WO2012095015A1 - 一种确定信道质量指示信息的方法和装置 - Google Patents

一种确定信道质量指示信息的方法和装置 Download PDF

Info

Publication number
WO2012095015A1
WO2012095015A1 PCT/CN2012/070292 CN2012070292W WO2012095015A1 WO 2012095015 A1 WO2012095015 A1 WO 2012095015A1 CN 2012070292 W CN2012070292 W CN 2012070292W WO 2012095015 A1 WO2012095015 A1 WO 2012095015A1
Authority
WO
WIPO (PCT)
Prior art keywords
csi
cqi
ports
port
reference resource
Prior art date
Application number
PCT/CN2012/070292
Other languages
English (en)
French (fr)
Inventor
李儒岳
陈艺戬
徐俊
郭森宝
戴博
孙云锋
张峻峰
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=46483571&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2012095015(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to JP2013548731A priority Critical patent/JP5649744B2/ja
Priority to ES12734059T priority patent/ES2730979T4/es
Priority to EP12734059.4A priority patent/EP2654356B1/en
Priority to KR20137019545A priority patent/KR101504446B1/ko
Priority to US13/979,381 priority patent/US9107087B2/en
Publication of WO2012095015A1 publication Critical patent/WO2012095015A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0632Channel quality parameters, e.g. channel quality indicator [CQI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/20Arrangements for detecting or preventing errors in the information received using signal quality detector
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/20Arrangements for detecting or preventing errors in the information received using signal quality detector
    • H04L1/206Arrangements for detecting or preventing errors in the information received using signal quality detector for modulated signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0224Channel estimation using sounding signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/18Phase-modulated carrier systems, i.e. using phase-shift keying
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems

Definitions

  • the present invention relates to the field of wireless communications, and in particular, to a method and apparatus for determining channel quality indication (CQI, Channels quality indication) information.
  • CQI Channel quality indication
  • a base station such as an evolved Node B (eNodeB, eNB) transmits data using multiple antennas
  • spatial multiplexing may be adopted to increase the data transmission rate, that is, the same time-frequency resource is used at the transmitting end.
  • the antenna position transmits different data
  • the receiving end such as the user equipment (UE, User Equipment) also uses multiple antennas to receive data.
  • the resources of all the antennas are allocated to the same user.
  • the user owns the physical resources allocated to the base station side in the transmission interval.
  • This transmission mode is called single user multiple input multiple output (Single User Multiple- Input Multiple-Out-put, SU-MIMO); allocates spatial resources of different antennas to different users in the case of multiple users, and one user and at least one other user share physical resources allocated by the base station side in the transmission interval, sharing mode It can be a space division multiple access method or a space division multiplexing mode.
  • This type of transmission is called Multiple User Multiple-Input Multiple-Out-put (MU-MIMO), and the physical resources allocated by the base station side. Refers to time-frequency resources. If the transmission system is to support both SU-MIMO and MU-MIMO, the eNB needs to provide the UE with data in these two modes.
  • the UE When the UE is in the SU-MIMO mode or the MU-MIMO mode, it is necessary to know the rank ( Rank) used by the eNB to transmit MIMO data to the UE.
  • Rank the rank used by the eNB to transmit MIMO data.
  • SU-MIMO mode all antenna resources are allocated to the same user, and the number of layers used to transmit MIMO data is equal to the rank used by the eNB to transmit MIMO data.
  • MU-MIMO mode the number of layers used for one user transmission Less than the total number of layers of MIMO data transmitted by the eNB. If SU-MIMO mode and MU-MIMO handover are to be performed, the eNB needs to notify the UE in different transmission modes. Different control data.
  • the control signaling that needs to be transmitted on the uplink has an ACK/NACK, Acknowledgement/Negative Acknowledgement, and information reflecting the state of the downlink physical channel (CSI, Channel State).
  • CSI Downlink Physical channel
  • CQI is an indicator used to measure the quality of downlink channels.
  • CQI is represented by integer values from 0 to 15, which represent different CQI levels.
  • Different CQIs correspond to their respective code modulation schemes (MCS, Modulation and Coding Scheme), as shown in Table 1.
  • MCS code modulation schemes
  • Table 1 The selection of CQI levels should follow the following guidelines:
  • the selected CQI level should be such that the PDSCH (Physical Downlink Shared Channel) transport block corresponding to the CQI has a block error rate of less than 0.1 under the corresponding MCS.
  • PDSCH Physical Downlink Shared Channel
  • the UE Based on the unrestricted detection interval in the frequency domain and the time domain, the UE will obtain the highest CQI value corresponding to each of the maximum CQI values reported in the uplink subframe n, and the CQI index range is 1-15, and satisfies the following Condition, if the CQI index 1 does not satisfy the condition, the CQI index is 0: the error rate of the single PDSCH transport block when received is not more than 0.1, and the PDSCH transport block contains joint information: modulation mode and transport block size, corresponding to one CQI index And a group of downlink physical resource blocks occupied, that is, CQI reference resources.
  • the highest CQI value refers to the maximum CQI value when the block error rate (BLER) is not greater than 0.1, which is beneficial to control resource allocation.
  • BLER block error rate
  • the combination of the transport block size and the modulation mode corresponds to a CQI index, which specifically includes the following conditions:
  • the combined information for PDSCH transmission on the CQI reference resource may be signaled.
  • the CQI index can indicate the modulation mode.
  • the effective channel coding rate is the most likely effective channel coding rate that can be characterized by the CQI index.
  • the combined information with the smallest transport block size is used.
  • Each CQI index corresponds to a modulation mode and a transport block size
  • the transport block size and the number of physical resource blocks (NPRBs) have a certain correspondence relationship
  • the coding can be calculated according to the transport block size and the size of the NPRB. rate.
  • CQI There are many definitions of CQI appearing in LTE. According to different principles, CQI can be divided:
  • wideband CQI refers to the channel state indication of all subbands, and the CQI information of the subband set S is obtained;
  • the subband CQI pointer is the CQI information for each subband.
  • LTE divides the resource block (RB: Resource Block) corresponding to the effective bandwidth into several RB groups according to different system bandwidths, and each RB group is called a subband.
  • RB Resource Block
  • Subband CQI can be further divided into full subband CQI and select M best subbands (Best M) CQI: full subband CQI reports CQI information of all subbands; selects M subbands from subband set S, and reports these M subbands The CQI information, and simultaneously report the location information of the M subbands.
  • Best M M best subbands
  • the UE reports CQI information of a single code stream;
  • dual-stream CQI applies Closed loop spatial multiplexing mode.
  • the open-loop spatial multiplexing mode since the channel state information is unknown and the dual-stream characteristics are equalized in the precoding, the CQIs of the two code streams are equal under the open-loop spatial multiplexing. 3.
  • the CQI representation method it is divided into absolute value CQI and differential (Differential) CQI: absolute value CQI is the CQI index represented by 4 bits in Table 1;
  • the differential CQI is a CQI index expressed by 2 bits or 3 bits; the differential CQI is further divided into a differential CQI of the second code stream with respect to the first code stream, and a differential CQI of the subband CQI with respect to the subband CQI.
  • the CQI method it is divided into wideband CQL UE selected (selected X subband CQI) and high layer configured (subband CQI).
  • Wideband CQI refers to the CQI information of the subband set S
  • the UE selected is the Best M CQI, and feeds back the CQI information of the selected M subbands, and reports the positions of the M subbands at the same time;
  • High layer configured is a full subband CQI that feeds back one CQI information for each subband.
  • Both the high layer configured and the UE selected are sub-band CQI feedback modes.
  • the subband sizes defined by the two feedback modes are inconsistent; in the UE selected mode, the size of the M is also defined.
  • the ACK/NACK is transmitted on the physical uplink control channel (PUCCH, Physical Uplink Control) in the format 1/la/lb (PUCCH formatl/la/lb). If the UE needs to send uplink data, it is in the physical uplink shared channel. (PUSCH, Physical Uplink Shared Channel) transmission, CQI/PMI and RI feedback can be periodic feedback or non-periodic feedback. The specific feedback is shown in Table 2:
  • the CQI/PMI and RI if the UE does not need to send For the line data, the CQI/PMI and RI of the periodic feedback are transmitted on the PUCCH in the format 2/2a/2b (PUCCH format 2/2a/2b); if the UE needs to transmit the uplink data, the CQI/PMI and the RI are transmitted on the PUSCH; For CQI/PMI and RI of aperiodic feedback, it is transmitted only on the PUSCH.
  • the following three types of downlink physical control channels are defined in the Release 8 (LTE) standard: Physical Control Format Indicator Channel (PCFICH) and Physical Hybrid Automatic Retransmission Request (Physical Hybrid Automatic Retransmission Request) Indicator Channel, PHICH) and Physical Downlink Control Channel (PDCCH).
  • PCFICH Physical Control Format Indicator Channel
  • PHICH Physical Hybrid Automatic Retransmission Request
  • PDCCH Physical Downlink Control Channel
  • DCI Downlink Control Information
  • the DCI format (DCI format) is divided into the following types: DCI format 0, DCI format 1, DCI format 1A, DCI format 1B, DCI format 1C, DCI format 1D, DCI format 2, DCI format 2A, DCI format 3, and DCI Format 3 A, etc.; the transmission mode 5 supporting MU-MIMO utilizes the downlink control information of the DCI format ID, and the downlink power domain (Downlink power offset field) in the DCI format ID is used to indicate the user in the MU-MIMO mode.
  • the power is halved (ie, -lOloglO U )), because MU-MIMO transmission mode 5 only supports MU-MIMO transmission for two users.
  • MU-MIMO transmission mode 5 can support SU-MIMO mode. Dynamic switching with MU-MIMO mode, but this DCI format supports only one stream transmission for one UE in either SU-MIMO mode or MU-MIMO mode, although LTE Release 8 supports up to two streams in transmission mode 4. User transmission, but because the switching between transmission modes can only be semi-statically, single-user multi-stream transmission and multi-purpose cannot be implemented in LTE Release 8. Dynamic transmission switching.
  • a dual-flow beamforming transmission mode is introduced, defined as transmission mode 9, and downlink control information is added to DCI format 2B to support such transmission.
  • Mode there is one in DCI format 2B
  • the identification bits of the scrambling identity (SCID) support two different scrambling code sequences, and the eNB can allocate the two scrambling code sequences to different users and multiplex multiple users in the same resource.
  • the new data indication (NDI) bit corresponding to the non-enabled (Transmitted) transport block is also used to indicate the antenna port at the time of single layer transmission.
  • a new closed-loop spatial multiplexing transmission mode is added, which is defined as a transmission mode 10, which can support both single-user MIMO and support.
  • Multi-user MU-MIMO and can support dynamic switching between the two, and this transmission mode also supports 8-antenna transmission.
  • This new transmission mode has determined the Demodulation Reference Signal (DMRS) for demodulation pilots. The UE needs to obtain the pilot position before it can make channel and interference estimates on the pilot. .
  • DMRS Demodulation Reference Signal
  • the UE is semi-statically set by higher layer signaling to receive PDSCH data transmission according to a PDCCH indication of a user equipment-specific (UE-Specific) search space based on one of the following transmission modes. :
  • Mode 1 Single antenna port; Port 0 ( Single-antenna port; port 0 );
  • Mode 2 Transmit diversity (Transmit diversity);
  • Mode 3 Open-loop spatial multiplexing
  • Mode 5 Multi-user Multiple Input Multiple Output (Multi-user MIMO);
  • Mode 7 Single antenna port; Port 5 (Single-antenna port; port 5);
  • Mode 8 dual stream transmission, ie dual stream beamforming
  • Mode 9 Up to 8 layers of closed loop spatial multiplexing.
  • the transmission mode 9 and the channel state information-reference symbol are newly added, and the transmission mode 9 is based on the CSI-RS for channel measurement, thereby calculating the CQI.
  • Other transmission modes are based on cell-specific A channel measurement is performed by a reference signal (CRS, cell-specific reference signal) to calculate a CQI.
  • some CSI-RS parameters have also been added to characterize attributes. Compared to the CRS in R8, some parameters are similar, and some parameters are new. For example, the number of CSI-RS ports also has a similar number of CRS ports in R8, and the CSI-RS subframe configuration period parameters are new.
  • the following parameters are cell-specific and configured by higher layer signaling for CSI-RS definition, including: CSI-RS port number, CSI-RS configuration, CSI-RS subframe configuration parameter (ICSI-RS), subframe The configuration period (TCSI-RS), the subframe offset, and the Pc of the UE of the reference PDSCH transmit power applied to the CSI feedback.
  • the first PMI indicates broadband channel state information
  • the second PMI indication The channel state information of the subband, only the two PMIs can obtain the complete precoding matrix information, wherein the subband includes the broadband case, that is, the broadband is a special case of the subband, for example, the second PMI can also be broadband; Antenna and 4 antennas, the first PMI indicates the unit matrix, and the second PMI is equivalent to the PMI of the original R8 protocol.
  • the technical problem to be solved by the present invention is to provide a method and apparatus for determining channel quality indication information, which solves the problem that an existing system cannot obtain accurate channel quality indication information when using transmission mode 9, and improves system flexibility and performance. .
  • a method for determining CQI information including:
  • the eNodeB sends the CSI-RS and the CRS to the UE;
  • the UE performs channel measurement according to CSI-RS or CRS;
  • the UE determines a CQI reference resource, and determines a CQI value on the CQI reference resource according to the channel measurement result;
  • the UE calculates the CQI based on the CRS; if the eNodeB is configured with the configured PMI/RI, the UE calculates the CQI based on the CSI-RS;
  • the CQI reference resource is defined by the downlink physical resource block, where the downlink physical resource block corresponds to the frequency band related to the CQI value; in the time domain, the CQI reference resource is defined by the downlink subframe; in the transport layer domain, Any RI and PMI to define a CQI reference resource, and the CQI is conditional on the RI and PMI;
  • the PRS does not use the resource element of the CQI reference resource.
  • the CQI reference resource if there is a measurable subset of the CSI measurement configured by the channel quality information measurement subframe, the channel measurement or interference measurement is limited to the subframe defined by the measurement subset.
  • the base station configures the measurement subset by signaling, or configures the measurement subset by aperiodic triggering; in the time domain, the downlink subframe of the CQI reference resource needs to be defined in the measurement sub concentrated.
  • the UE sets N virtual CSI-RS ports, and it is assumed that the transmission strategy of the downlink data sharing channel for the CQI reference resource is the ⁇ antenna transmission diversity, where ⁇ is a natural number, and ⁇ is determined by the number of ports of the CRS or the number of CSI-RS ports.
  • the UE For the transmission mode 9, if the eNodeB configuration has no PMI/RI and the number of CSI-RS ports of the eNodeB is equal to 8, the UE sets 2 virtual CSI-RS ports, and then assumes transmission of the downlink data sharing channel for the CQI reference resource.
  • the strategy is 2 antenna transmit diversity.
  • the UE For the transmission mode 9, if the eNodeB configuration has no PMI/RI and the number of CSI-RS ports of the eNodeB is equal to 8, the UE sets 4 virtual CSI-RS ports, and then assumes transmission of the downlink data sharing channel for the CQI reference resource.
  • the strategy is 4 antenna transmit diversity.
  • the UE sets one virtual CSI-RS port, and assumes the transmission of the downlink data sharing channel for the CQI reference resource.
  • the strategy is a single layer transmission.
  • the CSI-RS port is mapped from 15 to 18 to the first virtual CSI-RS port, and the CSI-RS port is mapped from 19 to 22 to the second virtual CSI-RS port.
  • the CSI-RS ports 15, 17, 19, and 21 are mapped to the first virtual CSI-RS port, and the CSI-RS ports 16, 18, 20, and 22 are mapped to the second virtual CSI-RS port.
  • the CSI-RS ports 15 and 16 are mapped to the first virtual CSI-RS port, the CSI-RS ports 17 and 18 are mapped to the second virtual CSI-RS port, and the CSI-RS ports 19 and 20 are mapped to the third.
  • the virtual CSI-RS port, CSI-RS ports 21 and 22 are mapped to the fourth virtual CSI-RS port.
  • the CSI-RS ports 15 and 19 are mapped to the first virtual CSI-RS port, the CSI-RS ports 16 and 20 are mapped to the second virtual CSI-RS port, and the CSI-RS ports 17 and 21 are mapped to the third.
  • the virtual CSI-RS port, CSI-RS ports 18 and 22 are mapped to the fourth virtual CSI-RS port.
  • the UE calculates the CQI based on the CRS; if the number of CSI-RS ports configured by the eNodeB is greater than 1, the UE calculates the CQI based on the CSI-RS.
  • An apparatus for determining channel quality indication information includes:
  • a receiving module configured to receive a CSI-RS and/or a CRS sent by the base station
  • a measurement module configured to perform channel measurement according to CSI-RS and/or CRS received by the receiving module; wherein, if the eNodeB configuration does not have PMI/RI, perform channel measurement based on the CRS;
  • the eNodeB is configured with PMI/RI, and performs channel measurement based on the CSI-RS;
  • a determining module configured to determine a CSI reference resource and a condition for calculating a CQI
  • a calculation module configured to calculate a CQI value of the corresponding CSI reference resource according to the condition determined by the determining module and the measurement result of the measurement module;
  • the CQI reference resource is defined by the downlink physical resource block, where the downlink physical resource block corresponds to the frequency band corresponding to the source CQI value; in the time domain, the CQI reference resource is defined by the downlink subframe;
  • the CQI reference resource is defined by any RI and PMI, and the CQI is conditional on the RI and PMI.
  • the determining module when calculating the condition of the CQI, is used to assume that the CSI-RS does not use the resource element of the CQI reference resource.
  • the determining module when calculating the condition of the CQI, is used to assume that the PRS does not use the resource element of the CQI reference resource.
  • the device is disposed in the UE.
  • the present invention does not add any system complexity and signaling overhead.
  • the number of high-level signaling CSI-RS ports configured determines whether the current feedback mode has PMI/RI feedback, and supports PMI/RI feedback and no PMI/RI feedback.
  • the type of the measurement reference signal is selected by the existing PMI-RI high-level configuration signaling or the number of CSI-RS ports, so that one transmission mode can support channel measurement of two reference signals, and a unified PDSCH transmission mode is defined.
  • the assumption solves the problem that the UE cannot obtain accurate channel quality information in the prior art.
  • due to the effective use of the CSI-RS parameters in R10 and the PMI-RI high-level parameters in R9 good compatibility and low overhead are maintained.
  • FIG. 1 is a flowchart of determining channel quality indication information in an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a system according to an embodiment of the present invention. detailed description
  • the CQI reference resources are described from three aspects: time domain, frequency domain and transmission domain.
  • the CQI reference resource indicates that the CQI is measured over a certain bandwidth; in the time domain, the CQI reference resource indicates that the CQI is measured on a certain downlink subframe, where the downlink subframe is In some cases it is invalid.
  • the CQI is not reported in the uplink subframe on the subframe n.
  • the number of downlink subframes nCQI_ref is at least 4. That is,
  • CQI is measured before at least 4 downlink subframes
  • the CQI is measured in the downlink subframe triggered by DCI format 0; in the case of aperiodic feedback, the CQI is measured in the subframe after the subframe triggered by the Random Access Response Grant;
  • CQI is calculated from PMI and RI.
  • the control signal occupies the first 3 OFDM (Orthogonal Frequency Division Multiple Access) symbols;
  • the primary/secondary synchronization signal or physical broadcast channel does not use resource elements;
  • CP length uses non-multicast broadcast single frequency network (MBSFN, Multicast/Broadcast Single
  • the redundancy version uses redundancy version 0 (RV0);
  • channel measurement is performed according to CSI-RS, it is necessary to specify between PDSCH and CSI-RS.
  • the ratio of the energy of each resource element (EPRE, Energy Per Resource Element); if the channel measurement is performed according to the CRS, the ratio of the EPRE between the PDSCH and the CRS needs to be given;
  • the eNodeB sends the CSI-RS and the CRS to the UE;
  • the UE performs channel measurement according to CSI-RS or CRS;
  • the UE determines the CQI reference resource and determines the CQI value on the CQI reference resource based on the channel measurement result.
  • the CQI reference resource is defined by a group of downlink physical resource blocks, where the downlink physical resource block corresponds to a frequency band corresponding to the source CQI value; in the time domain, the CQI reference resource is defined by using a downlink subframe; On the transport layer domain, the CQI reference resources are defined by any RI and PMI, and the CQI is conditioned on the RI and PMI.
  • the channel measurement or interference measurement is limited to the subframe defined by the measurement subset.
  • the base station may configure the subset of measurements by higher layer signaling, or may configure the subset of measurements by aperiodic triggering. In the time domain, the downlink subframe of the CQI reference resource needs to be defined in the measurement subset.
  • the eNodeB is configured with the PMI/RI report, otherwise the eNodeB configuration does not (configure) the PM surface report.
  • the eNodeB For transmission mode 9, if the eNodeB is configured without PMI/RI and the CSI-RS of the eNodeB The number of ports is equal to 8, and the eNodeB can set two virtual CSI-RS ports. At this time, it is assumed that the transmission strategy of the downlink data sharing channel used for the CQI reference resource is 2 antenna transmission diversity;
  • the two virtual CSI-RS ports include: a CSI-RS port is mapped from 1 to 4 to a first virtual CSI-RS port, and a CSI-RS port is mapped from 5 to 8 to a second virtual CSI-RS port.
  • the two virtual CSI-RS ports include: CSI-RS ports 15, 17, 19, and 21 are mapped to the first virtual CSI-RS port, and CSI-RS ports 16, 18, 20, and 22 are mapped to the second. Virtual CSI-RS port.
  • the eNodeB can set 4 virtual CSI-RS ports, and assume the transmission strategy of the downlink data sharing channel for the CQI reference resource. Is 4 antenna transmit diversity.
  • CSI-RS ports 15 and 16 are mapped to the first virtual CSI-RS port, and CSI-RS ports 17 and 18 are mapped to the second virtual CSI-RS port, CSI- RS ports 19 and 20 are mapped to a third virtual CSI-RS port, and CSI-RS ports 21 and 22 are mapped to a fourth virtual CSI-RS port.
  • CSI-RS ports 15 and 19 are mapped to the first virtual CSI-RS port
  • CSI-RS ports 16 and 20 are mapped to the second virtual CSI-RS port
  • CSI- RS ports 17 and 21 are mapped to a third virtual CSI-RS port
  • CSI-RS ports 18 and 22 are mapped to a fourth virtual CSI-RS port.
  • the eNodeB can set one virtual CSI-RS port, and assume the transmission strategy of the downlink data sharing channel for the CQI reference resource. It is a single layer transmission.
  • the one virtual CSI-RS port is such that CSI-RS ports 15 and 22 are mapped to one virtual CSI-RS port.
  • the UE For transmission mode 9, if the eNodeB configuration does not have PMI/RI, the UE calculates CQI based on CRS; if the eNodeB is configured with PMI/RI, the UE calculates CQI based on CSI-RS. For transmission mode 9, if the number of CSI-RS ports configured by the eNodeB is equal to 1, the UE calculates the CQI based on the CRS; if the number of CSI-RS ports configured by the eNodeB is greater than 1, the UE calculates the CQI based on the CSI-RS.
  • the base station configures a UE with a transmission mode of 9
  • the base station configures the UE with eight CSI-RS ports, and the CSI-RS port number ranges from 15 to 22.
  • the eNodeB sends a CSI-RS and a CRS to the UE.
  • the UE performs channel measurement according to the CSI-RS or the CRS.
  • the UE determines a CQI reference resource, and determines a CQI value on the CQI reference resource according to the channel measurement result.
  • the UE reports the CQI value to the eNB.
  • the first possibility is that the CQI reference resource has resource elements used by the CSI-RS.
  • the CQI reference resource has resource elements used by the CSI-RS.
  • the second possibility is that there is no CSI-RS resource element in the CQI reference resource, and naturally there is no such hypothesis.
  • the first possibility is that the CQI reference resource has resource elements used by the PRS.
  • the CQI reference resource has resource elements used by the PRS.
  • the second possibility is that there is no PRS resource element in the CQI reference resource, and naturally there is no such hypothesis.
  • the above CQI calculation method fully considers the influence of CSI-RS and PRS on CQI, and ensures the accuracy of CQI of demodulated data.
  • the CQI calculation is based on the simplest scenario, that is, the influence of the CSI-RS and the PRS on the reported CQI is excluded as much as possible, and the base station can perform the MCS of the data according to whether the current subframe includes the CSI-RS and the PRS during scheduling. Appropriate adjustments ensure the performance and effectiveness of system link adaptation.
  • the base station configures a transmission mode for a certain UE.
  • the base station configures eight CSI-RS ports for the UE, and the CSI-RS port numbers are 15 to 22.
  • the eNodeB sends the CSI-RS and the CRS to the UE;
  • the UE performs channel measurement according to CSI-RS or CRS;
  • the UE determines the CQI reference resource, and determines the CQI value on the CQI reference resource according to the channel measurement result.
  • the eNodeB can set 2 virtual CSI-RS ports, and assume the transmission strategy of the downlink data sharing channel for the CQI reference resource. It is 2 antenna transmit diversity.
  • the two virtual CSI-RS ports include: a CSI-RS port is mapped from 15 to 18 to a first virtual CSI-RS port, and a CSI-RS port is mapped from 19 to 22 to a second virtual CSI-RS port.
  • the CSI-RS side transmits the same signal from 15 to 18, and the CSI-RS port transmits the same signal from 19 to 22.
  • the two virtual CSI-RS ports include: CSI-RS ports 15, 17, 19 and 21 are mapped to the first virtual CSI-RS port, CSI-RS ports 16, 18, 20 and 22 is mapped to the second virtual CSI-RS port.
  • CSI-RS ports 15, 17, 19, and 21 transmit the same signal
  • CSI-RS port 16, 18, 20 and 22 send the same signal.
  • the base station configures a transmission mode for a certain UE.
  • the base station configures eight CSI-RS ports for the UE, and the CSI-RS port numbers are 15 to 22.
  • the eNodeB sends the CSI-RS and the CRS to the UE;
  • the UE performs channel measurement according to CSI-RS or CRS;
  • the UE determines the CQI reference resource, and determines the CQI value on the CQI reference resource according to the channel measurement result.
  • the UE For transmission mode 9, if the eNodeB configuration has no PMI/RI and the number of CSI-RS ports of the eNodeB is equal to 8, the UE sets 4 virtual CSI-RS ports, and assumes a transmission strategy of the downlink data sharing channel for the CQI reference resource. Is 4 antenna transmit diversity.
  • CSI-RS ports 15 and 16 are mapped to the first virtual CSI-RS port, and CSI-RS ports 17 and 18 are mapped to the second virtual CSI-RS port, CSI- RS ports 19 and 20 are mapped to a third virtual CSI-RS port, and CSI-RS ports 21 and 22 are mapped to a fourth virtual CSI-RS port.
  • CSI-RS ports 15 and 16 transmit the same signal
  • CSI-RS ports 17 and 18 transmit the same signal
  • CSI-RS ports 19 and 20 transmit the same signal
  • CSI-RS ports 21 and 22 transmit the same signal.
  • the CSI-RS ports 15 and 19 are mapped to the first virtual CSI-RS port, and the CSI-RS ports 16 and 20 are mapped to the second virtual CSI-RS port.
  • CSI-RS ports 17 and 21 are mapped to a third virtual CSI-RS port, and CSI-RS ports 18 and 22 are mapped to a fourth virtual CSI-RS port.
  • CSI-RS ports 15 and 19 transmit the same signal
  • CSI-RS ports 16 and 20 transmit the same signal
  • CSI-RS ports 17 and 21 transmit the same signal
  • CSI-RS port 18 and 22 sends the same signal.
  • the base station configures a transmission mode for a certain UE.
  • the base station configures eight CSI-RS ports for the UE, and the CSI-RS port numbers are 15 to 22.
  • the eNodeB sends the CSI-RS and the CRS to the UE;
  • the UE performs channel measurement according to CSI-RS or CRS;
  • the UE determines the CQI reference resource, and determines the CQI value on the CQI reference resource according to the channel measurement result.
  • the eNodeB can set one virtual CSI-RS port, and assume the transmission strategy of the downlink data sharing channel for the CQI reference resource. It is a single layer transmission.
  • the CSI-RS ports 15 and 22 are mapped to one virtual CSI-RS port.
  • the eNodeB sends the CSI-RS and the CRS to the UE;
  • the UE performs channel measurement according to CSI-RS or CRS;
  • the UE determines the CQI reference resource, and determines the CQI value on the CQI reference resource according to the channel measurement result.
  • the UE For transmission mode 9, if the eNodeB configuration does not have PMI/RI, the UE sets N virtual ports, and it is assumed that the transmission strategy of the downlink data sharing channel for the CQI reference resource is N antenna transmission diversity, where N is a natural number, N is Determined by the number of CRS ports or the number of CSI-RS ports, N can be 1, 2, 4.
  • Example 6 When determining the channel quality indication information, you can perform the following steps:
  • the eNodeB sends the CSI-RS and the CRS to the UE;
  • the UE performs channel measurement according to CSI-RS or CRS;
  • the UE determines the CQI reference resource, and determines the CQI value on the CQI reference resource according to the channel measurement result.
  • the CQI reference resource is defined by a group of downlink physical resource blocks, where the downlink physical resource block corresponds to a frequency band corresponding to the source CQI value; in the time domain, the CQI reference resource is defined by using a downlink subframe; On the transport layer domain, the CQI reference resources are defined by any RI and PMI, and the CQI is conditioned on the RI and PMI.
  • the channel measurement or interference measurement is limited to the subframe defined by the measurement subset.
  • the base station may configure the subset of measurements by higher layer signaling, or may configure the subset of measurements by aperiodic triggering. In the time domain, the downlink subframe of the CQI reference resource needs to be defined in the measurement subset.
  • the embodiment provides a device for determining channel quality indication information, which can be set in the UE, and the system including the UE and the eNodeB is as shown in FIG. 2 . among them,
  • the eNodeB includes a sending module and a receiving module, where:
  • a sending module configured to send a CSI-RS and/or a CRS to the terminal
  • a receiving module configured to receive a CQI sent by the terminal
  • the UE includes a receiving module, a measuring module, a determining module, a calculating module, and a sending module, and a receiving module, configured to receive a CSI-RS and/or a CRS sent by the base station;
  • a measurement module configured to perform channel measurement according to CSI-RS and/or CRS received by the receiving module; wherein, if the eNodeB configuration does not have PMI/RI, perform channel measurement based on CRS; if the eNodeB is configured with PMI/RI, it is based on CSI - RS performs channel measurement.
  • a determining module configured to determine a CSI reference resource and a condition for calculating a CQI; and a calculating module, configured to calculate a CQI value of the corresponding CSI reference resource according to the condition determined by the determining module and the measurement result of the measurement module.
  • the module determines that the CQI condition is calculated, it can be assumed that the CSI-RS does not use the resource element of the CQI reference resource.
  • the module When the module is determined to calculate the CQI condition, it can also be assumed that the PRS does not use the resource element of the CQI reference resource.
  • the UE can perform channel measurement according to CSI-RS or CRS; and the UE can determine the CQI reference resource, and determine the CQI value on the CQI reference resource according to the channel measurement result.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Power Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Description

一种确定信道质量指示信息的方法和装置 技术领域
本发明涉及无线通信领域,尤其涉及确定信道质量指示(CQI, Channels quality indication )信息的方法和装置。 背景技术
在无线通信技术中, 演进的节点 B ( eNodeB , eNB )等基站使用多根 天线发送数据时, 可以采取空间复用的方式来提高数据传输速率, 即在发 送端使用相同的时频资源在不同的天线位置发射不同的数据, 用户设备 ( UE, User Equipment )等接收端也使用多根天线接收数据。 在单用户的情 况下将所有天线的资源都分配给同一用户, 此用户在传输间隔内独自占有 分配给基站侧的物理资源, 这种传输方式称为单用户多入多出(Single User Multiple-Input Multiple-Out-put, SU-MIMO ); 在多用户的情况下将不同天 线的空间资源分配给不同用户, 一个用户和至少一个其它用户在传输间隔 内共享基站侧分配的物理资源, 共享方式可以是空分多址方式或者空分复 用方式, 这种传输方式称为多用户多入多出 ( Multiple User Multiple-Input Multiple-Out-put, MU-MIMO ), 其中基站侧分配的物理资源是指时频资源。 传输系统如果要同时支持 SU-MIMO和 MU-MIMO, eNB则需要向 UE提供 这两种模式下的数据。 UE在 SU-MIMO模式或 MU-MIMO模式时, 均需获 知 eNB对于该 UE传输 MIMO数据所用的秩( Rank )。 在 SU-MIMO模式 下, 所有天线的资源都分配给同一用户, 传输 MIMO数据所用的层数就等 于 eNB在传输 MIMO数据所用的秩; 在 MU-MIMO模式下, 对应一个用 户传输所用的层数少于 eNB 传输 MIMO 数据的总层数, 如果要进行 SU-MIMO模式与 MU-MIMO的切换, eNB需要在不同传输模式下通知 UE 不同的控制数据。
在长期演进系统(LTE, Long Term Evolution ) 中, 上行需要传输的控 制信令有正确 /错误应答消息 ( ACK/NACK , Acknowledgement/Negative Acknowledgement ),以及反映下行物理信道状态的信息( CSI, Channel State Information )的三种形式: CQI、 预编码矩阵指示(PMI, Pre-coding Matrix Indicator ), 秩指示 ( RI, Rank Indicator )。
CQI是用来衡量下行信道质量好坏的指标。在 36-213协议中 CQI用 0 ~ 15的整数值来表示, 分别代表了不同的 CQI等级, 不同 CQI对应着各自的 编码调制方式( MCS, Modulation and Coding Scheme ), 见表 1。 CQI等级 的选择应遵循如下准则:
所选择的 CQI等级,应使得该 CQI所对应的 PDSCH( Physical Downlink Shared Channel )传输块在相应的 MCS下的误块率不超过 0.1。
基于在频域和时域中的非限制检测间隔, UE将获得最高的 CQI值,对 应于每个在上行子帧 n中上报的最大 CQI值, CQI的索引范围为 1-15, 并 满足如下条件,如果 CQI索引 1不满足该条件, CQI索引为 0:单一的 PDSCH 传输块在被接收时错误率不超过 0.1 , PDSCH传输块包含联合信息: 调制 方式和传输块大小,对应于一个 CQI索引以及占用的一组下行物理资源块, 即 CQI参考资源。 其中, 最高的 CQI值是指, 在保证误包率(BLER, block error rate ) 不大于 0.1时的最大 CQI值, 有利于控制资源分配。 一般来说, CQI值越小, 占用的资源越多, BLER性能越好。
传输块大小和调制方式的组合对应一个 CQI索引,具体包括如下条件:
1、 根据相关的传输块大小表格, 在 CQI参考资源上进行 PDSCH传输 的所述组合信息可以使用信令通知。
2、 CQI索引可以指示调制方式。
3、 运用在参考资源中的包含传输块大小和调制方案的组合信息所产生 的有效信道编码速率, 是由 CQI索引所能表征的最可能接近的有效信道编 码速率。 当存在不止一个所述组合信息, 并且它们都可以产生同样接近的 由 CQI索引表征的有效信道编码速率时, 则采用具有最小传输块大小的组 合信息。
每个 CQI索引对应了一种调制方式和传输块大小, 传输块大小和物理 资源块数( NPRB , the number of Physical resource block )有确定的对应关 系, 根据传输块大小和 NPRB的大小可计算编码速率。
表 1 : 4比特 CQI表格
Figure imgf000005_0001
制)
8 16QAM 490 1.9141
9 16QAM 616 2.4063
10 64QAM 466 2.7305
11 64QAM 567 3.3223
12 64QAM 666 3.9023
13 64QAM 772 4.5234
14 64QAM 873 5.1152
15 64QAM 948 5.5547
LTE中出现的 CQI定义繁多,根据不同的原则,可以对 CQI进行划分:
1、 根据测量带宽分为宽带 (wideband ) CQI和子带 (subband ) CQI: wideband CQI指对所有的 subband的信道状态指示, 得到的是 subband 集合 S的 CQI信息;
subband CQI指针对每一个子带的 CQI信息。 LTE根据不同的系统带宽, 将有效带宽对应的资源块(RB: Resource Block )分成了若干个 RB组, 每 一个 RB组称为 subband。
subband CQI又可以分为全 subband CQI和选择 M个最好子带( Best M ) CQI: 全 subband CQI上报所有子带的 CQI信息; 从子带集合 S中挑选 M 个子带, 上报这 M个子带的 CQI信息, 并同时上报 M个子带的位置信息。
2、 根据码流个数分为单流 CQI和双流 CQI:
单流 CQI: 应用于单天线发射端口 (port ) 0, port 5、 发射分集、 MU-MIMO、 RI=1的闭环空间复用 , 此时 UE上报单个码流的 CQI信息; 双流 CQI: 应用于闭环空间复用模式。 对于开环空间复用模式, 由于 信道状态信息未知, 且在预编码中对双流特性进行了均衡处理, 因此开环 空间复用下, 2个码流的 CQI是相等的。 3、 根据 CQI表示方法分为绝对值 CQI和差分(Differential ) CQI: 绝对值 CQI即表 1中用 4bit表示的 CQI index;
差分 CQI用 2bit或 3bit表示的 CQI index; 差分 CQI又分为第 2个码 流相对于第 1个码流的差分 CQI、 subband CQI相对于 subband CQI的差分 CQI。
4、根据 CQI上 ^艮方式分为 wideband CQL UE选择的( selected X subband CQI )、 高层配置的 ( High layer configured ) ( subband CQI )
wideband CQI指 subband集合 S的 CQI信息;
UE selected ( subband CQI )即 Best M CQI, 反馈所选择的 M个子带的 CQI信息, 同时上报 M个子带的位置;
High layer configured ( subband CQI )即全 subband CQI, 针对每一个子 带反馈一个 CQI信息。
High layer configured和 UE selected均是子带 CQI的反馈方式,在非周 期反馈模式下, 这两种反馈方式定义的子带大小不一致; 在 UE selected模 式下, 还定义了 M的大小。
LTE 系统中, ACK/NACK在物理上行控制信道(PUCCH , Physical Uplink Control )上以格式 1/la/lb ( PUCCH formatl/la/lb )传输, 如果 UE 需要发送上行数据,则在物理上行共享信道( PUSCH, Physical Uplink Shared Channel )上传输, CQI/PMI和 RI的反馈可以是周期性的反馈, 也可以是非 周期性的反馈, 具体的反馈如表 2所示:
Figure imgf000007_0001
表 2、 周期性反馈和非周期性反馈对应的上行物理信道
其中, 对于周期性反馈的 CQI/PMI和 RI而言, 如果 UE不需要发送上 行数据,则周期反馈的 CQI/PMI和 RI在 PUCCH上以格式 2/2a/2b( PUCCH format2/2a/2b )传输;如果 UE需要发送上行数据,则 CQI/PMI和 RI在 PUSCH 上传输; 对于非周期性反馈的 CQI/PMI和 RI而言, 只在 PUSCH上传输。
LTE的版本 8 ( Release 8 )标准中定义了如下三种下行物理控制信道: 物理下行控制格式指示信道 ( Physical Control Format Indicator Channel, PCFICH )、 物理混合自动重传请求指示信道( Physical Hybrid Automatic Retransmission Request Indicator Channel , PHICH ) 和物理下行控制信道 ( Physical Downlink Control Channel, PDCCH )。 其中 PDCCH用于承载下 行控制信息(Downlink Control Information, DCI ), 包括: 上、 下行调度信 息, 以及上行功率控制信息。 DCI的格式(DCI format )分为以下几种: DCI format 0、 DCI format 1、 DCI format 1A、 DCI format 1B、 DCI format 1C、 DCI format 1D、 DCI format 2、 DCI format 2A、 DCI format 3和 DCI format 3 A 等;其中支持 MU-MIMO的传输模式 5利用了 DCI format ID的下行控制信 息,而 DCI format ID中的下行功率域 ( Downlink power offset field ) 用于指示在 MU-MIMO模式中对于用户的功率减半(即 -lOloglO U ) )的信 息, 因为 MU-MIMO传输模式 5只支持两个用户的 MU-MIMO传输, 通过 此下行功率域, MU-MIMO 传输模式 5 可以支持 SU-MIMO 模式和 MU-MIMO模式的动态切换, 但是无论在 SU-MIMO模式或 MU-MIMO模 式此 DCI format对一个 UE只支持一个流的传输, 虽然 LTE Release 8在传 输模式 4 中支持最多两个流的单用户传输, 但是因为传输模式之间的切换 只能是半静态 ( semi-statically ) 的, 所以在 LTE版本 8中不能做到单用户 多流传输和多用户传输的动态切换。
在 LTE的版本 9 ( Rdease 9 )中, 为了增强下行多天线传输, 引入了双 流波束形成( Beamforming ) 的传输模式, 定义为传输模式 9, 而下行控制 信息增加了 DCI format 2B以支持这种传输模式, 在 DCI format 2B中有一 个扰码序列身份(scrambling identity, SCID ) 的标识比特以支持两个不同 的扰码序列, eNB 可以将这两个扰码序列分配给不同用户, 在同一资源复 用多个用户。另夕卜,当只有一个传输块使能(Enabled )时,非使能( Disabled ) 的传输块对应的新数据指示( NDI )比特亦用来指示单层传输时的天线端口。
另外, 在 LTE的版本 10中, 为了进一步增强下行多天线的传输, 增加 了新的闭环空间复用的传输模式, 定义为传输模式 10, 这种传输模式既可 以支持单用户 MIMO, 又可以支持多用户 MU-MIMO, 并且可以支持两者 的动态切换, 另外这种传输模式还支持 8天线的传输。 这种新的传输模式 已经确定了用解调导频( Demodulation Reference Signal, DMRS )来作解调 用的导频, UE需获取导频的位置, 才可以在导频上做信道和干扰的估计。
在 R10版本中, UE通过高层信令半静态地被设置为基于以下的一种传 输模式(transmission mode ), 按照用户设备专有 ( UE-Specific ) 的搜索空 间的 PDCCH的指示来接收 PDSCH数据传输:
模式 1 : 单天线端口; 端口 0 ( Single-antenna port; port 0 );
模式 2: 发射分集( Transmit diversity );
模式 3: 开环空间复用 ( Open-loop spatial multiplexing );
模式 4: 闭环空间复用 ( Closed-loop spatial multiplexing );
模式 5: 多用户多输入多输出 ( Multi-user MIMO );
模式 6: 闭环 Rank=l预编码( Closed-loop Rank=l precoding );
模式 7: 单天线端口; 端口 5 ( Single-antenna port; port 5 );
模式 8: 双流传输, 即双流波束赋形;
模式 9: 最多 8层的闭环空间复用。
在 R10 版本中, 新增加了传输模式 9 和信道状态信息-参考符号 ( CSI-RS, Channel-State Information-Reference Symbol ), 传输模式 9是基 于 CSI-RS进行信道测量, 从而计算得到 CQI。 其他传输模式基于小区专用 参考信号( CRS, cell-specific reference signal )进行信道测量,从而计算 CQI。 在 R10版本中, 相应的也增加了一些 CSI-RS参数用于表征属性。 对比 R8 中的 CRS, 有些参数是类似的, 有些参数是新增的。 如 CSI-RS端口数目在 R8中也有类似的 CRS端口数, 而 CSI-RS子帧配置周期参数则是新增的。 下面的参数是小区专有且由高层信令配置, 用于 CSI-RS 的定义, 包括: CSI-RS端口数、 CSI-RS配置、 CSI-RS子帧配置参数(ICSI-RS )、 子帧 配置周期( TCSI-RS )、 子帧偏量和应用于 CSI反馈的参考 PDSCH发射功 率的 UE的^ 设的 Pc。
在 R10中, 对于传输模式 9, 因为引入了 "双码本" 或者 "双 ΡΜΓ 的新概念, 所以需要反馈两个 PMI; 对于 8天线, 第一 PMI指示宽带的信 道状态信息, 第二 PMI指示子带的信道状态信息, 只有获得两个 PMI才能 得到完整的预编码矩阵信息, 其中子带包括宽带的情况, 即将宽带作为子 带的一个特例, 例如第二 PMI也可以是宽带的; 对于 2天线和 4天线, 第 一 PMI指示的是单位阵, 第二 PMI等价于原 R8协议的 PMI。
对于 R10协议的新传输模式 9,确定和计算 CQI时对于 CSI-RS和 PRS 缺少考虑, 这种缺失将导致传输模式 9无法准确地使用 CRS或者 CSI-RS 来实现信道测量, 从而导致在传输模式 9时无法获得准确的信道质量信息, 将严重降 4氐系统的灵活性和性能指标。 发明内容
本发明所要解决的技术问题在于, 提供一种确定信道质量指示信息的 方法和装置, 解决现有系统在使用传输模式 9 时无法获得准确的信道质量 指示信息的问题, 提高系统的灵活性和性能。
为了达到上述目的, 本发明的技术方案是这样实现的:
一种 CQI信息的确定方法, 包括:
eNodeB发送 CSI-RS和 CRS给 UE; UE根据 CSI-RS或 CRS进行信道测量;
UE确定 CQI参考资源,根据信道测量结果确定 CQI参考资源上的 CQI 值;
其中, 如果 eNodeB配置没有 configured without预编码矩阵指示 PMI/ 秩指示 RI, UE基于 CRS计算 CQI; 如果 eNodeB配置有 configured with PMI/RI, UE基于 CSI-RS计算 CQI;
其中, 在频域上, 用下行物理资源块定义 CQI参考资源, 下行物理资 源块对应于 CQI值相关的频带;在时域上,用下行子帧定义 CQI参考资源; 在传输层域上, 用任何 RI以及 PMI来定义 CQI参考资源, 且 CQI以所述 的 RI和 PMI为条件;
其中, 确定 CQI取值时, 假设 Assume CSI-RS没有使用 CQI参考资源 的资源元素。
其中,确定 CQI取值时,假设 PRS没有使用 CQI参考资源的资源元素。 对于所述的 CQI参考资源, 如果有一个由信道质量信息测量子帧构成 的可配置的并用于 CSI测量的测量子集, 则信道测量或者干扰测量受限于 该测量子集所定义的子帧; 基站通过信令来配置所述的测量子集, 或者通 过非周期触发来配置所述的测量子集; 在时域上, 所述 CQI参考资源的下 行子帧需要定义在所述的测量子集中。
其中, 对于传输模式 9, 如果 eNodeB 配置没有 configured without PMI/RI, UE设置 N个虚拟 CSI-RS端口, 此时假设用于 CQI参考资源的下 行数据共享信道的传输策略是 Ν天线发送分集, 其中 Ν为自然数, Ν是由 CRS的端口数目或者 CSI-RS端口数目确定的。
其中, 对于传输模式 9, 如果 eNodeB配置没有 PMI/RI且 eNodeB的 CSI-RS端口数目等于 8, UE设置 2个虚拟 CSI-RS端口,此时假设用于 CQI 参考资源的下行数据共享信道的传输策略是 2天线发送分集。 其中, 对于传输模式 9, 如果 eNodeB配置没有 PMI/RI且 eNodeB的 CSI-RS端口数目等于 8, UE设置 4个虚拟 CSI-RS端口,此时假设用于 CQI 参考资源的下行数据共享信道的传输策略是 4天线发送分集。
其中, 对于传输模式 9, 如果 eNodeB配置没有 PMI/RI且 eNodeB的 CSI-RS端口数目等于 8, UE设置 1个虚拟 CSI-RS端口,此时假设用于 CQI 参考资源的下行数据共享信道的传输策略是单层传输。
其中, CSI-RS端口从 15到 18映射为第一个虚拟 CSI-RS端口, CSI-RS 端口从 19到 22映射为第二个虚拟 CSI-RS端口。
其中, CSI-RS端口 15、 17、 19和 21映射为第一个虚拟 CSI-RS端口, CSI-RS端口 16、 18、 20和 22映射为第二个虚拟 CSI-RS端口。
其中, CSI-RS端口 15和 16映射为第一个虚拟 CSI-RS端口, CSI-RS 端口 17和 18映射为第二个虚拟 CSI-RS端口, CSI-RS端口 19和 20映射 为第三个虚拟 CSI-RS端口, CSI-RS端口 21和 22映射为第四个虚拟 CSI-RS 端口。
其中, CSI-RS端口 15和 19映射为第一个虚拟 CSI-RS端口, CSI-RS 端口 16和 20映射为第二个虚拟 CSI-RS端口, CSI-RS端口 17和 21映射 为第三个虚拟 CSI-RS端口, CSI-RS端口 18和 22映射为第四个虚拟 CSI-RS 端口。
其中, 对于传输模式 9, 如果 eNodeB配置 CSI-RS端口数目等于 1 , UE基于 CRS计算 CQI; 如果 eNodeB配置 CSI-RS端口数目大于 1 , UE基 于 CSI-RS计算 CQI。
一种确定信道质量指示信息的装置, 包括:
接收模块, 用于接收基站发送的 CSI-RS和 /或 CRS;
测量模块,用于根据接收模块收到的 CSI-RS和 /或 CRS进行信道测量; 其中, 如果 eNodeB 配置没有 PMI/RI, 则基于 CRS进行信道测量; 如果 eNodeB配置有 PMI/RI, 则基于 CSI-RS进行信道测量;
确定模块, 用于确定 CSI参考资源以及计算 CQI的条件;
计算模块, 用于根据确定模块所确定的条件以及测量模块的测量结果 计算对应 CSI参考资源的 CQI值;
其中, 在频域上, 用下行物理资源块定义 CQI参考资源, 下行物理资 源块对应于源 CQI值相应的频带上; 在时域上, 用下行子帧定义 CQI参考 资源; 在传输层域上, 用任何 RI以及 PMI来定义 CQI参考资源, 且 CQI 以所述的 RI和 PMI为条件。
其中, 计算 CQI的条件时, 确定模块用于假设 CSI-RS没有使用 CQI 参考资源的资源元素。
其中, 计算 CQI的条件时, 确定模块用于假设 PRS没有使用 CQI参考 资源的资源元素。
其中, 该装置设置于 UE中。
本发明没有增加任何系统复杂度和信令开销, 通过配置的高层信令 CSI-RS 端口数目确定当前的反馈模式有没有 PMI/RI 的反馈, 支持了有 PMI/RI反馈和没有 PMI/RI反馈两种形式,从而弥补了现有技术的不足, 以 便支持上述两种反馈方式。 并且, 通过已有的 PMI-RI 高层配置信令或者 CSI-RS端口数目来选择测量参考信号的类型, 使得一种传输模式可以支持 两种参考信号的信道测量, 以及定义了统一的 PDSCH传输方式的假设, 解 决了现有技术中 UE无法获得准确的信道质量信息的问题。 同时, 由于有效 地使用了 R10中 CSI-RS的参数和 R9中 PMI-RI高层参数, 保持了良好的 兼容性和较小的开销。 附图说明
图 1是本发明实施例中确定信道质量指示信息的流程图;
图 2为本发明实施例的系统原理图。 具体实施方式
为使本发明的目的、 技术方案和优点更加清楚, 以下结合附图对本发 明作进一步地详细说明。
首先, 从时域、 频域、 传输域三个方面阐述 CQI参考资源。
在频域上, CQI参考资源表示 CQI是在某段带宽上测量得来的; 在时域上, CQI参考资源表示 CQI是在某个下行子帧上测量得来的, 其中, 下行子帧在某些情况下是无效的。 当 CQI参考资源所在的下行子帧 无效时, 则在子帧 n上的上行子帧中不上报 CQI; 具体的,
周期反馈 CQI时, 其下行子帧 nCQI_ref的数目至少为 4。 也就是说,
CQI是在至少 4个下行子帧前测量得来的;
非周期反馈时, CQI是在 DCI format 0触发的下行子帧上测量得来; 非周期反馈时, CQI是在 Random Access Response Grant触发的子帧之 后的那个子帧测量得来;
在传输域上, CQI是由 PMI和 RI计算得来的。
利用 CQI参考资源计算 CQI时, 还有以下必要条件:
在 CQI参考资源中, 为了计算 CQI索引, UE需要进行以下假设: 控制信号占用了前 3个 OFDM (正交频分多址)符号;
主 /辅同步信号或物理广播信道 ( PBCH, Physical Broadcast Channel ) 没有使用资源元素;
CP长度采用非多播广播单频网络( MBSFN, Multicast/Broadcast Single
Frequency Network )子帧的 CP长度;
冗余版本采用冗余版本 0 ( RV0 );
根据所述 UE的当前配置的传输模式来给定假设的( Assumed ) PDSCH 的传输方案;
如果根据 CSI-RS进行信道测量, 需要给定 PDSCH和 CSI-RS之间的 每个资源元素的能量(EPRE, Energy Per Resource Element ) 的比值; 如果根据 CRS进行信道测量, 需要给定 PDSCH和 CRS之间的 EPRE 的比值;
在确定信道质量指示信息时, 可以执行如下步驟:
eNodeB发送 CSI-RS和 CRS给 UE;
UE根据 CSI-RS或者 CRS进行信道测量;
UE确定 CQI参考资源, 并根据信道测量结果确定 CQI参考资源上的 CQI值。
其中, 在频域上, CQI 参考资源用一组下行物理资源块进行定义, 下 行物理资源块对应于源 CQI值相应的频带上; 在时域上, CQI参考资源用 下行子帧来定义; 在传输层域上, 用任何 RI以及 PMI来定义 CQI参考资 源, 且 CQI以所述的 RI和 PMI为条件。
确定 CQI取值时, 需要假设 CSI-RS没有使用 CQI参考资源的资源元 素 ( resource element )。
确定 CQI取值时, 需要假设定位参考信号 (PRS , positing reference signal ) 没有使用 CQI参考资源的资源元素;
对于所述的 CQI参考资源, 如果有一个由信道质量信息测量子帧构成 的可配置的并用于 CSI测量的测量子集, 则信道测量或者干扰测量受限于 该测量子集所定义的子帧。 基站可以通过高层信令来配置所述的测量子集, 或者可以通过非周期触发来配置所述的测量子集。 在时域上, 所述 CQI参 考资源的下行子帧需要定义在所述的测量子集中。
需要说明的是, 如果高层配置了 pmi-RI-Report参数, 则 eNodeB配置 有( configured with )PMI/RI报告,否则 eNodeB配置没有( configured without ) PM面报告。
对于传输模式 9, 如果 eNodeB配置没有 PMI/RI且 eNodeB的 CSI-RS 端口数目等于 8, eNodeB可以设置 2个虚拟 CSI-RS端口, 此时假设用于 CQI参考资源的下行数据共享信道的传输策略是 2天线发送分集;
所述 2个虚拟 CSI-RS端口包括: CSI-RS端口从 1到 4映射为第一个 虚拟 CSI-RS端口, CSI-RS端口从 5到 8映射为第二个虚拟 CSI-RS端口。
所述的 2个虚拟 CSI-RS端口包括: CSI-RS端口 15、 17、 19和 21映 射为第一个虚拟 CSI-RS端口, CSI-RS端口 16、 18、 20和 22映射为第二 个虚拟 CSI-RS端口。
对于传输模式 9, 如果 eNodeB配置没有 PMI/RI且 eNodeB的 CSI-RS 端口数目等于 8, eNodeB可以设置 4个虚拟 CSI-RS端口, 此时假设用于 CQI参考资源的下行数据共享信道的传输策略是 4天线发送分集。
对于所述的 4个虚拟 CSI-RS端口, CSI-RS端口 15和 16映射为第一 个虚拟 CSI-RS端口, CSI-RS端口 17和 18映射为第二个虚拟 CSI-RS端口, CSI-RS端口 19和 20映射为第三个虚拟 CSI-RS端口, CSI-RS端口 21和 22映射为第四个虚拟 CSI-RS端口。
对于所述的 4个虚拟 CSI-RS端口, CSI-RS端口 15和 19映射为第一 个虚拟 CSI-RS端口, CSI-RS端口 16和 20映射为第二个虚拟 CSI-RS端口, CSI-RS端口 17和 21映射为第三个虚拟 CSI-RS端口, CSI-RS端口 18和 22映射为第四个虚拟 CSI-RS端口。
对于传输模式 9, 如果 eNodeB配置没有 PMI/RI且 eNodeB的 CSI-RS 端口数目等于 8, eNodeB可以设置 1个虚拟 CSI-RS端口, 此时假设用于 CQI参考资源的下行数据共享信道的传输策略是单层传输。
所述的 1个虚拟 CSI-RS端口为, CSI-RS端口 15和 22映射为一个虚 拟 CSI-RS端口。
对于传输模式 9, 如果 eNodeB配置没有 PMI/RI, UE基于 CRS计算 CQI; 如果 eNodeB配置有 PMI/RI, UE基于 CSI-RS计算 CQI。 对于传输模式 9, 如果 eNodeB配置 CSI-RS端口数目等于 1 , UE基于 CRS计算 CQI;如果 eNodeB配置 CSI-RS端口数目大于 1 , UE基于 CSI-RS 计算 CQI。
实施例 1
假设基站给某个 UE配置了传输模式 9 ,基站给该 UE配置了 8个 CSI-RS 端口, CSI-RS端口号从 15到 22。
确定信道质量指示信息时, 如图 1所示, 可以执行如下步驟:
S201, eNodeB发送 CSI-RS和 CRS给 UE;
S203, UE根据 CSI-RS或者 CRS进行信道测量;
S205, UE确定 CQI参考资源,根据信道测量结果确定 CQI参考资源上 的 CQI值。
S207, UE将 CQI值上报 eNB。
确定 CQI取值时, 需要假设 CSI-RS没有使用 CQI参考资源的资源元 素。 此时, 有两种可能:
第一种可能是, CQI参考资源中有 CSI-RS使用的资源元素, 计算 CQI 时需要假设这些 CSI-RS使用的资源元素没有被 CSI-RS占用, 而是被数据 占用了。
第二种可能是, CQI参考资源中没有 CSI-RS资源元素, 自然就不存在 所述的假设。
确定 CQI取值时, 需要假设 PRS没有使用 CQI参考资源的资源元素; 同样, 也有两种可能:
第一种可能是, CQI参考资源中有 PRS使用的资源元素, 计算 CQI时 需要假设这些 CSI-RS使用的资源元素没有被 PRS占用,而是被数据占用了。
第二种可能是, CQI参考资源中没有 PRS资源元素 , 自然就不存在所 述的假设。 总之, 上述 CQI计算方法充分考虑 CSI-RS和 PRS对 CQI的影响, 保 证了解调数据的 CQI的准确性。 具体地, CQI计算是基于最简单的场景, 即尽可能排除 CSI-RS和 PRS对上报的 CQI的影响, 基站在调度时可以根 据当前子帧是否包括 CSI-RS和 PRS, 对数据的 MCS进行适当的调整, 保 证系统链路自适应的性能和效果。
实施例 2
假设基站给某个 UE配置了传输模式 9,基站给该 UE配置了 8个 CSI-RS 端口, CSI-RS端口号为 15至 22。
确定信道质量指示信息时, 可以执行如下步驟:
eNodeB发送 CSI-RS和 CRS给 UE;
UE根据 CSI-RS或者 CRS进行信道测量;
UE确定 CQI参考资源,根据信道测量结果确定 CQI参考资源上的 CQI 值。
对于传输模式 9, 如果 eNodeB配置没有 PMI/RI且 eNodeB的 CSI-RS 端口数目等于 8, eNodeB可以设置 2个虚拟 CSI-RS端口, 此时假设用于 CQI参考资源的下行数据共享信道的传输策略是 2天线发送分集。
所述 2个虚拟 CSI-RS端口包括: CSI-RS端口从 15到 18映射为第一 个虚拟 CSI-RS端口, CSI-RS端口从 19到 22映射为第二个虚拟 CSI-RS端 口。
具体地, CSI-RS端从 15到 18发送相同信号, CSI-RS端口从 19到 22 发送相同的信号。
另一种可能是, 所述的 2个虚拟 CSI-RS端口包括: CSI-RS端口 15、 17、 19和 21映射为第一个虚拟 CSI-RS端口, CSI-RS端口 16、 18、 20和 22映射为第二个虚拟 CSI-RS端口。
具体地, CSI-RS端口 15、 17、 19和 21发送相同信号, CSI-RS端口 16、 18、 20和 22发送相同的信号。
实施例 3
假设基站给某个 UE配置了传输模式 9,基站给该 UE配置了 8个 CSI-RS 端口, CSI-RS端口号为 15至 22。
确定信道质量指示信息时, 可以执行如下步驟:
eNodeB发送 CSI-RS和 CRS给 UE;
UE根据 CSI-RS或者 CRS进行信道测量;
UE确定 CQI参考资源,根据信道测量结果确定 CQI参考资源上的 CQI 值。
对于传输模式 9, 如果 eNodeB配置没有 PMI/RI且 eNodeB的 CSI-RS 端口数目等于 8, UE设置 4个虚拟的 CSI-RS端口, 此时假设用于 CQI参 考资源的下行数据共享信道的传输策略是 4天线发送分集。
对于所述的 4个虚拟 CSI-RS端口, CSI-RS端口 15和 16映射为第一 个虚拟 CSI-RS端口, CSI-RS端口 17和 18映射为第二个虚拟 CSI-RS端口, CSI-RS端口 19和 20映射为第三个虚拟 CSI-RS端口, CSI-RS端口 21和 22映射为第四个虚拟 CSI-RS端口。
具体地, CSI-RS端口 15和 16发送相同信号, CSI-RS端口 17和 18发 送相同的信号, CSI-RS端口 19和 20发送相同的信号, CSI-RS端口 21和 22发送相同信号。
或者, 对于所述的 4个虚拟 CSI-RS端口, CSI-RS端口 15和 19映射 为第一个虚拟 CSI-RS端口, CSI-RS端口 16和 20映射为第二个虚拟 CSI-RS 端口, CSI-RS端口 17和 21映射为第三个虚拟 CSI-RS端口, CSI-RS端口 18和 22映射为第四个虚拟 CSI-RS端口。
具体地, CSI-RS端口 15和 19发送相同信号, CSI-RS端口 16和 20发 送相同的信号, CSI-RS端口 17和 21发送相同的信号, CSI-RS端口 18和 22发送相同信号。
实施例 4
假设基站给某个 UE配置了传输模式 9,基站给该 UE配置了 8个 CSI-RS 端口, CSI-RS端口号为 15至 22。
确定信道质量指示信息时, 可以执行如下步驟:
eNodeB发送 CSI-RS和 CRS给 UE;
UE根据 CSI-RS或者 CRS进行信道测量;
UE确定 CQI参考资源,根据信道测量结果确定 CQI参考资源上的 CQI 值。
对于传输模式 9, 如果 eNodeB配置没有 PMI/RI且 eNodeB的 CSI-RS 端口数目等于 8, eNodeB可以设置 1个虚拟 CSI-RS端口, 此时假设用于 CQI参考资源的下行数据共享信道的传输策略是单层传输。
更进一步, 对于所述的 1个虚拟 CSI-RS端口, CSI-RS端口 15和 22 映射为一个虚拟 CSI-RS端口。
实施例 5
确定信道质量指示信息时, 可以执行如下步驟:
eNodeB发送 CSI-RS和 CRS给 UE;
UE根据 CSI-RS或者 CRS进行信道测量;
UE确定 CQI参考资源,根据信道测量结果确定 CQI参考资源上的 CQI 值。
对于传输模式 9, 如果 eNodeB配置没有 PMI/RI, UE设置 N个虚拟端 口, 此时假设用于 CQI参考资源的下行数据共享信道的传输策略是 N天线 发送分集, 其中 N为自然数, N是由 CRS的端口数目或者 CSI-RS端口数 目确定的, N可以为 1,2,4。
实施例 6 确定信道质量指示信息时, 可以执行如下步驟:
eNodeB发送 CSI-RS和 CRS给 UE;
UE根据 CSI-RS或者 CRS进行信道测量;
UE确定 CQI参考资源,根据信道测量结果确定 CQI参考资源上的 CQI 值。
其中, 在频域上, CQI 参考资源用一组下行物理资源块进行定义, 下 行物理资源块对应于源 CQI值相应的频带上; 在时域上, CQI参考资源用 下行子帧来定义; 在传输层域上, 用任何 RI以及 PMI来定义 CQI参考资 源, 且 CQI以所述的 RI和 PMI为条件。
对于所述的 CQI参考资源, 如果有一个由信道质量信息测量子帧构成 的可配置的并用于 CSI测量的测量子集, 则信道测量或者干扰测量受限于 该测量子集所定义的子帧。 基站可以通过高层信令来配置所述的测量子集, 或者可以通过非周期触发来配置所述的测量子集。 在时域上, 所述 CQI参 考资源的下行子帧需要定义在所述的测量子集中。
实施例 7
本实施例提供一种确定信道质量指示信息的装置,可设置于 UE中, 包 含该 UE以及 eNodeB的系统如图 2所示。 其中,
所述 eNodeB包括发送模块和接收模块, 其中:
发送模块, 设置为向终端发送 CSI-RS和 /或 CRS;
接收模块, 设置为接收终端发送的 CQI;
所述 UE包括接收模块、 测量模块、 确定模块、 计算模块及发送模块; 接收模块, 用于接收基站发送的 CSI-RS和 /或 CRS;
测量模块,用于根据接收模块收到的 CSI-RS和 /或 CRS进行信道测量; 其中, 如果 eNodeB 配置没有 PMI/RI, 则基于 CRS进行信道测量; 如果 eNodeB配置有 PMI/RI, 则基于 CSI-RS进行信道测量。 确定模块, 用于确定 CSI参考资源以及计算 CQI的条件; 计算模块, 用于根据确定模块所确定的条件以及测量模块的测量结果 计算对应 CSI参考资源的 CQI值。
确定模块在计算 CQI的条件时, 可以假设 CSI-RS没有使用 CQI参考 资源的资源元素。
确定模块在计算 CQI的条件时,也可以假设 PRS没有使用 CQI参考资 源的资源元素。
可见, UE可以根据 CSI-RS或者 CRS进行信道测量; 并且 UE可以确 定 CQI参考资源, 根据信道测量结果确定 CQI参考资源上的 CQI值。
以上所述, 仅为本发明的较佳实施例而已, 并非用于限定本发明的保 护范围。

Claims

权利要求书
1、 一种信道质量指示 CQI信息的确定方法, 包括:
基站 eNodeB发送信道状态信息-参考符号 CSI-RS和小区专用参考信号 CRS给终端 UE;
UE根据 CSI-RS或 CRS进行信道测量;
UE确定 CQI参考资源,根据信道测量结果确定 CQI参考资源上的 CQI 值;
其中, 如果 eNodeB配置没有 configured without预编码矩阵指示 PMI/ 秩指示 RI, UE基于 CRS计算 CQI; 如果 eNodeB配置有 configured with PMI/RI, UE基于 CSI-RS计算 CQI;
其中, 在频域上, 用下行物理资源块定义 CQI参考资源, 下行物理资 源块对应于 CQI值相关的频带;在时域上,用下行子帧定义 CQI参考资源; 在传输层域上, 用任何 RI以及 PMI来定义 CQI参考资源, 且 CQI以所述 的 RI和 PMI为条件。
2、根据权利要求 1所述的方法,其中,确定 CQI取值时,假设 Assume CSI-RS没有使用 CQI参考资源的资源元素。
3、 根据权利要求 1所述的方法, 其中, 确定 CQI取值时, 假设 PRS 没有使用 CQI参考资源的资源元素。
4、 根据权利要求 1所述的方法, 对于所述的 CQI参考资源, 如果有一 个由信道质量信息测量子帧构成的可配置的并用于 CSI测量的测量子集, 则信道测量或者干扰测量受限于该测量子集所定义的子帧; 基站通过信令 来配置所述的测量子集, 或者通过非周期触发来配置所述的测量子集; 在 时域上, 所述 CQI参考资源的下行子帧需要定义在所述的测量子集中。
5、 根据权利要求 1所述的方法, 其中, 对于传输模式 9, 如果 eNodeB 配置没有 configured without PMI/RI, UE设置 N个虚拟 CSI-RS端口, 此时 假设用于 CQI参考资源的下行数据共享信道的传输策略是 N天线发送分 集, 其中 N为自然数, N是由 CRS的端口数目或者 CSI-RS端口数目确定 的。
6、 根据权利要求 1所述的方法, 其中, 对于传输模式 9, 如果 eNodeB 配置没有 PMI/RI且 eNodeB的 CSI-RS端口数目等于 8, UE设置 2个虚拟
CSI-RS端口, 此时假设用于 CQI参考资源的下行数据共享信道的传输策略 是 2天线发送分集。
7、 根据权利要求 1所述的方法, 其中, 对于传输模式 9, 如果 eNodeB 配置没有 PMI/RI且 eNodeB的 CSI-RS端口数目等于 8, UE设置 4个虚拟 CSI-RS端口, 此时假设用于 CQI参考资源的下行数据共享信道的传输策略 是 4天线发送分集。
8、 根据权利要求 1所述的方法, 其中, 对于传输模式 9, 如果 eNodeB 配置没有 PMI/RI且 eNodeB的 CSI-RS端口数目等于 8, UE设置 1个虚拟 CSI-RS端口, 此时假设用于 CQI参考资源的下行数据共享信道的传输策略 是单层传输。
9、 根据权利要求 6所述的方法, 其中, CSI-RS端口从 15到 18映射 为第一个虚拟 CSI-RS端口, CSI-RS端口从 19到 22映射为第二个虚拟 CSI-RS端口。
10、 根据权利要求 6所述的方法, 其中, CSI-RS端口 15、 17、 19和 21映射为第一个虚拟 CSI-RS端口, CSI-RS端口 16、 18、 20和 22映射为 第二个虚拟 CSI-RS端口。
11、 根据权利要求 7所述的方法, 其中, CSI-RS端口 15和 16映射为 第一个虚拟 CSI-RS端口, CSI-RS端口 17和 18映射为第二个虚拟 CSI-RS 端口, CSI-RS端口 19和 20映射为第三个虚拟 CSI-RS端口, CSI-RS端口 21和 22映射为第四个虚拟 CSI-RS端口。
12、 根据权利要求 7所述的方法, 其中, CSI-RS端口 15和 19映射为 第一个虚拟 CSI-RS端口, CSI-RS端口 16和 20映射为第二个虚拟 CSI-RS 端口, CSI-RS端口 17和 21映射为第三个虚拟 CSI-RS端口, CSI-RS端口 18和 22映射为第四个虚拟 CSI-RS端口。
13、根据权利要求 1所述的方法,其中,对于传输模式 9,如果 eNodeB 配置 CSI-RS端口数目等于 1 , UE基于 CRS计算 CQI; 如果 eNodeB配置 CSI-RS端口数目大于 1 , UE基于 CSI-RS计算 CQI。
14、 一种确定信道质量指示信息的装置, 包括:
接收模块, 用于接收基站发送的 CSI-RS和 /或 CRS;
测量模块,用于根据接收模块收到的 CSI-RS和 /或 CRS进行信道测量; 其中, 如果 eNodeB 配置没有 PMI/RI, 则基于 CRS进行信道测量; 如果 eNodeB配置有 PMI/RI, 则基于 CSI-RS进行信道测量;
确定模块, 用于确定 CSI参考资源以及计算 CQI的条件;
计算模块, 用于根据确定模块所确定的条件以及测量模块的测量结果 计算对应 CSI参考资源的 CQI值;
其中, 在频域上, 用下行物理资源块定义 CQI参考资源, 下行物理资 源块对应于源 CQI值相应的频带上; 在时域上, 用下行子帧定义 CQI参考 资源; 在传输层域上, 用任何 RI以及 PMI来定义 CQI参考资源, 且 CQI 以所述的 RI和 PMI为条件。
15、 根据权利要求 14所述的装置, 其中, 计算 CQI的条件时, 确定模 块用于假设 CSI-RS没有使用 CQI参考资源的资源元素。
16、 根据权利要求 14所述的装置, 其中, 计算 CQI的条件时, 确定模 块用于假设 PRS没有使用 CQI参考资源的资源元素。
17、 根据权利要求 14所述的装置, 其中, 该装置设置于 UE中。
PCT/CN2012/070292 2011-01-12 2012-01-12 一种确定信道质量指示信息的方法和装置 WO2012095015A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2013548731A JP5649744B2 (ja) 2011-01-12 2012-01-12 チャネル品質指示情報を確定する方法及び装置
ES12734059T ES2730979T4 (es) 2011-01-12 2012-01-12 Procedimiento y dispositivo de determinación de informaciones indicativas de la calidad de un canal
EP12734059.4A EP2654356B1 (en) 2011-01-12 2012-01-12 Method and device for determining channel quality indication information
KR20137019545A KR101504446B1 (ko) 2011-01-12 2012-01-12 채널 품질 지시 정보를 확정하는 방법 및 장치
US13/979,381 US9107087B2 (en) 2011-01-12 2012-01-12 Method and device for determining channel quality indication information

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110023494.1A CN102595469B (zh) 2011-01-12 2011-01-12 一种信道质量指示信息的确定方法
CN201110023494.1 2011-01-12

Publications (1)

Publication Number Publication Date
WO2012095015A1 true WO2012095015A1 (zh) 2012-07-19

Family

ID=46483571

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/070292 WO2012095015A1 (zh) 2011-01-12 2012-01-12 一种确定信道质量指示信息的方法和装置

Country Status (7)

Country Link
US (1) US9107087B2 (zh)
EP (1) EP2654356B1 (zh)
JP (1) JP5649744B2 (zh)
KR (1) KR101504446B1 (zh)
CN (1) CN102595469B (zh)
ES (1) ES2730979T4 (zh)
WO (1) WO2012095015A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014135064A1 (zh) * 2013-03-05 2014-09-12 电信科学技术研究院 一种通信处理方法及设备
JP2015531211A (ja) * 2012-08-21 2015-10-29 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおいてチャネル状態情報(csi)送信方法及び装置
JP2016509773A (ja) * 2013-01-03 2016-03-31 インテル コーポレイション 改良されたチャネル品質情報フィードバック方式
JP2016510519A (ja) * 2012-12-27 2016-04-07 ゼットティーイー (ユーエスエー) インコーポレイテッド Mimootaをサポートするueの測定のための方法およびシステム
WO2016119652A1 (zh) * 2015-01-30 2016-08-04 中兴通讯股份有限公司 Ue上报csi及触发ue上报csi的方法和装置
CN111107633A (zh) * 2018-10-26 2020-05-05 维沃移动通信有限公司 Csi上报方法、获取方法和设备

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113364556A (zh) * 2012-03-02 2021-09-07 华为技术有限公司 信息传输方法和设备
CN103582043A (zh) * 2012-08-09 2014-02-12 华为技术有限公司 小区选择方法及终端
KR101972945B1 (ko) * 2012-09-18 2019-04-29 삼성전자 주식회사 무선 통신 시스템에서 채널 상태 정보 송수신 방법 및 장치
JP2015534396A (ja) * 2012-09-27 2015-11-26 華為技術有限公司Huawei Technologies Co.,Ltd. 通信システムにおいてチャネル状態情報を構成するシステム及び方法
CN103716078B (zh) * 2012-09-29 2019-03-12 中兴通讯股份有限公司 一种信道状态信息的处理方法及装置
WO2014054903A1 (ko) * 2012-10-04 2014-04-10 엘지전자 주식회사 무선 통신 시스템에서 안테나 포트 관계를 고려한 하향링크 신호 송수신 방법 및 장치
US9178583B2 (en) * 2013-01-08 2015-11-03 Samsung Electronics Co., Ltd. Channel state information feedback design in advanced wireless communication systems
WO2014110745A1 (en) * 2013-01-16 2014-07-24 Broadcom Corporation Apparatuses, methods and computer program products for evaluating channel quality
CN104115520B (zh) * 2013-01-18 2018-10-30 华为技术有限公司 测量方法、小区测量方法、装置及通信节点
KR102285852B1 (ko) * 2013-12-17 2021-08-05 삼성전자 주식회사 전차원 다중입력 다중출력 이동통신 시스템에서 통신방법 및 장치
CN110545133B (zh) * 2013-12-20 2022-12-06 北京三星通信技术研究有限公司 信道状态信息汇报的方法及装置
EP3087689B1 (en) * 2013-12-27 2019-09-18 LG Electronics Inc. Method and apparatus for reporting channel state information
US20150195819A1 (en) 2014-01-06 2015-07-09 Intel IP Corporation Systems and methods for modulation and coding scheme selection and configuration
CN103825663B (zh) * 2014-02-21 2016-04-20 电信科学技术研究院 信道状态信息测量方法以及装置
CN105024779A (zh) * 2014-04-18 2015-11-04 深圳市中兴微电子技术有限公司 一种自适应信道质量指示选择的方法及装置
CN105024781B (zh) * 2014-04-30 2019-06-21 中兴通讯股份有限公司 一种反馈信息的处理方法、装置及系统
WO2016074119A1 (en) * 2014-11-10 2016-05-19 Qualcomm Incorporated Elevation pmi reporting on pucch
PL3024165T3 (pl) 2014-11-20 2017-11-30 Panasonic Intellectual Property Corporation Of America Ulepszone raportowanie o stanie kanału dla nośnych koncesjonowanych i niekoncesjonowanych
CN107466452B (zh) * 2015-04-08 2020-07-03 Lg 电子株式会社 报告信道状态的方法及其装置
US9775141B2 (en) * 2015-07-14 2017-09-26 Motorola Mobility Llc Method and apparatus for reducing latency of LTE uplink transmissions
US10098030B2 (en) * 2015-08-20 2018-10-09 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for measurement and report
US10075218B2 (en) * 2015-11-05 2018-09-11 Samsung Electronics Co., Ltd. Method and apparatus for FD-MIMO based multicasting in vehicular communication systems
CN106888062B (zh) * 2015-12-10 2020-04-10 电信科学技术研究院 Cqi估计、sinr确定方法及相关设备
WO2017152405A1 (zh) * 2016-03-10 2017-09-14 华为技术有限公司 一种传输分集方法、设备及系统
CN107453851B (zh) * 2016-05-30 2020-02-14 华为技术有限公司 一种cqi测量方法、装置及无线通信系统
CN107733592B (zh) 2016-08-10 2020-11-27 华为技术有限公司 传输方案指示方法、数据传输方法、装置及系统
WO2018027908A1 (en) * 2016-08-12 2018-02-15 Qualcomm Incorporated Dynamic multi-beam transmission for new radio technology multiple-input multiple-output
WO2018059424A1 (zh) * 2016-09-30 2018-04-05 电信科学技术研究院 一种参考信号映射方法及装置
CN107888364B (zh) 2016-09-30 2020-07-21 电信科学技术研究院 一种参考信号映射方法及装置
CN108282321B (zh) * 2017-01-06 2022-03-29 华为技术有限公司 一种信息指示的方法、网络设备和终端设备
CN108289004B (zh) * 2017-01-09 2021-11-26 华为技术有限公司 一种信道状态信息测量上报的配置方法及相关设备
US9979456B1 (en) * 2017-01-27 2018-05-22 At&T Intellectual Property I, L.P. Facilitating an enhanced resources indicator for channel state reporting in a wireless communication system
CN111446995B (zh) * 2017-04-18 2024-08-16 Oppo广东移动通信有限公司 一种用于多天线传输的用户设备、基站中的方法和装置
US10462801B2 (en) 2017-05-05 2019-10-29 At&T Intellectual Property I, L.P. Multi-antenna transmission protocols for high doppler conditions
US10470072B2 (en) 2017-06-15 2019-11-05 At&T Intellectual Property I, L.P. Facilitation of multiple input multiple output communication for 5G or other next generation network
WO2019004881A1 (en) * 2017-06-27 2019-01-03 Telefonaktiebolaget Lm Ericsson (Publ) FEEDBACK SIGNALING FORMAT SELECTION
CN109391391B (zh) * 2017-08-08 2020-04-17 维沃移动通信有限公司 一种用于传输参考信号的方法及装置
CN110149643A (zh) * 2018-02-11 2019-08-20 索尼公司 无线通信系统中的装置和方法、计算机可读存储介质
WO2020252613A1 (en) * 2019-06-17 2020-12-24 Qualcomm Incorporated System and method that facilitates enhancing channel quality indicator (cqi) feedback
KR20220034824A (ko) * 2019-07-11 2022-03-18 베이징 시아오미 모바일 소프트웨어 컴퍼니 리미티드 비면허 스펙트럼에서의 채널 상태 지시 방법, 장치 및 저장 매체
KR20220034851A (ko) * 2019-07-17 2022-03-18 베이징 시아오미 모바일 소프트웨어 컴퍼니 리미티드 정보 지시 방법, 정보 결정 방법 및 장치, 통신 기기 및 저장 매체 (information indication and determination methods and apparatuses, communication device, and storage medium)
CN114073022B (zh) * 2019-07-18 2024-08-30 瑞典爱立信有限公司 在大规模mu-mimo系统中的cqi饱和减轻
WO2021102858A1 (zh) * 2019-11-28 2021-06-03 北京小米移动软件有限公司 传输块配置参数传输方法、装置、通信设备及存储介质
CN113810318B (zh) * 2020-06-17 2024-04-12 上海朗帛通信技术有限公司 一种被用于无线通信的用户设备、基站中的方法和装置
CN112260778B (zh) * 2020-10-16 2023-02-14 展讯半导体(成都)有限公司 广播信道的评估方法及相关产品
US11924124B2 (en) 2021-05-24 2024-03-05 Samsung Electronics Co., Ltd. Set of rules for triggering coordinated beamforming

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101277166A (zh) * 2008-04-03 2008-10-01 中兴通讯股份有限公司 一种信道质量指示反馈方法
CN101841847A (zh) * 2009-03-18 2010-09-22 大唐移动通信设备有限公司 信道质量指示信息的反馈方法、系统及设备
US20100254471A1 (en) * 2009-04-07 2010-10-07 Hyunsoo Ko Method of transmitting power information in wireless communication system

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009002087A1 (en) * 2007-06-25 2008-12-31 Lg Electronics Inc. Method of transmitting feedback data in multiple antenna system
CN101111083B (zh) * 2007-08-13 2011-11-30 中兴通讯股份有限公司 信道质量指数反馈方法
CN101383654B (zh) * 2007-09-05 2017-04-19 电信科学技术研究院 一种tdd模式的信道数据传输方法及一种基站
CN101674655A (zh) * 2009-10-14 2010-03-17 中兴通讯股份有限公司 一种上行及下行信道信息获取方法和系统
US8824384B2 (en) * 2009-12-14 2014-09-02 Samsung Electronics Co., Ltd. Systems and methods for transmitting channel quality information in wireless communication systems
CN102045762B (zh) * 2010-12-02 2013-07-24 大唐移动通信设备有限公司 一种上报信道状态的方法及装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101277166A (zh) * 2008-04-03 2008-10-01 中兴通讯股份有限公司 一种信道质量指示反馈方法
CN101841847A (zh) * 2009-03-18 2010-09-22 大唐移动通信设备有限公司 信道质量指示信息的反馈方法、系统及设备
US20100254471A1 (en) * 2009-04-07 2010-10-07 Hyunsoo Ko Method of transmitting power information in wireless communication system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer procedures (Release 10)", 3GPP TS 36.213 V10.0.1, December 2010 (2010-12-01), XP050462385 *
"Evolved Universal Terrestrial Radio Access (E-UTRA); Physical layer procedures (Release 10)", 3GPP TS 36.213 V10.4.0, December 2011 (2011-12-01) *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015531211A (ja) * 2012-08-21 2015-10-29 エルジー エレクトロニクス インコーポレイティド 無線通信システムにおいてチャネル状態情報(csi)送信方法及び装置
US9509471B2 (en) 2012-08-21 2016-11-29 Lg Electronics Inc. Method and device for transmitting channel state information in wireless communication system
US9749106B2 (en) 2012-08-21 2017-08-29 Lg Electronics Inc. Method and device for transmitting channel state information in wireless communication system
JP2016510519A (ja) * 2012-12-27 2016-04-07 ゼットティーイー (ユーエスエー) インコーポレイテッド Mimootaをサポートするueの測定のための方法およびシステム
JP2016509773A (ja) * 2013-01-03 2016-03-31 インテル コーポレイション 改良されたチャネル品質情報フィードバック方式
WO2014135064A1 (zh) * 2013-03-05 2014-09-12 电信科学技术研究院 一种通信处理方法及设备
WO2016119652A1 (zh) * 2015-01-30 2016-08-04 中兴通讯股份有限公司 Ue上报csi及触发ue上报csi的方法和装置
CN111107633A (zh) * 2018-10-26 2020-05-05 维沃移动通信有限公司 Csi上报方法、获取方法和设备
CN111107633B (zh) * 2018-10-26 2023-08-25 维沃移动通信有限公司 Csi上报方法、获取方法和设备

Also Published As

Publication number Publication date
ES2730979T3 (es) 2019-11-13
EP2654356A4 (en) 2017-12-06
ES2730979T4 (es) 2024-01-29
JP5649744B2 (ja) 2015-01-07
JP2014507854A (ja) 2014-03-27
EP2654356B1 (en) 2019-03-13
US9107087B2 (en) 2015-08-11
EP2654356A1 (en) 2013-10-23
KR20130103613A (ko) 2013-09-23
CN102595469B (zh) 2016-11-16
KR101504446B1 (ko) 2015-04-02
CN102595469A (zh) 2012-07-18
US20130286884A1 (en) 2013-10-31

Similar Documents

Publication Publication Date Title
JP5649744B2 (ja) チャネル品質指示情報を確定する方法及び装置
US9590749B2 (en) Terminal and method for calculating channel quality indication information
JP6955000B2 (ja) 無線通信システムにおいて干渉測定のための方法及びそのための装置
CN108141317B (zh) 用于多用户叠加传输的多个csi报告
EP2665220B1 (en) Method and user equipment for feeding back channel state information
JP6037321B2 (ja) チャネル状態情報を確定する方法及び端末
CN104508988B (zh) 用在包括多个具有分布式天线的基站的无线通信系统中的参考信号测量方法和装置
US9872190B2 (en) Method for reporting channel quality information and device thereof
WO2011134322A1 (zh) 信道状态信息的反馈方法及终端
US10433293B2 (en) Method and apparatus for receiving or transmitting downlink signal in a wireless communication system
WO2014019530A1 (zh) 一种信道状态信息的反馈方法及用户设备
WO2013022266A2 (en) Method and apparatus for transmitting and receiving channel state information
EP2850742A1 (en) Calculating and reporting channel characteristics
WO2011082641A1 (zh) 一种传输信道质量信息的系统、终端及方法
WO2016019741A1 (zh) 信道质量/状态指示信息处理方法、装置、终端及基站
CN102170334B (zh) 信道质量指示信息的获取方法和装置
CN102170334A (zh) 信道质量指示信息的获取方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12734059

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013548731

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13979381

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012734059

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137019545

Country of ref document: KR

Kind code of ref document: A