WO2016078566A1 - 超临界流体动力系统及其控制方法 - Google Patents

超临界流体动力系统及其控制方法 Download PDF

Info

Publication number
WO2016078566A1
WO2016078566A1 PCT/CN2015/094781 CN2015094781W WO2016078566A1 WO 2016078566 A1 WO2016078566 A1 WO 2016078566A1 CN 2015094781 W CN2015094781 W CN 2015094781W WO 2016078566 A1 WO2016078566 A1 WO 2016078566A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure vessel
pressure
fluid
heat
supercritical fluid
Prior art date
Application number
PCT/CN2015/094781
Other languages
English (en)
French (fr)
Inventor
郭颂玮
Original Assignee
郭颂玮
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 郭颂玮 filed Critical 郭颂玮
Priority to US15/528,019 priority Critical patent/US10487698B2/en
Priority to EP15861627.6A priority patent/EP3211188A4/en
Publication of WO2016078566A1 publication Critical patent/WO2016078566A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K27/00Plants for converting heat or fluid energy into mechanical energy, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K25/00Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for
    • F01K25/08Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours
    • F01K25/10Plants or engines characterised by use of special working fluids, not otherwise provided for; Plants operating in closed cycles and not otherwise provided for using special vapours the vapours being cold, e.g. ammonia, carbon dioxide, ether
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K3/00Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein
    • F01K3/12Plants characterised by the use of steam or heat accumulators, or intermediate steam heaters, therein having two or more accumulators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01KSTEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
    • F01K7/00Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
    • F01K7/32Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines using steam of critical or overcritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/04Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using pressure differences or thermal differences occurring in nature
    • F03G7/05Ocean thermal energy conversion, i.e. OTEC
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Definitions

  • the invention relates to a supercritical fluid power system and a control method thereof, in particular to a supercritical fluid power generation system.
  • the so-called power generation mainly uses the power generation power plant to convert the thermal energy and nuclear energy of fossil fuels (coal, oil, natural gas) into a production process for supplying electric energy required by various sectors of the national economy and people's lives.
  • fossil fuels can produce a lot of carbon dioxide, which will aggravate the global warming effect, while nuclear energy faces enormous challenges from raw material sources and environmental protection.
  • the problem solved by the present invention is that the power generation efficiency of the existing power generation device is low and the temperature difference is required, and power generation under the conditions of all weather, all regions, full time, and no temperature difference cannot be realized.
  • the present invention provides a supercritical fluid power system including a power circulation circuit filled with a working fluid, which is always a supercritical fluid when flowing in the power circulation loop;
  • the power circulation circuit includes: a first pressure vessel, a second pressure vessel, and a driven portion, the driven portion being disposed between the first pressure vessel and the second pressure vessel, and simultaneously with the first The pressure vessel and the second pressure vessel are connected;
  • the supercritical fluid power system further includes a heat source and a cold source;
  • the heat source is configured to supply thermal energy to the working fluid in one of the first pressure vessel and the second pressure vessel to increase the pressure in the corresponding pressure vessel,
  • the temperature of the heat source output is greater than the critical temperature of the working medium;
  • the cold source is used to cool the working medium in the other of the first pressure vessel and the second pressure vessel to reduce the corresponding pressure vessel pressure;
  • the heat source and the cold source cooperate to form a pressure difference between the first pressure vessel and the second pressure vessel; the working fluid is under the pressure difference in the first pressure vessel and the second pressure Flowing between the containers and flowing through the driven portion to be driven to the The Ministry provides power.
  • the heat source is configured to alternately supply thermal energy to the working fluid in the first pressure vessel and the second pressure vessel; the cold source is used to alternately pair the first pressure vessel and the second pressure vessel The medium in the medium is cooled.
  • the working fluid is a low boiling point working fluid.
  • the low boiling point working medium has a critical temperature of Tc:Tc ⁇ 100° C.
  • the critical temperature of the low boiling point working fluid is Tc: -272 ° C ⁇ Tc ⁇ 100 ° C.
  • the pressure in the power circulation loop is greater than the critical pressure of the working fluid.
  • the first pressure vessel and the second pressure vessel share the heat source.
  • the power circulation loop includes a first heating branch and a second heating branch; two ends of the first heating branch are respectively connected to the first pressure vessel, and the second heating branch is The two ends are respectively connected to the second pressure vessel; the first heating branch and the second heating branch respectively pass through the heat source.
  • a control valve is respectively disposed in the first heating branch and the second heating branch for controlling the corresponding branch to be turned on when heat energy is required, and is disconnected when heat energy is not required.
  • a pump is disposed in each of the first heating branch and the second heating branch, and operates when the corresponding branch requires heat energy, and stops when heat energy is not needed.
  • the heat source is a first natural medium.
  • the first pressure vessel and the second pressure vessel share the cold source.
  • the power circulation loop includes a first cooling branch and a second cooling branch; two ends of the first cooling branch are respectively connected to the first pressure vessel, and the second cooling branch is The two ends are respectively connected to the second pressure vessel; the first cooling branch and the second cooling branch respectively pass through the cold source.
  • a control valve is respectively disposed in the first cooling branch and the second cooling branch, It is used to control the corresponding branch to conduct when cooling is required, and to disconnect when cooling is not required.
  • a pump is disposed in each of the first cooling branch and the second cooling branch, and operates when the corresponding branch needs to be cooled, and stops when cooling is not required.
  • the cold source is a second natural medium.
  • the first pressure vessel and the second pressure vessel are respectively equipped with the heat source and the cold source.
  • the heat source and the cold source are disposed in the corresponding pressure vessel or are disposed outside the corresponding pressure vessel.
  • the heat source includes:
  • a first heat exchanger comprising two chambers spaced apart from each other, wherein a chamber is in communication with the power circulation circuit for the working fluid to flow through;
  • an output of the heat pump is in communication with another chamber of the first heat exchanger, the heat pump is configured to extract heat of the first fluid, and output the heat to the other cavity to Heat exchange with the working fluid.
  • the first fluid is a fluid in a natural environment or other available liquid or gas containing waste heat, such as waste liquid or waste gas produced in industrial manufacturing or daily life.
  • the input end of the heat pump is provided with a transfer pump for accelerating the flow of the first fluid to the heat pump;
  • the input end of the heat pump is provided with a fan for accelerating the flow of the first fluid to the heat pump.
  • the first heat exchanger comprises a heat pipe or a tube heat exchanger or a plate heat exchanger.
  • the cold source includes:
  • a second heat exchanger comprising two chambers spaced apart from each other, wherein a chamber is in communication with the power circulation circuit for the working fluid to flow through;
  • the output of the refrigeration unit being in communication with another chamber of the second heat exchanger, the refrigeration unit for extracting heat from the working medium and releasing the heat to the second fluid.
  • the second fluid is a fluid in a natural environment or other available cryogenic liquid or gas, such as waste liquid or exhaust gas produced in industrial manufacturing or in daily life.
  • the cold source further includes a shower device for cooling the condenser of the refrigeration unit.
  • the second heat exchanger comprises a heat pipe or a tube heat exchanger or a plate heat exchanger.
  • the heat source includes a first fluid and a heat pump for extracting heat of the first fluid: a first pipeline for the first fluid to flow between the heat source and the cold source The first conduit flows into the cold source as the second fluid after the first fluid flows out of the heat source.
  • a second pipeline is provided between the heat source and the cold source for flowing the second fluid, and the second pipeline is configured to send the second fluid out of the cold source as the A supplement of the first fluid flows into the heat source.
  • the driven portion has an inlet and an outlet through which the working fluid passes; the first pressure vessel, the driven portion, and the second pressure vessel respectively pass through the first one-way branch a second one-way branch, each one-way branch for the working fluid to flow from the inlet to the outlet; the working medium alternately in the first one-way branch according to the pressure difference Passed through the second one-way branch.
  • a control valve is respectively disposed in the first one-way branch and the second one-way branch to control on and off of the corresponding branch.
  • the driven device is a power generating device or a power transmitting device.
  • a pressure sensor is disposed in each of the first pressure vessel and the second pressure vessel for detecting an internal pressure of the corresponding pressure vessel, and outputting the detected pressure signal.
  • the device further includes: a control device, configured to receive the pressure signal output by the pressure sensor, and issue a first instruction or a second instruction according to the pressure signal;
  • the first instruction controls the heat source to provide thermal energy to the working fluid in the first pressure vessel, and controls the cold source to cool the working fluid in the second pressure vessel;
  • the second command controls the heat source to provide thermal energy to the working fluid in the second pressure vessel, and controls the cold source to cool the working fluid in the first pressure vessel.
  • the first pressure vessel and the second pressure vessel respectively have a plurality of the plurality of first pressure vessels and the plurality of second pressure vessels are in one-to-one correspondence and form a plurality of groups; at the same time period, the heat source The cold source acts on at least one set of pressure vessels.
  • the heat source and the cold source act on different sets of pressure vessels at different time periods.
  • the low boiling point working fluid comprises: hydrogen, nitrogen, oxygen, ozone, carbon dioxide, carbon monoxide, nitrogen dioxide, hydrogen chloride, hydrogen sulfide, bromine gas, ammonia gas, methane, ethane, ethylene, acetylene, chlorine, Helium, helium, argon, helium, neon, xenon, xenon, nitric oxide, nitrous oxide, fluorine gas, boron fluoride, diborane, air.
  • the embodiment of the present invention further provides the control method of the supercritical fluid power system according to any of the above, which comprises:
  • a passage between the driven portion and the first pressure vessel and the second pressure vessel is turned on, so that the working fluid passes through the pressure vessel from the pressure vessel The driven portion flows to the other pressure vessel;
  • the driven portion is disconnected from the passage between the first pressure vessel and the second pressure vessel, and when the pressure difference reaches a preset pressure difference, The path is turned on.
  • control method when the working fluid flows from one pressure vessel to the other pressure vessel, the control method further includes:
  • Comparing the difference between the first pressure and the second pressure when the difference is less than the preset difference, controlling one of the heat source and the cold source to stop, and the other exchanges the pressure vessel to A reverse pressure difference is formed; or, the pressure source in which the heat source and the cold source are exchanged is controlled to form a reverse pressure difference.
  • control method when the working fluid flows from one pressure vessel to the other pressure vessel, the control method further includes:
  • Obtaining a pressure change rate in the first pressure vessel and the second pressure vessel the pressure
  • the force change rate is less than the preset change rate
  • one of the heat source and the cold source is controlled to stop, and the other exchanges the pressure vessel to form a reverse pressure difference; or, the heat source and the cold source are exchanged.
  • the pressure vessel acts to create a reverse pressure differential.
  • the heat source includes a heat pump
  • the cold source includes a refrigeration unit.
  • the control method further includes:
  • the power circulation circuit includes a first pressure vessel and a second pressure vessel that are in communication with each other, and the two pressure vessels can communicate with each other through the driven portion, and the supercritical fluid state in each pressure vessel
  • the working fluid can be heated by a heat source to increase the pressure, or cooled by a cold source to reduce the temperature and pressure.
  • the invention utilizes the natural law that the pressure of the supercritical fluid state working medium changes with the change of temperature and the difference is huge, exchanges the supercritical fluid state working medium with the heat source, heats up and pressurizes in a pressure vessel, and then passes through The cold source cools and lowers the pressure vessel to form a pressure difference between the first pressure vessel and the second pressure vessel, and uses the pressure difference to cause the working fluid to flow between the two pressure vessels and flow through the driven portion. To provide power to the driven part for power generation or other needs.
  • the power system forms a pressure difference by heating and cooling the working medium in the first pressure vessel and the second pressure vessel, and replaces the conventional booster pump by a pressure vessel that alternates the heat source and the cold source, and can circulate between the two. Manufacturing a pressure differential to achieve power recirculation.
  • the heat source uses a heat pump with a high energy efficiency ratio
  • the cold source uses a refrigeration unit with a high energy efficiency ratio, thereby saving energy consumption and simultaneously forming a higher pressure difference to provide greater power. Due to the combination of heat pump, refrigeration unit and supercritical fluid technology, the temperature difference between the pressure and the pressure drop can be overcome or the temperature and water temperature may occur. Influenced by adverse factors such as changes, compared with the prior art, the power system is not affected by any external environment and can provide power continuously throughout the day.
  • FIG. 1 is a block diagram showing the structure of a supercritical fluid power system in an embodiment of the present invention
  • FIG. 2 is a structural block diagram of a control device and each electrical device in an embodiment of the present invention
  • Figure 3 is a block diagram showing the structure of a supercritical fluid power system in a modification of the present invention
  • Figure 4 is a block diagram showing the structure of a supercritical fluid power system in another modification of the present invention.
  • Fig. 5 is a block diagram showing the structure of a supercritical fluid power system in still another modification of the present invention.
  • the present invention aims to provide a supercritical fluid power circulation system, in particular, a supercritical fluid power generation system, wherein the working medium is preferably in a supercritical fluid state at normal temperature. Low boiling point working fluid.
  • the embodiment of the present invention provides a supercritical fluid power system.
  • the power circulation circuit 10 is filled with a working fluid.
  • the working fluid is always a supercritical fluid when flowing in the power circulation circuit 10 . That is to say, when the working fluid is operated in the power circulation loop 10, it should always be in a supercritical fluid state.
  • Supercritical fluid refers to a fluid whose pressure and temperature exceed both the critical pressure (pc) and the critical temperature (Tc) is called supercritical fluid (SCF).
  • the substance changes in the state of liquid, gas, solid, etc. depending on the temperature and pressure.
  • Tc critical temperature
  • Pc the critical pressure
  • the critical pressure Pc the critical pressure
  • Working fluid refers to a medium that can convert heat and mechanical energy into each other.
  • the power circulation circuit 10 includes a first pressure vessel 11 , a second pressure vessel 12 , and a driven portion 13 , and the driven portion 13 is disposed between the first pressure vessel 11 and the second pressure vessel 12 , and At the same time, it is in communication with the first pressure vessel 11 and the second pressure vessel 12.
  • the supercritical fluid power system of the present invention further includes a heat source 20 and a cold source 30 for raising or lowering the temperature and pressure of the working medium in the first pressure vessel 11 and the second pressure vessel 12, respectively.
  • the heat source 20 and the cold source 30 cooperate with each other such that one of the first pressure vessel 11 and the second pressure vessel 12 is pressurized and depressurized to form a pressure difference between the first pressure vessel 11 and the second pressure vessel 12.
  • the working fluid flows between the first pressure vessel 11 and the second pressure vessel 12 under the pressure difference, and flows through the driven portion 13 to supply power to the driven portion 13.
  • the heat source 20 is configured to supply thermal energy to the working fluid in one of the first pressure vessel 11 and the second pressure vessel 12 to increase the pressure in the corresponding pressure vessel, and the temperature of the heat source 20 is greater than the critical temperature of the working fluid.
  • the cold source 30 is used to cool the working fluid in the other of the first pressure vessel 11 and the second pressure vessel 12 to reduce the pressure in the corresponding pressure vessel.
  • the function of the heat source 20 is to pressurize and increase the pressure of the working medium in the corresponding pressure vessel.
  • the working fluid in the power circulation loop 10 will exhibit a supercritical fluid state.
  • the pressure of the working fluid in the corresponding pressure vessel will continue to rise until the temperature of the working fluid is equal to the temperature of the heat source 20.
  • the minimum working pressure is greater than the critical pressure of the working medium.
  • the minimum working pressure in the power circulation circuit 10 may be predetermined, or may be achieved after the working medium is heated by the heat source 20, which means that the first pressure is The pressure resistance of the container 11, the second pressure vessel 12, and each of the connecting lines must be higher than the critical pressure of the working fluid.
  • the function of the cold source 30 is to reduce the pressure and reduce the pressure of the working fluid in the corresponding pressure vessel. With the continuous action of the cold source 30, the pressure of the working fluid in the corresponding pressure vessel will continue to decrease until the temperature of the working fluid and the cold source The temperature of 30 is equal.
  • the driven portion 13 may be a power conversion device or a power transmission device.
  • the power conversion device may be a power generation device such as a hydraulic generator or a pneumatic generator.
  • the power transmission device can be any device for transmitting power, such as when the supercritical fluid power system is used in a ship, the power transmission device can be a propeller.
  • the driven portion 13 is provided as a power generating device such that the supercritical fluid power system is formed as a supercritical fluid power generating system.
  • the power generating device is preferably a hydraulic generator.
  • the power generating device is preferably a gas pressure generator, and at least includes a steam turbine.
  • the present invention utilizes the natural law that the pressure of the supercritical fluid state fluid changes with temperature and varies greatly, and exchanges the supercritical fluid state with the heat source to increase the temperature in a pressure vessel. Pressurizing, and then lowering and lowering the pressure vessel by another cold source, thereby forming a pressure difference between the first pressure vessel and the second pressure vessel, and using the pressure difference to cause the working fluid to flow between the two pressure vessels and flow through
  • the driven portion supplies power to the driven portion.
  • the hydraulic or pneumatic generator as the driven portion 13 has an inlet for the inflow of the working fluid and an outlet for the working fluid to flow out.
  • the flow of the working fluid in the hydraulic or pneumatic generator is single, that is, the working fluid must always flow in from the inlet of the hydraulic or pneumatic generator. The exit is out.
  • two unidirectional branches are required between the first pressure vessel 11, the driven portion 13, and the second pressure vessel 12. If the reversing device is provided in the driven portion 13, or the driven portion 13 itself does not distinguish between the inlet and the outlet, only one passage is provided between the first pressure vessel 11 and the second pressure vessel 12, and the passage passes through the driven portion. .
  • first pressure vessel 11, the driven portion 13, and the second pressure vessel 12 are respectively connected through the first one-way branch 101 and the second one-way branch 102, and each one-way branch is provided with a working medium.
  • the inlet of the hydraulic or pneumatic generator circulates to the outlet.
  • the working medium alternately passes through the first one-way branch 101 and the second one-way branch 102 according to the pressure difference: when the pressure of the first pressure vessel 11 is greater than the pressure of the second pressure vessel 12, the working fluid is from the first pressure
  • the container 11 flows to the second pressure vessel 12 via the first one-way branch 101; otherwise, the working fluid flows from the second pressure vessel 12 to the first pressure vessel 11 via the second one-way branch 102. That is to say, in the same period of time, the working medium can only pass through one of the one-way branches, and cannot pass through two one-way branches at the same time.
  • the driven portion 13 does not operate or the working conditions are not satisfied, the working medium passes in either one-way branch.
  • the first one-way branch 101 and the second one-way branch 102 are respectively provided with control valves to control the on and off of the corresponding branches.
  • the control valve in the first one-way branch 101 is defined as the first control valve V1
  • the control valve in the second one-way branch 102 is the second control valve V2.
  • the first control valve V1 is opened, the first one-way branch 101 is turned on, and when the second control valve V2 is turned on, the second one-way branch 102 is turned on. Since the first one-way branch 101 and the second one-way branch 102 alternately open and close, the first control valve V1 and the second control valve V2 are not simultaneously opened. That is, when one of the first control valve V1 and the second control valve V2 is opened, the other is not turned on. When it is not necessary to be operated by the driving portion 13 or the operating condition is not satisfied, the first control valve V1 and the second control valve V2 are both closed.
  • the first control valve V1 and the second control valve V2 may be capable of controlling the pipeline Guided check valve or any other valve that controls the continuity of the line.
  • the number of the first control valve V1 and the second control valve V2 may be one or more.
  • the first control valve V1 and the second control valve V2 respectively have two, wherein the two first control valves V1 is provided in a portion of the first one-way branch 101 between the first pressure vessel 11 and the driven portion 13, and a portion between the driven portion 13 and the second pressure vessel 12, respectively.
  • Two second control valves V2 are respectively provided in a portion of the second one-way branch 102 between the first pressure vessel 11 and the driven portion 13, and a portion between the driven portion 13 and the second pressure vessel 12.
  • the working fluid is always a supercritical fluid when flowing in the power circulation loop 10”, which means that the entire supercritical fluid power system is in normal operation, and the working fluid is always supercritical.
  • the posture does not include the state of the working fluid in the initialization phase or the stop state of the system.
  • the working fluid may be lower than the critical temperature and the critical pressure in the initializing phase or the stopped state, that is, in a non-supercritical fluid state.
  • the working fluid can become a supercritical fluid under the action of the heat source 20.
  • the temperature and pressure of the working fluid in the corresponding pressure vessel will decrease, but it is not suitable to fall below the critical temperature and the critical pressure.
  • the working fluid in the pressure vessel in which the cold source 30 acts is still a supercritical fluid to ensure that the working fluid in the power circulation loop 10 is always in a supercritical fluid state when the supercritical fluid power system is in operation.
  • the working medium can be any Working quality.
  • the working fluid in the power circulation loop 10 in the present embodiment preferably uses a low boiling point working fluid.
  • the critical temperature of the low boiling point working fluid is Tc: Tc ⁇ 100 ° C.
  • the critical temperature of the low boiling point working fluid is Tc: -272 ° C ⁇ Tc ⁇ 100 ° C
  • the low boiling point working medium may be any gas that satisfies the temperature condition, such as hydrogen, nitrogen, oxygen, ozone, carbon dioxide, carbon monoxide, and Nitric oxide, hydrogen chloride, hydrogen sulfide, bromine gas, ammonia, methane, ethane, ethylene, acetylene, chlorine, helium, neon, argon, helium, neon, helium, neon, nitric oxide, Nitrous oxide, fluorine gas, boron fluoride, diborane, air, and the like.
  • low boiling point work The mass can be in a supercritical state at normal temperature, that is, its critical temperature is lower than the temperature at normal temperature.
  • the heat source 20 is for alternately supplying thermal energy to the working fluid in the first pressure vessel 11 and the second pressure vessel 12; the cold source 30 is for alternately facing the first pressure vessel 11, The working fluid in the second pressure vessel 12 is cooled. That is to say, when the system is in normal operation (excluding the system initialization phase), neither the heat source 20 nor the cold source 30 can act on the first pressure vessel 11 and the second pressure vessel 12 at the same time, but only Act on one of them.
  • the cold source 30 can only act on the second pressure vessel 12; conversely, if the heat source 20 acts on the second pressure vessel 12, the cold source 30 can only Acts on the first pressure vessel 11.
  • the pressure in one of the pressures rises and the pressure in the other pressure decreases to form a pressure difference
  • the driven portion 13 and the first pressure vessel 11 the second pressure
  • the working medium can flow from the high pressure region to the low pressure region through the driven portion 13 under the pressure difference to supply power to the driven portion 13 to drive the hydraulic or pneumatic generator therein to generate electricity.
  • the heat source 20 and the cold source 30 simultaneously act on different pressure vessels, and a large pressure difference can be formed between the first and second pressure vessels in a short time to be the driven portion 13.
  • Hydraulic or pneumatic generators provide greater power to meet greater power requirements.
  • the driven portion 13 is another power transmitting device, it may be provided that when the heat source 20 acts on one of the pressure vessels, the cold source 30 does not work, only one of them The pressure in the pressure vessel rises to form a pressure difference, which is especially suitable when the pressures in the first and second pressure vessels are both at a low value and have a high rate of pressure increase; or Setting: when the cold source 30 acts on one of the pressure vessels, the heat source 20 does not work, and only the pressure difference in one of the pressure vessels is used to form a pressure difference, which is particularly suitable for use in the first and second pressure vessels. The pressure is at a higher value and has a higher rate of depressurization.
  • Each of the pressure vessels may be provided with a heat source 20, a cold source 30 (FIG. 4), or the first pressure vessel 11 and the second pressure vessel 12 share a heat source 20 or a shared cold source 30, or may share the heat source 20 and the cold source at the same time. 30.
  • the manner of sharing the heat source 20 and the cold source 30 is employed.
  • the power circulation loop 10 includes a first heating branch 103 and a second heating branch 104 . Both ends of the first heating branch 103 are respectively in communication with the first pressure vessel 11, and both ends of the second heating branch 104 are in communication with the second pressure vessel 12, respectively.
  • the first heating branch 103 and the second heating branch 104 pass through the heat source 20, respectively.
  • the working medium is also filled in the first heating branch 103 and the second heating branch 104.
  • the working medium in the first heating branch 103 can be exchanged with the working medium in the first pressure vessel 11, and the second heating branch
  • the working fluid in the road 104 can be exchanged with the working fluid in the second pressure vessel 12.
  • the first heating branch 103 and the second heating branch 104 are not simultaneously turned on.
  • a control valve is disposed in each of the first heating branch 103 and the second heating branch 104 for controlling the corresponding branch to be turned on when heat energy is required, and to be disconnected when heat energy is not required.
  • the control valve in the first heating branch 103 is defined as the third control valve V3, and the control valve in the second heating branch 104 is the fourth control valve V4.
  • the third control valve V3 is open, the first heating branch 103 is turned on; when the fourth control valve V4 is open, the second heating branch 104 is turned on. Since the heat source 20 alternately acts on the first pressure vessel 11 and the second pressure vessel 12, the third control valve V3 and the fourth control valve V4 are not simultaneously opened. That is, when one of the third control valve V3 and the fourth control valve V4 is open, the other is not turned on.
  • the third control valve V3 and the fourth control valve V4 can be any type of valve capable of controlling the opening and closing of the pipeline. Also, the number of the third control valve V3 and the fourth control valve V4 may be one or more. In this embodiment, there are two third control valves V3 and four control valves V4 respectively, wherein two third control valves V3 are respectively disposed in a portion of the first heating branch 103 flowing to the heat source 20 in the first pressure vessel 11, And in the portion of the heat source 20 that flows to the first pressure vessel 11. The two fourth control valves V4 are respectively disposed in a portion of the second heating branch 104 that flows to the heat source 20 at the second pressure vessel 12, and a portion where the heat source 20 flows to the second pressure vessel 12.
  • a pump is disposed in each of the first heating branch 103 and the second heating branch 104, and operates when the corresponding branch requires thermal energy, and stops when heat energy is not required.
  • the transfer pump in the first heating branch 103 is defined as the first transfer pump P1
  • the transfer pump in the second heating branch 104 is the second transfer pump P2.
  • the first transfer pump P1 and the second transfer pump P2 can respectively increase the flow speed of the working medium in the corresponding heating branch to accelerate the temperature rise and the increase rate of the working medium in the corresponding pressure vessel.
  • the first heating branch 103 and the second heating branch 104 are not simultaneously turned on, and the first transfer pump P1 and the second transfer pump P2 are not simultaneously operated.
  • the first transfer pump P1 and the second transfer pump P2 may be any one of the prior art transfer pumps.
  • the power circulation circuit 10 includes a first cooling branch 105 and a second cooling branch 106.
  • the two ends of the first cooling branch 105 are respectively connected to the first pressure vessel 11
  • the two ends of the second cooling branch 106 are respectively connected to the second pressure vessel 12 ; the first cooling branch 105 and the second cooling branch 106 respectively Pass the cold source 30.
  • the working medium is also filled in the first cooling branch 105 and the second cooling branch 106.
  • the working medium in the first cooling branch 105 can be exchanged with the working medium in the first pressure vessel 11, and the second cooling branch
  • the working fluid in the road 106 can be exchanged with the working fluid in the second pressure vessel 12.
  • the working temperature of the working medium is lowered, the pressure is lowered, and a relative flow of the working medium is formed between the first pressure vessel 11 and the relatively high pressure, so as to form a relative flow with the first pressure vessel 11
  • the working medium in the middle is exchanged, and finally the temperature and pressure of the working medium in the first pressure vessel 11 are lowered; likewise, the second cooling branch 106 is exchanged with the working medium in the second pressure vessel 12 after passing through the cold source 30. Eventually the temperature and pressure in the second pressure vessel 12 are reduced.
  • the first cooling branch 105 and the second cooling branch 106 are not simultaneously turned on.
  • a control valve is provided in each of the first cooling branch 105 and the second cooling branch 106 for controlling the corresponding branch to be turned on when cooling is required, and to be disconnected when cooling is not required.
  • the control valve in the first cooling branch 105 is defined as the fifth control valve V5, and the control valve in the second cooling branch 106 is the sixth control valve V6.
  • the fifth control valve V5 is open, the first cooling branch 105 is turned on; when the sixth control valve V6 is open, the second cooling branch 106 is turned on. Since the cold source 30 alternately acts on the first pressure vessel 11 and the second pressure vessel 12, the fifth control valve V5 and the sixth control valve V5 are not simultaneously opened. That is, when one of the fifth control valve V5 and the sixth control valve V6 is turned on, the other is not turned on.
  • the fifth control valve V5 and the sixth control valve V6 can be any type of valve capable of controlling the opening and closing of the pipeline. Also, the number of the fifth control valve V5 and the sixth control valve V6 may be one or more. In this embodiment, there are two fifth control valves V5 and six sixth control valves V6 respectively, wherein two fifth control valves V5 are respectively disposed in the portion of the first cooling branch 105 flowing to the cold source 30 in the first pressure vessel 11 And in the portion of the cold source 30 that flows to the first pressure vessel 11. The two sixth control valves V6 are respectively disposed in a portion of the second cooling branch 106 that flows to the cold source 30 at the second pressure vessel 12, and a portion that flows from the cold source 30 to the second pressure vessel 12.
  • All of the control valves in this embodiment may be solenoid valves or pneumatic valves.
  • a pneumatic valve When a pneumatic valve is selected, it must be equipped with a device capable of generating high pressure gas to drive the opening and closing of the control valve. Among them, the power required by the solenoid valve and the generation of high pressure gas The electric power of the device can be supplied from the power generating device as the driven portion 13.
  • a pump is provided in each of the first cooling branch 105 and the second cooling branch 106, and operates when the corresponding branch needs to be cooled, and stops when cooling is not required.
  • the transfer pump in the first cooling branch 105 is defined as the third transfer pump P3, and the transfer pump in the second cooling branch 106 is the fourth transfer pump P4.
  • the third transfer pump P3 and the fourth transfer pump P4 can respectively increase the flow speed of the working medium in the corresponding cooling branch to accelerate the temperature drop and the pressure reduction rate of the working medium in the corresponding pressure vessel.
  • the first cooling branch 105 and the second cooling branch 106 are not simultaneously turned on, and the third transfer pump P3 and the fourth transfer pump P4 are not simultaneously operated.
  • the third transfer pump P3 and the fourth transfer pump P4 may be any one of the prior art transfer pumps.
  • the first pressure vessel 11 and the second pressure vessel 12 may be provided with a heat source 20 and a cold source 30, respectively.
  • the heat source 20 and the cold source 30 may be disposed in the corresponding pressure vessel or outside the corresponding pressure vessel. However, it is necessary to be able to meet the requirements of heating, pressurizing or lowering the temperature of the working fluid in the pressure vessel.
  • the types and structures of the heat source 20 and the cold source 30 will be described below.
  • the heat source 20 may be a natural medium that naturally exists in nature and has thermal energy. It is defined herein as a first natural medium, and may also include mechanical equipment capable of converting low-level thermal energy into high-level thermal energy, such as a heat pump, or may be capable of A substance that generates heat by oxidation reaction; or the heat source may be other available liquid or gas containing waste heat, such as waste liquid or waste gas produced in industrial production or in daily life.
  • the cold source 30 may be a natural medium that naturally exists in nature and has a lower temperature, and is defined herein as a second natural medium, and may also include a mechanical device having a cooling function, such as a refrigeration unit; or, the cold source may be other A cryogenic liquid or gas that is available, such as waste or waste gas produced in industrial manufacturing or in daily life.
  • the heat source 20 includes a heat pump
  • the cold source 30 includes a refrigeration unit to increase the heating efficiency of the heat source 20 and the cooling efficiency of the cold source 30.
  • the heat source 20 includes:
  • the first fluid 20a is not in communication with the working medium
  • the first heat exchanger 21 includes two cavities (not shown) spaced apart from each other, wherein one cavity is in communication with the power circulation loop for the working fluid to flow;
  • the heat pump 22 the output end of the heat pump 22 is in communication with another chamber of the first heat exchanger 21, and the heat pump 22 is for extracting heat of the first fluid 20a and outputting the heat to another chamber for heat with the working medium. exchange.
  • the temperature is lowered and flows out of the heat pump 22, as indicated by reference numeral 20a' in FIG.
  • the heat pump 22 may be any heat pump manufactured by the prior art or a future technology.
  • the first heat exchanger 21 may be any heat exchanger, and may include, for example, a heat pipe type or a tube type or a plate type heat exchanger.
  • the first heat exchanger 21 can be a separate heat exchanger.
  • the first heat exchanger 21 may also serve as a condenser of the heat pump 22, and then the heat pump 22 extracts heat energy from the external first fluid 20a and then transfers it to its own condenser, the first heat exchanger 21, and at the first heat exchange.
  • the inside of the device 21 exchanges heat with the working medium to pressurize the working medium. It should be noted that during normal operation, the temperature of the working fluid in the first heat exchanger 21 should always be higher than its critical temperature, otherwise the working medium may not always be in the supercritical fluid state.
  • the first fluid 20a is a fluid in a natural environment, such as fresh water or ocean water, such as rivers and lakes, streams, or air.
  • the first fluid 20a may be other available liquid or gas containing waste heat, such as waste liquid or waste gas produced in industrial manufacturing or in daily life.
  • the evaporator of the heat pump 22 is preferably a plate heat exchange But it can also be any type of heat exchanger, such as a heat pipe or a tube heat exchanger.
  • the input end of the heat pump 22 may further be provided with a transfer pump 23 for accelerating the flow rate of the first fluid 20a to the heat pump 22.
  • the evaporator of the heat pump 22 is preferably a finned heat exchanger, but may be any heat exchanger such as a heat pipe type or a tube heat exchanger or the like.
  • the input end of the heat pump 22 may be provided with a fan (for example, a turbomachine, a blower, etc., not shown) for speeding up the flow of the first fluid 20a to the heat pump 22.
  • the cold source 30 includes:
  • the second fluid 30a is not in communication with the working medium
  • the second heat exchanger 31 includes two chambers (not shown) spaced apart from each other, wherein one chamber communicates with the power circulation loop for the working fluid to flow;
  • the refrigeration unit 32 the output end of the refrigeration unit 32 is in communication with the other chamber of the second heat exchanger 31, and the refrigeration unit 32 is configured to extract heat transferred from the working medium to the second heat exchanger 31 to cool the working medium.
  • the heat is released to the second fluid 30a, and the heat is carried away by the second fluid 30a.
  • the temperature rises and flows out of the refrigeration unit 32, as indicated by reference numeral 30a' in FIG.
  • the refrigeration unit 32 may be any refrigeration unit manufactured by the prior art or by future technology.
  • the second heat exchanger 31 may be any heat exchanger, and may include, for example, a heat pipe type or a tube type or a plate type heat exchanger.
  • the second heat exchanger 31 can be a separate heat exchanger. Alternatively, the second heat exchanger 31 may also serve as an evaporator of the refrigeration unit 32.
  • the refrigeration unit 32 discharges the heat energy to the external second fluid 30a, and then liquefies the refrigerant directly in the second heat exchanger 31 to evaporate and cool.
  • the working fluid in the two heat exchangers 31 exchanges heat to depressurize the working fluid. Its need It is to be noted that the temperature of the working fluid in the second heat exchanger 31 is always higher than or equal to the critical temperature, otherwise the working medium may not always be in the supercritical fluid state.
  • the second fluid 30a is a fluid in a natural environment, such as fresh water such as rivers and lakes, streams, or marine water, or air.
  • the second fluid 30a may be other available cryogenic liquids or gases, such as waste or exhaust gases produced industrially or in everyday life.
  • the condenser of the refrigeration unit 32 is preferably a fanned finned heat exchanger.
  • the condenser of the refrigeration unit 32 is preferably a plate heat exchanger.
  • the cold source 30 further includes a sprinkler 33 for cooling the condenser of the refrigeration unit 32 to reduce the power required to operate the refrigeration unit 32.
  • the temperature of the first fluid 20a flows out of the heat pump 22
  • the temperature of the second fluid 30a required by the cold source 30 is as low as possible; meanwhile, when the second fluid 30a flows out of the refrigeration unit 32, the temperature rises, and the heat source 20
  • the higher the temperature of the first fluid 20a required is, the better, in some variants, as shown in FIG. 3, the following settings can be made:
  • a first line 41 through which the first fluid 20a flows is disposed between the heat source 20 and the cold source 30.
  • the first line 41 flows into the heat source 20 after the first fluid 20a flows out of the heat source 20, and flows into the cold source as the second fluid 30a.
  • the two fluids 30a may be obtained directly from the first fluid 20a flowing out of the heat pump 22, or the first fluid 20a flowing out of the heat pump 22 may be supplemented by the second fluid 30a; and the second fluid is provided between the heat source 20 and the cold source 30.
  • the present invention utilizes the natural law that the pressure of the supercritical fluid state fluid changes with temperature and varies greatly, and passes the supercritical fluid state working fluid through the heat source 20 and the first fluid 20a (for example, room temperature air or rivers).
  • the liquid such as a lake is subjected to heat exchange, so that a supercharging phenomenon occurs in the sealed first pressure vessel 11, and then passes through the cold source 30 and
  • the second pressure vessel 12, which is in communication with the pressure vessel 11, is cooled to provide power to the driven portion 13 between them by the pressure difference between the first pressure vessel 11 and the second pressure vessel 12, so that the power generating device generates electricity, and the completion is completed.
  • the entire power generation process Moreover, the recirculation of power generation can be achieved by a pressure vessel in which the heat source and the cold source alternate.
  • the pressure difference is formed by heating and cooling the first pressure vessel 11 and the second pressure vessel 12 by the heat pump and the refrigeration unit, and the pressure difference is formed by repeated gasification and reliquefaction using the principle of saturated vapor pressure.
  • the energy efficiency ratio is higher, energy consumption can be significantly saved, and a higher pressure difference can be formed to provide power to the driven portion 13.
  • the working medium since the first fluid 20a and the second fluid 30a of the present invention are mainly directed to the water source of the air and the rivers and lakes, the working medium generally uses a substance which can be in a supercritical state at normal temperature. Scientifically, for such a substance in a supercritical state at normal temperature, its own vaporization potential and liquefaction potential have basically disappeared, and a large amount of energy is consumed in the endless vaporization and liquefaction process;
  • the working fluid adopts a substance that can be in a supercritical state at normal temperature, without the energy loss caused by vaporization potential and liquefaction potential, the energy efficiency ratio of the heat pump and the refrigeration unit which are originally insignificant in the face of vaporization and liquefaction potential
  • the temperature difference and the pressure difference between the first pressure vessel 11 and the second pressure vessel 12 can be artificially increased, thereby improving
  • the ability to supply power to the driven portion 13 can significantly improve the power generation capability when the driven portion 13 is a power generating device, and has good economy and can be used for uninterrupted power generation.
  • the energy efficiency of a heat pump can be as high as about 9.0.
  • the invention utilizes the high energy efficiency ratio of the heat pump to realize the formation of a high pressure zone in the pressure vessel by heating and pressurizing the working fluid, and forming a pressure difference compared with the existing principle of using the saturated vapor pressure, that is, repeated gasification and reliquefaction. Ways can save huge energy consumption.
  • the first pressure vessel 11 and the second pressure vessel 12 are respectively provided with pressure sensors for detecting the internal pressure of the corresponding pressure vessel and outputting the detected pressure signal.
  • reference numeral S1 denotes a pressure sensor provided in the first pressure vessel 11, defined as a first pressure sensor
  • reference numeral S2 denotes a pressure sensor provided in the second pressure vessel 12 as a second pressure sensor.
  • the first pressure sensor S1 and the second pressure sensor S2 may be any type of pressure sensor of the prior art.
  • the supercritical fluid power system of the embodiment of the present invention further includes a control device 50 for receiving a pressure signal output by the first pressure sensor S1 and the second pressure sensor S2, and issuing a first command according to the pressure signal or The second command is for controlling the operation of the heat source 20, the cold source 30, and the power circulation loop 10.
  • the first command from the control device 50 controls the heat source 20 to supply thermal energy to the working fluid in the first pressure vessel 11, and controls the cold source 30 to cool the working fluid in the second pressure vessel 12.
  • the three layers are meant to mean that the first command of the control device 50 can only control the heat source 20 to supply thermal energy to the working fluid in the first pressure vessel 11, or only control the cold source 30 to cool the working fluid in the second pressure vessel 12. Or, while controlling the heat source 20 to supply thermal energy to the working fluid in the first pressure vessel 11, the cold source 30 is also controlled to cool the working fluid in the second pressure vessel 12.
  • the second command from the control device 50 controls the heat source 20 to supply thermal energy to the working fluid in the second pressure vessel 12, and controls the cold source 30 to cool the working fluid in the first pressure vessel 11.
  • the three-layer meaning here includes that the second command of the control device 50 can only control the heat source 20 to supply thermal energy to the working fluid in the second pressure vessel 12, or only the cold source 30 to cool the working fluid in the first pressure vessel 11; Alternatively, while controlling the heat source 20 to supply thermal energy to the working fluid in the second pressure vessel 12, the cold source 30 is also controlled to cool the working fluid in the first pressure vessel 11.
  • Each of the electrical equipment in the power circulation loop 10, such as each control valve, each of the transfer pumps, and each of the heat source 20 and the cold source 30 are wired or at the control device 50.
  • the wireless mode coupling connection is for receiving an instruction issued by the control device 50 and operating according to the received command.
  • the control device 50 issues the first command
  • the heat source 20 and the cold source 30 operate simultaneously.
  • the states of the components in the power circulation circuit 10 are as follows: the first one-way branch 101, the first heating branch 103, and the second cooling branch 106 are turned on (where the conduction of the first one-way branch may still be required) Other conditions are met, such as the pressure difference reaching a set value); the second one-way branch 102, the second heating branch 104, and the first cooling branch 105 are closed. That is, the first control valve V1, the third control valve V3, and the sixth control valve V6 are opened; the second control valve V2, the fourth control valve V4, and the fifth control valve V5 are closed.
  • the working fluid in the first pressure vessel 11 is heated and pressurized by the heat source 20, and the working fluid in the second pressure vessel 12 is lowered in temperature by the action of the cold source 30.
  • the working medium can flow from the first pressure vessel 11 to the second pressure vessel 12 by the first one-way branch 101 to supply power to the driven portion 13.
  • the heat source 20 and the cold source 30 operate simultaneously.
  • the states of the components in the power circulation circuit 10 are as follows: the first one-way branch 101, the first heating branch 103, and the second cooling branch 106 are closed; the second one-way branch 102 and the second heating branch 104 And the first cooling branch 105 is turned on (where the conduction of the second one-way branch may also need to meet other conditions, such as the pressure difference reaches a set value). That is, the first control valve V1, the third control valve V3, and the sixth control valve V6 are closed; the second control valve V2, the fourth control valve V4, and the fifth control valve V5 are opened.
  • the working fluid in the second pressure vessel 12 is heated and pressurized by the action of the heat source 20, and the working fluid in the first pressure vessel 11 is lowered in temperature by the action of the cold source 30.
  • the working medium can flow from the second pressure vessel 12 to the first pressure vessel 11 by the second one-way branch 102 to supply power to the driven portion 13.
  • the hydraulic or pneumatic generator as the driven portion 13 may be combined with the heat pump 22, the refrigeration unit 32, the first heat exchanger 21, the second heat exchanger 31, the first to fourth delivery pumps, and the first to sixth Electrical devices such as control valves and control devices are electrically connected to supply power thereto.
  • the hydraulic or pneumatic generator as the driven portion 13 may be any type of generator of the prior art, including an alternator or a direct current generator.
  • the entire power circulation circuit 10 is vacuumed, and then the working fluid is injected into the power circulation circuit 10, and the working medium is filled in each of the one-way branch, the heating branch, the cooling branch, and the first pressure.
  • the working fluid may be in a gas-liquid mixed state below a critical temperature, or may be directly in a supercritical fluid state.
  • the control device 50 controls each electrical device in the heat source 20, and corresponding control valves and respective transfer pumps in the first heating branch 103 and the second heating branch 104 to open, control each electrical device in the cold source 30, and Each of the first cooling branch 105, the second cooling branch 106, and each of the delivery pumps are closed.
  • the first heat exchanger 21, the heat pump 22, the transfer pump 23, the first transfer pump P1, and the second transfer pump P2 start to operate.
  • the working medium is heated and exchanged with the first fluid 20a by the heat pump 22 and the transfer pump 23, and then the temperature is raised and pressurized (if the initial state of the working medium is gas and liquid) In the mixed state, it starts to heat up and pressurizes after being heated to a critical temperature and above to a supercritical fluid state.
  • the heated and pressurized working medium is continuously supplied to the first pressure vessel 11 and the second pressure vessel through the first heating branch 103 and the second heating branch 104 by the first pump P1 and the second pump P2. 12, the first pressure vessel 11 and the second pressure vessel 12 are replenished to the first heat exchanger 21 through the first heating branch 103 and the second heating branch 104 until all working fluids are completely supercritical fluid state. .
  • the control device 50 controls the heat source 20 and the first heating branch.
  • the road 103 and the second heating branch 104 are closed, and then the control device 50 controls the respective control valves and the fourth delivery pump P4 of the second heat exchanger 31, the refrigeration unit 32, the shower device 33, and the second cooling branch 106 to be turned on.
  • the chamber of the converter 31 is connected to the power circulation circuit 10, wherein the heat of the working medium is exchanged with the second fluid 30a of the outside through the second heat exchanger 31 and the refrigeration unit 32 to achieve cooling and pressure reduction, and then in the fourth delivery pump P4.
  • the second cooling branch 106 is transported to the second pressure vessel 12 by the second cooling branch 106.
  • the working fluid in the second pressure vessel 12 is further filtered by the fourth pump P4 to the second heat through the second cooling branch 106.
  • the exchanger 31 replenishes the working medium until the pressure is no longer lowered or the pressure is less than the preset pressure, or the depressurization rate is less than the preset rate.
  • the control device 50 controls the cold source 30 to be turned off while controlling the respective control valves and the transfer pump in the second cooling branch 106 to be closed, and thus the entire system completes the preparatory work of the initial stage, and in the first pressure vessel 11, the second The working fluid having different pressure differences is stored in the pressure vessel 12, and is ready to push the work of the driven portion 13.
  • the control device 50 controls the heat source 20 and the cold source 30 to be activated, and the first one-way branch 101, the first heating branch 103, and the second cooling branch 106 are turned on, and the transfer pump in each of the conduction branches operates.
  • the high-pressure working fluid in the first pressure vessel 11 starts to enter the driven portion 13 through the first one-way branch 101 and performs power generation, and then enters the second. Pressure vessel 12.
  • the phenomenon that the voltage difference of the first pressure vessel 11 and the second pressure vessel 12 is gradually reduced due to the pressure difference of the first pressure vessel 11 and the second pressure vessel 12 is unstable, and the generator having the voltage stabilization function or the steady current function can be used to solve the problem. Or add a voltage regulator or current regulator outside the power system.
  • the control device 50 switches the opening and closing states of the components: the first one-way branch 101, the first The heating branch 103 and the second cooling branch 106 are disconnected, the pump in each disconnecting branch stops working, the second heating branch 104, the first cooling branch 105 are turned on, and the transfer pump in each conducting branch jobs.
  • the heat input from the heat source 20 through the first heat exchanger 21 starts to heat the second pressure.
  • the working fluid in the force container 12 is pressurized, and the cold source 30 starts to cool the working medium in the first pressure vessel 11 through the second heat exchanger 31, and the driven portion 13 can be temporarily stopped, and the entire device is stopped.
  • the power is supplied externally (it can also be provided by adding a battery inside the entire system).
  • the control device 50 controls the second one-way branch 102 to be turned on, and the high-pressure working medium in the second pressure vessel 12 begins to pass.
  • the second one-way branch 102 enters the driven portion 13 and enters the first pressure vessel 11.
  • the phenomenon that the voltage difference of the second pressure vessel 12 and the first pressure vessel 11 is gradually reduced due to the pressure difference between the second pressure vessel 12 and the first pressure vessel 11 is unstable, and the generator having the voltage stabilization function or the steady current function can be used to solve the problem. Or add a voltage regulator or current regulator outside the power system.
  • the control device 50 switches the opening and closing states of the components: the second one-way branch 102, the second The heating branch 104 and the first cooling branch 105 are disconnected, the transfer pump in each disconnecting branch stops working, the first heating branch 103 and the second cooling branch 106 are turned on, and the transfer pump in each conducting branch jobs.
  • the heat input from the heat source 20 through the first heat exchanger 21 starts to heat the working fluid in the first pressure vessel 11 to be pressurized, and the cold source 30 starts to cool the second pressure vessel through the second heat exchanger 31.
  • the quality is reduced, and the drive unit 13 can be temporarily stopped at this moment, and the power of the entire system needs to be externally supplied (it can also be provided by adding a battery inside the entire system).
  • the pressure of the working fluid in the first pressure vessel 11 no longer rises, and the pressure of the working fluid in the second pressure vessel 12 no longer drops, the system cycles through one cycle and begins to enter the next working cycle. At this point, the power system is normally operated.
  • the heat pump 22 and the refrigeration unit 32 by the action of the heat pump 22 and the refrigeration unit 32, even if there is no temperature difference between the first fluid 20a and the second fluid 30a, at least 10 degrees Celsius or more can be generated between the first pressure vessel 11 and the second pressure vessel 12.
  • the temperature difference (according to the refrigeration parameters provided by BITZER Refrigeration Technology China Co., Ltd.), then the power system can generate at least a pressure difference of 1.65 MPa (A) for power generation, thus making the power system practical.
  • A 1.65 MPa
  • the power system can adopt a higher density (theoretically no upper limit) supercritical carbon dioxide fluid, then The pressure difference caused by each degree of change in Celsius will be even greater. This provides a wide range of possibilities for generating more power with minimal temperature differences.
  • the working medium may be one of the above substances or a combination of plural kinds. In the actual industrial application, it can be selected according to the specific conditions.
  • the basic selection principle is: (1) the substance is always in a supercritical state when operating in the power circulation loop of the present invention, and (2) the greater the pressure difference corresponding to the same temperature difference, the better. .
  • the present invention may have other embodiments.
  • the first pressure vessel 11 and the second pressure vessel 12 are each provided in plurality, and the plurality of first pressure vessels 11 and the plurality of second pressure vessels 12 are in one-to-one correspondence and formed in a plurality of groups.
  • the heat source 20 and the cold source 30 act on at least one set of pressure vessels.
  • the arrangement of each branch and control valve between each group of pressure vessels can be referred to this embodiment.
  • a first line 41 and a second line 42 may be provided between the heat source and the cold source to exchange and circulate the first fluid and the second fluid.
  • the first pressure vessel 11 and the second pressure vessel 12 have two, respectively, forming two sets of pressure vessels.
  • Each group of pressure vessels is equipped with a heat source 20 and a cold source 30 respectively.
  • a heat source 20 and a cold source 30 respectively.
  • another group of heat sources and cold sources can be shut down for rest, which can prolong the service life of the equipment and facilitate the maintenance of the equipment. Maintenance, while also ensuring uninterrupted operation of the entire power circuit 10 .
  • each control valve when switched, it may cause an impact on the stable operation of the hydraulic or pneumatic generator. Therefore, switching between multiple sets of pressure vessels can reduce the impact on the hydraulic or pneumatic generator.
  • the heat source 20 and the cold source 30 act on different sets of pressure vessels in the same period of time, for example, the pressure vessels of each group can be operated in turn to improve work efficiency.
  • all of the pressure vessels may share the heat source 20, the cold source 30, or some of the pressure vessels share the heat source 20 and the cold source 30, if the site and equipment conditions permit.
  • the supercritical fluid power system of the present embodiment can be used in various environments.
  • a special environment with a natural temperature difference as described above, at least one of the heat source and the cold source may be replaced by a natural medium existing in the natural environment.
  • the power system can be applied to indoor and outdoor environments with temperature differences.
  • indoors are generally cooled by air conditioning to make the indoor temperature significantly lower than the outdoor temperature.
  • indoor air can be used as a cold source
  • outdoor air can be used as a heat source
  • the outdoor temperature is opposite. It is lower, and the indoor temperature is generally higher than the outdoor temperature due to heating, then the indoor air can be used as a heat source, and the outdoor air can be used as a cold source.
  • the power system can be applied to the desert environment.
  • the temperature in the air is significantly higher than the temperature of the underground environment at a certain depth.
  • the air can be used as a heat source and the underground environment can be used as a cold source; at night, the temperature in the air is significantly lower than that of the underground environment.
  • Temperature then the air can be used as a source of heat and the underground environment can be used as a heat source.
  • the power system can be applied to the polar environment.
  • polar environments such as the Arctic or the South Pole
  • the temperature on ice is at a very low value, and the temperature of the ice water is not less than zero.
  • the air in the ice environment can be used as a cold source, and the water in the ice environment can be used as a heat source.
  • the heat pump and the refrigeration unit can be further disposed in the heat source and the cold source to improve the operating efficiency of the system.
  • this power system is also suitable for use in an environment without temperature difference.
  • an artificial temperature difference can be generated by the operation of the heat pump and the refrigeration unit, and the power generation ratio of the heat pump and the refrigeration unit can cause a surplus of power generation of the power system, thereby Can output to the outside.
  • This is based on the refrigeration parameters provided by BITZER Refrigeration Technology China Ltd.
  • the power system can also use products with higher energy efficiency ratio to obtain more power output.
  • the present invention can utilize the low-boiling working medium in a supercritical fluid state at normal temperature to have a sensitivity to normal temperature, supplemented by a heat pump and a refrigeration unit to artificially manufacture or expand the temperature difference, thereby generating a sufficient pressure difference for generating electricity.
  • it can effectively extract energy from air, lakes and rivers, and has the performance that can be used all day.
  • the first fluid and the second fluid have temperature differences themselves, it is more advantageous for the power generation of the device of the present invention. Efficiency, and the greater the temperature difference between the first fluid and the second fluid, the better.
  • the air may reach 40 degrees Celsius or above. If there is groundwater, the temperature of the groundwater is much lower than 40 degrees Celsius. The temperature difference between air and groundwater can also generate electricity.
  • the device can be used to provide power for the navigation of the ship to achieve true zero pollution and zero emissions.
  • the embodiment of the invention further provides a control method for any of the above supercritical fluid power systems, the control method comprising:
  • the control heat source 20 supplies thermal energy to the working fluid in the first pressure vessel 11 and the second pressure vessel 12, and converts the working fluid in the power circulation loop into a supercritical fluid, which is the aforementioned system initialization phase;
  • the first pressure vessel 11 and the second pressure vessel 12 are internally housed with a working medium, which may be a gas-liquid mixed state below a critical temperature, or may be directly in a supercritical fluid state.
  • the control device 50 controls the heat source 20 to be turned on, the first heating branch 103, and the second heating branch 104 to be turned on, and the pressure in the first pressure vessel 11 and the second pressure vessel 12 is raised to a preset pressure.
  • the completion of the initialization phase is based on the conversion of all working fluids into a supercritical state.
  • the control heat source 20 continues to supply thermal energy to the working fluid in one of the pressure vessels, and controls the cold source 30 while cooling the working fluid in the other of the pressure vessels to form between the first pressure vessel 11 and the second pressure vessel 12. Pressure difference.
  • the passage between the driven portion and the first pressure vessel 11 and the second pressure vessel 12 is turned on, so that the working medium passes from one pressure vessel to the other pressure vessel through the driven portion 13 flow. That is, in the process of forming the pressure difference, the first pressure vessel 11 and the second pressure vessel 12 are electrically connected, and the working medium flows from the high pressure zone to the low pressure zone at the same time, and the driven portion 13 is driven to operate.
  • the path between the driven portion and the first pressure vessel 11 and the second pressure vessel 12 is disconnected, and when the pressure difference reaches a preset pressure difference, the passage is turned on. That is, in the process of forming the pressure difference, the first pressure vessel 11 and the second pressure vessel 12 are disconnected, the working medium does not flow, and the driven portion 13 is temporarily stopped; when the pressure difference reaches the preset pressure difference, the first The pressure vessel 11 and the second pressure vessel 12 are electrically connected, and the working fluid flows from the high pressure zone to the low pressure zone, and the driven portion 13 is driven to operate.
  • This method is especially suitable for the case where there are multiple sets of pressure vessels.
  • the heat source and the cold source can be alternately applied to the pressure vessels of each group, and the first pressure vessel 11 and the second pressure vessel 12 of each group of pressure vessels are turned on in turn.
  • the power is supplied to the driven portion 13 in turn to achieve uninterrupted operation of the entire system.
  • control method when the working fluid flows from one pressure vessel through the driven portion 13 to the other pressure vessel, the control method further includes:
  • the pressure difference between the first pressure vessel 11 and the second pressure vessel 12 will become smaller and smaller, and the working medium is in two.
  • the flow speed between the two will be slower and slower.
  • the pressure difference is less than the preset difference, it is determined that the power it can provide is insufficient, so it is necessary to re-form the pressure between the first pressure vessel 11 and the second pressure vessel 12. difference. If the heat source continues to act on the original pressure vessel, since the temperature of the original pressure vessel is already at a higher value, then it will continue to heat up and pressurize, which will increase the power consumed by the heat source. Similarly, if the cold source continues to act on the original pressure vessel, The power consumed by the cold source is increased, which will result in a decrease in the ratio of the output power of the entire system to the input power, which cannot meet the requirements of the energy efficiency ratio.
  • the heat source and the cold source exchange the original pressure vessel, and the reverse pressure difference is formed in the first pressure vessel 11 and the second pressure vessel 12, so that the temperature rise and pressure space of each pressure vessel can be fully utilized. Cool down the buck space and increase the energy efficiency ratio.
  • control method may determine whether the pressure source of the heat source or the cold source exchange is required to be controlled by detecting the pressure change rate in each pressure vessel, as follows:
  • the pressure change rate in the first pressure vessel 11 and the second pressure vessel 12 is obtained: when the pressure change rate is less than the preset rate of change, the heat source is controlled. 20. One of the cold sources 30 is stopped, and the other exchanges the pressure vessel to form a reverse pressure difference; or, the heat source 20 and the cold source 30 are controlled to exchange the pressure vessels acting to form a reverse pressure difference. Then, when other conditions are met (for example, when the reverse pressure difference reaches a predetermined value), the working fluid is caused to flow in the opposite direction.
  • the above control method can also detect the actual power consumption (ie, unit time) output from the heat pump 22 and the refrigeration unit 32 to the power circulation system when determining whether it is necessary to control the heat source and the cold source exchange pressure vessel. Power consumption) to judge, details as follows:
  • the power consumption of at least one of the heat pump and the refrigeration unit is acquired; when the power consumption is greater than the preset power, the heat source 20 and the cold source 30 are controlled.
  • the other exchanges the pressure vessel to form a reverse pressure difference; or, the heat source 20 and the cold source 30 are controlled to exchange the pressure vessels acting to form a reverse pressure difference.
  • the working fluid is caused to flow in the opposite direction.

Abstract

超临界流体动力系统,包括填充有超临界流体态工质的动力循环回路(10),动力循环回路(10)包括连通的第一压力容器(11)、第二压力容器(12),以及设于两压力容器之间的被驱动部(13);还包括热源(20)、冷源(30),热源(20)用于向一个压力容器中的工质提供热能,冷源(30)用于对另一个压力容器中的工质进行冷却,以在两压力容器之间形成压力差;工质在压力差的作用下在两压力容器之间流动,并流经被驱动部(13),以向被驱动部(13)提供动力。本动力系统通过对超临界流体态工质的加热、冷却来替代传统的增压泵形成压力差,通过交替热源、冷源作用的压力容器,可以在两者之间循环制造压力差,实现动力的再循环。

Description

超临界流体动力系统及其控制方法
本申请要求2014年11月19日提交中国专利局、申请号为201410662447.5、发明名称为“一种超临界高效发电系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及一种超临界流体动力系统及其控制方法,特别是超临界流体发电系统。
背景技术
众所周知,目前,所谓发电主要是利用发电动力装置将石化燃料(煤、油、天然气)的热能、核能等转换为用以供应国民经济各部门与人民生活之需的电能的生产过程。然而,石化燃料能会产生大量二氧化碳,从而加剧地球温室效应,而核能则面临着原料来源及环境保护的巨大挑战。
为此,本领域技术人员开始逐渐采用太阳能、风能、地热能、水能(包括海洋能)等清洁能源进行发电。然而,太阳能、风能受气候条件影响巨大,而地热能和水能(包括海洋能)同样受到苛刻的地理条件影响而无法大面积推广,而且长期开发海洋能容易造成生态灾难。
因此人类急需一种能广泛采集到且廉价的能量来源,于是无处不在的空气以及海洋、湖泊、江河进入了业内人士的视线。由于地球表面一切能量来源基本都来自于太阳(火山爆发的能量相对弱小,可忽略不计),因此,太阳光线带来的能量无时不刻地加热着空气和海洋、湖泊、江河。如果能把这部分能量提取出来为人类所用,那将不再有二氧化碳的排放问题,也不再有生态灾难之虑以及资源的稀缺问题,更不会再受到气候条件以及地理条件的限制。
为此,业内人士逐渐开发出多种利用空气或液体发电的装置,从 而利用空气或液体热能使容器内液态低沸点工质气化,进而利用其中产生的高压蒸汽通过汽轮机带动发电机发电。然而,目前此类装置基本上都需要通过制冷压缩机和增压泵等实现工质的液化回收,其问题在于,一方面,由于制冷需要面对巨大的液化潜能,因此采用制冷压缩机来液化工质根本不可行;另一方面,即使有现成的冷源但采用增压泵将液态工质重新打入到高压区根本入不敷出,从而造成装置的整体效率过低无法进入实质应用。另外,此类装置对工作条件也有特殊要求,即需要存在温差且温差越大越好,在无温差情况下便无法工作。鉴于上述情况,目前需要对上述这种发电装置进行改进,以提高发电效率并最终实现全天候、全地域、全时段、无温差条件下亦可以发电。
发明内容
本发明解决的问题是现有发电装置的发电效率低且需要温差,无法实现全天候、全地域、全时段、无温差条件下发电。
为解决上述问题,本发明提供一种超临界流体动力系统,包括填充有工质的动力循环回路,所述工质在所述动力循环回路中流动时始终为超临界流体;
所述动力循环回路包括:第一压力容器、第二压力容器,以及被驱动部,所述被驱动部设于所述第一压力容器、第二压力容器之间,并同时与所述第一压力容器、第二压力容器连通;
所述超临界流体动力系统还包括热源、冷源;所述热源用于向所述第一压力容器、第二压力容器的其中一个中的工质提供热能,以增加对应压力容器中的压力,所述热源输出的温度大于所述工质的临界温度;所述冷源用于对所述第一压力容器、第二压力容器的另一个中的工质进行冷却,以减小对应压力容器中的压力;
所述热源、冷源相互配合以在所述第一压力容器、第二压力容器之间形成压力差;所述工质在所述压力差的作用下在所述第一压力容器、第二压力容器之间流动,并流经所述被驱动部,以向所述被驱动 部提供动力。
可选的,所述热源用于交替地向所述第一压力容器、第二压力容器中的工质提供热能;所述冷源用于交替地对所述第一压力容器、第二压力容器中的工质进行冷却。
可选的,所述工质为低沸点工质。
可选的,所述低沸点工质的临界温度为Tc:Tc≤100℃。
可选的,所述低沸点工质的临界温度为Tc:-272℃≤Tc≤100℃。
可选的,所述动力循环回路内的压力大于所述工质的临界压力。
可选的,所述第一压力容器、第二压力容器共用所述热源。
可选的,所述动力循环回路包括第一加热支路、第二加热支路;所述第一加热支路的两端分别与所述第一压力容器连通,所述第二加热支路的两端分别与所述第二压力容器连通;所述第一加热支路、第二加热支路分别经过所述热源。
可选的,所述第一加热支路、第二加热支路中分别设有控制阀,用于控制对应支路在需要热能时导通,在不需要热能时断开。
可选的,所述第一加热支路、第二加热支路中分别设有输送泵,并在对应支路需要热能时工作,在不需要热能时停止。
可选的,其特征在于,所述热源为第一自然介质。
可选的,所述第一压力容器、第二压力容器共用所述冷源。
可选的,所述动力循环回路包括第一冷却支路、第二冷却支路;所述第一冷却支路的两端分别与所述第一压力容器连通,所述第二冷却支路的两端分别与所述第二压力容器连通;所述第一冷却支路、第二冷却支路分别经过所述冷源。
可选的,所述第一冷却支路、第二冷却支路中分别设有控制阀, 用于控制对应支路在需要冷却时导通,在不需要冷却时断开。
可选的,所述第一冷却支路、第二冷却支路中分别设有输送泵,并在对应支路需要冷却时工作,在不需要冷却时停止。
可选的,所述冷源为第二自然介质。
可选的,所述第一压力容器、第二压力容器分别配备所述热源、冷源。
可选的,所述热源、冷源设于对应的压力容器内,或者设于对应的压力容器外。
可选的,所述热源包括:
第一流体,与所述工质不相通;
第一热交换器,包括相互隔开的两个腔,其中一个腔与所述动力循环回路连通,以供所述工质流过;
热泵,所述热泵的输出端与所述第一热交换器的另一腔连通,所述热泵用于提取所述第一流体的热量,并将该热量输出至所述另一腔内,以与所述工质进行热交换。
可选的,所述第一流体为自然环境中的流体或者是其他可获得的含有废热的液体或气体,例如工业制造或者日常生活中产生的废液或废气。
可选的,所述第一流体为液体时,所述热泵的输入端设有输送泵,用于加快所述第一流体向所述热泵流动的速度;
所述第一流体为气体时,所述热泵的输入端设有风扇,用于加快所述第一流体向所述热泵流动的速度。
可选的,所述第一热交换器包括热管或管式热交换器或板式热交换器。
可选的,所述冷源包括:
第二流体,与所述工质不相通;
第二热交换器,包括相互隔开的两个腔,其中一个腔与所述动力循环回路连通,以供所述工质流过;
制冷机组,所述制冷机组的输出端与所述第二热交换器的另一腔连通,所述制冷机组用于提取所述工质的热量,并将该热量释放至所述第二流体。
可选的,所述第二流体为自然环境中的流体或者是其他可获得的低温液体或气体,例如工业制造或者日常生活中产生的废液或废气。
可选的,所述冷源还包括喷淋装置,用于对所述制冷机组的冷凝器进行降温。
可选的,所述第二热交换器包括热管或管式热交换器或板式热交换器。
可选的,当所述热源包括第一流体以及用于提取所述第一流体的热量的热泵时:所述热源和冷源之间设有供所述第一流体流过的第一管路,所述第一管路供所述第一流体流出所述热源后、作为所述第二流体流入所述冷源。
可选的,所述热源和冷源之间设有供所述第二流体流过的第二管路,所述第二管路供所述第二流体流出所述冷源后、作为所述第一流体的补充流入所述热源。
可选的,所述被驱动部具有供所述工质通过的入口和出口;所述第一压力容器、所述被驱动部、所述第二压力容器三者分别通过第一单向支路、第二单向支路连通,每一单向支路供所述工质从所述入口向所述出口流通;所述工质根据所述压力差交替地在所述第一单向支路、第二单向支路中通过。
可选的,所述第一单向支路、第二单向支路中分别设有控制阀,以控制对应支路的通断。
可选的,所述被驱动器为发电装置或动力传递装置。
可选的,所述第一压力容器、第二压力容器中分别设有压力传感器,用于检测对应压力容器的内部压力,并将检测到的压力信号输出。
可选的,还包括控制装置,用于接收所述压力传感器输出的所述压力信号,并根据所述压力信号发出第一指令或第二指令;
所述第一指令控制所述热源向所述第一压力容器内的工质提供热能,控制所述冷源对所述第二压力容器内的工质进行冷却;
所述第二指令控制所述热源向所述第二压力容器内的工质提供热能,控制所述冷源对所述第一压力容器内的工质进行冷却。
可选的,所述第一压力容器、第二压力容器分别具有多个,多个所述第一压力容器与多个第二压力容器一一对应并形成多组;同一时间段,所述热源、所述冷源作用于至少一组压力容器。
可选的,不同时间段,所述热源、所述冷源作用于不同组的压力容器。
可选的,所述低沸点工质包括:氢气、氮气、氧气、臭氧、二氧化碳、一氧化碳、二氧化氮、氯化氢、硫化氢、溴气、氨气、甲烷、乙烷、乙烯、乙炔、氯气、氦气、氖气、氩气、氪气、氙气、氡气、氘气、一氧化氮、一氧化二氮、氟气、氟化硼、乙硼烷、空气。
本发明实施例还提供一种上述任一项所述超临界流体动力系统的控制方法,其包括:
初始时刻,控制所述热源向所述第一压力容器、所述第二压力容器中的工质提供热能,将所述动力循环回路中的工质转化为超临界流体;
获取所述第一压力容器、第二压力容器中的升压速率,或者获取所述第一压力容器、第二压力容器中的压力,当所述升压速率小于预设速率时,或所述压力大于预设压力时:
控制所述热源继续向其中一个压力容器中的工质提供热能,或者控制所述冷源对另一个压力容器中的工质进行冷却,以在所述第一压力容器、第二压力容器之间形成压力差;
或者,控制所述热源继续向所作用的压力容器中的工质提供热能,并且控制所述冷源同时对另一个压力容器中的工质进行冷却,以在所述第一压力容器、第二压力容器之间形成压力差。
可选的,在形成所述压力差的过程中,所述被驱动部与所述第一压力容器、第二压力容器之间的通路导通,使得所述工质从一个压力容器经过所述被驱动部向另一个压力容器流动;
或者,在形成所述压力差的过程中,所述被驱动部与所述第一压力容器、第二压力容器之间的通路断开,当所述压力差达到预设压力差时,所述通路导通。
可选的,当所述工质从一个压力容器经过所述被驱动部向另一个压力容器流动时,所述控制方法还包括:
获取所述第一压力容器内的第一压力,以及所述第二压力容器内的第二压力;
比较所述第一压力和所述第二压力的差值:当所述差值小于预设差值时,控制所述热源、冷源中的一个停止,另一个交换所作用的压力容器,以形成反向压力差;或者,控制所述热源、冷源相互交换所作用的压力容器,以形成反向压力差。
可选的,当所述工质从一个压力容器经过所述被驱动部向另一个压力容器流动时,所述控制方法还包括:
获取所述第一压力容器、第二压力容器内的压力变化率:所述压 力变化率小于预设变化率时,控制所述热源、冷源中的一个停止,另一个交换所作用的压力容器,以形成反向压力差;或者,控制所述热源、冷源相互交换所作用的压力容器,以形成反向压力差。
可选的,所述热源包括热泵,所述冷源包括制冷机组,当所述工质从一个压力容器经过所述被驱动部向另一个压力容器流动时,所述控制方法还包括:
获取所述热泵、所述制冷机组中至少一个的实际的消耗功率;当所述消耗功率大于预设功率时,控制所述热源、冷源中的一个停止,另一个交换所作用的压力容器,以形成反向压力差;或者,控制所述热源、冷源相互交换所作用的压力容器,以形成反向压力差。
与现有技术相比,本发明的技术方案具有以下优点:
本发明的超临界流体动力系统中,动力循环回路包括相互连通的第一压力容器、第二压力容器,两压力容器之间可经过被驱动部相互连通,每一压力容器中的超临界流体态的工质可通过热源加热以升温增压,或通过冷源冷却以降温降压。本发明利用超临界流体态工质的压力随着温度的变化而变化且相差巨大的自然规律,将超临界流体态工质与热源进行热交换,对一个压力容器中进行升温增压,而后通过冷源对另一个压力容器进行降温降压,从而在第一压力容器、第二压力容器之间形成压力差,并利用该压力差使工质在两压力容器之间流动并流过被驱动部,以向被驱动部提供动力,以供发电或其他所需。
本动力系统通过对第一压力容器和第二压力容器中工质的加热、冷却以形成压力差,通过交替热源、冷源作用的压力容器来替代传统增压泵,可以在两者之间循环制造压力差,实现动力的再循环。
进一步地,热源采用具有高能效比的热泵,冷源采用具有高能效比的制冷机组,从而节省能耗,同时形成更高的压力差以提供更大的动力。由于采用了热泵、制冷机组和超临界流体技术相结合的方式,克服了增压与降压两端可能存在的温差不大或者气温、水温可能发生 变化等不利条件因素影响,与现有技术相比,本动力系统不受任何外界环境影响,可以全天候不间断提供动力。
附图说明
图1是本发明实施例中超临界流体动力系统的结构框图;
图2是本发明实施例中控制装置与各电气设备的结构框图;
图3是本发明一个变形例中超临界流体动力系统的结构框图;
图4是本发明另一个变形例中超临界流体动力系统的结构框图;
图5是本发明又一个变形例中超临界流体动力系统的结构框图。
具体实施方式
为了解决上述现有技术存在的问题,本发明旨在提供一种超临界流体动力循环系统,特别是一种超临界流体发电系统,其中的工质优选为在常温下就能处于超临界流体态的低沸点工质。
为使本发明的上述目的、特征和优点能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。
本发明实施例提供一种超临界流体动力系统,参照图1所示,包括填充有工质的动力循环回路10,工质在动力循环回路10中流动时始终为超临界流体。也就是说,当工质在动力循环回路10中运转时,其应始终呈超临界流体态。
这里先对名词“超临界流体”以及“工质”做简单解释。
超临界流体,是指压力和温度同时超过临界压力(pc)和临界温度(Tc)的流体叫超临界流体(supercritical fluid,简称SCF)。物质要根据温度和压力的不同,呈现出液体、气体、固体等状态变化。在温度高于某一数值时,任何大的压力均不能使该物质由气相转化为液相,此时的温度即被称之为临界温度Tc;而在临界温度时,气体能 被液化的最低压力称为临界压力Pc。在临界点附近,会出现流体的密度、粘度、溶解度、热容量、介电常数等所有流体的物性发生急剧变化的现象。当物质所处的温度高于临界温度,压力大于临界压力时,该物质处于超临界状态。
工质,指的是能够实现热能和机械能相互转化的媒介物质。
继续参照图1,动力循环回路10包括:第一压力容器11、第二压力容器12,以及被驱动部13,被驱动部13设于第一压力容器11、第二压力容器12之间,并同时与第一压力容器11、第二压力容器12连通。
本发明的超临界流体动力系统还包括热源20、冷源30,分别用于升高或降低第一压力容器11、第二压力容器12中工质的温度和压力。热源20、冷源30相互配合,使得第一压力容器11、第二压力容器12中的一个增压、一个降压,以在第一压力容器11、第二压力容器12之间形成压力差。工质在压力差的作用下在第一压力容器11、第二压力容器12之间流动,并流经被驱动部13,以向被驱动部13提供动力。
更具体的,热源20用于向第一压力容器11、第二压力容器12的其中一个中的工质提供热能,以增加对应压力容器中的压力,热源20输出的温度大于工质的临界温度,以将工质加热至使其温度超过临界温度,使得对应压力容器中的压力升高。冷源30用于对第一压力容器11、第二压力容器12的另一个中的工质进行冷却,以减小对应压力容器中的压力。
从上述描述可以看出:(1)热源20的作用是增压,增加对应压力容器中工质的压力,在热源20的作用下,动力循环回路10中的工质将呈现为超临界流体态,随着热源20的持续作用,对应压力容器中工质的压力将持续升高,直至工质的温度与热源20的温度相等。在系统正常运行时(不包括系统初始化阶段),动力循环回路10内的 最低工作压力大于工质的临界压力,此处动力循环回路10内的最低工作压力可以是预先给定的,也可以是由热源20对工质进行加热后达到的,这意味着,第一压力容器11、第二压力容器12以及各个连接管路的抗压能力都必须高于工质的临界压力。(2)冷源30的作用是降压,降低对应压力容器中工质的压力,随冷源30的持续作用,对应压力容器中工质的压力将持续降低,直至工质的温度与冷源30的温度相等。
工质在压力差的作用下从一个压力容器流向另一个压力容器并流经被驱动部13时,形成用于驱动被驱动部13工作的动力。其中,被驱动部13可以是动力转化装置或者动力传递装置。动力转化装置可以是发电装置,例如液压发电机或气压发电机等。动力传递装置可以是任何一种用于传递动力的装置,例如当超临界流体动力系统用于船舶时,动力传递装置可以是螺旋桨。
本实施例中,被驱动部13设置为发电装置,使得超临界流体动力系统形成为超临界流体发电系统。当超临界流体态的工质的密度接近液体时,发电装置优选为液压发电机。当超临界流体态的工质的密度接近气体时,发电装置优选为气压发电机,并且其中至少包括汽轮机。
由此可见,本发明利用超临界流体态工质的压力随着温度的变化而变化且相差巨大的自然规律,将超临界流体态工质与热源进行热交换,对一个压力容器中进行升温增压,而后通过冷源对另一个压力容器进行降温降压,从而在第一压力容器、第二压力容器之间形成压力差,并利用该压力差使工质在两压力容器之间流动并流过被驱动部,以向被驱动部提供动力。
同时,通过对第一压力容器和第二压力容器的加热、冷却以形成压力差,可以节约能耗;通过交替热源、冷源作用的压力容器,可以在两者之间循环制造压力差,来替代传统增压泵的功能,实现动力的再循环。
如图1,作为被驱动部13的液压或气压发电机具有供工质流入的入口、供工质流出的出口。如图1,当工质流经液压或气压发电机时,工质在液压或气压发电机中的流向是单一的,也就是说,工质必须始终从液压或气压发电机的入口流入、从出口流出。那么,在第一压力容器11、被驱动部13、第二压力容器12之间,则需要有两条单向支路。如果被驱动部13中设有换向装置,或者被驱动部13本身不区分入口和出口,则在第一压力容器11、第二压力容器12之间只设置一条通路,该通路经过被驱动部。
具体地,第一压力容器11、被驱动部13、第二压力容器12三者分别通过第一单向支路101、第二单向支路102连通,每一单向支路供工质从液压或气压发电机的入口向出口流通。
工质根据压力差交替地在第一单向支路101、第二单向支路102中通过:当第一压力容器11的压力大于第二压力容器12的压力时,工质从第一压力容器11经由第一单向支路101流向第二压力容器12;反之,则工质从第二压力容器12经由第二单向支路102流向第一压力容器11。也就是说,同一时间段,工质只能在其中一条的单向支路中通过,不能同时通过两条单向支路。当被驱动部13不工作或者工作条件不满足时,工质在任一单向支路中通过。
其中,第一单向支路101、第二单向支路102中分别设有控制阀,以控制对应支路的通断。定义第一单向支路101中的控制阀为第一控制阀V1、第二单向支路102中的控制阀为第二控制阀V2。当第一控制阀V1打开时,第一单向支路101导通、当第二控制阀V2打开时,第二单向支路102导通。由于第一单向支路101、第二单向支路102交替通断,则第一控制阀V1、第二控制阀V2不同时开启。也就是说,第一控制阀V1、第二控制阀V2中的一个开启时,另一个不开启。当不需要被驱动部13工作或者不满足工作条件时,第一控制阀V1、第二控制阀V2均关闭。
其中,第一控制阀V1、第二控制阀V2可以是能够控制管路单 向导通的单向阀或者其他任何一种能够控制管路通断的阀门。并且,第一控制阀V1、第二控制阀V2的数量可以是一个或者多个,本实施例中,第一控制阀V1、第二控制阀V2分别有两个,其中两个第一控制阀V1分别设于第一单向支路101在第一压力容器11与被驱动部13之间的部分、以及被驱动部13和第二压力容器12之间的部分中。两个第二控制阀V2分别设于第二单向支路102在第一压力容器11与被驱动部13之间的部分、以及被驱动部13和第二压力容器12之间的部分中。
需要注意的是,如前所述,“工质在动力循环回路10中流动时始终为超临界流体”,这里指的是整个超临界流体动力系统处于正常运行时,工质始终呈超临界流体态,并不包括系统在初始化阶段或停止状态下工质的状态。在初始化阶段或停止状态时工质可以低于临界温度和临界压力,即呈非超临界流体态。
还需要注意,工质可以在热源20的作用下成为超临界流体,在冷源30的作用下,对应压力容器中工质的温度和压力都将降低,但不宜降至临界温度和临界压力以下,冷源30所作用的压力容器中的工质仍然为超临界流体,以保证超临界流体动力系统在工作时,动力循环回路10中的工质始终呈超临界流体态。
其中,对于动力循环回路10中的工质,理论上来说,只要动力循环回路10以及热源20的条件能够将工质的温度和压力升高至临界温度和临界压力之上、工质可以为任何工质。但是考虑到能效比问题,本实施例中动力循环回路10中的工质优先选用低沸点工质。其中低沸点工质的临界温度为Tc:Tc≤100℃。优先的,低沸点工质的临界温度为Tc:-272℃≤Tc≤100℃,低沸点工质可以是满足该温度条件的任何气体,例如氢气、氮气、氧气、臭氧、二氧化碳、一氧化碳、二氧化氮、氯化氢、硫化氢、溴气、氨气、甲烷、乙烷、乙烯、乙炔、氯气、氦气、氖气、氩气、氪气、氙气、氡气、氘气、一氧化氮、一氧化二氮、氟气、氟化硼、乙硼烷、空气等。最优选的,低沸点的工 质在常温下就能处于超临界状态,即其临界温度小于常温的温度。
进一步地,在系统正常运行的情况下,热源20用于交替地向第一压力容器11、第二压力容器12中的工质提供热能;冷源30用于交替地对第一压力容器11、第二压力容器12中的工质进行冷却。也就是说,系统正常运行时(不包括系统初始化阶段),在同一时间段,无论是热源20还是冷源30,都不能同时作用于第一压力容器11、第二压力容器12,而只能作用于其中之一。
如图1所示,如果热源20作用于第一压力容器11,则冷源30只能作用于第二压力容器12;反之,如果热源20作用于第二压力容器12,则冷源30只能作用于第一压力容器11。这样,第一压力容器11、第二压力容器12中,一个中的压力升高、另一个中的压力降低,形成压力差,那么,当被驱动部13与第一压力容器11、第二压力容器12之间的通道打开时,工质就能在压力差的作用下经过被驱动部13从高压区域向低压区域流动,以向被驱动部13提供动力,驱动其中的液压或气压发电机发电。
本实施例中,热源20、冷源30同时作用于不同的压力容器,可以在较短的时间内在第一、第二压力容器之间形成较大的压力差,以向作为被驱动部13的液压或气压发电机提供较大的动力,满足较大的动力需求。
在其他变形例中,根据所需动力大小的不同,例如被驱动部13为其他动力传递装置,也可以设置:当热源20作用于其中一个压力容器时,冷源30不工作,仅凭借其中一个压力容器中压力的升高来形成压力差,这种形式尤其适用于当第一、第二压力容器中的压力均处于较低值、且具有较高的升压速率的情况;或者,也可以设置:当冷源30作用于其中一个压力容器时,热源20不工作,仅凭借其中一个压力容器中压力的降低来形成压力差,这种形式尤其适用于当第一、第二压力容器中的压力均处于较高值、且具有较高的降压速率的情况。
其中,每一压力容器可以各自配备热源20、冷源30(图4),或者,第一压力容器11、第二压力容器12共用热源20或共用冷源30,或者同时共用热源20和冷源30。
本实施例中,采用共用热源20和冷源30的方式。
进一步地,继续参照图1,动力循环回路10包括第一加热支路103、第二加热支路104。第一加热支路103的两端分别与第一压力容器11连通,第二加热支路104的两端分别与第二压力容器12连通。第一加热支路103、第二加热支路104分别经过热源20。
其中,工质也填充于第一加热支路103、第二加热支路104中,第一加热支路103中的工质可与第一压力容器11中的工质进行交换,第二加热支路104中的工质可与第二压力容器12中的工质进行交换。第一加热支路103经过热源20后,其中的工质温度升高、压力升高,并朝向压力相对较低的第一压力容器11流动,以与第一压力容器11中的工质完成交换,最终使得第一压力容器11中工质的温度和压力升高;同样的,第二加热支路104经过热源20后与第二压力容器12中的工质完成交换,最终使得第二压力容器12中的温度和压力升高。
超临界流体动力系统正常运行时,第一加热支路103、第二加热支路104不同时导通。第一加热支路103、第二加热支路104中分别设有控制阀,用于控制对应支路在需要热能时导通,在不需要热能时断开。
如图1,定义第一加热支路103中的控制阀为第三控制阀V3、第二加热支路104中的控制阀为第四控制阀V4。当第三控制阀V3打开时,第一加热支路103导通;当第四控制阀V4打开时,第二加热支路104导通。由于热源20交替作用于第一压力容器11、第二压力容器12,则第三控制阀V3、第四控制阀V4不同时开启。也就是说,第三控制阀V3、第四控制阀V4中的一个开启时,另一个不开启。
其中,第三控制阀V3、第四控制阀V4可以任何一种能够控制管路通断的阀门。并且,第三控制阀V3、第四控制阀V4的数量可以是一个或者多个。本实施例中,第三控制阀V3、第四控制阀V4分别有两个,其中两个第三控制阀V3分别设于第一加热支路103在第一压力容器11流向热源20的部分、以及在热源20流向第一压力容器11的部分中。两个第四控制阀V4分别设于第二加热支路104在第二压力容器12流向热源20的部分、以及在热源20流向第二压力容器12的部分中。
进一步地,第一加热支路103、第二加热支路104中分别设有输送泵,并在对应支路需要热能时工作,在不需要热能时停止。
具体地,如图1,定义第一加热支路103中的输送泵为第一输送泵P1、第二加热支路104中的输送泵为第二输送泵P2。第一输送泵P1、第二输送泵P2能够分别提高对应加热支路中工质的流动速度,以加快对应压力容器中工质的升温、升压速率。
由于超临界流体动力系统正常运行时,第一加热支路103、第二加热支路104不同时导通,则第一输送泵P1、第二输送泵P2也不同时工作。
其中,第一输送泵P1、第二输送泵P2可以是现有技术的任何一种输送泵。
如前所述,第一压力容器11、第二压力容器12共用冷源30。如图1,动力循环回路10包括第一冷却支路105、第二冷却支路106。第一冷却支路105的两端分别与第一压力容器11连通,第二冷却支路106的两端分别与第二压力容器12连通;第一冷却支路105、第二冷却支路106分别经过冷源30。
其中,工质也填充于第一冷却支路105、第二冷却支路106中,第一冷却支路105中的工质可与第一压力容器11中的工质进行交换,第二冷却支路106中的工质可与第二压力容器12中的工质进行交换。 第一冷却支路105经过冷源30后,其中的工质温度降低、压力降低,并与压力相对较高的第一压力容器11之间形成工质的相对流动,以与第一压力容器11中的工质完成交换,最终使得第一压力容器11中工质的温度和压力降低;同样的,第二冷却支路106经过冷源30后与第二压力容器12中的工质完成交换,最终使得第二压力容器12中的温度和压力降低。
超临界流体动力系统正常运行时,第一冷却支路105、第二冷却支路106不同时导通。第一冷却支路105、第二冷却支路106中分别设有控制阀,用于控制对应支路在需要冷却时导通,在不需要冷却时断开。
如图1,定义第一冷却支路105中的控制阀为第五控制阀V5、第二冷却支路106中的控制阀为第六控制阀V6。当第五控制阀V5打开时,第一冷却支路105导通;当第六控制阀V6打开时,第二冷却支路106导通。由于冷源30交替作用于第一压力容器11、第二压力容器12,则第五控制阀V5、第六控制阀V5不同时开启。也就是说,第五控制阀V5、第六控制阀V6中的一个开启时,另一个不开启。
其中,第五控制阀V5、第六控制阀V6可以任何一种能够控制管路通断的阀门。并且,第五控制阀V5、第六控制阀V6的数量可以是一个或者多个。本实施例中,第五控制阀V5、第六控制阀V6分别有两个,其中两个第五控制阀V5分别设于第一冷却支路105在第一压力容器11流向冷源30的部分、以及在冷源30流向第一压力容器11的部分中。两个第六控制阀V6分别设于第二冷却支路106在第二压力容器12流向冷源30的部分、以及在冷源30流向第二压力容器12的部分中。
本实施例中所有的控制阀,包括第一至第六控制阀,均可以为电磁阀或者气动阀。当选用气动阀时,必须配备能够产生高压气体的装置,以推动控制阀的开闭。其中,电磁阀所需电力以及产生高压气体 的装置的电力则可以由作为被驱动部13的发电装置提供。
进一步地,第一冷却支路105、第二冷却支路106中分别设有输送泵,并在对应支路需要冷却时工作,在不需要冷却时停止。
具体地,如图1,定义第一冷却支路105中的输送泵为第三输送泵P3、第二冷却支路106中的输送泵为第四输送泵P4。第三输送泵P3、第四输送泵P4能够分别提高对应冷却支路中工质的流动速度,以加快对应压力容器中工质的降温、降压速率。
由于超临界流体动力系统正常运行时,第一冷却支路105、第二冷却支路106不同时导通,则第三输送泵P3、第四输送泵P4也不同时工作。
其中,第三输送泵P3、第四输送泵P4可以是现有技术的任何一种输送泵。
在其他变形例中,第一压力容器11、第二压力容器12也可以分别配备热源20、冷源30。其中热源20、冷源30可以设于对应的压力容器内,或者设于对应的压力容器外。但需要能够满足对压力容器中工质的升温增压或降温降压要求。
下面介绍热源20、冷源30的种类和结构。
其中,热源20可以是自然界中自然存在的本身具有热能的自然介质,此处定义为第一自然介质,也可以包括能够将低位热能转化为高位热能的机械设备,例如热泵,或者也可以是能够发生氧化反应产生热量的物质;或者热源也可以是其他可获得的含有废热的液体或气体,例如工业制造或者日常生活中产生的废液或废气。
冷源30可以是自然界中自然存在的本身具有较低温度的自然介质,此处定义为第二自然介质,也可以包括有制冷功能的机械设备,例如制冷机组;或者,冷源也可以是其他可获得的低温液体或气体,例如工业制造或者日常生活中产生的废液或废气。
本实施例中,热源20包括热泵、冷源30包括制冷机组,以提高热源20的加热效率,以及冷源30的冷却效率。具体介绍如下。
(1)热源
热源20包括:
第一流体20a,与工质不相通;
第一热交换器21,包括相互隔开的两个腔(图中未示出),其中一个腔与动力循环回路连通,以供工质流过;
热泵22,热泵22的输出端与第一热交换器21的另一腔连通,热泵22用于提取第一流体20a的热量,并将该热量输出至另一腔内,以与工质进行热交换。同时,第一流体20a被提取热量后,温度降低、并从热泵22流出,如图1中标号20a'所示。
其中,热泵22可以是现有技术或将来技术制造的任何一种热泵。
其中,第一热交换器21可以为任一种热交换器,例如可以包括热管式或者管式或者板式热交换器。
第一热交换器21可以是独立的热交换器。或者,第一热交换器21也可以兼作热泵22的冷凝器,那么热泵22从外界的第一流体20a提取热能后转移至自身的冷凝器即第一热交换器21,并在第一热交换器21内与工质进行热交换,以使工质增压。需要注意的是,在正常工作时,在第一热交换器21内的工质的温度应始终高于其临界温度,否则工质就可能无法始终处于超临界流体态。
第一流体20a为自然环境中的流体,例如江河湖泊、溪流等淡水或者海洋水体,或者空气。或者,第一流体20a也可以是其他可获得的含有废热的液体或气体,例如工业制造或者日常生活中产生的废液或废气。
当第一流体20a为液体时,热泵22的蒸发器优选为板式热交换 器,但也可以为任一种热交换器,例如热管式或者管式热交换器等。此时如图1,第一流体20a为液体时,热泵22的输入端还可以设有输送泵23,用于加快第一流体20a向热泵22流动的速度。
当第一流体20a为空气或其他气体时,热泵22的蒸发器优选为翅片式热交换器,但也可以为任一种热交换器,例如热管式或者管式热交换器等。第一流体20a为气体时,热泵22的输入端还可以设有风扇(例如叶轮机、鼓风机等,图中未示出),用于加快第一流体20a向热泵22流动的速度。
(2)冷源
冷源30包括:
第二流体30a,与工质不相通;
第二热交换器31,包括相互隔开的两个腔(图中未示出),其中一个腔与动力循环回路连通,以供工质流过;
制冷机组32,制冷机组32的输出端与第二热交换器31的另一腔连通,制冷机组32用于提取工质散发至第二热交换器31中的热量,以对工质进行制冷,并将该热量释放至第二流体30a,由第二流体30a将热量带走。同时,第二流体30a吸收了热量后,温度升高、并从制冷机组32流出,如图1中标号30a'所示。
其中,制冷机组32可以是现有技术或将来技术制造的任何一种制冷机组。
其中,第二热交换器31可以为任一种热交换器,例如可以包括热管式或者管式或者板式热交换器。
第二热交换器31可以为独立的热交换器。或者,第二热交换器31也可以兼作制冷机组32的蒸发器,制冷机组32向外界的第二流体30a排出热能后将液化的冷媒直接在第二热交换器31内蒸发制冷,通过与第二热交换器31内的工质进行热交换,以使工质降压。其需 要注意的是,在第二热交换器31中的工质的温度始终高于或等于临界温度,否则工质就可能无法始终处于超临界流体态。
第二流体30a为自然环境中的流体,例如江河湖泊、溪流等淡水或者海洋水体,或者空气。或者,第二流体30a也可以是其他可获得的低温液体或气体,例如工业制造或者日常生活中产生的废液或废气。
当第二流体30a为空气或其他气体时,制冷机组32的冷凝器优选为带风扇的翅片式热交换器。当第二流体30a为液体时,制冷机组32的冷凝器优选为板式热交换器。
如图1,冷源30还包括喷淋装置33,用于对制冷机组32的冷凝器进行降温,以降低制冷机组32工作时所需的功率。
由于第一流体20a流出热泵22时、温度降低,而冷源30所需的第二流体30a的温度越低越好;同时,由于第二流体30a流出制冷机组32时、温度升高,而热源20所需的第一流体20a的温度越高越好,则在一些变形例中,如图3所示,可以作如下设置:
热源20和冷源30之间设置供第一流体20a流过的第一管路41,第一管路41供第一流体20a流出热源20后、作为第二流体30a流入冷源,其中,第二流体30a可以直接从热泵22流出的第一流体20a处获得,或者热泵22流出的第一流体20a可以作为第二流体30a的补充;同时热源20和冷源30之间设有供第二流体30a流过的第二管路42,第二管路42供第二流体30a流出冷源30后、作为第一流体20a的补充流入热源20。这样可以减小热泵和制冷机组的工作负荷,提高整个系统工作的能效比。
由此可见,本发明利用超临界流体态工质的压力随着温度的变化而变化且相差巨大的自然规律,将超临界流体态工质通过热源20与第一流体20a(例如常温空气或江河湖泊等液体)进行热交换,从而在密闭的第一压力容器11中发生增压现象,而后通过冷源30对与第 一压力容器11连通的第二压力容器12进行降温,从而利用第一压力容器11与第二压力容器12之间的压力差向它们之间的被驱动部13提供动力,使得发电装置发电,完成了整个发电过程。并且,通过热源、冷源交替作用的压力容器,可以实现发电的再循环。
本发明中,通过利用热泵、制冷机组对第一压力容器11和第二压力容器12的加热、冷却来形成压力差的方式,与传统利用饱和蒸气压原理即反复气化再液化来形成压力差的方式相比,能效比更高,能显著节省能耗,同时能够形成更高的压力差来向被驱动部13提供动力。
这里需要说明三点内容:
第一,由于本发明的第一流体20a、第二流体30a主要针对空气和江河湖海的水源,故工质一般选用在常温下就能处于超临界状态的物质。科学原理上,对于这种常温下处于超临界状态的物质来说,其自身汽化潜能和液化潜能已经基本消失,可避免无休止的汽化和液化过程中耗费大量的能量;
第二,由于工质采用在常温下就能够处于超临界状态的物质,没有了汽化潜能和液化潜带来的能量损耗,使得原本在汽化和液化潜能面前显得微不足道的热泵和制冷机组的能效比有了用武之地,在热源20中配置热泵22,以及在冷源30中配置制冷机组32,可以人为增加在第一压力容器11、第二压力容器12之间的温差和压力差,从而提升向被驱动部13提供动力的能力,当被驱动部13为发电装置时,可以显著提高其发电能力,同时具备良好的经济性,可以用于不间断发电。
第三,当前技术水平下,热泵的能效比能够高至约9.0。本发明利用热泵的高能效比,通过对工质进行加热增压的方式来实现在压力容器中形成高压区,相比于现有的利用饱和蒸气压原理即反复气化再液化形成压差的方式,可节省巨大能耗。
进一步地,本实施例中,第一压力容器11、第二压力容器12中分别设有压力传感器,用于检测对应压力容器的内部压力,并将检测到的压力信号输出。如图1,标号S1表示设于第一压力容器11中的压力传感器,定义为第一压力传感器,标号S2表示设于第二压力容器12中的压力传感器定义为第二压力传感器。
其中,第一压力传感器S1、第二压力传感器S2可以是现有技术的任何一种压力传感器。
结合图2所示,本发明实施例的超临界流体动力系统还包括控制装置50,用于接收第一压力传感器S1、第二压力传感器S2输出的压力信号,并根据压力信号发出第一指令或第二指令,用于控制热源20、冷源30以及动力循环回路10的工作。
控制装置50发出的第一指令控制热源20向第一压力容器11内的工质提供热能,控制冷源30对第二压力容器12内的工质进行冷却。这里包含三层意思:控制装置50的第一指令可以只控制热源20向第一压力容器11内的工质提供热能,或者只控制控制冷源30对第二压力容器12内的工质进行冷却;或者在控制热源20向第一压力容器11内的工质提供热能的同时,还控制冷源30对第二压力容器12内的工质进行冷却。
控制装置50发出的第二指令控制热源20向第二压力容器12内的工质提供热能,控制冷源30对第一压力容器11内的工质进行冷却。这里包含三层意思:控制装置50的第二指令可以只控制热源20向第二压力容器12内的工质提供热能,或者只控制冷源30对第一压力容器11内的工质进行冷却;或者在控制热源20向第二压力容器12内的工质提供热能的同时,还控制冷源30对第一压力容器11内的工质进行冷却。
动力循环回路10中的各个电气设备如各个控制阀、各个输送泵,以及热源20、冷源30中的各个电气设备均于控制装置50以有线或 者无线方式耦合连接,用于接收控制装置50发出的指令,并根据收到的指令进行工作。
本实施例中,控制装置50发出第一指令时,热源20、冷源30同时工作。此时动力循环回路10中各部件的状态如下:第一单向支路101、第一加热支路103以及第二冷却支路106导通(其中第一单向支路的导通可能还需满足其他条件,例如压力差达到设定值);第二单向支路102、第二加热支路104以及第一冷却支路105关闭。即:第一控制阀V1、第三控制阀V3、第六控制阀V6开启;第二控制阀V2、第四控制阀V4、第五控制阀V5关闭。此时,第一压力容器11中的工质在热源20的作用下升温增压,第二压力容器12中的工质在冷源30的作用下降温降压。从而,工质可由第一单向支路101从第一压力容器11流向第二压力容器12,以向被驱动部13提供动力。
控制装置50发出第二指令时,热源20、冷源30同时工作。此时动力循环回路10中各部件的状态如下:第一单向支路101、第一加热支路103以及第二冷却支路106关闭;第二单向支路102、第二加热支路104以及第一冷却支路105导通(其中第二单向支路的导通可能还需满足其他条件,例如压力差达到设定值)。即:第一控制阀V1、第三控制阀V3、第六控制阀V6关闭;第二控制阀V2、第四控制阀V4、第五控制阀V5开启。此时,第二压力容器12中的工质在热源20的作用下升温增压,第一压力容器11中的工质在冷源30的作用下降温降压。从而,工质可由第二单向支路102从第二压力容器12流向第一压力容器11,以向被驱动部13提供动力。
其中,作为被驱动部13的液压或气压发电机还可以与热泵22、制冷机组32、第一热交换器21、第二热交换器31、第一至第四输送泵、第一至第六控制阀以及控制装置等电气设备电连接,以向其供电。
其中,作为被驱动部13的液压或气压发电机可以是现有技术的任何一种发电机,包括交流发电机或直流发电机。
基于上述结构,下面选取本动力系统的其中一种工作方式来阐述本发明的工作原理:
一、初始化阶段
(1)在系统启动前先将整个动力循环回路10抽成真空,再向动力循环回路10中注入工质,工质填充于各个单向支路、加热支路、冷却支路以及第一压力容器11、第二压力容器12。填充时,工质可以为临界温度以下的气液混合态,也可以直接为超临界流体态。然后,控制装置50控制热源20中各电气设备,以及第一加热支路103、第二加热支路104中对应的各个控制阀和各个输送泵开启,控制冷源30中的各电气设备,以及第一冷却支路105、第二冷却支路106中的各个控制阀和各个输送泵关闭。
(2)在外接电源的暂时性启动下,第一热交换器21、热泵22、输送泵23以及第一输送泵P1、第二输送泵P2开始运转。对于第一热交换器21与动力循环回路10连通的腔,其中的工质通过热泵22、输送泵23与第一流体20a进行热交换后开始升温、增压(如果工质初始状态为气液混合态,则其通过不断受热升至临界温度以上转变为超临界流体态后开始升温增压)。
经过升温增压的工质在第一输送泵P1、第二输送泵P2的作用下通过第一加热支路103、第二加热支路104源源不断输送至第一压力容器11、第二压力容器12内,第一压力容器11、第二压力容器12工质再通过第一加热支路103、第二加热支路104向第一热交换器21回补直至所有工质完全为超临界流体态。
(3)当第一压力容器11、第二压力容器12中的压力不再上升、或压力大于预设压力、或升压速率小于预设速率时,控制装置50控制热源20及第一加热支路103、第二加热支路104关闭,之后控制装置50控制第二热交换器31、制冷机组32、喷淋装置33以及第二冷却支路106中的各个控制阀和第四输送泵P4开启,对于第二热交 换器31与动力循环回路10连通的腔,其中的工质的热量通过第二热交换器31、制冷机组32与外界的第二流体30a进行交换达到冷却降压,而后在第四输送泵P4的作用下通过第二冷却支路106输送至第二压力容器12内,第二压力容器12内的工质再在第四输送泵P4的作用下、通过第二冷却支路106向第二热交换器31回补工质,直至压力不再下降或压力小于预设压力、或降压速率小于预设速率。
(4)控制装置50控制冷源30关闭,同时控制第二冷却支路106中的各个控制阀和输送泵关闭,至此整个系统完成初始阶段的准备工作,并且在第一压力容器11、第二压力容器12内储存具有不同压力差的工质,为推动被驱动部13的工作做好了准备。
二、正常运行时的周期循环
控制装置50控制热源20、冷源30启动,第一单向支路101、第一加热支路103、第二冷却支路106导通,各导通支路中的输送泵工作。
由于第一压力容器11与第二压力容器12的温差造成压力差,第一压力容器内11的高压工质开始通过第一单向支路101进入被驱动部13并做功发电,之后进入第二压力容器12。
对于所述被驱动部13因所述第一压力容器11与第二压力容器12的压差逐渐变小而产生电压或电流不稳的现象可采用具有稳压功能或稳流功能的发电机解决或在本动力系统外增设稳压器或稳流器。
当第一压力容器11和第二压力容器12之间的压力差小于预设压力差(基本达到平衡)时,控制装置50切换各部件的开闭状态:第一单向支路101、第一加热支路103、第二冷却支路106断开,各断开支路中的输送泵停止工作,第二加热支路104、第一冷却支路105导通,各导通支路中的输送泵工作。
于是从热源20通过第一热交换器21输入的热量开始加热第二压 力容器12内的工质使其增压,同时冷源30开始通过第二热交换器31冷却第一压力容器11内工质使其降压,此刻被驱动部13可以暂时停止工作、整个装置的电力由外部提供(也可以整个系统内部增设蓄电池来提供)。
当第一压力容器11和第二压力容器12之间的压力差大于预设压力差时,控制装置50控制第二单向支路102导通,第二压力容器12内的高压工质开始通过第二单向支路102进入被驱动部13做功后进入第一压力容器11。
对于所述被驱动部13因所述第二压力容器12与第一压力容器11的压差逐渐变小而产生电压或电流不稳的现象可采用具有稳压功能或稳流功能的发电机解决或在本动力系统外增设稳压器或稳流器。
当第一压力容器11和第二压力容器12之间的压力差小于预设压力差(基本达到平衡)时,控制装置50切换各部件的开闭状态:第二单向支路102、第二加热支路104、第一冷却支路105断开,各断开支路中的输送泵停止工作,第一加热支路103、第二冷却支路106导通,各导通支路中的输送泵工作。
于是从热源20通过第一热交换器21输入的热量开始加热第一压力容器11内的工质使其增压,同时冷源30开始通过第二热交换器31制冷第二压力容器内12工质使其降压,此刻被驱动部13可以暂时停止工作,整个系统的电力需要外部提供(也可以整个系统内部增设蓄电池来提供)。当第一压力容器11内工质的压力不再上升,第二压力容器12内工质的压力不再下降时系统一个周期循环结束,开始进入下一个工作循环,至此,本动力系统正常运转。
关于本发明的技术效果的说明:
由于超临界技术属于最新领域,目前通过普通查询很难查到临界温度处于零下270度(含)至零上1000度之间(含)的物质在超临界状态下的密度温度压力表,只能通过查询相关物质的饱和温度压力 表来推算大致的范围。以其中的二氧化碳为例(CO2)为例,通过已知的二氧化碳饱和温度压力表可以查到:二氧化碳的临界温度是零上31摄氏度,此时的饱和蒸汽压与零上30摄氏度相比有0.165MPa(A)的压力差,由此可以推算只要超临界二氧化碳流体的密度大于其在零上31摄氏度饱和蒸气的密度,那么每升高1摄氏度就能产生至少0.165MPa(A)的压力差。
本发明中,通过热泵22、制冷机组32的作用,即使在第一流体20a和第二流体30a没有温差,也能够在第一压力容器11和第二压力容器12之间产生至少10摄氏度以上的温差(依据比泽尔制冷技术中国有限公司提供的制冷参数得出),那么本动力系统就至少可以产生1.65MPa(A)的压力差用于发电,从而使得本动力系统具有实用性。而且,这仅仅是在二氧化碳的密度只相当于其在零上31摄氏度饱和蒸气压密度时的情况,事实上本动力系统可以采用更高密度(理论上可无上限)的超临界二氧化碳流体,那么每一摄氏度变化带来的压力差将更为巨大。从而为用最小温差产生更多电力提供了广阔的可行性。
需要注意的是,以上仅仅是以二氧化碳(CO2)为具体举例说明,该逻辑同样可以适用于本发明所述的所有临界温度处于零下272度(含)至零上100度之间(含)的物质。所述临界温度处于零下272度(含)至零上100度之间(含)的物质范围众多难以一一列举,可能还有新物质不断被创造出来,但如前所述,至少包括氢气、氮气、氧气、臭氧、二氧化碳、一氧化碳、二氧化氮、氯化氢、硫化氢、溴气、氨气、甲烷、乙烷、乙烯、乙炔、氯气、氦气、氖气、氩气、氪气、氙气、氡气、氘气、一氧化氮、一氧化二氮、氟气、氟化硼、乙硼烷、空气等临界温度在100摄氏度以下的冷媒。其中,工质可以是上述物质中的一种,或者为多种的组合。在实际产业化应用中可根据具体情况选用,基本选用原则是:(1)该物质在本发明的动力循环回路中运转时始终处于超临界状态,(2)相同温差对应的压力差越大越 好。
本发明还可以有其他实施方式,在一个变形例中,参照图5,其中为了清楚显示,图5中未示出第一流体20a、第二流体30a。在该变形例中,第一压力容器11、第二压力容器12分别具有多个,多个第一压力容器11与多个第二压力容器12一一对应并形成多组。同一时间段,热源20、冷源30作用于至少一组压力容器。其中,每组压力容器之间的各个支路、控制阀的配备可以参照本实施例。并且,热源和冷源之间也可以设置第一管路41、第二管路42,供第一流体、第二流体交换流通。
如图5所示的变形例中,第一压力容器11、第二压力容器12分别具有两个,形成两组压力容器。每组压力容器分别配备有热源20、冷源30,当一组热源、冷源工作时,另一组热源、冷源则可以停机休息,这样可以延长设备的使用寿命,也方便设备的保养和维修,同时还可以保证整个动力循环回路10不间断运行。并且,在各控制阀切换工作时,可能会对液压或气压发电机的稳定运转产生冲击,因此通过多组压力容器交替进行切换可以减少对液压或气压发电机的冲击。
当压力容器的数目多于两组时,同一时间段,热源20、冷源30作用于不同组的压力容器,例如可以使得各组压力容器轮流运作,提高工作效率。另外,如果场地和设备条件允许,所有的压力容器也可以共用热源20、冷源30,或者其中几组压力容器共用热源20、冷源30。
特别说明,本实施例的超临界流体动力系统可以用在各种环境中。在具有自然温差的特殊环境中,如前所述,热源、冷源的至少其中之一可以由存在于自然环境中的自然介质来代替。以下例举一些示例:
第一例:本动力系统可以适用于具有温差的室内、室外环境。例 如夏天时,室外温度较高,而室内一般由于利用空调进行制冷而使得室内温度显著低于室外温度,那么,室内空气可以作为冷源,室外空气可以作为热源;在冬天时则相反,室外温度较低,而室内一般由于取暖而使得室内温度显著高于室外温度,那么,室内空气可以作为热源,室外空气可以作为冷源。
第二例:本动力系统可以适用于沙漠环境。沙漠环境中,在白天,空气中的温度显著高于一定深度下的地下环境的温度,那么,空气可以作为热源、地下环境可以作为冷源;在晚上,空气中的温度显著低于地下环境的温度,那么空气可以作为冷源、地下环境可以作为热源。
第三例:本动力系统可以适用于极地环境。极地环境,例如北极或南极,冰上温度处于零下极低值,而冰下水的温度则不小于零度,那么,冰上环境中的空气可以作为冷源,冰下环境中的水可以作为热源。
在上述示例中,热源、冷源中仍然可以进一步设置热泵、制冷机组,以提高系统的运行效率。
需要注意的是,当本动力系统也同样适用于无温差的环境中。例如,在第一流体和第二流体的温度相等的情况下,可以通过热泵和制冷机组的工作产生人造温差,且由于热泵和制冷机组的能效比原理使得本动力系统的发电可产生富余,从而能够对外输出。这是依据比泽尔制冷技术中国有限公司提供的制冷参数得出,当然由于发电设备的重要性,本动力系统还可以选用更高能效比的产品以获得更多的电力输出。
综上所述,本发明能够利用常温下处于超临界流体态的低沸点工质对常温的敏感性,辅以热泵及制冷机组来人为的制造或扩大温差,从而产生足够的压力差用以发电,进而可以有效地从空气、湖泊、江河中源源不断的提取能量,具备了可以全天候使用的性能。当然,如果第一流体、第二流体本身就具有温差则更有利于本发明装置的发电 效率,而且第一流体、第二流体温差越大越好。
比如在冬季的中国东北、西伯利亚、北冰洋或者类似的严寒环境,在江河湖海的表面覆盖有厚冰层的环境下,冰层上温度处于零下几十摄氏度,但冰层下面的水温却在0摄氏度左右,甚至更高。那么冰层下的水就与冰层上的空气就形成了巨大的温差。利用本动力系统足以产生为人类生产生活所需要的电力。
又比如在严酷的沙漠地带,空气可能达到40摄氏度以上,如果有地下水,地下水的温度则远低于40摄氏度,利用空气和地下水的温差也可以发电。
再比如假设海洋和海面上的空气有温差,那么利用本装置可以为船舶的航行提供动力,实现真正的零污染和零排放。
本发明实施例还提供一种上述任一项超临界流体动力系统的控制方法,该控制方法包括:
初始时刻,控制热源20向第一压力容器11、第二压力容器12中的工质提供热能,将动力循环回路中的工质转化为超临界流体,这个过程即前述的系统初始化阶段;在初始时刻,第一压力容器11和第二压力容器12内部容置有工质,该工质可以为临界温度以下的气液混合态,也可以直接为超临界流体态。此时控制装置50控制热源20开启、第一加热支路103、第二加热支路104导通,将第一压力容器11、第二压力容器12中的压力升至预设压力。初始化阶段的完成以全部的工质都转变为超临界状态为准。
获取第一压力容器11、第二压力容器12中的升压速率,或者获取第一压力容器11、第二压力容器12中的压力,当升压速率小于预设速率时,或压力大于预设压力时:
控制热源20向其中一个压力容器中的工质提供热能,或者控制冷源30对另一个压力容器中的工质进行冷却,以在第一压力容器11、 第二压力容器12之间形成压力差;或者,
控制热源20继续向其中一个压力容器中的工质提供热能,并且控制冷源30同时对另一个压力容器中的工质进行冷却,以在第一压力容器11、第二压力容器12之间形成压力差。
进一步地,在形成压力差的过程中,被驱动部与第一压力容器11、第二压力容器12之间的通路导通,使得工质从一个压力容器经过被驱动部13向另一个压力容器流动。也就是说,在形成压力差的过程中,第一压力容器11、第二压力容器12之间导通,工质同时从高压区向低压区流动,被驱动部13被驱动运行。
或者,在形成压力差的过程中,被驱动部与第一压力容器11、第二压力容器12之间的通路断开,当压力差达到预设压力差时,通路导通。也就是说,在形成压力差的过程中,第一压力容器11、第二压力容器12断开,工质不流动,被驱动部13暂时停止;等到压力差达到预设压力差时,第一压力容器11、第二压力容器12导通,工质从高压区向低压区流动,被驱动部13被驱动运行。这种方式尤其适用于压力容器有多组的情况,此时热源、冷源可以轮流作用至各组压力容器,各组压力容器中的第一压力容器11、第二压力容器12轮流导通,轮流向被驱动部13提供动力,实现整个系统的无间断运行。
进一步地,当工质从一个压力容器经过被驱动部13向另一个压力容器流动时,控制方法还包括:
获取第一压力容器11内的第一压力,以及第二压力容器12内的第二压力;
比较第一压力和第二压力的差值:
当差值小于预设差值时,控制热源20、冷源30中的一个停止,另一个交换所作用的压力容器,以形成反向压力差;或者,
控制热源20、冷源30相互交换所作用的压力容器,以形成反向 压力差,然后在其他条件满足时(例如反向压力差达到预定值时),使得工质反向流动。
在向被驱动部13提供动力的过程中,由于工质从高压区向低压区的流动,第一压力容器11、第二压力容器12之间的压力差会越来越小,工质在两者之间的流动速度会越来越慢,当压力差小于预设差值时,则认定其能提供的动力不足,因此需要重新在第一压力容器11、第二压力容器12之间形成压力差。如果热源继续作用至原压力容器,由于原压力容器的温度已经处于较高值,那么使其继续升温增压将使得热源消耗的功率增大,同样的如果冷源继续作用至原压力容器,将使得冷源消耗的功率增加,这将导致整个系统输出功率与输入功率的比值降低,不能满足能效比的要求。
因此,较为优选的方式是,热源、冷源交换原先作用的压力容器,在第一压力容器11、第二压力容器12形成反向压力差,这样可以充分利用各个压力容器的升温增压空间和降温降压空间,提高能效比。
在一个变形例中,上述控制方法在判断是否需要控制热源、冷源交换作用的压力容器时,可以通过检测各压力容器中的压力变化率来判断,具体如下:
当工质从一个压力容器经过被驱动部13向另一个压力容器流动时,获取第一压力容器11、第二压力容器12内的压力变化率:压力变化率小于预设变化率时,控制热源20、冷源30中的一个停止,另一个交换所作用的压力容器,以形成反向压力差;或者,控制热源20、冷源30相互交换所作用的压力容器,以形成反向压力差。然后,在其他条件满足时(例如反向压力差达到预定值时),使得工质反向流动。
在另一个变形例中,上述控制方法在判断是否需要控制热源、冷源交换作用的压力容器时,还可以通过检测热泵22、制冷机组32向动力循环系统输出的实际的消耗功率(即单位时间耗电量)来判断, 具体如下:
当工质从一个压力容器经过被驱动部13向另一个压力容器流动时,获取热泵、制冷机组中至少一个的消耗功率;当消耗功率大于预设功率时,控制热源20、冷源30中的一个停止,另一个交换所作用的压力容器,以形成反向压力差;或者,控制热源20、冷源30相互交换所作用的压力容器,以形成反向压力差。以形成反向压力差。然后,在其他条件满足时(例如反向压力差达到预定值时),使得工质反向流动。
虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。

Claims (41)

  1. 一种超临界流体动力系统,其特征在于,包括填充有工质的动力循环回路,所述工质在所述动力循环回路中流动时始终为超临界流体;
    所述动力循环回路包括:第一压力容器、第二压力容器,以及被驱动部,所述被驱动部设于所述第一压力容器、第二压力容器之间,并同时与所述第一压力容器、第二压力容器连通;
    所述超临界流体动力系统还包括热源、冷源;
    所述热源用于向所述第一压力容器、第二压力容器的其中一个中的工质提供热能,以增加对应压力容器中的压力,所述热源输出的温度大于所述工质的临界温度;
    所述冷源用于对所述第一压力容器、第二压力容器的另一个中的工质进行冷却,以减小对应压力容器中的压力;
    所述热源、冷源相互配合以在所述第一压力容器、第二压力容器之间形成压力差;
    所述工质在所述压力差的作用下在所述第一压力容器、第二压力容器之间流动,并流经所述被驱动部,以向所述被驱动部提供动力。
  2. 如权利要求1所述的超临界流体动力系统,其特征在于,所述热源用于交替地向所述第一压力容器、第二压力容器中的工质提供热能;
    所述冷源用于交替地对所述第一压力容器、第二压力容器中的工质进行冷却。
  3. 如权利要求1所述的超临界流体动力系统,其特征在于,所述工质为低沸点工质。
  4. 如权利要求3所述的超临界流体动力系统,其特征在于,所述低 沸点工质的临界温度为Tc:Tc≤100℃。
  5. 如权利要求3所述的超临界流体动力系统,其特征在于,所述低沸点工质的临界温度为Tc:-272℃≤Tc≤100℃。
  6. 如权利要求1所述的超临界流体动力系统,其特征在于,所述动力循环回路内的压力大于所述工质的临界压力。
  7. 如权利要求1所述的超临界流体动力系统,其特征在于,所述第一压力容器、第二压力容器共用所述热源。
  8. 如权利要求7所述的超临界流体动力系统,其特征在于,所述动力循环回路包括第一加热支路、第二加热支路;
    所述第一加热支路的两端分别与所述第一压力容器连通,所述第二加热支路的两端分别与所述第二压力容器连通;
    所述第一加热支路、第二加热支路分别经过所述热源。
  9. 如权利要求8所述的超临界流体动力系统,其特征在于,所述第一加热支路、第二加热支路中分别设有控制阀,用于控制对应支路在需要热能时导通,在不需要热能时断开。
  10. 如权利要求8所述的超临界流体动力系统,其特征在于,所述第一加热支路、第二加热支路中分别设有输送泵,并在对应支路需要热能时工作,在不需要热能时停止。
  11. 如权利要求1-10中任一项所述的超临界流体动力系统,其特征在于,所述热源为第一自然介质。
  12. 如权利要求1所述的超临界流体动力系统,其特征在于,所述第一压力容器、第二压力容器共用所述冷源。
  13. 如权利要求12所述的超临界流体动力系统,其特征在于,所述动力循环回路包括第一冷却支路、第二冷却支路;
    所述第一冷却支路的两端分别与所述第一压力容器连通,所述第二冷却支路的两端分别与所述第二压力容器连通;
    所述第一冷却支路、第二冷却支路分别经过所述冷源。
  14. 如权利要求13所述的超临界流体动力系统,其特征在于,所述第一冷却支路、第二冷却支路中分别设有控制阀,用于控制对应支路在需要冷却时导通,在不需要冷却时断开。
  15. 如权利要求13所述的超临界流体动力系统,其特征在于,所述第一冷却支路、第二冷却支路中分别设有输送泵,并在对应支路需要冷却时工作,在不需要冷却时停止。
  16. 如权利要求1-10或12-15中任一项所述的超临界流体动力系统,其特征在于,所述冷源为第二自然介质。
  17. 如权利要求1所述的超临界流体动力系统,其特征在于,所述第一压力容器、第二压力容器分别配备所述热源、冷源。
  18. 如权利要求17所述的超临界流体动力系统,其特征在于,所述热源、冷源设于对应的压力容器内,或者设于对应的压力容器外。
  19. 如权利要求1所述的超临界流体动力系统,其特征在于,所述热源包括:
    第一流体,与所述工质不相通;
    第一热交换器,包括相互隔开的两个腔,其中一个腔与所述动力循环回路连通,以供所述工质流过;
    热泵,所述热泵的输出端与所述第一热交换器的另一腔连通,所述热泵用于提取所述第一流体的热量,并将该热量输出至所述另一腔内,以与所述工质进行热交换。
  20. 如权利要求19所述的超临界流体动力系统,其特征在于,所述第一流体为自然环境中的流体。
  21. 如权利要求19所述的超临界流体动力系统,其特征在于,所述第一流体为液体时,所述热泵的输入端设有输送泵,用于加快所述第一流体向所述热泵流动的速度;
    所述第一流体为气体时,所述热泵的输入端设有风扇,用于加快所述第一流体向所述热泵流动的速度。
  22. 如权利要求19所述的超临界流体动力系统,其特征在于,所述第一热交换器包括热管式或管式或板式热交换器。
  23. 如权利要求1或19所述的超临界流体动力系统,其特征在于,所述冷源包括:
    第二流体,与所述工质不相通;
    第二热交换器,包括相互隔开的两个腔,其中一个腔与所述动力循环回路连通,以供所述工质流过;
    制冷机组,所述制冷机组的输出端与所述第二热交换器的另一腔连通,所述制冷机组用于提取所述工质的热量,并将该热量释放至所述第二流体。
  24. 如权利要求23所述的超临界流体动力系统,其特征在于,所述第二流体为自然环境中的流体。
  25. 如权利要求23所述的超临界流体动力系统,其特征在于,所述冷源还包括喷淋装置,用于对所述制冷机组的冷凝器进行降温。
  26. 如权利要求23所述的超临界流体动力系统,其特征在于,所述第二热交换器包括热管式或管式或板式热交换器。
  27. 如权利要求23所述的超临界流体动力系统,其特征在于,当所述热源包括第一流体以及用于提取所述第一流体的热量的热泵时:
    所述热源和冷源之间设有供所述第一流体流过的第一管路,所述第一管路供所述第一流体流出所述热源后、作为所述第二流体流入所 述冷源。
  28. 如权利要求27所述的超临界流体动力系统,其特征在于:
    所述热源和冷源之间设有供所述第二流体流过的第二管路,所述第二管路供所述第二流体流出所述冷源后、作为所述第一流体的补充流入所述热源。
  29. 如权利要求1所述的超临界流体动力系统,其特征在于,所述被驱动部具有供所述工质通过的入口和出口;
    所述第一压力容器、所述被驱动部、所述第二压力容器三者分别通过第一单向支路、第二单向支路连通,每一单向支路供所述工质从所述入口向所述出口流通;
    所述工质根据所述压力差交替地在所述第一单向支路、第二单向支路中通过。
  30. 如权利要求29所述的超临界流体动力系统,其特征在于,所述第一单向支路、第二单向支路中分别设有控制阀,以控制对应支路的通断。
  31. 如权利要求29所述的超临界流体动力系统,其特征在于,所述被驱动器为发电装置或动力传递装置。
  32. 如权利要求1所述的超临界流体动力系统,其特征在于,所述第一压力容器、第二压力容器中分别设有压力传感器,用于检测对应压力容器的内部压力,并将检测到的压力信号输出。
  33. 如权利要求32所述的超临界流体动力系统,其特征在于,还包括控制装置,用于接收所述压力传感器输出的所述压力信号,并根据所述压力信号发出第一指令或第二指令;
    所述第一指令控制所述热源向所述第一压力容器内的工质提供热能,控制所述冷源对所述第二压力容器内的工质进行冷却;
    所述第二指令控制所述热源向所述第二压力容器内的工质提供热能,控制所述冷源对所述第一压力容器内的工质进行冷却。
  34. 如权利要求23所述的超临界流体动力系统,其特征在于,所述第一压力容器、第二压力容器分别具有多个,多个所述第一压力容器与多个第二压力容器一一对应并形成多组;
    同一时间段,所述热源、所述冷源作用于至少一组压力容器。
  35. 如权利要求34所述的超临界流体动力系统,其特征在于,不同时间段,所述热源、所述冷源作用于不同组的压力容器。
  36. 如权利要求3-5中任一项所述的超临界流体动力系统,其特征在于,所述低沸点工质包括:氢气、氮气、氧气、臭氧、二氧化碳、一氧化碳、二氧化氮、氯化氢、硫化氢、溴气、氨气、甲烷、乙烷、乙烯、乙炔、氯气、氦气、氖气、氩气、氪气、氙气、氡气、氘气、一氧化氮、一氧化二氮、氟气、氟化硼、乙硼烷、空气。
  37. 一种权利要求1-36中任一项所述超临界流体动力系统的控制方法,其特征在于,包括:
    初始时刻,控制所述热源向所述第一压力容器、所述第二压力容器中的工质提供热能,将所述动力循环回路中的工质转化为超临界流体;
    获取所述第一压力容器、第二压力容器中的升压速率,或者获取所述第一压力容器、第二压力容器中的压力,当所述升压速率小于预设速率时,或所述压力大于预设压力时:
    控制所述热源继续向所作用的压力容器中的工质提供热能,或者控制所述冷源对另一个压力容器中的工质进行冷却,以在所述第一压力容器、第二压力容器之间形成压力差;或者,
    控制所述热源继续向所作用的压力容器中的工质提供热能,并且控制所述冷源同时对另一个压力容器中的工质进行冷却,以在所述第 一压力容器、第二压力容器之间形成压力差。
  38. 如权利要求37所述的控制方法,其特征在于,在形成所述压力差的过程中,所述被驱动部与所述第一压力容器、第二压力容器之间的通路导通,使得所述工质从一个压力容器经过所述被驱动部向另一个压力容器流动;或者,
    在形成所述压力差的过程中,所述被驱动部与所述第一压力容器、第二压力容器之间的通路断开,当所述压力差达到预设压力差时,所述通路导通。
  39. 如权利要求38所述的控制方法,其特征在于,当所述工质从一个压力容器经过所述被驱动部向另一个压力容器流动时,所述控制方法还包括:
    获取所述第一压力容器内的第一压力,以及所述第二压力容器内的第二压力;
    比较所述第一压力和所述第二压力的差值:
    当所述差值小于预设差值时,控制所述热源、冷源中的一个停止,另一个交换所作用的压力容器,以形成反向压力差;
    或者,控制所述热源、冷源相互交换所作用的压力容器,以形成反向压力差。
  40. 如权利要求38所述的控制方法,其特征在于,当所述工质从一个压力容器经过所述被驱动部向另一个压力容器流动时,所述控制方法还包括:
    获取所述第一压力容器、第二压力容器内的压力变化率:
    所述压力变化率小于预设变化率时,控制所述热源、冷源中的一个停止,另一个交换所作用的压力容器,以形成反向压力差;或者,
    控制所述热源、冷源相互交换所作用的压力容器,以形成反向压 力差。
  41. 如权利要求38所述的控制方法,其特征在于,所述热源包括热泵,所述冷源包括制冷机组,当所述工质从一个压力容器经过所述被驱动部向另一个压力容器流动时,所述控制方法还包括:
    获取所述热泵、所述制冷机组中至少一个的实际消耗功率;
    当所述消耗功率大于预设功率时,控制所述热源、冷源中的一个停止,另一个交换所作用的压力容器,以形成反向压力差;或者,
    控制所述热源、冷源相互交换所作用的压力容器,以形成反向压力差。
PCT/CN2015/094781 2014-11-19 2015-11-17 超临界流体动力系统及其控制方法 WO2016078566A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/528,019 US10487698B2 (en) 2014-11-19 2015-11-17 Supercritical fluid power system and control method therefor
EP15861627.6A EP3211188A4 (en) 2014-11-19 2015-11-17 Supercritical fluid power system and control method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410662447.5 2014-11-19
CN201410662447.5A CN105649699A (zh) 2014-11-19 2014-11-19 一种超临界高效发电系统

Publications (1)

Publication Number Publication Date
WO2016078566A1 true WO2016078566A1 (zh) 2016-05-26

Family

ID=56013292

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/094781 WO2016078566A1 (zh) 2014-11-19 2015-11-17 超临界流体动力系统及其控制方法

Country Status (4)

Country Link
US (1) US10487698B2 (zh)
EP (1) EP3211188A4 (zh)
CN (1) CN105649699A (zh)
WO (1) WO2016078566A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109519708A (zh) * 2018-12-28 2019-03-26 动能(北京)科技发展有限公司 基于压力容器气密性实验过程中的压缩空气能量回收利用系统
WO2020147918A1 (en) * 2019-01-14 2020-07-23 Engen House F.Z.C Turbine system

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4134265A (en) * 1977-04-26 1979-01-16 Schlueter William Bryan Method and system for developing gas pressure to drive piston members
US5548957A (en) * 1995-04-10 1996-08-27 Salemie; Bernard Recovery of power from low level heat sources
WO2005088080A1 (en) * 2004-03-12 2005-09-22 Marnoch Ian A Thermal conversion device and process
US20120006023A1 (en) * 2010-03-22 2012-01-12 Keith Sterling Johnson Loop thermal energy system
CN102661181A (zh) * 2012-04-25 2012-09-12 北京亿玮坤节能科技有限公司 一种新型发电工质
CN204371437U (zh) * 2014-11-19 2015-06-03 郭颂玮 一种超临界高效发电系统

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3589126A (en) * 1969-04-04 1971-06-29 Theodore Zotto Power system
JP3164451B2 (ja) * 1992-12-29 2001-05-08 大阪瓦斯株式会社 空気調和機
US6364938B1 (en) * 2000-08-17 2002-04-02 Hamilton Sundstrand Corporation Sorbent system and method for absorbing carbon dioxide (CO2) from the atmosphere of a closed habitable environment
DE10133153C1 (de) 2001-07-07 2002-07-11 Gerhard Stock Anordnung von Gasausdehnungselementen und Verfahren zum Betreiben der Anordnung
JPWO2005119016A1 (ja) * 2004-06-01 2008-04-03 登 正田 高効率熱サイクル装置
US20060059912A1 (en) 2004-09-17 2006-03-23 Pat Romanelli Vapor pump power system
US20100011760A1 (en) * 2007-08-23 2010-01-21 Daniel Charles Scampini Hydraulic heat engine utilizing heat of compression and having independent control loop
EP2157317B2 (en) * 2008-08-19 2019-07-24 ABB Research LTD Thermoelectric energy storage system and method for storing thermoelectric energy
US20110058637A1 (en) * 2009-09-09 2011-03-10 International Business Machines Corporation Pressure control unit and method facilitating single-phase heat transfer in a cooling system
US9377207B2 (en) * 2010-05-25 2016-06-28 7Ac Technologies, Inc. Water recovery methods and systems
EP2780555A4 (en) * 2011-11-14 2015-07-22 Terrajoule Corp THERMAL ENERGY STORAGE SYSTEM
CA2906550A1 (en) * 2013-04-02 2014-10-16 Sahar HARIRI Power generation by converting low grade thermal energy to hydropower
US9797274B2 (en) * 2013-09-24 2017-10-24 Songwei GUO High-efficiency power generation system
EP3213011B1 (en) * 2014-10-29 2022-11-30 Carrier Corporation Vapor compression system with a thermoelectric purge unit
US9359919B1 (en) * 2015-03-23 2016-06-07 James E. Berry Recuperated Rankine boost cycle
US10280804B2 (en) * 2016-12-29 2019-05-07 Malta Inc. Thermocline arrays

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4134265A (en) * 1977-04-26 1979-01-16 Schlueter William Bryan Method and system for developing gas pressure to drive piston members
US5548957A (en) * 1995-04-10 1996-08-27 Salemie; Bernard Recovery of power from low level heat sources
WO2005088080A1 (en) * 2004-03-12 2005-09-22 Marnoch Ian A Thermal conversion device and process
US20120006023A1 (en) * 2010-03-22 2012-01-12 Keith Sterling Johnson Loop thermal energy system
CN102661181A (zh) * 2012-04-25 2012-09-12 北京亿玮坤节能科技有限公司 一种新型发电工质
CN204371437U (zh) * 2014-11-19 2015-06-03 郭颂玮 一种超临界高效发电系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3211188A4 *

Also Published As

Publication number Publication date
EP3211188A1 (en) 2017-08-30
CN105649699A (zh) 2016-06-08
EP3211188A4 (en) 2018-07-04
US20180347409A1 (en) 2018-12-06
US10487698B2 (en) 2019-11-26

Similar Documents

Publication Publication Date Title
US7958731B2 (en) Systems and methods for combined thermal and compressed gas energy conversion systems
CN110578567B (zh) 一种利用工质变相的压缩空气定压储能发电系统
CN202055876U (zh) 超临界低温空气能发电装置
CA2662463A1 (en) Method and apparatus for use of low-temperature heat for electricity generation
CN113339090B (zh) 布雷顿-有机朗肯循环式储能供电方法及装置
CN110057121B (zh) 利用废弃井工煤矿地热进行高效压气储能的方法及装置
CN111396288B (zh) 一种基于压力恒定的发电系统
CN105736056B (zh) 液态空气储能系统
CN102146814A (zh) 超临界低温空气能发电装置
CN104033199B (zh) 一种使用混合有机工质的内置热泵的有机朗肯循环系统
CN204371437U (zh) 一种超临界高效发电系统
WO2016078566A1 (zh) 超临界流体动力系统及其控制方法
CN113540504B (zh) 热泵式-氢能复合储能发电方法及装置
CN103742213B (zh) 抽水装置
KR102084796B1 (ko) 초임계 이산화탄소를 이용한 전력 저장 및 생산 장치
WO2020104327A1 (en) Geothermal energy system
WO2015043551A1 (zh) 一种高效发电系统
CN102191958A (zh) 低温空气能发电装置
CN111535886B (zh) 一种多能联合的压力恒定的发电系统
CN211116438U (zh) 一种基于海洋温差能的发电制冷联合循环系统
CN210977771U (zh) 一种基于海洋温差能的冷电联产循环系统
CN113482889A (zh) 水下等压压缩空气混合储能系统及方法
CN102269021B (zh) 空气热能循环发电机组
CN102392706A (zh) 跨临界低温空气能发电装置
CN202300555U (zh) 跨临界低温空气能发电装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15861627

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015861627

Country of ref document: EP