WO2016078478A1 - 一种信道状态信息测量方法、信道状态信息获取方法、终端和网络设备 - Google Patents

一种信道状态信息测量方法、信道状态信息获取方法、终端和网络设备 Download PDF

Info

Publication number
WO2016078478A1
WO2016078478A1 PCT/CN2015/090928 CN2015090928W WO2016078478A1 WO 2016078478 A1 WO2016078478 A1 WO 2016078478A1 CN 2015090928 W CN2015090928 W CN 2015090928W WO 2016078478 A1 WO2016078478 A1 WO 2016078478A1
Authority
WO
WIPO (PCT)
Prior art keywords
interference
interference measurement
terminal
csi
parameters
Prior art date
Application number
PCT/CN2015/090928
Other languages
English (en)
French (fr)
Inventor
高秋彬
陈润华
李辉
塔玛拉卡拉盖施
Original Assignee
电信科学技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院 filed Critical 电信科学技术研究院
Priority to EP15861268.9A priority Critical patent/EP3223447A4/en
Priority to US15/527,311 priority patent/US10419094B2/en
Publication of WO2016078478A1 publication Critical patent/WO2016078478A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/022Site diversity; Macro-diversity
    • H04B7/024Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0636Feedback format
    • H04B7/0639Using selective indices, e.g. of a codebook, e.g. pre-distortion matrix index [PMI] or for beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/02Arrangements for detecting or preventing errors in the information received by diversity reception
    • H04L1/06Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/021Estimation of channel covariance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/006Quality of the received signal, e.g. BER, SNR, water filling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/345Interference values
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0032Distributed allocation, i.e. involving a plurality of allocating devices, each making partial allocation
    • H04L5/0035Resource allocation in a cooperative multipoint environment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0073Allocation arrangements that take into account other cell interferences

Definitions

  • the present disclosure relates to the field of communications, and in particular, to a channel state information measurement method, a channel state information acquisition method, a terminal, and a network device.
  • the information reflecting the state of the downlink physical channel that is, the channel state information (CSI) mainly includes three parts: a pre-coding matrix indicator (Pre-coding Matrix Indicator, Referred to as PMI) and Rank Indicator (RI), Channel Quality Indicator (CQI).
  • PMI Pre-coding Matrix Indicator
  • RI Rank Indicator
  • CQI Channel Quality Indicator
  • the precoding matrix determined by the PMI can be regarded as a quantized value of channel state information.
  • the LTE Rel-8 system introduces closed-loop precoding technology to improve spectral efficiency.
  • the closed-loop precoding technique requires that both the base station and the terminal maintain a set of the same precoding matrix, called a codebook. After estimating the channel information according to the common pilot of the cell, the terminal selects a precoding matrix from the codebook according to a certain criterion. The criteria chosen may be to maximize mutual information, maximize output signal to interference and noise ratio, and the like.
  • the terminal feeds back the PMI of the selected precoding matrix to the base station through the uplink channel.
  • the base station determines the precoding matrix to be used for the terminal through the received PMI.
  • the RI corresponds to the maximum number of spatial data streams that can be supported by the spatial channel from the base station to the terminal.
  • a data block transmitted by a base station to a terminal in the LTE and LTE-A standards is called a codeword.
  • the base station can transmit two codewords to the terminal at the same time, or only one codeword.
  • the data of a codeword is mapped to one or more spatial data streams according to certain rules. If the transmission is two codewords, the total number of data streams mapped by the two codewords should not exceed the maximum number of data streams that can be supported by the base station to the terminal spatial channel, which is obtained by the RI reported by the terminal.
  • CQI can also be understood as the quantization of channel quality information. If the quality is good, it can support higher-order modulation and coding methods to obtain higher speed. If the quality is poor, it can only be performed in lower-order modulation and coding. Transmission to ensure the robustness of the transmission.
  • the calculation and selection of RI, PMI and CQI in CSI depends on the accuracy of the terminal's measurement of the interference information.
  • the measurement and calculation of the interference information are only based on a Common Reference Signal (CRS) in the LTE system or a channel state information measurement reference signal.
  • CRS Common Reference Signal
  • CSI-RS Channel State Information Reference Signal
  • the embodiments of the present disclosure provide a channel state information measurement method, a channel state information acquisition method, a terminal, and a network device, which are used to measure channel state information and improve the accuracy of interference measurement.
  • the embodiment of the present disclosure provides a channel state information measurement method, including the following steps:
  • the terminal performs interference measurement to obtain an initial interference measurement result
  • the terminal determines channel state information according to the initial interference measurement result and the interference measurement parameter configured by the network device;
  • the terminal reports the determined channel state information to the network device.
  • the embodiment of the present disclosure further provides a channel state information acquiring method, including the following steps:
  • the network device sends configuration information to the terminal, where the configuration information includes interference measurement parameters;
  • the network device receives the channel state information reported by the terminal, where the channel state information is that the terminal performs the interference measurement, and obtains the initial interference measurement result, and then the terminal reports the channel state information according to the initial interference measurement result and the interference measurement parameter configured by the network device. of.
  • the embodiment of the present disclosure further provides a terminal, including:
  • a measurement module for performing interference measurement to obtain an initial interference measurement result
  • a determining module configured to determine channel state information according to initial interference measurement results and interference measurement parameters configured by the network device
  • the reporting module is configured to report the determined channel state information to the network device.
  • the embodiment of the present disclosure further provides a network device, including:
  • a sending module configured to send configuration information to the terminal, where the configuration information includes interference measurement parameters
  • the receiving module is configured to receive channel state information reported by the terminal, where the channel state information is that the terminal performs interference measurement, and obtains an initial interference measurement result, and then the terminal determines the channel state according to the initial interference measurement result and the interference measurement parameter configured by the network device. The information is reported later.
  • the embodiment of the present disclosure further provides a terminal, including:
  • a memory coupled to the processor via a bus interface and configured to store programs and data used by the processor in performing operations
  • a transceiver for communicating with various other devices on a transmission medium
  • the terminal When the processor calls and executes the program and data stored in the memory, the terminal performs the following processing:
  • the determined channel state information is reported to the network device.
  • the embodiment of the present disclosure further provides a network device, including:
  • a memory coupled to the processor via a bus interface and configured to store programs and data used by the processor in performing operations
  • a transceiver for communicating with various other devices on a transmission medium
  • the network device When the processor calls and executes the program and data stored in the memory, the network device performs the following processing:
  • the configuration information including interference measurement parameters
  • Receiving channel state information reported by the terminal where the channel state information is that the terminal performs interference measurement, and obtains an initial interference measurement result, and then the terminal performs interference measurement according to the initial interference measurement result and network device configuration.
  • the parameter is reported after the channel status information is determined.
  • the terminal performs interference measurement to obtain an initial interference measurement result, and the terminal determines channel state information according to the initial interference measurement result and the interference measurement parameter configured by the network device; the terminal reports the determined channel state information to the network device. . Since the terminal determines the channel state information according to the initial interference measurement result and the interference measurement parameter configured by the network device, the condition by which the channel state information is determined is increased, thereby improving the accuracy of the determined channel state information. Further, since the accuracy of the channel state information is determined to be improved, the network can select more suitable parameters when performing link adaptation according to more accurate channel state information.
  • FIG. 1 is a schematic diagram of a network device configuring an IMR for a cell
  • FIG. 2 is a schematic flowchart diagram of a channel state information measurement method according to an embodiment of the present disclosure
  • FIG. 3 is a schematic flowchart diagram of another method for acquiring channel state information according to an embodiment of the present disclosure
  • FIG. 4 is a schematic structural diagram of a terminal according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic structural diagram of a network device according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of another terminal according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of another network device according to an embodiment of the present disclosure.
  • the embodiment of the present disclosure provides a channel state information measurement method, a channel state information acquisition method, a terminal, and a network device for measuring channel state information, and improving matching degree between the interference information obtained by the measurement and the interference information during actual transmission, and further Enable the network to choose more appropriate parameters when performing link adaptation.
  • the embodiments of the present disclosure are applicable to an evolved system of an LTE system or an LTE system.
  • the interference measurement of the terminal is based on CRS or CSI-RS.
  • the main idea is to measure the interference received by CRS or CSI-RS.
  • the interference measurement of the terminal is performed based on an interference measurement resource (IMR).
  • IMR interference measurement resource
  • the accuracy of the channel state information determined by the terminal depends on the accuracy with which the terminal measures the interference. Therefore, in order for the terminal to measure the interference level corresponding to the transmission hypothesis, the LTE Rel-11 version introduces the terminal-specific IMR.
  • a network device can configure its terminal's proprietary IMR for the terminal. Each IMR occupies a set of resources (Resource Element, RE for short), and the network device controls signaling on the set of REs, so that the terminal measures interference on the set of REs.
  • FIG. 1 An example of two sets of IMR configurations.
  • the left diagram (identified by A) in FIG. 1 is a schematic diagram of the IMR configured by the network device for the first cell on the corresponding resource
  • the right diagram (identified by B) in FIG. 1 is that the network device is the second cell on the corresponding resource.
  • Schematic diagram of the configured IMR Assume that On the IMR1, the first cell and the second cell do not send signals, and the signal received by the terminal on the IMR1 is interference outside the first cell and the second cell. Similarly, the terminal can estimate interference outside the first cell and the second cell on IMR2.
  • the terminal in the embodiment of the present disclosure may be a mobile phone terminal, a personal computer (PC) terminal, a tablet terminal, or the like.
  • PC personal computer
  • FIG. 2 exemplarily shows a flow chart of a channel state information measuring method.
  • the embodiment of the present disclosure provides a channel state information measurement method, including the following steps:
  • Step 201 The terminal performs interference measurement to obtain an initial interference measurement result.
  • Step 202 The terminal determines channel state information according to the initial interference measurement result and the interference measurement parameter configured by the network device;
  • Step 203 The terminal reports the determined channel state information to the network device.
  • the terminal determines the channel state information according to the initial interference measurement result and the interference measurement parameter configured by the network device, the condition by which the channel state information is determined is increased, thereby improving the accuracy of the determined channel state information. Further, since the accuracy of the channel state information is determined to be improved, the network can select more suitable parameters when performing link adaptation according to more accurate channel state information.
  • the terminal needs to receive the configuration message sent by the network device and perform configuration, which can be performed in the following two manners.
  • the network device configures interference measurement parameters of the interference source base station for the terminal.
  • the interference measurement parameter is one or more groups, and each group of interference measurement parameters corresponds to one interference source base station.
  • Each set of interference measurement parameters includes one or more interference measurement CSI-RSs, and each interference measurement CSI-RS corresponds to one or more interference signal characteristic parameters.
  • the CSI-RS in the interference measurement CSI-RS refers to a CSI-RS transmitted from an interference source base station.
  • the network device configures the terminal with one or more interference measurement CSI-RSs, one or more interference signal characteristic parameters, and a correspondence between each interference measurement CSI-RS and one or more interference signal characteristic parameters.
  • the correspondence between each interference measurement CSI-RS and the interference source base station is also included.
  • each interference source base station may correspond to one or more interference measurement CSI-RSs, and each interference measurement one or more interference signal characteristic parameters corresponding to the CSI-RS.
  • the CSI-RS in the interference measurement CSI-RS refers to a CSI-RS transmitted from an interference source base station.
  • step 202 the terminal according to the initial interference measurement result, the interference measurement CSI-RS configured by the network device, and the interference signal corresponding to the interference measurement CSI-RS configured by the network device Characteristic parameters determine channel state information.
  • Interference measurement CSI-RS and interference due to interference measurement parameters in Mode 1 or Mode 2 The signal characteristic parameter is configured by the network device, so the information of the network device configuration can reflect the actual occurrence of the interference information more than the prior art.
  • the interference measurement CSI-RS configured by the network device for the terminal is for the interference source base station of the terminal, so that the interference can be obtained by combining the initial interference measurement result in step 201 and the measurement result based on the interference measurement CSI-RS in step 202.
  • the information, the interference information thus obtained can reflect the actual occurrence of the interference information more than the prior art.
  • the interference signal characteristic parameter configured by the network device for the terminal includes a correlation matrix of the signal transmitted by the interference source base station, and may be, for example, a set of precoding matrices used by the interference source base station for data transmission, so the interference may be reflected to some extent. Data transmission status of the source base station. Therefore, the interference information obtained by combining the initial interference measurement result, the interference measurement result based on the interference measurement CSI-RS, and the correlation matrix of the signal transmitted by the interference source base station can be more matched with the interference information in the actual transmission compared with the prior art. .
  • One or more interference measurement CSI-RSs corresponding to each interference source base station in the foregoing mode 2 and one or more interference signal feature parameters corresponding to each CSI-RS may be regarded as a group interference in mode one Measurement parameters.
  • the following examples are mainly introduced on the basis of the mode 1.
  • the person skilled in the art can replace the nouns of the set of interference measurement parameters in the following embodiments with the corresponding ones of the interference source base stations in the second mode according to the corresponding relationship.
  • One or more interference measurement CSI-RSs, and one or more interference signal characteristic parameters corresponding to each CSI-RS are examples.
  • the terminal may perform interference measurement and calculation using all the interference measurement parameters configured, or may use high-level signaling or downlink dynamic control signaling (Downlink Control Information, DCI for short).
  • DCI Downlink Control Information
  • the mode indicates the interference measurement parameters that the terminal needs to use, and the interference measurement CSI-RS and the interference signal characteristic parameters.
  • one or more of the following may be indicated by the DCI: one or more sets of interference measurement parameters used by the terminal, and one or several interference measurement CSIs of each set of interference measurement parameters used by the terminal.
  • - RS one or several interference signal characteristic parameters corresponding to each interference measurement CSI-RS used by the terminal. That is to say, the DCI indicates which group or groups of interference measurement parameters the terminal uses to perform measurement and calculation of interference, or can be described as activating one or more sets of interference measurement parameters.
  • one or more interference measurement CSI-RSs are included in each group of interference measurement parameters, one or several interference measurement CSI-RSs of a certain group of interference measurement parameters may be activated by DCI.
  • one interference measurement CSI-RS corresponds to one or more interference signal characteristic parameters
  • one or several interference signal characteristic parameters corresponding to one of the interference measurement CSI-RSs of a certain set of interference measurement parameters may be activated by DCI.
  • the terminal may also be instructed by the DCI not to use any interference measurement parameters, that is, to not activate any interference measurement parameters.
  • the terminal can perform CSI measurement and calculation with the interference measured on the IMR, or in the case that the network device is not configured with the IMR, the terminal can perform CSI measurement and calculation with the measured interference.
  • the interference source base station may be a macro base station or a low power node, such as a Remote Radio Head (RRH), or a relay station.
  • the interference source base station may also refer to multiple macro base stations, or multiple low power nodes, or multiple relay nodes.
  • the interference source base station may also be a combination of a plurality of macro base stations and a plurality of low power nodes, and the like.
  • Interference measurement CSI-RS is described by taking CSI-RS as an example.
  • Other methods of measuring pilot signals such as CRS and De-Modulation Reference Signal (DMRS) may be used.
  • CRS CRS
  • DMRS De-Modulation Reference Signal
  • the interference measurement parameter, the interference measurement CSI-RS, and the interference signal characteristic parameter that the terminal needs to use may be indicated by the DCI bit.
  • the correspondence between the specific value of the DCI bit and the indicated interference measurement parameter may be pre-agreed, or may be configured by the network device to the terminal through signaling.
  • DCI bit Interference measurement parameter 00 Activate the first set of interference measurement parameters 01 Activate the second set of interference measurement parameters 10 Activate the third set of interference measurement parameters 11 Activate the fourth set of interference measurement parameters
  • the already grouped interference measurement parameters may also be further grouped, indicating multiple sets of interference measurement parameters by two bits in the DCI, or as activating multiple sets of interference measurement parameters, as shown in Table 3.
  • Table 3 There are a total of 8 sets of interference measurement parameters in the example of Table 3.
  • Table 3 when the bit in the DCI is 00, it indicates that the first group and the second group of interference measurement parameters are activated; when the bit in the DCI is 01, it indicates that the third group and the fourth group of interference measurement parameters are activated; When the bit in the DCI is 10, it indicates that the fifth group and the sixth group of interference measurement parameters are activated; when the bit in the DCI is 11, it indicates that the seventh group and the eighth group of interference measurement parameters are activated.
  • the already grouped interference measurement parameters may also be further grouped, indicating multiple sets of interference measurement parameters by two bits in the DCI, or as activating multiple sets of interference measurement parameters, as shown in Table 4.
  • Table 4 There are a total of six sets of interference measurement parameters in the example of Table 4. As shown in Table 4, when the bit in the DCI is 00, it indicates that the first group and the second group of interference measurement parameters are activated; when the bit in the DCI is 01, it indicates that the third group and the fourth group of interference measurement parameters are activated; When the bit in the DCI is 10, it indicates that the fifth and sixth sets of interference measurement parameters are activated; when the bit in the DCI is 11, it means that no set of interference measurement parameters are activated.
  • DCI indicator bit In addition to indicating which interference measurement parameters are used by the terminal for interference measurement and calculation by means of the above-mentioned DCI indicator bit, it is also possible to indicate which interference measurement parameters are used by the terminal for interference measurement and calculation in the DCI by means of a bitmap, each of the bitmaps.
  • the bits correspond to a set of interference measurement parameters. If the bit in the DCI is "1", the terminal needs to use the set of interference measurement parameters for interference measurement and calculation, otherwise it is not used.
  • the manner in which the interference measurement CSI-RS that the terminal needs to use is indicated by the DCI bit is as follows.
  • the DCI can be used to indicate which one or which interference measurement CSI-RSs the terminal uses to perform measurement and calculation of interference. It is assumed that two bits in the DCI indicate that the terminal should use the first set of interference measurement parameters. Assuming that the first set of interference measurement parameters includes three interference measurement CSI-RSs at this time, based on the similar method described above, two bits are used in the DCI to indicate which interference measurement CSI-RS the terminal uses for calculation. For example, the terminal may use the 4 bits in the DCI to instruct the terminal to use the first interference measurement CSI-RS of the first group of interference measurement parameter terminals in the above scenario 1. The specific example is similar to the foregoing using the DCI bit to indicate which interference measurement parameters are used by the terminal, and details are not described herein again.
  • the interference measurement and calculation may be indicated in the DCI by using the interference measurement CSI-RS in the bitmap.
  • Each bit in the bitmap corresponds to an interference measurement CSI-RS. If the bit in the DCI is "1", the terminal needs to use the interference measurement CSI-RS for interference measurement and calculation, otherwise it is not used.
  • the manner in which the interference signal characteristic parameters that the terminal needs to use is indicated by the DCI bit is as follows.
  • the DCI may indicate which one or which interference signal feature parameters are used by the terminal.
  • the following example is given. It is assumed that the network device configures four sets of interference measurement parameters for the terminal.
  • the first set of interference measurement parameters includes three interference measurement CSI-RSs. It is assumed that the network device has indicated the terminal through two bits in the DCI.
  • the first interference measurement CSI-RS of the first set of interference measurement parameters should be used. Assuming that the network device configures multiple interference signal feature parameters for the interference measurement CSI-RS in the first group of interference measurement parameters, the DCI can further indicate one or several interferences used by the terminal by using two bits. Signal characteristic parameters.
  • interference signal feature parameters are configured for the terminal, and two bits are used in the DCI to indicate which interference signal feature parameter the terminal uses for calculation.
  • Table 5 when the bit in the DCI is 00, it indicates that the first interfering signal characteristic parameter is activated; when the bit in the DCI is 01, it indicates that the second interfering signal characteristic parameter is activated; the bit in the DCI is At 10 o'clock, it indicates that the third interfering signal characteristic parameter is activated; when the bit in the DCI is 11, it indicates that the fourth interfering signal characteristic parameter is activated.
  • three interference signal feature parameters are configured for the terminal, and two bits are used in the DCI to indicate which interference signal feature parameter the terminal uses for calculation.
  • Table 6 when the bit in the DCI is 00, it indicates that the first interfering signal characteristic parameter is activated; when the bit in the DCI is 01, it indicates that the second interfering signal characteristic parameter is activated; the bit in the DCI is At 10 o'clock, it indicates that the third interfering signal characteristic parameter is activated; when the bit in the DCI is 11, it means that no interfering signal characteristic parameter is activated.
  • Table 7 There are a total of 8 interfering signal characteristic parameters in the example of Table 7.
  • Table 7 when the bit in the DCI is 00, it indicates that the first and second interfering signal characteristic parameters are activated; when the bit in the DCI is 01, it indicates that the third and fourth interfering signal characteristics are activated. Parameter; when the bit in the DCI is 10, it indicates that the fifth and sixth interference signal characteristic parameters are activated; when the bit in the DCI is 11, it indicates that the seventh and eighth interference signal characteristic parameters are activated.
  • Table 8 There are a total of 6 interfering signal characteristic parameters in the example of Table 8.
  • Table 8 when the bit in the DCI is 00, it indicates that the first and second interfering signal characteristic parameters are activated; when the bit in the DCI is 01, it indicates that the third and fourth interfering signal characteristics are activated. Parameter; when the bit in the DCI is 10, it indicates that the fifth and sixth interference signal characteristic parameters are activated; when the bit in the DCI is 11, it means that no interference signal characteristic parameter is activated.
  • the terminal In addition to indicating the interference signal characteristic parameters used by the terminal for interference measurement and calculation by means of the above-mentioned DCI indicator bit, it is also possible to indicate which interference signal characteristic parameters used by the terminal to perform interference measurement and calculation in a bitmap by means of a bitmap, in the bitmap Each bit corresponds to an interference signal characteristic parameter. If the bit in the DCI is "1", the terminal needs to perform interference measurement and calculation using the interference signal characteristic parameters, otherwise it is not used.
  • the above content details several ways to determine the interference measurement parameters, interference measurement CSI-RS, and interference signal characteristic parameters that the terminal needs to use.
  • the terminal receives the indication information sent by the network device, where the indication information is used to indicate one or more of the following: one or more sets of interference measurement parameters used by the terminal, and each set of interference measurement parameters used by the terminal One or several interference measurement CSI-RSs, one or several interference signal characteristic parameters corresponding to each interference measurement CSI-RS used by the terminal.
  • the CSI-RS is an interference measurement CSI-RS sent from an interference source base station of the terminal.
  • the configuration information of each interference measurement CSI-RS includes parameters such as a transmission period, a subframe offset, a sequence, and a power of the interference measurement CSI-RS.
  • each interference signal characteristic parameter For each interference signal characteristic parameter corresponding to each interference measurement CSI-RS configured by the network device for the terminal, each interference signal characteristic parameter includes a correlation matrix of a signal transmitted by the interference source base station, or includes an interference source base station for data transmission. A collection of precoding matrices used. The precoding matrix used by the terminal in subsequent data transmission is selected from the set of precoding matrices.
  • the network device may characterize the spatial correlation characteristics and/or signal strength of the signal transmitted by the interference source base station by the interference signal characteristic parameter. Specifically, the network device may represent the spatial correlation characteristic or signal strength, or spatial correlation characteristics and signal strength of the signal transmitted by the interference source base station, such as the interference signal direction and the interference signal strength of the neighboring cell, by the interference signal characteristic parameter.
  • the precoding matrix set is ⁇ W 1 , W 2 , . . . , W P ⁇ .
  • PMI refers to the index of the precoding matrix, which points to a set of pre-defined precoding matrices, that is, the codebook.
  • the PMI corresponds to the elements in the codebook. Therefore, the precoding matrix set can also be represented by the PMI set, which is ⁇ PMI1, PMI2, ..., PIMP ⁇ .
  • the base station may configure a weighting factor for indicating the probability that the PMI will be used in subsequent transmissions, or characterizing the transmission power of the transmission corresponding to the PMI, or The proportion of total transmit power.
  • the network device configures the interference measurement parameter for the terminal, or the network device configures the interference measurement CSI-RS and the interference signal feature parameter, and the correspondence between the interference measurement CSI-RS and the interference signal feature parameter.
  • the above steps may be performed after the terminal performs interference measurement.
  • the terminal performs parameter configuration first, and then the terminal performs interference measurement to obtain an initial interference measurement result.
  • the terminal performs interference measurement.
  • the terminal performs interference measurement based on the conventional CRS or CSI-RS, and obtains an initial interference measurement result.
  • the network device configures its exclusive IMR for the terminal, and the terminal performs interference measurement on the IMR to obtain initial interference measurement results.
  • the initial interference measurement result measured by the terminal is interference outside the set of cooperative base stations.
  • the interference source base station corresponding to the interference measurement parameter configured by the network device is a coordinated base station of the terminal.
  • the terminal when the terminal and the pairing terminal are based on single-cell multi-input multiple-output (MIMO) transmission, the terminal performs interference measurement, and the obtained initial interference measurement result is the serving base station of the terminal. External interference.
  • the pairing terminal is in the same terminal as the terminal In a serving cell, the paired terminal is the same as the time-frequency resource occupied by the terminal.
  • the interference source base station corresponding to the interference measurement parameter configured by the network device is the serving base station of the terminal.
  • the terminal After the terminal performs interference measurement, and obtains the initial interference measurement result, for each interference measurement CSI-RS, the terminal measures the channel matrix of the interference source base station corresponding to the interference measurement CSI-RS to the terminal according to each interference measurement CSI-RS. .
  • the terminal measures the interference channel from the interference source base station to the terminal according to the interference measurement CSI-RS.
  • the terminal should separately measure the interference channel from the interference source base station to the terminal according to each interference measurement CSI-RS in each set of interference measurement parameters, and further perform channel estimation.
  • the channel matrix of the terminal to the interference source base station is estimated.
  • the terminal determines total interference according to the initial interference measurement result, the channel matrix, and the interference signal characteristic parameter, and the terminal determines channel state information according to the total interference.
  • the total interference is a sum of a result obtained according to the channel matrix and the interference signal characteristic parameter and the initial interference measurement result.
  • the terminal determines, according to the initial interference measurement result, the channel matrix, and the interference signal characteristic parameter, that the formula (1) according to the total interference is:
  • Z is the total interference
  • Z 0 is the initial interference measurement result
  • n is the group number of the interference measurement parameter
  • the value range is [1, N]
  • N is the total number of interference measurement parameter groups
  • m is the interference measurement CSI-
  • the value range is [1, K]
  • K is the total number of interference signal characteristic parameters corresponding to each interference measurement CSI-RS
  • G n,m is the mth interference measurement according to the nth group of interference measurement parameters.
  • the channel matrix of the interfering source base station to the terminal measured by the CSI-RS, X n, m, k is the characteristic parameter of the kth interference signal corresponding to the mth interference measurement CSI-RS in the nth group of interference measurement parameters, Is a conjugate transposed matrix of G n,m .
  • Equation (1) is based on each group of interference measurement parameters including M interference measurement CSI-RS, each interference measurement CSI-RS corresponds to K interference characteristic signals, and when each interference measurement parameter includes interference measurement When the number of CSI-RSs is different, and the number of interference characteristic signals corresponding to each interference measurement CSI-RS is not the same, the following formula (2) is applied.
  • the terminal determines, according to the initial interference measurement result, the channel matrix, and the interference signal characteristic parameter, that the formula (2) according to the total interference is:
  • Z is the total interference
  • Z 0 is the initial interference measurement result
  • n is the group number of the interference measurement parameter
  • the value range is [1, N]
  • N is the total number of interference measurement parameter groups
  • m is the interference measurement CSI-
  • the index number of the RS is in the range of [1, M n ], where M n is the total number of interference measurement CSI-RSs in the n-th interference measurement parameter, and k is the index number of the interference signal characteristic parameter
  • the value range is [ 1, K n,m ]
  • K n,m is the total number of interference signal characteristic parameters corresponding to the mth interference measurement CSI-RS in the nth group of interference measurement parameters
  • G n,m is based on the nth group interference measurement
  • X n, m, k is the kth corresponding to the mth interference measurement CSI-RS in the nth group interference measurement parameter
  • the interference signal characteristic parameter includes a correlation matrix of signals transmitted by the interference source base station
  • the network device When the interference signal characteristic parameter includes a correlation matrix of the signal transmitted by the interference source base station, and the network device is configured to configure a corresponding set of interference measurement parameters for only one interference source base station, and only one interference measurement CSI is included in the group interference measurement.
  • -RS and the interference measurement CSI-RS corresponds to only one interference signal characteristic parameter. Then, the terminal determines, according to the initial interference measurement result, the channel matrix, and the interference signal characteristic parameter, the formula (3) according to the total interference is:
  • Z is the total interference
  • Z 0 is the initial interference measurement result
  • G is the channel matrix of the interference source base station to the terminal measured according to the interference measurement CSI-RS in the interference measurement parameter
  • R is the correlation matrix of the signal transmitted by the interference source base station.
  • G H is a conjugate transposed matrix of G.
  • the interference signal characteristic parameter includes a correlation matrix of the signal transmitted by the interference source base station
  • the network device configures interference measurement parameters for the multiple interference source base stations, and configures a set of interference measurement parameters for each interference source base station
  • Multiple sets of interference measurement parameters, and each interference measurement includes an interference measurement CSI-RS, and the interference measurement CSI-RS only corresponds to one interference signal characteristic parameter.
  • the terminal determines, according to the initial interference measurement result, the channel matrix, and the interference signal characteristic parameter, the formula (4) according to the total interference is:
  • Z is the total interference
  • Z 0 is the initial interference measurement result
  • n is the group number of the interference measurement parameter
  • the value range is [1, N]
  • N is the total number of interference measurement parameter groups
  • G n is based on the nth
  • R n is the correlation matrix of the signal transmitted by the interfering source base station corresponding to the nth group of interference measurement parameters, Is a conjugate transposed matrix of G n .
  • the interference signal characteristic parameter includes a correlation matrix of the signal transmitted by the interference source base station
  • the network device is configured to configure an interference measurement parameter for the interference source base station
  • the interference source base station is configured with a set of interference measurement parameters
  • the interference measurement group is configured. Only one interference measurement CSI-RS is included, and the interference measurement CSI-RS only corresponds to multiple interference signal feature parameters. Then, the terminal determines, according to the initial interference measurement result, the channel matrix, and the interference signal characteristic parameter, a formula (5) according to which the total interference is determined is:
  • Z is the total interference
  • Z 0 is the initial interference measurement result
  • k is the index number of the interference signal characteristic parameter corresponding to each interference measurement CSI-RS
  • the value range is [1, K]
  • K is each interference.
  • G is the channel matrix of the interference source base station to the terminal measured according to the interference measurement CSI-RS in the interference measurement parameter
  • R k is the kth transmitted by the interference source base station
  • G H is the conjugate transposed matrix of G.
  • the network device is configured to configure interference measurement parameters for the multiple interference source base stations, and each interference source base station is configured with multiple sets of interference measurement parameters, and each group
  • the interference measurement includes a plurality of interference measurement CSI-RSs, and each interference measurement CSI-RS corresponds to a plurality of interference signal characteristic parameters.
  • Z is the total interference
  • Z 0 is the initial interference measurement result
  • n is the group number of the interference measurement parameter
  • the value range is [1, N]
  • N is the total number of groups of interference measurement parameters
  • m is the interference measurement CSI -RS index number
  • the value range is [1, M]
  • M is the total number of interference measurement CSI-RS in each group of interference measurement parameters
  • k is the interference signal characteristic parameter corresponding to each interference measurement CSI-RS
  • K is the total number of interference signal characteristic parameters corresponding to each interference measurement CSI-RS
  • G n,m is the mth interference according to the nth group of interference measurement parameters.
  • R n,m,k is the kth transmitted by the interference source base station corresponding to the mth interference measurement CSI-RS in the nth group of interference measurement parameters
  • the correlation matrix of the signal, I is a conjugate transposed matrix of G n,m .
  • Equation (6) is based on each group of interference measurement parameters including M interference measurement CSI-RS, each interference measurement CSI-RS corresponds to K interference characteristic signals, and when each interference measurement parameter includes interference measurement When the number of CSI-RSs is different, and the number of interference characteristic signals corresponding to each interference measurement CSI-RS is not the same, the following formula (7) is applied.
  • the network device is configured to configure interference measurement parameters for the multiple interference source base stations, and each interference source base station is configured with multiple sets of interference measurement parameters, and each group
  • the interference measurement includes a plurality of interference measurement CSI-RSs, and each interference measurement CSI-RS corresponds to a plurality of interference signal characteristic parameters.
  • Z is the total interference
  • Z 0 is the initial interference measurement result
  • n is the group number of the interference measurement parameter
  • the value range is [1, N]
  • N is the total number of groups of interference measurement parameters
  • m is the interference measurement CSI -RS index number
  • the value range is [1,M n ]
  • M n is the total number of interference measurement CSI-RS in the nth group of interference measurement parameters
  • k is the index number of the interference signal characteristic parameter
  • the value range is [1, K n,m ]
  • K n,m is the total number of characteristic parameters of the interference signal corresponding to the mth interference measurement CSI-RS in the nth group of interference measurement parameters
  • G n,m is the interference according to the nth group
  • the m-th interference measurement CSI-RS measurement of the interference source base station-to-terminal channel matrix, R n,m,k is the interference source corresponding to the m-th interference measurement CSI-RS in the n-th interference measurement
  • the interference signal characteristic parameter includes a set of precoding matrices used by the interference source base station for data transmission
  • the calculation is performed by the following formula:
  • the precoding matrix set is ⁇ W 1 , W 2 , . . . , W P ⁇
  • the network device is assumed to be only one interference source.
  • the base station is configured with a corresponding set of interference measurement parameters, and only one interference measurement CSI-RS is included in the interference measurement, and the interference measurement CSI-RS only corresponds to one interference signal characteristic parameter. Then, the terminal determines, according to the initial interference measurement result, the channel matrix, and the interference signal characteristic parameter, the formula (8) according to the total interference is:
  • Z is the total interference
  • Z 0 is the initial interference measurement result
  • G is the channel matrix of the interference source base station to the terminal according to the interference measurement CSI-RS measurement in the interference measurement parameter
  • p is the precoding used by the interference source base station for data transmission.
  • P is the number of precoding matrices used by the interfering source base station for data transmission
  • W p is the pth precoding matrix used by the interfering source base station for data transmission.
  • G H is a conjugate transposed matrix of G.
  • the precoding matrix set is ⁇ W 1 , W 2 , . . . , W P ⁇
  • the base station transmits the subsequent data based on the precoding matrix.
  • the probability that it may be used is configured with a weighting factor for each precoding matrix, and it is assumed that the network device configures a corresponding set of interference measurement parameters for only one interference source base station, and only one interference measurement is included in the group of interference measurements.
  • CSI-RS and the interference measurement CSI-RS corresponds to only one interference signal characteristic parameter. Then, the terminal determines, according to the initial interference measurement result, the channel matrix, and the interference signal characteristic parameter, the formula (9) according to the total interference is:
  • Z is the total interference
  • Z 0 is the initial interference measurement result
  • G is the channel matrix of the interference source base station to the terminal according to the interference measurement CSI-RS measurement in the interference measurement parameter
  • p is the precoding used by the interference source base station for data transmission.
  • the index number of the matrix in the range of [1, P], where P is the total number of precoding matrices used by the interfering source base station for data transmission, and ⁇ p is the pth precoding matrix used by the interfering source base station for data transmission.
  • weighting factor, W is p for the p-th pre-coding matrix to use for data transmission interference source base station
  • G H is the conjugate transposed matrix of G.
  • the precoding matrix set is ⁇ W 1 , W 2 , . . . , W P ⁇
  • the network device is assumed to be multiple interference sources.
  • the base station configures the interference measurement parameter, and configures a set of interference measurement parameters for each interference source base station, and then needs multiple sets of interference measurement parameters, and each set of interference measurement includes an interference measurement CSI-RS, and the interference measurement CSI-RS Only one interference signal characteristic parameter is corresponding. Then, the terminal determines, according to the initial interference measurement result, the channel matrix, and the interference signal characteristic parameter, the formula (10) according to the total interference is:
  • Z is the total interference
  • Z 0 is the initial interference measurement result
  • n is the group number of the interference measurement parameter
  • the value range is [1, N]
  • N is the total number of interference measurement parameter groups
  • G n is based on the nth The interfering source CSI-RS measured interfering source base station to the terminal's channel matrix
  • p is the index number of the precoding matrix used by the interfering source base station for data transmission
  • the value range is [1, P]
  • P is The total number of precoding matrices used by the interference source base station for data transmission
  • W n,p is the pth precoding matrix used by the interference source base station corresponding to the nth group of interference measurement parameters for data transmission, a conjugate transpose matrix of W n,p , Is a conjugate transposed matrix of G n .
  • the precoding matrix set is ⁇ W 1 , W 2 , . . . , W P ⁇ , and the base station transmits the subsequent data based on the precoding matrix.
  • the probability that the medium may be used is configured with a weighting factor for each precoding matrix, and assuming that the network device configures interference measurement parameters for multiple interference source base stations, and configures a set of interference measurement parameters for each interference source base station, There are multiple sets of interference measurement parameters, and each interference measurement includes only one interference measurement CSI-RS, and the interference measurement CSI-RS only corresponds to one interference signal characteristic parameter. Then, the terminal determines, according to the initial interference measurement result, the channel matrix, and the interference signal characteristic parameter, the formula (11) according to the total interference is:
  • Z is the total interference
  • Z 0 is the initial interference measurement result
  • k is the index number of the interference signal characteristic parameter corresponding to each interference measurement CSI-RS
  • the value range is [1, K]
  • K is each interference.
  • G is the channel matrix of the interference source base station to the terminal measured according to the interference measurement CSI-RS in the interference measurement parameter
  • p is the precoding used by the interference source base station for data transmission
  • P is the number of precoding matrices used by the interference source base station for data transmission
  • ⁇ n, p is the data of the interference source base station corresponding to the nth group of interference measurement parameters.
  • the weighting factor of the pth precoding matrix used for transmission, W n,p is the pth precoding matrix used by the interference source base station corresponding to the nth group of interference measurement parameters for data transmission, Is a conjugate transposed matrix of W n,p , and G H is a conjugate transposed matrix of G.
  • the precoding matrix set is ⁇ W 1 , W 2 , . . . , W P ⁇
  • the network device is assumed to be an interference source base station.
  • the interference measurement parameter is configured, and the interference source base station is configured with a set of interference measurement parameters, and the interference measurement includes only one interference measurement CSI-RS, and the interference measurement CSI-RS corresponds to multiple interference signal feature parameters.
  • the terminal determines, according to the initial interference measurement result, the channel matrix, and the interference signal characteristic parameter, a formula (12) according to which the total interference is determined is:
  • Z is the total interference
  • Z 0 is the initial interference measurement result
  • k is the index number of the interference signal characteristic parameter corresponding to each interference measurement CSI-RS
  • the value range is [1, K]
  • K is each interference.
  • G is the channel matrix of the interference source base station to the terminal measured according to the interference measurement CSI-RS in the interference measurement parameter
  • p is the precoding used by the interference source base station for data transmission
  • P is the number of precoding matrices used by the interference source base station for data transmission
  • W k,p is the interference source base station corresponding to the kth interference signal characteristic parameter.
  • G H is a conjugate transposed matrix of G.
  • the precoding matrix set is ⁇ W 1 , W 2 , . . . , W P ⁇ , and the base station transmits the subsequent data based on the precoding matrix.
  • the probabilities that may be used are configured with a weighting factor for each precoding matrix, and it is assumed that the network device configures an interference measurement parameter for an interference source base station, and the interference source base station correspondingly configures a set of interference measurement parameters, and the interference group Only one interference measurement CSI-RS is included in the measurement, and the interference measurement CSI-RS only corresponds to a plurality of interference signal characteristic parameters. Then, the terminal determines, according to the initial interference measurement result, the channel matrix, and the interference signal characteristic parameter, the formula (13) according to the total interference is:
  • Z is the total interference
  • Z 0 is the initial interference measurement result
  • k is the index number of the interference signal characteristic parameter corresponding to each interference measurement CSI-RS
  • the value range is [1, K]
  • K is each interference.
  • G is the channel matrix of the interference source base station to the terminal measured according to the interference measurement CSI-RS in the interference measurement parameter
  • p is the precoding used by the interference source base station for data transmission
  • P is the number of precoding matrices used by the interference source base station for data transmission
  • ⁇ k, p is the interference source base station corresponding to the kth interference signal characteristic parameter.
  • the weighting factor of the pth precoding matrix used for data transmission, W k,p is the pth precoding matrix used by the interference source base station corresponding to the kth interference signal characteristic parameter for data transmission, Is a conjugate transposed matrix of W k,p , and G H is a conjugate transposed matrix of G.
  • the precoding matrix set is ⁇ W 1 , W 2 , . . . , W P ⁇
  • the network device is assumed to be multiple interference sources.
  • the base station configures interference measurement parameters, and each interference source base station is configured with multiple sets of interference measurement parameters, and each set of interference measurement includes multiple interference measurement CSI-RSs, and each interference measurement CSI-RS corresponds to multiple interference signal characteristic parameters.
  • the terminal determines, according to the initial interference measurement result, the channel matrix, and the interference signal characteristic parameter, the formula (14) according to the total interference is:
  • Z is the total interference
  • Z 0 is the initial interference measurement result
  • n is the group number of the interference measurement parameter
  • the value range is [1, N]
  • N is the total number of groups of interference measurement parameters
  • m is the interference measurement CSI -RS index number
  • the value range is [1, M]
  • M is the total number of interference measurement CSI-RS in each group of interference measurement parameters
  • k is the interference signal characteristic parameter corresponding to each interference measurement CSI-RS
  • K is the total number of interference signal characteristic parameters corresponding to each interference measurement CSI-RS
  • G n,m is the mth interference according to the nth group of interference measurement parameters.
  • the total number of precoding matrices used, W n, m, k, p is the interference source base station corresponding to the kth interference signal characteristic parameter corresponding to the mth interference measurement CSI-RS in the nth group of interference measurement parameters
  • the precoding matrix set is ⁇ W 1 , W 2 , . . . , W P ⁇
  • the base station transmits the subsequent data based on the precoding matrix.
  • the probability that the medium may be used is configured with a weighting factor for each precoding matrix, and it is assumed that the network device configures interference measurement parameters for multiple interference source base stations, and each interference source base station is configured with multiple sets of interference measurement parameters, and each The group interference measurement includes multiple interference measurement CSI-RSs, and each interference measurement CSI-RS corresponds to multiple interference signal feature parameters.
  • the terminal determines, according to the initial interference measurement result, the channel matrix, and the interference signal characteristic parameter, the formula (15) according to the total interference is:
  • Z is the total interference
  • Z 0 is the initial interference measurement result
  • n is the group number of the interference measurement parameter
  • the value range is [1, N]
  • N is the total number of groups of interference measurement parameters
  • m is the interference measurement CSI -RS index number
  • the value range is [1, M]
  • M is the total number of interference measurement CSI-RS in each group of interference measurement parameters
  • k is the interference signal characteristic parameter corresponding to each interference measurement CSI-RS
  • K is the total number of interference signal characteristic parameters corresponding to each interference measurement CSI-RS
  • G n,m is the mth interference according to the nth group of interference measurement parameters.
  • the total number of precoding matrices in the set of precoding matrices used for data transmission, ⁇ n, m, k, p is the kth interference corresponding to the mth interference measurement CSI-RS in the nth group of interference measurement parameters
  • the weighting factor, W n, m, k, p is the data transmission used by the interference source base station corresponding to the k-th interference signal characteristic parameter corresponding to the m-th interference measurement CSI-RS in the n-th interference measurement parameter.
  • each of the interference measurement parameters includes M interference measurement CSI-RSs, and each interference measurement CSI-RS corresponds to K interference characteristic signals.
  • the following formula (16) is applied.
  • the interference signal characteristic parameter includes a set of precoding matrices used by the interference source base station for data transmission
  • the precoding matrix set is ⁇ W 1 , W 2 , . . . , W P ⁇
  • the network device is assumed to be only one interference source.
  • the base station is configured with a corresponding set of interference measurement parameters, and only one interference measurement CSI-RS is included in the interference measurement, and the interference measurement CSI-RS only corresponds to one interference signal characteristic parameter.
  • determining, according to the initial interference measurement result, the channel matrix, and the interference signal characteristic parameter, the formula (16) according to the total interference is:
  • Z is the total interference
  • Z 0 is the initial interference measurement result
  • n is the group number of the interference measurement parameter
  • the value range is [1, N]
  • N is the total number of groups of interference measurement parameters
  • m is the interference measurement CSI -RS index number
  • the value range is [1, M n ]
  • M n is the total number of interference measurement CSI-RS in the nth group of interference measurement parameters
  • k is the index number of the interference signal characteristic parameter
  • the value range is [1, K n,m ]
  • K n,m is the total number of characteristic parameters of the interference signal corresponding to the mth interference measurement CSI-RS in the nth group of interference measurement parameters
  • G n,m is the interference according to the nth group
  • p is the index number of the precoding matrix used by the interference source base station for data transmission
  • the value range is [1, P]
  • Equation (15) is based on the fact that each set of interference measurement parameters includes M interference measurement CSI-RSs, and each interference measurement CSI-RS corresponds to K interference characteristic signals.
  • the following formula (17) is applied.
  • the precoding matrix set is ⁇ W 1 , W 2 , . . . , W P ⁇
  • the base station transmits the subsequent data based on the precoding matrix.
  • the probability that the medium may be used is configured with a weighting factor for each precoding matrix, and it is assumed that the network device configures interference measurement parameters for multiple interference source base stations, and each interference source base station is configured with multiple sets of interference measurement parameters, and each The group interference measurement includes multiple interference measurement CSI-RSs, and each interference measurement CSI-RS corresponds to multiple interference signal feature parameters.
  • a formula (17) according to which the total interference is determined is:
  • Z is the total interference
  • Z 0 is the initial interference measurement result
  • n is the group number of the interference measurement parameter
  • the value range is [1, N]
  • N is the total number of groups of interference measurement parameters
  • m is the interference measurement CSI -RS index number
  • the value range is [1, M n ]
  • M n is the total number of interference measurement CSI-RS in the nth group of interference measurement parameters
  • k is the index number of the interference signal characteristic parameter
  • the value range is [1, K n,m ]
  • K n,m is the total number of characteristic parameters of the interference signal corresponding to the mth interference measurement CSI-RS in the nth group of interference measurement parameters
  • G n,m is the interference according to the nth group
  • p is the index number of the set of precoding matrix used by the interference source base station for data transmission
  • the value range is [1, P]
  • formula (14) when N is 1, M is 1, and K is 1, formula (14) can be simplified to formula (8); in formula (14), when N is greater than 1, M is 1, K is 1, then the formula (14) can be simplified to the formula (10); in the formula (14), when N is 1, M is 1, K is greater than 1, then the formula (14) Can be simplified to formula (12).
  • formula (15) when N is 1, M is 1, and K is 1, formula (15) can be simplified to formula (9); in formula (15), when N is greater than 1, M is 1, K When it is 1, formula (15) can be simplified to formula (11); in formula (15), when N is 1, M is 1, and K is greater than 1, formula (15) can be simplified to formula (13) .
  • the terminal After determining the total interference according to the foregoing manner, the terminal determines channel state information according to the total interference, and reports the determined channel state information to the network device.
  • the channel state information in the embodiment of the present disclosure includes information such as RI, CQI, PMI, and the like.
  • the channel state information is determined according to the initial interference measurement result, and then the channel state information that has been determined is adjusted according to the interference measurement parameter configured by the network device, and the adjustment is performed.
  • the channel state information is reported to the network device.
  • adjusting the channel state information that has been determined according to the interference measurement parameter configured by the network device may be preset, for example, the CQI in the initially determined channel state information may be improved according to the interference measurement parameter. Or lower.
  • Another implementation manner is: establishing a mapping table between the channel state information and the initial interference measurement result, the interference measurement CSI-RS and the interference signal feature parameter in the interference measurement parameter, and adopting the initial interference measurement result, the interference measurement CSI-RS,
  • the interference signal characteristic parameter is used to determine the channel state information through the table, and then the determined channel state information is reported to the network device.
  • the CSI process is a concept introduced by LTE Rel-11.
  • a CSI process corresponds to a CSI that transmits the hypothesis.
  • the transmission hypothesis includes two parts of the signal hypothesis and the interference hypothesis, so one CSI process is associated with one CSI-RS and one IMR.
  • the signal hypothesis is based on CSI-RS measurements, and the interference assumptions are based on IMR measurements.
  • the definition of one CSI process can be modified to be associated with one CSI-RS and one IMR and associated with one or more sets of interference measurement parameters.
  • the CSI measurement and calculation of the CSI process can be done based on the method described above.
  • the interference measurement CSI-RS configured by the network device for the terminal is for the interference source base station of the terminal (as described above, when the terminal has the cooperative base station, the initial interference measurement result measured by the terminal is outside the set of the cooperative base station.
  • the interference source base station corresponding to the interference measurement parameter configured by the network device is the coordinated base station of the terminal; when the terminal and the paired terminal are based on single-cell MIMO transmission, the initial interference measurement result obtained by the terminal for interference measurement is the serving base station of the terminal.
  • the external interference, the interference source base station corresponding to the interference measurement parameter configured by the network device is the serving base station of the terminal, and therefore the interference corresponding to the interference measurement CSI-RS in step 202 can be determined in combination with the initial measurement configuration in step 201.
  • the source base station can obtain the interference information by combining the initial interference measurement result in step 201 and the measurement result based on the interference measurement CSI-RS in step 202, so that the obtained interference information can reflect the actual occurrence of the interference information more than the prior art. .
  • the interference signal characteristic parameter configured by the network device for the terminal includes a correlation matrix of the signal transmitted by the interference source base station, and may be, for example, a set of precoding matrices used by the interference source base station for data transmission, so the interference may be reflected to some extent. Data transmission status of the source base station. Therefore, The interference information obtained by combining the initial interference measurement result, the interference measurement result based on the interference measurement CSI-RS, and the correlation matrix of the signal transmitted by the interference source base station can be more matched with the interference information of the actual transmission than the prior art.
  • the serving cell of the terminal is the first cell
  • the coordinated cell set includes the first cell and the second cell.
  • the network device configures IMR1 for the first cell and the second cell, respectively.
  • the terminal performs interference measurement on the IMR1
  • the initial interference measurement result is interference outside the first cell and the second cell, that is, the initial interference measurement result is Interference generated by base stations outside the set of coordinated base stations.
  • the network device configures a set of interference measurement parameters for the terminal, and the interference source base station corresponding to the interference measurement parameter is a base station of the second cell.
  • the interference measurement CSI-RS in the interference measurement CSI-RS in the interference measurement parameter is the interference measurement CSI-RS transmitted by the base station of the second cell.
  • the interference signal characteristic parameter in the interference measurement parameter is a correlation matrix of signals transmitted by the base station of the second cell.
  • the terminal measures the initial interference measurement result outside the first cell and the second cell in the IMR1, and obtains the interference generated by the second cell to the terminal according to the interference measurement parameter, and the initial interference measurement result is compared with the second cell.
  • the interference generated by the terminal is added, that is, the total interference generated by all other cells except the first cell is obtained.
  • the first cell determines channel state information based on the total interference, and reports the determined channel state information to the network device.
  • the embodiment of the present disclosure is applicable to a single-cell multi-user MIMO transmission scenario, and the first cell is a serving cell of the terminal, and the paired terminal of the terminal exists in the serving cell, that is, the paired terminal and the terminal are in the serving cell. Take up the same time-frequency resources.
  • the network configures IMR2 for the terminal, and the serving cell performs silence on IMR2.
  • the interference measured by the terminal on IMR2 is the initial interference generated by other cells outside the serving cell.
  • the network device configures a set of interference measurement parameters for the terminal, where the interference measurement CSI-RS is an interference measurement CSI-RS sent by the serving cell, and the correlation matrix of the interference signal in the interference measurement parameter is the serving base station to the terminal.
  • the interference calculated by the terminal based on the interference measurement parameter is the interference generated by the signal of the paired terminal to the terminal.
  • the initial interference measurement result generated by the other cell outside the serving cell is added to the interference generated by the pairing terminal to the terminal, and the result is the total interference received by the terminal.
  • the serving cell determines channel state information based on the total interference, and reports the determined channel state information to the network device.
  • the terminal performs interference measurement to obtain an initial interference measurement result.
  • the terminal determines channel state information according to the initial interference measurement result and the interference measurement parameter configured by the network device.
  • the terminal reports the determined channel state information to the network device.
  • the interference measurement parameter is configured by the network device
  • the interference measurement parameter configured by the network device may reflect the actual occurrence of the interference information. Therefore, the interference information obtained by the terminal according to the interference measurement parameter is more than the interference information during actual transmission. To match.
  • the terminal after obtaining the initial interference measurement result, the terminal further determines the channel state information and reports it according to the interference information configured by the network device, thereby improving the matching degree between the interference information measured by the terminal and the interference information during actual transmission, and further making the network Select a more appropriate parameter when performing link adaptation.
  • FIG. 3 exemplarily shows a flow chart of a channel state information acquisition method.
  • the embodiment of the present disclosure provides a channel state information acquiring method, including the following steps:
  • Step 301 The network device sends configuration information to the terminal, where the configuration information includes interference measurement parameters;
  • Step 302 The network device receives channel state information reported by the terminal, where the channel state information is that the terminal performs interference measurement, and obtains an initial interference measurement result, and then the terminal determines the channel state according to the initial interference measurement result and the interference measurement parameter configured by the network device. The information is reported later.
  • the interference measurement parameter is configured by the network device
  • the interference measurement parameter configured by the network device may reflect the actual occurrence of the interference information. Therefore, the interference information obtained by the terminal according to the interference measurement parameter is more matched with the interference information during actual transmission.
  • the sending of the configuration information by the network device to the terminal may be performed in the following two manners.
  • the configuration information sent by the network device to the terminal includes interference measurement parameters.
  • the interference measurement parameter is one or more groups, and each group of interference measurement parameters corresponds to one interference source base station.
  • Each set of interference measurement parameters includes one or more interference measurement CSI-RSs, and each interference measurement CSI-RS corresponds to one or more interference signal characteristic parameters.
  • the CSI-RS in the interference measurement CSI-RS refers to a CSI-RS transmitted from an interference source base station.
  • the network device receives the channel state information reported by the terminal, where the channel state information is that the terminal performs the interference measurement, and obtains the initial interference measurement result, and then the terminal reports the channel state information according to the initial interference measurement result and the interference measurement parameter configured by the network device. of.
  • the configuration information sent by the network device includes only one or more interference measurement CSI-RSs, one or more interference signal feature parameters, and a correspondence between each interference measurement CSI-RS and one or more interference signal feature parameters.
  • the correspondence between each interference measurement CSI-RS and the interference source base station is also included.
  • each interference source base station may correspond to one or more interference measurement CSI-RSs, and each interference measurement one or more interference signal characteristic parameters corresponding to the CSI-RS.
  • the CSI-RS in the interference measurement CSI-RS refers to a CSI-RS transmitted from an interference source base station.
  • the terminal measures the reference signal interference measurement CSI-RS according to the initial interference measurement result, the interference measurement channel state information configured by the network device, and the interference signal characteristic parameter corresponding to the interference measurement CSI-RS configured by the network device. , determine channel status information.
  • the network device receives the channel state information reported by the terminal, where the channel state information is the interference measurement CSI-RS configured by the terminal according to the initial interference measurement result, the network device configuration, and the network device configuration.
  • the interference measurement measures the interference signal characteristic parameters corresponding to the CSI-RS, and is reported after the channel state information is determined.
  • One or more interference measurement CSI-RSs corresponding to each interference source base station in the foregoing mode 2 and one or more interference signal feature parameters corresponding to each CSI-RS may be regarded as a group interference in the mode one.
  • the measurement parameters are mainly introduced on the basis of the first method in the following examples.
  • a person skilled in the art may replace, according to the correspondence, a noun of a set of interference measurement parameters in the following embodiments with one or more interference measurement CSI-RSs corresponding to each interference source base station in the second mode, and each One or more interference signal characteristic parameters corresponding to the CSI-RS.
  • the terminal may perform interference measurement and calculation using all the interference measurement parameters configured, or may use high-level signaling or downlink dynamic control signaling (Downlink Control Information, DCI for short).
  • DCI Downlink Control Information
  • the mode indicates the interference measurement parameters that the terminal needs to use, and the interference measurement CSI-RS and the interference signal characteristic parameters.
  • one or more of the following may be indicated by the DCI: one or more sets of interference measurement parameters used by the terminal, and one or several interference measurement CSIs of each set of interference measurement parameters used by the terminal.
  • - RS one or several interference signal characteristic parameters corresponding to each interference measurement CSI-RS used by the terminal. That is to say, the DCI indicates which group or groups of interference measurement parameters the terminal uses to perform measurement and calculation of interference, or can be described as activating one or more sets of interference measurement parameters.
  • one or more interference measurement CSI-RSs are included in each group of interference measurement parameters, one or several interference measurement CSI-RSs of a certain group of interference measurement parameters may be activated by DCI.
  • one interference measurement CSI-RS corresponds to one or more interference signal characteristic parameters
  • one or several interference signal characteristic parameters corresponding to one of the interference measurement CSI-RSs of a certain set of interference measurement parameters may be activated by DCI.
  • the terminal may also be instructed by the DCI not to use any interference measurement parameters, that is, to not activate any interference measurement parameters.
  • the terminal can perform CSI measurement and calculation with the interference measured on the IMR, or in the case that the network device is not configured with the IMR, the terminal can perform CSI measurement and calculation with the measured interference.
  • the interference signal characteristic parameter may indicate, by using the DCI bit, an interference measurement parameter, an interference measurement CSI-RS, and an interference signal characteristic parameter, and a corresponding value of the DCI bit and the interference measurement parameter used.
  • the relationship may be pre-agreed or may be configured by the network device to the terminal through signaling.
  • interference measurement parameters In addition to indicating the interference measurement parameters, the interference measurement CSI-RS, and the interference signal characteristic parameters used by the terminal to perform interference measurement and calculation by using the above-mentioned DCI indicator bit, it is also possible to indicate which interference measurement parameters are used by the terminal through the bitmap in the DCI. Interference measurement CSI-RS and interference signal characteristic parameters are used for interference measurement and calculation.
  • the above content details several ways to determine the interference measurement parameters, interference measurement CSI-RS, and interference signal characteristic parameters that the network device indicates to the terminal.
  • the network device sends indication information to the terminal, where the indication information is used to indicate one or more sets of interference measurement parameters used by the terminal, and for each group of interference measurement parameters indicated, indicating each group of interference measurement parameters.
  • One or several interference measurement CSI-RS, and for each indicated The interference measurement CSI-RS indicates one or several interference signal characteristic parameters corresponding to each interference measurement CSI-RS.
  • each interference measurement CSI-RS includes parameters such as a transmission period, a subframe offset, a sequence, and a power of the interference measurement CSI-RS.
  • each interference signal characteristic parameter For each interference signal characteristic parameter corresponding to each interference measurement CSI-RS configured by the network device for the terminal, each interference signal characteristic parameter includes a correlation matrix of a signal transmitted by the interference source base station, or includes an interference source base station for data transmission. A collection of precoding matrices used. The precoding matrix used by the terminal in subsequent data transmission is selected from the set of precoding matrices.
  • the network device may characterize the spatial correlation characteristics and/or signal strength of the signal transmitted by the interference source base station by using the interference signal characteristic parameter, such as the interference signal direction and the interference signal strength of the neighboring cell.
  • Each interfering signal characteristic parameter includes a set of precoding matrices used by the interfering source base station for data transmission, and the precoding matrix set is ⁇ W 1 , W 2 , . . . , W P ⁇ .
  • PMI refers to the index of the precoding matrix, which points to a set of pre-defined precoding matrices, that is, the codebook.
  • the PMI corresponds to the elements in the codebook. Therefore, the precoding matrix set can also be represented by the PMI set, which is ⁇ PMI1, PMI2, ..., PIMP ⁇ .
  • the base station may configure a weighting factor for indicating the probability that the PMI will be used in subsequent transmissions, or characterizing the transmission power of the transmission corresponding to the PMI, or The proportion of total transmit power.
  • the network device configures the interference measurement parameter for the terminal, or the network device configures the interference relationship between the interference measurement CSI-RS and the interference signal feature parameter, and the interference measurement CSI-RS and the interference signal feature parameter. This step can be performed after the terminal performs interference measurement.
  • the terminal performs parameter configuration first, and then the terminal performs interference measurement to obtain an initial interference measurement result.
  • the terminal performs interference measurement based on the conventional CRS or CSI-RS, and obtains an initial interference measurement result.
  • the network device configures its exclusive IMR for the terminal, and the terminal performs interference measurement on the IMR to obtain initial interference measurement results.
  • the initial interference measurement result measured by the terminal is interference outside the set of cooperative base stations.
  • the interference source base station corresponding to the interference measurement parameter configured by the network device is a coordinated base station of the terminal.
  • the terminal when the terminal and the paired terminal are based on single-cell multi-user multiple input multiple output (Multiple-Input Multiple-Output, MIMO) transmission, the terminal performs interference measurement, and the obtained initial interference measurement result is interference outside the serving base station of the terminal.
  • the paired terminal is in the same serving cell as the terminal, and the paired terminal is the same as the time-frequency resource occupied by the terminal.
  • the interference source base station corresponding to the interference measurement parameter configured by the network device is the serving base station of the terminal.
  • the terminal After the terminal performs interference measurement, and obtains the initial interference measurement result, for each interference measurement CSI-RS, the terminal measures the channel matrix of the interference source base station corresponding to the interference measurement CSI-RS to the terminal according to each interference measurement CSI-RS. .
  • the terminal measures the interference channel from the interference source base station to the terminal according to the interference measurement CSI-RS.
  • the terminal should separately measure the interference channel from the interference source base station to the terminal according to each interference measurement CSI-RS in each set of interference measurement parameters, and further perform channel estimation.
  • the channel matrix of the terminal to the interference source base station is estimated.
  • the terminal performs interference measurement to obtain an initial interference measurement result; the terminal determines channel state information according to the initial interference measurement result and the interference measurement parameter configured by the network device; The terminal reports the determined channel state information to the network device.
  • the interference measurement parameter is configured by the network device
  • the interference measurement parameter configured by the network device may reflect the actual occurrence of the interference information. Therefore, the interference information obtained by the terminal according to the interference measurement parameter is more matched with the interference information during actual transmission.
  • the terminal after obtaining the initial interference measurement result, the terminal further determines the channel state information and reports it according to the interference information configured by the network device, thereby improving the matching degree between the interference information measured by the terminal and the interference information during actual transmission, and further making the network Select a more appropriate parameter when performing link adaptation.
  • FIG. 4 exemplarily shows a schematic structural diagram of a terminal provided by an embodiment of the present disclosure.
  • the embodiment of the present disclosure provides a terminal, including a measurement module 401, a determination module 402, and a reporting module 403.
  • the measuring module 401 is configured to perform interference measurement to obtain an initial interference measurement result.
  • the determining module 402 is configured to determine channel state information according to the initial interference measurement result and the interference measurement parameter configured by the network device.
  • the reporting module 403 is configured to report the determined channel state information to the network device.
  • the interference measurement parameter is configured by the network device
  • the interference measurement parameter configured by the network device may reflect the actual occurrence of the interference information. Therefore, the interference information obtained by the terminal according to the interference measurement parameter is more matched with the interference information during actual transmission.
  • the determining module 402 of the terminal can be specifically implemented in the following two manners:
  • the network device configures interference measurement parameters of the interference source base station for the terminal.
  • the interference measurement parameter is one or more groups, and each group of interference measurement parameters corresponds to one interference source base station.
  • Each set of interference measurement parameters includes one or more interference measurement CSI-RSs, and each interference measurement CSI-RS corresponds to one or more interference signal characteristic parameters.
  • the CSI-RS in the interference measurement CSI-RS refers to a CSI-RS transmitted from an interference source base station.
  • the terminal is configured with one or more interference measurement CSI-RSs, one or more interference signal characteristic parameters, and a correspondence between each interference measurement CSI-RS and one or more interference signal characteristic parameters.
  • the correspondence between each interference measurement CSI-RS and the interference source base station is also included.
  • each interfering source base station may correspond to one or more interfering measurement CSI-RSs, one or more interfering signal characteristic parameters corresponding to each interfering measurement CSI-RS.
  • the CSI-RS in the interference measurement CSI-RS refers to a CSI-RS transmitted from an interference source base station.
  • the terminal measures the reference signal interference measurement CSI-RS according to the initial interference measurement result, the interference measurement channel state information configured by the network device, and the interference signal characteristic parameter corresponding to the interference measurement CSI-RS configured by the network device. , determine channel status information.
  • the determining module determines the channel state information according to the initial interference measurement result, the interference measurement channel state information measurement reference signal CSI-RS configured by the network device, and the interference signal characteristic parameter corresponding to the interference measurement CSI-RS configured by the network device.
  • One or more interference measurement CSI-RSs corresponding to each interference source base station in the foregoing mode 2 and one or more interference signal feature parameters corresponding to each CSI-RS may be regarded as a group interference in the mode one.
  • the measurement parameters are mainly introduced on the basis of the first method in the following examples.
  • a person skilled in the art may replace, according to the correspondence, a noun of a set of interference measurement parameters in the following embodiments with one or more interference measurement CSI-RSs corresponding to each interference source base station in the second mode, and each One or more interference signal characteristic parameters corresponding to the CSI-RS.
  • the terminal may use all the interference measurement parameters configured for interference measurement and calculation, and may also indicate the interference measurement parameters used by the terminal through high-level signaling or DCI. And interference measurement CSI-RS and interference signal characteristic parameters.
  • one or more of the following may be indicated by the DCI: one or more sets of interference measurement parameters used by the terminal, and one or several interference measurement CSIs of each set of interference measurement parameters used by the terminal.
  • - RS one or several interference signal characteristic parameters corresponding to each interference measurement CSI-RS used by the terminal. That is to say, the DCI indicates which group or groups of interference measurement parameters the terminal uses to perform measurement and calculation of interference, or can be described as activating one or more sets of interference measurement parameters.
  • one or more interference measurement CSI-RSs are included in each group of interference measurement parameters, one or several interference measurement CSI-RSs of a certain group of interference measurement parameters may be activated by DCI.
  • one interference measurement CSI-RS corresponds to one or more interference signal characteristic parameters
  • one or several interference signal characteristic parameters corresponding to one of the interference measurement CSI-RSs of a certain set of interference measurement parameters may be activated by DCI.
  • the terminal may also be instructed by the DCI not to use any interference measurement parameters, that is, to not activate any interference measurement parameters.
  • the terminal can perform CSI measurement and calculation with the interference measured on the IMR, or in the case that the network device is not configured with the IMR, the terminal can perform CSI measurement and calculation with the measured interference.
  • Interference signal characteristic parameters Specifically, the interference measurement parameter, the interference measurement CSI-RS, and the interference signal characteristic parameter that the terminal needs to use may be indicated by the DCI bit.
  • the correspondence between the specific value of the DCI bit and the interference measurement parameter indicated may be pre-agreed or may be
  • the network device is configured to the terminal through signaling.
  • interference measurement parameters In addition to indicating the interference measurement parameters, the interference measurement CSI-RS, and the interference signal characteristic parameters used by the terminal to perform interference measurement and calculation by using the above-mentioned DCI indicator bit, it is also possible to indicate which interference measurement parameters are used by the terminal through the bitmap in the DCI. Interference measurement CSI-RS and interference signal characteristic parameters are used for interference measurement and calculation.
  • the above content details several ways to determine the interference measurement parameters, interference measurement CSI-RS, and interference signal characteristic parameters that the network device indicates to the terminal.
  • the terminal receives the indication information sent by the network device, where the indication information is used to indicate one or more of the following: one or more sets of interference measurement parameters used by the terminal, and each set of interference measurement parameters used by the terminal One or several interference measurement CSI-RSs, one or several interference signal characteristic parameters corresponding to each interference measurement CSI-RS used by the terminal.
  • each interference measurement CSI-RS includes parameters such as a transmission period, a subframe offset, a sequence, and a power of the interference measurement CSI-RS.
  • each interference signal characteristic parameter For each interference signal characteristic parameter corresponding to each interference measurement CSI-RS configured by the network device for the terminal, each interference signal characteristic parameter includes a correlation matrix of a signal transmitted by the interference source base station, or includes an interference source base station for data transmission. A collection of precoding matrices used. The precoding matrix used by the terminal in subsequent data transmission is selected from the set of precoding matrices.
  • the network device may characterize the spatial correlation characteristics and/or signal strength of the signal transmitted by the interference source base station by using the interference signal characteristic parameter, such as the interference signal direction and the interference signal strength of the neighboring cell.
  • the precoding matrix set is ⁇ W 1 , W 2 , . . . , W P ⁇ .
  • PMI refers to the index of the precoding matrix, which points to a set of pre-defined precoding matrices, that is, the codebook.
  • the PMI corresponds to the elements in the codebook. Therefore, the precoding matrix set can also be represented by the PMI set, which is ⁇ PMI1, PMI2, ..., PIMP ⁇ .
  • the base station may configure a weighting factor for indicating the probability that the PMI will be used in subsequent transmissions, or characterizing the transmission power of the transmission corresponding to the PMI, or The proportion of total transmit power.
  • the network device configures the interference measurement parameter for the terminal, or the network device configures the interference relationship between the interference measurement CSI-RS and the interference signal feature parameter, and the interference measurement CSI-RS and the interference signal feature parameter. This step can be performed after the terminal performs interference measurement.
  • the terminal performs parameter configuration first, and then the terminal performs interference measurement to obtain an initial interference measurement result.
  • the terminal performs interference measurement.
  • the terminal performs interference measurement based on the conventional CRS or CSI-RS, and obtains an initial interference measurement result.
  • the network device configures its exclusive IMR for the terminal, and the terminal performs interference measurement on the IMR to obtain initial interference measurement results.
  • the initial interference measurement result measured by the terminal is interference outside the set of cooperative base stations.
  • the interference source base station corresponding to the interference measurement parameter configured by the network device is a coordinated base station of the terminal.
  • the terminal when the terminal and the pairing terminal are based on single-cell multi-input multiple-output (MIMO) transmission, the terminal performs interference measurement, and the obtained initial interference measurement result is the serving base station of the terminal. External interference.
  • the paired terminal is in the same serving cell as the terminal, and the paired terminal is the same as the time-frequency resource occupied by the terminal.
  • the interference source base station corresponding to the interference measurement parameter configured by the network device is the serving base station of the terminal.
  • the terminal After the terminal performs interference measurement, and obtains the initial interference measurement result, for each interference measurement CSI-RS, the terminal measures the channel matrix of the interference source base station corresponding to the interference measurement CSI-RS to the terminal according to each interference measurement CSI-RS. .
  • the terminal measures the interference channel from the interference source base station to the terminal according to the interference measurement CSI-RS.
  • the terminal should separately measure the interference channel from the interference source base station to the terminal according to each interference measurement CSI-RS in each set of interference measurement parameters, and further perform channel estimation.
  • the channel matrix of the terminal to the interference source base station is estimated.
  • the terminal determines total interference according to the initial interference measurement result, the channel matrix, and the interference signal characteristic parameter, and the terminal determines channel state information according to the total interference.
  • the total interference is a sum of a result obtained according to the channel matrix and the interference signal characteristic parameter and the initial interference measurement result.
  • the formula for determining the total interference according to the initial interference measurement result, the channel matrix, and the interference signal characteristic parameter is the foregoing formula (1) to formula (17), and details are not described herein again.
  • the terminal After determining the total interference according to the foregoing manner, the terminal determines channel state information according to the total interference, and reports the determined channel state information to the network device.
  • the channel state information in the embodiment of the present disclosure includes information such as RI, CQI, PMI, and the like.
  • the channel state information is determined according to the initial interference measurement result, and then the channel state information that has been determined is adjusted according to the interference measurement parameter configured by the network device, and the adjustment is performed.
  • the channel state information is reported to the network device.
  • adjusting the channel state information that has been determined according to the interference measurement parameter configured by the network device may be preset, for example, the CQI in the initially determined channel state information may be improved according to the interference measurement parameter. Or lower.
  • Another implementation is to establish channel state information and initial interference measurement results, and interference measurement.
  • the mapping table between the interference measurement CSI-RS and the interference signal characteristic parameter in the parameter determines the channel state information through the table through the initial interference measurement result, the interference measurement CSI-RS, and the interference signal characteristic parameter, and then determines the channel state.
  • the information is reported to the network device.
  • the CSI process is a concept introduced by LTE Rel-11.
  • a CSI process corresponds to a CSI that transmits the hypothesis.
  • the transmission hypothesis includes two parts of the signal hypothesis and the interference hypothesis, so one CSI process is associated with one CSI-RS and one IMR.
  • the signal hypothesis is based on CSI-RS measurements, and the interference assumptions are based on IMR measurements.
  • the definition of one CSI process can be modified to be associated with one CSI-RS and one IMR and associated with one or more sets of interference measurement parameters.
  • the CSI measurement and calculation of the CSI process can be done based on the method described above.
  • the terminal performs interference measurement to obtain an initial interference measurement result.
  • the terminal determines channel state information according to the initial interference measurement result and the interference measurement parameter configured by the network device.
  • the terminal reports the determined channel state information to the network device.
  • the interference measurement parameter is configured by the network device
  • the interference measurement parameter configured by the network device may reflect the actual occurrence of the interference information. Therefore, the interference information obtained by the terminal according to the interference measurement parameter is more matched with the interference information during actual transmission.
  • the terminal after obtaining the initial interference measurement result, the terminal further determines the channel state information and reports it according to the interference information configured by the network device, thereby improving the matching degree between the interference information measured by the terminal and the interference information during actual transmission, and further making the network Select a more appropriate parameter when performing link adaptation.
  • FIG. 5 is a schematic structural diagram of a network device according to an embodiment of the present disclosure.
  • the embodiment of the present disclosure provides a network device, including a sending module 501 and a receiving module 502.
  • the sending module 501 is configured to send configuration information to the terminal, where the configuration information includes interference measurement parameters;
  • the receiving module 502 is configured to receive channel state information reported by the terminal, where the channel state information is that the terminal performs interference measurement, and obtains an initial interference measurement result, where the terminal determines the initial interference measurement result and the interference measurement parameter configured by the network network device.
  • the channel status information is reported later.
  • the interference measurement parameter is configured by the network device
  • the interference measurement parameter configured by the network device may reflect the actual occurrence of the interference information. Therefore, the interference information obtained by the terminal according to the interference measurement parameter is more matched with the interference information during actual transmission.
  • the sending of the configuration information by the network device to the terminal through the sending module 501 may be performed in the following two manners.
  • the configuration information sent by the network device to the terminal includes interference measurement parameters.
  • the interference measurement parameter is one or more groups, and each group of interference measurement parameters corresponds to one interference source base station.
  • Each set of interference measurement parameters includes one or more interference measurement CSI-RSs, and each interference measurement CSI-RS corresponds to one or more interference signal characteristic parameters.
  • the CSI-RS in the interference measurement CSI-RS refers to interference from one CSI-RS sent on the source base station.
  • the network device receives the channel state information reported by the terminal, where the channel state information is that the terminal performs the interference measurement, and obtains the initial interference measurement result, and then the terminal reports the channel state information according to the initial interference measurement result and the interference measurement parameter configured by the network device. of.
  • the configuration information sent by the network device includes only one or more interference measurement CSI-RSs, one or more interference signal feature parameters, and a correspondence between each interference measurement CSI-RS and one or more interference signal feature parameters.
  • the correspondence between each interference measurement CSI-RS and the interference source base station is also included.
  • each interference source base station may correspond to one or more interference measurement CSI-RSs, and each interference measurement one or more interference signal characteristic parameters corresponding to the CSI-RS.
  • the CSI-RS in the interference measurement CSI-RS refers to a CSI-RS transmitted from an interference source base station.
  • the terminal measures the reference signal interference measurement CSI-RS according to the initial interference measurement result, the interference measurement channel state information configured by the network device, and the interference signal characteristic parameter corresponding to the interference measurement CSI-RS configured by the network device. , determine channel status information.
  • the network device receives channel state information reported by the terminal, where the channel state information is an interference signal characteristic parameter corresponding to the initial interference measurement result, the interference measurement CSI-RS configured by the network device, and the interference measurement CSI-RS configured by the network device, Reported after the channel status information is determined.
  • One or more interference measurement CSI-RSs corresponding to each interference source base station in the foregoing mode 2 and one or more interference signal feature parameters corresponding to each CSI-RS may be regarded as a group interference in mode one
  • the measurement parameters are mainly introduced on the basis of the first method in the following examples.
  • a person skilled in the art may replace, according to the correspondence, a noun of a set of interference measurement parameters in the following embodiments with one or more interference measurement CSI-RSs corresponding to each interference source base station in the second mode, and each One or more interference signal characteristic parameters corresponding to the CSI-RS.
  • the terminal may perform interference measurement and calculation using all the interference measurement parameters configured, or may use high-level signaling or downlink dynamic control signaling (Downlink Control Information, DCI for short).
  • DCI Downlink Control Information
  • the mode indicates the interference measurement parameters that the terminal needs to use, as well as the interference measurement CSI-RS and the interference signal characteristic parameters.
  • one or more of the following may be indicated by the DCI: one or more sets of interference measurement parameters used by the terminal, and one or several interference measurement CSIs of each set of interference measurement parameters used by the terminal.
  • - RS one or several interference signal characteristic parameters corresponding to each interference measurement CSI-RS used by the terminal. That is to say, the DCI indicates which group or groups of interference measurement parameters the terminal uses to perform measurement and calculation of interference, or can be described as activating one or more sets of interference measurement parameters.
  • one or more interference measurement CSI-RSs are included in each group of interference measurement parameters, one or several interference measurement CSI-RSs of a certain group of interference measurement parameters may be activated by DCI.
  • one interference measurement CSI-RS corresponds to one or more interference signal characteristic parameters
  • one or several interference signal characteristic parameters corresponding to one of the interference measurement CSI-RSs of a certain set of interference measurement parameters may be activated by DCI.
  • the terminal may also be instructed by the DCI not to use any interference measurement parameters, that is, to not activate any interference measurement parameters.
  • the terminal can be used on the IMR.
  • the measured interference is measured and calculated by CSI, or in the case where the network device is not configured with IMR, the terminal can perform CSI measurement and calculation with the measured interference.
  • Interference signal characteristic parameters Specifically, the interference measurement parameter, the interference measurement CSI-RS, and the interference signal characteristic parameter that the terminal needs to use may be indicated by the DCI bit.
  • the correspondence between the specific value of the DCI bit and the indicated interference measurement parameter may be pre-agreed, or may be configured by the network device to the terminal through signaling.
  • interference measurement parameters In addition to indicating which interference measurement parameters, interference measurement CSI-RS, and interference signal characteristic parameters are used by the terminal for interference measurement and calculation by means of the above-mentioned DCI indication bit, it is also possible to indicate which interference is used by the terminal in a bitmap by means of a bitmap in DCI. Measurement parameters, interference measurement CSI-RS, and interference signal characteristic parameters are used for interference measurement and calculation.
  • the above content details several ways to determine the interference measurement parameters, interference measurement CSI-RS, and interference signal characteristic parameters that the network device indicates to the terminal.
  • the network device sends indication information to the terminal, where the indication information is used to indicate one or more sets of interference measurement parameters used by the terminal, and for each group of interference measurement parameters indicated, indicating each group of interference measurement parameters.
  • the indication information is used to indicate one or more sets of interference measurement parameters used by the terminal, and for each group of interference measurement parameters indicated, indicating each group of interference measurement parameters.
  • each interference measurement CSI-RS includes parameters such as a transmission period, a subframe offset, a sequence, and a power of the interference measurement CSI-RS.
  • each interference signal characteristic parameter For each interference signal characteristic parameter corresponding to each interference measurement CSI-RS configured by the network device for the terminal, each interference signal characteristic parameter includes a correlation matrix of a signal transmitted by the interference source base station, or includes an interference source base station for data transmission. A collection of precoding matrices used. The precoding matrix used by the terminal in subsequent data transmission is selected from the set of precoding matrices.
  • the network device may characterize the spatial correlation characteristics and/or signal strength of the signal transmitted by the interference source base station by using the interference signal characteristic parameter, such as the interference signal direction and the interference signal strength of the neighboring cell.
  • Each interfering signal characteristic parameter includes a set of precoding matrices used by the interfering source base station for data transmission, and the precoding matrix set is ⁇ W 1 , W 2 , . . . , W P ⁇ .
  • PMI refers to the index of the precoding matrix, which points to a set of pre-defined precoding matrices, that is, the codebook.
  • the PMI corresponds to the elements in the codebook. Therefore, the precoding matrix set can also be represented by the PMI set, which is ⁇ PMI1, PMI2, ..., PIMP ⁇ .
  • the base station may configure a weighting factor for indicating the probability that the PMI will be used in subsequent transmissions, or characterizing the transmission power of the transmission corresponding to the PMI, or The proportion of total transmit power.
  • the network device configures the interference measurement parameter for the terminal, or the network device configures the interference relationship between the interference measurement CSI-RS and the interference signal feature parameter, and the interference measurement CSI-RS and the interference signal feature parameter. This step can be performed after the terminal performs interference measurement.
  • the terminal performs parameter configuration first, and then the terminal performs interference measurement to obtain an initial interference measurement result.
  • the terminal performs interference measurement based on the conventional CRS or CSI-RS, and obtains an initial interference measurement result.
  • the network device configures its exclusive IMR for the terminal, and the terminal performs interference measurement on the IMR to obtain initial interference measurement results.
  • the initial interference measurement result measured by the terminal is interference outside the set of cooperative base stations.
  • the interference source base station corresponding to the interference measurement parameter configured by the network device is a coordinated base station of the terminal.
  • the terminal when the terminal and the pairing terminal are based on single-cell multi-input multiple-output (MIMO) transmission, the terminal performs interference measurement, and the obtained initial interference measurement result is the serving base station of the terminal. External interference.
  • the paired terminal is in the same serving cell as the terminal, and the paired terminal is the same as the time-frequency resource occupied by the terminal.
  • the interference source base station corresponding to the interference measurement parameter configured by the network device is the serving base station of the terminal.
  • the terminal After the terminal performs interference measurement, and obtains the initial interference measurement result, for each interference measurement CSI-RS, the terminal measures the channel matrix of the interference source base station corresponding to the interference measurement CSI-RS to the terminal according to each interference measurement CSI-RS. .
  • the terminal measures the interference channel from the interference source base station to the terminal according to the interference measurement CSI-RS.
  • the terminal should separately measure the interference channel from the interference source base station to the terminal according to each interference measurement CSI-RS in each set of interference measurement parameters, and further perform channel estimation.
  • the channel matrix of the terminal to the interference source base station is estimated.
  • the terminal performs interference measurement to obtain an initial interference measurement result.
  • the terminal determines channel state information according to the initial interference measurement result and the interference measurement parameter configured by the network device.
  • the terminal reports the determined channel state information to the network device.
  • the interference measurement parameter is configured by the network device
  • the interference measurement parameter configured by the network device may reflect the actual occurrence of the interference information. Therefore, the interference information obtained by the terminal according to the interference measurement parameter is more matched with the interference information during actual transmission.
  • the terminal after obtaining the initial interference measurement result, the terminal further determines the channel state information and reports it according to the interference information configured by the network device, thereby improving the matching degree between the interference information measured by the terminal and the interference information during actual transmission, and further making the network Select a more appropriate parameter when performing link adaptation.
  • FIG. 6 exemplarily shows a schematic structural diagram of a terminal provided by an embodiment of the present disclosure.
  • the embodiment of the present disclosure provides a terminal, including The processor 601, the transceiver 602, and the memory 603.
  • the processor 601 is configured to read a program in the memory 603 and perform the following process:
  • Channel state information is determined based on initial interference measurements and interference measurement parameters configured by the network device.
  • the transceiver 602 is configured to receive and transmit data under the control of the processor 601. For example, it is used to report the determined channel state information to the network device.
  • the bus architecture may include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 601 and various circuits of memory represented by memory 603.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • Transceiver 602 can be a plurality of components, including a transmitter and a transceiver, providing means for communicating with various other devices on a transmission medium.
  • the processor 601 is responsible for managing the bus architecture and the usual processing, and the memory 603 can be the data used by the memory 603 when performing operations.
  • the processor 601 of the terminal can be specifically implemented in the following two manners.
  • the network device configures interference measurement parameters of the interference source base station for the terminal.
  • the interference measurement parameter is one or more groups, and each group of interference measurement parameters corresponds to one interference source base station.
  • Each set of interference measurement parameters includes one or more interference measurement CSI-RSs, and each interference measurement CSI-RS corresponds to one or more interference signal characteristic parameters.
  • the CSI-RS in the interference measurement CSI-RS refers to a CSI-RS transmitted from an interference source base station.
  • the processor 601 of the terminal determines channel state information according to the initial interference measurement result and the interference measurement parameter configured by the network device.
  • the terminal is configured with one or more interference measurement CSI-RSs, one or more interference signal characteristic parameters, and a correspondence between each interference measurement CSI-RS and one or more interference signal characteristic parameters.
  • the correspondence between each interference measurement CSI-RS and the interference source base station is also included.
  • each interference source base station may correspond to one or more interference measurement CSI-RSs, and each interference measurement one or more interference signal characteristic parameters corresponding to the CSI-RS.
  • the CSI-RS in the interference measurement CSI-RS refers to a CSI-RS transmitted from an interference source base station.
  • the terminal measures, according to the initial interference measurement result, the interference measurement channel state information configured by the network device, the reference signal interference measurement CSI-RS, and the interference signal characteristic parameter corresponding to the interference measurement CSI-RS configured by the network device. , determine channel status information.
  • the processor 601 of the terminal determines the channel state information according to the initial interference measurement result, the interference measurement channel state information measurement reference signal CSI-RS configured by the network device, and the interference signal feature parameter corresponding to the interference measurement CSI-RS configured by the network device.
  • One or more interference measurement CSI-RSs corresponding to each interference source base station in the foregoing mode 2 and one or more interference signal feature parameters corresponding to each CSI-RS may be regarded as mode 1
  • a set of interference measurement parameters the following examples are mainly based on the first method.
  • a person skilled in the art may replace, according to the correspondence, a noun of a set of interference measurement parameters in the following embodiments with one or more interference measurement CSI-RSs corresponding to each interference source base station in the second mode, and each One or more interference signal characteristic parameters corresponding to the CSI-RS.
  • the terminal may use all the interference measurement parameters configured for interference measurement and calculation, and may also indicate the interference measurement parameters used by the terminal through high-level signaling or DCI. And interference measurement CSI-RS and interference signal characteristic parameters.
  • one or more of the following may be indicated by the DCI: one or more sets of interference measurement parameters used by the terminal, and one or several interference measurement CSIs of each set of interference measurement parameters used by the terminal.
  • - RS one or several interference signal characteristic parameters corresponding to each interference measurement CSI-RS used by the terminal. That is to say, the DCI indicates which group or groups of interference measurement parameters the terminal uses to perform measurement and calculation of interference, or can be described as activating one or more sets of interference measurement parameters.
  • one or more interference measurement CSI-RSs are included in each group of interference measurement parameters, one or several interference measurement CSI-RSs of a certain group of interference measurement parameters may be activated by DCI.
  • one interference measurement CSI-RS corresponds to one or more interference signal characteristic parameters
  • one or several interference signal characteristic parameters corresponding to one of the interference measurement CSI-RSs of a certain set of interference measurement parameters may be activated by DCI.
  • the terminal may also be instructed by the DCI not to use any interference measurement parameters, that is, to not activate any interference measurement parameters.
  • the terminal can perform CSI measurement and calculation with the interference measured on the IMR, or in the case that the network device is not configured with the IMR, the terminal can perform CSI measurement and calculation with the measured interference.
  • Interference signal characteristic parameters Specifically, the interference measurement parameter, the interference measurement CSI-RS, and the interference signal characteristic parameter that the terminal needs to use may be indicated by the DCI bit.
  • the correspondence between the specific value of the DCI bit and the indicated interference measurement parameter may be pre-agreed, or may be configured by the network device to the terminal through signaling.
  • interference measurement parameters In addition to indicating the interference measurement parameters, the interference measurement CSI-RS, and the interference signal characteristic parameters used by the terminal to perform interference measurement and calculation by using the above-mentioned DCI indicator bit, it is also possible to indicate which interference measurement parameters are used by the terminal through the bitmap in the DCI. Interference measurement CSI-RS and interference signal characteristic parameters are used for interference measurement and calculation.
  • the above content details several ways to determine the interference measurement parameters, interference measurement CSI-RS, and interference signal characteristic parameters that the network device indicates to the terminal.
  • the terminal receives the indication information sent by the network device, where the indication information is used to indicate one or more of the following: one or more sets of interference measurement parameters used by the terminal, and each set of interference measurement parameters used by the terminal One or several interference measurement CSI-RSs, one or several interference signal characteristic parameters corresponding to each interference measurement CSI-RS used by the terminal.
  • each interference measurement CSI-RS configured to configure the network device, one or more interference measurement CSI-RSs corresponding to each interference source base station, and the network device configures configuration information of the interference measurement CSI-RS for the terminal, where the interference measurement CSI-RS is from an interference source base station The interference measurement sent on the CSI-RS.
  • the configuration information of each interference measurement CSI-RS includes a transmission period, a subframe offset, a sequence, and a sequence of the interference measurement CSI-RS. Power and other parameters.
  • each interference signal characteristic parameter For each interference signal characteristic parameter corresponding to each interference measurement CSI-RS configured by the network device for the terminal, each interference signal characteristic parameter includes a correlation matrix of a signal transmitted by the interference source base station, or includes an interference source base station for data transmission. A collection of precoding matrices used. The precoding matrix used by the terminal in subsequent data transmission is selected from the set of precoding matrices.
  • the network device may characterize the spatial correlation characteristics and/or signal strength of the signal transmitted by the interference source base station by using the interference signal characteristic parameter, such as the interference signal direction and the interference signal strength of the neighboring cell.
  • Each interfering signal characteristic parameter includes a set of precoding matrices used by the interfering source base station for data transmission, and the precoding matrix set is ⁇ W 1 , W 2 , . . . , W P ⁇ .
  • PMI refers to the index of the precoding matrix, which points to a set of pre-defined precoding matrices, that is, the codebook.
  • the PMI corresponds to the elements in the codebook. Therefore, the precoding matrix set can also be represented by the PMI set, which is ⁇ PMI1, PMI2, ..., PIMP ⁇ .
  • the base station may configure a weighting factor for indicating the probability that the PMI will be used in subsequent transmissions, or characterizing the transmission power of the transmission corresponding to the PMI, or The proportion of total transmit power.
  • the network device configures the interference measurement parameter for the terminal, or the network device configures the interference measurement CSI-RS and the interference signal feature parameter, and the correspondence between the interference measurement CSI-RS and the interference signal feature parameter. This step can be performed after the terminal performs interference measurement.
  • the terminal performs parameter configuration first, and then the terminal performs interference measurement to obtain an initial interference measurement result.
  • the terminal performs interference measurement.
  • the terminal performs interference measurement based on the conventional CRS or CSI-RS, and obtains an initial interference measurement result.
  • the network device configures its exclusive IMR for the terminal, and the terminal performs interference measurement on the IMR to obtain initial interference measurement results.
  • the initial interference measurement result measured by the terminal is interference outside the set of cooperative base stations.
  • the interference source base station corresponding to the interference measurement parameter configured by the network device is a coordinated base station of the terminal.
  • the terminal when the terminal and the pairing terminal are based on single-cell multi-input multiple-output (MIMO) transmission, the terminal performs interference measurement, and the obtained initial interference measurement result is the serving base station of the terminal. External interference.
  • the paired terminal is in the same serving cell as the terminal, and the paired terminal is the same as the time-frequency resource occupied by the terminal.
  • the interference source base station corresponding to the interference measurement parameter configured by the network device is the serving base station of the terminal.
  • the terminal performs interference measurement, and after obtaining the initial interference measurement result, for each interference measurement CSI-RS, the terminal measures the interference corresponding to the CSI-RS according to each interference measurement CSI-RS. Disturbing the channel matrix of the source base station to the terminal.
  • the terminal measures the interference channel from the interference source base station to the terminal according to the interference measurement CSI-RS.
  • the terminal should separately measure the interference channel from the interference source base station to the terminal according to each interference measurement CSI-RS in each set of interference measurement parameters, and further perform channel estimation.
  • the channel matrix of the terminal to the interference source base station is estimated.
  • the terminal determines total interference according to the initial interference measurement result, the channel matrix, and the interference signal characteristic parameter, and the terminal determines channel state information according to the total interference.
  • the total interference is a sum of a result obtained according to the channel matrix and the interference signal characteristic parameter and the initial interference measurement result.
  • the formula for determining the total interference according to the initial interference measurement result, the channel matrix, and the interference signal characteristic parameter is the foregoing formula (1) to formula (17), and details are not described herein again.
  • the terminal After determining the total interference according to the foregoing manner, the terminal determines channel state information according to the total interference, and reports the determined channel state information to the network device.
  • the channel state information in the embodiment of the present disclosure includes information such as RI, CQI, PMI, and the like.
  • the channel state information is determined according to the initial interference measurement result, and then the channel state information that has been determined is adjusted according to the interference measurement parameter configured by the network device, and the adjustment is performed.
  • the channel state information is reported to the network device.
  • adjusting the channel state information that has been determined according to the interference measurement parameter configured by the network device may be preset, for example, the CQI in the initially determined channel state information may be improved according to the interference measurement parameter. Or lower.
  • Another implementation manner is: establishing a mapping table between the channel state information and the initial interference measurement result, the interference measurement CSI-RS and the interference signal feature parameter in the interference measurement parameter, and adopting the initial interference measurement result, the interference measurement CSI-RS,
  • the interference signal characteristic parameter is used to determine the channel state information through the table, and then the determined channel state information is reported to the network device.
  • the CSI process is a concept introduced by LTE Rel-11.
  • a CSI process corresponds to a CSI that transmits the hypothesis.
  • the transmission hypothesis includes two parts of the signal hypothesis and the interference hypothesis, so one CSI process is associated with one CSI-RS and one IMR.
  • the signal hypothesis is based on CSI-RS measurements, and the interference assumptions are based on IMR measurements.
  • the definition of one CSI process can be modified to be associated with one CSI-RS and one IMR and associated with one or more sets of interference measurement parameters.
  • the CSI measurement and calculation of the CSI process can be done based on the method described above.
  • the terminal performs interference measurement to obtain an initial interference measurement result.
  • the terminal determines channel state information according to the initial interference measurement result and the interference measurement parameter configured by the network device.
  • the terminal reports the determined channel state information to the network device.
  • the interference measurement parameter is configured by the network device
  • the interference measurement parameter configured by the network device may reflect the actual occurrence of the interference information. Therefore, the interference information obtained by the terminal according to the interference measurement parameter is more matched with the interference information during actual transmission. So, the terminal gets the initial After the interference measurement result is further combined with the interference information configured by the network device, the channel state information is determined and reported, thereby improving the matching degree between the interference information measured by the terminal and the interference information during the actual transmission, and further enabling the network to perform the link self. Choose the more appropriate parameters when adapting.
  • FIG. 7 exemplarily shows a schematic structural diagram of a network device provided by an embodiment of the present disclosure.
  • the embodiment of the present disclosure provides a network device, including a processor 701, a transceiver 702, and a memory 703.
  • the processor 701 is configured to read a program in the memory 703 and perform the following process:
  • the channel status information reported by the terminal is received by the transceiver 702, where the channel status information is that the terminal performs interference measurement, and the initial interference measurement result is obtained, and then the terminal determines the channel status according to the initial interference measurement result and the interference measurement parameter configured by the network network device. The information is reported later.
  • the transceiver 702 is configured to receive and transmit data under the control of the processor 701.
  • the bus architecture may include any number of interconnected buses and bridges, specifically linked by one or more processors represented by processor 701 and various circuits of memory represented by memory 703.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface provides an interface.
  • Transceiver 702 can be a plurality of components, including a transmitter and a transceiver, providing means for communicating with various other devices on a transmission medium.
  • the processor 701 is responsible for managing the bus architecture and the usual processing, and the memory 703 can be the data used by the memory 703 when performing operations.
  • the sending of the configuration information by the network device to the terminal through the transceiver 702 can be performed in the following two manners.
  • the configuration information sent by the network device to the terminal includes interference measurement parameters.
  • the interference measurement parameter is one or more groups, and each group of interference measurement parameters corresponds to one interference source base station.
  • Each set of interference measurement parameters includes one or more interference measurement CSI-RSs, and each interference measurement CSI-RS corresponds to one or more interference signal characteristic parameters.
  • the CSI-RS in the interference measurement CSI-RS refers to a CSI-RS transmitted from an interference source base station.
  • the network device receives the channel state information reported by the terminal, where the channel state information is that the terminal performs the interference measurement, and obtains the initial interference measurement result, and then the terminal reports the channel state information according to the initial interference measurement result and the interference measurement parameter configured by the network device. of.
  • the configuration information sent by the network device includes only one or more interference measurement CSI-RSs, one or more interference signal feature parameters, and a correspondence between each interference measurement CSI-RS and one or more interference signal feature parameters.
  • the correspondence between each interference measurement CSI-RS and the interference source base station is also included.
  • each interference source base station may correspond to one or more interference measurement CSI-RSs, and each interference measurement one or more interference signal characteristic parameters corresponding to the CSI-RS.
  • the CSI-RS in the interference measurement CSI-RS refers to a CSI-RS transmitted from an interference source base station.
  • the end The terminal determines the channel state information according to the initial interference measurement result, the interference measurement channel state information of the network device configuration, the reference signal interference measurement CSI-RS, and the interference signal characteristic parameter corresponding to the interference measurement CSI-RS configured by the network device. .
  • the network device receives channel state information reported by the terminal, where the channel state information is an interference signal characteristic parameter corresponding to the initial interference measurement result, the interference measurement CSI-RS configured by the network device, and the interference measurement CSI-RS configured by the network device, Reported after the channel status information is determined.
  • One or more interference measurement CSI-RSs corresponding to each interference source base station in the foregoing mode 2 and one or more interference signal feature parameters corresponding to each CSI-RS may be regarded as a group interference in the mode one.
  • the measurement parameters are mainly introduced on the basis of the first method in the following examples.
  • a person skilled in the art may replace, according to the correspondence, a noun of a set of interference measurement parameters in the following embodiments with one or more interference measurement CSI-RSs corresponding to each interference source base station in the second mode, and each One or more interference signal characteristic parameters corresponding to the CSI-RS.
  • the terminal may perform interference measurement and calculation using all the interference measurement parameters configured, or may use high-level signaling or downlink dynamic control signaling (Downlink Control Information, DCI for short).
  • DCI Downlink Control Information
  • the mode indicates the interference measurement parameters that the terminal needs to use, and the interference measurement CSI-RS and the interference signal characteristic parameters.
  • one or more of the following may be indicated by the DCI: one or more sets of interference measurement parameters used by the terminal, and one or several interference measurement CSIs of each set of interference measurement parameters used by the terminal.
  • - RS one or several interference signal characteristic parameters corresponding to each interference measurement CSI-RS used by the terminal. That is to say, the DCI indicates which group or groups of interference measurement parameters the terminal uses to perform measurement and calculation of interference, or can be described as activating one or more sets of interference measurement parameters.
  • one or more interference measurement CSI-RSs are included in each group of interference measurement parameters, one or several interference measurement CSI-RSs of a certain group of interference measurement parameters may be activated by DCI.
  • one interference measurement CSI-RS corresponds to one or more interference signal characteristic parameters
  • one or several interference signal characteristic parameters corresponding to one of the interference measurement CSI-RSs of a certain set of interference measurement parameters may be activated by DCI.
  • the terminal may also be instructed by the DCI not to use any interference measurement parameters, that is, to not activate any interference measurement parameters.
  • the terminal can perform CSI measurement and calculation with the interference measured on the IMR, or in the case that the network device is not configured with the IMR, the terminal can perform CSI measurement and calculation with the measured interference.
  • Interference signal characteristic parameters Specifically, the interference measurement parameter, the interference measurement CSI-RS, and the interference signal characteristic parameter that the terminal needs to use may be indicated by the DCI bit.
  • the correspondence between the specific value of the DCI bit and the indicated interference measurement parameter may be pre-agreed, or may be configured by the network device to the terminal through signaling.
  • interference measurement parameters In addition to indicating the interference measurement parameters, the interference measurement CSI-RS, and the interference signal characteristic parameters used by the terminal to perform interference measurement and calculation by using the above-mentioned DCI indicator bit, it is also possible to indicate which interference measurement parameters are used by the terminal through the bitmap in the DCI. Interference measurement CSI-RS and interference signal characteristic parameters are used for interference measurement and calculation.
  • the above content details several ways to determine the interference measurement parameters, interference measurement CSI-RS, and interference signal characteristic parameters that the network device indicates to the terminal.
  • the network device sends indication information to the terminal, where the indication information is used to indicate one or more sets of interference measurement parameters used by the terminal, and for each group of interference measurement parameters indicated, indicating each group of interference measurement parameters.
  • the indication information is used to indicate one or more sets of interference measurement parameters used by the terminal, and for each group of interference measurement parameters indicated, indicating each group of interference measurement parameters.
  • each interference measurement CSI-RS includes parameters such as a transmission period, a subframe offset, a sequence, and a power of the interference measurement CSI-RS.
  • each interference signal characteristic parameter For each interference signal characteristic parameter corresponding to each interference measurement CSI-RS configured by the network device for the terminal, each interference signal characteristic parameter includes a correlation matrix of a signal transmitted by the interference source base station, or includes an interference source base station for data transmission. A collection of precoding matrices used. The precoding matrix used by the terminal in subsequent data transmission is selected from the set of precoding matrices.
  • the network device may characterize the spatial correlation characteristics and/or signal strength of the signal transmitted by the interference source base station by using the interference signal characteristic parameter, such as the interference signal direction and the interference signal strength of the neighboring cell.
  • Each interfering signal characteristic parameter includes a set of precoding matrices used by the interfering source base station for data transmission, and the precoding matrix set is ⁇ W 1 , W 2 , . . . , W P ⁇ .
  • PMI refers to the index of the precoding matrix, which points to a set of pre-defined precoding matrices, that is, the codebook.
  • the PMI corresponds to the elements in the codebook. Therefore, the precoding matrix set can also be represented by the PMI set, which is ⁇ PMI1, PMI2, ..., PIMP ⁇ .
  • the base station may configure a weighting factor for indicating the probability that the PMI will be used in subsequent transmissions, or characterizing the transmission power of the transmission corresponding to the PMI, or The proportion of total transmit power.
  • the network device configures the interference measurement parameter for the terminal, or the network device configures the interference relationship between the interference measurement CSI-RS and the interference signal feature parameter, and the interference measurement CSI-RS and the interference signal feature parameter. This step can be performed after the terminal performs interference measurement.
  • the terminal performs parameter configuration first, and then the terminal performs interference measurement to obtain an initial interference measurement result.
  • the terminal performs interference measurement based on the conventional CRS or CSI-RS, and obtains an initial interference measurement result.
  • the network device configures its own IMR for the terminal, and the terminal performs interference measurement on the IMR to obtain initial interference measurement. result.
  • the initial interference measurement result measured by the terminal is interference outside the set of cooperative base stations.
  • the interference source base station corresponding to the interference measurement parameter configured by the network device is a coordinated base station of the terminal.
  • the terminal when the terminal and the pairing terminal are based on single-cell multi-input multiple-output (MIMO) transmission, the terminal performs interference measurement, and the obtained initial interference measurement result is the serving base station of the terminal. External interference.
  • the paired terminal is in the same serving cell as the terminal, and the paired terminal is the same as the time-frequency resource occupied by the terminal.
  • the interference source base station corresponding to the interference measurement parameter configured by the network device is the serving base station of the terminal.
  • the terminal After the terminal performs interference measurement, and obtains the initial interference measurement result, for each interference measurement CSI-RS, the terminal measures the channel matrix of the interference source base station corresponding to the interference measurement CSI-RS to the terminal according to each interference measurement CSI-RS. .
  • the terminal measures the interference channel from the interference source base station to the terminal according to the interference measurement CSI-RS.
  • the terminal should separately measure the interference channel from the interference source base station to the terminal according to each interference measurement CSI-RS in each set of interference measurement parameters, and further perform channel estimation.
  • the channel matrix of the terminal to the interference source base station is estimated.
  • the terminal performs interference measurement to obtain an initial interference measurement result.
  • the terminal determines channel state information according to the initial interference measurement result and the interference measurement parameter configured by the network device.
  • the terminal reports the determined channel state information to the network device.
  • the interference measurement parameter is configured by the network device
  • the interference measurement parameter configured by the network device may reflect the actual occurrence of the interference information. Therefore, the interference information obtained by the terminal according to the interference measurement parameter is more matched with the interference information during actual transmission.
  • the terminal after obtaining the initial interference measurement result, the terminal further determines the channel state information and reports it according to the interference information configured by the network device, thereby improving the matching degree between the interference information measured by the terminal and the interference information during actual transmission, and further making the network Select a more appropriate parameter when performing link adaptation.
  • embodiments of the present disclosure may be provided as a method, or a computer program product. Accordingly, the present disclosure may take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware. Moreover, the present disclosure may take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) including computer usable program code.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • a device implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of a flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Electromagnetism (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开文本实施例涉及通信领域,尤其涉及一种信道状态信息测量方法、信道状态信息获取方法、终端和网络设备,用以测量信道状态信息。本公开文本实施例中终端进行干扰测量,得到初始干扰测量结果;终端根据初始干扰测量结果、以及网络设备配置的干扰测量参数,确定信道状态信息并上报。由于干扰测量参数是由网络设备所配置的,因此该网络设备配置的干扰测量参数可以反映干扰信息的实际发生情况,从而终端依据该干扰测量参数得到的干扰信息与实际传输时的干扰信息更为匹配,进而提高了终端测量得到的干扰信息与实际传输时的干扰信息的匹配度,进一步使网络在进行链路白适应时选择更合适的参数。

Description

一种信道状态信息测量方法、信道状态信息获取方法、终端和网络设备
相关申请的交叉参考
本申请主张在2014年11月17日在中国提交的中国专利申请号No.201410654785.4的优先权,其全部内容通过引用包含于此。
技术领域
本公开文本涉及通信领域,尤其涉及一种信道状态信息测量方法、信道状态信息获取方法、终端和网络设备。
背景技术
在长期演进系统(Long Term Evolution,简称LTE)中,反映下行物理信道状态的信息即信道状态信息(Channel State Information,简称CSI)主要包括3部分内容:预编码矩阵索引(Pre-coding Matrix Indicator,简称PMI)和秩指示(Rank Indicator,简称RI)、信道质量指示(Channels Quality Indicator,简称CQI)。
PMI所确定预编码矩阵可以看作是信道状态信息的量化值。LTE Rel-8系统引入了闭环预编码技术提高频谱效率。闭环预编码技术要求在基站和终端都保存同一个预编码矩阵的集合,称为码本。终端根据小区公共导频估计出信道信息后,按一定准则从码本中选出一个预编码矩阵。选取的准则可以是最大化互信息量、最大化输出信干噪比等。终端将选出的预编码矩阵的PMI通过上行信道反馈到基站。基站通过接收到的PMI确定对该终端应使用的预编码矩阵。
RI对应于从基站到终端的空间信道最多可以支持的空间数据流数目。LTE以及LTE-A标准中基站向终端传输的一个数据块被称为一个码字,在空间复用的情况下,基站最多可以同时向终端传输两个码字,也可以只传输一个码字。一个码字的数据按照一定的规则映射到一个或者多个空间数据流上。如果是两个码字的传输,则两个码字映射的总数据流数目不应超过基站到终端的空间信道所最多能支持的数据流数目,该数目即通过终端上报的RI获得。
CQI的反馈的含义是:终端根据信道质量,选择一种合适的传输块调制编码等级推荐给基站,使得基站根据该信息进行调制编码可以最好程度发挥其信道的传输能力。从另外一个角度CQI也可以理解为信道质量信息的量化,如果质量好,可以支持较高阶的调制编码方式,获得更高的速度;如果质量差,只能以较低阶的调制编码方式进行传输,以保障传输的鲁棒性。
CSI中的RI、PMI和CQI的计算和选择依赖于终端对干扰信息测量的准确度。
现有技术中,干扰信息的测量和计算仅根据LTE系统中的公共参考信号(Common Reference Signal,简称CRS)或者是信道状态信息测量参考信号 (Channel State Information Reference Signal,简称CSI-RS)进行。由于干扰信息的测量和计算所依据的条件比较单一,所得到的干扰测量结果误差较大。
综上所述,亟需一种信道状态信息测量方法、信道状态信息获取方法、终端和网络设备,用以测量信道状态信息,提高干扰测量的准确性。
发明内容
(一)要解决的技术问题
本公开文本实施例提供一种信道状态信息测量方法、信道状态信息获取方法、终端和网络设备,用以测量信道状态信息,提高干扰测量的准确性。
(二)技术方案
本公开文本实施例提供了一种信道状态信息测量方法,包括以下步骤:
终端进行干扰测量,得到初始干扰测量结果;
终端根据初始干扰测量结果、以及网络设备配置的干扰测量参数,确定信道状态信息;以及
终端向网络设备上报确定出的信道状态信息。
本公开文本实施例还提供了一种信道状态信息获取方法,包括以下步骤:
网络设备向终端发送配置信息,配置信息包括干扰测量参数;以及
网络设备接收终端上报的信道状态信息,其中,信道状态信息是终端进行干扰测量,得到初始干扰测量结果,之后终端根据初始干扰测量结果、以及网络设备配置的干扰测量参数,确定信道状态信息之后上报的。
本公开文本实施例还提供了一种终端,包括:
测量模块,用于进行干扰测量,得到初始干扰测量结果;
确定模块,用于根据初始干扰测量结果,以及网络设备配置的干扰测量参数,确定信道状态信息;以及
上报模块,用于向网络设备上报确定出的信道状态信息。
本公开文本实施例还提供了一种网络设备,包括:
发送模块,用于向终端发送配置信息,配置信息包括干扰测量参数;以及
接收模块,用于接收终端上报的信道状态信息,其中,信道状态信息是终端进行干扰测量,得到初始干扰测量结果,之后终端根据初始干扰测量结果,以及网络设备配置的干扰测量参数,确定信道状态信息之后上报的。
本公开文本实施例还提供了一种终端,包括:
处理器;以及
存储器,通过总线接口与所述处理器相连接,并且用于存储所述处理器在执行操作时所使用的程序和数据;
收发机,用于在传输介质上与各种其他设备进行通信,
当处理器调用并执行所述存储器中所存储的程序和数据时,所述终端执行如下处理:
进行干扰测量,得到初始干扰测量结果;
根据所述初始干扰测量结果、以及网络设备配置的干扰测量参数,确定信道状态信息;以及
向所述网络设备上报确定出的信道状态信息。
本公开文本实施例还提供了一种网络设备,包括:
处理器;以及
存储器,通过总线接口与所述处理器相连接,并且用于存储所述处理器在执行操作时所使用的程序和数据;
收发机,用于在传输介质上与各种其他设备进行通信,
当处理器调用并执行所述存储器中所存储的程序和数据时,所述网络设备执行如下处理:
向终端发送配置信息,所述配置信息包括干扰测量参数;以及
接收所述终端上报的信道状态信息,其中,所述信道状态信息是所述终端进行干扰测量,得到初始干扰测量结果,之后所述终端根据所述初始干扰测量结果、以及网络设备配置的干扰测量参数,确定信道状态信息之后上报的。
(三)有益效果
本公开文本的有益效果如下:
本公开文本实施例中,终端进行干扰测量,得到初始干扰测量结果,终端根据初始干扰测量结果、以及网络设备配置的干扰测量参数,确定信道状态信息;终端向网络设备上报确定出的信道状态信息。由于终端根据初始干扰测量结果、以及网络设备配置的干扰测量参数,确定信道状态信息,因此增加了确定信道状态信息所依据的条件,从而提高了所确定的信道状态信息的准确性。进一步由于确定出信道状态信息的准确度提高,从而可使网络依据更准确的信道状态信息在进行链路自适应时选择更合适的参数。
附图说明
为了更清楚地说明本公开文本实施例或现有技术中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开文本的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是网络设备为小区配置IMR的示意图;
图2是本公开文本实施例提供的一种信道状态信息测量方法的流程示意图;
图3是本公开文本实施例提供的另一种信道状态信息获取方法的流程示意图;
图4是本公开文本实施例提供的一种终端的结构示意图;
图5是本公开文本实施例提供的一种网络设备的结构示意图;
图6是本公开文本实施例提供的另一种终端的结构示意图;以及
图7是本公开文本实施例提供的另一种网络设备的结构示意图。
具体实施方式
下面结合附图和实施例,对本公开文本的具体实施方式做进一步描述。以下实施例仅用于说明本公开文本,但不用来限制本公开文本的范围。
为使本公开文本实施例的目的、技术方案和优点更加清楚,下面将结合本公开文本实施例的附图,对本公开文本实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开文本的一部分实施例,而不是全部的实施例。基于所描述的本公开文本的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开文本保护的范围。
除非另作定义,此处使用的技术术语或者科学术语应当为本公开文本所属领域内具有一般技能的人士所理解的通常意义。本公开文本专利申请说明书以及权利要求书中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“一个”或者“一”等类似词语也不表示数量限制,而是表示存在至少一个。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也相应地改变。
下面将结合本公开文本实施例中的附图,对本公开文本实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开文本一部分实施例,而不是全部的实施例。基于本公开文本中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本公开文本保护的范围。
本公开文本实施例提供一种信道状态信息测量方法、信道状态信息获取方法、终端和网络设备用以测量信道状态信息,提高测量所得到的干扰信息与实际传输时的干扰信息的匹配度,进一步使网络在进行链路自适应时选择更合适的参数。
本公开文本实施例可适用于LTE系统或者LTE系统的演进系统。
从LTE R8到LTE R10,终端的干扰测量均是基于CRS或CSI-RS进行的,主要思想是测量CRS或CSI-RS受到的干扰。
LTE Rel-11,终端的干扰测量均是基于干扰测量资源(interference measurement resource,简称IMR)进行的。由于终端确定出的信道状态信息的准确度依赖于终端对干扰进行测量的准确度。因此,为了使终端能测量到与传输假设对应的干扰水平,LTE Rel-11版本引入了终端专属的IMR。网络设备可以为终端配置其专属的IMR。每个IMR占用一组资源(Resource Element,简称RE),网络设备控制这一组RE上的信号发送,使得终端在这一组RE上对干扰进行测量。
如图1所示,为两组IMR配置的实例。图1中的左图(由A标识)是网络设备为第一小区在相应资源上配置的IMR的示意图,图1中的右图(由B标识)是网络设备为第二小区在相应资源上配置的IMR的示意图。假设,在 IMR1上,第一小区和第二小区都不发送信号,则终端在IMR1上接收到的信号即为第一小区和第二小区之外的干扰。类似的,终端可以在IMR2上估计第一小区和第二小区之外的干扰。
本公开文本实施例中的终端可为手机终端、个人计算机(personal computer,简称PC)终端、平板终端等。
为了使本公开文本的目的、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本公开文本进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本公开文本,并不用于限定本公开文本。
图2示例性示出了一种信道状态信息测量方法的流程示意图。
基于上述内容,如图2所示,本公开文本实施例提供一种信道状态信息测量方法,包括以下步骤:
步骤201,终端进行干扰测量,得到初始干扰测量结果;
步骤202,终端根据初始干扰测量结果、以及网络设备配置的干扰测量参数,确定信道状态信息;以及
步骤203,终端向网络设备上报确定出的信道状态信息。
由于终端根据初始干扰测量结果、以及网络设备配置的干扰测量参数,确定信道状态信息,因此增加了确定信道状态信息所依据的条件,从而提高了所确定的信道状态信息的准确性。进一步由于确定出信道状态信息的准确度提高,从而可使网络依据更准确的信道状态信息在进行链路自适应时选择更合适的参数。
此外,在上述步骤202之前,并且在上述步骤201之前或之后均可,终端需接收网络设备发送的配置消息,并进行配置,可通过以下两种方式进行。
方式一:
网络设备为终端配置干扰源基站的干扰测量参数。可选的,干扰测量参数为一组或多组,每组干扰测量参数对应一个干扰源基站。每组干扰测量参数包括一个或多个干扰测量CSI-RS、以及每个干扰测量CSI-RS对应一个或多个干扰信号特征参数。该干扰测量CSI-RS中的CSI-RS是指从一个干扰源基站上发出的CSI-RS。
方式二:
网络设备为终端配置一个或多个干扰测量CSI-RS、一个或多个干扰信号特征参数、以及每个干扰测量CSI-RS与一个或多个干扰信号特征参数的对应关系。可选的,还包括每个干扰测量CSI-RS与干扰源基站的对应关系。在此种方式中,每个干扰源基站可对应一个或多个干扰测量CSI-RS,每个干扰测量CSI-RS对应的一个或多个干扰信号特征参数。该干扰测量CSI-RS中的CSI-RS是指从一个干扰源基站上发出的CSI-RS。
基于上述方式一或方式二,在步骤202中,所述终端根据所述初始干扰测量结果、网络设备配置的干扰测量CSI-RS、以及网络设备配置的所述干扰测量CSI-RS对应的干扰信号特征参数,确定信道状态信息。
由于方式一中的干扰测量参数或方式二中的干扰测量CSI-RS以及干扰 信号特征参数是由网络设备所配置的,因此该网络设备配置的信息与现有技术相比更能反映干扰信息的实际发生情况。
比如,网络设备为终端配置的干扰测量CSI-RS是针对该终端的干扰源基站的,从而可以结合步骤201中的初始干扰测量结果和步骤202中基于干扰测量CSI-RS的测量结果来得到干扰信息,这样得到的干扰信息比现有技术更能反映干扰信息的实际发生情况。
进一步地,网络设备为终端配置的干扰信号特征参数包括干扰源基站所发送的信号的相关矩阵,比如可以是干扰源基站进行数据传输使用的预编码矩阵的集合,因此可以一定程度上反映该干扰源基站的数据传输情况。因此,结合初始干扰测量结果、基于干扰测量CSI-RS的干扰测量结果以及干扰源基站发送信号的相关矩阵所得到的干扰信息,与现有技术相比可以与实际传输时的干扰信息更为匹配。
上述方式二中的每个干扰源基站所对应的一个或多个干扰测量CSI-RS,以及每个CSI-RS所对应的一个或多个干扰信号特征参数可视为方式一中的一组干扰测量参数。下述例子中主要以方式一为基础进行介绍,本领域技术人员可依据该对应关系将下述实施例中的一组干扰测量参数的名词替换为方式二中的每个干扰源基站所对应的一个或多个干扰测量CSI-RS,以及每个CSI-RS所对应的一个或多个干扰信号特征参数。
具体实施中,如果配置了多组干扰测量参数,则终端可使用配置的所有干扰测量参数进行干扰测量和计算,也可通过高层信令或下行动态控制信令(Downlink Control Information,简称DCI)的方式指示出终端所需使用的干扰测量参数、以及干扰测量CSI-RS和干扰信号特征参数。
可选的,可以通过DCI指示出以下内容中的一项或几项:终端所使用的一组或几组干扰测量参数、终端所使用的每组干扰测量参数中的一个或几个干扰测量CSI-RS、终端所使用的每个干扰测量CSI-RS所对应的一个或几个干扰信号特征参数。也就是说,通过DCI指示终端使用哪一组或哪几组干扰测量参数进行干扰的测量和计算,或者可以描述为激活某一组或多组干扰测量参数。当每组干扰测量参数中包括一个或多个干扰测量CSI-RS时,可以通过DCI激活某组干扰测量参数中的某一个或某几个干扰测量CSI-RS。当一个干扰测量CSI-RS对应一个或多个干扰信号特征参数时,可以通过DCI激活某组干扰测量参数中的某个干扰测量CSI-RS所对应的某一个或某几个干扰信号特征参数。另一种实施方式中,也可通过DCI指示终端不使用任何干扰测量参数,即不激活任何干扰测量参数。在这种情况下,终端可用在IMR上测量到的干扰进行CSI的测量和计算,或在网络设备未配置IMR的情况下,终端可用测量到的干扰进行CSI的测量和计算。
干扰源基站可以是一个宏基站,或者一个低功率节点,如射频拉远设备(Remote Radio Head,简称RRH),或者一个中继站点。另外,干扰源基站也可以指多个宏基站,或者多个低功率节点,或者多个中继节点等。此外,干扰源基站还可以是多个宏基站与多个低功率节点的组合等。
干扰测量CSI-RS是以CSI-RS为例进行说明,也可以采用CRS,解调的参考信号(De-Modulation Reference Signal,简称DMRS)等其他的测量导频信号,方法相同。
具体来说,可通过DCI比特来指示终端所需使用的干扰测量参数、干扰测量CSI-RS、以及干扰信号特征参数。DCI比特位具体数值与所指示使用的干扰测量参数的对应关系可以是预先约定好,也可以由网络设备通过信令配置给终端。
下面举一些例子,详细说明如何通过DCI比特来指示终端所需使用的干扰测量参数、干扰测量CSI-RS、以及干扰信号特征参数。
下面给出示意如何通过DCI比特来指示终端所需使用的干扰测量参数的几个场景。
场景一:
假设为终端配置了4组干扰测量参数,在DCI中可用两个比特指示终端使用哪一组干扰测量参数进行计算。如表1所示,DCI中的比特位为00时,表示激活第一组干扰测量参数;DCI中的比特位为01时,表示激活第二组干扰测量参数;DCI中的比特位为10时,表示激活第三组干扰测量参数;DCI中的比特位为11时,表示激活第四组干扰测量参数。
表1场景一中DCI解析
DCI比特 干扰测量参数
00 激活第一组干扰测量参数
01 激活第二组干扰测量参数
10 激活第三组干扰测量参数
11 激活第四组干扰测量参数
场景二:
假设为终端配置了3组干扰测量参数,在DCI中可用两个比特指示终端使用哪一组干扰测量参数进行计算。如表2所示,DCI中的比特位为00时,表示激活第一组干扰测量参数;DCI中的比特位为01时,表示激活第二组干扰测量参数;DCI中的比特位为10时,表示激活第三组干扰测量参数;DCI中的比特位为11时,表示不激活任何一组干扰测量参数。
表2场景二中DCI解析
Figure PCTCN2015090928-appb-000001
场景三:
也可以对已经分组的干扰测量参数进行进一步分组,通过DCI中的两个比特位指示多组干扰测量参数,或描述为激活多组干扰测量参数,如表3所示。表3的例子中一共有8组干扰测量参数。如表3所示,DCI中的比特位为00时,表示激活第一组和第二组干扰测量参数;DCI中的比特位为01时,表示激活第三组和第四组干扰测量参数;DCI中的比特位为10时,表示激活第五组和第六组干扰测量参数;DCI中的比特位为11时,表示激活第七组和第八组干扰测量参数。
表3场景三中DCI解析
Figure PCTCN2015090928-appb-000002
场景四:
也可以对已经分组的干扰测量参数进行进一步分组,通过DCI中的两个比特位指示多组干扰测量参数,或描述为激活多组干扰测量参数,如表4所示。表4的例子中一共有6组干扰测量参数。如表4所示,DCI中的比特位为00时,表示激活第一组和第二组干扰测量参数;DCI中的比特位为01时,表示激活第三组和第四组干扰测量参数;DCI中的比特位为10时,表示激活第五组和第六组干扰测量参数;DCI中的比特位为11时,表示不激活任何一组干扰测量参数。
表4场景四中DCI解析
Figure PCTCN2015090928-appb-000003
除了通过上述DCI指示位的方式指示终端使用哪些干扰测量参数进行干扰测量和计算,也可在DCI中通过位图的方式指示终端使用哪些干扰测量参数进行干扰测量和计算,位图中的每一位对应一组干扰测量参数。如果DCI中该比特为“1”,则终端需要用该组干扰测量参数进行干扰测量和计算,否则不用。
通过DCI比特来指示终端所需使用的干扰测量CSI-RS的方式如下所示。
如果一组干扰测量参数中配置了多个干扰测量CSI-RS,则可以通过DCI指示终端使用哪个或哪几个干扰测量CSI-RS进行干扰的测量和计算。假设通过DCI中的两个比特位指示出终端应使用第一组干扰测量参数。假设此时第一组干扰测量参数中包括三个干扰测量CSI-RS,基于上述类似的方法,在DCI中用两个比特指示终端使用哪个干扰测量CSI-RS进行计算。例如,可通过DCI中的4个比特指示终端使用上述场景一中的第一组干扰测量参数终端的第一个干扰测量CSI-RS。具体例子与上述通过DCI比特来指示终端使用哪些干扰测量参数类似,在此不再赘述。
除了通过上述DCI指示位的方式指示终端使用哪些干扰测量CSI-RS进行干扰测量和计算之外,也可在DCI中通过位图的方式指示终端使用哪些干扰测量CSI-RS进行干扰测量和计算,位图中的每一位对应一个干扰测量CSI-RS。如果DCI中该比特为“1”,则终端需要用该个干扰测量CSI-RS进行干扰测量和计算,否则不用。
通过DCI比特来指示终端所需使用的干扰信号特征参数的方式如下所示。
如果一组干扰测量参数中为每个干扰测量CSI-RS对应配置了多个干扰信号特征参数,则可通过DCI指示终端使用哪个或哪几个干扰信号特征参数。
下面举一些例子,假设网络设备为终端配置四组干扰测量参数,第一组干扰测量参数中包括三个干扰测量CSI-RS,假设此时网络设备已通过DCI中的两个比特位指示出终端应使用第一组干扰测量参数中的第一个干扰测量CSI-RS。假设网络设备为该第一组干扰测量参数中的干扰测量CSI-RS对应配置了多个干扰信号特征参数,则DCI可再通过两个比特位来指示终端所使用的某个或某几个干扰信号特征参数。
场景五:
假设为终端配置了4个干扰信号特征参数,在DCI中可用两个比特指示终端使用哪一个干扰信号特征参数进行计算。如表5所示,DCI中的比特位为00时,表示激活第一个干扰信号特征参数;DCI中的比特位为01时,表示激活第二个干扰信号特征参数;DCI中的比特位为10时,表示激活第三个干扰信号特征参数;DCI中的比特位为11时,表示激活第四个干扰信号特征参数。
表5场景五中DCI解析
Figure PCTCN2015090928-appb-000004
Figure PCTCN2015090928-appb-000005
场景六:
假设为终端配置了3个干扰信号特征参数,在DCI中可用两个比特指示终端使用哪一个干扰信号特征参数进行计算。如表6所示,DCI中的比特位为00时,表示激活第一个干扰信号特征参数;DCI中的比特位为01时,表示激活第二个干扰信号特征参数;DCI中的比特位为10时,表示激活第三个干扰信号特征参数;DCI中的比特位为11时,表示不激活任何一个干扰信号特征参数。
表6场景六中DCI解析
Figure PCTCN2015090928-appb-000006
场景七:
也可以对已经分好的干扰信号特征参数进行进一步分类,通过DCI中的两个比特位指示多个干扰信号特征参数,或描述为激活多个干扰信号特征参数,如表7所示。表7的例子中一共有8个干扰信号特征参数。如表7所示,DCI中的比特位为00时,表示激活第一个和第二个干扰信号特征参数;DCI中的比特位为01时,表示激活第三个和第四个干扰信号特征参数;DCI中的比特位为10时,表示激活第五个和第六个干扰信号特征参数;DCI中的比特位为11时,表示激活第七个和第八个干扰信号特征参数。
表7场景七中DCI解析
Figure PCTCN2015090928-appb-000007
场景八:
也可以对已经分好的干扰信号特征参数进行进一步分类,通过DCI中的两个比特位指示多个干扰信号特征参数,或描述为激活多个干扰信号特征参数,如表8所示。表8的例子中一共有6个干扰信号特征参数。如表8所示,DCI中的比特位为00时,表示激活第一个和第二个干扰信号特征参数;DCI中的比特位为01时,表示激活第三个和第四个干扰信号特征参数;DCI中的比特位为10时,表示激活第五个和第六个干扰信号特征参数;DCI中的比特位为11时,表示不激活任何一个干扰信号特征参数。
表8场景八中DCI解析
Figure PCTCN2015090928-appb-000009
除了通过上述DCI指示位的方式指示终端使用哪些干扰信号特征参数进行干扰测量和计算,也可在DCI中通过位图的方式指示终端使用哪些干扰信号特征参数进行干扰测量和计算,位图中的每一位对应一个干扰信号特征参数。如果DCI中该比特为“1”,则终端需要用该个干扰信号特征参数进行干扰测量和计算,否则不用。
以上内容详细介绍了几种确定终端所需使用的干扰测量参数、干扰测量CSI-RS、以及干扰信号特征参数的方式。
终端接收到网络设备发送的指示信息,指示信息用于指示出以下内容中的一项或几项:终端所使用的一组或几组干扰测量参数、终端所使用的每组干扰测量参数中的一个或几个干扰测量CSI-RS、终端所使用的每个干扰测量CSI-RS所对应的一个或几个干扰信号特征参数。
针对网络设备为终端配置每个干扰源基站所对应的一个或多个干扰测量CSI-RS,网络设备为终端配置干扰测量CSI-RS的配置信息,该干扰测量 CSI-RS是从终端的一个干扰源基站上发出的干扰测量CSI-RS。每个干扰测量CSI-RS的配置信息包括该干扰测量CSI-RS的发送周期、子帧偏移、序列、功率等参数。
针对网络设备为终端配置的每个干扰测量CSI-RS所对应的每个干扰信号特征参数,每个干扰信号特征参数包括干扰源基站所发送的信号的相关矩阵,或包括干扰源基站进行数据传输使用的预编码矩阵的集合。终端在后续数据传输时所使用的预编码矩阵选自该预编码矩阵的集合。
每个干扰信号特征参数包括干扰源基站所发送的信号的相关矩阵,即协方差矩阵时,假设信号的相关矩阵用R表示,则R=E{xxH},其中,x为干扰源基站所发送的信号。如果干扰源基站采用预编码矩阵对发送数据进行预处理,则x=Ws,其中s=[s1,s2,…,sK],s是干扰源基站发送的源数据,W是干扰信号发送的预编码矩阵。如果E{ssH}=aI,其中I是单位阵,a是标量,则R=E{xxH}=aWWH。网络设备可以通过干扰信号特征参数表征干扰源基站所发送信号的空间相关特性和/或信号强度。具体来说,网络设备可以通过干扰信号特征参数表征干扰源基站所发送信号的空间相关特性或信号强度,或空间相关特性和信号强度,如相邻小区等的干扰信号方向和干扰信号强度。
当每个干扰信号特征参数包括干扰源基站进行数据传输使用的预编码矩阵的集合时,预编码矩阵集合为{W1,W2,...,WP}。PMI是指预编码矩阵的索引,指向一个预先定义好的预编码矩阵的集合,即码本,PMI与码本中的元素一一对应。因此预编码矩阵集合也可通过PMI集合的方式表示,为{PMI1,PMI2,...,PIMP}。可选的,针对PMI集合中的每个PMI,基站可以为其配置一个加权因子,用于表征该PMI在后面的传输中会用到的概率,或者表征该PMI对应的传输的发送功率,或者在总发射功率中所占的比例。
通过上述内容的论述,网络设备为终端配置了干扰测量参数,或网络设备为终端配置了干扰测量CSI-RS和干扰信号特征参数,以及干扰测量CSI-RS和干扰信号特征参数的对应关系。另外,上述步骤在终端进行干扰测量之前之后均可。
本公开文本实施例中假设终端先进行参数配置,之后终端进行干扰测量,得到初始干扰测量结果。
终端进行干扰测量,在LTE R8到LTE R10系统中,终端基于常规的CRS或CSI-RS进行干扰测量即可,得到初始干扰测量结果。在LTE Rel-11系统,则网络设备为终端会配置其专属的IMR,终端在IMR上进行干扰测量,得到初始干扰测量结果。
一个实施例中,当终端存在协作基站时,终端测量得到的初始干扰测量结果为协作基站集合之外的干扰。网络设备所配置的干扰测量参数所对应的干扰源基站为终端的协作基站。
另一个实施例中,当终端与配对终端基于单小区多用户多输入多输出(Multiple-Input Multiple-Output,MIMO)传输时,终端进行干扰测量,得到的初始干扰测量结果为终端的服务基站之外的干扰。配对终端为与该终端同在 一个服务小区中,且配对终端与该终端所占用的时频资源相同。网络设备所配置的干扰测量参数所对应的干扰源基站是终端的服务基站。
终端进行干扰测量,得到初始干扰测量结果之后,针对每个干扰测量CSI-RS,所述终端依据每个干扰测量CSI-RS测量干扰测量CSI-RS对应的干扰源基站到所述终端的信道矩阵。
具体来说,终端根据干扰测量CSI-RS测量从干扰源基站到终端的干扰信道。可选的,如果为终端配置了多组干扰测量参数,则终端应分别根据每组干扰测量参数中的每个干扰测量CSI-RS测量从干扰源基站到终端的干扰信道,并进一步进行信道估计,估计出终端到干扰源基站的信道矩阵。
所述终端依据所述初始干扰测量结果、所述信道矩阵和所述干扰信号特征参数,确定总干扰,所述终端依据所述总干扰确定信道状态信息。所述总干扰为依据所述信道矩阵和所述干扰信号特征参数得到的结果与所述初始干扰测量结果之和。
所述终端依据所述初始干扰测量结果、所述信道矩阵和所述干扰信号特征参数,确定总干扰所依据的公式(1)为:
Figure PCTCN2015090928-appb-000010
其中,Z为总干扰,Z0为初始干扰测量结果,n为干扰测量参数的组号,取值范围为[1,N],N为干扰测量参数组的总数量,m为干扰测量CSI-RS的索引号,取值范围为[1,M],M为每组干扰测量参数中干扰测量CSI-RS的总数量,k为每个干扰测量CSI-RS所对应的干扰信号特征参数的索引号,取值范围为[1,K],K为每个干扰测量CSI-RS所对应的干扰信号特征参数的总数量,Gn,m为依据第n组干扰测量参数中第m个干扰测量CSI-RS测量的干扰源基站到终端的信道矩阵,Xn,m,k为第n组干扰测量参数中的第m个干扰测量CSI-RS所对应的第k个干扰信号特征参数,
Figure PCTCN2015090928-appb-000011
为Gn,m的共轭转置矩阵。
公式(1)中是基于每组干扰测量参数均包括M个干扰测量CSI-RS,每个干扰测量CSI-RS均对应K个干扰特征信号的情况,而当每组干扰测量参数包括的干扰测量CSI-RS的数量不同时,且每个干扰测量CSI-RS所对应的干扰特征信号的数量也不同时,则适用下述公式(2)。
所述终端依据所述初始干扰测量结果、所述信道矩阵和所述干扰信号特征参数,确定总干扰所依据的公式(2)为:
Figure PCTCN2015090928-appb-000012
其中,Z为总干扰,Z0为初始干扰测量结果,n为干扰测量参数的组号,取值范围为[1,N],N为干扰测量参数组的总数量,m为干扰测量CSI-RS的索引号,取值范围为[1,Mn],Mn为第n组干扰测量参数中干扰测量CSI-RS的总数量,k为干扰信号特征参数的索引号,取值范围为[1,Kn,m],Kn,m为 第n组干扰测量参数中第m个干扰测量CSI-RS所对应的干扰信号特征参数的总数量,Gn,m为依据第n组干扰测量参数中第m个干扰测量CSI-RS测量的干扰源基站到终端的信道矩阵,Xn,m,k为第n组干扰测量参数中的第m个干扰测量CSI-RS所对应的第k个干扰信号特征参数,
Figure PCTCN2015090928-appb-000013
为Gn,m的共轭转置矩阵。
当干扰信号特征参数包括干扰源基站所发送的信号的相关矩阵时,通过下述公式进行计算:
当干扰信号特征参数包括干扰源基站所发送的信号的相关矩阵时,且假设网络设备仅为一个干扰源基站配置了对应的一组干扰测量参数,且该组干扰测量中仅包括一个干扰测量CSI-RS,且该干扰测量CSI-RS仅对应一个干扰信号特征参数。则所述终端依据所述初始干扰测量结果、所述信道矩阵和所述干扰信号特征参数,确定总干扰所依据的公式(3)为:
Z=Z0+GRGH............(3)
其中,Z为总干扰,Z0为初始干扰测量结果,G为依据干扰测量参数中干扰测量CSI-RS测量的干扰源基站到终端的信道矩阵,R为干扰源基站所发送的信号的相关矩阵,GH为G的共轭转置矩阵。
当干扰信号特征参数包括干扰源基站所发送的信号的相关矩阵时,且假设网络设备为多个干扰源基站配置干扰测量参数,且为每个干扰源基站对应配置一组干扰测量参数,则需多组干扰测量参数,且每组干扰测量中包括一个干扰测量CSI-RS,且该干扰测量CSI-RS仅对应一个干扰信号特征参数。则所述终端依据所述初始干扰测量结果、所述信道矩阵和所述干扰信号特征参数,确定总干扰所依据的公式(4)为:
Figure PCTCN2015090928-appb-000014
其中,Z为总干扰,Z0为初始干扰测量结果,n为干扰测量参数的组号,取值范围为[1,N],N为干扰测量参数组的总数量,Gn为依据第n组干扰测量参数中干扰测量CSI-RS测量的干扰源基站到终端的信道矩阵,Rn为第n组干扰测量参数所对应的干扰源基站所发送的信号的相关矩阵,
Figure PCTCN2015090928-appb-000015
为Gn的共轭转置矩阵。
当干扰信号特征参数包括干扰源基站所发送的信号的相关矩阵时,且假设网络设备为一个干扰源基站配置干扰测量参数,且该干扰源基站对应配置一组干扰测量参数,且该组干扰测量中仅包括一个干扰测量CSI-RS,且该干扰测量CSI-RS仅对应多个干扰信号特征参数。则所述终端依据所述初始干扰测量结果、所述信道矩阵和所述干扰信号特征参数,确定总干扰所依据的公式(5)为:
Figure PCTCN2015090928-appb-000016
其中,Z为总干扰,Z0为初始干扰测量结果,k为每个干扰测量CSI-RS所对应的干扰信号特征参数的索引号,取值范围为[1,K],K为每个干扰测量CSI-RS所对应的干扰信号特征参数的总数量,G为依据干扰测量参数中干扰测量CSI-RS测量的干扰源基站到终端的信道矩阵,Rk为干扰源基站所发送的第k个信号的相关矩阵,GH为G的共轭转置矩阵。
当干扰信号特征参数包括干扰源基站所发送的信号的相关矩阵时,且假设网络设备为多个干扰源基站配置干扰测量参数,且每个干扰源基站对应配置多组干扰测量参数,且每组干扰测量中包括多个干扰测量CSI-RS,且每个干扰测量CSI-RS对应多个干扰信号特征参数。则依据所述初始干扰测量结果、所述信道矩阵和所述干扰信号特征参数,确定总干扰所依据的公式(6)为:
Figure PCTCN2015090928-appb-000017
其中,Z为总干扰,Z0为初始干扰测量结果,n为干扰测量参数的组号,取值范围为[1,N],N为干扰测量参数的组的总数量,m为干扰测量CSI-RS的索引号,取值范围为[1,M],M为每组干扰测量参数中干扰测量CSI-RS的总数量,k为每个干扰测量CSI-RS所对应的干扰信号特征参数的索引号,取值范围为[1,K],K为每个干扰测量CSI-RS所对应的干扰信号特征参数的总数量,Gn,m为依据第n组干扰测量参数中第m个干扰测量CSI-RS测量的干扰源基站到终端的信道矩阵,Rn,m,k为第n组干扰测量参数中的第m个干扰测量CSI-RS所对应的干扰源基站所发送的第k个信号的相关矩阵,
Figure PCTCN2015090928-appb-000018
为Gn,m的共轭转置矩阵。
公式(6)中是基于每组干扰测量参数均包括M个干扰测量CSI-RS,每个干扰测量CSI-RS均对应K个干扰特征信号的情况,而当每组干扰测量参数包括的干扰测量CSI-RS的数量不同时,且每个干扰测量CSI-RS所对应的干扰特征信号的数量也不同时,则适用下述公式(7)。
当干扰信号特征参数包括干扰源基站所发送的信号的相关矩阵时,且假设网络设备为多个干扰源基站配置干扰测量参数,且每个干扰源基站对应配置多组干扰测量参数,且每组干扰测量中包括多个干扰测量CSI-RS,且每个干扰测量CSI-RS对应多个干扰信号特征参数。则依据所述初始干扰测量结果、所述信道矩阵和所述干扰信号特征参数,确定总干扰所依据的公式(7)为:
Figure PCTCN2015090928-appb-000019
其中,Z为总干扰,Z0为初始干扰测量结果,n为干扰测量参数的组号,取值范围为[1,N],N为干扰测量参数的组的总数量,m为干扰测量CSI-RS 的索引号,取值范围为[1,Mn],Mn为第n组干扰测量参数中干扰测量CSI-RS的总数量,k为干扰信号特征参数的索引号,取值范围为[1,Kn,m],Kn,m为第n组干扰测量参数中第m个干扰测量CSI-RS所对应的干扰信号特征参数的总数量,Gn,m为依据第n组干扰测量参数中第m个干扰测量CSI-RS测量的干扰源基站到终端的信道矩阵,Rn,m,k为第n组干扰测量参数中的第m个干扰测量CSI-RS所对应的干扰源基站所发送的第k个信号的相关矩阵,
Figure PCTCN2015090928-appb-000020
为Gn,m的共轭转置矩阵。
本领域技术人员可知,在公式(6)中,当N为1,M为1,K为1时,则公式(6)可简化为公式(3);在公式(6)中,当N大于1,M为1,K为1时,则公式(6)可简化为公式(4);在公式(6)中,当N为1,M为1,K大于1时,则公式(6)可简化为公式(5)。
当所述干扰信号特征参数包括干扰源基站进行数据传输使用的预编码矩阵的集合时,通过下述公式进行计算:
当干扰信号特征参数包括干扰源基站进行数据传输使用的预编码矩阵的集合时,预编码矩阵集合为{W1,W2,...,WP},且假设网络设备仅为一个干扰源基站配置了对应的一组干扰测量参数,且该组干扰测量中仅包括一个干扰测量CSI-RS,且该干扰测量CSI-RS仅对应一个干扰信号特征参数。则所述终端依据所述初始干扰测量结果、所述信道矩阵和所述干扰信号特征参数,确定总干扰所依据的公式(8)为:
Figure PCTCN2015090928-appb-000021
其中,Z为总干扰,Z0为初始干扰测量结果,G为依据干扰测量参数中干扰测量CSI-RS测量的干扰源基站到终端的信道矩阵,p为干扰源基站进行数据传输使用的预编码矩阵的索引号,取值范围为[1,P],P为干扰源基站进行数据传输使用的预编码矩阵的数量,Wp为干扰源基站进行数据传输使用的第p个预编码矩阵,
Figure PCTCN2015090928-appb-000022
为Wp的共轭转置矩阵,GH为G的共轭转置矩阵。
当干扰信号特征参数包括干扰源基站进行数据传输使用的预编码矩阵的集合时,预编码矩阵集合为{W1,W2,...,WP},基站基于预编码矩阵在后续数据传输中的可能会使用到的概率为每个预编码矩阵配置一个加权因子,且假设网络设备仅为一个干扰源基站配置了对应的一组干扰测量参数,且该组干扰测量中仅包括一个干扰测量CSI-RS,且该干扰测量CSI-RS仅对应一个干扰信号特征参数。则所述终端依据所述初始干扰测量结果、所述信道矩阵和所述干扰信号特征参数,确定总干扰所依据的公式(9)为:
Figure PCTCN2015090928-appb-000023
其中,Z为总干扰,Z0为初始干扰测量结果,G为依据干扰测量参数中 干扰测量CSI-RS测量的干扰源基站到终端的信道矩阵,p为干扰源基站进行数据传输使用的预编码矩阵的索引号,取值范围为[1,P],P为干扰源基站进行数据传输使用的预编码矩阵的总数量,αp为干扰源基站进行数据传输使用的第p个预编码矩阵的加权因子,Wp为干扰源基站进行数据传输使用的第p个预编码矩阵,
Figure PCTCN2015090928-appb-000024
为wp的共轭转置矩阵,GH为G的共轭转置矩阵。
当干扰信号特征参数包括干扰源基站进行数据传输使用的预编码矩阵的集合时,预编码矩阵集合为{W1,W2,...,WP},且假设网络设备为多个干扰源基站配置干扰测量参数,且为每个干扰源基站对应配置一组干扰测量参数,则需多组干扰测量参数,且每组干扰测量中包括一个干扰测量CSI-RS,且该干扰测量CSI-RS仅对应一个干扰信号特征参数。则所述终端依据所述初始干扰测量结果、所述信道矩阵和所述干扰信号特征参数,确定总干扰所依据的公式(10)为:
Figure PCTCN2015090928-appb-000025
其中,Z为总干扰,Z0为初始干扰测量结果,n为干扰测量参数的组号,取值范围为[1,N],N为干扰测量参数组的总数量,Gn为依据第n组干扰测量参数中干扰测量CSI-RS测量的干扰源基站到终端的信道矩阵,p为干扰源基站进行数据传输使用的预编码矩阵的索引号,取值范围为[1,P],P为干扰源基站进行数据传输使用的预编码矩阵的总数量,Wn,p为第n组干扰测量参数所对应的干扰源基站进行数据传输使用的第p个预编码矩阵,
Figure PCTCN2015090928-appb-000026
为Wn,p的共轭转置矩阵,
Figure PCTCN2015090928-appb-000027
为Gn的共轭转置矩阵。
当干扰信号特征参数包括干扰源基站进行数据传输使用的预编码矩阵的集合时,预编码矩阵集合为{W1,W2,...,WP},基站基于预编码矩阵在后续数据传输中的可能会使用到的概率为每个预编码矩阵配置一个加权因子,且假设网络设备为多个干扰源基站配置干扰测量参数,且为每个干扰源基站对应配置一组干扰测量参数,则有多组干扰测量参数,且每组干扰测量中仅包括一个干扰测量CSI-RS,且该干扰测量CSI-RS仅对应一个干扰信号特征参数。则所述终端依据所述初始干扰测量结果、所述信道矩阵和所述干扰信号特征参数,确定总干扰所依据的公式(11)为:
Figure PCTCN2015090928-appb-000028
其中,Z为总干扰,Z0为初始干扰测量结果,k为每个干扰测量CSI-RS所对应的干扰信号特征参数的索引号,取值范围为[1,K],K为每个干扰测量CSI-RS所对应的干扰信号特征参数的总数量,G为依据干扰测量参数中干扰测量CSI-RS测量的干扰源基站到终端的信道矩阵,p为干扰源基站进行数 据传输使用的预编码矩阵的索引号,取值范围为[1,P],P为干扰源基站进行数据传输使用的预编码矩阵的数量,αn,p为第n组干扰测量参数所对应的干扰源基站进行数据传输使用的第p个预编码矩阵的加权因子,Wn,p为第n组干扰测量参数所对应的干扰源基站进行数据传输使用的第p个预编码矩阵,
Figure PCTCN2015090928-appb-000029
为Wn,p的共轭转置矩阵,GH为G的共轭转置矩阵。
当干扰信号特征参数包括干扰源基站进行数据传输使用的预编码矩阵的集合时,预编码矩阵集合为{W1,W2,...,WP},且假设网络设备为一个干扰源基站配置干扰测量参数,且该干扰源基站对应配置一组干扰测量参数,且该组干扰测量中仅包括一个干扰测量CSI-RS,且该干扰测量CSI-RS对应多个干扰信号特征参数。则所述终端依据所述初始干扰测量结果、所述信道矩阵和所述干扰信号特征参数,确定总干扰所依据的公式(12)为:
Figure PCTCN2015090928-appb-000030
其中,Z为总干扰,Z0为初始干扰测量结果,k为每个干扰测量CSI-RS所对应的干扰信号特征参数的索引号,取值范围为[1,K],K为每个干扰测量CSI-RS所对应的干扰信号特征参数的总数量,G为依据干扰测量参数中干扰测量CSI-RS测量的干扰源基站到终端的信道矩阵,p为干扰源基站进行数据传输使用的预编码矩阵的索引号,取值范围为[1,P],P为干扰源基站进行数据传输使用的预编码矩阵的数量,Wk,p为第k个干扰信号特征参数所对应的干扰源基站进行数据传输使用的第p个预编码矩阵,
Figure PCTCN2015090928-appb-000031
为Wk,p的共轭转置矩阵,GH为G的共轭转置矩阵。
当干扰信号特征参数包括干扰源基站进行数据传输使用的预编码矩阵的集合时,预编码矩阵集合为{W1,W2,...,WP},基站基于预编码矩阵在后续数据传输中的可能会使用到的概率为每个预编码矩阵配置一个加权因子,且假设网络设备为一个干扰源基站配置干扰测量参数,且该干扰源基站对应配置一组干扰测量参数,且该组干扰测量中仅包括一个干扰测量CSI-RS,且该干扰测量CSI-RS仅对应多个干扰信号特征参数。则所述终端依据所述初始干扰测量结果、所述信道矩阵和所述干扰信号特征参数,确定总干扰所依据的公式(13)为:
Figure PCTCN2015090928-appb-000032
其中,Z为总干扰,Z0为初始干扰测量结果,k为每个干扰测量CSI-RS所对应的干扰信号特征参数的索引号,取值范围为[1,K],K为每个干扰测量CSI-RS所对应的干扰信号特征参数的总数量,G为依据干扰测量参数中干扰测量CSI-RS测量的干扰源基站到终端的信道矩阵,p为干扰源基站进行数 据传输使用的预编码矩阵的索引号,取值范围为[1,P],P为干扰源基站进行数据传输使用的预编码矩阵的数量,αk,p为第k个干扰信号特征参数所对应的干扰源基站进行数据传输使用的第p个预编码矩阵的加权因子,Wk,p为第k个干扰信号特征参数所对应的干扰源基站进行数据传输使用的第p个预编码矩阵,
Figure PCTCN2015090928-appb-000033
为Wk,p的共轭转置矩阵,GH为G的共轭转置矩阵。
当干扰信号特征参数包括干扰源基站进行数据传输使用的预编码矩阵的集合时,预编码矩阵集合为{W1,W2,...,WP},且假设网络设备为多个干扰源基站配置干扰测量参数,且每个干扰源基站对应配置多组干扰测量参数,且每组干扰测量中包括多个干扰测量CSI-RS,且每个干扰测量CSI-RS对应多个干扰信号特征参数。则所述终端依据所述初始干扰测量结果、所述信道矩阵和所述干扰信号特征参数,确定总干扰所依据的公式(14)为:
Figure PCTCN2015090928-appb-000034
其中,Z为总干扰,Z0为初始干扰测量结果,n为干扰测量参数的组号,取值范围为[1,N],N为干扰测量参数的组的总数量,m为干扰测量CSI-RS的索引号,取值范围为[1,M],M为每组干扰测量参数中干扰测量CSI-RS的总数量,k为每个干扰测量CSI-RS所对应的干扰信号特征参数的索引号,取值范围为[1,K],K为每个干扰测量CSI-RS所对应的干扰信号特征参数的总数量,Gn,m为依据第n组干扰测量参数中第m个干扰测量CSI-RS测量的干扰源基站到终端的信道矩阵,p为干扰源基站进行数据传输使用的预编码矩阵的索引号,取值范围为[1,P],P为干扰源基站进行数据传输使用的预编码矩阵的总数量,Wn,m,k,p为第n组干扰测量参数中的第m个干扰测量CSI-RS所对应的第k个干扰信号特征参数所对应的干扰源基站进行数据传输使用的第p个预编码矩阵,
Figure PCTCN2015090928-appb-000035
为Wn,m,k,p的共轭转置矩阵,
Figure PCTCN2015090928-appb-000036
为Gn,m的共轭转置矩阵。
当干扰信号特征参数包括干扰源基站进行数据传输使用的预编码矩阵的集合时,预编码矩阵集合为{W1,W2,...,WP},基站基于预编码矩阵在后续数据传输中的可能会使用到的概率为每个预编码矩阵配置一个加权因子,且假设网络设备为多个干扰源基站配置干扰测量参数,且每个干扰源基站对应配置多组干扰测量参数,且每组干扰测量中包括多个干扰测量CSI-RS,且每个干扰测量CSI-RS对应多个干扰信号特征参数。则所述终端依据所述初始干扰测量结果、所述信道矩阵和所述干扰信号特征参数,确定总干扰所依据的公式(15)为:
Figure PCTCN2015090928-appb-000037
其中,Z为总干扰,Z0为初始干扰测量结果,n为干扰测量参数的组号, 取值范围为[1,N],N为干扰测量参数的组的总数量,m为干扰测量CSI-RS的索引号,取值范围为[1,M],M为每组干扰测量参数中干扰测量CSI-RS的总数量,k为每个干扰测量CSI-RS所对应的干扰信号特征参数的索引号,取值范围为[1,K],K为每个干扰测量CSI-RS所对应的干扰信号特征参数的总数量,Gn,m为依据第n组干扰测量参数中第m个干扰测量CSI-RS测量的干扰源基站到终端的信道矩阵,p为干扰源基站进行数据传输使用的预编码矩阵的集合的索引号,取值范围为[1,P],P为干扰源基站进行数据传输使用的预编码矩阵的集合中的预编码矩阵的总数量,αn,m,k,p为第n组干扰测量参数中的第m个干扰测量CSI-RS所对应的第k个干扰信号特征参数所对应的干扰源基站进行数据传输使用的第p个预编码矩阵的加权因子,Wn,m,k,p为第n组干扰测量参数中的第m个干扰测量CSI-RS所对应的第k个干扰信号特征参数所对应的干扰源基站进行数据传输使用的第p个预编码矩阵,
Figure PCTCN2015090928-appb-000038
为Wn,m,k,p的共轭转置矩阵,
Figure PCTCN2015090928-appb-000039
为Gn,m的共轭转置矩阵。
公式(14)中是基于每组干扰测量参数均包括M个干扰测量CSI-RS,每个干扰测量CSI-RS均对应K个干扰特征信号的情况。而当每组干扰测量参数包括的干扰测量CSI-RS的数量不同时,且每个干扰测量CSI-RS所对应的干扰特征信号的数量也不同时,则适用下述公式(16)。
当干扰信号特征参数包括干扰源基站进行数据传输使用的预编码矩阵的集合时,预编码矩阵集合为{W1,W2,...,WP},且假设网络设备仅为一个干扰源基站配置了对应的一组干扰测量参数,且该组干扰测量中仅包括一个干扰测量CSI-RS,且该干扰测量CSI-RS仅对应一个干扰信号特征参数。则依据所述初始干扰测量结果、所述信道矩阵和所述干扰信号特征参数,确定总干扰所依据的公式(16)为:
Figure PCTCN2015090928-appb-000040
其中,Z为总干扰,Z0为初始干扰测量结果,n为干扰测量参数的组号,取值范围为[1,N],N为干扰测量参数的组的总数量,m为干扰测量CSI-RS的索引号,取值范围为[1,Mn],Mn为第n组干扰测量参数中干扰测量CSI-RS的总数量,k为干扰信号特征参数的索引号,取值范围为[1,Kn,m],Kn,m为第n组干扰测量参数中第m个干扰测量CSI-RS所对应的干扰信号特征参数的总数量,Gn,m为依据第n组干扰测量参数中第m个干扰测量CSI-RS测量的干扰源基站到终端的信道矩阵,p为干扰源基站进行数据传输使用的预编码矩阵的索引号,取值范围为[1,P],P为干扰源基站进行数据传输使用的预编码矩阵的总数量,Wn,m,k,p为第n组干扰测量参数中的第m个干扰测量CSI-RS所对应的第k个干扰信号特征参数所对应的干扰源基站进行数据传输使用的 第p个预编码矩阵,
Figure PCTCN2015090928-appb-000041
为Wn,m,k,p的共轭转置矩阵,
Figure PCTCN2015090928-appb-000042
为Gn,m的共轭转置矩阵。
公式(15)中是基于每组干扰测量参数均包括M个干扰测量CSI-RS,每个干扰测量CSI-RS均对应K个干扰特征信号的情况。而当每组干扰测量参数包括的干扰测量CSI-RS的数量不同时,且每个干扰测量CSI-RS所对应的干扰特征信号的数量也不同时,则适用下述公式(17)。
当干扰信号特征参数包括干扰源基站进行数据传输使用的预编码矩阵的集合时,预编码矩阵集合为{W1,W2,...,WP},基站基于预编码矩阵在后续数据传输中的可能会使用到的概率为每个预编码矩阵配置一个加权因子,且假设网络设备为多个干扰源基站配置干扰测量参数,且每个干扰源基站对应配置多组干扰测量参数,且每组干扰测量中包括多个干扰测量CSI-RS,且每个干扰测量CSI-RS对应多个干扰信号特征参数。则依据所述初始干扰测量结果、所述信道矩阵和所述干扰信号特征参数,确定总干扰所依据的公式(17)为:
Figure PCTCN2015090928-appb-000043
其中,Z为总干扰,Z0为初始干扰测量结果,n为干扰测量参数的组号,取值范围为[1,N],N为干扰测量参数的组的总数量,m为干扰测量CSI-RS的索引号,取值范围为[1,Mn],Mn为第n组干扰测量参数中干扰测量CSI-RS的总数量,k为干扰信号特征参数的索引号,取值范围为[1,Kn,m],Kn,m为第n组干扰测量参数中第m个干扰测量CSI-RS所对应的干扰信号特征参数的总数量,Gn,m为依据第n组干扰测量参数中第m个干扰测量CSI-RS测量的干扰源基站到终端的信道矩阵,p为干扰源基站进行数据传输使用的预编码矩阵的集合的索引号,取值范围为[1,P],P为干扰源基站进行数据传输使用的预编码矩阵的集合中的预编码矩阵的总数量,αn,mk,p为第n组干扰测量参数中的第m个干扰测量CSI-RS所对应的第k个干扰信号特征参数所对应的干扰源基站进行数据传输使用的第p个预编码矩阵的加权因子,Wn,m,k,p为第n组干扰测量参数中的第m个干扰测量CSI-RS所对应的第k个干扰信号特征参数所对应的干扰源基站进行数据传输使用的第p个预编码矩阵,
Figure PCTCN2015090928-appb-000044
为Wn,m,k,p的共轭转置矩阵,
Figure PCTCN2015090928-appb-000045
为Gn,m的共轭转置矩阵。
本领域技术人员可知,在公式(14)中,当N为1,M为1,K为1时,则公式(14)可简化为公式(8);在公式(14)中,当N大于1,M为1,K为1时,则公式(14)可简化为公式(10);在公式(14)中,当N为1,M为1,K大于1时,则公式(14)可简化为公式(12)。
本领域技术人员可知,在公式(15)中,当N为1,M为1,K为1时,则公式(15)可简化为公式(9);在公式(15)中,当N大于1,M为1,K 为1时,则公式(15)可简化为公式(11);在公式(15)中,当N为1,M为1,K大于1时,则公式(15)可简化为公式(13)。
依据上述方式确定出总干扰之后,终端依据所述总干扰确定信道状态信息,并向所述网络设备上报确定出的信道状态信息。本公开文本实施例中的信道状态信息中包括RI、CQI、PMI等信息。
除了上述实现方式外,本公开文本实施例还提供另外几种实现方式。
另一种实现方式为,终端测量得到初始干扰测量结果之后,依据该初始干扰测量结果确定信道状态信息,接着依据网络设备所配置的干扰测量参数对已经确定出的信道状态信息进行调整,将调整后的信道状态信息上报给网络设备。在该中实现方式中,依据网络设备所配置的干扰测量参数对已经确定出的信道状态信息进行调整可以预先设定,如可根据干扰测量参数对初步确定出的信道状态信息中的CQI进行提升或者降低。
另一种实现方式为,建立信道状态信息和初始干扰测量结果、干扰测量参数中的干扰测量CSI-RS和干扰信号特征参数之间的映射表格,通过初始干扰测量结果、干扰测量CSI-RS、干扰信号特征参数通过表格确定出信道状态信息,之后将确定出的信道状态信息上报给网络设备。
具体实施中,CSI进程是LTE Rel-11引入的概念。一个CSI进程对应一个传输假设的CSI。传输假设包括信号假设和干扰假设两个部分,因此一个CSI进程与一个CSI-RS和一个IMR相关联。信号假设基于CSI-RS测量得到,干扰假设基于IMR测量得到。基于本公开文本中的方法,一个CSI进程的定义可以修改成与一个CSI-RS和一个IMR关联,并且与一组或者多组干扰测量参数关联。该CSI进程的CSI测量和计算可以基于前面所介绍的方法完成。
通过上述对确定信道状态信息的各种实现方式的描述可以看出,由于干扰测量参数,或者干扰测量CSI-RS以及干扰信号特征参数,是由网络设备所配置的,因此该网络设备配置的信息与现有技术相比可以更能反映干扰信息的实际发生情况。
比如,网络设备为终端配置的干扰测量CSI-RS是针对该终端的干扰源基站的(如前所述,当终端存在协作基站时,终端测量得到的初始干扰测量结果为协作基站集合之外的干扰,网络设备所配置的干扰测量参数所对应的干扰源基站为终端的协作基站;当终端与配对终端基于单小区MIMO传输时,终端进行干扰测量得到的初始干扰测量结果为终端的服务基站之外的干扰,网络设备所配置的干扰测量参数所对应的干扰源基站为终端的服务基站),因此可结合步骤201中的初始测量配置来确定步骤202中的干扰测量CSI-RS所针对的干扰源基站,从而可以结合步骤201中的初始干扰测量结果和步骤202中基于干扰测量CSI-RS的测量结果来得到干扰信息,这样得到的干扰信息比现有技术更能反映干扰信息的实际发生情况。
进一步地,网络设备为终端配置的干扰信号特征参数包括干扰源基站所发送的信号的相关矩阵,比如可以是干扰源基站进行数据传输使用的预编码矩阵的集合,因此可以一定程度上反映该干扰源基站的数据传输情况。因此, 结合初始干扰测量结果、基于干扰测量CSI-RS的干扰测量结果以及干扰源基站发送信号的相关矩阵所得到的干扰信息,与现有技术相比可以与实际传输时的干扰信息更为匹配。
现举两个例子,用以进一步阐述上述方法。
例子一:
假设本公开文本实施例适用于多点协作传输场景下时,即存在多个协作小区。假设终端的服务小区为第一小区,协作小区集合中包括第一小区和第二小区。网络设备为第一小区和第二小区分别配置IMR1。则当第一小区和第二小区分别在IMR1上进行静默时,终端在IMR1上进行干扰测量,得到初始干扰测量结果即为第一小区和第二小区之外的干扰,即初始干扰测量结果为协作基站集合之外的基站产生的干扰。
网络设备为终端配置一组干扰测量参数,该干扰测量参数对应的干扰源基站为第二小区的基站。该干扰测量参数中的干扰测量CSI-RS中的干扰测量CSI-RS为第二小区的基站所发送的干扰测量CSI-RS。该干扰测量参数中的干扰信号特征参数为第二小区的基站所发送的信号的相关矩阵。
此时,终端在IMR1中测量得到第一小区和第二小区之外的初始干扰测量结果,依据干扰测量参数得到第二小区对该终端所产生的干扰,将该初始干扰测量结果与第二小区对该终端所产生的干扰相加,即得到第一小区之外的所有其它小区产生的总干扰。
第一小区基于总干扰确定信道状态信息,并向所述网络设备上报确定出的信道状态信息。
例子二:
假设本公开文本实施例适用于单小区多用户MIMO传输场景时,假设第一小区为该终端的服务小区,在该服务小区中存在该终端的配对终端,即配对终端与该终端在服务小区内占用相同的时频资源。网络为终端配置IMR2,服务小区在IMR2上进行静默。终端在IMR2上测量得到的干扰即为服务小区之外的其它小区产生的初始干扰。
网络设备为终端配置一组干扰测量参数,该干扰测量参数中的干扰测量CSI-RS为服务小区发送的干扰测量CSI-RS,该干扰测量参数中的干扰信号的相关矩阵为服务基站对该终端的配对终端所发送的信号的相关矩阵。终端基于干扰测量参数计算出的干扰为配对终端的信号对终端所产生的干扰。
将该服务小区之外的其它小区产生的初始干扰测量结果与配对终端对终端所产生的干扰相加,结果即为终端所受到的总干扰。
服务小区基于总干扰确定信道状态信息,并向所述网络设备上报确定出的信道状态信息。
从上述内容可以看出,本公开文本实施例中,终端进行干扰测量,得到初始干扰测量结果。所述终端根据所述初始干扰测量结果、以及网络设备配置的干扰测量参数,确定信道状态信息。所述终端向所述网络设备上报确定出的信道状态信息。
由于干扰测量参数是由网络设备所配置的,因此该网络设备配置的干扰测量参数可以反映干扰信息的实际发生情况,因此,终端依据该干扰测量参数得到的干扰信息与实际传输时的干扰信息更为匹配。如此,终端得到初始干扰测量结果后,进一步结合网络设备配置的干扰信息,确定出信道状态信息并上报,从而提高了终端测量得到的干扰信息与实际传输时的干扰信息的匹配度,进一步使网络在进行链路自适应时选择更合适的参数。
图3示例性示出了一种信道状态信息获取方法的流程示意图。
基于相同构思,如图3所示,本公开文本实施例提供一种信道状态信息获取方法,包括以下步骤:
步骤301,网络设备向终端发送配置信息,配置信息包括干扰测量参数;以及
步骤302,网络设备接收终端上报的信道状态信息,其中,信道状态信息是终端进行干扰测量,得到初始干扰测量结果,之后终端根据初始干扰测量结果、以及网络设备配置的干扰测量参数,确定信道状态信息之后上报的。
由于干扰测量参数是由网络设备所配置的,因此该网络设备配置的干扰测量参数可以反映干扰信息的实际发生情况。因此,终端依据该干扰测量参数得到的干扰信息与实际传输时的干扰信息更为匹配。
网络设备向终端发送配置信息可包括以下两种方式进行。
方式一:
网络设备向终端发送的配置信息包括干扰测量参数。可选的,干扰测量参数为一组或多组,每组干扰测量参数对应一个干扰源基站。每组干扰测量参数包括一个或多个干扰测量CSI-RS,以及每个干扰测量CSI-RS对应一个或多个干扰信号特征参数。该干扰测量CSI-RS中的CSI-RS是指从一个干扰源基站上发出的CSI-RS。
网络设备接收终端上报的信道状态信息,其中,信道状态信息是终端进行干扰测量,得到初始干扰测量结果,之后终端根据初始干扰测量结果,以及网络设备配置的干扰测量参数,确定信道状态信息之后上报的。
方式二:
网络设备所发送的配置信息仅包括一个或多个干扰测量CSI-RS、一个或多个干扰信号特征参数、以及每个干扰测量CSI-RS与一个或多个干扰信号特征参数的对应关系。可选的,还包括每个干扰测量CSI-RS与干扰源基站的对应关系。在此种方式中,每个干扰源基站可对应一个或多个干扰测量CSI-RS,每个干扰测量CSI-RS对应的一个或多个干扰信号特征参数。该干扰测量CSI-RS中的CSI-RS是指从一个干扰源基站上发出的CSI-RS。此时,所述终端根据所述初始干扰测量结果、网络设备配置的干扰测量信道状态信息测量参考信号干扰测量CSI-RS、以及网络设备配置的所述干扰测量CSI-RS对应的干扰信号特征参数,确定信道状态信息。
网络设备接收终端上报的信道状态信息,其中,信道状态信息是终端根据初始干扰测量结果、网络设备配置的干扰测量CSI-RS、以及网络设备配置 的干扰测量CSI-RS对应的干扰信号特征参数,确定信道状态信息之后上报的。
上述方式二中的每个干扰源基站所对应的一个或多个干扰测量CSI-RS、以及每个CSI-RS所对应的一个或多个干扰信号特征参数可视为方式一中的一组干扰测量参数,下述例子中主要以方式一为基础进行介绍。本领域技术人员可依据该对应关系将下述实施例中的一组干扰测量参数的名词替换为方式二中的每个干扰源基站所对应的一个或多个干扰测量CSI-RS、以及每个CSI-RS所对应的一个或多个干扰信号特征参数。
具体实施中,如果配置了多组干扰测量参数,则终端可使用配置的所有干扰测量参数进行干扰测量和计算,也可通过高层信令或下行动态控制信令(Downlink Control Information,简称DCI)的方式指示出终端所需使用的干扰测量参数、以及干扰测量CSI-RS和干扰信号特征参数。
可选的,可以通过DCI指示出以下内容中的一项或几项:终端所使用的一组或几组干扰测量参数、终端所使用的每组干扰测量参数中的一个或几个干扰测量CSI-RS、终端所使用的每个干扰测量CSI-RS所对应的一个或几个干扰信号特征参数。也就是说,通过DCI指示终端使用哪一组或哪几组干扰测量参数进行干扰的测量和计算,或者可以描述为激活某一组或多组干扰测量参数。当每组干扰测量参数中包括一个或多个干扰测量CSI-RS时,可以通过DCI激活某组干扰测量参数中的某一个或某几个干扰测量CSI-RS。当一个干扰测量CSI-RS对应一个或多个干扰信号特征参数时,可以通过DCI激活某组干扰测量参数中的某个干扰测量CSI-RS所对应的某一个或某几个干扰信号特征参数。另一种实施方式中,也可通过DCI指示终端不使用任何干扰测量参数,即不激活任何干扰测量参数。在这种情况下,终端可用在IMR上测量到的干扰进行CSI的测量和计算,或在网络设备未配置IMR的情况下,终端可用测量到的干扰进行CSI的测量和计算。
干扰信号特征参数具体来说,可通过DCI比特来指示终端所需使用的干扰测量参数、干扰测量CSI-RS、以及干扰信号特征参数,DCI比特位具体数值与所指示使用的干扰测量参数的对应关系可以是预先约定好,也可以由网络设备通过信令配置给终端。具体示例可参见前述实施例中详细介绍,在此不再赘述。
除了通过上述DCI指示位的方式指示终端使用哪些干扰测量参数、干扰测量CSI-RS、以及干扰信号特征参数进行干扰测量和计算,也可在DCI中通过位图的方式指示终端使用哪些干扰测量参数、干扰测量CSI-RS、以及干扰信号特征参数进行干扰测量和计算。
以上内容详细介绍了几种确定网络设备指示终端所需使用的干扰测量参数、干扰测量CSI-RS、以及干扰信号特征参数的方式。
网络设备向终端发送指示信息,所述指示信息用于指示出所述终端所使用的一组或几组干扰测量参数、以及针对指示出的每组干扰测量参数、指示出每组干扰测量参数中的一个或几个干扰测量CSI-RS、以及针对指示出的每 个干扰测量CSI-RS、指示出每个干扰测量CSI-RS所对应的一个或几个干扰信号特征参数。
针对网络设备为终端配置每个干扰源基站所对应的一个或多个干扰测量CSI-RS,网络设备为终端配置干扰测量CSI-RS的配置信息,该干扰测量CSI-RS是从一个干扰源基站上发出的干扰测量CSI-RS。每个干扰测量CSI-RS的配置信息包括该干扰测量CSI-RS的发送周期、子帧偏移、序列、功率等参数。
针对网络设备为终端配置的每个干扰测量CSI-RS所对应的每个干扰信号特征参数,每个干扰信号特征参数包括干扰源基站所发送的信号的相关矩阵,或包括干扰源基站进行数据传输使用的预编码矩阵的集合。终端在后续数据传输时所使用的预编码矩阵选自该预编码矩阵的集合。
每个干扰信号特征参数包括干扰源基站所发送的信号的相关矩阵,即协方差矩阵时,假设信号的相关矩阵用R表示,则R=E{xxH},其中,x为干扰源基站所发送的信号。如果干扰源基站采用预编码矩阵对发送数据进行预处理,则x=Ws,其中s=[s1,s2,...,sK],s是干扰源基站发送的源数据,W是干扰信号发送的预编码矩阵。如果E{ssH}=aI,其中I是单位阵,a是标量,则R=E{xxH}=aWWH。网络设备可以通过干扰信号特征参数表征干扰源基站所发送信号的空间相关特性和/或信号强度,如相邻小区等的干扰信号方向和干扰信号强度。
每个干扰信号特征参数包括干扰源基站进行数据传输使用的预编码矩阵的集合时,预编码矩阵集合为{W1,W2,...,WP}。PMI是指预编码矩阵的索引,指向一个预先定义好的预编码矩阵的集合,即码本,PMI与码本中的元素一一对应。因此预编码矩阵集合也可通过PMI集合的方式表示,为{PMI1,PMI2,...,PIMP}。可选的,针对PMI集合中的每个PMI,基站可以为其配置一个加权因子,用于表征该PMI在后面的传输中会用到的概率,或者表征该PMI对应的传输的发送功率,或者在总发射功率中所占的比例。
通过上述内容的论述,网络设备为终端配置了干扰测量参数,或网络设备为终端配置了干扰测量CSI-RS和干扰信号特征参数、以及干扰测量CSI-RS和干扰信号特征参数的对应关系。该步骤在终端进行干扰测量之前之后均可。
本公开文本实施例中假设终端先进行参数配置,之后终端进行干扰测量,得到初始干扰测量结果。
在LTE R8到LTE R10系统中,终端基于常规的CRS或CSI-RS进行干扰测量即可,得到初始干扰测量结果。在LTE Rel-11系统,则网络设备为终端会配置其专属的IMR,终端在IMR上进行干扰测量,得到初始干扰测量结果。
一个实施例中,当终端存在协作基站时,终端测量得到的初始干扰测量结果为协作基站集合之外的干扰。网络设备所配置的干扰测量参数所对应的干扰源基站为终端的协作基站。
另一个实施例中,当终端与配对终端基于单小区多用户多输入多输出 (Multiple-Input Multiple-Output,MIMO)传输时,终端进行干扰测量,得到的初始干扰测量结果为终端的服务基站之外的干扰。配对终端为与该终端同在一个服务小区中,且配对终端与该终端所占用的时频资源相同。网络设备所配置的干扰测量参数所对应的干扰源基站是终端的服务基站。
终端进行干扰测量,得到初始干扰测量结果之后,针对每个干扰测量CSI-RS,所述终端依据每个干扰测量CSI-RS测量干扰测量CSI-RS对应的干扰源基站到所述终端的信道矩阵。
具体来说,终端根据干扰测量CSI-RS测量从干扰源基站到终端的干扰信道。可选的,如果为终端配置了多组干扰测量参数,则终端应分别根据每组干扰测量参数中的每个干扰测量CSI-RS测量从干扰源基站到终端的干扰信道,并进一步进行信道估计,估计出终端到干扰源基站的信道矩阵。
从上述内容可以看出:本公开文本实施例中,终端进行干扰测量,得到初始干扰测量结果;所述终端根据所述初始干扰测量结果、以及网络设备配置的干扰测量参数,确定信道状态信息;所述终端向所述网络设备上报确定出的信道状态信息。
由于干扰测量参数是由网络设备所配置的,因此该网络设备配置的干扰测量参数可以反映干扰信息的实际发生情况。因此,终端依据该干扰测量参数得到的干扰信息与实际传输时的干扰信息更为匹配。如此,终端得到初始干扰测量结果后,进一步结合网络设备配置的干扰信息,确定出信道状态信息并上报,从而提高了终端测量得到的干扰信息与实际传输时的干扰信息的匹配度,进一步使网络在进行链路自适应时选择更合适的参数。
图4示例性示出了本公开文本实施例提供的一种终端的结构示意图。
基于相同的构思,如图4所示,本公开文本实施例提供一种终端,包括测量模块401、确定模块402、以及上报模块403。
测量模块401,用于进行干扰测量,得到初始干扰测量结果。
确定模块402,用于根据初始干扰测量结果、以及网络设备配置的干扰测量参数,确定信道状态信息。
上报模块403,用于向网络设备上报确定出的信道状态信息。
由于干扰测量参数是由网络设备所配置的,因此该网络设备配置的干扰测量参数可以反映干扰信息的实际发生情况。因此,终端依据该干扰测量参数得到的干扰信息与实际传输时的干扰信息更为匹配。
终端的确定模块402具体可通过以下两种方式进行:
方式一:
网络设备为终端配置干扰源基站的干扰测量参数。可选的,干扰测量参数为一组或多组,每组干扰测量参数对应一个干扰源基站。每组干扰测量参数包括一个或多个干扰测量CSI-RS、以及每个干扰测量CSI-RS对应一个或多个干扰信号特征参数。该干扰测量CSI-RS中的CSI-RS是指从一个干扰源基站上发出的CSI-RS。
确定模块根据初始干扰测量结果、以及网络设备配置的干扰测量参数, 确定信道状态信息。
方式二:
直接为终端配置一个或多个干扰测量CSI-RS、一个或多个干扰信号特征参数、以及每个干扰测量CSI-RS与一个或多个干扰信号特征参数的对应关系。可选的,还包括每个干扰测量CSI-RS与干扰源基站的对应关系。在此种方式中,每个干扰源基站可对应一个或多个干扰测量CSI-RS、每个干扰测量CSI-RS对应的一个或多个干扰信号特征参数。该干扰测量CSI-RS中的CSI-RS是指从一个干扰源基站上发出的CSI-RS。此时,所述终端根据所述初始干扰测量结果、网络设备配置的干扰测量信道状态信息测量参考信号干扰测量CSI-RS、以及网络设备配置的所述干扰测量CSI-RS对应的干扰信号特征参数,确定信道状态信息。
确定模块根据初始干扰测量结果、网络设备配置的干扰测量信道状态信息测量参考信号CSI-RS、以及网络设备配置的干扰测量CSI-RS对应的干扰信号特征参数,确定信道状态信息。
上述方式二中的每个干扰源基站所对应的一个或多个干扰测量CSI-RS、以及每个CSI-RS所对应的一个或多个干扰信号特征参数可视为方式一中的一组干扰测量参数,下述例子中主要以方式一为基础进行介绍。本领域技术人员可依据该对应关系将下述实施例中的一组干扰测量参数的名词替换为方式二中的每个干扰源基站所对应的一个或多个干扰测量CSI-RS、以及每个CSI-RS所对应的一个或多个干扰信号特征参数。
具体实施中,如果配置了多组干扰测量参数,则终端可使用配置的所有干扰测量参数进行干扰测量和计算,也可通过高层信令或DCI的方式指示出终端所需使用的干扰测量参数、以及干扰测量CSI-RS和干扰信号特征参数。
可选的,可以通过DCI指示出以下内容中的一项或几项:终端所使用的一组或几组干扰测量参数、终端所使用的每组干扰测量参数中的一个或几个干扰测量CSI-RS、终端所使用的每个干扰测量CSI-RS所对应的一个或几个干扰信号特征参数。也就是说,通过DCI指示终端使用哪一组或哪几组干扰测量参数进行干扰的测量和计算,或者可以描述为激活某一组或多组干扰测量参数。当每组干扰测量参数中包括一个或多个干扰测量CSI-RS时,可以通过DCI激活某组干扰测量参数中的某一个或某几个干扰测量CSI-RS。当一个干扰测量CSI-RS对应一个或多个干扰信号特征参数时,可以通过DCI激活某组干扰测量参数中的某个干扰测量CSI-RS所对应的某一个或某几个干扰信号特征参数。另一种实施方式中,也可通过DCI指示终端不使用任何干扰测量参数,即不激活任何干扰测量参数。在这种情况下,终端可用在IMR上测量到的干扰进行CSI的测量和计算,或在网络设备未配置IMR的情况下,终端可用测量到的干扰进行CSI的测量和计算。
干扰信号特征参数具体来说,可通过DCI比特来指示终端所需使用的干扰测量参数、干扰测量CSI-RS、以及干扰信号特征参数。DCI比特位具体数值与所指示使用的干扰测量参数的对应关系可以是预先约定好,也可以由网 络设备通过信令配置给终端。具体示例可参见前述实施例中详细介绍,在此不再赘述。
除了通过上述DCI指示位的方式指示终端使用哪些干扰测量参数、干扰测量CSI-RS、以及干扰信号特征参数进行干扰测量和计算,也可在DCI中通过位图的方式指示终端使用哪些干扰测量参数、干扰测量CSI-RS、以及干扰信号特征参数进行干扰测量和计算。
以上内容详细介绍了几种确定网络设备指示终端所需使用的干扰测量参数、干扰测量CSI-RS、以及干扰信号特征参数的方式。
终端接收到网络设备发送的指示信息,指示信息用于指示出以下内容中的一项或几项:终端所使用的一组或几组干扰测量参数、终端所使用的每组干扰测量参数中的一个或几个干扰测量CSI-RS、终端所使用的每个干扰测量CSI-RS所对应的一个或几个干扰信号特征参数。
针对网络设备为终端配置每个干扰源基站所对应的一个或多个干扰测量CSI-RS,网络设备为终端配置干扰测量CSI-RS的配置信息,该干扰测量CSI-RS是从一个干扰源基站上发出的干扰测量CSI-RS。每个干扰测量CSI-RS的配置信息包括该干扰测量CSI-RS的发送周期、子帧偏移、序列、功率等参数。
针对网络设备为终端配置的每个干扰测量CSI-RS所对应的每个干扰信号特征参数,每个干扰信号特征参数包括干扰源基站所发送的信号的相关矩阵,或包括干扰源基站进行数据传输使用的预编码矩阵的集合。终端在后续数据传输时所使用的预编码矩阵选自该预编码矩阵的集合。
每个干扰信号特征参数包括干扰源基站所发送的信号的相关矩阵,即协方差矩阵时,假设信号的相关矩阵用R表示,则R=E{xxH},其中,x为干扰源基站所发送的信号。如果干扰源基站采用预编码矩阵对发送数据进行预处理,则x=Ws,其中s=[s1,s2,...,sK],s是干扰源基站发送的源数据,W是干扰信号发送的预编码矩阵。如果E{ssH}=aI,其中I是单位阵,a是标量,则R=E{xxH}=aWWH。网络设备可以通过干扰信号特征参数表征干扰源基站所发送信号的空间相关特性和/或信号强度,如相邻小区等的干扰信号方向和干扰信号强度。
当每个干扰信号特征参数包括干扰源基站进行数据传输使用的预编码矩阵的集合时,预编码矩阵集合为{W1,W2,...,WP}。PMI是指预编码矩阵的索引,指向一个预先定义好的预编码矩阵的集合,即码本,PMI与码本中的元素一一对应。因此预编码矩阵集合也可通过PMI集合的方式表示,为{PMI1,PMI2,...,PIMP}。可选的,针对PMI集合中的每个PMI,基站可以为其配置一个加权因子,用于表征该PMI在后面的传输中会用到的概率,或者表征该PMI对应的传输的发送功率,或者在总发射功率中所占的比例。
通过上述内容的论述,网络设备为终端配置了干扰测量参数,或网络设备为终端配置了干扰测量CSI-RS和干扰信号特征参数、以及干扰测量CSI-RS和干扰信号特征参数的对应关系。该步骤在终端进行干扰测量之前之后均可。
本公开文本实施例中假设终端先进行参数配置,之后终端进行干扰测量,得到初始干扰测量结果。
终端进行干扰测量,在LTE R8到LTE R10系统中,终端基于常规的CRS或CSI-RS进行干扰测量即可,得到初始干扰测量结果。在LTE Rel-11系统,则网络设备为终端会配置其专属的IMR,终端在IMR上进行干扰测量,得到初始干扰测量结果。
一个实施例中,当终端存在协作基站时,终端测量得到的初始干扰测量结果为协作基站集合之外的干扰。网络设备所配置的干扰测量参数所对应的干扰源基站为终端的协作基站。
另一个实施例中,当终端与配对终端基于单小区多用户多输入多输出(Multiple-Input Multiple-Output,MIMO)传输时,终端进行干扰测量,得到的初始干扰测量结果为终端的服务基站之外的干扰。配对终端为与该终端同在一个服务小区中,且配对终端与该终端所占用的时频资源相同。网络设备所配置的干扰测量参数所对应的干扰源基站为终端的服务基站。
终端进行干扰测量,得到初始干扰测量结果之后,针对每个干扰测量CSI-RS,所述终端依据每个干扰测量CSI-RS测量干扰测量CSI-RS对应的干扰源基站到所述终端的信道矩阵。
具体来说,终端根据干扰测量CSI-RS测量从干扰源基站到终端的干扰信道。可选的,如果为终端配置了多组干扰测量参数,则终端应分别根据每组干扰测量参数中的每个干扰测量CSI-RS测量从干扰源基站到终端的干扰信道,并进一步进行信道估计,估计出终端到干扰源基站的信道矩阵。
所述终端依据所述初始干扰测量结果、所述信道矩阵和所述干扰信号特征参数,确定总干扰,所述终端依据所述总干扰确定信道状态信息。所述总干扰为依据所述信道矩阵和所述干扰信号特征参数得到的结果与所述初始干扰测量结果之和。
所述终端依据所述初始干扰测量结果、所述信道矩阵和所述干扰信号特征参数,确定总干扰所依据的公式为前述公式(1)至公式(17),在此不再赘述。
依据上述方式确定出总干扰之后,终端依据所述总干扰确定信道状态信息,并向所述网络设备上报确定出的信道状态信息。本公开文本实施例中的信道状态信息中包括RI、CQI、PMI等信息。
除了上述实现方式外,本公开文本实施例还提供另外几种实现方式如下:
另一种实现方式为,终端测量得到初始干扰测量结果之后,依据该初始干扰测量结果确定信道状态信息,接着依据网络设备所配置的干扰测量参数对已经确定出的信道状态信息进行调整,将调整后的信道状态信息上报给网络设备。在该中实现方式中,依据网络设备所配置的干扰测量参数对已经确定出的信道状态信息进行调整可以预先设定,如可根据干扰测量参数对初步确定出的信道状态信息中的CQI进行提升或者降低。
另一种实现方式为,建立信道状态信息和初始干扰测量结果、干扰测量 参数中的干扰测量CSI-RS和干扰信号特征参数之间的映射表格,通过初始干扰测量结果、干扰测量CSI-RS、干扰信号特征参数通过表格确定出信道状态信息,之后将确定出的信道状态信息上报给网络设备。
具体实施中,CSI进程是LTE Rel-11引入的概念。一个CSI进程对应一个传输假设的CSI。传输假设包括信号假设和干扰假设两个部分,因此一个CSI进程与一个CSI-RS和一个IMR相关联。信号假设基于CSI-RS测量得到,干扰假设基于IMR测量得到。基于本公开文本中的方法,一个CSI进程的定义可以修改成与一个CSI-RS和一个IMR关联,并且与一组或者多组干扰测量参数关联。该CSI进程的CSI测量和计算可以基于前面所介绍的方法完成。
从上述内容可以看出,本公开文本实施例中,终端进行干扰测量,得到初始干扰测量结果。所述终端根据所述初始干扰测量结果、以及网络设备配置的干扰测量参数,确定信道状态信息。所述终端向所述网络设备上报确定出的信道状态信息。
由于干扰测量参数是由网络设备所配置的,因此该网络设备配置的干扰测量参数可以反映干扰信息的实际发生情况。因此,终端依据该干扰测量参数得到的干扰信息与实际传输时的干扰信息更为匹配。如此,终端得到初始干扰测量结果后,进一步结合网络设备配置的干扰信息,确定出信道状态信息并上报,从而提高了终端测量得到的干扰信息与实际传输时的干扰信息的匹配度,进一步使网络在进行链路自适应时选择更合适的参数。
图5示例性示出了本公开文本实施例提供的一种网络设备的结构示意图。
基于相同的构思,如图5所示,本公开文本实施例提供一种网络设备,包括发送模块501、接收模块502。
发送模块501,用于向终端发送配置信息,配置信息包括干扰测量参数;以及
接收模块502,用于接收终端上报的信道状态信息,其中,信道状态信息是终端进行干扰测量,得到初始干扰测量结果,之后终端根据初始干扰测量结果、以及网络网络设备配置的干扰测量参数,确定信道状态信息之后上报的。
由于干扰测量参数是由网络设备所配置的,因此该网络设备配置的干扰测量参数可以反映干扰信息的实际发生情况。因此,终端依据该干扰测量参数得到的干扰信息与实际传输时的干扰信息更为匹配。
网络设备通过发送模块501向终端发送配置信息可包括以下两种方式进行。
方式一:
网络设备向终端发送的配置信息包括干扰测量参数。可选的,干扰测量参数为一组或多组,每组干扰测量参数对应一个干扰源基站。每组干扰测量参数包括一个或多个干扰测量CSI-RS、以及每个干扰测量CSI-RS对应一个或多个干扰信号特征参数。该干扰测量CSI-RS中的CSI-RS是指从一个干扰 源基站上发出的CSI-RS。
网络设备接收终端上报的信道状态信息,其中,信道状态信息是终端进行干扰测量,得到初始干扰测量结果,之后终端根据初始干扰测量结果、以及网络设备配置的干扰测量参数,确定信道状态信息之后上报的。
方式二:
网络设备所发送的配置信息仅包括一个或多个干扰测量CSI-RS、一个或多个干扰信号特征参数、以及每个干扰测量CSI-RS与一个或多个干扰信号特征参数的对应关系。可选的,还包括每个干扰测量CSI-RS与干扰源基站的对应关系。在此种方式中,每个干扰源基站可对应一个或多个干扰测量CSI-RS,每个干扰测量CSI-RS对应的一个或多个干扰信号特征参数。该干扰测量CSI-RS中的CSI-RS是指从一个干扰源基站上发出的CSI-RS。此时,所述终端根据所述初始干扰测量结果、网络设备配置的干扰测量信道状态信息测量参考信号干扰测量CSI-RS、以及网络设备配置的所述干扰测量CSI-RS对应的干扰信号特征参数,确定信道状态信息。
网络设备接收终端上报的信道状态信息,其中,信道状态信息是终端根据初始干扰测量结果、网络设备配置的干扰测量CSI-RS、以及网络设备配置的干扰测量CSI-RS对应的干扰信号特征参数,确定信道状态信息之后上报的。
上述方式二中的每个干扰源基站所对应的一个或多个干扰测量CSI-RS,以及每个CSI-RS所对应的一个或多个干扰信号特征参数可视为方式一中的一组干扰测量参数,下述例子中主要以方式一为基础进行介绍。本领域技术人员可依据该对应关系将下述实施例中的一组干扰测量参数的名词替换为方式二中的每个干扰源基站所对应的一个或多个干扰测量CSI-RS、以及每个CSI-RS所对应的一个或多个干扰信号特征参数。
具体实施中,如果配置了多组干扰测量参数,则终端可使用配置的所有干扰测量参数进行干扰测量和计算,也可通过高层信令或下行动态控制信令(Downlink Control Information,简称DCI)的方式指示出终端所需使用的干扰测量参数,以及干扰测量CSI-RS和干扰信号特征参数。
可选的,可以通过DCI指示出以下内容中的一项或几项:终端所使用的一组或几组干扰测量参数、终端所使用的每组干扰测量参数中的一个或几个干扰测量CSI-RS、终端所使用的每个干扰测量CSI-RS所对应的一个或几个干扰信号特征参数。也就是说,通过DCI指示终端使用哪一组或哪几组干扰测量参数进行干扰的测量和计算,或者可以描述为激活某一组或多组干扰测量参数。当每组干扰测量参数中包括一个或多个干扰测量CSI-RS时,可以通过DCI激活某组干扰测量参数中的某一个或某几个干扰测量CSI-RS。当一个干扰测量CSI-RS对应一个或多个干扰信号特征参数时,可以通过DCI激活某组干扰测量参数中的某个干扰测量CSI-RS所对应的某一个或某几个干扰信号特征参数。另一种实施方式中,也可通过DCI指示终端不使用任何干扰测量参数,即不激活任何干扰测量参数。在这种情况下,终端可用在IMR上 测量到的干扰进行CSI的测量和计算,或在网络设备未配置IMR的情况下,终端可用测量到的干扰进行CSI的测量和计算。
干扰信号特征参数具体来说,可通过DCI比特来指示终端所需使用的干扰测量参数、干扰测量CSI-RS、以及干扰信号特征参数。DCI比特位具体数值与所指示使用的干扰测量参数的对应关系可以是预先约定好,也可以由网络设备通过信令配置给终端。具体示例可参见前述实施例中详细介绍,在此不再赘述。
除了通过上述DCI指示位的方式指示终端使用哪些干扰测量参数、干扰测量CSI-RS、以及干扰信号特征参数进行干扰测量和计算之外,也可在DCI中通过位图的方式指示终端使用哪些干扰测量参数、干扰测量CSI-RS、以及干扰信号特征参数进行干扰测量和计算。
以上内容详细介绍了几种确定网络设备指示终端所需使用的干扰测量参数、干扰测量CSI-RS、以及干扰信号特征参数的方式。
网络设备向终端发送指示信息,所述指示信息用于指示出所述终端所使用的一组或几组干扰测量参数、以及针对指示出的每组干扰测量参数、指示出每组干扰测量参数中的一个或几个干扰测量CSI-RS、以及针对指示出的每个干扰测量CSI-RS、指示出每个干扰测量CSI-RS所对应的一个或几个干扰信号特征参数。
针对网络设备为终端配置每个干扰源基站所对应的一个或多个干扰测量CSI-RS,网络设备为终端配置干扰测量CSI-RS的配置信息,该干扰测量CSI-RS是从一个干扰源基站上发出的干扰测量CSI-RS。每个干扰测量CSI-RS的配置信息包括该干扰测量CSI-RS的发送周期、子帧偏移、序列、功率等参数。
针对网络设备为终端配置的每个干扰测量CSI-RS所对应的每个干扰信号特征参数,每个干扰信号特征参数包括干扰源基站所发送的信号的相关矩阵,或包括干扰源基站进行数据传输使用的预编码矩阵的集合。终端在后续数据传输时所使用的预编码矩阵选自该预编码矩阵的集合。
每个干扰信号特征参数包括干扰源基站所发送的信号的相关矩阵,即协方差矩阵时,假设信号的相关矩阵用R表示,则R=E{xxH},其中,x为干扰源基站所发送的信号。如果干扰源基站采用预编码矩阵对发送数据进行预处理,则x=Ws,其中s=[s1,s2,...,sK],s是干扰源基站发送的源数据,W是干扰信号发送的预编码矩阵。如果E{ssH}=aI,其中I是单位阵,a是标量,则R=E{xxH}=aWWH。网络设备可以通过干扰信号特征参数表征干扰源基站所发送信号的空间相关特性和/或信号强度,如相邻小区等的干扰信号方向和干扰信号强度。
每个干扰信号特征参数包括干扰源基站进行数据传输使用的预编码矩阵的集合时,预编码矩阵集合为{W1,W2,...,WP}。PMI是指预编码矩阵的索引,指向一个预先定义好的预编码矩阵的集合,即码本,PMI与码本中的元素一一对应。因此预编码矩阵集合也可通过PMI集合的方式表示,为{PMI1, PMI2,...,PIMP}。可选的,针对PMI集合中的每个PMI,基站可以为其配置一个加权因子,用于表征该PMI在后面的传输中会用到的概率,或者表征该PMI对应的传输的发送功率,或者在总发射功率中所占的比例。
通过上述内容的论述,网络设备为终端配置了干扰测量参数,或网络设备为终端配置了干扰测量CSI-RS和干扰信号特征参数、以及干扰测量CSI-RS和干扰信号特征参数的对应关系。该步骤在终端进行干扰测量之前之后均可。
本公开文本实施例中假设终端先进行参数配置,之后终端进行干扰测量,得到初始干扰测量结果。
在LTE R8到LTE R10系统中,终端基于常规的CRS或CSI-RS进行干扰测量即可,得到初始干扰测量结果。在LTE Rel-11系统,则网络设备为终端会配置其专属的IMR,终端在IMR上进行干扰测量,得到初始干扰测量结果。
一个实施例中,当终端存在协作基站时,终端测量得到的初始干扰测量结果为协作基站集合之外的干扰。网络设备所配置的干扰测量参数所对应的干扰源基站是终端的协作基站。
另一个实施例中,当终端与配对终端基于单小区多用户多输入多输出(Multiple-Input Multiple-Output,MIMO)传输时,终端进行干扰测量,得到的初始干扰测量结果为终端的服务基站之外的干扰。配对终端为与该终端同在一个服务小区中,且配对终端与该终端所占用的时频资源相同。网络设备所配置的干扰测量参数所对应的干扰源基站是终端的服务基站。
终端进行干扰测量,得到初始干扰测量结果之后,针对每个干扰测量CSI-RS,所述终端依据每个干扰测量CSI-RS测量干扰测量CSI-RS对应的干扰源基站到所述终端的信道矩阵。
具体来说,终端根据干扰测量CSI-RS测量从干扰源基站到终端的干扰信道。可选的,如果为终端配置了多组干扰测量参数,则终端应分别根据每组干扰测量参数中的每个干扰测量CSI-RS测量从干扰源基站到终端的干扰信道,并进一步进行信道估计,估计出终端到干扰源基站的信道矩阵。
从上述内容可以看出:本公开文本实施例中,终端进行干扰测量,得到初始干扰测量结果。所述终端根据所述初始干扰测量结果、以及网络设备配置的干扰测量参数,确定信道状态信息。所述终端向所述网络设备上报确定出的信道状态信息。
由于干扰测量参数是由网络设备所配置的,因此该网络设备配置的干扰测量参数可以反映干扰信息的实际发生情况。因此,终端依据该干扰测量参数得到的干扰信息与实际传输时的干扰信息更为匹配。如此,终端得到初始干扰测量结果后,进一步结合网络设备配置的干扰信息,确定出信道状态信息并上报,从而提高了终端测量得到的干扰信息与实际传输时的干扰信息的匹配度,进一步使网络在进行链路自适应时选择更合适的参数。
图6示例性示出了本公开文本实施例提供的一种终端的结构示意图。
基于相同的构思,如图6所示,本公开文本实施例提供一种终端,包括 处理器601、收发机602、存储器603。
处理器601用于读取存储器603中的程序,执行下列过程:
进行干扰测量,得到初始干扰测量结果;以及
根据初始干扰测量结果、以及网络设备配置的干扰测量参数,确定信道状态信息。
收发机602用于在处理器601的控制下接收和发送数据。比如,用于向网络设备上报确定出的信道状态信息。
其中,在图6中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器601代表的一个或多个处理器和存储器603代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机602可以是多个元件,即包括发送机和收发机,提供用于在传输介质上与各种其他装置通信的单元。处理器601负责管理总线架构和通常的处理,存储器603可以存储器603在执行操作时所使用的数据。
终端的处理器601具体可通过以下两种方式进行。
方式一:
网络设备为终端配置干扰源基站的干扰测量参数。可选的,干扰测量参数为一组或多组,每组干扰测量参数对应一个干扰源基站。每组干扰测量参数包括一个或多个干扰测量CSI-RS、以及每个干扰测量CSI-RS对应一个或多个干扰信号特征参数。该干扰测量CSI-RS中的CSI-RS是指从一个干扰源基站上发出的CSI-RS。
终端的处理器601根据初始干扰测量结果、以及网络设备配置的干扰测量参数,确定信道状态信息。
方式二:
直接为终端配置一个或多个干扰测量CSI-RS、一个或多个干扰信号特征参数、以及每个干扰测量CSI-RS与一个或多个干扰信号特征参数的对应关系。可选的,还包括每个干扰测量CSI-RS与干扰源基站的对应关系。在此种方式中,每个干扰源基站可对应一个或多个干扰测量CSI-RS,每个干扰测量CSI-RS对应的一个或多个干扰信号特征参数。该干扰测量CSI-RS中的CSI-RS是指从一个干扰源基站上发出的CSI-RS。此时,所述终端根据所述初始干扰测量结果,网络设备配置的干扰测量信道状态信息测量参考信号干扰测量CSI-RS,以及网络设备配置的所述干扰测量CSI-RS对应的干扰信号特征参数,确定信道状态信息。
终端的处理器601根据初始干扰测量结果、网络设备配置的干扰测量信道状态信息测量参考信号CSI-RS、以及网络设备配置的干扰测量CSI-RS对应的干扰信号特征参数,确定信道状态信息。
上述方式二中的每个干扰源基站所对应的一个或多个干扰测量CSI-RS、以及每个CSI-RS所对应的一个或多个干扰信号特征参数可视为方式一中的 一组干扰测量参数,下述例子中主要以方式一为基础进行介绍。本领域技术人员可依据该对应关系将下述实施例中的一组干扰测量参数的名词替换为方式二中的每个干扰源基站所对应的一个或多个干扰测量CSI-RS、以及每个CSI-RS所对应的一个或多个干扰信号特征参数。
具体实施中,如果配置了多组干扰测量参数,则终端可使用配置的所有干扰测量参数进行干扰测量和计算,也可通过高层信令或DCI的方式指示出终端所需使用的干扰测量参数、以及干扰测量CSI-RS和干扰信号特征参数。
可选的,可以通过DCI指示出以下内容中的一项或几项:终端所使用的一组或几组干扰测量参数、终端所使用的每组干扰测量参数中的一个或几个干扰测量CSI-RS、终端所使用的每个干扰测量CSI-RS所对应的一个或几个干扰信号特征参数。也就是说,通过DCI指示终端使用哪一组或哪几组干扰测量参数进行干扰的测量和计算,或者可以描述为激活某一组或多组干扰测量参数。当每组干扰测量参数中包括一个或多个干扰测量CSI-RS时,可以通过DCI激活某组干扰测量参数中的某一个或某几个干扰测量CSI-RS。当一个干扰测量CSI-RS对应一个或多个干扰信号特征参数时,可以通过DCI激活某组干扰测量参数中的某个干扰测量CSI-RS所对应的某一个或某几个干扰信号特征参数。另一种实施方式中,也可通过DCI指示终端不使用任何干扰测量参数,即不激活任何干扰测量参数。在这种情况下,终端可用在IMR上测量到的干扰进行CSI的测量和计算,或在网络设备未配置IMR的情况下,终端可用测量到的干扰进行CSI的测量和计算。
干扰信号特征参数具体来说,可通过DCI比特来指示终端所需使用的干扰测量参数、干扰测量CSI-RS、以及干扰信号特征参数。DCI比特位具体数值与所指示使用的干扰测量参数的对应关系可以是预先约定好,也可以由网络设备通过信令配置给终端。具体示例可参见前述实施例中详细介绍,在此不再赘述。
除了通过上述DCI指示位的方式指示终端使用哪些干扰测量参数、干扰测量CSI-RS、以及干扰信号特征参数进行干扰测量和计算,也可在DCI中通过位图的方式指示终端使用哪些干扰测量参数、干扰测量CSI-RS、以及干扰信号特征参数进行干扰测量和计算。
以上内容详细介绍了几种确定网络设备指示终端所需使用的干扰测量参数、干扰测量CSI-RS、以及干扰信号特征参数的方式。
终端接收到网络设备发送的指示信息,指示信息用于指示出以下内容中的一项或几项:终端所使用的一组或几组干扰测量参数、终端所使用的每组干扰测量参数中的一个或几个干扰测量CSI-RS、终端所使用的每个干扰测量CSI-RS所对应的一个或几个干扰信号特征参数。
针对网络设备为终端配置每个干扰源基站所对应的一个或多个干扰测量CSI-RS,网络设备为终端配置干扰测量CSI-RS的配置信息,该干扰测量CSI-RS是从一个干扰源基站上发出的干扰测量CSI-RS。每个干扰测量CSI-RS的配置信息包括该干扰测量CSI-RS的发送周期、子帧偏移、序列、 功率等参数。
针对网络设备为终端配置的每个干扰测量CSI-RS所对应的每个干扰信号特征参数,每个干扰信号特征参数包括干扰源基站所发送的信号的相关矩阵,或包括干扰源基站进行数据传输使用的预编码矩阵的集合。终端在后续数据传输时所使用的预编码矩阵选自该预编码矩阵的集合。
每个干扰信号特征参数包括干扰源基站所发送的信号的相关矩阵,即协方差矩阵时,假设信号的相关矩阵用R表示,则R=E{xxH},其中,x为干扰源基站所发送的信号。如果干扰源基站采用预编码矩阵对发送数据进行预处理,则x=Ws,其中s=[s1,s2,...,sK],s是干扰源基站发送的源数据,W是干扰信号发送的预编码矩阵。如果E{ssH}=aI,其中I是单位阵,a是标量,则R=E{xxH}=aWWH。网络设备可以通过干扰信号特征参数表征干扰源基站所发送信号的空间相关特性和/或信号强度,如相邻小区等的干扰信号方向和干扰信号强度。
每个干扰信号特征参数包括干扰源基站进行数据传输使用的预编码矩阵的集合时,预编码矩阵集合为{W1,W2,...,WP}。PMI是指预编码矩阵的索引,指向一个预先定义好的预编码矩阵的集合,即码本,PMI与码本中的元素一一对应。因此预编码矩阵集合也可通过PMI集合的方式表示,为{PMI1,PMI2,...,PIMP}。可选的,针对PMI集合中的每个PMI,基站可以为其配置一个加权因子,用于表征该PMI在后面的传输中会用到的概率,或者表征该PMI对应的传输的发送功率,或者在总发射功率中所占的比例。
通过上述内容的论述,网络设备为终端配置了干扰测量参数,或网络设备为终端配置了干扰测量CSI-RS和干扰信号特征参数,以及干扰测量CSI-RS和干扰信号特征参数的对应关系。该步骤在终端进行干扰测量之前之后均可。
本公开文本实施例中假设终端先进行参数配置,之后终端进行干扰测量,得到初始干扰测量结果。
终端进行干扰测量,在LTE R8到LTE R10系统中,终端基于常规的CRS或CSI-RS进行干扰测量即可,得到初始干扰测量结果。在LTE Rel-11系统,则网络设备为终端会配置其专属的IMR,终端在IMR上进行干扰测量,得到初始干扰测量结果。
一个实施例中,当终端存在协作基站时,终端测量得到的初始干扰测量结果为协作基站集合之外的干扰。网络设备所配置的干扰测量参数所对应的干扰源基站为终端的协作基站。
另一个实施例中,当终端与配对终端基于单小区多用户多输入多输出(Multiple-Input Multiple-Output,MIMO)传输时,终端进行干扰测量,得到的初始干扰测量结果为终端的服务基站之外的干扰。配对终端为与该终端同在一个服务小区中,且配对终端与该终端所占用的时频资源相同。网络设备所配置的干扰测量参数所对应的干扰源基站为终端的服务基站。
终端进行干扰测量,得到初始干扰测量结果之后,针对每个干扰测量CSI-RS,所述终端依据每个干扰测量CSI-RS测量干扰测量CSI-RS对应的干 扰源基站到所述终端的信道矩阵。
具体来说,终端根据干扰测量CSI-RS测量从干扰源基站到终端的干扰信道。可选的,如果为终端配置了多组干扰测量参数,则终端应分别根据每组干扰测量参数中的每个干扰测量CSI-RS测量从干扰源基站到终端的干扰信道,并进一步进行信道估计,估计出终端到干扰源基站的信道矩阵。
所述终端依据所述初始干扰测量结果、所述信道矩阵和所述干扰信号特征参数,确定总干扰,所述终端依据所述总干扰确定信道状态信息。所述总干扰为依据所述信道矩阵和所述干扰信号特征参数得到的结果与所述初始干扰测量结果之和。
所述终端依据所述初始干扰测量结果、所述信道矩阵和所述干扰信号特征参数,确定总干扰所依据的公式为前述公式(1)至公式(17),在此不再赘述。
依据上述方式确定出总干扰之后,终端依据所述总干扰确定信道状态信息,并向所述网络设备上报确定出的信道状态信息。本公开文本实施例中的信道状态信息中包括RI、CQI、PMI等信息。
除了上述实现方式外,本公开文本实施例还提供另外几种实现方式如下。
另一种实现方式为,终端测量得到初始干扰测量结果之后,依据该初始干扰测量结果确定信道状态信息,接着依据网络设备所配置的干扰测量参数对已经确定出的信道状态信息进行调整,将调整后的信道状态信息上报给网络设备。在该中实现方式中,依据网络设备所配置的干扰测量参数对已经确定出的信道状态信息进行调整可以预先设定,如可根据干扰测量参数对初步确定出的信道状态信息中的CQI进行提升或者降低。
另一种实现方式为,建立信道状态信息和初始干扰测量结果、干扰测量参数中的干扰测量CSI-RS和干扰信号特征参数之间的映射表格,通过初始干扰测量结果、干扰测量CSI-RS、干扰信号特征参数通过表格确定出信道状态信息,之后将确定出的信道状态信息上报给网络设备。
具体实施中,CSI进程是LTE Rel-11引入的概念。一个CSI进程对应一个传输假设的CSI。传输假设包括信号假设和干扰假设两个部分,因此一个CSI进程与一个CSI-RS和一个IMR相关联。信号假设基于CSI-RS测量得到,干扰假设基于IMR测量得到。基于本公开文本中的方法,一个CSI进程的定义可以修改成与一个CSI-RS和一个IMR关联,并且与一组或者多组干扰测量参数关联。该CSI进程的CSI测量和计算可以基于前面所介绍的方法完成。
从上述内容可以看出:本公开文本实施例中,终端进行干扰测量,得到初始干扰测量结果。所述终端根据所述初始干扰测量结果、以及网络设备配置的干扰测量参数,确定信道状态信息。所述终端向所述网络设备上报确定出的信道状态信息。
由于干扰测量参数是由网络设备所配置的,因此该网络设备配置的干扰测量参数可以反映干扰信息的实际发生情况。因此,终端依据该干扰测量参数得到的干扰信息与实际传输时的干扰信息更为匹配。如此,终端得到初始 干扰测量结果后,进一步结合网络设备配置的干扰信息,确定出信道状态信息并上报,从而提高了终端测量得到的干扰信息与实际传输时的干扰信息的匹配度,进一步使网络在进行链路自适应时选择更合适的参数。
图7示例性示出了本公开文本实施例提供的一种网络设备的结构示意图。
基于相同的构思,如图7所示,本公开文本实施例提供一种网络设备,包括处理器701、收发机702、存储器703。
处理器701用于读取存储器703中的程序,执行下列过程:
通过收发机702向终端发送配置信息,配置信息包括干扰测量参数;
通过收发机702接收终端上报的信道状态信息,其中,信道状态信息是终端进行干扰测量,得到初始干扰测量结果,之后终端根据初始干扰测量结果、以及网络网络设备配置的干扰测量参数,确定信道状态信息之后上报的。
收发机702用于在处理器701的控制下接收和发送数据。
其中,在图7中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器701代表的一个或多个处理器和存储器703代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机702可以是多个元件,即包括发送机和收发机,提供用于在传输介质上与各种其他装置通信的单元。处理器701负责管理总线架构和通常的处理,存储器703可以存储器703在执行操作时所使用的数据。
网络设备通过收发器702向终端发送配置信息可包括以下两种方式进行。
方式一:
网络设备向终端发送的配置信息包括干扰测量参数。可选的,干扰测量参数为一组或多组,每组干扰测量参数对应一个干扰源基站。每组干扰测量参数包括一个或多个干扰测量CSI-RS、以及每个干扰测量CSI-RS对应一个或多个干扰信号特征参数。该干扰测量CSI-RS中的CSI-RS是指从一个干扰源基站上发出的CSI-RS。
网络设备接收终端上报的信道状态信息,其中,信道状态信息是终端进行干扰测量,得到初始干扰测量结果,之后终端根据初始干扰测量结果、以及网络设备配置的干扰测量参数,确定信道状态信息之后上报的。
方式二:
网络设备所发送的配置信息仅包括一个或多个干扰测量CSI-RS、一个或多个干扰信号特征参数、以及每个干扰测量CSI-RS与一个或多个干扰信号特征参数的对应关系。可选的,还包括每个干扰测量CSI-RS与干扰源基站的对应关系。在此种方式中,每个干扰源基站可对应一个或多个干扰测量CSI-RS,每个干扰测量CSI-RS对应的一个或多个干扰信号特征参数。该干扰测量CSI-RS中的CSI-RS是指从一个干扰源基站上发出的CSI-RS。此时,所述终 端根据所述初始干扰测量结果、网络设备配置的干扰测量信道状态信息测量参考信号干扰测量CSI-RS、以及网络设备配置的所述干扰测量CSI-RS对应的干扰信号特征参数,确定信道状态信息。
网络设备接收终端上报的信道状态信息,其中,信道状态信息是终端根据初始干扰测量结果、网络设备配置的干扰测量CSI-RS、以及网络设备配置的干扰测量CSI-RS对应的干扰信号特征参数,确定信道状态信息之后上报的。
上述方式二中的每个干扰源基站所对应的一个或多个干扰测量CSI-RS、以及每个CSI-RS所对应的一个或多个干扰信号特征参数可视为方式一中的一组干扰测量参数,下述例子中主要以方式一为基础进行介绍。本领域技术人员可依据该对应关系将下述实施例中的一组干扰测量参数的名词替换为方式二中的每个干扰源基站所对应的一个或多个干扰测量CSI-RS、以及每个CSI-RS所对应的一个或多个干扰信号特征参数。
具体实施中,如果配置了多组干扰测量参数,则终端可使用配置的所有干扰测量参数进行干扰测量和计算,也可通过高层信令或下行动态控制信令(Downlink Control Information,简称DCI)的方式指示出终端所需使用的干扰测量参数、以及干扰测量CSI-RS和干扰信号特征参数。
可选的,可以通过DCI指示出以下内容中的一项或几项:终端所使用的一组或几组干扰测量参数、终端所使用的每组干扰测量参数中的一个或几个干扰测量CSI-RS、终端所使用的每个干扰测量CSI-RS所对应的一个或几个干扰信号特征参数。也就是说,通过DCI指示终端使用哪一组或哪几组干扰测量参数进行干扰的测量和计算,或者可以描述为激活某一组或多组干扰测量参数。当每组干扰测量参数中包括一个或多个干扰测量CSI-RS时,可以通过DCI激活某组干扰测量参数中的某一个或某几个干扰测量CSI-RS。当一个干扰测量CSI-RS对应一个或多个干扰信号特征参数时,可以通过DCI激活某组干扰测量参数中的某个干扰测量CSI-RS所对应的某一个或某几个干扰信号特征参数。另一种实施方式中,也可通过DCI指示终端不使用任何干扰测量参数,即不激活任何干扰测量参数。在这种情况下,终端可用在IMR上测量到的干扰进行CSI的测量和计算,或在网络设备未配置IMR的情况下,终端可用测量到的干扰进行CSI的测量和计算。
干扰信号特征参数具体来说,可通过DCI比特来指示终端所需使用的干扰测量参数、干扰测量CSI-RS、以及干扰信号特征参数。DCI比特位具体数值与所指示使用的干扰测量参数的对应关系可以是预先约定好,也可以由网络设备通过信令配置给终端。具体示例可参见前述实施例中详细介绍,在此不再赘述。
除了通过上述DCI指示位的方式指示终端使用哪些干扰测量参数、干扰测量CSI-RS、以及干扰信号特征参数进行干扰测量和计算,也可在DCI中通过位图的方式指示终端使用哪些干扰测量参数、干扰测量CSI-RS、以及干扰信号特征参数进行干扰测量和计算。
以上内容详细介绍了几种确定网络设备指示终端所需使用的干扰测量参数、干扰测量CSI-RS、以及干扰信号特征参数的方式。
网络设备向终端发送指示信息,所述指示信息用于指示出所述终端所使用的一组或几组干扰测量参数、以及针对指示出的每组干扰测量参数、指示出每组干扰测量参数中的一个或几个干扰测量CSI-RS、以及针对指示出的每个干扰测量CSI-RS、指示出每个干扰测量CSI-RS所对应的一个或几个干扰信号特征参数。
针对网络设备为终端配置每个干扰源基站所对应的一个或多个干扰测量CSI-RS,网络设备为终端配置干扰测量CSI-RS的配置信息,该干扰测量CSI-RS是从一个干扰源基站上发出的干扰测量CSI-RS。每个干扰测量CSI-RS的配置信息包括该干扰测量CSI-RS的发送周期、子帧偏移、序列、功率等参数。
针对网络设备为终端配置的每个干扰测量CSI-RS所对应的每个干扰信号特征参数,每个干扰信号特征参数包括干扰源基站所发送的信号的相关矩阵,或包括干扰源基站进行数据传输使用的预编码矩阵的集合。终端在后续数据传输时所使用的预编码矩阵选自该预编码矩阵的集合。
每个干扰信号特征参数包括干扰源基站所发送的信号的相关矩阵,即协方差矩阵时,假设信号的相关矩阵用R表示,则R=E{xxH},其中,x为干扰源基站所发送的信号。如果干扰源基站采用预编码矩阵对发送数据进行预处理,则x=Ws,其中s=[s1,s2,...,sK],s是干扰源基站发送的源数据,W是干扰信号发送的预编码矩阵。如果E{ssH}=aI,其中I是单位阵,a是标量,则R=E{xxH}=aWWH。网络设备可以通过干扰信号特征参数表征干扰源基站所发送信号的空间相关特性和/或信号强度,如相邻小区等的干扰信号方向和干扰信号强度。
每个干扰信号特征参数包括干扰源基站进行数据传输使用的预编码矩阵的集合时,预编码矩阵集合为{W1,W2,...,WP}。PMI是指预编码矩阵的索引,指向一个预先定义好的预编码矩阵的集合,即码本,PMI与码本中的元素一一对应。因此预编码矩阵集合也可通过PMI集合的方式表示,为{PMI1,PMI2,...,PIMP}。可选的,针对PMI集合中的每个PMI,基站可以为其配置一个加权因子,用于表征该PMI在后面的传输中会用到的概率,或者表征该PMI对应的传输的发送功率,或者在总发射功率中所占的比例。
通过上述内容的论述,网络设备为终端配置了干扰测量参数,或网络设备为终端配置了干扰测量CSI-RS和干扰信号特征参数、以及干扰测量CSI-RS和干扰信号特征参数的对应关系。该步骤在终端进行干扰测量之前之后均可。
本公开文本实施例中假设终端先进行参数配置,之后终端进行干扰测量,得到初始干扰测量结果。
在LTE R8到LTE R10系统中,终端基于常规的CRS或CSI-RS进行干扰测量即可,得到初始干扰测量结果。在LTE Rel-11系统,则网络设备为终端会配置其专属的IMR,终端在IMR上进行干扰测量,得到初始干扰测量 结果。
一个实施例中,当终端存在协作基站时,终端测量得到的初始干扰测量结果为协作基站集合之外的干扰。网络设备所配置的干扰测量参数所对应的干扰源基站是终端的协作基站。
另一个实施例中,当终端与配对终端基于单小区多用户多输入多输出(Multiple-Input Multiple-Output,MIMO)传输时,终端进行干扰测量,得到的初始干扰测量结果是终端的服务基站之外的干扰。配对终端为与该终端同在一个服务小区中,且配对终端与该终端所占用的时频资源相同。网络设备所配置的干扰测量参数所对应的干扰源基站是终端的服务基站。
终端进行干扰测量,得到初始干扰测量结果之后,针对每个干扰测量CSI-RS,所述终端依据每个干扰测量CSI-RS测量干扰测量CSI-RS对应的干扰源基站到所述终端的信道矩阵。
具体来说,终端根据干扰测量CSI-RS测量从干扰源基站到终端的干扰信道。可选的,如果为终端配置了多组干扰测量参数,则终端应分别根据每组干扰测量参数中的每个干扰测量CSI-RS测量从干扰源基站到终端的干扰信道,并进一步进行信道估计,估计出终端到干扰源基站的信道矩阵。
从上述内容可以看出:本公开文本实施例中,终端进行干扰测量,得到初始干扰测量结果。所述终端根据所述初始干扰测量结果、以及网络设备配置的干扰测量参数,确定信道状态信息。所述终端向所述网络设备上报确定出的信道状态信息。
由于干扰测量参数是由网络设备所配置的,因此该网络设备配置的干扰测量参数可以反映干扰信息的实际发生情况。因此,终端依据该干扰测量参数得到的干扰信息与实际传输时的干扰信息更为匹配。如此,终端得到初始干扰测量结果后,进一步结合网络设备配置的干扰信息,确定出信道状态信息并上报,从而提高了终端测量得到的干扰信息与实际传输时的干扰信息的匹配度,进一步使网络在进行链路自适应时选择更合适的参数。
本领域内的技术人员应明白,本公开文本的实施例可提供为方法、或计算机程序产品。因此,本公开文本可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本公开文本可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本公开文本是参照根据本公开文本实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的设备。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令设备的制造品,该指令设备实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本公开文本的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本公开文本范围的所有变更和修改。
显然,本领域的技术人员可以对本公开文本进行各种改动和变型而不脱离本公开文本的精神和范围。这样,倘若本公开文本的这些修改和变型属于本公开文本权利要求及其等同技术的范围之内,则本公开文本也意图包含这些改动和变型在内。

Claims (44)

  1. 一种信道状态信息测量方法,包括以下步骤:
    终端进行干扰测量,得到初始干扰测量结果;
    所述终端根据所述初始干扰测量结果、以及网络设备配置的干扰测量参数,确定信道状态信息;以及
    所述终端向所述网络设备上报确定出的信道状态信息。
  2. 如权利要求1所述的方法,其中,所述终端根据所述初始干扰测量结果、以及网络设备配置的干扰测量参数,确定信道状态信息的步骤包括:
    所述终端根据所述初始干扰测量结果,网络设备配置的干扰测量信道状态信息参考信号CSI-RS,以及网络设备配置的所述干扰测量CSI-RS对应的干扰信号特征参数,确定信道状态信息。
  3. 如权利要求1所述的方法,其中,所述干扰测量参数为一组或多组,每组干扰测量参数包括一个或多个干扰测量CSI-RS、以及每个干扰测量CSI-RS对应的一个或多个干扰信号特征参数。
  4. 如权利要求3所述的方法,其中,每组干扰测量参数对应一个干扰源基站。
  5. 如权利要求3所述的方法,其中,所述干扰信号特征参数表征干扰源基站所发送信号的空间相关特性和/或信号强度。
  6. 如权利要求3所述的方法,其中,所述干扰信号特征参数包括:
    干扰源基站所发送的信号的相关矩阵;或
    干扰源基站进行数据传输使用的预编码矩阵的集合。
  7. 如权利要求3所述的方法,其中,所述确定信道状态信息之前,还包括:
    接收所述网络设备发送的指示信息;
    其中,所述指示信息用于指示出以下内容中的一项或几项:
    所述终端所使用的一组或几组干扰测量参数、所述终端所使用的每组干扰测量参数中的一个或多个干扰测量CSI-RS、所述终端所使用的每个干扰测量CSI-RS所对应的一个或多个干扰信号特征参数。
  8. 如权利要求3所述的方法,其中,所述终端根据所述初始干扰测量结果,以及网络设备配置的干扰测量参数,确定信道状态信息的步骤包括:
    所述终端依据所述干扰测量CSI-RS测量所述干扰测量CSI-RS对应的干扰源基站到所述终端的信道矩阵;以及
    所述终端依据所述初始干扰测量结果、所述信道矩阵、以及所述干扰测量CSI-RS对应的干扰信号特征参数,确定信道状态信息。
  9. 如权利要求8所述的方法,其中,所述终端依据所述初始干扰测量结果、所述信道矩阵和所述干扰信号特征参数,确定信道状态信息的步骤包括:
    所述终端依据所述初始干扰测量结果、所述信道矩阵和所述干扰信号特征参数,确定总干扰;以及
    所述终端依据所述总干扰确定信道状态信息。
  10. 如权利要求9所述的方法,其中,所述总干扰为依据所述信道矩阵和所述干扰信号特征参数得到的结果与所述初始干扰测量结果之和。
  11. 如权利要求9所述的方法,其中,所述终端依据所述初始干扰测量结果、所述信道矩阵和所述干扰信号特征参数,确定总干扰所依据的公式为:
    Figure PCTCN2015090928-appb-100001
    其中,Z为总干扰,Z0为初始干扰测量结果,n为干扰测量参数的组号,取值范围为[1,N],N为干扰测量参数组的总数量,m为干扰测量CSI-RS的索引号,取值范围为[1,Mn],Mn为第n组干扰测量参数中干扰测量CSI-RS的总数量,k为干扰信号特征参数的索引号,取值范围为[1,Kn,m],Kn,m为第n组干扰测量参数中第m个干扰测量CSI-RS所对应的干扰信号特征参数的总数量,Gn,m为依据第n组干扰测量参数中第m个干扰测量CSI-RS测量的干扰源基站到终端的信道矩阵,Xn,m,k为第n组干扰测量参数中的第m个干扰测量CSI-RS所对应的第k个干扰信号特征参数,
    Figure PCTCN2015090928-appb-100002
    为Gn,m的共轭转置矩阵。
  12. 如权利要求9所述的方法,其中,当所述干扰信号特征参数包括干扰源基站所发送的信号的相关矩阵时,所述终端依据所述初始干扰测量结果、所述信道矩阵和所述干扰信号特征参数,确定总干扰所依据的公式为:
    Figure PCTCN2015090928-appb-100003
    其中,Z为总干扰,Z0为初始干扰测量结果,n为干扰测量参数的组号,取值范围为[1,N],N为干扰测量参数的组的总数量,m为干扰测量CSI-RS的索引号,取值范围为[1,Mn],Mn为第n组干扰测量参数中干扰测量CSI-RS的总数量,k为干扰信号特征参数的索引号,取值范围为[1,Kn,m],Kn,m为第n组干扰测量参数中第m个干扰测量CSI-RS所对应的干扰信号特征参数的总数量,Gn,m为依据第n组干扰测量参数中第m个干扰测量CSI-RS测量的干扰源基站到终端的信道矩阵,Rn,m,k为第n组干扰测量参数中的第m个干扰测量CSI-RS所对应的干扰源基站所发送的第k个信号的相关矩阵,
    Figure PCTCN2015090928-appb-100004
    为Gn,m的共轭转置矩阵。
  13. 如权利要求9所述的方法,其中,当所述干扰信号特征参数包括干扰源基站进行数据传输使用的预编码矩阵的集合时,所述终端依据所述初始干扰测量结果、所述信道矩阵和所述干扰信号特征参数,确定总干扰所依据的公式为:
    Figure PCTCN2015090928-appb-100005
    其中,Z为总干扰,Z0为初始干扰测量结果,n为干扰测量参数的组号,取值范围为[1,N],N为干扰测量参数的组的总数量,m为干扰测量CSI-RS 的索引号,取值范围为[1,Mn],Mn为第n组干扰测量参数中干扰测量CSI-RS的总数量,k为干扰信号特征参数的索引号,取值范围为[1,Kn,m],Kn,m为第n组干扰测量参数中第m个干扰测量CSI-RS所对应的干扰信号特征参数的总数量,Gn,m为依据第n组干扰测量参数中第m个干扰测量CSI-RS测量的干扰源基站到终端的信道矩阵,p为干扰源基站进行数据传输使用的预编码矩阵的索引号,取值范围为[1,P],P为干扰源基站进行数据传输使用的预编码矩阵的总数量,Wn,m,k,p为第n组干扰测量参数中的第m个干扰测量CSI-RS所对应的第k个干扰信号特征参数所对应的干扰源基站进行数据传输使用的第p个预编码矩阵,
    Figure PCTCN2015090928-appb-100006
    为Wn,m,k,p的共轭转置矩阵,
    Figure PCTCN2015090928-appb-100007
    为Gn,m的共轭转置矩阵。
  14. 如权利要求9所述的方法,其中,当所述干扰信号特征参数包括干扰源基站进行数据传输使用的预编码矩阵的集合时,所述终端依据所述初始干扰测量结果、所述信道矩阵和所述干扰信号特征参数,确定总干扰所依据的公式为:
    Figure PCTCN2015090928-appb-100008
    其中,Z为总干扰,Z0为初始干扰测量结果,n为干扰测量参数的组号,取值范围为[1,N],N为干扰测量参数的组的总数量,m为干扰测量CSI-RS的索引号,取值范围为[1,Mn],Mn为第n组干扰测量参数中干扰测量CSI-RS的总数量,k为干扰信号特征参数的索引号,取值范围为[1,Kn,m],Kn,m为第n组干扰测量参数中第m个干扰测量CSI-RS所对应的干扰信号特征参数的总数量,Gn,m为依据第n组干扰测量参数中第m个干扰测量CSI-RS测量的干扰源基站到终端的信道矩阵,p为干扰源基站进行数据传输使用的预编码矩阵的集合的索引号,取值范围为[1,P],P为干扰源基站进行数据传输使用的预编码矩阵的集合中的预编码矩阵的总数量,αn,m,k,p为第n组干扰测量参数中的第m个干扰测量CSI-RS所对应的第k个干扰信号特征参数所对应的干扰源基站进行数据传输使用的第p个预编码矩阵的加权因子,Wn,m,k,p为第n组干扰测量参数中的第m个干扰测量CSI-RS所对应的第k个干扰信号特征参数所对应的干扰源基站进行数据传输使用的第p个预编码矩阵,
    Figure PCTCN2015090928-appb-100009
    为Wn,m,k,p的共轭转置矩阵,
    Figure PCTCN2015090928-appb-100010
    为Gn,m的共轭转置矩阵。
  15. 如权利要求1至14任一权利要求所述的方法,其中,当所述终端的服务基站存在协作基站时,所述终端进行干扰测量得到初始干扰测量结果为协作基站集合之外的干扰;网络设备所配置的干扰测量参数所对应的干扰源基站为所述终端的服务基站的协作基站;或者
    当所述终端与配对终端基于单小区多用户多输入多输出MIMO传输时, 所述终端进行干扰测量得到初始干扰测量结果为所述终端的服务基站之外的干扰;网络设备所配置的干扰测量参数所对应的干扰源基站为所述终端的服务基站。
  16. 一种信道状态信息获取方法,包括以下步骤:
    网络设备向终端发送配置信息,所述配置信息包括干扰测量参数;以及
    网络设备接收终端上报的信道状态信息,其中,所述信道状态信息是所述终端进行干扰测量,得到初始干扰测量结果,之后所述终端根据所述初始干扰测量结果、以及网络设备配置的干扰测量参数,确定信道状态信息之后上报的。
  17. 如权利要求16所述的方法,其中,所述网络设备向终端发送配置信息的步骤包括:
    网络设备向终端发送配置信息,所述配置信息包括干扰测量信道状态信息参考信号CSI-RS、以及网络设备配置的所述干扰测量CSI-RS对应的干扰信号特征参数;并且
    所述网络设备接收终端上报的信道状态信息的步骤包括:
    网络设备接收终端上报的信道状态信息,其中,所述信道状态信息是所述终端根据所述初始干扰测量结果、网络设备配置的干扰测量CSI-RS、以及网络设备配置的所述干扰测量CSI-RS对应的干扰信号特征参数,确定信道状态信息之后上报的。
  18. 如权利要求16或17所述的方法,其中,所述网络设备接收终端上报的信道状态信息之前,还包括:
    所述网络设备为所述终端配置干扰测量资源IMR,所述IMR用于使所述终端在干扰测量资源IMR上进行干扰测量,得到初始干扰测量结果。
  19. 如权利要求16所述的方法,其中,所述干扰测量参数为一组或多组,每组干扰测量参数包括一个或多个干扰测量CSI-RS、以及每个干扰测量CSI-RS对应一个或多个干扰信号特征参数。
  20. 如权利要求19所述的方法,其中,每组干扰测量参数对应一个干扰源基站。
  21. 如权利要求19所述的方法,其中,所述干扰信号特征参数表征干扰源基站所发送信号的空间相关特性和/或信号强度。
  22. 如权利要求19所述的方法,其中,所述干扰信号特征参数包括:
    干扰源基站所发送的信号的相关矩阵;或
    干扰源基站进行数据传输使用的预编码矩阵的集合。
  23. 如权利要求19所述的方法,其中,所述网络设备接收终端上报的信道状态信息之前,还包括:
    所述网络设备向所述终端发送指示信息;
    其中,所述指示信息用于指示出以下内容中的一项或几项:
    所述终端所使用的一组或几组干扰测量参数、所述终端所使用的每组干扰测量参数中的一个或多个干扰测量CSI-RS、所述终端所使用的每个干扰测 量CSI-RS所对应的一个或多个干扰信号特征参数。
  24. 一种终端,包括:
    测量模块,用于进行干扰测量,得到初始干扰测量结果;
    确定模块,用于根据所述初始干扰测量结果、以及网络设备配置的干扰测量参数,确定信道状态信息;以及
    上报模块,用于向所述网络设备上报确定出的信道状态信息。
  25. 如权利要求24所述的终端,其中,所述确定模块根据所述初始干扰测量结果、网络设备配置的干扰测量信道状态信息参考信号CSI-RS、以及网络设备配置的所述干扰测量CSI-RS对应的干扰信号特征参数,确定信道状态信息。
  26. 如权利要求24或25所述的终端,其中,所述测量模块在干扰测量资源IMR上进行干扰测量,得到初始干扰测量结果,每组干扰测量参数包括一个或多个干扰测量CSI-RS、以及每个干扰测量CSI-RS对应一个或多个干扰信号特征参数。
  27. 如权利要求26所述的终端,其中,所述干扰测量参数为一组或多组。
  28. 如权利要求26所述的终端,其中,每组干扰测量参数对应一个干扰源基站。
  29. 如权利要求26所述的终端,还包括:
    接收模块,用于接收所述网络设备发送的指示信息;
    其中,所述指示信息用于指示出以下内容中的一项或几项:
    所述终端所使用的一组或几组干扰测量参数、所述终端所使用的每组干扰测量参数中的一个或多个干扰测量CSI-RS、所述终端所使用的每个干扰测量CSI-RS所对应的一个或多个干扰信号特征参数。
  30. 如权利要求26所述的终端,其中,所述确定模块依据所述干扰测量CSI-RS测量所述干扰测量CSI-RS对应的干扰源基站到所述终端的信道矩阵;并且
    所述确定模块依据所述初始干扰测量结果、所述信道矩阵、以及所述干扰测量CSI-RS对应的干扰信号特征参数,确定信道状态信息。
  31. 如权利要求30所述的终端,其中,所述确定模块依据所述初始干扰测量结果、所述信道矩阵和所述干扰信号特征参数,确定总干扰;以及
    所述确定模块依据所述总干扰确定信道状态信息。
  32. 如权利要求30所述的终端,其中,所述总干扰为依据所述信道矩阵和所述干扰信号特征参数得到的结果与所述初始干扰测量结果之和。
  33. 如权利要求31所述的终端,其中,所述确定模块依据所述初始干扰测量结果、所述信道矩阵和所述干扰信号特征参数,确定总干扰所依据的公式为:
    Figure PCTCN2015090928-appb-100011
    其中,Z为总干扰,Z0为初始干扰测量结果,n为干扰测量参数的组号, 取值范围为[1,N],N为干扰测量参数组的总数量,m为干扰测量CSI-RS的索引号,取值范围为[1,Mn],Mn为第n组干扰测量参数中干扰测量CSI-RS的总数量,k为干扰信号特征参数的索引号,取值范围为[1,Kn,m],Kn,m为第n组干扰测量参数中第m个干扰测量CSI-RS所对应的干扰信号特征参数的总数量,Gn,m为依据第n组干扰测量参数中第m个干扰测量CSI-RS测量的干扰源基站到终端的信道矩阵,Xn,m,k为第n组干扰测量参数中的第m个干扰测量CSI-RS所对应的第k个干扰信号特征参数,
    Figure PCTCN2015090928-appb-100012
    为Gn,m的共轭转置矩阵。
  34. 如权利要求31所述的终端,其中,当所述干扰信号特征参数包括干扰源基站所发送的信号的相关矩阵时,所述确定模块依据所述初始干扰测量结果、所述信道矩阵和所述干扰信号特征参数,确定总干扰所依据的公式为:
    Figure PCTCN2015090928-appb-100013
    其中,Z为总干扰,Z0为初始干扰测量结果,n为干扰测量参数的组号,取值范围为[1,N],N为干扰测量参数的组的总数量,m为干扰测量CSI-RS的索引号,取值范围为[1,Mn],Mn为第n组干扰测量参数中干扰测量CSI-RS的总数量,k为干扰信号特征参数的索引号,取值范围为[1,Kn,m],Kn,m为第n组干扰测量参数中第m个干扰测量CSI-RS所对应的干扰信号特征参数的总数量,Gn,m为依据第n组干扰测量参数中第m个干扰测量CSI-RS测量的干扰源基站到终端的信道矩阵,Rn,m,k为第n组干扰测量参数中的第m个干扰测量CSI-RS所对应的干扰源基站所发送的第k个信号的相关矩阵,
    Figure PCTCN2015090928-appb-100014
    为Gn,m的共轭转置矩阵。
  35. 如权利要求31所述的终端,其中,当所述干扰信号特征参数包括干扰源基站进行数据传输使用的预编码矩阵的集合时,所述确定模块依据所述初始干扰测量结果、所述信道矩阵和所述干扰信号特征参数,确定总干扰所依据的公式为:
    Figure PCTCN2015090928-appb-100015
    其中,Z为总干扰,Z0为初始干扰测量结果,n为干扰测量参数的组号,取值范围为[1,N],N为干扰测量参数的组的总数量,m为干扰测量CSI-RS的索引号,取值范围为[1,Mn],Mn为第n组干扰测量参数中干扰测量CSI-RS的总数量,k为干扰信号特征参数的索引号,取值范围为[1,Kn,m],Kn,m为第n组干扰测量参数中第m个干扰测量CSI-RS所对应的干扰信号特征参数的总数量,Gn,m为依据第n组干扰测量参数中第m个干扰测量CSI-RS测量的干扰源基站到终端的信道矩阵,p为干扰源基站进行数据传输使用的预编码矩阵的索引号,取值范围为[1,P],P为干扰源基站进行数据传输使用的预编 码矩阵的总数量,Wn,m,k,p为第n组干扰测量参数中的第m个干扰测量CSI-RS所对应的第k个干扰信号特征参数所对应的干扰源基站进行数据传输使用的第p个预编码矩阵,
    Figure PCTCN2015090928-appb-100016
    为Wn,m,k,p的共轭转置矩阵,
    Figure PCTCN2015090928-appb-100017
    为Gn,m的共轭转置矩阵。
  36. 如权利要求31所述的终端,其中,当所述干扰信号特征参数包括干扰源基站进行数据传输使用的预编码矩阵的集合时,所述确定模块依据所述初始干扰测量结果、所述信道矩阵和所述干扰信号特征参数,确定总干扰所依据的公式为:
    Figure PCTCN2015090928-appb-100018
    其中,Z为总干扰,Z0为初始干扰测量结果,n为干扰测量参数的组号,取值范围为[1,N],N为干扰测量参数的组的总数量,m为干扰测量CSI-RS的索引号,取值范围为[1,Mn],Mn为第n组干扰测量参数中干扰测量CSI-RS的总数量,k为干扰信号特征参数的索引号,取值范围为[1,Kn,m],Kn,m为第n组干扰测量参数中第m个干扰测量CSI-RS所对应的干扰信号特征参数的总数量,Gn,m为依据第n组干扰测量参数中第m个干扰测量CSI-RS测量的干扰源基站到终端的信道矩阵,p为干扰源基站进行数据传输使用的预编码矩阵的集合的索引号,取值范围为[1,P],P为干扰源基站进行数据传输使用的预编码矩阵的集合中的预编码矩阵的总数量,αn,m,k,p为第n组干扰测量参数中的第m个干扰测量CSI-RS所对应的第k个干扰信号特征参数所对应的干扰源基站进行数据传输使用的第p个预编码矩阵,Wn,m,k,p为第n组干扰测量参数中的第m个干扰测量CSI-RS所对应的第k个干扰信号特征参数所对应的干扰源基站进行数据传输使用的第p个预编码矩阵,
    Figure PCTCN2015090928-appb-100019
    为Wn,m,k,p的共轭转置矩阵,
    Figure PCTCN2015090928-appb-100020
    为Gn,m的共轭转置矩阵。
  37. 一种网络设备,包括:
    发送模块,用于向终端发送配置信息,所述配置信息包括干扰测量参数;以及
    接收模块,用于接收所述终端上报的信道状态信息,其中,所述信道状态信息是所述终端进行干扰测量,得到初始干扰测量结果,之后所述终端根据所述初始干扰测量结果、以及网络设备配置的干扰测量参数,确定信道状态信息之后上报的。
  38. 如权利要求37所述的网络设备,其中,所述发送模块向终端发送配置信息,所述配置信息包括干扰测量信道状态信息参考信号CSI-RS、以及网络设备配置的所述干扰测量CSI-RS对应的干扰信号特征参数;并且
    所述接收模块接收终端上报的信道状态信息,其中,所述信道状态信息是所述终端根据所述初始干扰测量结果、网络设备配置的干扰测量CSI-RS、 以及网络设备配置的所述干扰测量CSI-RS对应的干扰信号特征参数,确定信道状态信息之后上报的。
  39. 如权利要求37或38所述的网络设备,还包括:
    配置模块,用于为所述终端配置干扰测量资源IMR,所述IMR用于使所述终端在干扰测量资源IMR上进行干扰测量,得到初始干扰测量结果。
  40. 如权利要求37所述的网络设备,其中,所述干扰测量参数为一组或多组,每组干扰测量参数包括一个或多个干扰测量CSI-RS、以及每个干扰测量CSI-RS对应一个或多个干扰信号特征参数。
  41. 如权利要求40所述的网络设备,其中,每组干扰测量参数对应一个干扰源基站。
  42. 如权利要求40所述的网络设备,其中,所述发送模块用于向所述终端发送指示信息;
    其中,所述指示信息用于指示出以下内容中的一项或几项:
    所述终端所使用的一组或几组干扰测量参数、所述终端所使用的每组干扰测量参数中的一个或多个干扰测量CSI-RS、所述终端所使用的每个干扰测量CSI-RS所对应的一个或多个干扰信号特征参数。
  43. 一种终端,包括:
    处理器;以及
    存储器,通过总线接口与所述处理器相连接,并且用于存储所述处理器在执行操作时所使用的程序和数据;
    收发机,用于在传输介质上与各种其他设备进行通信,
    当处理器调用并执行所述存储器中所存储的程序和数据时,所述终端执行如下处理:
    进行干扰测量,得到初始干扰测量结果;
    根据所述初始干扰测量结果、以及网络设备配置的干扰测量参数,确定信道状态信息;以及
    向所述网络设备上报确定出的信道状态信息。
  44. 一种网络设备,包括:
    处理器;以及
    存储器,通过总线接口与所述处理器相连接,并且用于存储所述处理器在执行操作时所使用的程序和数据;
    收发机,用于在传输介质上与各种其他设备进行通信,
    当处理器调用并执行所述存储器中所存储的程序和数据时,所述网络设备执行如下处理:
    向终端发送配置信息,所述配置信息包括干扰测量参数;以及
    接收所述终端上报的信道状态信息,其中,所述信道状态信息是所述终端进行干扰测量,得到初始干扰测量结果,之后所述终端根据所述初始干扰测量结果、以及网络设备配置的干扰测量参数,确定信道状态信息之后上报的。
PCT/CN2015/090928 2014-11-17 2015-09-28 一种信道状态信息测量方法、信道状态信息获取方法、终端和网络设备 WO2016078478A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP15861268.9A EP3223447A4 (en) 2014-11-17 2015-09-28 Channel state information measurement method, channel state information acquisition method, terminal, and network device
US15/527,311 US10419094B2 (en) 2014-11-17 2015-09-28 Channel state information measurement method, channel state information acquisition method, terminal and network device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410654785.4A CN105680999B (zh) 2014-11-17 2014-11-17 一种信道状态信息测量方法、终端和网络设备
CN201410654785.4 2014-11-17

Publications (1)

Publication Number Publication Date
WO2016078478A1 true WO2016078478A1 (zh) 2016-05-26

Family

ID=56013259

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/090928 WO2016078478A1 (zh) 2014-11-17 2015-09-28 一种信道状态信息测量方法、信道状态信息获取方法、终端和网络设备

Country Status (4)

Country Link
US (1) US10419094B2 (zh)
EP (1) EP3223447A4 (zh)
CN (1) CN105680999B (zh)
WO (1) WO2016078478A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11722192B2 (en) * 2017-09-29 2023-08-08 Datang Mobile Communications Equipment Co., Ltd. Interference measurement method, user equipment and network side device

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10880202B2 (en) * 2015-12-21 2020-12-29 University Of Florida Research Foundation, Incorporated Joint fountain coding and network coding for loss-tolerant information spreading
CN108809454B (zh) * 2017-05-05 2020-06-16 华为技术有限公司 干扰测量方法和设备
CN108092740B (zh) 2017-05-05 2022-10-14 中兴通讯股份有限公司 传输参数配置方法及装置、确定方法及装置
CN109151886B (zh) 2017-06-16 2021-04-20 华为技术有限公司 一种用于上报的方法、设备和系统
CN109391404B (zh) * 2017-08-10 2021-02-09 电信科学技术研究院有限公司 一种csi的反馈及其控制方法、装置
US11025388B2 (en) * 2017-10-10 2021-06-01 Futurewei Technologies, Inc. System and method for control signaling
KR20210008295A (ko) * 2018-05-10 2021-01-21 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 정보 결정 방법, 단말 기기 및 네트워크 기기
CN117998460A (zh) * 2022-11-04 2024-05-07 维沃移动通信有限公司 信道信息的上报和接收方法、终端及网络侧设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013085331A1 (ko) * 2011-12-07 2013-06-13 엘지전자 주식회사 무선 통신 시스템에서 간섭을 측정하는 방법 및 장치
CN103220088A (zh) * 2012-01-20 2013-07-24 中兴通讯股份有限公司 一种上行干扰抵消的方法、终端和基站
WO2013169196A1 (en) * 2012-05-11 2013-11-14 Telefonaktiebolaget L M Ericsson (Publ) Methods and arrangements for csi reporting

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6414955B1 (en) * 1999-03-23 2002-07-02 Innovative Technology Licensing, Llc Distributed topology learning method and apparatus for wireless networks
FI107675B (fi) * 1999-07-05 2001-09-14 Nokia Networks Oy Menetelmä käyttäjälle osoitetun informaation tunnistamiseksi kommunikaatiojärjestelmässä ja kommunikaatiojärjestelmä
EP2467965B1 (en) * 2009-08-18 2017-02-08 Koninklijke Philips N.V. A method for operating a radio station in a mobile network
CN102149124B (zh) * 2011-04-22 2014-08-06 电信科学技术研究院 一种多点协作传输下的干扰测量方法及设备
CN102300244B (zh) * 2011-07-15 2019-02-05 中兴通讯股份有限公司 一种干扰测量参考信息的通知方法、干扰测量方法及装置
GB2493224B (en) * 2011-11-07 2013-07-03 Renesas Mobile Corp Wireless communication network
CN103391126B (zh) * 2012-05-11 2016-08-10 电信科学技术研究院 一种子带信道信息的周期反馈方法、装置及系统
WO2013173765A1 (en) * 2012-05-17 2013-11-21 Marvell World Trade Ltd. Calculating and reporting channel characteristics
US9094145B2 (en) * 2012-07-25 2015-07-28 Nec Laboratories America, Inc. Coordinated multipoint transmission and reception (CoMP)
DE112013001872B4 (de) * 2012-08-28 2021-08-12 Lg Electronics Inc. Verfahren und Vorrichtung zur CSI-Rückmeldung in einem drahtlosen Kommunikationssystem
CN103840907B (zh) * 2012-11-20 2018-06-05 电信科学技术研究院 一种传输导频信号和信号测量的方法、系统及设备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013085331A1 (ko) * 2011-12-07 2013-06-13 엘지전자 주식회사 무선 통신 시스템에서 간섭을 측정하는 방법 및 장치
CN103220088A (zh) * 2012-01-20 2013-07-24 中兴通讯股份有限公司 一种上行干扰抵消的方法、终端和基站
WO2013169196A1 (en) * 2012-05-11 2013-11-14 Telefonaktiebolaget L M Ericsson (Publ) Methods and arrangements for csi reporting

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3223447A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11722192B2 (en) * 2017-09-29 2023-08-08 Datang Mobile Communications Equipment Co., Ltd. Interference measurement method, user equipment and network side device

Also Published As

Publication number Publication date
CN105680999B (zh) 2019-05-21
US10419094B2 (en) 2019-09-17
EP3223447A1 (en) 2017-09-27
US20170338878A1 (en) 2017-11-23
CN105680999A (zh) 2016-06-15
EP3223447A4 (en) 2017-12-06

Similar Documents

Publication Publication Date Title
WO2016078478A1 (zh) 一种信道状态信息测量方法、信道状态信息获取方法、终端和网络设备
CN113965232B (zh) 信息反馈方法及装置
US9793970B2 (en) Method and device for configuring channel state information feedback, method and device for measurement and feedback
US9307523B2 (en) Reference signal design for coordinated multipoint transmission
TWI580210B (zh) Method, system and equipment for channel status information measurement
CN105991231B (zh) 获取信道状态信息csi的方法及装置
US9686066B2 (en) Method and terminal for determining channel state information
US9660784B2 (en) Method and apparatus providing inter-transmission point phase relationship feedback for joint transmission CoMP
WO2016161936A1 (zh) 一种信道状态信息反馈的方法、装置、终端及基站
US11109251B2 (en) Method and apparatus for channel state information reporting
US20130308488A1 (en) Method of feeding back mu-cqi in a communication system, transmission point device, and user equipment
WO2016045535A1 (zh) 信道状态信息反馈方法、设备及系统
US20130301447A1 (en) Method and System for Reporting Feedback in Cooperative Multipoint Transmission
WO2017096954A1 (zh) Cqi估计、sinr确定方法及相关设备
CN111356171A (zh) 一种信道状态信息csi上报的配置方法和通信装置
US20130250876A1 (en) Method And Apparatus Providing Inter-Transmission Point Phase Relationship Feedback For Joint Transmission CoMP
WO2017166977A1 (zh) 信道状态信息反馈的获取方法、相关设备及系统
WO2017101651A1 (zh) 信道状态信息报告实例的确定方法及装置
WO2017076281A1 (zh) 信道状态信息的反馈方法、测量导频的配置方法及装置
CN110521129B (zh) 用于无线通信网络中的预编码控制的方法和装置
WO2021142836A1 (zh) 通信方法及装置
WO2017032135A1 (zh) 信息配置、信息反馈方法、基站及终端
CN112019463A (zh) 信道状态发送、接收、信令信息传输方法、节点和介质
WO2017152750A1 (zh) 一种反馈信息的传输方法和装置
US20230299821A1 (en) Transmission method and apparatus, device, and readable storage medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15861268

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015861268

Country of ref document: EP