WO2016161936A1 - 一种信道状态信息反馈的方法、装置、终端及基站 - Google Patents

一种信道状态信息反馈的方法、装置、终端及基站 Download PDF

Info

Publication number
WO2016161936A1
WO2016161936A1 PCT/CN2016/078577 CN2016078577W WO2016161936A1 WO 2016161936 A1 WO2016161936 A1 WO 2016161936A1 CN 2016078577 W CN2016078577 W CN 2016078577W WO 2016161936 A1 WO2016161936 A1 WO 2016161936A1
Authority
WO
WIPO (PCT)
Prior art keywords
base station
cqi
matrix
channel
terminal
Prior art date
Application number
PCT/CN2016/078577
Other languages
English (en)
French (fr)
Inventor
王飞
童辉
侯雪颖
金婧
Original Assignee
中国移动通信集团公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国移动通信集团公司 filed Critical 中国移动通信集团公司
Publication of WO2016161936A1 publication Critical patent/WO2016161936A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to the field of wireless communication technologies, and in particular, to a method, an apparatus, a terminal, and a base station for channel state information feedback.
  • the channel reciprocity-based transmission mode can select transmission diversity based on the configuration of the network side when performing channel state information feedback.
  • Channel state information feedback and channel state information feedback based on PMI Pre-coding Matrix Indicator:
  • the eNB Evolved Node B, ie, the evolved Node B, referred to as the eNB, the name of the base station in the LTE
  • the eNB transmits the reference signal CRS (Common Reference Signal) or CSI- RS (Channel State Information Reference Signal)
  • CRS Common Reference Signal
  • CSI- RS Channel State Information Reference Signal
  • UE User Equipment, User Equipment, Terminal
  • CRS Channel Reference Signal
  • UE User Equipment, User Equipment, Terminal
  • the specific process is as follows: 1) the eNB transmits the reference signal CRS or CSI-RS; 2) the UE performs channel estimation according to the CRS or CSI-RS, selects the optimal PMI, and calculates the corresponding CQI, The UE feeds back CQI and PMI.
  • FIG. 1 For the channel state information feedback mode based on transmit diversity, an implementation method of the communication process between the complete eNB and the UE is as shown in FIG. 1:
  • the UE calculates a CQI according to the reference signal
  • the typical method for the UE to calculate CQI is as follows:
  • the UE performs channel estimation according to the CRS or the CSI-RS, and obtains the channel H on a downlink subcarrier;
  • the UE calculates the power of the interference signal according to the average interference correlation matrix on the carrier
  • Interf is the power of the interference signal
  • N R is the number of terminal receiving antennas
  • CovR is the moving average value in a window of time
  • the estimated CQI of the UE is:
  • the SINR is the signal to noise ratio
  • the Noise is the noise power
  • the eNB schedules the UE and calculates a beamforming matrix, and performs user pairing for multi-user MIMO (multiple input multiple output);
  • the eNB determines an MCS (Modulation and Coding Scheme) for the UE and performs data transmission;
  • the UE performs data detection.
  • the channel state information feedback based on the channel reciprocity transmission mode in the TD-LTE system in the related art has the following technical problems:
  • the half power beamwidth of the CRS is generally wide, and it is necessary to cover all users in the cell, and map multiple antennas to 2/4 ports.
  • CRS often results in power loss, which reduces the coverage of CRS.
  • 3D-MIMO 3-dimensional multiple-input multiple-output
  • the number of antennas becomes more, not only the horizontal dimension has multiple antennas, but also the vertical dimension has multiple antennas, in order to allow the CRS to have a certain beam in the vertical dimension. The width is guaranteed to cover and the power loss will be greater.
  • mapping of the antenna to the 2/4 port CSI-RS depends on the specific implementation. If only 2/4 transmit antennas are mapped to 2/4 port CSI-RS, the power is Lower, coverage may be a problem; if you map multiple antennas to a 2/4 port CSI-RS, it will involve the problem of how to map.
  • the CQI calculated and fed back by the UE reflects the channel state and interference of the two receiving antennas, and the eNB can only estimate the downlink channel corresponding to one receiving antenna through the SRS, and the MCS is used when the data is finally transmitted.
  • the combination is determined, and therefore, a mismatch between the two will result in an increase in the MCS inaccuracy determined by the eNB.
  • the design codebook is very complicated due to the design of multiple antenna configurations and multiple TXRU (transceiver channel) mapping modes in 3D-MIMO, and it is difficult to have the codebook simultaneously. Meet this need.
  • the technical problem to be solved by the present disclosure is to provide a method, a device, a terminal, and a base station for channel state information feedback, which are used to solve the CQI feedback mode of the antenna in the related art in the TD-LTE system, and the power consumption is large, and is not applicable. There is a problem with a single transmit antenna in the terminal.
  • some embodiments of the present disclosure provide a method for channel state information feedback, including:
  • the reference information is a channel state information reference signal CSI-RS
  • the port is at least one CSI-RS port.
  • the channel transmission matrix between the port corresponding to the reference information of the transmitting antenna of the terminal and the reference information of the base station is obtained according to the reference information, specifically:
  • the terminal has only a single antenna
  • the channel transmission matrix is denoted as H, and its matrix dimension is 1 ⁇ N T ; H * is the adjoint matrix of the channel transmission matrix.
  • the obtaining, according to the channel transmission matrix, the CQI of the channel quality indicator of the SRS transmitting antenna when the base station is in the maximum ratio combining transmission mode specifically includes:
  • the acquiring a signal to noise ratio of the SRS transmitting antenna according to the precoding matrix and the channel transmission matrix specifically includes:
  • the feedback information only includes the CQI, and correspondingly, the sending feedback information is sent to the base station, specifically:
  • the feedback information includes the CQI and flag information indicating a correspondence relationship between the CQI and the SRS transmitting antenna, and correspondingly, sending the feedback information to the
  • the base station is specifically:
  • Some embodiments of the present disclosure provide an apparatus for channel state information feedback, including:
  • a first acquiring module configured to acquire reference information sent by the base station
  • a second acquiring module configured to acquire, according to the reference information, a channel transmission matrix between a channel sounding reference signal SRS transmitting antenna of the terminal and a port corresponding to the reference information of the base station;
  • a third acquiring module configured to acquire, according to the channel transmission matrix, a maximum ratio combining at a base station In the transmission mode, the channel quality indicator CQI of the SRS transmitting antenna is
  • a feedback module configured to send feedback information to the base station, where the feedback information includes at least the CQI.
  • the reference information is a channel state information reference signal CSI-RS
  • the port is at least one CSI-RS port.
  • the terminal has only a single antenna
  • the channel transmission matrix is denoted as H, and its matrix dimension is 1 ⁇ N T ; H * is the adjoint matrix of the channel transmission matrix.
  • the third obtaining module includes:
  • a first acquiring submodule configured to acquire a signal to noise ratio of the SRS transmitting antenna according to a precoding matrix and the channel transmission matrix in a maximum ratio combining transmission mode
  • a second acquiring submodule configured to quantize the signal to noise ratio, and obtain a channel quality indicator CQI of the SRS transmitting antenna.
  • the first obtaining submodule specifically includes:
  • a first calculating unit configured to calculate a power of the useful signal according to the precoding matrix, the channel transmission matrix, and a transmit power of the signal
  • a second calculating unit configured to calculate a signal to noise ratio of the SRS transmitting antenna according to the power of the useful signal and the interference power received by the terminal.
  • the feedback information only includes the CQI, and correspondingly, the feedback module is specifically:
  • the feedback information includes the CQI and flag information indicating a correspondence between the CQI and the SRS transmitting antenna.
  • the feedback module is specifically:
  • Some embodiments of the present disclosure provide a terminal, including the above-described means for channel state information feedback.
  • Some embodiments of the present disclosure provide a method for channel state information feedback, which is applied to a base station side, and includes:
  • the terminal acquires, according to the received reference information, a channel transmission matrix between the channel sounding reference signal SRS transmitting antenna of the terminal and the port corresponding to the reference information of the base station, and is at a maximum ratio of the base station
  • the feedback information including the CQI is sent to the base station;
  • Some embodiments of the present disclosure provide a base station, including:
  • a sending module configured to send reference information, so that the terminal acquires, according to the received reference information, a channel transmission matrix between a channel sounding reference signal SRS transmitting antenna of the terminal and a port corresponding to the reference information of the base station, and After the base station is in the maximum ratio combining transmission mode, after the channel quality indicator CQI calculated according to the channel transmission matrix, the feedback information including the CQI is sent to the base station;
  • a parsing module configured to receive and parse the feedback information, to obtain the received SRS transmit antenna corresponding to the CQI.
  • the above solution assumes that the base station adopts the maximum ratio combined transmission mode, and acquires the CQI of the antenna in the transmission mode, thereby ensuring the accuracy of the CQI. In this way, the power loss is reduced, and at the same time, the number of ports of the base station is supported, because the terminal The fed back CQI corresponds to the antenna supported by the SRS at the terminal side, which ensures the accuracy of the CQI received by the base station.
  • FIG. 1 is a schematic flowchart of communication between a base station and a terminal in a channel state information feedback mode based on transmit diversity in the related art
  • FIG. 2 shows a general flow diagram of a method of channel state information feedback of some embodiments of the present disclosure
  • FIG. 3 is a block diagram showing an apparatus for the channel state information feedback of some embodiments of the present disclosure.
  • FIG. 4 is a flow chart showing communication between a base station and a terminal based on a maximum ratio combining transmission mode according to some embodiments of the present disclosure.
  • the present disclosure is directed to a CQI feedback mode of an antenna in a related art in a TD-LTE system, which has a large power consumption and does not have a problem of a single transmit antenna in the terminal.
  • the channel state information feedback is provided.
  • Step 10 Obtain reference information sent by the base station.
  • Step 20 Acquire, according to the reference information, a channel transmission matrix between a channel sounding reference signal SRS transmitting antenna of the terminal and a port corresponding to the reference information of the base station;
  • Step 30 according to the channel transmission matrix, obtaining a channel quality indicator CQI of the SRS transmitting antenna when the base station is in the maximum ratio combining transmission mode;
  • Step 40 Send feedback information to the base station, where the feedback information includes at least the CQI.
  • the SRS transmitting antenna refers to an antenna that supports SRS transmission on the terminal.
  • the CSI-RS when performing CQI feedback, is mainly used, that is, the reference information described in step 10 is a CSI-RS; according to the configuration of the base station, the base station is configured with Several CSI-RS ports transmit CSI-RS information of several ports without port mapping of the antenna, which reduces the transmission complexity of CSI-RS information.
  • step 20 is specifically:
  • the scheme mainly assumes that the base station performs channel state information feedback in the maximum ratio combined transmission mode, and the specific definition of the MRT Precoding Scheme is:
  • the channel transmission matrix is denoted as H, and its matrix dimension is 1 ⁇ N T ; H * is the adjoint matrix of the channel transmission matrix.
  • the step 30 specifically includes:
  • Step 31 Acquire a signal to noise ratio of the SRS transmitting antenna according to a precoding matrix and the channel transmission matrix in a maximum ratio combining transmission mode.
  • Step 32 Quantify the signal to noise ratio to obtain a channel quality indicator CQI of the SRS transmitting antenna.
  • step 31 of some embodiments of the present disclosure is:
  • P 0 is the power of the useful signal
  • P tr is the transmit power of the signal
  • the SINR is the signal-to-noise ratio of the SRS transmit antenna; P 1 is the interference power received by the terminal.
  • the signal to noise ratio is converted into a corresponding CQI according to a preset mapping relationship by quantizing the signal to noise ratio.
  • the terminal when the terminal performs channel state information feedback, if the terminal has only one antenna supporting SRS transmission, it only sends feedback information including the CQI to the base station, and the base station defaults after receiving the feedback information.
  • the received CQI is the antenna corresponding to the terminal; and when the base station has multiple antennas supporting SRS transmission, the terminal calculates the CQI of each SRS transmitting antenna separately, and the terminal is performing information feedback with the base station.
  • the CQIs of these SRS transmit antennas are transmitted in turn. If there is no other additional information to distinguish these CQIs, the terminal will not know the received CQI when receiving the CQI. Which SRS is sent to the antenna, which will cause the base station to process other information inaccuracies.
  • the feedback information that needs to be sent must include not only the feedback information but also the feedback information that needs to be sent.
  • the CQI further includes marking information of a correspondence between the CQI and the SRS transmitting antenna, and after receiving the feedback information, the base station parses the marking information in the feedback information to obtain the Which SRS transmit antenna corresponds to the CQI.
  • the above solution assumes that the base station adopts the maximum ratio combined transmission mode, and acquires the CQI of the antenna in the transmission mode, thereby ensuring the accuracy of the CQI. In this way, the power loss is reduced, and at the same time, the number of ports of the base station is supported, because the terminal The fed back CQI corresponds to the antenna supported by the SRS at the terminal side, which ensures the accuracy of the CQI received by the base station.
  • some embodiments of the present disclosure further provide an apparatus for channel state information feedback, including:
  • the first obtaining module 100 is configured to acquire reference information sent by the base station;
  • the second obtaining module 200 is configured to acquire, according to the reference information, a channel transmission matrix between a channel sounding reference signal SRS transmitting antenna of the terminal and a port corresponding to the reference information of the base station;
  • the third obtaining module 300 is configured to obtain, according to the channel transmission matrix, a channel quality indicator CQI of the SRS transmitting antenna when the base station is in a maximum ratio combining transmission mode;
  • the feedback module 400 is configured to send feedback information to the base station, where the feedback information includes at least the CQI.
  • the reference information is a channel state information reference signal CSI-RS
  • the port is at least one CSI-RS port.
  • the terminal has only a single antenna
  • the channel transmission matrix is denoted as H, and its matrix dimension is 1 ⁇ N T ; H * is the adjoint matrix of the channel transmission matrix.
  • the third obtaining module 300 includes:
  • a first acquiring submodule configured to acquire a signal to noise ratio of the SRS transmitting antenna according to a precoding matrix and the channel transmission matrix in a maximum ratio combining transmission mode
  • a second acquiring submodule configured to quantize the signal to noise ratio, and obtain a channel quality indicator CQI of the SRS transmitting antenna.
  • the first obtaining submodule specifically includes:
  • a first calculating unit configured to calculate a power of the useful signal according to the precoding matrix, the channel transmission matrix, and a transmit power of the signal
  • a second calculating unit configured to calculate a signal to noise ratio of the SRS transmitting antenna according to the power of the useful signal and the interference power received by the terminal.
  • the first computing unit is implemented as:
  • P 0 is the power of the useful signal
  • P tr is the transmit power of the signal.
  • the implementation of the second computing unit is:
  • the SINR is the signal-to-noise ratio of the SRS transmit antenna; P 1 is the interference power received by the terminal.
  • the feedback module when the terminal has an SRS transmitting antenna, and the feedback information only includes the CQI, the feedback module is specifically:
  • the feedback information includes the CQI and flag information indicating a correspondence between the CQI and the SRS transmitting antenna, where the feedback module is specifically:
  • the device embodiment is a device corresponding to the above method, and all implementations of the foregoing methods are applicable to the device embodiment, and the same technical effects as the above method can be achieved.
  • Some embodiments of the present disclosure provide a terminal, including the above-described means for channel state information feedback.
  • Some embodiments of the present disclosure provide a method for channel state information feedback, which is applied to a base station side, and includes:
  • Transmitting the reference information so that the terminal acquires the channel transmission between the channel sounding reference signal SRS transmitting antenna of the terminal and the port corresponding to the reference information of the base station according to the received reference information. Transmitting a matrix, and after the base station is in the maximum ratio combining transmission mode, according to the channel quality indication CQI calculated according to the channel transmission matrix, transmitting feedback information including at least the CQI to the base station;
  • Some embodiments of the present disclosure provide a base station, including:
  • a sending module configured to send reference information, so that the terminal acquires, according to the received reference information, a channel transmission matrix between a channel sounding reference signal SRS transmitting antenna of the terminal and a port corresponding to the reference information of the base station, and After the base station is in the maximum ratio combining transmission mode, after the channel quality indicator CQI calculated according to the channel transmission matrix, the feedback information including the CQI is sent to the base station;
  • a parsing module configured to receive and parse the feedback information, to obtain the received SRS transmit antenna corresponding to the CQI.
  • the base station can parse which CQI of the received CQI is the antenna of the terminal, and ensure the accuracy of the received information.
  • the process of channel state information feedback between the terminal and the base station is:
  • the eNB sends an 8-port CSI-RS reference signal
  • the UE performs channel estimation according to the received CSI-RS, and obtains a channel transmission matrix between the first SRS transmitting antenna and the eight CSI-RS ports of the UE as H (matrix dimension is 1 ⁇ 8), and the UE assumes
  • the interference power may be the interference received by the first SRS transmitting antenna, or may be the average interference received by multiple antennas.
  • the terminal Before performing CQI feedback, the terminal first generates tag information of each CQI, where the mapping information records the correspondence between the CQI and the SRS transmitting antenna; and then the terminal sets the CQI and the CQI tag information.
  • the base station feeds back to the base station, and the base station analyzes the received feedback information to obtain the received SRS transmission antenna corresponding to the CQI.
  • the present disclosure is based on a channel state information feedback scheme of a maximum ratio combined transmission mode, which is based on transmission
  • the diversity and PMI-based channel state information feedback scheme has no power loss, can support redundant 8-port base stations, and is suitable for multiple antenna configurations. It can also be applied to the case where the terminal single-antenna transmits SRS.
  • the specific comparison analysis is shown in Table 1. Show:
  • the present disclosure can flexibly support more CSI-RS port numbers, not only limited to CSI-RS using 2/4 ports; traditional UE only feeds back one CQI based on multiple receiving antennas, the present disclosure
  • the CQI fed back by the UE corresponds to the antenna that the UE supports the SRS transmission, and is more suitable for the case where only part of the antenna is sent to transmit the SRS.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

本公开提供了一种信道状态信息反馈的方法、装置、终端及基站。所述信道状态信息反馈的方法,包括:获取基站发送的参考信息;根据所述参考信息,获取终端的信道探测参考信号SRS发送天线与所述基站的所述参考信息对应的端口之间的信道传输矩阵;根据所述信道传输矩阵,获取在基站处于最大比合并传输模式下,所述SRS发送天线的信道质量指示CQI;发送反馈信息给所述基站,所述反馈信息中至少包含所述CQI。

Description

一种信道状态信息反馈的方法、装置、终端及基站
相关申请的交叉引用
本申请主张在2015年4月7日在中国提交的中国专利申请号No.201510160726.6的优先权,其全部内容通过引用包含于此。
技术领域
本公开涉及无线通讯技术领域,特别涉及一种信道状态信息反馈的方法、装置、终端及基站。
背景技术
在相关技术中的TD-LTE(Time Division-Long Term Evolution,分时长期演进)系统中,基于信道互易性的传输方式在进行信道状态信息反馈的时候可以根据网络侧的配置选择基于发送分集的信道状态信息反馈和基于PMI(Pre-coding Matrix Indicator,预编码矩阵指示)的信道状态信息反馈:
对于基于发送分集的信道状态信息反馈模式,具体过程如下:1)eNB(Evolved Node B,即演进型Node B,简称eNB,LTE中基站的名称)发送参考信号CRS(公共参考信号)或CSI-RS(Channel State Information Reference Signal,信道状态信息参考信号);2)UE(User Equipment,用户设备,即终端)根据CRS或CSI-RS进行信道估计,并假设基站采用发送分集的传输方式,UE计算并反馈CQI(channel quality indicator,信道质量指示)。
对于基于PMI的信道状态信息反馈模式,具体过程如下:1)eNB发送参考信号CRS或CSI-RS;2)UE根据CRS或CSI-RS进行信道估计,选择最优的PMI并计算对应的CQI,UE反馈CQI和PMI。
对于基于发送分集的信道状态信息反馈模式,完整的eNB和UE之间的通信流程的一种实现方法如图1所示:
1)UE根据参考信号计算CQI;
UE计算CQI的典型方法如下:
a)UE根据CRS或CSI-RS进行信道估计,获得下行某子载波上的信道H;
b)UE估算有用信号的能量为S=Ptxtr(HHH),其中,S表示有用信号的能量, Ptx为基站的信号发送功率,tr(x)为矩阵x的迹;
c)UE根据该载波上的平均干扰相关阵计算干扰信号的功率;
Figure PCTCN2016078577-appb-000001
其中,Interf为干扰信号的功率,NR为终端接收天线的个数,CovR为一段时间窗口内的滑动平均值;
d)UE估算的CQI为:
Figure PCTCN2016078577-appb-000002
其中,SINR为信噪比,Noise为噪声功率;
2)UE反馈CQI给eNB;
3)eNB调度UE并计算波束赋形矩阵,对于多用户MIMO(多输入多输出)还要进行用户配对;
4)eNB为UE确定MCS(Modulation and Coding Scheme,调制与编码策略)并进行数据发送;
5)UE进行数据检测。
但相关技术中的TD-LTE系统中基于信道互易性的传输方式的信道状态信息反馈有如下技术问题:
一、LTE标准中只定义了2端口和4端口的发送分集传输方式,当基站采用8天线时,需要将8天线映射为2/4端口的CRS或CSI-RS。
1)如果基于CRS进行信道状态信息反馈,为了保证公共控制信道的覆盖,CRS的半功率波束宽度一般比较宽,需要覆盖到本小区的所有用户,而将多根天线映射为2/4端口的CRS时常常会导致功率损失,这会降低CRS的覆盖能力。特别是采用3D-MIMO(3维多输入多输出)天线以后,天线数变得更多,不仅水平维有多根天线,而且垂直维也有多根天线,为了让CRS在垂直维也有一定的波束宽度以保证覆盖,功率损失会更大。
2)如果基于CSI-RS进行信道状态信息反馈,天线到2/4端口CSI-RS的映射取决于具体实现,如果只把2/4根发送天线映射为2/4端口CSI-RS,则功率较低,覆盖可能成为问题;如果将多根天线映射为2/4端口的CSI-RS,又会涉及到如何映射的问题。
二、目前,终端大部分有两根接收天线,但是仅支持1根发送天线,这会 带来如下问题:UE计算并反馈的CQI反应了2根接收天线的信道状态和干扰情况,而eNB通过SRS只能估计到1根接收天线对应的下行信道,最终发送数据时使用MCS有这两者综合确定,因此,这两者的不匹配将导致eNB确定的MCS不准确性增大。
如果eNB配置UE采用基于PMI的信道状态信息反馈方式,由于3D-MIMO中设计到多种天线形态和多种TXRU(收发通道)映射方式,设计码本会非常复杂,而且很难有码本能同时满足这种需求。
发明内容
本公开要解决的技术问题是提供一种信道状态信息反馈的方法、装置、终端及基站,用以解决TD-LTE系统中,相关技术中的天线的CQI反馈方式,功率消耗大,且不适用终端中有单根发送天线的问题。
为了解决上述技术问题,本公开的一些实施例提供一种信道状态信息反馈的方法,包括:
获取基站发送的参考信息;
根据所述参考信息,获取终端的信道探测参考信号SRS发送天线与所述基站的所述参考信息对应的端口之间的信道传输矩阵;
根据所述信道传输矩阵,获取在基站处于最大比合并传输模式下,所述SRS发送天线的信道质量指示CQI;
发送反馈信息给所述基站,所述反馈信息中至少包含所述CQI。
进一步地,所述参考信息为信道状态信息参考信号CSI-RS,且所述端口为至少一个CSI-RS端口。
进一步地,所述根据所述参考信息,获取终端的发送天线与所述基站的所述参考信息对应的端口之间的信道传输矩阵,具体为:
根据所述CSI-RS的传输周期,对CSI-RS配置信息中指示的时频位置上发送的CSI-RS进行测量,获得终端的SRS发送天线与所述基站的CSI-RS端口之间的信道传输矩阵。
进一步地,所述最大比合并传输模式为:
定义Y=PX;其中,
X是预编码之前单流信号,矩阵维数为1×1;Y为预编码之后的信号,矩 阵维数为NT×1,其中NT为CSI-RS端口的个数;P为预编码矩阵;
规定在所述最大比合并传输模式下,终端只有单根天线;
根据已知的NT个CSI-RS端口与终端的SRS发送天线之间的信道传输矩阵,依据公式:P=H*获取得到在所述最大比合并传输模式下的预编码矩阵;其中,
所述信道传输矩阵记为H,其矩阵维数为1×NT;H*为所述信道传输矩阵的伴随矩阵。
进一步地,所述根据所述信道传输矩阵,获取在基站处于最大比合并传输模式下,所述SRS发送天线的信道质量指示CQI,具体包括:
在最大比合并传输模式下,根据预编码矩阵和所述信道传输矩阵,获取所述SRS发送天线的信噪比;
将所述信噪比进行量化,获取得到所述SRS发送天线的信道质量指示CQI。
进一步地,所述根据预编码矩阵和所述信道传输矩阵,获取所述SRS发送天线的信噪比,具体包括:
根据所述预编码矩阵、所述信道传输矩阵以及信号的发送功率,计算得到有用信号的功率;
根据所述有用信号的功率以及终端受到的干扰功率,计算得到所述SRS发送天线的信噪比。
进一步地,当所述终端具有一个SRS发送天线时,所述反馈信息只包含所述CQI,相应地,所述发送反馈信息给所述基站,具体为:
发送所述CQI给所述基站;
当所述终端具有至少两个SRS发送天线时,所述反馈信息包含所述CQI以及表示所述CQI与所述SRS发送天线的对应关系的标记信息,相应地,所述发送反馈信息给所述基站,具体为:
发送所述CQI以及表示所述CQI与所述SRS发送天线的对应关系的标记信息给所述基站。
本公开的一些实施例提供一种信道状态信息反馈的装置,包括:
第一获取模块,用于获取基站发送的参考信息;
第二获取模块,用于根据所述参考信息,获取终端的信道探测参考信号SRS发送天线与所述基站的所述参考信息对应的端口之间的信道传输矩阵;
第三获取模块,用于根据所述信道传输矩阵,获取在基站处于最大比合并 传输模式下,所述SRS发送天线的信道质量指示CQI;
反馈模块,用于发送反馈信息给所述基站,所述反馈信息中至少包含所述CQI。
进一步地,所述参考信息为信道状态信息参考信号CSI-RS,且所述端口为至少一个CSI-RS端口。
进一步地,所述最大比合并传输模式为:
定义Y=PX;其中,
X是预编码之前单流信号,矩阵维数为1×1;Y为预编码之后的信号,矩阵维数为NT×1,其中NT为CSI-RS端口的个数;P为预编码矩阵;
规定在所述最大比合并传输模式下,终端只有单根天线;
根据已知的NT个CSI-RS端口与终端的SRS发送天线之间的信道传输矩阵,依据公式:P=H*获取得到在所述最大比合并传输模式下的预编码矩阵;其中,
所述信道传输矩阵记为H,其矩阵维数为1×NT;H*为所述信道传输矩阵的伴随矩阵。
进一步地,所述第三获取模块包括:
第一获取子模块,用于在最大比合并传输模式下,根据预编码矩阵和所述信道传输矩阵,获取所述SRS发送天线的信噪比;
第二获取子模块,用于将所述信噪比进行量化,获取得到所述SRS发送天线的信道质量指示CQI。
进一步地,所述第一获取子模块具体包括:
第一计算单元,用于根据所述预编码矩阵、所述信道传输矩阵以及信号的发送功率,计算得到有用信号的功率;
第二计算单元,用于根据所述有用信号的功率以及终端受到的干扰功率,计算得到所述SRS发送天线的信噪比。
进一步地,当所述终端具有一个SRS发送天线时,所述反馈信息只包含所述CQI,相应地,所述反馈模块具体为:
发送所述CQI给所述基站;
当所述终端具有至少两个SRS发送天线时,所述反馈信息包含所述CQI以及表示所述CQI与所述SRS发送天线的对应关系的标记信息,相应地,所述反馈模块具体为:
发送所述CQI以及表示所述CQI与所述SRS发送天线的对应关系的标记信息给所述基站。
本公开的一些实施例提供一种终端,包括上述的信道状态信息反馈的装置。
本公开的一些实施例提供一种信道状态信息反馈的方法,应用于基站侧,包括:
发送参考信息,使得终端根据接收到的所述参考信息,获取终端的信道探测参考信号SRS发送天线与所述基站的所述参考信息对应的端口之间的信道传输矩阵,并在基站处于最大比合并传输模式下,根据所述信道传输矩阵计算得到的信道质量指示CQI后,发送至少包含所述CQI的反馈信息给基站;
接收并解析所述反馈信息,得到接收到的所述CQI对应的SRS发送天线。
本公开的一些实施例提供一种基站,包括:
发送模块,用于发送参考信息,使得终端根据接收到的所述参考信息,获取终端的信道探测参考信号SRS发送天线与所述基站的所述参考信息对应的端口之间的信道传输矩阵,并在基站处于最大比合并传输模式下,根据所述信道传输矩阵计算得到的信道质量指示CQI后,发送至少包含所述CQI的反馈信息给基站;
解析模块,用于接收并解析所述反馈信息,得到接收到的所述CQI对应的SRS发送天线。
本公开的有益效果是:
上述方案,通过假设基站采用最大比合并传输模式,在此传输模式下获取天线的CQI,保证了CQI的精确性,此种方式,降低了功率损失,同时支持基站更多的端口数,因终端反馈的CQI与终端侧支持SRS发送的天线对应,保证了基站接收的CQI的准确性。
附图说明
图1表示相关技术中,基于发送分集的信道状态信息反馈模式下,基站与终端通讯的流程示意图;
图2表示本公开的一些实施例的所述信道状态信息反馈的方法的总体流程图;
图3表示本公开的一些实施例的所述信道状态信息反馈的装置的模块示意 图;
图4表示本公开的一些实施例的基于最大比合并传输模式的基站与终端通讯的流程示意图。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚,下面将结合附图及具体实施例对本公开进行详细描述。
本公开针对TD-LTE系统中,相关技术中的天线的CQI反馈方式,功率消耗大,且不适用终端中有单根发送天线的问题,如图2所示,提供一种信道状态信息反馈的方法,包括:
步骤10,获取基站发送的参考信息;
步骤20,根据所述参考信息,获取终端的信道探测参考信号SRS发送天线与所述基站的所述参考信息对应的端口之间的信道传输矩阵;
步骤30,根据所述信道传输矩阵,获取在基站处于最大比合并传输模式下,所述SRS发送天线的信道质量指示CQI;
步骤40,发送反馈信息给所述基站,所述反馈信息中至少包含所述CQI。
需要说明的是,所述SRS发送天线指的是终端上支持SRS发送的天线。
应当说明的是,本公开的上述实施例中,在进行CQI反馈时,主要依据的是CSI-RS,即步骤10中所述的参考信息为CSI-RS;根据基站的配置情况,基站配置有几个CSI-RS端口,则发送几个端口的CSI-RS信息,无需将天线进行端口映射,降低了CSI-RS信息的发送复杂度。
具体地,所述步骤20具体为:
根据所述CSI-RS的传输周期,对CSI-RS配置信息中指示的时频位置上发送的CSI-RS进行测量,获得终端的SRS发送天线与所述基站的端口之间的信道传输矩阵。
应当说明的是,上述仅是对步骤20的一种实现方式的举例说明,所述根据CSI-RS获取终端的SRS发送天线与基站的CSI-RS端口之间的信道传输矩阵的方法为本领域的常用技术,在此不再进行详细的说明。
本方案主要是假设基站在最大比合并传输模式下,终端进行信道状态信息的反馈,所述最大比合并传输模式(MRT Precoding Scheme)的具体定义为:
定义Y=PX;其中,
X是预编码之前单流信号,矩阵维数为1×1;Y为预编码之后的信号,矩阵维数为NT×1,其中NT为CSI-RS端口的个数;P为预编码矩阵;
假设在所述最大比合并传输模式下,终端只有单根天线,根据已知的NT个CSI-RS端口与终端的SRS发送天线之间的信道传输矩阵,依据公式:P=H*获取得到在所述最大比合并传输模式下的预编码矩阵;其中,
所述信道传输矩阵记为H,其矩阵维数为1×NT;H*为所述信道传输矩阵的伴随矩阵。
根据上述定义,基于上述最大比合并传输模式,所述步骤30具体包括:
步骤31,在最大比合并传输模式下,根据预编码矩阵和所述信道传输矩阵,获取所述SRS发送天线的信噪比;
步骤32,将所述信噪比进行量化,获取得到所述SRS发送天线的信道质量指示CQI。
本公开的一些实施例的所述步骤31的具体实现方式为:
根据所述预编码矩阵、所述信道传输矩阵以及信号的发送功率,计算得到有用信号的功率;
根据所述有用信号的功率以及终端受到的干扰功率,计算得到所述SRS发送天线的信噪比。
可选地,可以根据公式:P0=Ptr×P×H计算得到有用信号的功率;其中,
P0为有用信号的功率;Ptr为信号的发送功率;
然后利用公式:SINR=P0/P1计算得到所述SRS发送天线的信噪比;其中,
SINR为SRS发送天线的信噪比;P1为终端受到的干扰功率。
应当说明的是,在得到SRS发送天线的信噪比后,通过将所述信噪比进行量化,按照预设的映射关系将所述信噪比转换成对应的CQI。
应当说明的是,终端在进行信道状态信息反馈时,若终端只有一根支持SRS发送的天线,则其只发送包含所述CQI的反馈信息给基站,基站在收到所述反馈信息后则默认收到的CQI为所述终端对应的天线;而当基站有多个支持SRS发送的天线时,因终端会分别计算得到每个SRS发送天线的CQI,而终端在与基站在进行信息反馈时,会轮流发送这些SRS发送天线的CQI,如果没有其它的附加信息来区分这些CQI,会使得终端在接收到CQI时,不知道所接收的CQI 到底对应的是哪个SRS发送天线,从而会造成基站处理其他信息的不准确性,为了解决此种问题,若终端有至少两根支持SRS发送的天线,则其需要发送的反馈信息中不仅要包含所述CQI,还要包含所述CQI与所述SRS发送天线的对应关系的标记信息,基站在接收到所述反馈信息后,通过对所述反馈信息中的标记信息进行解析,才能得到所述CQI对应的到底是哪一个SRS发送天线。
上述方案,通过假设基站采用最大比合并传输模式,在此传输模式下获取天线的CQI,保证了CQI的精确性,此种方式,降低了功率损失,同时支持基站更多的端口数,因终端反馈的CQI与终端侧支持SRS发送的天线对应,保证了基站接收的CQI的准确性。
对应于上述方法,如图3所示,本公开的一些实施例还提供一种信道状态信息反馈的装置,包括:
第一获取模块100,用于获取基站发送的参考信息;
第二获取模块200,用于根据所述参考信息,获取终端的信道探测参考信号SRS发送天线与所述基站的所述参考信息对应的端口之间的信道传输矩阵;
第三获取模块300,用于根据所述信道传输矩阵,获取在基站处于最大比合并传输模式下,所述SRS发送天线的信道质量指示CQI;
反馈模块400,用于发送反馈信息给所述基站,所述反馈信息中至少包含所述CQI。
具体地,所述参考信息为信道状态信息参考信号CSI-RS,且所述端口为至少一个CSI-RS端口。
需要说明的是,所述最大比合并传输模式为:
定义Y=PX;其中,
X是预编码之前单流信号,矩阵维数为1×1;Y为预编码之后的信号,矩阵维数为NT×1,其中NT为CSI-RS端口的个数;P为预编码矩阵;
规定在所述最大比合并传输模式下,终端只有单根天线;
根据已知的NT个CSI-RS端口与终端的SRS发送天线之间的信道传输矩阵,依据公式:P=H*获取得到在所述最大比合并传输模式下的预编码矩阵;其中,
所述信道传输矩阵记为H,其矩阵维数为1×NT;H*为所述信道传输矩阵的伴随矩阵。
可选地,所述第三获取模块300包括:
第一获取子模块,用于在最大比合并传输模式下,根据预编码矩阵和所述信道传输矩阵,获取所述SRS发送天线的信噪比;
第二获取子模块,用于将所述信噪比进行量化,获取得到所述SRS发送天线的信道质量指示CQI。
进一步地,所述第一获取子模块具体包括:
第一计算单元,用于根据所述预编码矩阵、所述信道传输矩阵以及信号的发送功率,计算得到有用信号的功率;
第二计算单元,用于根据所述有用信号的功率以及终端受到的干扰功率,计算得到所述SRS发送天线的信噪比。
可选地,所述第一计算单元实现方式为:
根据公式:P0=Ptr×P×H计算得到有用信号的功率;其中,
P0为有用信号的功率;Ptr为信号的发送功率。
所述第二计算单元的实现方式为:
利用公式:SINR=P0/P1计算得到所述SRS发送天线的信噪比;其中,
SINR为SRS发送天线的信噪比;P1为终端受到的干扰功率。
本公开的一些实施例中,当所述终端具有一个SRS发送天线时,所述反馈信息只包含所述CQI,则所述反馈模块具体为:
发送所述CQI给所述基站;
当所述终端具有至少两个SRS发送天线时,所述反馈信息包含所述CQI以及表示所述CQI与所述SRS发送天线的对应关系的标记信息,则所述反馈模块具体为:
发送所述CQI以及表示所述CQI与所述SRS发送天线的对应关系的标记信息给所述基站。
需要说明的是,该装置实施例是与上述方法相对应的装置,上述方法的所有实现方式均适用于该装置实施例中,也能达到与上述方法相同的技术效果。
本公开的一些实施例提供一种终端,包括上述的信道状态信息反馈的装置。
本公开的一些实施例提供一种信道状态信息反馈的方法,应用于基站侧,包括:
发送参考信息,使得终端根据接收到的所述参考信息,获取终端的信道探测参考信号SRS发送天线与所述基站的所述参考信息对应的端口之间的信道传 输矩阵,并在基站处于最大比合并传输模式下,根据所述信道传输矩阵计算得到的信道质量指示CQI后,发送至少包含所述CQI的反馈信息给基站;
接收并解析所述反馈信息,得到接收到的所述CQI对应的SRS发送天线。
本公开的一些实施例提供一种基站,包括:
发送模块,用于发送参考信息,使得终端根据接收到的所述参考信息,获取终端的信道探测参考信号SRS发送天线与所述基站的所述参考信息对应的端口之间的信道传输矩阵,并在基站处于最大比合并传输模式下,根据所述信道传输矩阵计算得到的信道质量指示CQI后,发送至少包含所述CQI的反馈信息给基站;
解析模块,用于接收并解析所述反馈信息,得到接收到的所述CQI对应的SRS发送天线。
应当说明的是,所述基站根据终端的反馈信息,能解析得到接收到的CQI是终端的哪个天线的对应的CQI,保证了接收信息的准确性。
如图4所示,当所述终端具有两个支持SRS发送的天线,且基站的CSI-RS的端口数为8个时,所述终端与基站间进行信道状态信息反馈的流程为:
1、eNB发送8端口的CSI-RS参考信号;
2、UE根据接收到的CSI-RS进行信道估计,得到UE的第1个SRS发送天线与8个CSI-RS端口之间的信道传输矩阵为H(矩阵维数为1×8),UE假设eNB采用最大比合并传输模式的预编码矩阵,根据公式P0=Ptr×P×H计算得到有用信号的功率;然后获取得到终端受到的干扰功率为P1(需要说明的是,终端受到的干扰功率可以是该第1个SRS发送天线受到的干扰,也可以是多个天线受到的平均干扰),利用公式SINR=P0/P1得到第1个SRS发送天线的信噪比,然后按照预先设定的映射关系把第1个SRS发送天线的信噪比进行转换,便可得到第1个SRS发送天线的CQI;同时依据上述步骤得到第2个SRS发送天线的CQI;
3、在进行CQI反馈前,所述终端首先要生成每个CQI的标记信息,此标记信息中记载有该CQI与SRS发送天线之间的对应关系;然后终端将此CQI以及此CQI的标记信息反馈给基站,基站根据接收到的反馈信息,进行解析,便可得到接收到的CQI对应的SRS发送天线。
本公开基于最大比合并传输模式的信道状态信息反馈方案,相比基于发送 分集和基于PMI的信道状态信息反馈方案,具有无功率损失,可以支持多余8端口的基站,并且适应多种天线形态,还可适用于终端单天线发送SRS的情况,具体对比分析如表1所示:
Figure PCTCN2016078577-appb-000003
表1   3种信道状态信息反馈方案对比分析表
应当说明的是,本公开可灵活支持更多的CSI-RS端口数,不仅仅受限于使用2/4端口的CSI-RS;传统的UE只反馈一个基于多根接收天线的CQI,本公开中UE反馈的CQI与UE端支持SRS发送的天线对应,更适用于仅支持部分天线发送SRS的情况。
以上所述的是本公开的优选实施方式,应当指出对于本技术领域的普通人员来说,在不脱离本公开所述的原理前提下还可以作出若干改进和润饰,这些改进和润饰也在本公开的保护范围内。

Claims (16)

  1. 一种信道状态信息反馈的方法,包括:
    获取基站发送的参考信息;
    根据所述参考信息,获取终端的信道探测参考信号SRS发送天线与所述基站的所述参考信息对应的端口之间的信道传输矩阵;
    根据所述信道传输矩阵,获取在基站处于最大比合并传输模式下,所述SRS发送天线的信道质量指示CQI;
    发送反馈信息给所述基站,所述反馈信息中至少包含所述CQI。
  2. 根据权利要求1所述的方法,其中,所述参考信息为信道状态信息参考信号CSI-RS,且所述端口为至少一个CSI-RS端口。
  3. 根据权利要求2所述的方法,其中,所述根据所述参考信息,获取终端的发送天线与所述基站的所述参考信息对应的端口之间的信道传输矩阵,具体为:
    根据所述CSI-RS的传输周期,对CSI-RS配置信息中指示的时频位置上发送的CSI-RS进行测量,获得终端的SRS发送天线与所述基站的CSI-RS端口之间的信道传输矩阵。
  4. 根据权利要求2所述的方法,其中,所述最大比合并传输模式为:
    定义Y=PX;其中,
    X是预编码之前单流信号,矩阵维数为1×1;Y为预编码之后的信号,矩阵维数为NT×1,其中NT为CSI-RS端口的个数;P为预编码矩阵;
    规定在所述最大比合并传输模式下,终端只有单根天线;
    根据已知的NT个CSI-RS端口与终端的SRS发送天线之间的信道传输矩阵,依据公式:P=H*获取得到在所述最大比合并传输模式下的预编码矩阵;其中,
    所述信道传输矩阵记为H,其矩阵维数为1×NT;H*为所述信道传输矩阵的伴随矩阵。
  5. 根据权利要求4所述的方法,其中,所述根据所述信道传输矩阵,获取在基站处于最大比合并传输模式下,所述SRS发送天线的信道质量指示CQI,具体包括:
    在最大比合并传输模式下,根据预编码矩阵和所述信道传输矩阵,获取所 述SRS发送天线的信噪比;
    将所述信噪比进行量化,获取得到所述SRS发送天线的信道质量指示CQI。
  6. 根据权利要求5所述的方法,其中,所述根据预编码矩阵和所述信道传输矩阵,获取所述SRS发送天线的信噪比,具体包括:
    根据所述预编码矩阵、所述信道传输矩阵以及信号的发送功率,计算得到有用信号的功率;
    根据所述有用信号的功率以及终端受到的干扰功率,计算得到所述SRS发送天线的信噪比。
  7. 根据权利要求5所述的方法,其中,当所述终端具有一个SRS发送天线时,所述反馈信息只包含所述CQI,相应地,所述发送反馈信息给所述基站,具体为:
    发送所述CQI给所述基站;
    当所述终端具有至少两个SRS发送天线时,所述反馈信息包含所述CQI以及表示所述CQI与所述SRS发送天线的对应关系的标记信息,相应地,所述发送反馈信息给所述基站,具体为:
    发送所述CQI以及表示所述CQI与所述SRS发送天线的对应关系的标记信息给所述基站。
  8. 一种信道状态信息反馈的装置,包括:
    第一获取模块,用于获取基站发送的参考信息;
    第二获取模块,用于根据所述参考信息,获取终端的信道探测参考信号SRS发送天线与所述基站的所述参考信息对应的端口之间的信道传输矩阵;
    第三获取模块,用于根据所述信道传输矩阵,获取在基站处于最大比合并传输模式下,所述SRS发送天线的信道质量指示CQI;
    反馈模块,用于发送反馈信息给所述基站,所述反馈信息中至少包含所述CQI。
  9. 根据权利要求8所述的装置,其中,所述参考信息为信道状态信息参考信号CSI-RS,且所述端口为至少一个CSI-RS端口。
  10. 根据权利要求9所述的装置,其中,所述最大比合并传输模式为:
    定义Y=PX;其中,
    X是预编码之前单流信号,矩阵维数为1×1;Y为预编码之后的信号,矩 阵维数为NT×1,其中NT为CSI-RS端口的个数;P为预编码矩阵;
    规定在所述最大比合并传输模式下,终端只有单根天线;
    根据已知的NT个CSI-RS端口与终端的SRS发送天线之间的信道传输矩阵,依据公式:P=H*获取得到在所述最大比合并传输模式下的预编码矩阵;其中,
    所述信道传输矩阵记为H,其矩阵维数为1×NT;H*为所述信道传输矩阵的伴随矩阵。
  11. 根据权利要求10所述的装置,其中,所述第三获取模块包括:
    第一获取子模块,用于在最大比合并传输模式下,根据预编码矩阵和所述信道传输矩阵,获取所述SRS发送天线的信噪比;
    第二获取子模块,用于将所述信噪比进行量化,获取得到所述SRS发送天线的信道质量指示CQI。
  12. 根据权利要求11所述的装置,其中,所述第一获取子模块具体包括:
    第一计算单元,用于根据所述预编码矩阵、所述信道传输矩阵以及信号的发送功率,计算得到有用信号的功率;
    第二计算单元,用于根据所述有用信号的功率以及终端受到的干扰功率,计算得到所述SRS发送天线的信噪比。
  13. 根据权利要求11所述的装置,其中,当所述终端具有一个SRS发送天线时,所述反馈信息只包含所述CQI,相应地,所述反馈模块具体为:
    发送所述CQI给所述基站;
    当所述终端具有至少两个SRS发送天线时,所述反馈信息包含所述CQI以及表示所述CQI与所述SRS发送天线的对应关系的标记信息,相应地,所述反馈模块具体为:
    发送所述CQI以及表示所述CQI与所述SRS发送天线的对应关系的标记信息给所述基站。
  14. 一种终端,包括如权利要求8至13任一项所述的信道状态信息反馈的装置。
  15. 一种信道状态信息反馈的方法,应用于基站侧,包括:
    发送参考信息,使得终端根据接收到的所述参考信息,获取终端的信道探测参考信号SRS发送天线与所述基站的所述参考信息对应的端口之间的信道传输矩阵,并在基站处于最大比合并传输模式下,根据所述信道传输矩阵计算得 到的信道质量指示CQI后,发送至少包含所述CQI的反馈信息给基站;
    接收并解析所述反馈信息,得到接收到的所述CQI对应的SRS发送天线。
  16. 一种基站,包括:
    发送模块,用于发送参考信息,使得终端根据接收到的所述参考信息,获取终端的信道探测参考信号SRS发送天线与所述基站的所述参考信息对应的端口之间的信道传输矩阵,并在基站处于最大比合并传输模式下,根据所述信道传输矩阵计算得到的信道质量指示CQI后,发送至少包含所述CQI的反馈信息给基站;
    解析模块,用于接收并解析所述反馈信息,得到接收到的所述CQI对应的SRS发送天线。
PCT/CN2016/078577 2015-04-07 2016-04-06 一种信道状态信息反馈的方法、装置、终端及基站 WO2016161936A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510160726.6A CN106160924B (zh) 2015-04-07 2015-04-07 一种信道状态信息反馈的方法、装置、终端及基站
CN201510160726.6 2015-04-07

Publications (1)

Publication Number Publication Date
WO2016161936A1 true WO2016161936A1 (zh) 2016-10-13

Family

ID=57072493

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/078577 WO2016161936A1 (zh) 2015-04-07 2016-04-06 一种信道状态信息反馈的方法、装置、终端及基站

Country Status (2)

Country Link
CN (1) CN106160924B (zh)
WO (1) WO2016161936A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109450605A (zh) * 2018-12-26 2019-03-08 杭州铭智云教育科技有限公司 一种基于双测量法反馈的高安全性调度方法

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108271174A (zh) * 2016-12-30 2018-07-10 华为技术有限公司 上行传输的方法、装置和系统
WO2018176491A1 (en) 2017-04-01 2018-10-04 Qualcomm Incorporated Enhanced power headroom report for feeding back beamformed srs power scaling
CN111446994B (zh) 2017-04-18 2024-05-14 Oppo广东移动通信有限公司 一种用于多天线传输的用户设备、基站中的方法和装置
CN109391314B (zh) * 2017-08-11 2021-08-27 北京紫光展锐通信技术有限公司 反馈、获取信道质量的方法、用户设备、基站及可读介质
CN109428641B (zh) * 2017-09-01 2021-10-15 华为技术有限公司 数据传输方法和装置
TWI704780B (zh) * 2017-10-03 2020-09-11 聯發科技股份有限公司 無線通訊中基於碼本之上行鏈路傳輸方法
US10707939B2 (en) 2017-10-03 2020-07-07 Mediatek Inc. Codebook-based uplink transmission in wireless communications
WO2019153213A1 (en) * 2018-02-09 2019-08-15 Zte Corporation Method and apparatus for multi-layered data transmission
EP3800819B1 (en) 2018-07-10 2023-11-22 Huawei Technologies Co., Ltd. Method and device for reporting channel state information
CN110233645B (zh) * 2019-06-11 2021-08-31 Oppo广东移动通信有限公司 天线切换方法和装置、电子设备、计算机可读存储介质
CN110337141B (zh) * 2019-06-17 2022-06-07 Oppo广东移动通信有限公司 一种通信控制方法、终端、基站以及计算机存储介质
CN110471286B (zh) * 2019-08-26 2022-07-29 京信网络系统股份有限公司 链路自适应调整系统、方法、装置和基站
CN113872651B (zh) * 2021-10-12 2022-12-27 京信网络系统股份有限公司 预编码矩阵的获取方法、装置、基站及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101388704A (zh) * 2008-10-16 2009-03-18 北京创毅视讯科技有限公司 一种单播和多播业务叠加时的传输方法及移动通信系统
CN102378275A (zh) * 2010-08-13 2012-03-14 上海贝尔股份有限公司 一种获取增强的信道质量指示信息的方法和装置
CN103563268A (zh) * 2011-03-31 2014-02-05 松下电器产业株式会社 在通信系统中反馈mu-cqi的方法、传输点装置以及用户设备
WO2015020290A1 (en) * 2013-08-09 2015-02-12 Lg Electronics Inc. Antenna combining for massive mimo scheme

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102469496B (zh) * 2010-11-05 2014-12-17 大唐移动通信设备有限公司 一种信道质量信息的上报方法及其装置
CN102045762B (zh) * 2010-12-02 2013-07-24 大唐移动通信设备有限公司 一种上报信道状态的方法及装置
CN102291212B (zh) * 2011-08-12 2014-06-18 电信科学技术研究院 信道状态信息的反馈方法和设备
TWI617148B (zh) * 2012-09-28 2018-03-01 內數位專利控股公司 用於報告回饋的無線發射/接收單元及方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101388704A (zh) * 2008-10-16 2009-03-18 北京创毅视讯科技有限公司 一种单播和多播业务叠加时的传输方法及移动通信系统
CN102378275A (zh) * 2010-08-13 2012-03-14 上海贝尔股份有限公司 一种获取增强的信道质量指示信息的方法和装置
CN103563268A (zh) * 2011-03-31 2014-02-05 松下电器产业株式会社 在通信系统中反馈mu-cqi的方法、传输点装置以及用户设备
WO2015020290A1 (en) * 2013-08-09 2015-02-12 Lg Electronics Inc. Antenna combining for massive mimo scheme

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109450605A (zh) * 2018-12-26 2019-03-08 杭州铭智云教育科技有限公司 一种基于双测量法反馈的高安全性调度方法

Also Published As

Publication number Publication date
CN106160924B (zh) 2019-08-02
CN106160924A (zh) 2016-11-23

Similar Documents

Publication Publication Date Title
WO2016161936A1 (zh) 一种信道状态信息反馈的方法、装置、终端及基站
JP6983774B2 (ja) 減少されたフィードバックmimoのための方法及び装置
KR102525602B1 (ko) 다중 안테나를 이용하는 무선 통신 시스템에서 채널 상태 정보를 송수신하는 방법 및 장치
KR102401001B1 (ko) 부분 프리코딩 csi-rs 및 csi 피드백을 위한 다운링크 시그널링 방법 및 장치
US9143951B2 (en) Method and system for coordinated multipoint (CoMP) communication between base-stations and mobile communication terminals
EP2701425B1 (en) Method, device, and system for reporting channel quality indicator
KR101523687B1 (ko) 채널 상태를 리포팅하는 방법 및 장치
US9660784B2 (en) Method and apparatus providing inter-transmission point phase relationship feedback for joint transmission CoMP
US9307523B2 (en) Reference signal design for coordinated multipoint transmission
US9743304B2 (en) Method of feeding back MU-CQI in a communication system, transmission point device, and user equipment
CN106160952B (zh) 一种信道信息反馈方法及装置
EP2648443B1 (en) Method for reporting channel quality information and device thereof
WO2012110863A1 (en) Method of determining a channel state in coordinated multipoint transmission
WO2012095015A1 (zh) 一种确定信道质量指示信息的方法和装置
EP2901568A1 (en) Non-codebook based channel state information feedback
US20130301447A1 (en) Method and System for Reporting Feedback in Cooperative Multipoint Transmission
WO2017076347A1 (zh) 一种信道状态信息量化反馈方法及终端
WO2012059000A1 (zh) 一种信道质量信息的上报方法及其装置
US20130250876A1 (en) Method And Apparatus Providing Inter-Transmission Point Phase Relationship Feedback For Joint Transmission CoMP
CN106027181B (zh) 一种基于认知无线电技术的信道测量和反馈方法
WO2016078478A1 (zh) 一种信道状态信息测量方法、信道状态信息获取方法、终端和网络设备
WO2017096954A1 (zh) Cqi估计、sinr确定方法及相关设备
WO2016045524A1 (zh) 导频发送方法、信道信息测量反馈方法、发送端及接收端
WO2014023727A1 (en) Method and apparatus providing inter-transmission point phase relationship feedback for joint transmission comp
WO2022009151A1 (en) Shared csi-rs for partial-reciprocity based csi feedback

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16776111

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16776111

Country of ref document: EP

Kind code of ref document: A1