopropylene, cyclobutylene, cyclopentylene, cyclohexylene, cycloheptylene, a cyclopropylene group, a cyclocyclobutenyl group, a cyclopentylene group, a cyclohexylene group, a cycloheptylene group, or the like;
  • hetero atom is selected from one or more of N, O or S, for example selected from the group consisting of ethylene oxide and pyrrolidine , tetrahydrofuran, piperidine, piperazine, imidazoline, imidazolidin, diazepine , 1,3-dioxolane, dioxane, sulfadiene, imidazolium, isoisoxazole, isooxazoline, isooxazolidine;
  • C 4-10 heteroarylene C 4-10 arylene wherein the hetero atom is selected from one or more of N, O or S, for example selected from phenylene, benzylidene, sub-2 -phenylethyl, phenylene-3-phenylpropyl, 2-naphthalen-2-ylethyl, furan, imidazole, isoisothiazole, pyridinium, pyrazine, pyridene, thiophene, etc.;
  • each of x, y, and z is 0 or 1, with the proviso that x, y, and z are not 0 at the same time.
  • linear or branched linker X examples include, but are not limited to, succinic acid, adipic acid, glutaric acid, pimelic acid, hexene-1,6-dioic acid, pentene-1,5. - Diacid, cyclohexane-diacid, diglycolic acid and cyclohexene-diacid.
  • linker selected in the present invention is a dicarboxy compound
  • one side carboxyl group is bonded to the MPEG-PLA terminal hydroxyl group, and the other side carboxyl group is provided to a point of attachment to a drug molecule (for example, a hydroxyl group).
  • Preferred linkers in the present invention are succinic acid and diglycolic acid.
  • the linker formed by the linker and the polymer of the present invention modifies the MPEG-PLA structure as follows:
  • the linkers of the invention can also be first attached to BS-TA-B17 and then to the polymer.
  • the linker modified MPEG-PLA moiety is also referred to as a polymer; in use, one skilled in the art can readily determine the corresponding meaning depending on the context.
  • the linker modified amphiphilic block polymer methoxypolyethylene glycol-polylactic acid (MPEG-PLA) of the invention is commercially available.
  • the linker modification MPEG-PLA as shown above can be from a supplier familiar to those skilled in the art, such as Changchun Shengbo Ma Biomaterials Co., Ltd.
  • HNMR nuclear magnetic resonance
  • MS mass spectrometry
  • viscosity methods such as Ubbelohde viscometer
  • volume exclusion chromatography end group determination, boiling point liters for those polymers that need to be prepared.
  • High-method, freezing point reduction method, membrane osmotic pressure method, vapor pressure infiltration method, small angle X-ray scattering method, small angle neutron scattering method, ultracentrifugation sedimentation method, etc. to determine the molecular weight of the polymer and the number of repeating units (ie, m, n value).
  • polymer modified tanshinone I compound e.g., BS-TA-B17
  • a pharmaceutically acceptable salt thereof of the present invention is as follows:
  • n is an integer representing the number of repeating units of the methoxypolyethylene glycol (MPEG) moiety, m is an integer selected from 11 to 227, preferably an integer selected from 11 to 113, more preferably an integer selected from 44 to 113.
  • MPEG methoxypolyethylene glycol
  • the methoxypolyethylene glycol (MPEG) moiety has a molecular weight in the range of from 500 to 10,000, preferably from 500 to 5,000, more preferably from 2000 to 5,000, most preferably 2000 or 5000; n is an integer representing the number of repeating units of the polylactic acid (PLA) moiety, and n is an integer selected from 7 to 70, preferably an integer selected from 7-14, more preferably an integer of 14, correspondingly,
  • the polylactic acid moiety has a molecular weight in the range of 500-5000, preferably 500-1000, more preferably 1000, and the range of n is 7-70, preferably 7-14, more preferably 14;
  • a and A' are the same or different, and A or A' may be selected from the group consisting of:
  • a substituted or unsubstituted C 3-10 cycloalkylene group a C 3-10 cycloalkenylene group, for example selected from the group consisting of cyclopropylene, cyclobutylene, cyclopentylene, cyclohexylene, cycloheptylene, a cyclopropylene group, a cyclocyclobutenyl group, a cyclopentylene group, a cyclohexylene group, a cycloheptylene group, or the like;
  • hetero atom is selected from one or more of N, O or S, for example selected from the group consisting of ethylene oxide and pyrrolidine , tetrahydrofuran, piperidine, piperazine, imidazoline, imidazolidin, diazepine , 1,3-dioxolane, dioxane, sulfadiene, imidazolium, isoisoxazole, isooxazoline, isooxazolidine;
  • C 4-10 heteroarylene C 4-10 arylene wherein the hetero atom is selected from one or more of N, O or S, for example selected from phenylene, benzylidene, sub-2 -phenylethyl, phenylene-3-phenylpropyl, 2-naphthalen-2-ylethyl, furan, imidazole, isoisothiazole, pyridinium, pyrazine, pyridene, thiophene, etc.;
  • each of x, y, and z is 0 or 1, with the proviso that x, y, and z are not 0 at the same time.
  • the invention is of the formula I-1 below
  • the invention is of the following formula I-2,
  • the preferred polymer modified BS-TA-B17 is named as follows according to the number of repeating units of the polymer used and the linker. These examples are only intended to further illustrate the present invention and do not constitute any limitation on the scope of the present invention. .
  • BS-PT-1 which is a BS-TA-B17 modified with an MPEG-PLA-OOCCH 2 CH 2 CO- group, wherein the MPEG moiety has a molecular weight of 5,000 and the PLA moiety has a molecular weight of 1000, that is, an m value of 113.
  • the value of n is 14;
  • BS-PT-2 which is a BS-TA-B17 modified with an MPEG-PLA-OOCCH 2 CH 2 CO- group, wherein the MPEG moiety has a molecular weight of 2000 and the PLA moiety has a molecular weight of 1000, that is, an m value of 44.
  • the value of n is 14;
  • BS-PT-3 which is a BS-TA-B17 modified with an MPEG-PLA-OOCCH 2 OCH 2 CO- group, wherein the MPEG moiety has a molecular weight of 2000 and the PLA moiety has a molecular weight of 1000, that is, an m value of 44.
  • the value of n is 14;
  • BS-PT-4 which is a BS-TA-B17 modified with an MPEG-PLA-OOCCH 2 CH 2 CO- group, wherein the MPEG moiety has a molecular weight of 550 and the PLA moiety has a molecular weight of 550, that is, an m value of 11, The n value is 7.
  • the PLA segment of the polymer of the present invention is lipophilic and the MPEG segment is hydrophilic. Therefore, the polymer of the present invention (or a polymer-modified drug) can self-aggregate into a "core-shell" structure micelle during the process of dialysis removal of the solvent, which can make the drug molecule
  • the fat-soluble drug is contained in the form of an emulsion or a capsule.
  • nanomicelles of the polymer modified tanshinone I compound (e.g., BS-TA-B17) of the present invention, or a pharmaceutically acceptable salt thereof, can be prepared by a process comprising the following steps:
  • DIC N,N-diisopropylcarbodiimide
  • DMAP dimethylaminopyridine
  • DCM dichloromethane
  • the polymer is first pre-dried with BS-TA-B17, then dimethylaminopyridine solid is added to the system, argon is exchanged 3 times, and then added under ice bath.
  • the dried dichloromethane is dissolved, the system is a red transparent solution, and the condensing agent N,N-diisopropylcarbodiimide is added to the system, and the reaction is stirred in the ice bath in the dark, and naturally returns to room temperature (20 ° C). The water bath was removed and the reaction was continued at room temperature for a total reaction time of 24 hours.
  • the system is concentrated, the solvent is removed, and the product is dissolved in as little dichloromethane as possible according to the amount of the reactant, and added dropwise to the ice diethyl ether with a stirring device (methylene chloride and ice diethyl ether in a volume ratio of 1: In 10), the precipitate is purified, centrifuged, and dried under vacuum to give the desired product.
  • a stirring device methylene chloride and ice diethyl ether in a volume ratio of 1: In 10
  • the general procedure for preparing nano micelles by self-assembly is: after dissolving the compound obtained in the step 1) or its salt in an organic solvent, adding an appropriate amount of water, then transferring the obtained solution to a dialysis bag and dialyzing with distilled water to remove the organic solvent.
  • the aqueous solution in the dialysis bag is optionally lyophilized to obtain a nanomicelle product.
  • the polymer modified tanshinone I compound for example, BS-TA-B17
  • a pharmaceutically acceptable salt thereof is dissolved in dimethylformamide (DMF), and after stirring well, it is slow.
  • An equal volume of distilled water with DMF was added dropwise to the solution (the final solution concentration was 10 mg/mL, the solvent volume was the volume of DMF and water, ie 10 mg of the polymer-modified drug was dissolved in 0.5 mL DMF, and then 0.5 mL was added. Water), continue stirring for 6 hours.
  • the final product characterization method includes testing and spectroscopy using 1 H NMR (nuclear magnetic), HPLC (high performance liquid chromatography) or LC-MS (liquid phase-mass spectrometry), DLS (dynamic light scattering) and TEM (transmission electron microscopy). Correlation identification of graphs.
  • the 1 H NMR instrument used in the test of the present invention is Brucker 300M, the reagent CDCl 3 used , the polymer methyl end peak containing 3 hydrogen atoms is used as the standard of the polymer, and the hydrogen at the position of 9.2 ppm is used as the standard of the active drug.
  • the molar ratio of polymer to drug in the polymer modified drug is determined by nuclear magnetic integration, and the mass of the drug and the polymer in the product can be separately calculated by the quality of the final product.
  • the present invention determines the concentration and quality of the free drug in the polymer modified drug by HPLC, and determines the bonding rate of the polymer to the drug in the polymer modified drug in combination with the 1 H NMR result.
  • the DLS test determines the particle size and distribution of the nanomicelles.
  • the test conditions are: test temperature 25 ° C, solvent water, sample concentration 0.4 mg / mL.
  • the TEM test determined the morphology and particle size of the nanomicelles.
  • the test conditions were: the acceleration voltage was 100 kV.
  • the "polymer-modified tanshinone I compound (for example, BS-TA-B17)" and "polymer-modified drug” as used in the present invention means a tanshinone I compound (for example, BS-TA-B17) and the polymer of the present invention.
  • the structure obtained after the sublink is connected.
  • the "polymer” of the present invention refers to MPEG-PLA of different molecular weight, and in other cases, the “polymer” of the present invention refers to MPEG- of different molecular weights linked to different linkers. PLA; In use, those skilled in the art can easily determine the corresponding meaning according to the context.
  • the "drug” as used in the present invention means a tanshinone I compound (for example, BS-TA-B17).
  • nano micelle refers to a nanomicelle solution or a dry nanomicelle solution.
  • the resulting dried product for example, lyophilizate.
  • C1-6 alkylene refers to a straight or branched chain, substituted with from 1 to 6 carbon atoms (eg, 1, 2, 3, 4, 5, 6 carbon atoms). Or an unsubstituted alkylene group.
  • Examples of the C 1-6 alkylene group include, but are not limited to, a methylene group, an ethylene group, a propylene group, a butylene group, a pentylene group, a hexylene group, and the like.
  • Other carbon number alkylene substituents described herein are also applicable to this definition.
  • C 2-6 alkenylene means a straight or branched, substituted or unsubstituted alkenylene group having 2 to 6 carbon atoms (for example, 2, 3, 4, 5, 6 carbon atoms).
  • Examples of C 2-6 alkenylene include, but are not limited to, ethenylene, propenylene, butenylene, pentenylene, hexylene, and the like. Other carbon number alkenylene substituents described herein are also applicable to this definition.
  • C 2-6 alkynylene refers to a straight or branched, substituted or unsubstituted alkynylene group having from 2 to 6 carbon atoms (eg, 2, 3, 4, 5, 6 carbon atoms).
  • Examples of C 2-6 alkynylene groups include, but are not limited to, ethynylene, propargylene, propynylene, butylene-1-alkynyl, butylene-2-alkynyl and the like. Other carbon number alkynylene substituents described herein are also applicable to this definition.
  • C 3-10 cycloalkylene refers to a radical having 3 to 10 carbon atoms (for example, 3, 4, 5, 6, 7, 8, 9, 10 carbon atoms) having a saturated or unsaturated ring.
  • the C 3-10 cycloalkylene group may be a cyclopropylene group, a cyclobutylene group, a cyclopentylene group, a cyclohexylene group, a cycloheptylene group or the like.
  • Other carbon number subcycloalkyl substituents described herein are also applicable to this definition.
  • C 3-10 cycloalkenylene refers to a single ring having from 3 to 10 carbon atoms (eg, 3, 4, 5, 6, 7, 8, 9, 10 carbon atoms) having an unsaturated ring. Or a cycloalkenylene group of a polycyclic system.
  • the C 3-10 cycloalkenylene group may be a cyclopropylene group, a cyclocyclobutenyl group, a cyclopentylene group, a cyclohexylene group, a cycloheptylene group or the like.
  • Other carbon number cycloalkylene substituents described herein are also applicable to this definition.
  • C 2-10 sub-fatty heterocyclic group means substituted or unsubstituted, saturated or partially unsaturated containing 2-10 (eg, 2, 3, 4, 5, 6, 7, 8, 9, 10) One carbon atom and one carbon atom and contains a heterocyclylene group selected from one or more heteroatoms selected from N, O or S.
  • C 2-10 sub-fatty heterocyclic groups include, but are not limited to, ethylene oxide, pyrrolidine, tetrahydrofuran, pyrazine, piperazine, imidazoline, imidazolidin, diazaza , 1,3-dioxolane, dioxane, sulfadiene, isoisimidazoline, isoisothiazolidine, isoxazoline, oxazolidine, and the like.
  • Other carbon number heterocyclylene substituents described herein are also applicable to this definition.
  • C 4-10 arylene refers to a hetero atom-free arylene group of 4 to 10 carbon atoms (for example, 4, 5, 6, 7, 8, 9, 10 carbon atoms).
  • Examples of the C 4-10 arylene group include, but are not limited to, a phenylene group, a benzylidene group, a 2-phenylethyl group, a 3-phenylphenyl group, a 2-2-naphthalen-2-ylethyl group, and the like.
  • Other carbon number arylene substituents described herein are also applicable to this definition.
  • C 4-10 heteroarylene means having 4 to 10 (eg, 4, 5, 6, 7, 8, 9, 10 carbon atoms) carbon atoms and containing one or more selected from one or more selected from A heteroarylene group of a N, O or S hetero atom.
  • Examples of C 4-10 heteroarylene include, but are not limited to, furan, imidazole, isoisothiazole, pyridinium, pyrazine, pyridene, thiophene, and the like. Other carbon number heteroarylene substituents described herein are also applicable to this definition.
  • the "m” of the present invention may be an integer selected from the following values, for example: 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 , 25, 30, 35, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95, 100, 105 , 110, 111, 112, 113, 114, 115, 116, 117, 118, 119, 120, 125, 130, 135, 140, 145, 150, 155, 160, 165, 170, 175, 180, 185, 190 , 195, 200, 205, 210, 215, 220, 221, 222, 223, 224, 225, 226, 227, 228, 229, 230, or a range of any value therebetween, such as 5-230, 11-227, 11-113, 44-113.
  • the "n” of the present invention may be an integer selected from the following values, for example: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 , 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, or a range of any value therebetween, such as 1-80, 7-70, 7-14 .
  • suitable solvent refers to a solvent which is capable of dissolving the compound of formula I and preparing micelles.
  • linker (X) modified methoxypolyethylene glycol-polylactic acid (MEPG-PLA) in various embodiments of the invention is commercially available.
  • Tanshinone Compounds I are commercially available or are prepared, for example, according to WO 2013/079022 (PCT/CN2012/085660).
  • the present invention also provides a pharmaceutical composition
  • a pharmaceutical composition comprising a polymer modified tanshinone I compound (e.g., BS-TA-B17) or a pharmaceutically acceptable salt thereof, or a nanomicelle thereof, or a pharmaceutically acceptable salt thereof.
  • the present invention provides a pharmaceutical composition
  • a pharmaceutical composition comprising at least one polymer modified tanshinone I compound (e.g., BS-TA-B17) as described above, or a pharmaceutically acceptable salt thereof, or a nanomicelle thereof or a pharmaceutical thereof Acceptable salts, and optionally pharmaceutically acceptable carriers.
  • Methods of preparing various pharmaceutical compositions containing a certain amount of active ingredient are known, or will be apparent to those skilled in the art from this disclosure. As described in REMINGTON'S PHARMACEUTICAL SCIENCES, Martin, E.W., ed., Mack Publishing Company, 19th ed. (1995). Methods of preparing the pharmaceutical compositions include incorporation of a suitable pharmaceutical carrier (e.g., excipient, diluent, etc.).
  • a suitable pharmaceutical carrier e.g., excipient, diluent, etc.
  • the pharmaceutical preparation of the present invention is produced by a known method, including conventional methods of mixing, dissolving or lyophilizing.
  • the polymer-modified tanshinone I compound of the present invention (for example, BS-TA-B17) or a pharmaceutically acceptable salt thereof, or a nanomicelle thereof or a pharmaceutically acceptable salt thereof, can be formulated into a pharmaceutical composition and administered to a patient.
  • Administration by a variety of routes suitable for the chosen mode of administration such as oral, gastrointestinal perfusion, intravenous or intramuscular or subcutaneous injection.
  • the polymer modified tanshinone I compound of the present invention e.g., BS-TA-B17
  • a pharmaceutically acceptable salt thereof e.g., inert
  • a pharmaceutically acceptable carrier e.g., inert
  • the diluent or edible carrier can be administered systemically after formulation into a formulation, for example, orally. They can be enclosed in hard or soft shell gelatin capsules and can be compressed into tablets.
  • the polymer modified tanshinone I compound eg, BS-TA-B17
  • a pharmaceutically acceptable salt thereof or a nanomicelle thereof, or a pharmaceutically acceptable salt thereof
  • a pharmaceutically acceptable salt thereof can be combined with one or more carriers, and It can be made into swallowable tablets, buccal tablets, lozenges, capsules, elixirs, suspensions, syrups, wafers and the like.
  • composition and formulation comprise at least 0.1% of a polymer modified tanshinone I compound (eg, BS-TA-B17) or a pharmaceutically acceptable salt thereof, or a nanomicelle thereof, or a pharmaceutically acceptable thereof Accept the salt.
  • a polymer modified tanshinone I compound eg, BS-TA-B17
  • the ratio of the composition to the formulation may of course vary and may range from about 1% to about 99% by weight of a given unit dosage form.
  • Tablets, lozenges, pills, capsules and the like may also contain: a binder such as tragacanth, acacia, corn starch or gelatin; an excipient such as dicalcium phosphate; a disintegrating agent such as corn starch, Potato starch, alginic acid, etc.; a lubricant such as magnesium stearate; and a sweetener such as sucrose, fructose, lactose or aspartame; or a flavoring agent such as mint, wintergreen or cherry.
  • a binder such as tragacanth, acacia, corn starch or gelatin
  • an excipient such as dicalcium phosphate
  • a disintegrating agent such as corn starch, Potato starch, alginic acid, etc.
  • a lubricant such as magnesium stearate
  • a sweetener such as sucrose, fructose, lactose or aspartame
  • a flavoring agent such as mint, wintergreen or cherry
  • a syrup or elixir may contain the active compound, sucrose or fructose as a sweetening agent, methylparaben or propylparaben as a preservative, a dye and a flavoring such as cherry or orange flavor.
  • any material used to prepare any unit dosage form should be pharmaceutically acceptable and substantially non-toxic in the amounts employed.
  • the polymer nanomicelles can be incorporated into sustained release formulations and sustained release devices.
  • a pharmaceutical composition or formulation of a polymer modified tanshinone I compound may also be administered by infusion or injection into a vein. Internal or intraperitoneal administration.
  • An aqueous solution of a polymer modified tanshinone I compound (eg, BS-TA-B17), or a pharmaceutically acceptable salt thereof, or a nanomicelle thereof, or a pharmaceutically acceptable salt thereof may be prepared, optionally a miscible, non-toxic surface Active agent. Dispersing agents in glycerol, liquid polyethylene glycols, triacetin and mixtures thereof, and oils can also be prepared. Under ordinary conditions of storage and use, these preparations contain a preservative to prevent the growth of microorganisms.
  • Pharmaceutical dosage forms suitable for injection or infusion may include sterile aqueous solutions or dispersions of the active ingredient (optionally encapsulated in liposomes) containing the immediate formulation of a suitable injectable or injectable solution or dispersing agent. Or sterile powder. In all cases, the final dosage form must be sterile, liquid, and stable under the conditions of manufacture and storage.
  • the liquid carrier can be a solvent or liquid dispersion medium including, for example, water, ethanol, polyol (for example, glycerol, propylene glycol, liquid polyethylene glycol, and the like), vegetable oils, non-toxic glycerides, and suitable mixtures thereof.
  • Proper fluidity can be maintained, for example, by liposome formation, by maintaining the desired particle size in the case of a dispersing agent, or by the use of a surfactant.
  • Can be produced by various antibacterial and antifungal agents such as parabens, chlorobutanol, phenol, sorbic acid, thimerosal, etc.
  • Prevent the action of microorganisms Prevent the action of microorganisms.
  • Prolonged absorption of the injectable compositions can be brought about by the use of compositions that delay the absorbent (for example, aluminum monostearate and gelatin).
  • a suitable amount of the polymer modified tanshinone I compound e.g., BS-TA-B17 or a pharmaceutically acceptable salt thereof, or a nanomicelle thereof, or a pharmaceutically acceptable salt thereof, and various other ingredients enumerated above are required
  • the combination is then sterilized by filtration to prepare a sterile injectable solution.
  • the preferred preparation methods are vacuum drying and lyophilization techniques which result in a powder of the active ingredient plus any additional ingredients present in the previously sterile filtration solution. .
  • Useful solid carriers include comminuted solids (e.g., talc, clay, microcrystalline cellulose, silica, alumina, etc.).
  • Useful liquid carriers include water, ethanol or ethylene glycol or a water-ethanol/ethylene glycol mixture, and the compounds of the present invention may be dissolved or dispersed in an effective amount, optionally with the aid of a non-toxic surfactant.
  • Adjuvants such as fragrances
  • additional antimicrobial agents can be added to optimize the properties for a given use.
  • Thickeners can also be used with liquid carriers to form coatable pastes, gels, ointments , soap, etc., used directly on the user's skin.
  • the therapeutically required amount of the polymer-modified tanshinone I compound for example, BS-TA-B17 or a pharmaceutically acceptable salt thereof, or a nanomicelle thereof or a pharmaceutically acceptable salt thereof, depending on the mode of administration, the disease to be treated
  • the nature and age and state of the patient ultimately depends on the decision of the attending physician or clinician.
  • unit dosage form is a unit dispersion unit containing a unit dosage unit suitable for administration to humans and other mammalian bodies.
  • the unit dosage form can be a capsule or tablet, or a plurality of capsules or tablets.
  • the amount of unit dose of the active ingredient may vary or be adjusted between about 0.1 and about 1000 mg or more, depending on the particular treatment involved.
  • the present invention also provides a polymer-modified tanshinone I compound (for example, BS-TA-B17) or a pharmaceutically acceptable salt thereof, or a nanomicelle thereof or a pharmaceutically acceptable salt thereof, in the preparation of a medicament, particularly an antitumor drug use. Accordingly, the present invention provides a method of treating a tumor patient comprising administering to a patient in need of treatment a therapeutically effective amount of at least one polymer of the present invention.
  • a compound of tanshinone I for example, BS-TA-B17
  • a pharmaceutically acceptable salt thereof for example, BS-TA-B17
  • the polymer modified tanshinone I compound of the present invention (for example, BS-TA-B17) or a pharmaceutically acceptable salt thereof, or a nanomicelle thereof or a pharmaceutically acceptable salt thereof, for example, can be used for the treatment of leukemia, multiple myeloma, Lymphoma, liver cancer, gastric cancer, breast cancer, cholangiocarcinoma, pancreatic cancer, lung cancer, colorectal cancer, osteosarcoma, melanoma, human cervical cancer, glioma, nasopharyngeal carcinoma, laryngeal cancer, esophageal cancer, middle ear tumor , prostate cancer and other tumors.
  • leukemia multiple myeloma, Lymphoma, liver cancer, gastric cancer, breast cancer, cholangiocarcinoma, pancreatic cancer, lung cancer, colorectal cancer, osteosarcoma, melanoma, human cervical cancer, glioma, nasopharynge
  • the linker X-modified MPEG-PLA (MPEG-PLA-SA and MPEG-PLA-diGly) is from Changchun Shengbo Ma Biomaterial Co., Ltd., where the molecular weight and the number of repeating units (m, n values) ) is based on information provided by the supplier.
  • the tanshinone I compound BS-TA-B17 is prepared in accordance with WO 2013/079022 (PCT/CN2012/085660).
  • DIC N,N-diisopropylcarbodiimide
  • DMAP dimethylaminopyridine
  • DCM dichloromethane
  • the red powder-like modified product obtained above was taken into a solution of 1.1957 g of 59.8 mL of dimethylformamide, and 59.8 mL of distilled water was slowly added dropwise to the above solution, and the mixture was added dropwise over 1.5 hours, and the mixture was stirred for 6 hours in the dark.
  • the solution was transferred to a dialysis bag, and the organic solvent was removed by dialysis in a beaker, and the water was changed 3-4 times a day. After continuously changing the water for 7 days, the organic solvent was removed. Finally, the aqueous solution in the dialysis bag was lyophilized to obtain a pink powdery nanomicelle lyophilizate (875 mg) of BS-PT-1.
  • the polymer methyl end peak (3.3 ppm) was used as the standard of the polymer, and the hydrogen at the position of 9.2 ppm was used as the standard for the drug.
  • DIC N,N-diisopropylcarbodiimide
  • DMAP dimethylaminopyridine
  • DCM dichloromethane
  • Example 1 According to the preparation method of Example 1, using the same reagent as above, the polymer MPEG-PLLA-OOCCH 2 CH 2 COOH (619 mg, 0.206 mmol) (wherein the MPEG moiety has a molecular weight of 2000 and an m value of 44; the molecular weight of the PLA moiety) The product was bonded to BS-TA-B17 (150 mg, 0.413 mmol) to give the product BS-PT-2 (479 mg, yield 69%).
  • DIC N,N-diisopropylcarbodiimide
  • DMAP dimethylaminopyridine
  • DCM dichloromethane
  • Example 2 According to the preparation method of Example 1, using the same reagent as above, the polymer MPEG-PLA-OOCCH 2 OCH 2 COOH (619 mg, 0.206 mmol) (wherein the MPEG moiety has a molecular weight of 2000 and an m value of 44; the molecular weight of the PLA moiety) The product was bonded to BS-TA-B17 (150 mg, 0.413 mmol) to give the product BS-PT-3 (497 mg, yield: 72%).
  • Example 1 According to the method of Example 1, 465 mg of the modified product BS-PT-3 was self-assembled to prepare a pink powdery nanomicelle lyophilizate (330 mg) of BS-PT-3 using the same reagent.
  • the BS-PT-3DLS test spectrum shows that the prepared nanomicelle has an average particle diameter of 42 nm; the electron microscope observation of BS-PT-3 is shown in Fig. 13.
  • DIC N,N-diisopropylcarbodiimide
  • DMAP dimethylaminopyridine
  • DCM dichloromethane
  • Polymer MPEG-PLA-OOCCH 2 CH 2 COOH (wherein the MPEG moiety has a molecular weight of 550 and an m value of 11; the PLA moiety has a molecular weight of 550 and an n value of 17) is a viscous substance at room temperature and is difficult to accurately weigh.
  • BS-PT-4 Compared with the first three products (BS-PT-1, BS-PT-2 and BS-PT-3), BS-PT-4 has low molecular weight and is still viscous after drying. It cannot be self-assembled to prepare nanomicelles. Therefore, the product only obtained modified products, and no nanomicelles were formed.
  • the position of the polymer terminal methyl peak (3.3 ppm) was used as the standard of the polymer, and the hydrogen at the position of 9.2 ppm was used as the standard of the drug, and the nuclear magnetic integral was passed.
  • the molar ratio of the polymer to the drug in the polymer-modified drug was determined to be 1:2.5, that is, the mass of the drug BS-TA-B17 contained in 60 mg of BS-PT-4 was 25 mg.
  • Example 4 of the present invention show that the molecular weight of the polymeric material affects the state of the resulting product, which in turn affects the preparation of self-assembled nanomicelles, that is, the MPEG block having a molecular weight of 550 and a molecular weight of 550 of the PLA block is not suitable for the MPEG-PLA. Preparation of assembled nanomicelles.
  • Example 5 Determination of water solubility of BS-PT series polymer nanomicelles of the present invention
  • Example 6 Determination of anti-leukemia activity of BS-PT series polymer nanomicelles of the present invention
  • Leukemia cell lines K562/adr (resistant chronic myeloid leukemia, CML), NB4 (acute promyelocytic leukemia, AML), K562 (chronic myeloid leukemia, CML) and above cell lines were all awarded to Zhejiang University Cancer Research Kasumi-1 (acute myeloid leukemia M2, AML-M2), H9 (acute lymphocytic leukemia, ALL), purchased from the China Center for Type Culture Collection; Jurkat (Acute Lymphocytic Leukemia, ALL), purchased from Shanghai Fuxiang Biotechnology Co., Ltd.
  • BS-TA-B17 control prepared according to WO2013/079022 (PCT/CN2012/085660)
  • BS-PT series (BS-PT-1, BS-PT-2, BS-PT-3) polymer Nanomicelles are all produced in the laboratory.
  • the culture broth was a cell culture medium containing 10% fetal calf serum.
  • Different concentrations of BS-PT series polymer nano-micelles were added, mixed, and cultured in a carbon dioxide (5% CO 2 ) cell incubator at 37 ° C for 72 hours.
  • the relative number of viable cells was then determined by the MTT method.
  • the cell viability of the control group (without active drug treatment) was set to 100%, and the half-growth inhibitory concentration of leukemia cells (72-hour IC 50 value, uM) after 72 hours of action was calculated from the relative number of viable cells.
  • Table 1 shows that the BS-PT series polymer nanomicelles (BS-PT-1, BS-PT-2, BS-PT-3) of the present invention have comparable biological activities as the parent small molecule BS-TA-B17. There was no decrease in activity.
  • Table 1 Determination of growth inhibitory concentration of leukemia cells by BS-PT series polymer nanomicelles (72 hours, IC 50 value, uM)
  • Example 7 Activity determination of BS-PT series polymer nanomicelles of the present invention against human multiple myeloma cells and solid tumors
  • Myeloma cell line RPMI8226 (multiple myeloma), purchased from Shanghai Fuxiang Biotechnology Co., Ltd.
  • Human solid tumor cell lines Hep-2 (laryngeal cancer), CNE (nasopharyngeal carcinoma), CaES-17 (esophageal cancer), all purchased from China Center for Type Culture Collection; PC-3 (prostate cancer), RKO ( Human colon adenocarcinoma cells, MGC 803 (human gastric cancer cells), U87MG (malignant glioma), all purchased from Shanghai Fuxiang Biotechnology Co., Ltd.; PANC-1 (pancreatic cancer), HepG2 (human liver cancer cells), Becap -37 (human breast cancer cells), Hela (human cervical cancer cells), were all donated to the tumor of Zhejiang University graduate School.
  • the above-mentioned tumor cells with good growth were taken from 2000 to 10,000, and inoculated into the wells of a 96-well cell culture plate.
  • the culture broth was a cell culture medium containing 10% fetal calf serum.
  • Different concentrations of oleanolic acid amidated derivatives were added, mixed, and cultured in a carbon dioxide (5% CO 2 ) cell incubator at 37 ° C for 72 hours.
  • the relative number of viable cells was then determined by the MTT method.
  • the cell proliferation inhibition rate of the control group (without compound treatment) was set to 0%, and the half-thickness growth inhibitory concentration (72-hour IC 50 value, uM) of the leukemia cells was calculated according to the relative number of living cells.
  • Table 2 shows that the BS-PT series polymer nanomicelles (BS-PT-1, BS-PT-2, BS-PT-3) of the present invention have comparable biological activities as the parent small molecule BS-TA-B17. There was no decrease in activity.
  • Table 2 Determination of growth inhibition concentration of human multiple myeloma cells and solid tumors by BS-PT series polymer nanomicelles (72 hours, IC 50 value, uM)

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

一种式I所示的化合物或其药学上可接受盐、或其纳米胶束以及其制备方法和用途被公开了。所述化合物的结构包含两亲性嵌段聚合物和丹参酮I化合物。以及公开了所述化合物或其药学上可接受盐、或其纳米胶束在制备抗肿瘤药物中的用途。

Description

聚合物修饰的丹参酮I化合物或其纳米胶束、其制备方法和用途 技术领域
本发明涉及一种式I所示的化合物或其药学上可接受盐、或其纳米胶束或其药学上可接受盐,以及其制备方法和用途。本发明具体涉及一类含两亲性嵌段聚合物和丹参酮I化合物(例如BS-TA-B17)的化合物或其药学上可接受盐、或其纳米胶束或其药学上可接受盐;包含该化合物或其药学上可接受盐、或其纳米胶束或其药学上可接受盐的药物组合物;制备该化合物或其药学上可接受盐、或其纳米胶束或其药学上可接受盐的方法;以及所述化合物或其药学上可接受盐、或其纳米胶束或其药学上可接受盐在制备抗肿瘤药物中的用途。
背景技术
丹参酮I(Tanshinone I)是从唇形科植物丹参(Salvia mihiorrhiza Bunge)中提取的天然脂溶性有效成分。多项研究表明丹参酮I及其化合物具有一定的抗肿瘤作用,可用于治疗肝癌、肺癌、胃癌、白血病、宫颈癌等多种癌症。Chenyu Lee等人发现丹参酮I对非小细胞肺癌(NSCLC)具有一定的抑制效果。邹巧根等人发现,丹参酮I磺酸钠对肝癌细胞(HepG2)、结肠癌细胞(HT-29)、直肠癌细胞(HRT-18)均具有良好的抑制作用,并能够抑制活体荷瘤裸鼠肿的生长。(Chenyu Lee,et al.Anticancer effects of tanshinone I in human non-small cell lung cancer.,Molecular cancer therapeutics,2008,7:3527-3538;邹巧根等,丹参酮I磺酸钠在医药领域中的应用,CN1857250A)
然而丹参酮I及其化合物是亲脂性的,在水中溶解性较差,因而使得它们在体内生物利用度低。这限制了它们的应用。
为解决难溶性药物的应用问题,研究人员开发了微粉化、增溶剂、 环糊精包合、微乳化、自乳化给药系统、聚合物纳米胶束、脂质体等多种方法。所述聚合物纳米胶束是一类由两亲性聚合物在水中溶解后自发形成的由亲水性外壳和亲脂性内核组成的纳米胶束体系。两亲性聚合物的亲水链段形成的外壳包围着由聚合物疏水链段聚集成的疏水核。这种结构能延长药物在生物体内的循环时间,维持恒定的血药浓度,并能提高水不溶或水难溶药物的溶解度。由于疏水核与外部环境的隔离,也有利于提高制剂的稳定性。
本发明对不同分子量的聚合物、键合条件及自主装纳米胶束制备方案进行摸索,最终确定了较优的实验材料及方法,显著改善了纳米胶束的载药量、纳米胶束粒径等。本发明通过对所述聚合物修饰化合物、纳米胶束的表征手段及具体检测条件进行探索,最终确定了较优的表征方法。本发明所述聚合物修饰化合物的水溶性较未修饰之前明显增强。此外,本发明制备得到的聚合物修饰的丹参酮I化合物的体外活性实验结果显示,所述聚合物修饰化合物与未经修饰的化合物(活性药物)本身相比活性相当,所述聚合物修饰化合物并未出现理论上推测的活性会有所下降的情况。
发明内容
本发明的目的之一是提供一种聚合物修饰的丹参酮I化合物(例如BS-TA-B17)或其药学上可接受盐、或其形成的纳米胶束或其药学上可接受盐。本发明所述的聚合物修饰的丹参酮I化合物(例如BS-TA-B17)或其药学上可接受盐、或其形成的纳米胶束或其药学上可接受盐与脂溶性化合物丹参酮I化合物(例如BS-TA-B17)相比增强了的水溶性,提高了生物利用度。本发明所述聚合物修饰的丹参酮I化合物(例如BS-TA-B17)或其药学上可接受盐的通式(I)如下:
Figure PCTCN2015094876-appb-000001
其中,
m为表示甲氧基聚乙二醇(MPEG)部分的重复单元个数的整数,m为选自11-227的整数、优选选自11-113的整数、更优选选自44-113的整数、最优选选自44或113的整数,相应地,所述甲氧基聚乙二醇(MPEG)部分的分子量范围为500-10000、优选500-5000、更优选2000-5000、最优选2000或5000;n为表示聚乳酸(PLA)部分的重复单元个数的整数,n为选自7-70的整数、优选选自7-14的整数,更优选为14的整数,相应的,所述聚乳酸部分的分子量范围为500-5000、优选500-1000、更优选1000,n的范围为7-70、优选7-14,更优选14;
A和A’是相同或不同的,A或A’可以是选自以下基团:
直链或支链的、取代或未取代的C1-6亚烷基、C2-6亚烯基、C2-6亚炔基,例如选自亚甲基、亚乙基、亚丙基、亚丁基、亚戊基、亚己基、亚乙烯基、亚丙烯基、亚丁烯基、亚戊烯基、亚己烯基、亚乙炔基、亚炔丙基、亚丙炔基、亚丁-1-炔基、亚丁-2-炔基等;
取代或未取代的C3-10亚环烷基、C3-10亚环烯基,例如选自亚环丙基、亚环丁基、亚环戊基、亚环己基、亚环庚基、亚环丙烯基、亚环丁烯基、亚环戊烯基、亚环己烯基、亚环庚烯基等;
取代或未取代的、饱和或部分不饱和的C2-10亚脂肪杂环烷基,其中杂原子选自一个或多个N、O或S,例如选自亚环氧乙烷、亚吡咯烷、亚四氢呋喃、亚哌啶、亚哌嗪、亚咪唑啉、亚咪唑烷、亚二氮杂
Figure PCTCN2015094876-appb-000002
、亚1,3-二氧戊环、亚二噁烷、亚二噻烷、亚异咪唑啉、亚异噻唑烷、亚异噁唑啉、亚异噁唑烷;
取代或未取代的C4-10亚杂芳基、C4-10亚芳基,其中杂原子选自一个或多个N、O或S,例如选自亚苯基、亚苄基、亚2-苯基乙基、亚3-苯基 丙基、亚2-萘-2-基乙基、亚呋喃、亚咪唑、亚异噻唑、亚吡啶、亚吡嗪、亚吡咯、亚噻吩等;
并且其中x、y和z的每一个是0或1,条件是x、y和z不同时0。
在一个优选的实施例中,本发明为如下的式I-1
Figure PCTCN2015094876-appb-000003
式I-1中m、n的定义如式I中所述。
在一个优选的实施例中,本发明为如下的式I-2,
Figure PCTCN2015094876-appb-000004
式I-2中m、n的定义如式I中所述。
本发明的目的之二是提供聚合物修饰的丹参酮I化合物(例如BS-TA-B17)的纳米胶束或其药学上可接受盐制备方法:(1)将聚合物与丹参酮I化合物(例如BS-TA-B17)连接从而提供聚合物修饰的丹参酮I化合物(例如BS-TA-B17)或其药学上可接受盐,(2)将所述聚合物修饰的丹参酮I化合物(例如BS-TA-B17)或其药学上可接受盐在适宜的溶剂中溶解后自组装制备为纳米胶束或其药学上可接受盐,(3)任选地表征最终产品。
本发明的目的之三是提供包含聚合物修饰的丹参酮I化合物(例如BS-TA-B17)或其药学上可接受盐、或其形成的纳米胶束或其药学上可接受盐的药物组合物,所述药物组合物包括至少一种聚合物修饰的丹参酮I化合物(例如BS-TA-B17)或其药学上可接受盐、或其形成的纳米胶束或其药学上可接受盐,和任选的药学上可以接受的载体。
本发明的目的之四是提供聚合物修饰的丹参酮I化合物(例如BS-TA-B17)或其药学上可接受盐、或其形成的纳米胶束或其药学上可接受盐在制备药物、特别是抗肿瘤药物中的用途。相应地,本发明提供一种治疗肿瘤患者的方法,包括给予需要治疗的患者治疗有效量的聚合物修饰的丹参酮I化合物(例如BS-TA-B17)或其药学上可接受盐、或其形成的纳米胶束或其药学上可接受盐。本发明还提供用于治疗癌症的聚合物修饰的丹参酮I化合物(例如BS-TA-B17)或其药学上可接受盐、或其形成的纳米胶束或其药学上可接受盐。本发明所述癌症选自白血病、多发性骨髓瘤、淋巴瘤、肝癌、胃癌、乳腺癌、胆管细胞癌、胰腺癌、肺癌、大肠癌、骨肉瘤、黑色素瘤、人宫颈癌、神经胶质瘤、鼻咽癌、喉癌、食管癌、中耳肿瘤、前列腺癌等肿瘤。
附图说明
图1-A:BS-PT-11H NMR全谱
图1-B:BS-PT-11H NMR芳香区局部放大图
图2:BS-TA-B17 HPLC标准曲线
图3:BS-PT-1 HPLC测试谱图
图4:BS-PT-1 DLS测试结果
图5:BS-PT-1 TEM测试结果
图6-A:BS-PT-21H NMR全谱
图6-B:BS-PT-21H NMR芳香区局部放大图
图7:BS-PT-2 HPLC测试谱图
图8:BS-PT-2 DLS测试结果
图9:BS-PT-2 TEM测试结果
图10-A:BS-PT-31H NMR全谱
图10-B:BS-PT-31H NMR芳香区局部放大图
图11:BS-PT-3 HPLC测试谱图
图12:BS-PT-3 DLS测试结果
图13:BS-PT-3 TEM测试结果
图14-A:BS-PT-41H NMR全谱
图14-B:BS-PT-41H NMR芳香区局部放大图
具体实施方式
本发明所涉及丹参酮I化合物优选BS-TA-B17,结构如下:
Figure PCTCN2015094876-appb-000005
本发明涉及的聚合物为两亲性嵌段聚合物,优选甲氧基聚乙二醇-聚乳酸(MPEG-PLA),其通式如下:
Figure PCTCN2015094876-appb-000006
其中
m为表示甲氧基聚乙二醇(MPEG)部分的重复单元个数的整数,m为选自11-227的整数、优选选自11-113的整数、更优选选自44-113的整数、最优选选自44或113的整数,相应地,所述甲氧基聚乙二醇(MPEG)部分的分子量范围为500-10000、优选500-5000、更优选2000-5000、最优选2000或5000;n为表示聚乳酸(PLA)部分的重复单元个数的整数,n为选自7-70的整数、优选选自7-14的整数,更优选为14的整数,相应的,所述聚乳酸部分的分子量范围为500-5000、优选500-1000、更优选1000,n的范围为7-70、优选7-14,更优选14。
本发明涉及的两亲性嵌段聚合物甲氧基聚乙二醇-聚乳酸(MPEG-PLA)是通过甲氧基聚乙二醇与聚乳酸聚合得到,或者它们是商业上可获得的,比如来自长春圣博玛生物材料有限公司。MPEG-PLA末端为羟基,不利于与BS-TA-B17羟基形成化学键。因此本发明通过连接子X连接MPEG-PLA与BS-TA-B17。本发明所述连接子X具有以下所示 的二羧酸结构:
HOOC-Ax-Oy-A’z-COOH
其中,
A和A’是相同或不同的,A或A’可以是选自以下基团:
直链或支链的、取代或未取代的C1-6亚烷基、C2-6亚烯基、C2-6亚炔基,例如选自亚甲基、亚乙基、亚丙基、亚丁基、亚戊基、亚己基、亚乙烯基、亚丙烯基、亚丁烯基、亚戊烯基、亚己烯基、亚乙炔基、亚炔丙基、亚丙炔基、亚丁-1-炔基、亚丁-2-炔基等;
取代或未取代的C3-10亚环烷基、C3-10亚环烯基,例如选自亚环丙基、亚环丁基、亚环戊基、亚环己基、亚环庚基、亚环丙烯基、亚环丁烯基、亚环戊烯基、亚环己烯基、亚环庚烯基等;
取代或未取代的、饱和或部分不饱和的C2-10亚脂肪杂环烷基,其中杂原子选自一个或多个N、O或S,例如选自亚环氧乙烷、亚吡咯烷、亚四氢呋喃、亚哌啶、亚哌嗪、亚咪唑啉、亚咪唑烷、亚二氮杂
Figure PCTCN2015094876-appb-000007
、亚1,3-二氧戊环、亚二噁烷、亚二噻烷、亚异咪唑啉、亚异噻唑烷、亚异噁唑啉、亚异噁唑烷;
取代或未取代的C4-10亚杂芳基、C4-10亚芳基,其中杂原子选自一个或多个N、O或S,例如选自亚苯基、亚苄基、亚2-苯基乙基、亚3-苯基丙基、亚2-萘-2-基乙基、亚呋喃、亚咪唑、亚异噻唑、亚吡啶、亚吡嗪、亚吡咯、亚噻吩等;
并且其中x、y和z的每一个是0或1,条件是x、y和z不同时0。
直链或支链的所述连接子X的例子包括但不限于,丁二酸、已二酸、戊二酸、庚二酸、已烯-1,6-二酸、戊烯-1,5-二酸、环已烷-二酸、二甘醇酸和环已烯-二酸。
由于本发明所选连接子为双羧基化合物,其一侧羧基连接MPEG-PLA末端羟基,另一侧羧基提供与药物分子的连接点(例如羟基)。本发明中优选的连接子为丁二酸和二甘醇酸。本发明连接子与聚合物形成的连接子修饰MPEG-PLA结构如下:
Figure PCTCN2015094876-appb-000008
在另一个方面,本发明连接子也可先与BS-TA-B17连接再与聚合物连接。在一些实施方式中,所述连接子修饰的MPEG-PLA部分也被称为聚合物;在使用时,本领域技术人员根据上下文很容易就能够确定相应的含义。在本发明的一种优选实施方式中,本发明所述连接子修饰的两亲性嵌段聚合物甲氧基聚乙二醇-聚乳酸(MPEG-PLA)是商业上可获得的。如上所示的连接子修饰MPEG-PLA可以来自那些本领域技术人员熟悉的的供应商,例如长春圣博玛生物材料有限公司。对于那些需制备才能得到的聚合物,本领域技术人员知道可以采用HNMR(核磁共振)、MS(质谱)、粘度法(例如乌氏粘度计)、体积排除色谱法、端基测定法,沸点升高法、冰点降低法、膜渗透压法、蒸汽压渗透法、小角X-光散射法、小角中子散射法、超速离心沉降法等方法测定聚合物分子量以及重复单元个数(即m、n值)。
本发明所述聚合物修饰的丹参酮I化合物(例如BS-TA-B17)或其药学上可接受盐的结构如下:
Figure PCTCN2015094876-appb-000009
其中,
m为表示甲氧基聚乙二醇(MPEG)部分的重复单元个数的整数,m为选自11-227的整数、优选选自11-113的整数、更优选选自44-113的整数、最优选选自44或113的整数,相应地,所述甲氧基聚乙二醇(MPEG)部分的分子量范围为500-10000、优选500-5000、更优选2000-5000、最优选2000或5000;n为表示聚乳酸(PLA)部分的重复单元个数的整数,n为选自7-70的整数、优选选自7-14的整数,更优选为14的整数,相应的, 所述聚乳酸部分的分子量范围为500-5000、优选500-1000、更优选1000,n的范围为7-70、优选7-14,更优选14;
A和A’是相同或不同的,A或A’可以是选自以下基团:
直链或支链的、取代或未取代的C1-6亚烷基、C2-6亚烯基、C2-6亚炔基,例如选自亚甲基、亚乙基、亚丙基、亚丁基、亚戊基、亚己基、亚乙烯基、亚丙烯基、亚丁烯基、亚戊烯基、亚己烯基、亚乙炔基、亚炔丙基、亚丙炔基、亚丁-1-炔基、亚丁-2-炔基等;
取代或未取代的C3-10亚环烷基、C3-10亚环烯基,例如选自亚环丙基、亚环丁基、亚环戊基、亚环己基、亚环庚基、亚环丙烯基、亚环丁烯基、亚环戊烯基、亚环己烯基、亚环庚烯基等;
取代或未取代的、饱和或部分不饱和的C2-10亚脂肪杂环烷基,其中杂原子选自一个或多个N、O或S,例如选自亚环氧乙烷、亚吡咯烷、亚四氢呋喃、亚哌啶、亚哌嗪、亚咪唑啉、亚咪唑烷、亚二氮杂
Figure PCTCN2015094876-appb-000010
、亚1,3-二氧戊环、亚二噁烷、亚二噻烷、亚异咪唑啉、亚异噻唑烷、亚异噁唑啉、亚异噁唑烷;
取代或未取代的C4-10亚杂芳基、C4-10亚芳基,其中杂原子选自一个或多个N、O或S,例如选自亚苯基、亚苄基、亚2-苯基乙基、亚3-苯基丙基、亚2-萘-2-基乙基、亚呋喃、亚咪唑、亚异噻唑、亚吡啶、亚吡嗪、亚吡咯、亚噻吩等;
并且其中x、y和z的每一个是0或1,条件是x、y和z不同时0。
在一个优选的实施例中,本发明为如下的式I-1
Figure PCTCN2015094876-appb-000011
式I-1中m、n的定义如前述式I中所述。
在一个优选的实施例中,本发明为如下的式I-2,
Figure PCTCN2015094876-appb-000012
式I-2中m、n的定义如前述式I中所述。
按照所用聚合物重复单元个数、连接子的不同,本发明将优选的聚合物修饰的BS-TA-B17命名如下,这些实施例只对本发明做进一步说明,并不对本发明的范围构成任何限制。
BS-PT-1,其是使用MPEG-PLA-OOCCH2CH2CO-基团修饰的BS-TA-B17,其中MPEG部分的分子量为5000,PLA部分的分子量为1000,即m值为113、n值为14;
BS-PT-2,其是使用MPEG-PLA-OOCCH2CH2CO-基团修饰的BS-TA-B17,其中MPEG部分的分子量为2000,PLA部分的分子量为1000,即m值为44、n值为14;
BS-PT-3,其是使用MPEG-PLA-OOCCH2OCH2CO-基团修饰的BS-TA-B17,其中MPEG部分的分子量为2000,PLA部分的分子量为1000,即m值为44、n值为14;
BS-PT-4,其是使用MPEG-PLA-OOCCH2CH2CO-基团修饰的BS-TA-B17,其中MPEG部分的分子量为550,PLA部分的分子量为550,即m值为11、n值为7。
本发明聚合物中PLA段呈亲油性,MPEG段呈亲水性。因此本发明聚合物(或聚合物修饰的药物)在溶剂被透析除去的过程中,由于体系热动力学平衡的改变,可以自聚集成为“核-壳”结构的胶束,其可以使药物分子、尤其是脂溶性药物以乳液或胶囊等形式包载。
本发明所述聚合物修饰的丹参酮I化合物(例如BS-TA-B17)的纳米胶束或其药学上可接受盐可由包括以下步骤的方法制备:
(1)将聚合物与丹参酮I化合物(例如BS-TA-B17)连接从而提供聚合物修饰的丹参酮I化合物(例如BS-TA-B17)或其药学上可接受盐:
Figure PCTCN2015094876-appb-000013
式中,DIC:N,N-二异丙基碳二亚胺;DMAP:二甲氨基吡啶;DCM:二氯甲烷,其中所述m、n、A、A’、x、y、z的定义如前述式I中所述。
在本发明的一个优选实施例中,首先对所述聚合物与BS-TA-B17进行预干燥处理,然后将二甲氨基吡啶固体加入体系中,抽换氩气3次后,冰浴下加入干燥的二氯甲烷溶解,体系为红色透明状溶液,再向体系中加入缩合剂N,N-二异丙基碳二亚胺,冰浴下避光搅拌反应,自然恢复至室温(20℃),撤去水浴,室温下继续反应,总反应时间为24小时。反应结束后,将体系浓缩,除尽溶剂,根据反应物的投料量使用尽量少的二氯甲烷溶解产物,滴加至带有搅拌装置的冰乙醚(二氯甲烷与冰乙醚体积比为1∶10)中,沉降纯化,离心,真空干燥,得到目标产物。
(2)自组装制备纳米胶束的通用步骤为:将步骤1)所得化合物或其盐在有机溶剂中溶解后再加入适量水,然后将所得溶液转移至透析袋并用蒸馏水透析以除去有机溶剂,任选地将透析袋内的水溶液冻干,从而得到纳米胶束产品。
在本发明的一个优选实施例中,将聚合物修饰的丹参酮I化合物(例如BS-TA-B17)或其药学上可接受盐用二甲基甲酰胺(DMF)溶解,充分搅拌均匀后,缓慢向溶液中滴加与DMF等体积的蒸馏水(最终溶液的浓度为10mg/mL,溶剂体积为DMF和水的体积和,即10mg经聚合物修饰的药物溶于0.5mL DMF中,再加入0.5mL水),再继续搅拌6小时。将溶液转移至透析袋(购于上海绿鸟科技发展有限公司,型号: G-RC-45-1K,即分子量为1000的透析袋)中,使用蒸馏水透析,定时更换蒸馏水,除尽有机溶剂,最后将透析袋中的水溶液冻干,得到的粉末状物质即为经聚合物修饰BS-TA-B17的纳米胶束或其药学上可接受盐。
(3)测试方法
最终产品的表征方法包括使用1H NMR(核磁)、HPLC(高效液相色谱)或LC-MS(液相-质谱联用)、DLS(动态光散射)和TEM(透射电镜)的测试与谱图的关联鉴定。
本发明中测试所用1H NMR仪器为Brucker 300M,所用试剂CDCl3,以含3个氢原子的聚合物端甲基峰做为聚合物的标准,以9.2ppm位置的氢作为活性药物的标准,通过核磁积分确定聚合物修饰药物中的聚合物与药物的摩尔比例,通过最终产品的质量可以分别计算得到产品中药物和聚合物的质量。
本发明用HPLC确定聚合物修饰药物中游离药物的浓度和质量,结合1H NMR结果,确定聚合物修饰药物中聚合物与药物的键合率。HPLC测试条件:流动相为乙腈∶水=4∶1;紫外检测器检测波长为254nm;进样体积20μL;运行时间10分钟。
DLS测试确定纳米胶束的粒径大小和分布,测试条件:测试温度25℃,溶剂为水,样品浓度0.4mg/mL。
TEM测试确定纳米胶束的形貌和粒径大小,测试条件:加速电压为100千伏。样品制备:将待测试物配制成0.5g/L的水溶液,滴加一滴至涂覆有碳的230目铜网格上,25℃在空气中干燥。
本发明所述的“聚合物修饰的丹参酮I化合物(例如BS-TA-B17)”和“聚合物修饰药物”是指丹参酮I化合物(例如BS-TA-B17)与本发明所述聚合物和连接子链接后得到的结构。在某些情况下,本发明所述“聚合物”是指不同分子量的MPEG-PLA,在另一些情况下,本发明所述“聚合物”是指与不同连接子连接的不同分子量的MPEG-PLA;在使用时,本领域技术人员根据上下文很容易就能够确定相应的含义。本发明所述“药物”是指丹参酮I化合物(例如BS-TA-B17)。
本发明所述“纳米胶束”是指纳米胶束溶液或将纳米胶束溶液干燥 后所得干燥物(例如冻干物)。
如本文所使用,术语“C1-6亚烷基”是指含有1-6个碳原子(例如,1、2、3、4、5、6个碳原子)的直链或支链、取代或未取代的亚烷烃基。C1-6亚烷烃基的例子包括但不限于亚甲基、亚乙基、亚丙基、亚丁基、亚戊基、亚己基等。本文所述其他碳数的亚烷基取代基也适用此定义。
术语“C2-6亚烯基”是指含有2-6个碳原子(例如,2、3、4、5、6个碳原子)的直链或支链、取代或未取代的亚烯基。C2-6亚烯基的例子包括但不限于亚乙烯基、亚丙烯基、亚丁烯基、亚戊烯基、亚己烯基等。本文所述其他碳数的亚烯基取代基也适用此定义。
术语“C2-6亚炔基”是指含有2-6个碳原子(例如,2、3、4、5、6个碳原子)的直链或支链、取代或未取代的亚炔基。C2-6亚炔基的例子包括但不限于亚乙炔基、亚炔丙基、亚丙炔基、亚丁-1-炔基、亚丁-2-炔基等。本文所述其他碳数的亚炔基取代基也适用此定义。
术语“C3-10亚环烷基”是指具有饱和或不饱和环的含有3-10个碳原子的(例如,3、4、5、6、7、8、9、10个碳原子)单环或多环系统的亚环烷基。C3-10亚环烷基可以为亚环丙基、亚环丁基、亚环戊基、亚环己基、亚环庚基等。本文所述其他碳数的亚环烷基取代基也适用此定义。
术语“C3-10亚环烯基”是指具有不饱和环的含有3-10个碳原子(例如,3、4、5、6、7、8、9、10个碳原子)的单环或多环系统的亚环烯基。C3-10亚环烯基可以为亚环丙烯基、亚环丁烯基、亚环戊烯基、亚环己烯基、亚环庚烯基等。本文所述其他碳数的亚环烯基取代基也适用此定义。
术语“C2-10亚脂肪杂环基”是指取代或未取代的、饱和或部分不饱和的含有2-10(例如,2、3、4、5、6、7、8、9、10个碳原子)个碳原子并且含有选自一个或多个选自N、O或S杂原子的亚杂环基。C2-10亚脂肪杂环基的例子包括但不限于亚环氧乙烷、亚吡咯烷、亚四氢呋喃、亚吡嗪、亚哌嗪、亚咪唑啉、亚咪唑烷、亚二氮杂
Figure PCTCN2015094876-appb-000014
、亚1,3-二氧戊环、亚二噁烷、亚二噻烷、亚异咪唑啉、亚异噻唑烷、亚异噁唑啉、亚异噁 唑烷等。本文所述其他碳数的亚杂环基取代基也适用此定义。
术语“C4-10亚芳基”是指4-10个碳原子(例如,4、5、6、7、8、9、10个碳原子)的无杂原子的亚芳烃基。C4-10亚芳基的例子包括但不限于亚苯基、亚苄基、亚2-苯基乙基、亚3-苯基丙基、亚2-萘-2-基乙基等。本文所述其他碳数的亚芳基取代基也适用此定义。
术语“C4-10亚杂芳基”是指含有4-10个(例如,4、5、6、7、8、9、10个碳原子)碳原子并且含有选自一个或多个选自N、O或S杂原子的亚杂芳基。C4-10亚杂芳基的例子包括但不限于亚呋喃、亚咪唑、亚异噻唑、亚吡啶、亚吡嗪、亚吡咯、亚噻吩等。本文所述其他碳数的亚杂芳基取代基也适用此定义。
本发明所述“m”可以是选自下述值的整数,例如:5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、25、30、35、40、41、42、43、44、45、46、47、48、49、50、55、60、65、70、75、80、85、90、95、100、105、110、111、112、113、114、115、116、117、118、119、120、125、130、135、140、145、150、155、160、165、170、175、180、185、190、195、200、205、210、215、220、221、222、223、224、225、226、227、228、229、230,或者其间任意值组成的范围,例如5-230、11-227、11-113、44-113。
本发明所述“n”可以是选自下述值的整数,例如:1、2、3、4、5、6、7、8、9、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、、30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48、49、50、51、52、53、54、55、56、57、58、59、60、61、62、63、64、65、66、67、68、69、70、71、72、73、74、75、76、77、78、79、80,或者其间任意值组成的范围,例如1-80、7-70、7-14。
术语“适宜的溶剂”是指能够将式I所述化合物溶解并制备胶束的溶剂。
在一个优选的方面,本发明各种实施方式中的连接子(X)修饰的甲氧基聚乙二醇-聚乳酸(MEPG-PLA)是商业上可获得的。丹参酮 I化合物是商业上可获得的,或者是按照例如WO2013/079022(PCT/CN2012/085660)制备得到。
本发明还提供了包含聚合物修饰的丹参酮I化合物(例如BS-TA-B17)或其药学上可接受盐、或其纳米胶束或其药学上可接受盐的药物组合物。
本发明提供了这样的药物组合物,其中包含至少一种如上所述聚合物修饰的丹参酮I化合物(例如BS-TA-B17)或其药学上可接受盐、或其纳米胶束或其药学上可接受盐,和任选的药学上可以接受的载体。
制备各种含有一定量的活性成分的药物组合物的方法是已知的,或根据本发明的公开内容对于本领域技术人员是显而易见的。如REMINGTON’S PHARMACEUTICAL SCIENCES,Martin,E.W.,ed.,Mack Publishing Company,19th ed.(1995)所述。制备所述药物组合物的方法包括掺入适当的药学载体(如赋形剂、稀释剂等)。
以已知的方法制造本发明的药物制剂,包括常规的混合、溶解或冻干等方法。
本发明所述聚合物修饰的丹参酮I化合物(例如BS-TA-B17)或其药学上可接受盐、或其纳米胶束或其药学上可接受盐可以制成药物组合物,并向患者以适于选定的施用方式的各种途径施用,例如口服,肠胃灌注,静脉内或肌内或皮下注射。
因此,本发明所述聚合物修饰的丹参酮I化合物(例如BS-TA-B17)或其药学上可接受盐、或其纳米胶束或其药学上可接受盐结合药学上可以接受载体(如惰性稀释剂或可食用的载体)制成制剂后可以全身施用,例如,口服。它们可以封闭在硬或软壳的明胶胶囊中,可以压为片剂。对于口服治疗施用,聚合物修饰的丹参酮I化合物(例如BS-TA-B17)或其药学上可接受盐、或其纳米胶束或其药学上可接受盐可以结合一种或多种载体,并制成可吞咽的片剂、颊含片剂、含片、胶囊剂、酏剂、悬浮剂、糖浆、圆片等形式。
所述组合物和制剂包含至少0.1%的聚合物修饰的丹参酮I化合物(例如BS-TA-B17)或其药学上可接受盐、或其纳米胶束或其药学上可 接受盐。所述组合物和制剂的比例当然可以变化,可以占给定的单位剂型重量的大约1%至大约99%。
片剂、含片、丸剂、胶囊剂等也可以包含:粘合剂,如黄蓍胶、阿拉伯胶、玉米淀粉或明胶;赋形剂,如磷酸氢二钙;崩解剂,如玉米淀粉、马铃薯淀粉、藻酸等;润滑剂,如硬脂酸镁;和甜味剂,如蔗糖、果糖、乳糖或阿司帕坦;或调味剂,如薄荷、冬青油或樱桃香味。各种其他材料可以存在,作为包衣,或以其他方式改变固体单位剂型的物理形式。例如,片剂、丸剂或胶囊剂可以用明胶、蜡、虫胶或糖等包衣。糖浆或酏剂可以包含活性化合物,蔗糖或果糖作为甜味剂,对羟苯甲酸甲酯或对羟苯甲酸丙酯作为防腐剂,染料和调味剂(如樱桃香料或桔子香料)。当然,用于制备任何单位剂型的任何材料应该是药学上可以接受的且以应用的量基本上无毒。此外,聚合物纳米胶束可以掺入缓释制剂和缓释装置中。
聚合物修饰的丹参酮I化合物(例如BS-TA-B17)或其药学上可接受盐、或其纳米胶束或其药学上可接受盐的药物组合物或制剂也可以通过输注或注射到静脉内或腹膜内施用。可以制备聚合物修饰的丹参酮I化合物(例如BS-TA-B17)或其药学上可接受盐、或其纳米胶束或其药学上可接受盐的水溶液,任选的可混和的无毒的表面活性剂。也可以制备在甘油、液体聚乙二醇、甘油三乙酸酯及其混合物以及油中的分散剂。在普通的储存和使用条件下,这些制剂包含防腐剂以防止微生物生长。
适于注射或输注的药物剂型可以包括包含适于无菌的可注射或可输注的溶液或分散剂的即时制剂的活性成分(任选封装在脂质体中)的无菌水溶液或分散剂或无菌粉末。在所有情况下,最终的剂型在生产和储存条件下必须是无菌的、液体的和稳定的。液体载体可以是溶剂或液体分散介质,包括,例如水、乙醇、多元醇(例如,甘油、丙二醇、液体聚乙二醇等)、植物油、无毒的甘油酯及其合适的混合物。可以维持合适的流动性,例如,通过脂质体的形成,通过在分散剂的情况下维持所需的粒子大小,或通过表面活性剂的使用。可以通过各种抗细菌剂和抗真菌剂(如对羟苯甲酸酯、氯丁醇、苯酚、山梨酸、硫柳汞等)产生 预防微生物的作用。在许多情况下,优选包括等渗剂,如糖、缓冲剂或氯化钠。通过使用延缓吸收剂的组合物(例如,单硬脂酸铝和明胶)可以产生可注射的组合物的延长吸收。
通过将合适量的聚合物修饰的丹参酮I化合物(例如BS-TA-B17)或其药学上可接受盐、或其纳米胶束或其药学上可接受盐与需要的上面列举的各种其他成分结合,然后进行过滤灭菌,制备无菌可注射溶液。在用于制备无菌注射溶液的无菌粉末的情况下,优选的制备方法是真空干燥和冷冻干燥技术,这会产生活性成分加上任何另外需要的以前无菌过滤溶液中存在的成分的粉末。
有用的固体载体包括粉碎的固体(如滑石、粘土、微晶纤维素、二氧化硅、氧化铝等)。有用的液体载体包括水、乙醇或乙二醇或水-乙醇/乙二醇混合物,本发明的化合物可以任选在无毒的表面活性剂的帮助下以有效含量溶解或分散在其中。可以加入佐剂(如香味)和另外的抗微生物剂来优化对于给定用途的性质。
增稠剂(如合成的聚合物、脂肪酸、脂肪酸盐和酯、脂肪醇、改性纤维素或改性无机材料)也可和液体载体用于形成可涂覆的糊剂、凝胶、软膏、肥皂等,直接用于使用者的皮肤上。
聚合物修饰的丹参酮I化合物(例如BS-TA-B17)或其药学上可接受盐、或其纳米胶束或其药学上可接受盐的治疗需要量,取决于施药方式、待治疗的疾病的本质和患者的年龄和状态,最终取决于在场医师或临床医生的决定。
上述制剂可以以单位剂型存在,该单位剂型是含有单位剂量的物理分散单元,适于向人体和其它哺乳动物体给药。单位剂型可以是胶囊或片剂,或是很多胶囊或片剂。根据所涉及的具体治疗,活性成分的单位剂量的量可以在大约0.1到大约1000毫克或更多之间进行变化或调整。
本发明还提供聚合物修饰的丹参酮I化合物(例如BS-TA-B17)或其药学上可接受盐、或其纳米胶束或其药学上可接受盐在制备药物、特别是抗肿瘤药物中的用途。相应地,本发明提供一种治疗肿瘤患者的方法,包括给予需要治疗的患者治疗有效量的至少一种本发明的聚合物修 饰的丹参酮I化合物(例如BS-TA-B17)或其药学上可接受盐、或其纳米胶束或其药学上可接受盐。本发明所述聚合物修饰的丹参酮I化合物(例如BS-TA-B17)或其药学上可接受盐、或其纳米胶束或其药学上可接受盐例如可用于治疗白血病、多发性骨髓瘤、淋巴瘤、肝癌、胃癌、乳腺癌、胆管细胞癌、胰腺癌、肺癌、大肠癌、骨肉瘤、黑色素瘤、人宫颈癌、神经胶质瘤、鼻咽癌、喉癌、食管癌、中耳肿瘤、前列腺癌等肿瘤。
下列实施例,更加具体地解释了本发明。但下列实施例旨在说明本发明而不对本发明的范围构成任何限制。
以下实施例中所用的化学原料均为商购获得或通过本领域熟知的合成方法制取。
材料和方法
下述实施例中连接子X修饰的MPEG-PLA(MPEG-PLA-SA以及MPEG-PLA-diGly)是来自长春圣博玛生物材料有限公司,其中的分子量以及重复单元个数(m、n值)是按照供应商所提供的信息。丹参酮I化合物BS-TA-B17是按照WO2013/079022(PCT/CN2012/085660)制备得到。
实施例1:BS-PT-1的制备
Figure PCTCN2015094876-appb-000015
式中,DIC:N,N-二异丙基碳二亚胺;DMAP:二甲氨基吡啶;DCM:二氯甲烷
将聚合物MPEG-PLA-OOCCH2CH2COOH(1.238g,0.206mmol)(其中MPEG部分的分子量为5000,m值为113;PLA部分的分子量为1000,n值为14)、BS-TA-B17(150mg,0.413mmol)与二甲氨基吡啶(50mg,0.409mmol)分别称重后混于干燥圆底烧瓶中,真空干燥4小时,抽换氩气3次,待平衡压力后于冰浴下加入干燥的二氯甲烷(20mL)充分溶解,再向体系中加入缩合剂N,N-二异丙基碳二亚胺(780mg,6.18mmol),冰浴下避光搅拌反应至自然恢复室温(20℃),撤去水浴,室温下继续反应,总反应时间为24小时。反应结束后,将体系浓缩,除尽溶剂,加入二氯甲烷(10mL)溶解,加入冰乙醚(100mL)沉降纯化,经过离心、真空干燥得到红色粉末状修饰后产物BS-PT-1(1.23g,产率94%)。
将前面所得红色粉末状修饰后产物取1.1957g加入59.8mL二甲基甲酰胺充分溶解,缓慢向上述溶液中滴加59.8mL蒸馏水,约1.5小时滴加完,避光搅拌6小时。将溶液转移至透析袋中,置于烧杯中透析除去有机溶剂,每天换水3-4次,持续换水7天后,有机溶剂除尽。最后将透析袋中的水溶液冻干,得到BS-PT-1的粉红色粉末状纳米胶束冻干物(875mg)。
根据1H NMR测试结果(图1-A及图1-B),以聚合物端甲基峰(3.3ppm)位置做为聚合物的标准,以9.2ppm位置的氢作为药物的标准,通过核磁积分确定聚合物修饰药物中聚合物与药物的摩尔比例为1∶1.1,即875mg BS-PT-1中所含药物BS-TA-B17含量为55mg;由BS-PT-1 HPLC测试结果(图3)和BS-TA-B17HPLC标准曲线(图2)计算得到游离药物的质量6.1mg,修饰的药物质量48.9mg,聚合物与药物的键合率>90%;此处由HPLC测试谱图3可见,在BS-TA-B17出峰的保留时间(BS-TA-B17纯药保留时间为3.5-4.5min,当药物浓度低时,此处存在多个杂峰)内存在杂峰,不能明确归属药物峰。但是,即使将这段保留时间的峰面积都归属成游离药物峰,计算得到的游离药物浓度依然很低。BS-PT-1 DLS测试图谱(图4)显示纳米胶束平均粒径为190nm; BS-PT-1电镜结果见图5。
实施例2:BS-PT-2的制备
Figure PCTCN2015094876-appb-000016
式中,DIC:N,N-二异丙基碳二亚胺;DMAP:二甲氨基吡啶;DCM:二氯甲烷
按照实施例1的制备方法,使用上述同样的试剂,将聚合物MPEG-PLLA-OOCCH2CH2COOH(619mg,0.206mmol)(其中MPEG部分的分子量为2000,m值为44;PLA部分的分子量为1000,n值为14)与BS-TA-B17(150mg,0.413mmol)键合,得到红色粉末状修饰后产物BS-PT-2(479mg,产率为69%)。
按照实施例1的方法,使用同样的试剂,将435.1mg的BS-PT-2经自组装制成BS-PT-2的粉红色粉末状纳米胶束冻干物(303mg)。
根据1H NMR测试结果(图6-A及图6-B),以聚合物端甲基峰(3.3ppm)位置做为聚合物的标准,以9.2ppm位置的氢作为药物的标准,通过核磁积分确定聚合物修饰药物中聚合物与药物的摩尔比例为1∶0.88,即303mg BS-PT-2中所含BS-TA-B17药物质量为29mg;BS-PT-2 HPLC谱图见图7,由该HPLC谱图及BS-TA-B17HPLC标准曲线(图2)可得BS-PT-2中游离药物的质量1mg,修饰的药物质量28mg,聚合物与药物的键合率>80%;与BS-PT-1 HPLC测试结果相似,图7显示,在BS-TA-B17出峰的保留时间内均存在杂峰,不能明确归属药物峰,结果 只能根据峰型和已积分峰面积,在游离药物出峰时间内大约计算得到峰面积,计算得到的游离药物浓度很低。BS-PT-2 DLS测试结果(图8)显示纳米胶束平均粒径为34nm;BS-PT-2的电镜观察结果见图9。
实施例3:BS-PT-3的制备
Figure PCTCN2015094876-appb-000017
式中,DIC:N,N-二异丙基碳二亚胺;DMAP:二甲氨基吡啶;DCM:二氯甲烷
按照实施例1的制备方法,使用上述同样的试剂,将聚合物MPEG-PLA-OOCCH2OCH2COOH(619mg,0.206mmol)(其中MPEG部分的分子量为2000,m值为44;PLA部分的分子量为1000,n值为14)与BS-TA-B17(150mg,0.413mmol)键合,得到红色粉末状修饰后产物BS-PT-3(497mg,产率为72%)。
按照实施例1的方法,使用同样的试剂,将465mg的修饰后产物BS-PT-3经自组装制成BS-PT-3的粉红色粉末状纳米胶束冻干物(330mg)。
根据1H NMR测试结果(图10-A及图10-B),以聚合物端甲基峰(3.3ppm)位置做为聚合物的标准,以9.2ppm位置的氢作为药物的标准,通过核磁积分确定聚合物修饰药物中聚合物与药物的摩尔比例为1∶1,即330mg BS-PT-3中所含药物BS-TA-B17含量为35mg;BS-PT-3的HPLC谱图见图11,由该HPLC谱图及BS-TA-B17HPLC标准曲线 (图2)可得游离药物的质量13mg,修饰的药物质量22mg,聚合物与药物的键合率>60%;该化合物的HPLC谱图因为游离药物BS-TA-B17含量相对较大,所以出峰情况较好。BS-PT-3DLS测试谱图(图12)显示制备的纳米胶束平均粒径为42nm;BS-PT-3的电镜观察结果见图13。
实施例4:BS-PT-4的制备
Figure PCTCN2015094876-appb-000018
式中,DIC:N,N-二异丙基碳二亚胺;DMAP:二甲氨基吡啶;DCM:二氯甲烷
聚合物MPEG-PLA-OOCCH2CH2COOH(其中MPEG部分的分子量为550,m值为11;PLA部分的分子量为550,n值为17)室温下为粘稠状物质,难以准确称重,采用差量法取计算量的聚合材料于烧杯中,加入DCM溶解,加入适量的MgSO4干燥约2小时,过滤,滤液浓缩于50mL圆底烧瓶中,真空抽干溶剂,差量法确定所取聚合物材料的准确质量,加入BS-TA-B17(10mg,0.0275mmol)和DMAP(3mg,0.0246mmol),按照实施例1的制备方法进行聚合物修饰,得到红色粘稠状修饰后产物BS-PT-4(60mg)。
BS-PT-4产品较前3种产品(BS-PT-1、BS-PT-2和BS-PT-3)分子量低,干燥后仍为粘稠状物质,无法进行自组装制备纳米胶束,因此,该产品只得到修饰后产物,没有形成纳米胶束。
根据1H NMR测试结果(图14-A及14-B),以聚合物端甲基峰(3.3ppm)位置做为聚合物的标准,以9.2ppm位置的氢作为药物的标准,通过核磁积分确定聚合物修饰药物中聚合物与药物的摩尔比例为1∶2.5,即60mg BS-PT-4中所含药物BS-TA-B17质量为25mg。
本发明实施例4的结果显示,聚合材料分子量影响所得产物状态,继而影响自组装纳米胶束的制备,即MPEG嵌段分子量为550并且PLA嵌段分子量为550的聚合物MPEG-PLA不适合自组装纳米胶束的制备。
实施例5:本发明的BS-PT系列聚合物纳米胶束水溶性的测定
称取8.0毫克的BS-PT-1,加入到1毫升的水中,在室温下稍摇,即得到澄清的水溶液。该溶液在室温下放置数天,仍然稳定、澄清。而丹参酮I化合物BS-TA-B17在此条件下完全不能溶解。此结果同时也达到了预定的利用纳米胶束解决丹参酮化合物BS-TA-B17水溶性的首要问题。
实施例6:本发明的BS-PT系列聚合物纳米胶束抗白血病活性测定
(1)实验材料
白血病细胞株:K562/adr(耐药慢性髓系白血病,CML)、NB4(急性早幼粒细胞白血病,AML)、K562(慢性髓系白血病,CML)以上细胞系均受赠于浙江大学肿瘤研究所;Kasumi-1(急性髓系白血病M2型,AML-M2)、H9(急性淋巴细胞白血病,ALL),购自中国典型培养物保藏中心;Jurkat(急性淋巴细胞白血病,ALL),购自上海复祥生物科技有限公司。
试剂:BS-TA-B17对照品(按照WO2013/079022(PCT/CN2012/085660)制备得到),BS-PT系列(BS-PT-1、BS-PT-2、BS-PT-3)聚合物纳米胶束,均来源于实验室制备。
主要仪器:细胞培养箱(型号:Thermo Scientific 3111),酶标仪(型号:Bio-Rad iMark)。
(2)实验方法
取生长良好的白血病细胞2000~10000个,接种到96孔细胞培养板孔内。培养液为含10%胎牛血清的细胞培养液。加入不同浓度的BS-PT系列聚合物纳米胶束,混匀,置于二氧化碳(5%CO2)细胞培养箱37℃培养72小时。然后用MTT法测定活细胞相对数。在本实验中对照组(不加活性药物处理)细胞活力设为100%,根据活细胞相对数计算出作用72小时后白血病细胞半数生长抑制浓度(72小时IC50值,uM)。
(3)实验结果
实验结果见表1。表1显示本发明的BS-PT系列聚合物纳米胶束(BS-PT-1、BS-PT-2、BS-PT-3)与母体小分子BS-TA-B17相比,生物活性相当,未出现活性下降的情况。
表1:BS-PT系列聚合物纳米胶束对白血病细胞生长抑制浓度测定(72小时,IC50值,uM)
化合物 K562/adr NB4 Kasumi-1 H9 Jurkat K562
BS-TA-B17 0.9223 1.958 4.563 1.215 4.407 0.2
BS-PT-1 4.354 7.057 7.037 2.178 14.78 0.39
BS-PT-2 4.056 1.176 5.873 1.176 11.99 0.26
BS-PT-3 0.9918 0.5022 3.621 0.5022 3.31 0.22
实施例7:本发明的BS-PT系列聚合物纳米胶束抗人多发性骨髓瘤细胞和实体瘤的活性测定
(1)实验材料
骨髓瘤细胞株:RPMI8226(多发性骨髓瘤),购自上海复祥生物科技有限公司。人实体瘤细胞株:Hep-2(喉癌)、CNE(鼻咽癌细胞)、CaES-17(食管癌),均购自中国典型培养物保藏中心;PC-3(前列腺癌)、RKO(人结肠腺癌细胞)、MGC 803(人胃癌细胞)、U87MG(恶性胶质瘤),均购自上海复祥生物科技有限公司;PANC-1(胰腺癌)、HepG2(人肝癌细胞)、Becap-37(人乳腺癌细胞)、Hela(人宫颈癌细胞),均受赠于浙江大学肿瘤 研究所。
试剂:同实施例6.
主要仪器:细胞培养箱(型号:Thermo Scientific 3111),酶标仪(型号:Bio-Rad iMark)。
(2)实验方法
取生长良好的上述肿瘤细胞2000~10000个,接种到96孔细胞培养板孔内。培养液为含10%胎牛血清的细胞培养液。加入不同浓度的齐墩果酸酰胺化衍生物,混匀后,置于二氧化碳(5%CO2)细胞培养箱37℃培养72小时。然后用MTT法测定活细胞相对数。在本实验中对照组(不加化合物处理)细胞增殖抑制率设为0%,根据活细胞相对数计算出72小时白血病细胞半数生长抑制浓度(72小时IC50值,uM)。
(3)实验结果
实验结果见表2。表2显示本发明的BS-PT系列聚合物纳米胶束(BS-PT-1、BS-PT-2、BS-PT-3)与母体小分子BS-TA-B17相比,生物活性相当,未出现活性下降的情况。
表2:BS-PT系列聚合物纳米胶束对人多发性骨髓瘤细胞和实体瘤生长抑制浓度测定(72小时,IC50值,uM)
化合物 RPMI8226 U87MG PANC-1 Becap37 HepG2 Hela
BS-TA-B17 2.655 1.637 0.3461 3.105 7.667 9.677
BS-PT-1 10.34 6.963 1.508 9.608 6.778 32.49
BS-PT-2 8.628 5.888 2.016 9.093 5.541 48.4
BS-PT-3 2.193 1.298 0.7441 2.826 3.574 6.647
表2(续)
化合物 CNE Hep-2 MGC803 PC-3 CaES-17 RKO
BS-TA-B17 1.967 2.807 0.368 1.826 1.98 7.959
BS-PT-1 8.736 7.229 1.749 12.34 5.729 15.88
BS-PT-2 6.458 5.369 0.8083 19.3 8.002 16.49
BS-PT-3 1.995 2.209 0.3014 2.38 1.716 7.575

Claims (12)

  1. 通式(I)的化合物或其药学上可接受盐,
    Figure PCTCN2015094876-appb-100001
    其中
    m为选自11-227的整数、优选选自11-113的整数、更优选选自44-113的整数、最优选选自44或113的整数;n为选自7-70的整数、优选选自7-14的整数,更优选为14的整数;
    A和A’是相同或不同的,A或A’可以是选自以下基团:
    直链或支链的、取代或未取代的C1-6亚烷基、C2-6亚烯基、C2-6亚炔基,例如选自亚甲基、亚乙基、亚丙基、亚丁基、亚戊基、亚己基、亚乙烯基、亚丙烯基、亚丁烯基、亚戊烯基、亚己烯基、亚乙炔基、亚炔丙基、亚丙炔基、亚丁-1-炔基、亚丁-2-炔基等;
    取代或未取代的C3-10亚环烷基、C3-10亚环烯基,例如选自亚环丙基、亚环丁基、亚环戊基、亚环己基、亚环庚基、亚环丙烯基、亚环丁烯基、亚环戊烯基、亚环己烯基、亚环庚烯基等;
    取代或未取代的、饱和或部分不饱和的C2-10亚脂肪杂环烷基,其中杂原子选自一个或多个N、O或S,例如选自亚环氧乙烷、亚吡咯烷、亚四氢呋喃、亚哌啶、亚哌嗪、亚咪唑啉、亚咪唑烷、亚二氮杂
    Figure PCTCN2015094876-appb-100002
    亚1,3-二氧戊环、亚二噁烷、亚二噻烷、亚异咪唑啉、亚异噻唑烷、亚异噁唑啉、亚异噁唑烷;
    取代或未取代的C4-10亚杂芳基、C4-10亚芳基,其中杂原子选自一个或多个N、O或S,例如选自亚苯基、亚苄基、亚2-苯基乙基、亚3-苯基丙基、亚2-萘-2-基乙基、亚呋喃、亚咪唑、亚异噻唑、亚吡啶、亚吡嗪、亚吡咯、亚噻吩等;
    并且其中x、y和z的每一个是0或1,条件是x、y和z不同时0。
  2. 根据权利要求1所述的化合物或其药学上可接受盐,其中-C(=O)-Ax-Oy-A’z-C(=O)-部分选自丁二酸二酰基、已二酸二酰基、戊二酸二酰基、庚二酸二酰基、已烯-1,6-二酸二酰基、戊烯-1,5-二酸二酰基、环已烷-二酸二酰基、二甘醇酸二酰基和环已烯-二酸二酰基。
  3. 根据权利要求1-2任一项所述的化合物或其药学上可接受盐,其中为如下的式I-1:
    Figure PCTCN2015094876-appb-100003
    其中所述m、n的定义如前述式I中所述。
  4. 根据权利要求1-2任一项所述的化合物或其药学上可接受盐,其中为如下的式I-2:
    Figure PCTCN2015094876-appb-100004
    其中所述m、n的定义如前述式I中所述。
  5. 根据权利要求1-4任一项所述的化合物或其药学上可接受盐,选自下述化合物:
    Figure PCTCN2015094876-appb-100005
    BS-PT-1,其中m值为113,n值为14;
    Figure PCTCN2015094876-appb-100006
    BS-PT-2,其中m值为44,n值为14;
    Figure PCTCN2015094876-appb-100007
    BS-PT-3,其中m值为44,n值为14。
  6. 根据权利要求1-5任一项所述的化合物或其药学上可接受盐的纳米胶束或其药学上可接受盐。
  7. 一种制备权利要求6所述纳米胶束的方法,包含以下步骤:
    1)将如下所示的聚合物与丹参酮I化合物BS-TA-B17连接从而提供如权利要求1-5任一项所述的化合物或其盐
    Figure PCTCN2015094876-appb-100008
    其中所述m、n、A、A’、x、y、z的定义如前述式I中所述;
    2)自组装制备成纳米胶束:将步骤1)所得化合物或其盐在有机溶剂中溶解后再加入适量水,然后将所得溶液转移至透析袋并用蒸馏水透 析以除去有机溶剂,任选地将透析袋内的水溶液冻干,从而得到纳米胶束产品。
  8. 一种药物组合物,其中包含权利要求1-5任一项所述的化合物或其药学上可接受盐或者权利要求6所述的纳米胶束或其药学上可接受盐,以及任选的药学上可接受的载体。
  9. 权利要求1-5任一项所述的化合物或其药学上可接受盐或者权利要求6所述的纳米胶束或其药学上可接受盐在制备抗肿瘤药物中的用途。
  10. 一种治疗肿瘤患者的方法,包括给予需要治疗的患者治疗有效量的根据权利要求1-5任一项所述的化合物或其药学上可接受盐或者权利要求6所述的纳米胶束或其药学上可接受盐。
  11. 作为抗肿瘤治疗剂的权利要求1-5任一项所述的化合物或其药学上可接受盐或者权利要求6所述的纳米胶束或其药学上可接受盐。
  12. 根据权利要求9、10或11的用途、方法或化合物或其药学上可接受盐或纳米胶束或其药学上可接受盐,其中,所述肿瘤选自白血病、多发性骨髓瘤、淋巴瘤、肝癌、胃癌、乳腺癌、、胰腺癌、大肠癌、人宫颈癌、神经胶质瘤、鼻咽癌、喉癌、食管癌、和前列腺癌。
PCT/CN2015/094876 2014-11-20 2015-11-18 聚合物修饰的丹参酮i化合物或其纳米胶束、其制备方法和用途 WO2016078577A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2014091813 2014-11-20
CNPCT/CN2014/091813 2014-11-20

Publications (1)

Publication Number Publication Date
WO2016078577A1 true WO2016078577A1 (zh) 2016-05-26

Family

ID=56013297

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/094876 WO2016078577A1 (zh) 2014-11-20 2015-11-18 聚合物修饰的丹参酮i化合物或其纳米胶束、其制备方法和用途

Country Status (1)

Country Link
WO (1) WO2016078577A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108578422A (zh) * 2018-07-27 2018-09-28 上海市中医医院 一种治疗肝癌的药物组合物及其应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1448420A (zh) * 2002-04-01 2003-10-15 北京键凯科技有限公司 亲水性聚合物与丹参酮类药物的结合物以及包含该结合物的药物组合物

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1448420A (zh) * 2002-04-01 2003-10-15 北京键凯科技有限公司 亲水性聚合物与丹参酮类药物的结合物以及包含该结合物的药物组合物

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108578422A (zh) * 2018-07-27 2018-09-28 上海市中医医院 一种治疗肝癌的药物组合物及其应用

Similar Documents

Publication Publication Date Title
Sun et al. Novel polymeric micelles as enzyme-sensitive nuclear-targeted dual-functional drug delivery vehicles for enhanced 9-nitro-20 (S)-camptothecin delivery and antitumor efficacy
JP6677914B2 (ja) 卵巣癌用の特異的に標的化された生分解性両親媒性ポリマー、それから製造されたポリマーベシクル及びその使用
Yi et al. Cytotoxic effect of novel Flammulina velutipes sterols and its oral bioavailability via mixed micellar nanoformulation
CN113264906B (zh) 多西他赛二聚体小分子前药及其自组装纳米粒的构建
CN111484501A (zh) 羟基喜树碱亚油酸酯小分子前药及其自组装纳米粒的构建
Kang et al. pH-responsive dendritic polyrotaxane drug-polymer conjugates forming nanoparticles as efficient drug delivery system for cancer therapy
Tao et al. Synthesis of cholic acid-core poly (ε-caprolactone-ran-lactide)-b-poly (ethylene glycol) 1000 random copolymer as a chemotherapeutic nanocarrier for liver cancer treatment
CN112961188B (zh) 一种四价铂前药苄达酸铂、其制剂及制备方法和应用
JP2010528105A (ja) 癌の診断と治療を同時に遂行する抗癌剤
CN112089845B (zh) 紫杉烷类药物-阿霉素前药自组装纳米粒及其应用
CN111298132B (zh) 一种树状分子吉西他滨自组装纳米前药及其制备方法和应用
JP2019501261A (ja) 生分解性両親媒性ポリマー、それにより製造されるポリマーベシクル、及び肺がん標的治療薬の製造における使用
CN108542880B (zh) 一种构建序级靶向缺血心肌细胞线粒体载药纳米胶束的方法
US10730898B2 (en) Compound and use thereof and platinum complex and lipidosome thereof
Li et al. Biocompatible supramolecular pseudorotaxane hydrogels for controllable release of doxorubicin in ovarian cancer SKOV-3 cells
Yuan et al. Paclitaxel‐Loaded β‐Cyclodextrin‐Modified Poly (Acrylic Acid) Nanoparticles through Multivalent Inclusion for Anticancer Therapy
CN114796513B (zh) 二硒键桥连多西他赛二聚体前药及其自组装纳米粒
WO2021036654A1 (zh) 靶向dna大沟并抑制拓扑异构酶的石墨烯碱及其制法和用途
WO2016078577A1 (zh) 聚合物修饰的丹参酮i化合物或其纳米胶束、其制备方法和用途
JP2023526707A (ja) カバジタキセル弱塩基性誘導体およびその製剤
CN105012234B (zh) 一种二甲氧基姜黄素聚合物胶束及其制备方法与医药用途
JP5774013B2 (ja) シクロデキストリンのデオキシポドフィロトキシン包接錯体、その調製法、および癌治療への使用
CN108863992B (zh) 多氨基多羧酸修饰卡巴他赛化合物的制备方法及用途
Gao et al. Hydrotropic polymer-based paclitaxel-loaded self-assembled nanoparticles: preparation and biological evaluation
CN113278092B (zh) 一种聚合物载体材料及其制剂和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15860159

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15860159

Country of ref document: EP

Kind code of ref document: A1