WO2019153213A1 - Method and apparatus for multi-layered data transmission - Google Patents

Method and apparatus for multi-layered data transmission Download PDF

Info

Publication number
WO2019153213A1
WO2019153213A1 PCT/CN2018/075909 CN2018075909W WO2019153213A1 WO 2019153213 A1 WO2019153213 A1 WO 2019153213A1 CN 2018075909 W CN2018075909 W CN 2018075909W WO 2019153213 A1 WO2019153213 A1 WO 2019153213A1
Authority
WO
WIPO (PCT)
Prior art keywords
predetermined number
data
modulation order
wireless communication
layer
Prior art date
Application number
PCT/CN2018/075909
Other languages
French (fr)
Inventor
Jinbang ZONG
Li Tian
Wei Cao
Zhifeng Yuan
Yifei Yuan
Original Assignee
Zte Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zte Corporation filed Critical Zte Corporation
Priority to PCT/CN2018/075909 priority Critical patent/WO2019153213A1/en
Priority to CN201880088717.2A priority patent/CN111684741B/en
Publication of WO2019153213A1 publication Critical patent/WO2019153213A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • H04L5/0046Determination of how many bits are transmitted on different sub-channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0015Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy
    • H04L1/0016Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the adaptation strategy involving special memory structures, e.g. look-up tables
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0025Transmission of mode-switching indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • H04L1/0026Transmission of channel quality indication
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0016Time-frequency-code
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0026Division using four or more dimensions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/006Quality of the received signal, e.g. BER, SNR, water filling

Definitions

  • This disclosure relates generally to wireless communications and, more particularly, to a method and apparatus for multi-layered data transmission.
  • eMBB enhanced mobile broadband
  • mMTC massive Machine-Type Communication
  • URLLC Ultra Reliability Low Latency Communication
  • wireless communication systems should meet a variety of requirements, such as throughput, latency, data rate, capacity, reliability, link density, cost, energy consumption, complexity, and coverage.
  • exemplary embodiments disclosed herein are directed to solving the issues related to one or more problems presented in the prior art, as well as providing additional features that will become readily apparent by reference to the following detailed description when taken in conjunction with the accompany drawings.
  • exemplary systems, methods, and computer program products are disclosed herein. It is understood, however, that these embodiments are presented by way of example and not limitation, and it will be apparent to those of ordinary skill in the art who read the present disclosure that various modifications to the disclosed embodiments can be made while remaining within the scope of the invention.
  • a grant-free data transmission method refers to a method where a transmitting user terminal can perform an autonomous data transmission without transmitting a scheduling request signal to a base station or acquiring a dynamic grant signal from the base station.
  • Advantages of the grant-free data transmission method include reduced signaling overhead, reduced terminal power consumption, reduced latency, etc.
  • a grant-free method can be either an orthogonal or a non-orthogonal resource allocation technique.
  • an orthogonal resource allocation technique although the resources themselves are orthogonal, different user terminals may randomly choose the same resources for data transmission, causing “collisions. ” When a collision occurs, channel performance can be significantly affected. Therefore, orthogonal grant-free resource allocation schemes are not efficient in terms of usage of resources.
  • non-orthogonal grant-free resource allocation schemes based on sequence spreading can process data on a transmitting user terminal and use advanced receivers on the base station which can effectively handle scenarios such as multi-user overlap or collision without compromising the channel performance.
  • a low-correlation spreading sequence can also reduce multi-user interference, enhance system capacity, and also reduce complexity of receivers on the base station.
  • Quadrature amplitude modulation is a form of modulation, which is widely used for modulating data signals onto a carrier used for wireless communications.
  • QAM is widely used because it offers advantages over other forms of data modulation such as PSK (Phase-Shift Keying) .
  • PSK Phase-Shift Keying
  • the advantage of moving to a higher order QAM is that there are more points within the constellation and therefore it more efficiently transmits more bits per symbol resulting in a higher bandwidth efficiency. For example, increasing from 16 QAM to 256 QAM, the constellation points increases from 16 to 256 points and the theoretical bandwidth efficiency increases from 4 to 8 times.
  • a method performed by a wireless communication node includes: transmitting a reference signal to a wireless communication device; receiving a channel quality indicator (CQI) signal from the wireless communication device; based on at least the CQI signal, determining a modulation coding scheme (MCS) index from a first MCS table for the wireless communication device; and receiving a first uplink transmission data set from the wireless communication device.
  • CQI channel quality indicator
  • MCS modulation coding scheme
  • a method performed by a wireless communication device includes: generating a channel quality indicator (CQI) signal based on a received reference signal from a wireless communication node; receiving a modulation coding scheme (MCS) index in a first MCS table from the wireless communication node for future uplink transmissions; transmitting a first uplink transmission data set to the wireless communication node.
  • CQI channel quality indicator
  • MCS modulation coding scheme
  • a method performed by a wireless communication device includes: receiving a first uplink transmission data set and a first processing configuration from a wireless communication device, wherein the first uplink transmission data set is derived from splitting a second uplink transmission data set into a predetermined number of data segments on a predetermined number of data layers, respectively, and processed by at least one process, wherein the first processing configuration comprises the predetermined number of data layers and a first modulation order, and wherein the predetermined number of data layers is transmitted from the wireless communication device using one of the following: explicit indication and implicit indication.
  • a method performed by a wireless communication node includes: splitting a first uplink transmission data set into a predetermined number of data segments on a predetermined number of data layers, respectively; processing the predetermined number of data segments on the predetermined number of data layers to form a second uplink transmission data set according to a first processing configuration; and transmitting the second uplink transmission data set and the first processing configuration to a wireless communication node, wherein the first processing configuration comprises the predetermined number of data layers, and wherein the predetermined number of data layers is transmitted to the wireless communication node using one of the following: explicit indication and implicit indication.
  • FIG. 1A illustrates an exemplary wireless communication network illustrating achievable modulation as a function of distance from a BS, in accordance with some embodiments of the present disclosure.
  • FIG. 1B illustrates a block diagram of an exemplary wireless communication system for a slot structure information indication, in accordance with some embodiments of the present disclosure.
  • FIG. 2 illustrates one exemplary conventional 64 QAM CQI table with 16 entries or index values, in accordance with some embodiments of the present disclosure.
  • FIG. 3 illustrates an exemplary conventional 64 QAM MCS with 32 entries or index values, in accordance with some embodiments of the present disclosure.
  • FIG. 4A-4C illustrates 3 exemplary modified 64 QAM MCS tables with 32 entries or index values, in accordance with some embodiments of the present disclosure.
  • FIG. 5A illustrates a method of performing an uplink multi-layered data transmission in a grant-based scenario, according to some embodiments of the present disclosure.
  • FIG. 5B illustrates a method of performing a multi-layered uplink transmission in a grant-free scenario, in accordance with some embodiments of the present disclosure.
  • FIG. 6 illustrates an exemplary data processing diagram illustrating processes performed by a UE after receiving scheduling information from the BS, in accordance with some embodiment of the present disclosure.
  • FIG. 7A illustrates an implicit indication of the number of data layers using Zadoff-Chu (ZC) root sequences, in accordance with some embodiments of the present disclosure.
  • FIG. 7B illustrates an implicit indication of the number of data layers using time-frequency resources, in accordance with some embodiments of the present disclosure.
  • FIG. 7C illustrates an implicit indication of the number of data layers using DMRS (demodulation reference signal) , in accordance with some embodiments of the present disclosure.
  • Figure 1A illustrates an exemplary wireless communication network 100 illustrating achievable modulation as a function of distance from a BS 102, in accordance with some embodiments of the present disclosure.
  • a Network side communication node or a base station can be a Node B, an E-utran Node B (also known as Evolved Node B, eNodeB or eNB) , a pico station, a femto station, or the like.
  • a terminal side node or a user equipment can be a long range communication system like a mobile phone, a smart phone, a personal digital assistant (PDA) , tablet, laptop computer, or a short range communication system such as, for example a wearable device, a vehicle with a vehicular communication system and the like.
  • a network and a terminal side communication node are represented by a BS 102 and a UE 104, respectively, and are generally referred to as “communication nodes” herein.
  • Such communication nodes may be capable of wireless and/or wired communications, in accordance with various embodiments of the invention. It is noted that all the embodiments are merely preferred examples, and are not intended to limit the present disclosure. Accordingly, it is understood that the system may include any desired combination of UEs and BSs, while remaining within the scope of the present disclosure.
  • the wireless communication network 100 includes a BS 102 and a UE 104 which moves in a cell 110 or coverage area established by the BS 102, wherein each position of the UE 104 from 104a to 104b to 104c to 104d to 104e represents the UE 104 moving from an edge of the cell 110 towards the BS 102, respectively.
  • a wireless transmission from a transmitting antenna of the UE 104 to a receiving antenna of the BS 102 is known as an uplink transmission
  • a wireless transmission from a transmitting antenna of the BS 102 to a receiving antenna of the UE 104 is known as a downlink transmission.
  • the BS 102 and the UE 104 are contained within a geographic boundary of cell 110.
  • the UE 104 When the UE 104 is at the extreme cell edge 110, e.g., at 104a, having a longer distance between the BS 102 and UE 104a, path loss becomes significant, so the UE 104 will transmit at a maximum power over a long distance and most importantly with the most robust modulation (QPSK, Quadrature Phase Shifting Keying) . As a result, the data rate is relatively low between the BS 102 and UE 104a in this case.
  • QPSK Quadrature Phase Shifting Keying
  • the BS 102 instructs the UE 104 to reduce power to minimize interference to other UE’s and/or the BS 102.
  • the BS 102 will instruct the UE 104 to switch modulations in order to improve overall network capacity and bandwidth efficiency.
  • the BS 102 instructs the UE 104 at position 104b to switch from QPSK to 16 QAM and further switch to 64 QAM, 256 QAM and 1024 QAM as the UE 104 moves to positions 104c, 104d and 104e, respectively, each having improved channel quality compared to the previous positions.
  • the UEs 104a and 104b obtains its synchronization timing from the BS 102, which obtains its own synchronization timing from the core network 108 through an internet time service, such as a public time NTP (Network Time Protocol) server or a RNC (Radio Frequency Simulation System Network Controller) server. This is known as network-based synchronization.
  • the BS 102 can also obtain synchronization timing from a Global Navigation Satellite System (GNSS) (not shown) through a satellite signal, especially for a large BS in a large cell which has a direct line of sight to the sky, which is known as satellite-based synchronization.
  • GNSS Global Navigation Satellite System
  • Figure 1B illustrates a block diagram of an exemplary wireless communication system 150, in accordance with some embodiments of the present disclosure.
  • the system 150 may include components and elements configured to support known or conventional operating features that need not be described in detail herein.
  • system 150 can be used to transmit and receive data symbols in a wireless communication environment such as the wireless communication network 100 of Figure 1A, as described above.
  • the System 150 generally includes a BS 102 and two UEs 104a and 104b, collectively referred to as UE 104 below for ease of discussion.
  • the BS 102 includes a BS transceiver module 152, a BS antenna array 154, a BS memory module 156, a BS processor module 158, and an Network interface 160, each module being coupled and interconnected with one another as necessary via a data communication bus 180.
  • the UE 104 includes a UE transceiver module 162, a UE antenna 164, a UE memory module 166, a UE processor module 168, and a I/O interface 169, each module being coupled and interconnected with one another as necessary via a date communication bus 190.
  • the BS 102 communicates with the UE 104 via a communication channel 192, which can be any wireless channel or other medium known in the art suitable for transmission of data as described herein.
  • system 150 may further include any number of blocks, modules, circuits, etc. other than those shown in Figure 1B.
  • Those skilled in the art will understand that the various illustrative blocks, modules, circuits, and processing logic described in connection with the embodiments disclosed herein may be implemented in hardware, computer-readable software, firmware, or any practical combination thereof. To clearly illustrate this interchangeability and compatibility of hardware, firmware, and software, various illustrative components, blocks, modules, circuits, and steps are described generally in terms of their functionality. Whether such functionality is implemented as hardware, firmware, or software depends upon the particular application and design constraints imposed on the overall system. Those familiar with the concepts described herein may implement such functionality in a suitable manner for each particular application, but such implementation decisions should not be interpreted as limiting the scope of the present invention.
  • a wireless transmission from a transmitting antenna of the UE 104 to a receiving antenna of the BS 102 is known as an uplink transmission
  • a wireless transmission from a transmitting antenna of the BS 102 to a receiving antenna of the UE 104 is known as a downlink transmission.
  • a UE transceiver 162 may be referred to herein as an "uplink" transceiver 162 that includes a RF transmitter and receiver circuitry that are each coupled to the UE antenna 164.
  • a duplex switch (not shown) may alternatively couple the uplink transmitter or receiver to the uplink antenna in time duplex fashion.
  • the BS transceiver 152 may be referred to herein as a "downlink" transceiver 152 that includes RF transmitter and receiver circuitry that are each coupled to the antenna array 154.
  • a downlink duplex switch may alternatively couple the downlink transmitter or receiver to the downlink antenna array 154 in time duplex fashion.
  • the operations of the two transceivers 152 and 162 are coordinated in time such that the uplink receiver is coupled to the uplink UE antenna 164 for reception of transmissions over the wireless communication channel 192 at the same time that the downlink transmitter is coupled to the downlink antenna array 154.
  • there is close synchronization timing with only a minimal guard time between changes in duplex direction.
  • the UE transceiver 162 communicates through the UE antenna 164 with the BS 102 via the wireless communication channel 192 or with other UEs via the wireless communication channel 193.
  • the wireless communication channel 193 can be any wireless channel or other medium known in the art suitable for sidelink transmission of data as described herein.
  • the UE transceiver 162 and the BS transceiver 152 are configured to communicate via the wireless data communication channel 192, and cooperate with a suitably configured RF antenna arrangement 154/164 that can support a particular wireless communication protocol and modulation scheme.
  • the BS transceiver 152 is configured to transmit the physical downlink control channel (PDCCH) and configured slot structure related information (SFI) entry set to the UE transceiver 162.
  • the UE transceiver 162 is configured to receive PDCCH containing at least one SFI field from the BS transceiver 152.
  • the UE transceiver 162 and the BS transceiver 152 are configured to support industry standards such as the Long Term Evolution (LTE) and emerging 5G standards, and the like. It is understood, however, that the invention is not necessarily limited in application to a particular standard and associated protocols. Rather, the UE transceiver 162 and the BS transceiver 152 may be configured to support alternate, or additional, wireless data communication protocols, including future standards or variations thereof.
  • LTE Long Term Evolution
  • 5G 5G
  • the BS processor modules 158 and UE processor modules 168 are implemented, or realized, with a general purpose processor, a content addressable memory, a digital signal processor, an application specific integrated circuit, a field programmable gate array, any suitable programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof, designed to perform the functions described herein.
  • a processor may be realized as a microprocessor, a controller, a microcontroller, a state machine, or the like.
  • a processor may also be implemented as a combination of computing devices, e.g., a combination of a digital signal processor and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a digital signal processor core, or any other such configuration.
  • the UE processor module 168 detects the PHR triggering message on the UE transceiver module 162, the UE processor module 168 is further configured to determine at least one second SFI entry set based on at least one predefined algorithm and the received at least one first SFI entry set configured by the BS 102, wherein the at least one predefined algorithm is selected based on other parameters calculated or messages received.
  • the UE processor module 168 is further configured to generate the at least one second SFI entry set and monitor the PDCCH received on the UE transceiver module 162 to further receive the at least one SFI field.
  • SFI entry set means SFI table or SFI entries.
  • the steps of a method or algorithm described in connection with the embodiments disclosed herein may be embodied directly in hardware, in firmware, in a software module executed by processor modules 158 and 168, respectively, or in any practical combination thereof.
  • the memory modules 156 and 166 may be realized as RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, a hard disk, a removable disk, a CD-ROM, or any other form of storage medium known in the art.
  • the memory modules 156 and 166 may be coupled to the processor modules 158 and 168, respectively, such that the processors modules 158 and 168 can read information from, and write information to, memory modules 156 and 166, respectively.
  • the memory modules 156 and 166 may also be integrated into their respective processor modules 158 and 168.
  • the memory modules 156 and 166 may each include a cache memory for storing temporary variables or other intermediate information during execution of instructions to be executed by processor modules 158 and 168, respectively.
  • Memory modules 156 and 166 may also each include non-volatile memory for storing instructions to be executed by the processor modules 158 and 168, respectively.
  • the network interface 160 generally represents the hardware, software, firmware, processing logic, and/or other components of the base station 102 that enable bi-directional communication between BS transceiver 152 and other network components and communication nodes configured to communication with the BS 102.
  • network interface 160 may be configured to support internet or WiMAX traffic.
  • network interface 160 provides an 802.3 Ethernet interface such that BS transceiver 152 can communicate with a conventional Ethernet based computer network.
  • the network interface 160 may include a physical interface for connection to the computer network (e.g., Mobile Switching Center (MSC) ) .
  • MSC Mobile Switching Center
  • the terms “configured for” or “configured to” as used herein with respect to a specified operation or function refers to a device, component, circuit, structure, machine, signal, etc. that is physically constructed, programmed, formatted and/or arranged to perform the specified operation or function.
  • the network interface 160 could allow the BS 102 to communicate with other BSs or core network over a wired or wireless connection.
  • the BS 102 repeatedly broadcasts system information associated with the BS 102 to one or more UEs (e.g., 104) so as to allow the UE 104 to access the network within the cell 101 where the BS 102 is located, and in general, to operate properly within the cell 101.
  • Plural information such as, for example, downlink and uplink cell bandwidths, downlink and uplink configuration, configuration for random access, etc., can be included in the system information, which will be discussed in further detail below.
  • the BS 102 broadcasts a first signal carrying some major system information, for example, configuration of the cell 101 through a PBCH (Physical Broadcast Channel) .
  • PBCH Physical Broadcast Channel
  • first broadcast signal For purposes of clarity of illustration, such a broadcasted first signal is herein referred to as “first broadcast signal. ” It is noted that the BS 102 may subsequently broadcast one or more signals carrying some other system information through respective channels (e.g., a Physical Downlink Shared Channel (PDSCH) ) , which are herein referred to as “second broadcast signal, ” “third broadcast signal, ” and so on.
  • PDSCH Physical Downlink Shared Channel
  • the major system information carried by the first broadcast signal may be transmitted by the BS 102 in a symbol format via the communication channel 192.
  • an original form of the major system information may be presented as one or more sequences of digital bits and the one or more sequences of digital bits may be processed through plural steps (e.g., coding, scrambling, modulation, mapping steps, etc. ) , all of which can be processed by the BS processor module 158, to become the first broadcast signal.
  • the UE processor module 168 may perform plural steps (de-mapping, demodulation, decoding steps, etc. ) to estimate the major system information such as, for example, bit locations, bit numbers, etc., of the bits of the major system information.
  • the UE processor module 168 is also coupled to the I/O interface 169, which provides the UE 104 with the ability to connect to other devices such as computers.
  • the I/O interface 169 is the communication path between these accessories and the UE processor module 168.
  • the UE 104 can operate in a hybrid communication network in which the UE communicates with the BS 102, and with other UEs, e.g., between 104a and 104b. As described in further detail below, the UE 104 supports sidelink communications with other UE’s as well as downlink/uplink communications between the BS 102 and the UE 104. As discussed above, sidelink communication allows the UEs 104a and 104b to establish a direct communication link with each other, or with other UEs from different cells, without requiring the BS 102 to relay data between UE’s.
  • Figure 2 illustrates one exemplary conventional 64 QAM CQI table with 16 entries or index values, in accordance with some embodiments of the present disclosure. Since the table contains only 16 possible index values (0 to 15) , only four bits are required to specify each index value. As shown in Figure 2, the 64 QAM CQI table contains 6 entries for QPSK modulation, 3 entries for 16 QAM modulation and 6 entries for 64 QAM modulation. Referring to Figure 2, as an example, it is noted that at different code rates 203, different bandwidth efficiencies 204 can be achieved for the same modulation orders 202. For example, 6 entries for the maximum modulation order 64 QAM have different bandwidth efficiencies 204 which increases with increasing code rates 203.
  • the highest supported modulation order is 64 QAM.
  • a different CQI table may be used to support higher modulations, e.g., 256 QAM and 1024 QAM, with at least one entry at each higher modulation order.
  • the radio condition gets better or worse or when switching transmission mode (e.g., downlink to uplink or vice versa)
  • the example 64 QAM CQI table shown in Figure 2 is merely an example, different number of entries for each modulation order 202 at different code rates 203 thus with different bandwidth efficiencies 204 can be constructed in accordance with various embodiments of the invention.
  • Figure 3 illustrates an exemplary conventional 64 QAM MCS with 32 entries or index values, in accordance with some embodiments of the present disclosure. Since the table contains only 32 possible index values, i.e., 0 to 31, only five bits are required to specify each index value. As shown in Figure 3, the 64 QAM MCS table contains 11 entries for QPSK modulation, 8 entries for 16 QAM modulation and 13 entries for 64 QAM modulation. It should be noted that the example 64 QAM MCS table shown in Figure 3 is merely an example, different number of entries for each modulation order 302 and different TBS index 303 can be constructed in accordance with various embodiments of the invention.
  • the MCS table of Figure 3 can be modified in order to support a modulation order higher than 64 QAM without increasing the number of bits in the DCI/UCI formats or the number of entries/index values in the MCS table that are required to be uniquely specified.
  • the MCS table can be generated based on computer simulation results as would be understood by persons skilled in the art. It should be noted that the invention is not limited to the specific examples of MCS/CQI tables described herein and that any MCS/CQI tables with different supported modulation orders may be configured or used, in accordance with various embodiments of the invention.
  • a MCS table can be configured to support higher-order modulation (e.g., 1024 QAM) to improve overall network capacity and bandwidth efficiency, in the scenarios discussed above, in accordance with some embodiments.
  • Such scenarios include, for example, when there is a high SNR in a current channel, the UE 104 (e.g., 104e in Figure 1A) is close to the BS 102, a strong direct line of sight between the UE 104 and the BS 102, when the UE 104 is fixed or moves with small velocities, especially within a very small-cell BS area, e.g., home base station, and under excellent environmental conditions.
  • higher-order modulation e.g. 1024 QAM
  • Figures 4A-4C illustrates 3 exemplary modified 64 QAM MCS tables with 32 entries or index values, in accordance with some embodiments of the present disclosure. Similar to the 64 QAM MCS table shown in Figure 3 currently used in LTE communication, the modified 64 QAM MCS table contains 11 entries for QPSK modulation, 8 entries for 16 QAM modulation and 13 entries for 64 QAM modulation. It should be noted that the example modified 64 QAM MCS table shown in Figure 4A is merely an example, different number of entries for each modulation order 302 and different TBS index 303 can be constructed in accordance with various embodiments of the invention.
  • the MCS table of Figures 4A-4C can be modified in order to support a modulation order higher than 64 QAM without increasing the number of bits in the DCI/UCI formats or the number of entries/index values in the MCS table that are required to be uniquely specified.
  • the MCS table can be generated based on computer simulation results as would be understood by persons skilled in the art.
  • the modified 64QAM MCS table comprises 2 new columns: new modulation order Q n 402 and a predefined number of data layers N layer 404.
  • N layer 404 can be configured based on Q m 302 and Q n 402, in accordance with some embodiments.
  • N layer Q m /Q n
  • N layer , Q m , and Q n are positive integers.
  • Q n is a constant for all 32 entries in a modified table.
  • the BS 102 further selects an entry of the MCS index 301 in the modified MCS table for the UE 104.
  • the UE 104 is then able to use the assigned MCS index and thus the corresponding new modulation order Q n 402 and the predefined number of data layers N layer 404 for uplink data transmission and processing, in some embodiments.
  • Figure 4C illustrates an exemplary modified 64QAM MCS table when Q n is not a constant, in accordance with some embodiments of the present disclosure.
  • 11 entries for QPSK have the same new modulation order Q n 422 of 1
  • 8 entries for 16QAM have the same new modulation order Q n 422 of 2.
  • N layer 2, 2, and 3 for QPSK modulation, 16QAM modulation and 64QAM modulation, respectively.
  • BS 102 can comprise a plurality of modified MCS tables with different Q n values.
  • the invention is not limited to the specific examples of MCS tables described herein and that any MCS tables with any supported modulation orders, number of entries for each modulation order, and number of layers may be configured or used, in accordance with various embodiments of the invention.
  • the BS 102 selects one MCS table from the plurality of MCS tables based on parameters such as, for example channel quality.
  • Figure 5A illustrates a method 500 of performing an uplink multi-layered data transmission in a grant-based scenario, according to some embodiments of the present disclosure. It is understood that additional operations may be provided before, during, and after the method 500 of Figure 5, and that some other operations may be omitted or only briefly described herein.
  • the method 500 starts with operation 502, in which the BS 102 transmits a downlink reference signal (DLRS) to the UE 104 according to some embodiments.
  • DLRS downlink reference signal
  • a beam sweeping technique for example, a plurality of DLRSs are transmitted from the BS 102 to the UE 104 using the respective transmitting beams of the BS 102 and receiving beams of the UE 104.
  • the DLRS from the BS 102 can be a Sound Reference Signal (SRS) , or transmitted on a channel such as, for example, a Physical Random Access Channel (PRACH) , a Physical Downlink Control Channel (PDCCH) , and a Physical Downlink Shared Channel (PDSCH) .
  • PRACH Physical Random Access Channel
  • PDCH Physical Downlink Control Channel
  • PDSCH Physical Downlink Shared Channel
  • the DLRSs are staggered in time and frequency, which allows the UE 104 to perform complex interpolation of channel time-frequency response to estimate the channel effect on the transmitted information.
  • a DLRS can also be a Cell-specific reference signal (CSRS) or a UE-specific reference signal (UESRS) .
  • CSRS Cell-specific reference signal
  • UMSRS UE-specific reference signal
  • the method 500 continues with operation 502, during which CQI values are measured and estimated by the UE 104 based on the DLRS from the BS 102, which are affected by the following factors such as, for example, signal-to-noise ratio (SNR) , signal-to-interference plus noise ratio (SINR) , signal-to-noise plus distortion ratio (SNDR) and the like.
  • SNR is a significant criterion for the UE 104 to determine the CQI index with the exact mapping relation between the SNR and CQI index varying a little depending on other factors.
  • the SNR often expressed in decibels (dB) has a linear relationship with the CQI index.
  • a corresponding CQI index between 0 and 15 is derived based on a default 64 QAM CQI table (e.g., the exemplary 64 QAM CQI table shown in Figure 2) in accordance with techniques understood by persons skilled in the art.
  • a default 64 QAM CQI table e.g., the exemplary 64 QAM CQI table shown in Figure 2
  • the predefined 64 QAM CQI table is configured and informed by the BS 102 to the UE 104 by a higher layer signal (e.g., RRC message) above the physical layer.
  • the method 500 continues with operation 506, in which the derived CQI index is transmitted back to the BS 102 through CQI reporting, which is typically carried on a Physical Uplink Control Channel (PUCCH) and/or a Physical Uplink Shared Channel (PUSCH) .
  • the time and frequency resources that can be used by the UE 104 to report CQI are controlled by the BS 102.
  • a CQI reporting can be conducted either periodically on a PUCCH or a PUSCH with a period preconfigured by the higher layer, or triggered by the BS 102 on PUSCH either upon receiving a DCI format 0 or a Random Access Response Grant.
  • the CQI reporting can be a 4-bit wide-band CQI, 2-bit differential sub-band CQI, or a 3-bit differential Spatial CQI.
  • the method 500 continues with operation 508, in which the BS 102 select one MCS index for the UE 104 based on the CQI information from the UE 104 by selecting one entry in a modified MCS table, in accordance with some embodiments.
  • the CQI information can be in a form of a CQI index value, as shown in Figure 2.
  • the number of resource blocks and MCS for each CQI value are then determined by the BS 102 to properly allocate the resource for the UE 104.
  • a range of MCS index values in a corresponding MCS table is then selected by the BS 102.
  • a specific MCS index value and number of resource blocks can then be determined together with the code rate 203 shown in the corresponding CQI table based on a corresponding transport block size (TBS) table, as known in the art.
  • the specific MCS index value selected by the BS 102 based on the CQI information from the UE 104 comprises information of an original modulation order Q m , the TBS index, a corresponding modified modulation order Q n and a number of layers N layer , , as discussed above in Figures 4A-4C.
  • the BS 102 when the BS 102 comprises a plurality of modified MCS tables, the BS 102 first determines a specific MCS table for the UE 104 according to the received CQI information, including channel quality and spectrum code rate. The BS 102 can further select a MCS index for the UE 104 from the specific MCS table, in accordance with some embodiments. In some embodiments, different UE’s 104 in the same cell may obtain different MCS indices from different MCS tables. In some embodiments, the modified MCS tables are derived from conventional MCS tables and omit original modulation orders, i.e., Q m .
  • the method 500 continues with operation 510, in which depending on the CQI index, the BS 102 transmits scheduling information back to the UE 104, in accordance with some embodiments.
  • the scheduling information is carried by a downlink control information (DCI) .
  • the scheduling information includes allocated time-frequency resources, transport block size for uplink data transmission, modulation and coding configurations, data processing configurations (i.e., N layer ) and the like.
  • the BS 102 receives a CQI index with a relatively large CQI value from the UE 104, the BS 102 transmit the data with a larger transport block size.
  • the BS 102 transmits the data with a smaller transport block size.
  • other data processing configurations can be also specified by the BS 102 to the UE 104, including spreading sequence, random phase vector for each data segment on each data layer.
  • data processing configurations together with modulation and coding configurations are cell-specific, especially in grant-based scenarios.
  • the method 500 continues with operation 512, in which the UE 104 splits an uplink transmission data set into N data segments on N data layers, respectively, and prepares N data segments for uplink data transmission, in accordance with some embodiments.
  • a multi-layered data transmission is provided by splitting an uplink transmission data set from a UE 104 into a plurality of data segments, e.g., N data segments.
  • the uplink transmission data set is split and processed according to the received scheduling information (i.e., N layer , Q n , random phase vector, time-frequency resources, etc. ) .
  • Each of the data segments is prepared through a plurality of processes before they are stacked back together and transmitted on a physical channel.
  • the scheduling information may further comprises spreading sequences in non-orthogonal multiple access (NOMA) .
  • NOMA non-orthogonal multiple access
  • Figure 6 illustrates an exemplary data processing diagram 600 illustrating split processes performed by a UE 104 after receiving scheduling information from the BS 102, in accordance with some embodiments of the present disclosure.
  • the plurality of processes can include, but is not limited to data splitting, channel encoding, scrambling/interleaving, modulation, sequence spreading, resource mapping, and data segment stacking.
  • source information bits are first split into N data segments onto N data layers using a serial-to-parallel converter 602, i.e., 1 st data layer 620, 2 nd data layer 622, ..., N th data layer 624.
  • Each of the N data layers comprises 1/N of the source information bits from the UE 104.
  • Each data segment on each data layer is then channel-coded with a channel encoder 604 before being adapted by a rate matching process for a final suitable code rate.
  • Adjacent data symbols are mapped to adjacent SC-FDMA (Single-Carrier Frequency-Division Multiple Access) symbols in the time domain before being mapped across sub-carriers.
  • SC-FDMA Single-Carrier Frequency-Division Multiple Access
  • each data segment on each data layer is modulated by a modulator 608, sequence spread using a spreader 610, and resource mapping using a resource mapper 612.
  • each data segment has its independent CRC (cyclic redundancy check) process.
  • a random phase vector can be multiplied to each data segment on each data layer to reduce the cross correlation between channels.
  • the process to introduce random phase vectors can be located between resource mapping and data segment stacking, according to some embodiments. As illustrated in Figure 6, this data processing can be performed by the UE processor module 168 ( Figure 1B) , according to some embodiments. It is noted that the process flowchart 600 in Figure 6 is merely an example, and is not intended to limit the present disclosure. Accordingly, it is understood that the serial-to-parallel converter 602 for data splitting can be implemented at any position during scrambling/interleaving, modulation, and sequence spreading.
  • the UE 104 can perform data splitting after scrambling/interleaving.
  • the process on the BS 102 is configured according to the data processing performed on the UE 104, which will be discussed in detail below.
  • the method 500 continues with operation 514, in which the UE 104 transmits an uplink signal to the BS 102 based on the selected modulation, coding, and data processing configurations, in accordance with some embodiments.
  • each data segment on each data layer in the uplink transmission signals from all UE’s 104 are then decoded by a decoder on the BS 102 according to the coding, modulation, and data processing configurations.
  • the BS 102 further de-maps and demodulates data segments on each layer.
  • the BS 102 stacks all data segments on all data layers together, which is followed by de-scrambling/de-interleaving, decoding, and CRC checking. It should be noted that the data stacking process can be configured at any position between processes performed by the BS 102, according to the position of the data splitting process on the UE 104.
  • the BS 102 is not necessarily configured to transmit a spreading sequence or random phase vector to the UE 104.
  • the UE 104 selects the data processing configuration (s) from a predefined configuration pool.
  • the predefined configuration pool is obtained when the UE 104 joins the cell of the BS 102 through a RRC (radio resource control) message on PDCCH (physical downlink control channel) , in some embodiments.
  • the UE 104 also transmits the selected process configuration back to the BS 102 in order for the BS 102 to successfully decode the received uplink transmission data set from the UE 104.
  • different UE’s 104 can select different process configurations, e.g., spreading sequences and random phase vectors and the BS 102 performs decoding of the uplink transmission data set from each UE 104 according to its specific data processing configuration.
  • these processes are performed by the transceiver module 152 and processor module 158 on the BS 102 ( Figure 1B) . Since each of the data segments carries 1/N of the source information bits, the code rate is thus reduced to 1/N on each data segment. Furthermore, a reduced code rate using this presented multi-layered data transmission method can result in a reduced modulation threshold value in comparison to a single-layered data transmission. Therefore, data transmission based on this method is able to provide an improved decoding success rate and thus improved transmission performance.
  • Figure 5B illustrates a method 520 of performing a multi-layered uplink transmission in a grant-free scenario, in accordance with some embodiments of the present disclosure. It is understood that additional operations may be provided before, during, and after the method 520 of Figure 5B, and that some other operations may be omitted or only briefly described herein.
  • the method 520 starts with operation 522 in which the UE 104 processes data for uplink transmission, in accordance with some embodiments.
  • the UE 104 processes data according to the data processing configuration, which includes data spreading sequences, random phase vectors, etc., can be selected from a pool of data processing configurations according to the number of data layers selected by the UE 104.
  • the pool of data processing configurations is obtained by the UE 104 from the BS 102 when initially joining the cell of the BS 102.
  • a default MCS index is determined by the BS 102 through the RRC message.
  • the UE 104 can further determine Q n , N layer , and time-frequency resources based on the channel quality and package size.
  • the UE 104 also transmits modulation, coding and data process configurations back to the BS 102 in order for the BS 102 to successfully decode the received uplink transmission data set from the UE 104.
  • different UE’s 104 can select different modulation, coding and data processing configurations, e.g., Q n , N layer , coding schemes, spreading sequence, and random phase vectors.
  • the UE 104 splits an uplink transmission data set into N data segments on respective N data layers and prepare N data segments for uplink transmission, in accordance with some embodiments.
  • a multi-layered data transmission is to split an uplink transmission data set from a UE 104 into a plurality of data segments, e.g., N data segments. Each of the data segments is prepared through a plurality of processes before they are stacked and transmitted on a physical channel, as discussed in detail in Figure 6.
  • the BS 102 then performs decoding of the uplink transmission data set from each UE 104 according to its specific modulation, coding and data processing configurations.
  • the number of data layers, N layer , in the data processing configuration can be indicated from the UE 104 back to the BS 102 explicitly (hereinafter “explicit indication” ) , implicitly (hereinafter “implicit indication’ ) , or a combination thereof.
  • explicit indication refers to some information (e.g. resource) being indicated by information bits in a control signal, e.g. RRC message.
  • UCI Uplink Control Information
  • implicit indication refers to some information (e.g. resource) being indicated by information in a preamble signal or a reference signal.
  • various method can be used. For example, Zadoff-Chu (ZC) root sequences can be used for the indication of N layer .
  • ZC Zadoff-Chu
  • CS cyclic shifting
  • OCC orthogonal covering code
  • comb structure time-frequency resources
  • RNTI Radio Network Temporary Identity
  • Figure 7A illustrates an implicit indication of the number of data layers using Zadoff-Chu (ZC) root sequences, in accordance with some embodiments of the present disclosure.
  • ZC root sequences can be divided into 4 groups according to their ZC root sequence indices, according to some embodiments.
  • the first 16 ZC root sequence indices 702 of [1, 2, 3, ..., 16] indicate an N layer 704 of 1; the second 16 ZC root sequence indices 702 of [17, 18, 19, ..., 32] indicate an N layer 704 of 2; the third 16 ZC root sequence indices 702 of [33, 34, 35, ..., 48] indicate an N layer 704 of 3; and the fourth 16 ZC root sequence indices 702, i.e., [49, 50, 51, ..., 64] indicate an N layer 704 of 4, according to the illustrated embodiment.
  • Figure 7A is merely an example. Different methods to divide ZC root sequences according to their indices into different numbers of groups, and indication of N layer to each group can be used and are within the scope of this invention.
  • Figure 7B illustrates an implicit indication of the number of data layers using time-frequency resources, in accordance with some embodiments of the present disclosure.
  • there are 4 resource blocks (RB) 712 for uplink data transmission i.e., RB1, RB2, RB3 and RB4, and 4 N layer .
  • Each RB for uplink data transmission can be used to indicate different N layer .
  • the first RB 712 i.e., RB1
  • the second RB 712 i.e., RB2
  • the third RB 712 i.e., RB3
  • the fourth RB 712 indicates an N layer of 4.
  • the BS 102 can comprise different number of RBs for uplink data transmission and each RB can indicate a different N layer .
  • Figure 7B further illustrates a configuration of a resource block for uplink data transmission, in accordance with some embodiments.
  • a RB 712 occupies a subframe 715, which includes a first time slot 717 and a second time slot 718 (e.g., time slots 0 and 1) , which form 1 resource block 712 with 12 subcarriers 720 in the frequency domain.
  • Each of the two time slots in one subcarrier 720 includes 7 SC-FDMA (single carrier-frequency division multiple access) symbols 719.
  • SC-FDMA single carrier-frequency division multiple access
  • implicit indication of the number of data layers can be carried in an orthogonal covering code.
  • OCC can be added to at least one symbol that carries a DMRS (demodulation reference signal) .
  • An OCC group can correspond to different number of data layers. For example, an OCC group [1 1] indicates an N layer of 1; an OCC group [1 -1] corresponds to an N layer of 2; an OCC group [-1 1] corresponds to an N layer of 3; and an OCC group [-1 -1] corresponds to an N layer of 4, according to certain embodiments.
  • implicit indication of the number of data layers can be carried in the RNTI (Radio Network Temporary Identity) of the UE 104.
  • RNTI Radio Network Temporary Identity
  • the UE 104 is then configured under UTRAN (Universal Terrestrial Radio Access Network) mode and the RNTI for the UE 104 can be used as the UE ID on the shared transmission channel.
  • RNTI comprises designated bits which can be used to carry information of N layer . For example, RNTI comprises 2 bits, wherein 00 corresponds to an N layer of 1; 01 corresponds to an N layer of 2; 10 corresponds to an N layer of 3; and 11 corresponds to an N layer of 4, in accordance with some embodiments.
  • N layer can be implicitly indicated by a DMRS (demodulation reference signal) .
  • DMRS demodulation reference signal
  • a DMRS mapping to physical resources is determined by parameters such as symbols in the time domain, OCC, comb, etc., according to certain rules known in the art.
  • Figure 7C illustrates an implicit indication of the number of data layers using DMRS (demodulation reference signal) , in accordance with some embodiments of the present disclosure.
  • group 1 includes ports 1000, 1001, and 1002; group 2 includes ports 1003, 1004, and 1005; group 3 includes ports 1006, 1007, and 1008; and group 4 includes ports 1009, 1010 and 1011, according to the illustrated embodiment.
  • each group is configured with an N layer 734.
  • group 1 indicates an N layer of 1; group 2 indicates an N layer of 2; group indicates an N layer of 3; and group 4 indicates an N layer of 4.
  • the corresponding N layer is also assigned to the UE 104.
  • the N layer of a UE 104 can be determined based on the antenna port mapped by the DMRS signal.
  • the method 520 continues with operation 524, in which the UE 104 transmits an uplink signal together with the selected modulation, coding, and data processing configurations to the BS 102, in accordance with some embodiments.
  • the UE 104 transmits the selected modulation, coding, and data processing configurations to the BS 102 in order for the BS 102 to successfully decode the received uplink transmission data set from the UE 104.
  • different UE’s 104 can select different data process configurations, e.g., spreading sequences and random phase vectors and the BS 102 performs decoding of the uplink transmission data set from each UE 104 according to their specific data processing configuration.
  • each data segment on each data layer in the uplink transmission signals from all UE’s 104 are then processed by the BS 102 according to the coding, modulation, and data processing configurations that are configured by the UE 104.
  • the BS 102 can perform a reverse data processing based on the modulation order, spreading sequence, random phase vector and the number of dat layers specified by the UE 104.
  • the BS 102 can stack all data segments on all data layers together, which is followed by de-scramble/de-interleaving, decoding, and CRC checking. It should be noted that the data segment stacking process can be configured at any position between processes performed by the BS 102, according to the position of the data splitting process on the UE 104.
  • these processes are performed by the transceiver module 152 and processor module 158 on the BS 102 ( Figure 1B) . Since each of the data segments carries 1/N of the source data bits, the code rate is thus reduced to 1/N on each data segment. Furthermore, a reduced code rate using this presented multi-layered data transmission method can result in a reduced modulation threshold value in comparison to a single-layered data transmission. Therefore, data transmission based on this method is able to provide an improved decoding success rate and thus improved transmission performance.
  • any reference to an element herein using a designation such as “first, “ “second, “ and so forth does not generally limit the quantity or order of those elements. Rather, these designations can be used herein as a convenient means of distinguishing between two or more elements or instances of an element. Thus, a reference to first and second elements does not mean that only two elements can be employed, or that the first element must precede the second element in some manner.
  • any of the some illustrative logical blocks, modules, processors, means, circuits, methods and functions described in connection with the aspects disclosed herein can be implemented by electronic hardware (e.g., a digital implementation, an analog implementation, or a combination of the two, which can be designed using source coding or some other technique) , various forms of program or design code incorporating instructions (which can be referred to herein, for convenience, as "software” or a "software module) , or combinations of both.
  • software or a “software module”
  • IC integrated circuit
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • the logical blocks, modules, and circuits can further include antennas and/or transceivers to communicate with various components within the network or within the device.
  • a general purpose processor can be a microprocessor, but in the alternative, the processor can be any conventional processor, controller, or state machine.
  • a processor can also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other suitable configuration to perform the functions described herein.
  • Computer-readable media includes both computer storage media and communication media including any medium that can be enabled to transfer a computer program or code from one place to another.
  • a storage media can be any available media that can be accessed by a computer.
  • such computer-readable media can include RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to store desired program code in the form of instructions or data structures and that can be accessed by a computer.
  • module refers to software, firmware, hardware, and any combination of these elements for performing the associated functions described herein. Additionally, for purpose of discussion, the various modules are described as discrete modules; however, as would be apparent to one of ordinary skill in the art, two or more modules may be combined to form a single module that performs the associated functions according embodiments of the invention.
  • memory or other storage may be employed in embodiments of the invention.
  • memory or other storage may be employed in embodiments of the invention.
  • any suitable distribution of functionality between different functional units, processing logic elements or domains may be used without detracting from the invention.
  • functionality illustrated to be performed by separate processing logic elements, or controllers may be performed by the same processing logic element, or controller.
  • references to specific functional units are only references to a suitable means for providing the described functionality, rather than indicative of a strict logical or physical structure or organization.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A method and apparatus for generating spreading sequence codebooks is disclosed. In one embodiment, a method performed by a wireless communication device, comprising: transmitting a reference signal to a wireless communication device; receiving a channel quality indicator (CQI) signal from the wireless communication device; based on at least the CQI signal, determining a modulation coding scheme (MCS) index from a first MCS table for the wireless communication device; and receiving a first uplink transmission data set from the wireless communication device.

Description

METHOD AND APPARATUS FOR MULTI-LAYERED DATA TRANSMISSION TECHNICAL FIELD
This disclosure relates generally to wireless communications and, more particularly, to a method and apparatus for multi-layered data transmission.
BACKGROUND
Over the past few decades, mobile communications have evolved from voice services to high-speed broadband data services. With further development of new types of services and applications, e.g., enhanced mobile broadband (eMBB) , massive Machine-Type Communication (mMTC) , Ultra Reliability Low Latency Communication (URLLC) , etc., the demands for high-performance data transmission on mobile networks will continue to increase exponentially. Based on specific requirements in these emerging services, wireless communication systems should meet a variety of requirements, such as throughput, latency, data rate, capacity, reliability, link density, cost, energy consumption, complexity, and coverage.
SUMMARY OF THE INVENTION
The exemplary embodiments disclosed herein are directed to solving the issues related to one or more problems presented in the prior art, as well as providing additional features that will become readily apparent by reference to the following detailed description when taken in conjunction with the accompany drawings. In accordance with some embodiments, exemplary systems, methods, and computer program products are disclosed herein. It is understood, however, that these embodiments are presented by way of example and not limitation, and it will be apparent to those of ordinary skill in the art who read the present disclosure that various modifications to the disclosed embodiments can be made while remaining within the scope of the invention.
Traditional methods which rely on random access of user terminals and scheduled data transmissions between a base station and a user terminal fail to provide satisfactory performance for the aforementioned services due to limited equipment capacity, high latency, and high signaling overhead. In order to meet these demands in 5G/NR (New Radio) communications, a grant-free data transmission method based on competition is being considered. A grant-free data transmission method refers to a method where a transmitting user terminal can perform an  autonomous data transmission without transmitting a scheduling request signal to a base station or acquiring a dynamic grant signal from the base station. Advantages of the grant-free data transmission method include reduced signaling overhead, reduced terminal power consumption, reduced latency, etc.
A grant-free method can be either an orthogonal or a non-orthogonal resource allocation technique. In an orthogonal resource allocation technique, although the resources themselves are orthogonal, different user terminals may randomly choose the same resources for data transmission, causing “collisions. ” When a collision occurs, channel performance can be significantly affected. Therefore, orthogonal grant-free resource allocation schemes are not efficient in terms of usage of resources. On the other hand, non-orthogonal grant-free resource allocation schemes based on sequence spreading can process data on a transmitting user terminal and use advanced receivers on the base station which can effectively handle scenarios such as multi-user overlap or collision without compromising the channel performance. For example, if data after modulation from the transmitting user terminal can be spread on the symbol-level by low-correlation spreading sequences, then even under situations of overlapped transmission on the same resources from multiple user terminals or different user terminals using the same spreading sequence, probabilities for collision can be still controlled to a significantly low level. Furthermore, a low-correlation spreading sequence can also reduce multi-user interference, enhance system capacity, and also reduce complexity of receivers on the base station.
Quadrature amplitude modulation or “QAM” is a form of modulation, which is widely used for modulating data signals onto a carrier used for wireless communications. QAM is widely used because it offers advantages over other forms of data modulation such as PSK (Phase-Shift Keying) . The advantage of moving to a higher order QAM (e.g., 256 QAM or above) is that there are more points within the constellation and therefore it more efficiently transmits more bits per symbol resulting in a higher bandwidth efficiency. For example, increasing from 16 QAM to 256 QAM, the constellation points increases from 16 to 256 points and the theoretical bandwidth efficiency increases from 4 to 8 times.
The downside is that the constellation points are closer together and therefore the link is more susceptible to noise. Furthermore, the other downside of using higher modulation is because of the higher demodulation threshold value which results in a loss in the transmission  performance. Thus, there exists a need to develop a new method to support high bandwidth efficiency and high code rate at a lower modulation order for both orthogonal and non-orthogonal resource allocation.
In one embodiment, a method performed by a wireless communication node includes: transmitting a reference signal to a wireless communication device; receiving a channel quality indicator (CQI) signal from the wireless communication device; based on at least the CQI signal, determining a modulation coding scheme (MCS) index from a first MCS table for the wireless communication device; and receiving a first uplink transmission data set from the wireless communication device.
In another embodiment, a method performed by a wireless communication device, includes: generating a channel quality indicator (CQI) signal based on a received reference signal from a wireless communication node; receiving a modulation coding scheme (MCS) index in a first MCS table from the wireless communication node for future uplink transmissions; transmitting a first uplink transmission data set to the wireless communication node.
Yet, in another embodiment, a method performed by a wireless communication device includes: receiving a first uplink transmission data set and a first processing configuration from a wireless communication device, wherein the first uplink transmission data set is derived from splitting a second uplink transmission data set into a predetermined number of data segments on a predetermined number of data layers, respectively, and processed by at least one process, wherein the first processing configuration comprises the predetermined number of data layers and a first modulation order, and wherein the predetermined number of data layers is transmitted from the wireless communication device using one of the following: explicit indication and implicit indication.
Yet, in another embodiment, a method performed by a wireless communication node includes: splitting a first uplink transmission data set into a predetermined number of data segments on a predetermined number of data layers, respectively; processing the predetermined number of data segments on the predetermined number of data layers to form a second uplink transmission data set according to a first processing configuration; and transmitting the second uplink transmission data set and the first processing configuration to a wireless communication node, wherein the first processing configuration comprises the predetermined number of data layers, and  wherein the predetermined number of data layers is transmitted to the wireless communication node using one of the following: explicit indication and implicit indication.
BRIEF DESCRIPTION OF THE DRAWINGS
Aspects of the present disclosure are best understood from the following detailed description when read with the accompanying figures. It is noted that various features are not necessarily drawn to scale. In fact, the dimensions and geometries of the various features may be arbitrarily increased or reduced for clarity of discussion.
FIG. 1A illustrates an exemplary wireless communication network illustrating achievable modulation as a function of distance from a BS, in accordance with some embodiments of the present disclosure.
FIG. 1B illustrates a block diagram of an exemplary wireless communication system for a slot structure information indication, in accordance with some embodiments of the present disclosure.
FIG. 2 illustrates one exemplary conventional 64 QAM CQI table with 16 entries or index values, in accordance with some embodiments of the present disclosure.
FIG. 3 illustrates an exemplary conventional 64 QAM MCS with 32 entries or index values, in accordance with some embodiments of the present disclosure.
FIG. 4A-4C illustrates 3 exemplary modified 64 QAM MCS tables with 32 entries or index values, in accordance with some embodiments of the present disclosure.
FIG. 5A illustrates a method of performing an uplink multi-layered data transmission in a grant-based scenario, according to some embodiments of the present disclosure.
FIG. 5B illustrates a method of performing a multi-layered uplink transmission in a grant-free scenario, in accordance with some embodiments of the present disclosure.
FIG. 6 illustrates an exemplary data processing diagram illustrating processes performed by a UE after receiving scheduling information from the BS, in accordance with some embodiment of the present disclosure.
FIG. 7A illustrates an implicit indication of the number of data layers using Zadoff-Chu (ZC) root sequences, in accordance with some embodiments of the present disclosure.
FIG. 7B illustrates an implicit indication of the number of data layers using time-frequency resources, in accordance with some embodiments of the present disclosure.
FIG. 7C illustrates an implicit indication of the number of data layers using DMRS (demodulation reference signal) , in accordance with some embodiments of the present disclosure.
DETAILED DESCRIPTION OF EXEMPLARY EMBODIMENTS
Various exemplary embodiments of the invention are described below with reference to the accompanying figures to enable a person of ordinary skill in the art to make and use the invention. As would be apparent to those of ordinary skill in the art, after reading the present disclosure, various changes or modifications to the examples described herein can be made without departing from the scope of the invention. Thus, the present invention is not limited to the exemplary embodiments and applications described or illustrated herein. Additionally, the specific order or hierarchy of steps in the methods disclosed herein are merely exemplary approaches. Based upon design preferences, the specific order or hierarchy of steps of the disclosed methods or processes can be re-arranged while remaining within the scope of the present invention. Thus, those of ordinary skill in the art will understand that the methods and techniques disclosed herein present various steps or acts in a sample order, and the invention is not limited to the specific order or hierarchy presented unless expressly stated otherwise.
Embodiments of the present invention are described in detail with reference to the accompanying drawings. The same or similar components may be designated by the same or similar reference numerals although they are illustrated in different drawings. Detailed descriptions of constructions or processes well-known in the art may be omitted to avoid obscuring the subject matter of the present invention. Further, the terms are defined in consideration of their functionality in embodiment of the present invention, and may vary according to the intention of a user or an operator, usage, etc. Therefore, the definition should be made on the basis of the overall content of the present specification.
Figure 1A illustrates an exemplary wireless communication network 100 illustrating achievable modulation as a function of distance from a BS 102, in accordance with some embodiments of the present disclosure. In a wireless communication system, a Network side communication node or a base station (BS) can be a Node B, an E-utran Node B (also known as  Evolved Node B, eNodeB or eNB) , a pico station, a femto station, or the like. A terminal side node or a user equipment (UE) can be a long range communication system like a mobile phone, a smart phone, a personal digital assistant (PDA) , tablet, laptop computer, or a short range communication system such as, for example a wearable device, a vehicle with a vehicular communication system and the like. A network and a terminal side communication node are represented by a BS 102 and a UE 104, respectively, and are generally referred to as “communication nodes” herein. Such communication nodes may be capable of wireless and/or wired communications, in accordance with various embodiments of the invention. It is noted that all the embodiments are merely preferred examples, and are not intended to limit the present disclosure. Accordingly, it is understood that the system may include any desired combination of UEs and BSs, while remaining within the scope of the present disclosure.
Referring to Figure 1A, the wireless communication network 100 includes a BS 102 and a UE 104 which moves in a cell 110 or coverage area established by the BS 102, wherein each position of the UE 104 from 104a to 104b to 104c to 104d to 104e represents the UE 104 moving from an edge of the cell 110 towards the BS 102, respectively.
A wireless transmission from a transmitting antenna of the UE 104 to a receiving antenna of the BS 102 is known as an uplink transmission, and a wireless transmission from a transmitting antenna of the BS 102 to a receiving antenna of the UE 104 is known as a downlink transmission. The BS 102 and the UE 104 are contained within a geographic boundary of cell 110.
When the UE 104 is at the extreme cell edge 110, e.g., at 104a, having a longer distance between the BS 102 and UE 104a, path loss becomes significant, so the UE 104 will transmit at a maximum power over a long distance and most importantly with the most robust modulation (QPSK, Quadrature Phase Shifting Keying) . As a result, the data rate is relatively low between the BS 102 and UE 104a in this case.
As the UE 104 moves closer to the BS 102, the path loss decreases and the signal level at the BS 102 increases, thus the SNR improves. In response, the BS 102 instructs the UE 104 to reduce power to minimize interference to other UE’s and/or the BS 102. However, as soon as the SNR level passes a threshold and supports a higher-order modulation, the BS 102 will instruct the UE 104 to switch modulations in order to improve overall network capacity and bandwidth efficiency. For example, the BS 102 instructs the UE 104 at position 104b to switch from QPSK  to 16 QAM and further switch to 64 QAM, 256 QAM and 1024 QAM as the UE 104 moves to positions 104c, 104d and 104e, respectively, each having improved channel quality compared to the previous positions.
The UEs 104a and 104b obtains its synchronization timing from the BS 102, which obtains its own synchronization timing from the core network 108 through an internet time service, such as a public time NTP (Network Time Protocol) server or a RNC (Radio Frequency Simulation System Network Controller) server. This is known as network-based synchronization. Alternatively, the BS 102 can also obtain synchronization timing from a Global Navigation Satellite System (GNSS) (not shown) through a satellite signal, especially for a large BS in a large cell which has a direct line of sight to the sky, which is known as satellite-based synchronization.
Figure 1B illustrates a block diagram of an exemplary wireless communication system 150, in accordance with some embodiments of the present disclosure. The system 150 may include components and elements configured to support known or conventional operating features that need not be described in detail herein. In one exemplary embodiment, system 150 can be used to transmit and receive data symbols in a wireless communication environment such as the wireless communication network 100 of Figure 1A, as described above.
System 150 generally includes a BS 102 and two UEs 104a and 104b, collectively referred to as UE 104 below for ease of discussion. The BS 102 includes a BS transceiver module 152, a BS antenna array 154, a BS memory module 156, a BS processor module 158, and an Network interface 160, each module being coupled and interconnected with one another as necessary via a data communication bus 180. The UE 104 includes a UE transceiver module 162, a UE antenna 164, a UE memory module 166, a UE processor module 168, and a I/O interface 169, each module being coupled and interconnected with one another as necessary via a date communication bus 190. The BS 102 communicates with the UE 104 via a communication channel 192, which can be any wireless channel or other medium known in the art suitable for transmission of data as described herein.
As would be understood by persons of ordinary skill in the art, system 150 may further include any number of blocks, modules, circuits, etc. other than those shown in Figure 1B. Those skilled in the art will understand that the various illustrative blocks, modules, circuits, and  processing logic described in connection with the embodiments disclosed herein may be implemented in hardware, computer-readable software, firmware, or any practical combination thereof. To clearly illustrate this interchangeability and compatibility of hardware, firmware, and software, various illustrative components, blocks, modules, circuits, and steps are described generally in terms of their functionality. Whether such functionality is implemented as hardware, firmware, or software depends upon the particular application and design constraints imposed on the overall system. Those familiar with the concepts described herein may implement such functionality in a suitable manner for each particular application, but such implementation decisions should not be interpreted as limiting the scope of the present invention.
A wireless transmission from a transmitting antenna of the UE 104 to a receiving antenna of the BS 102 is known as an uplink transmission, and a wireless transmission from a transmitting antenna of the BS 102 to a receiving antenna of the UE 104 is known as a downlink transmission. In accordance with some embodiments, a UE transceiver 162 may be referred to herein as an "uplink" transceiver 162 that includes a RF transmitter and receiver circuitry that are each coupled to the UE antenna 164. A duplex switch (not shown) may alternatively couple the uplink transmitter or receiver to the uplink antenna in time duplex fashion. Similarly, in accordance with some embodiments, the BS transceiver 152 may be referred to herein as a "downlink" transceiver 152 that includes RF transmitter and receiver circuitry that are each coupled to the antenna array 154. A downlink duplex switch may alternatively couple the downlink transmitter or receiver to the downlink antenna array 154 in time duplex fashion. The operations of the two  transceivers  152 and 162 are coordinated in time such that the uplink receiver is coupled to the uplink UE antenna 164 for reception of transmissions over the wireless communication channel 192 at the same time that the downlink transmitter is coupled to the downlink antenna array 154. Preferably, there is close synchronization timing with only a minimal guard time between changes in duplex direction. The UE transceiver 162 communicates through the UE antenna 164 with the BS 102 via the wireless communication channel 192 or with other UEs via the wireless communication channel 193. The wireless communication channel 193 can be any wireless channel or other medium known in the art suitable for sidelink transmission of data as described herein.
The UE transceiver 162 and the BS transceiver 152 are configured to communicate via the wireless data communication channel 192, and cooperate with a suitably configured RF antenna  arrangement 154/164 that can support a particular wireless communication protocol and modulation scheme. In some embodiments, the BS transceiver 152 is configured to transmit the physical downlink control channel (PDCCH) and configured slot structure related information (SFI) entry set to the UE transceiver 162. In some embodiments, the UE transceiver 162 is configured to receive PDCCH containing at least one SFI field from the BS transceiver 152. In some exemplary embodiments, the UE transceiver 162 and the BS transceiver 152 are configured to support industry standards such as the Long Term Evolution (LTE) and emerging 5G standards, and the like. It is understood, however, that the invention is not necessarily limited in application to a particular standard and associated protocols. Rather, the UE transceiver 162 and the BS transceiver 152 may be configured to support alternate, or additional, wireless data communication protocols, including future standards or variations thereof.
The BS processor modules 158 and UE processor modules 168 are implemented, or realized, with a general purpose processor, a content addressable memory, a digital signal processor, an application specific integrated circuit, a field programmable gate array, any suitable programmable logic device, discrete gate or transistor logic, discrete hardware components, or any combination thereof, designed to perform the functions described herein. In this manner, a processor may be realized as a microprocessor, a controller, a microcontroller, a state machine, or the like. A processor may also be implemented as a combination of computing devices, e.g., a combination of a digital signal processor and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a digital signal processor core, or any other such configuration.
Then the UE processor module 168 detects the PHR triggering message on the UE transceiver module 162, the UE processor module 168 is further configured to determine at least one second SFI entry set based on at least one predefined algorithm and the received at least one first SFI entry set configured by the BS 102, wherein the at least one predefined algorithm is selected based on other parameters calculated or messages received. The UE processor module 168 is further configured to generate the at least one second SFI entry set and monitor the PDCCH received on the UE transceiver module 162 to further receive the at least one SFI field. As used herein, “SFI entry set” means SFI table or SFI entries.
Furthermore, the steps of a method or algorithm described in connection with the embodiments disclosed herein may be embodied directly in hardware, in firmware, in a software module executed by  processor modules  158 and 168, respectively, or in any practical combination thereof. The  memory modules  156 and 166 may be realized as RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, a hard disk, a removable disk, a CD-ROM, or any other form of storage medium known in the art. In this regard, the  memory modules  156 and 166 may be coupled to the  processor modules  158 and 168, respectively, such that the  processors modules  158 and 168 can read information from, and write information to,  memory modules  156 and 166, respectively. The  memory modules  156 and 166 may also be integrated into their  respective processor modules  158 and 168. In some embodiments, the  memory modules  156 and 166 may each include a cache memory for storing temporary variables or other intermediate information during execution of instructions to be executed by  processor modules  158 and 168, respectively.  Memory modules  156 and 166 may also each include non-volatile memory for storing instructions to be executed by the  processor modules  158 and 168, respectively.
The network interface 160 generally represents the hardware, software, firmware, processing logic, and/or other components of the base station 102 that enable bi-directional communication between BS transceiver 152 and other network components and communication nodes configured to communication with the BS 102. For example, network interface 160 may be configured to support internet or WiMAX traffic. In a typical deployment, without limitation, network interface 160 provides an 802.3 Ethernet interface such that BS transceiver 152 can communicate with a conventional Ethernet based computer network. In this manner, the network interface 160 may include a physical interface for connection to the computer network (e.g., Mobile Switching Center (MSC) ) . The terms “configured for” or “configured to” as used herein with respect to a specified operation or function refers to a device, component, circuit, structure, machine, signal, etc. that is physically constructed, programmed, formatted and/or arranged to perform the specified operation or function. The network interface 160 could allow the BS 102 to communicate with other BSs or core network over a wired or wireless connection.
Referring again to Figure 1A, as mentioned above, the BS 102 repeatedly broadcasts system information associated with the BS 102 to one or more UEs (e.g., 104) so as to allow the  UE 104 to access the network within the cell 101 where the BS 102 is located, and in general, to operate properly within the cell 101. Plural information such as, for example, downlink and uplink cell bandwidths, downlink and uplink configuration, configuration for random access, etc., can be included in the system information, which will be discussed in further detail below. Typically, the BS 102 broadcasts a first signal carrying some major system information, for example, configuration of the cell 101 through a PBCH (Physical Broadcast Channel) . For purposes of clarity of illustration, such a broadcasted first signal is herein referred to as “first broadcast signal. ” It is noted that the BS 102 may subsequently broadcast one or more signals carrying some other system information through respective channels (e.g., a Physical Downlink Shared Channel (PDSCH) ) , which are herein referred to as “second broadcast signal, ” “third broadcast signal, ” and so on.
Referring again to Figure 1B, in some embodiments, the major system information carried by the first broadcast signal may be transmitted by the BS 102 in a symbol format via the communication channel 192. In accordance with some embodiments, an original form of the major system information may be presented as one or more sequences of digital bits and the one or more sequences of digital bits may be processed through plural steps (e.g., coding, scrambling, modulation, mapping steps, etc. ) , all of which can be processed by the BS processor module 158, to become the first broadcast signal. Similarly, when the UE 104 receives the first broadcast signal (in the symbol format) using the UE transceiver 162, in accordance with some embodiments, the UE processor module 168 may perform plural steps (de-mapping, demodulation, decoding steps, etc. ) to estimate the major system information such as, for example, bit locations, bit numbers, etc., of the bits of the major system information. The UE processor module 168 is also coupled to the I/O interface 169, which provides the UE 104 with the ability to connect to other devices such as computers. The I/O interface 169 is the communication path between these accessories and the UE processor module 168.
In some embodiments, the UE 104 can operate in a hybrid communication network in which the UE communicates with the BS 102, and with other UEs, e.g., between 104a and 104b. As described in further detail below, the UE 104 supports sidelink communications with other UE’s as well as downlink/uplink communications between the BS 102 and the UE 104. As discussed above, sidelink communication allows the UEs 104a and 104b to establish a direct  communication link with each other, or with other UEs from different cells, without requiring the BS 102 to relay data between UE’s.
Figure 2 illustrates one exemplary conventional 64 QAM CQI table with 16 entries or index values, in accordance with some embodiments of the present disclosure. Since the table contains only 16 possible index values (0 to 15) , only four bits are required to specify each index value. As shown in Figure 2, the 64 QAM CQI table contains 6 entries for QPSK modulation, 3 entries for 16 QAM modulation and 6 entries for 64 QAM modulation. Referring to Figure 2, as an example, it is noted that at different code rates 203, different bandwidth efficiencies 204 can be achieved for the same modulation orders 202. For example, 6 entries for the maximum modulation order 64 QAM have different bandwidth efficiencies 204 which increases with increasing code rates 203.
In the illustrated embodiments, the highest supported modulation order is 64 QAM. It should be noted that a different CQI table may be used to support higher modulations, e.g., 256 QAM and 1024 QAM, with at least one entry at each higher modulation order. Thus, when the radio condition gets better or worse or when switching transmission mode (e.g., downlink to uplink or vice versa) , there is at least one CQI table with at least one entry with an optimum modulation order that can be applied to maximize bandwidth efficiency and data rates while maintaining sufficiently low error rates. It should be noted that the example 64 QAM CQI table shown in Figure 2 is merely an example, different number of entries for each modulation order 202 at different code rates 203 thus with different bandwidth efficiencies 204 can be constructed in accordance with various embodiments of the invention.
Figure 3 illustrates an exemplary conventional 64 QAM MCS with 32 entries or index values, in accordance with some embodiments of the present disclosure. Since the table contains only 32 possible index values, i.e., 0 to 31, only five bits are required to specify each index value. As shown in Figure 3, the 64 QAM MCS table contains 11 entries for QPSK modulation, 8 entries for 16 QAM modulation and 13 entries for 64 QAM modulation. It should be noted that the example 64 QAM MCS table shown in Figure 3 is merely an example, different number of entries for each modulation order 302 and different TBS index 303 can be constructed in accordance with various embodiments of the invention. In some embodiments, the MCS table of Figure 3 can be modified in order to support a modulation order higher than 64 QAM without increasing the  number of bits in the DCI/UCI formats or the number of entries/index values in the MCS table that are required to be uniquely specified. In some embodiments, the MCS table can be generated based on computer simulation results as would be understood by persons skilled in the art. It should be noted that the invention is not limited to the specific examples of MCS/CQI tables described herein and that any MCS/CQI tables with different supported modulation orders may be configured or used, in accordance with various embodiments of the invention. For example, a MCS table can be configured to support higher-order modulation (e.g., 1024 QAM) to improve overall network capacity and bandwidth efficiency, in the scenarios discussed above, in accordance with some embodiments. Such scenarios include, for example, when there is a high SNR in a current channel, the UE 104 (e.g., 104e in Figure 1A) is close to the BS 102, a strong direct line of sight between the UE 104 and the BS 102, when the UE 104 is fixed or moves with small velocities, especially within a very small-cell BS area, e.g., home base station, and under excellent environmental conditions.
Figures 4A-4C illustrates 3 exemplary modified 64 QAM MCS tables with 32 entries or index values, in accordance with some embodiments of the present disclosure. Similar to the 64 QAM MCS table shown in Figure 3 currently used in LTE communication, the modified 64 QAM MCS table contains 11 entries for QPSK modulation, 8 entries for 16 QAM modulation and 13 entries for 64 QAM modulation. It should be noted that the example modified 64 QAM MCS table shown in Figure 4A is merely an example, different number of entries for each modulation order 302 and different TBS index 303 can be constructed in accordance with various embodiments of the invention. In some embodiments, the MCS table of Figures 4A-4C can be modified in order to support a modulation order higher than 64 QAM without increasing the number of bits in the DCI/UCI formats or the number of entries/index values in the MCS table that are required to be uniquely specified. In some embodiments, the MCS table can be generated based on computer simulation results as would be understood by persons skilled in the art. In some embodiments, the modified 64QAM MCS table comprises 2 new columns: new modulation order Q n 402 and a predefined number of data layers N layer 404. N layer 404 can be configured based on Q m 302 and Q n 402, in accordance with some embodiments. In some embodiments, N layer = Q m /Q n, and N layer, Q m, and Q n are positive integers. In some embodiments, Q n is a constant for all 32 entries in a modified table. Figures 4A and 4B illustrate 2 modified 64QAM MCS tables when Q n=2 and 1,  respectively. The different Q n values result in different respective numbers of data layers N layer. For example, when Q n=2 as shown in Figure 4A, N layer =2, 4 and 6 for QPSK modulation, 16 QAM modulation, and 64 QAM modulation, respectively. When Q n=1 as shown in Figure 4B, N layer =1, 2 and 3 for QPSK modulation, 16 QAM modulation, and 64 QAM modulation, respectively. As further discussed below, based at least on a CQI report received from the UE 104, the BS 102 further selects an entry of the MCS index 301 in the modified MCS table for the UE 104. The UE 104 is then able to use the assigned MCS index and thus the corresponding new modulation order Q n 402 and the predefined number of data layers N layer 404 for uplink data transmission and processing, in some embodiments.
Figure 4C illustrates an exemplary modified 64QAM MCS table when Q n is not a constant, in accordance with some embodiments of the present disclosure. In the illustrated embodiments, 11 entries for QPSK have the same new modulation order Q n 422 of 1, 8 entries for 16QAM and 13 entries for 64QAM have the same new modulation order Q n 422 of 2. Under this configuration, N layer = 2, 2, and 3 for QPSK modulation, 16QAM modulation and 64QAM modulation, respectively. In some embodiments, BS 102 can comprise a plurality of modified MCS tables with different Q n values. It should be noted that the invention is not limited to the specific examples of MCS tables described herein and that any MCS tables with any supported modulation orders, number of entries for each modulation order, and number of layers may be configured or used, in accordance with various embodiments of the invention. As discussed in further detail below, the BS 102 selects one MCS table from the plurality of MCS tables based on parameters such as, for example channel quality.
Figure 5A illustrates a method 500 of performing an uplink multi-layered data transmission in a grant-based scenario, according to some embodiments of the present disclosure. It is understood that additional operations may be provided before, during, and after the method 500 of Figure 5, and that some other operations may be omitted or only briefly described herein.
The method 500 starts with operation 502, in which the BS 102 transmits a downlink reference signal (DLRS) to the UE 104 according to some embodiments. In some embodiments, using a beam sweeping technique, for example, a plurality of DLRSs are transmitted from the BS 102 to the UE 104 using the respective transmitting beams of the BS 102 and receiving beams of the UE 104. In some embodiments, the DLRS from the BS 102 can be a Sound Reference Signal  (SRS) , or transmitted on a channel such as, for example, a Physical Random Access Channel (PRACH) , a Physical Downlink Control Channel (PDCCH) , and a Physical Downlink Shared Channel (PDSCH) .
In some embodiments, the DLRSs are staggered in time and frequency, which allows the UE 104 to perform complex interpolation of channel time-frequency response to estimate the channel effect on the transmitted information. In some embodiments, a DLRS can also be a Cell-specific reference signal (CSRS) or a UE-specific reference signal (UESRS) .
The method 500 continues with operation 502, during which CQI values are measured and estimated by the UE 104 based on the DLRS from the BS 102, which are affected by the following factors such as, for example, signal-to-noise ratio (SNR) , signal-to-interference plus noise ratio (SINR) , signal-to-noise plus distortion ratio (SNDR) and the like. In some embodiments, SNR is a significant criterion for the UE 104 to determine the CQI index with the exact mapping relation between the SNR and CQI index varying a little depending on other factors. In some embodiments, the SNR often expressed in decibels (dB) has a linear relationship with the CQI index.
The method continues with operation 504, in which, after the UE 104 determines the CQI value, a corresponding CQI index between 0 and 15 is derived based on a default 64 QAM CQI table (e.g., the exemplary 64 QAM CQI table shown in Figure 2) in accordance with techniques understood by persons skilled in the art. In some embodiments, the predefined 64 QAM CQI table is configured and informed by the BS 102 to the UE 104 by a higher layer signal (e.g., RRC message) above the physical layer.
The method 500 continues with operation 506, in which the derived CQI index is transmitted back to the BS 102 through CQI reporting, which is typically carried on a Physical Uplink Control Channel (PUCCH) and/or a Physical Uplink Shared Channel (PUSCH) . The time and frequency resources that can be used by the UE 104 to report CQI are controlled by the BS 102. In some embodiments, a CQI reporting can be conducted either periodically on a PUCCH or a PUSCH with a period preconfigured by the higher layer, or triggered by the BS 102 on PUSCH either upon receiving a DCI format 0 or a Random Access Response Grant. In some embodiments, the CQI reporting can be a 4-bit wide-band CQI, 2-bit differential sub-band CQI, or a 3-bit differential Spatial CQI.
The method 500 continues with operation 508, in which the BS 102 select one MCS index for the UE 104 based on the CQI information from the UE 104 by selecting one entry in a modified MCS table, in accordance with some embodiments. In some embodiments, the CQI information can be in a form of a CQI index value, as shown in Figure 2. The number of resource blocks and MCS for each CQI value are then determined by the BS 102 to properly allocate the resource for the UE 104. Based on the CQI value, a range of MCS index values in a corresponding MCS table is then selected by the BS 102. A specific MCS index value and number of resource blocks can then be determined together with the code rate 203 shown in the corresponding CQI table based on a corresponding transport block size (TBS) table, as known in the art. In some embodiments, the specific MCS index value selected by the BS 102 based on the CQI information from the UE 104 comprises information of an original modulation order Q m, the TBS index, a corresponding modified modulation order Q n and a number of layers N layer, , as discussed above in Figures 4A-4C.
In some embodiments, when the BS 102 comprises a plurality of modified MCS tables, the BS 102 first determines a specific MCS table for the UE 104 according to the received CQI information, including channel quality and spectrum code rate. The BS 102 can further select a MCS index for the UE 104 from the specific MCS table, in accordance with some embodiments. In some embodiments, different UE’s 104 in the same cell may obtain different MCS indices from different MCS tables. In some embodiments, the modified MCS tables are derived from conventional MCS tables and omit original modulation orders, i.e., Q m.
The method 500 continues with operation 510, in which depending on the CQI index, the BS 102 transmits scheduling information back to the UE 104, in accordance with some embodiments. In some embodiments, the scheduling information is carried by a downlink control information (DCI) . In certain embodiments, the scheduling information includes allocated time-frequency resources, transport block size for uplink data transmission, modulation and coding configurations, data processing configurations (i.e., N layer) and the like. In some embodiments, if the BS 102 receives a CQI index with a relatively large CQI value from the UE 104, the BS 102 transmit the data with a larger transport block size. Conversely, if the BS 102 receives a CQI index with a relatively small CQI value from the UE 104, the BS 102 transmits the data with a smaller transport block size. In some embodiments, in addition to N layer, other data processing  configurations can be also specified by the BS 102 to the UE 104, including spreading sequence, random phase vector for each data segment on each data layer. In some embodiments, data processing configurations together with modulation and coding configurations are cell-specific, especially in grant-based scenarios.
The method 500 continues with operation 512, in which the UE 104 splits an uplink transmission data set into N data segments on N data layers, respectively, and prepares N data segments for uplink data transmission, in accordance with some embodiments. A multi-layered data transmission is provided by splitting an uplink transmission data set from a UE 104 into a plurality of data segments, e.g., N data segments. In some embodiment, the uplink transmission data set is split and processed according to the received scheduling information (i.e., N layer, Q n, random phase vector, time-frequency resources, etc. ) . Each of the data segments is prepared through a plurality of processes before they are stacked back together and transmitted on a physical channel. In some embodiments, the scheduling information may further comprises spreading sequences in non-orthogonal multiple access (NOMA) . This is further discussed in detail in Figure 6 below. Since each of the data segments carries 1/N of the source data bits, the code rate is thus reduced to 1/N on each data segment. Furthermore, a reduced code rate using this presented multi-layered data transmission method can result in a reduced modulation threshold value in comparison to a single-layered data transmission. Therefore, data transmission based on this method is able to provide an improved decoding success rate and thus improved transmission performance.
Figure 6 illustrates an exemplary data processing diagram 600 illustrating split processes performed by a UE 104 after receiving scheduling information from the BS 102, in accordance with some embodiments of the present disclosure. The plurality of processes can include, but is not limited to data splitting, channel encoding, scrambling/interleaving, modulation, sequence spreading, resource mapping, and data segment stacking. In the illustrated embodiment, source information bits are first split into N data segments onto N data layers using a serial-to-parallel converter 602, i.e., 1 st  data layer  620, 2 nd data layer 622, ..., N th data layer 624. Each of the N data layers comprises 1/N of the source information bits from the UE 104. Each data segment on each data layer is then channel-coded with a channel encoder 604 before being adapted by a rate matching process for a final suitable code rate. Adjacent data symbols are mapped to adjacent  SC-FDMA (Single-Carrier Frequency-Division Multiple Access) symbols in the time domain before being mapped across sub-carriers. After this scrambling/interleaving process by a scrambler/interleaver 606, each data segment on each data layer is modulated by a modulator 608, sequence spread using a spreader 610, and resource mapping using a resource mapper 612. In some embodiments, each data segment has its independent CRC (cyclic redundancy check) process. In some embodiments, a random phase vector can be multiplied to each data segment on each data layer to reduce the cross correlation between channels. The process to introduce random phase vectors (not shown in Figure 6) can be located between resource mapping and data segment stacking, according to some embodiments. As illustrated in Figure 6, this data processing can be performed by the UE processor module 168 (Figure 1B) , according to some embodiments. It is noted that the process flowchart 600 in Figure 6 is merely an example, and is not intended to limit the present disclosure. Accordingly, it is understood that the serial-to-parallel converter 602 for data splitting can be implemented at any position during scrambling/interleaving, modulation, and sequence spreading. For example, instead of directly splitting source information bits, the UE 104 can perform data splitting after scrambling/interleaving. The process on the BS 102 is configured according to the data processing performed on the UE 104, which will be discussed in detail below. Referring again to Figure 5A, the method 500 continues with operation 514, in which the UE 104 transmits an uplink signal to the BS 102 based on the selected modulation, coding, and data processing configurations, in accordance with some embodiments. In some embodiments, each data segment on each data layer in the uplink transmission signals from all UE’s 104 are then decoded by a decoder on the BS 102 according to the coding, modulation, and data processing configurations. The BS 102 further de-maps and demodulates data segments on each layer. In some embodiments, the BS 102 stacks all data segments on all data layers together, which is followed by de-scrambling/de-interleaving, decoding, and CRC checking. It should be noted that the data stacking process can be configured at any position between processes performed by the BS 102, according to the position of the data splitting process on the UE 104.
In some embodiments, the BS 102 is not necessarily configured to transmit a spreading sequence or random phase vector to the UE 104. In this case, the UE 104 selects the data processing configuration (s) from a predefined configuration pool. In some embodiments, the predefined configuration pool is obtained when the UE 104 joins the cell of the BS 102 through a  RRC (radio resource control) message on PDCCH (physical downlink control channel) , in some embodiments. Furthermore, the UE 104 also transmits the selected process configuration back to the BS 102 in order for the BS 102 to successfully decode the received uplink transmission data set from the UE 104. In some embodiments, different UE’s 104 can select different process configurations, e.g., spreading sequences and random phase vectors and the BS 102 performs decoding of the uplink transmission data set from each UE 104 according to its specific data processing configuration. In some embodiments, these processes are performed by the transceiver module 152 and processor module 158 on the BS 102 (Figure 1B) . Since each of the data segments carries 1/N of the source information bits, the code rate is thus reduced to 1/N on each data segment. Furthermore, a reduced code rate using this presented multi-layered data transmission method can result in a reduced modulation threshold value in comparison to a single-layered data transmission. Therefore, data transmission based on this method is able to provide an improved decoding success rate and thus improved transmission performance.
Figure 5B illustrates a method 520 of performing a multi-layered uplink transmission in a grant-free scenario, in accordance with some embodiments of the present disclosure. It is understood that additional operations may be provided before, during, and after the method 520 of Figure 5B, and that some other operations may be omitted or only briefly described herein.
The method 520 starts with operation 522 in which the UE 104 processes data for uplink transmission, in accordance with some embodiments. In some embodiments, the UE 104 processes data according to the data processing configuration, which includes data spreading sequences, random phase vectors, etc., can be selected from a pool of data processing configurations according to the number of data layers selected by the UE 104. In some embodiments, the pool of data processing configurations is obtained by the UE 104 from the BS 102 when initially joining the cell of the BS 102. In some embodiment, during a Semi-Persistent Scheduling (SPS) , a default MCS index is determined by the BS 102 through the RRC message. In some embodiments, the UE 104 can further determine Q n, N layer, and time-frequency resources based on the channel quality and package size. The UE 104 also transmits modulation, coding and data process configurations back to the BS 102 in order for the BS 102 to successfully decode the received uplink transmission data set from the UE 104.
In some embodiments, different UE’s 104 can select different modulation, coding and data processing configurations, e.g., Q n, N layer, coding schemes, spreading sequence, and random phase vectors. The UE 104 splits an uplink transmission data set into N data segments on respective N data layers and prepare N data segments for uplink transmission, in accordance with some embodiments. As discussed above, a multi-layered data transmission is to split an uplink transmission data set from a UE 104 into a plurality of data segments, e.g., N data segments. Each of the data segments is prepared through a plurality of processes before they are stacked and transmitted on a physical channel, as discussed in detail in Figure 6. The BS 102 then performs decoding of the uplink transmission data set from each UE 104 according to its specific modulation, coding and data processing configurations.
In some embodiments, the number of data layers, N layer, in the data processing configuration can be indicated from the UE 104 back to the BS 102 explicitly (hereinafter “explicit indication” ) , implicitly (hereinafter “implicit indication’ ) , or a combination thereof. In some embodiments, explicit indication refers to some information (e.g. resource) being indicated by information bits in a control signal, e.g. RRC message. In some embodiments, explicit indication can be provided, for example, by the format of the bitmap in Uplink Control Information (UCI) , wherein the modulation and coding configuration, I MCS and number of data layers N layer, in the UCI is configured. For example, when N layer=4, a 2-bit data in the UCI can be used to inform the BS 102.
In some embodiments, implicit indication refers to some information (e.g. resource) being indicated by information in a preamble signal or a reference signal. In case of using a preamble signal for implicit indication, various method can be used. For example, Zadoff-Chu (ZC) root sequences can be used for the indication of N layer. In some other embodiments, cyclic shifting (CS) , orthogonal covering code (OCC) , comb structure, time-frequency resources and RNTI (Radio Network Temporary Identity) can be also used for implicit indication of N layer. The BS 102 determines N layer when processing the received uplink transmission data from the UE 104.
Figure 7A illustrates an implicit indication of the number of data layers using Zadoff-Chu (ZC) root sequences, in accordance with some embodiments of the present disclosure. For example, assuming that a maximum number of N layer is 4 and the number of ZC root sequences is 64. ZC root sequences can be divided into 4 groups according to their ZC root sequence indices,  according to some embodiments. In the illustrated embodiment, the first 16 ZC root sequence indices 702 of [1, 2, 3, ..., 16] indicate an N layer 704 of 1; the second 16 ZC root sequence indices 702 of [17, 18, 19, ..., 32] indicate an N layer 704 of 2; the third 16 ZC root sequence indices 702 of [33, 34, 35, ..., 48] indicate an N layer 704 of 3; and the fourth 16 ZC root sequence indices 702, i.e., [49, 50, 51, ..., 64] indicate an N layer 704 of 4, according to the illustrated embodiment. It should be noted that Figure 7A is merely an example. Different methods to divide ZC root sequences according to their indices into different numbers of groups, and indication of N layer to each group can be used and are within the scope of this invention.
Figure 7B illustrates an implicit indication of the number of data layers using time-frequency resources, in accordance with some embodiments of the present disclosure. In the illustrated embodiment, there are 4 resource blocks (RB) 712 for uplink data transmission, i.e., RB1, RB2, RB3 and RB4, and 4 N layer. Each RB for uplink data transmission can be used to indicate different N layer. In the illustrated embodiment, the first RB 712 (i.e., RB1) indicates an N layer 714 of 1; the second RB 712 (i.e., RB2) indicates an N layer of 2; the third RB 712 (i.e., RB3) indicates an N layer of 3; and the fourth RB 712 (i.e., RB4) indicates an N layer of 4. It should be noted that Figure 7B is merely an example and it will be apparent to those of ordinary skill in the art who read the present disclosure that various modifications to the disclosed embodiments can be made while remaining within the scope of the invention. For example, the BS 102 can comprise different number of RBs for uplink data transmission and each RB can indicate a different N layer.
Figure 7B further illustrates a configuration of a resource block for uplink data transmission, in accordance with some embodiments. For example, a RB 712 occupies a subframe 715, which includes a first time slot 717 and a second time slot 718 (e.g., time slots 0 and 1) , which form 1 resource block 712 with 12 subcarriers 720 in the frequency domain. Each of the two time slots in one subcarrier 720 includes 7 SC-FDMA (single carrier-frequency division multiple access) symbols 719.
In some embodiments, implicit indication of the number of data layers can be carried in an orthogonal covering code. In some embodiments, OCC can be added to at least one symbol that carries a DMRS (demodulation reference signal) . An OCC group can correspond to different number of data layers. For example, an OCC group [1 1] indicates an N layer of 1; an OCC group [1 -1] corresponds to an N layer of 2; an OCC group [-1 1] corresponds to an N layer of 3; and an OCC group [-1 -1] corresponds to an N layer of 4, according to certain embodiments.
In some embodiments, implicit indication of the number of data layers can be carried in the RNTI (Radio Network Temporary Identity) of the UE 104. According to some embodiments, when RRC connection is established, the UE 104 is then configured under UTRAN (Universal Terrestrial Radio Access Network) mode and the RNTI for the UE 104 can be used as the UE ID on the shared transmission channel. RNTI comprises designated bits which can be used to carry information of N layer. For example, RNTI comprises 2 bits, wherein 00 corresponds to an N layer of 1; 01 corresponds to an N layer of 2; 10 corresponds to an N layer of 3; and 11 corresponds to an N layer of 4, in accordance with some embodiments.
In case of using a reference signal for implicit indication, various method can be used. In some embodiments, N layer can be implicitly indicated by a DMRS (demodulation reference signal) . For example, in NR, a DMRS mapping to physical resources is determined by parameters such as symbols in the time domain, OCC, comb, etc., according to certain rules known in the art.
Figure 7C illustrates an implicit indication of the number of data layers using DMRS (demodulation reference signal) , in accordance with some embodiments of the present disclosure. For example, there are 12 antenna ports 732 which are divided into 4 groups. In the illustrated embodiment, group 1 includes  ports  1000, 1001, and 1002; group 2 includes  ports  1003, 1004, and 1005; group 3 includes  ports  1006, 1007, and 1008; and group 4 includes  ports  1009, 1010 and 1011, according to the illustrated embodiment. Then each group is configured with an N layer 734. Referring to Figure 7C again, group 1 indicates an N layer of 1; group 2 indicates an N layer of 2; group indicates an N layer of 3; and group 4 indicates an N layer of 4. When a group of antenna ports are selected by a UE 104, then the corresponding N layer is also assigned to the UE 104. On the BS side, the N layer of a UE 104 can be determined based on the antenna port mapped by the DMRS signal.
The method 520 continues with operation 524, in which the UE 104 transmits an uplink signal together with the selected modulation, coding, and data processing configurations to the BS 102, in accordance with some embodiments. The UE 104 transmits the selected modulation, coding, and data processing configurations to the BS 102 in order for the BS 102 to successfully decode the received uplink transmission data set from the UE 104. In some embodiments, different UE’s 104 can select different data process configurations, e.g., spreading sequences and random phase vectors and the BS 102 performs decoding of the uplink transmission data set from  each UE 104 according to their specific data processing configuration. In some embodiments, each data segment on each data layer in the uplink transmission signals from all UE’s 104 are then processed by the BS 102 according to the coding, modulation, and data processing configurations that are configured by the UE 104. For example, the BS 102 can perform a reverse data processing based on the modulation order, spreading sequence, random phase vector and the number of dat layers specified by the UE 104. In some embodiments, the BS 102 can stack all data segments on all data layers together, which is followed by de-scramble/de-interleaving, decoding, and CRC checking. It should be noted that the data segment stacking process can be configured at any position between processes performed by the BS 102, according to the position of the data splitting process on the UE 104. In some embodiments, these processes are performed by the transceiver module 152 and processor module 158 on the BS 102 (Figure 1B) . Since each of the data segments carries 1/N of the source data bits, the code rate is thus reduced to 1/N on each data segment. Furthermore, a reduced code rate using this presented multi-layered data transmission method can result in a reduced modulation threshold value in comparison to a single-layered data transmission. Therefore, data transmission based on this method is able to provide an improved decoding success rate and thus improved transmission performance.
While various embodiments of the invention have been described above, it should be understood that they have been presented by way of example only, and not by way of limitation. Likewise, the various diagrams may depict an example architectural or configuration, which are provided to enable persons of ordinary skill in the art to understand exemplary features and functions of the invention. Such persons would understand, however, that the invention is not restricted to the illustrated example architectures or configurations, but can be implemented using a variety of alternative architectures and configurations. Additionally, as would be understood by persons of ordinary skill in the art, one or more features of one embodiment can be combined with one or more features of another embodiment described herein. Thus, the breadth and scope of the present disclosure should not be limited by any of the above-described exemplary embodiments.
It is also understood that any reference to an element herein using a designation such as "first, " "second, " and so forth does not generally limit the quantity or order of those elements. Rather, these designations can be used herein as a convenient means of distinguishing between two or more elements or instances of an element. Thus, a reference to first and second elements does  not mean that only two elements can be employed, or that the first element must precede the second element in some manner.
Additionally, a person having ordinary skill in the art would understand that information and signals can be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits and symbols, for example, which may be referenced in the above description can be represented by voltages, currents, electromagnetic waves, magnetic fields or particles, optical fields or particles, or any combination thereof.
A person of ordinary skill in the art would further appreciate that any of the some illustrative logical blocks, modules, processors, means, circuits, methods and functions described in connection with the aspects disclosed herein can be implemented by electronic hardware (e.g., a digital implementation, an analog implementation, or a combination of the two, which can be designed using source coding or some other technique) , various forms of program or design code incorporating instructions (which can be referred to herein, for convenience, as "software" or a "software module) , or combinations of both. To clearly illustrate this interchangeability of hardware and software, various illustrative components, blocks, modules, circuits, and steps have been described above generally in terms of their functionality. Whether such functionality is implemented as hardware, firmware or software, or a combination of these technique, depends upon the particular application and design constraints imposed on the overall system. Skilled artisans can implement the described functionality in various ways for each particular application, but such implementation decisions should not be interpreted as causing a departure from the scope of the present disclosure.
Furthermore, a person of ordinary skill in the art would understand that various illustrative logical blocks, modules, devices, components and circuits described herein can be implemented within or performed by an integrated circuit (IC) that can include a general purpose processor, a digital signal processor (DSP) , an application specific integrated circuit (ASIC) , a field programmable gate array (FPGA) or other programmable logic device, or any combination thereof. The logical blocks, modules, and circuits can further include antennas and/or transceivers to communicate with various components within the network or within the device. A general purpose processor can be a microprocessor, but in the alternative, the processor can be any  conventional processor, controller, or state machine. A processor can also be implemented as a combination of computing devices, e.g., a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in conjunction with a DSP core, or any other suitable configuration to perform the functions described herein.
If implemented in software, the functions can be stored as one or more instructions or code on a computer-readable medium. Thus, the steps of a method or algorithm disclosed herein can be implemented as software stored on a computer-readable medium. Computer-readable media includes both computer storage media and communication media including any medium that can be enabled to transfer a computer program or code from one place to another. A storage media can be any available media that can be accessed by a computer. By way of example, and not limitation, such computer-readable media can include RAM, ROM, EEPROM, CD-ROM or other optical disk storage, magnetic disk storage or other magnetic storage devices, or any other medium that can be used to store desired program code in the form of instructions or data structures and that can be accessed by a computer.
In this document, the term "module" as used herein, refers to software, firmware, hardware, and any combination of these elements for performing the associated functions described herein. Additionally, for purpose of discussion, the various modules are described as discrete modules; however, as would be apparent to one of ordinary skill in the art, two or more modules may be combined to form a single module that performs the associated functions according embodiments of the invention.
Additionally, memory or other storage, as well as communication components, may be employed in embodiments of the invention. It will be appreciated that, for clarity purposes, the above description has described embodiments of the invention with reference to different functional units and processors. However, it will be apparent that any suitable distribution of functionality between different functional units, processing logic elements or domains may be used without detracting from the invention. For example, functionality illustrated to be performed by separate processing logic elements, or controllers, may be performed by the same processing logic element, or controller. Hence, references to specific functional units are only references to a suitable means for providing the described functionality, rather than indicative of a strict logical or physical structure or organization.
Various modifications to the implementations described in this disclosure will be readily apparent to those skilled in the art, and the general principles defined herein can be applied to other implementations without departing from the scope of this disclosure. Thus, the disclosure is not intended to be limited to the implementations shown herein, but is to be accorded the widest scope consistent with the novel features and principles disclosed herein, as recited in the claims below.

Claims (35)

  1. A method performed by a wireless communication node, the method comprising:
    transmitting a reference signal to a wireless communication device;
    receiving a channel quality indicator (CQI) signal from the wireless communication device;
    based on at least the CQI signal, determining a modulation coding scheme (MCS) index from a first MCS table for the wireless communication device; and
    receiving a first uplink transmission data set from the wireless communication device.
  2. The method of claim 1, wherein the first uplink transmission data set is derived from splitting a second uplink transmission data set into a predetermined number of data segments on a predetermined number of data layers, respectively, and processed by at least one process, wherein the predetermined number of data layers each is configured by a first modulation order in the first MCS table and a corresponding second modulation order.
  3. The method of claim 1, further comprising
    selecting the first MCS table from at least one MCS table based on at least the CQI signal; and
    transmitting the MCS index to the wireless communication device for future uplink transmissions.
  4. The method of clam 2, wherein the first modulation order is less than or equal to the corresponding second modulation order.
  5. The method of claim 2, wherein the first modulation order Q n is configured based on Q n=Q m/N layer, wherein Q n is the first modulation order, Q m is the corresponding second modulation order, and N layer is the predetermined number of data layers, Q n, Q m and N layer are positive integers.
  6. The method of claim 2, wherein the at least one process is performed before or after the  splitting a second uplink transmission data set into a predetermined number of data segments on a predetermined number of data layers.
  7. The method of claim 2, wherein the at least one process comprises at least one of the following: channel coding, scrambling, modulation, sequence spreading, layer mapping, and data segment stacking.
  8. The method of claim 1, wherein the first uplink transmission data set is transmitted according to a first transmission configuration, wherein the first transmission configuration comprises at least one of the following: the first modulation order and the predetermined number of data layers.
  9. The method of claim 8, wherein the first transmission configuration is determined according to the MCS index and the first MCS table.
  10. The method of claim 1, wherein the first MCS table is selected from at least one MCS table according to at least the CQI signal.
  11. A method performed by a wireless communication device, the method comprising:
    generating a channel quality indicator (CQI) signal based on a received reference signal from a wireless communication node;
    receiving a modulation coding scheme (MCS) index in a first MCS table from the wireless communication node for future uplink transmissions; and
    transmitting a first uplink transmission data set to the wireless communication node.
  12. The method of claim 11, further comprising:
    splitting a second uplink transmission data set into a predetermined number of data segments on a predetermined number of data layers; and
    processing the predetermined number of data segments to form the first uplink transmission data set,
    wherein the predetermined number of data layers is configured by a first modulation order in the first MCS table and a corresponding second modulation order.
  13. The method of claim 12, wherein the first modulation order is less than or equal to the corresponding second modulation order.
  14. The method of claim 12, wherein the first modulation order Q n is configured based on Q n=Q m/N layer, wherein Q n is the first modulation order, Q m is the corresponding second modulation order, and N layer is the predetermined number of data layers, Q n, Q m and N layer are positive integers.
  15. The method of claim 12, wherein the processing comprises at least one of the following: channel coding, scrambling, modulation, sequence spreading, layer mapping, and data segment stacking.
  16. The method of claim 11, wherein the first uplink transmission data set is transmitted according to a first transmission configuration, wherein the first transmission configuration comprises the first modulation order and the predetermined number of data layers.
  17. The method of claim 16, wherein the first transmission configuration is determined according to the MCS index and the first MCS table.
  18. The method of claim 11, wherein the first MCS table is selected from at least one MCS table according to at least the CQI signal.
  19. A method performed by a wireless communication node, the method comprising:
    receiving a first uplink transmission data set and a first processing configuration from a wireless communication device;
    wherein the first uplink transmission data set is derived from splitting a second uplink transmission data set into a predetermined number of data segments on a predetermined  number of data layers, respectively, and processed by at least one process, wherein the first processing configuration comprises the predetermined number of data layers and a first modulation order, and wherein the predetermined number of data layers is transmitted from the wireless communication device using one of the following: explicit indication and implicit indication.
  20. The method of claim 19, wherein the process comprise at least one of the following: channel coding, scrambling, modulation, sequence spreading, layer mapping, and data segment stacking.
  21. The method of claim 19, wherein the first processing configuration further comprises spreading sequence set and random phase vectors.
  22. The method of claim 19, wherein the predetermined number of data layers is configured according to the first modulation order and a corresponding second modulation order.
  23. The method of claim 19, wherein the first modulation order Q n is configured based on Q n=Q m/N layer, wherein Q n is the first modulation order, Q m is the corresponding second modulation order, and N layer is the predetermined number of data layers, Q n, Q m and N layer are positive integers.
  24. The method of claim 19, wherein the explicit indication is carried by uplink control information (UCI) .
  25. The method of claim 19, wherein the implicit indication is carried by one of the following: Zadoff-Chu (ZC) root sequence, reference signal sequences after a cyclic shift operation, orthogonal covering code (OCC) , comb structure, radio network temporary ID (RNTI) , time-frequency resource, and demodulation reference signal (DMRS) .
  26. A method performed by a wireless communication device, the method comprising:
    splitting a first uplink transmission data set into a predetermined number of data segments on a predetermined number of data layers, respectively;
    processing the predetermined number of data segments on the predetermined number of data layers to form a second uplink transmission data set according to a first processing configuration; and
    transmitting the second uplink transmission data set and the first processing configuration to a wireless communication node,
    wherein the first processing configuration comprises the predetermined number of data layers, and wherein the predetermined number of data layers is transmitted to the wireless communication node using one of the following: explicit indication and implicit indication.
  27. The method of claim 26, wherein the processing comprises at least one of the following processes: channel coding, scrambling, modulation, sequence spreading, layer mapping, and data segment stacking.
  28. The method of claim 26, wherein the first processing configuration further comprises spreading sequence set and random phase vectors.
  29. The method of claim 26, wherein the transmitting is performed according to a first transmission configuration, wherein the first transmission configuration comprises a first modulation order and the predetermined number of data layers.
  30. The method of claim 26, wherein the predetermined number of data layers is configured according to the first modulation order and a corresponding second modulation order.
  31. The method of claim 26, wherein the first modulation order Q n is configured based on Q n=Q m/N layer, wherein Q n is the first modulation order, Q m is the corresponding second modulation order, and N layer is the predetermined number of data layers, Q n, Q m and N layer are positive integers.
  32. The method of claim 26, wherein the explicit indication is carried by uplink control information (UCI) .
  33. The method of claim 26, wherein the implicit indication is carried by one of the following: Zadoff-Chu (ZC) root sequence, reference signal sequences after a cyclic shift operation, orthogonal covering code (OCC) , comb structure, radio network temporary ID (RNTI) , time-frequency resource, and demodulation reference signal (DMRS) .
  34. A computing device configured to carry out the method of any one claims 1 through 33.
  35. A non-transitory computer-readable medium having stored thereon computer-executable instructions for carrying out the method of any one claims 1 through 33.
PCT/CN2018/075909 2018-02-09 2018-02-09 Method and apparatus for multi-layered data transmission WO2019153213A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2018/075909 WO2019153213A1 (en) 2018-02-09 2018-02-09 Method and apparatus for multi-layered data transmission
CN201880088717.2A CN111684741B (en) 2018-02-09 2018-02-09 Method and apparatus for multi-layer data transmission

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/075909 WO2019153213A1 (en) 2018-02-09 2018-02-09 Method and apparatus for multi-layered data transmission

Publications (1)

Publication Number Publication Date
WO2019153213A1 true WO2019153213A1 (en) 2019-08-15

Family

ID=67548689

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/075909 WO2019153213A1 (en) 2018-02-09 2018-02-09 Method and apparatus for multi-layered data transmission

Country Status (2)

Country Link
CN (1) CN111684741B (en)
WO (1) WO2019153213A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114629757B (en) * 2020-12-14 2023-03-21 中国科学院上海高等研究院 Modulation strategy selection method, system, storage medium and terminal for non-orthogonal transmission
CN113890679B (en) * 2021-09-26 2023-08-22 中国联合网络通信集团有限公司 Signal modulation method, signal modulation device, electronic equipment and computer readable storage medium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102149130A (en) * 2011-04-22 2011-08-10 电信科学技术研究院 Method, device and system for reporting channel quality indicator
CN102624481A (en) * 2011-01-31 2012-08-01 中兴通讯股份有限公司 Self-adaptive modulation and coding method and apparatus
CN106160924A (en) * 2015-04-07 2016-11-23 中国移动通信集团公司 A kind of method of information feedback, device, terminal and base station
CN106797353A (en) * 2014-09-03 2017-05-31 三星电子株式会社 The channel quality estimation method and device of interference control and coordinating communication are considered in cellular system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102624481A (en) * 2011-01-31 2012-08-01 中兴通讯股份有限公司 Self-adaptive modulation and coding method and apparatus
CN102149130A (en) * 2011-04-22 2011-08-10 电信科学技术研究院 Method, device and system for reporting channel quality indicator
CN106797353A (en) * 2014-09-03 2017-05-31 三星电子株式会社 The channel quality estimation method and device of interference control and coordinating communication are considered in cellular system
CN106160924A (en) * 2015-04-07 2016-11-23 中国移动通信集团公司 A kind of method of information feedback, device, terminal and base station

Also Published As

Publication number Publication date
CN111684741B (en) 2022-07-22
CN111684741A (en) 2020-09-18

Similar Documents

Publication Publication Date Title
US11395285B2 (en) Resource allocation method, identification method, radio communication system, base station, mobile station, and program
US11558228B2 (en) Apparatus and method for transmitting reference signals in wireless communication system
US10887068B2 (en) Methods and apparatus for an extensible and scalable control channel for wireless networks
US20220061041A1 (en) Two-stage sidelink control information for sidelink communications
CN107733609B (en) Reference signal transmission method and reference signal transmission device
CN107852395B (en) Apparatus, network and method for wideband LTE single OFDM symbol uplink transmission
CN111357233B (en) Method and apparatus for configuring and signaling PTRS in a telecommunications system
EP3258638B1 (en) Resource allocation method and base station
EP3369229B1 (en) Systems and methods for multi-physical structure system
CN107710842B (en) Method and device for transmitting uplink data
EP2609717B1 (en) Open loop mimo mode for lte-a uplink
US10708728B2 (en) Adaptive modulation order for multi-user superposition transmissions with non-aligned resources
KR20170020285A (en) Method and apparatus for wireless communication in wireless communication system
KR20180068677A (en) Method and apparatus for transmitting and receiving downlink control channel in wirelss communication system
US11026184B2 (en) Terminal apparatus, base station apparatus, and communication method for transmitting resource information and transmission power control information to the terminal device with a grant-free access resource allocation or a scheduled access resource allocation
CN112314006B (en) Method, apparatus and computer readable medium for two-stage side link control information
CN114503522B (en) Incoherent waveforms for wireless communications
CN112313892B (en) Method and apparatus for transmitting and receiving modulated signal in wireless communication system
US20220338174A1 (en) Wireless communication method and terminal device
WO2019153213A1 (en) Method and apparatus for multi-layered data transmission
WO2019019174A1 (en) Method and apparatus for high-order table configuration
US20230132170A1 (en) Uplink pre-coding based wireless communications
WO2019144405A1 (en) Method and apparatus for generating spreading sequence codebooks
KR20230157979A (en) Method and apparatus for selecting default beam and path loss reference signals for transmission of uplink control information in a wireless communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18905199

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 03.12.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18905199

Country of ref document: EP

Kind code of ref document: A1