WO2016078316A1 - 显示基板及其制造方法和显示装置 - Google Patents

显示基板及其制造方法和显示装置 Download PDF

Info

Publication number
WO2016078316A1
WO2016078316A1 PCT/CN2015/076839 CN2015076839W WO2016078316A1 WO 2016078316 A1 WO2016078316 A1 WO 2016078316A1 CN 2015076839 W CN2015076839 W CN 2015076839W WO 2016078316 A1 WO2016078316 A1 WO 2016078316A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
layer
substrate
phase retardation
display device
Prior art date
Application number
PCT/CN2015/076839
Other languages
English (en)
French (fr)
Inventor
秦广奎
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US14/785,712 priority Critical patent/US20160342002A1/en
Publication of WO2016078316A1 publication Critical patent/WO2016078316A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133365Cells in which the active layer comprises a liquid crystalline polymer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13356Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements
    • G02F1/133565Structural association of cells with optical devices, e.g. polarisers or reflectors characterised by the placement of the optical elements inside the LC elements, i.e. between the cell substrates
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133633Birefringent elements, e.g. for optical compensation using mesogenic materials
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/02Materials and properties organic material
    • G02F2202/022Materials and properties organic material polymeric
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2413/00Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates
    • G02F2413/08Indexing scheme related to G02F1/13363, i.e. to birefringent elements, e.g. for optical compensation, characterised by the number, position, orientation or value of the compensation plates with a particular optical axis orientation

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a display substrate for a liquid crystal display device, a method of manufacturing the same, and a liquid crystal display device.
  • the glass substrate in a liquid crystal display is an isotropic material and does not cause a phase delay, so that the liquid crystal display does not cause light leakage under normal conditions.
  • the properties of the glass substrate become anisotropic under an external force, and a phase delay occurs.
  • the direction in which the phase delay occurs is also different depending on the direction of the force applied.
  • Figure 1a is a schematic diagram showing the phase retardation of an empty box under bending pressure
  • Figure 1b is a schematic diagram showing the change in polarization state when light passes through the empty box of Figure 1a, represented by a Bangka ball.
  • the empty box includes a color film substrate 101 and an array substrate 201 disposed opposite to each other.
  • the outer side of the color filter substrate 101 (the side not facing the array substrate 201) is provided with a polarizing plate, and the outer side of the array substrate 201 ( A polarizing plate is disposed on a side not facing the color filter substrate 101, and liquid crystal is not disposed between the color filter substrate 101 and the array substrate 201, wherein the polarizing plate is not shown in the drawing.
  • FIG. 1a the empty box includes a color film substrate 101 and an array substrate 201 disposed opposite to each other.
  • the outer side of the color filter substrate 101 (the side not facing the array substrate 201) is provided with a polarizing plate, and the outer side of the array substrate 201 ( A polarizing plate is disposed on a side not facing the color filter substrate 101, and liquid crystal is not disposed between the color filter substrate 101 and the array substrate 201, wherein the polarizing plate is not shown in the drawing.
  • the color filter substrate 101 in which the color filter substrate 101 is subjected to an expansion force (the direction of deformation is indicated by an outward arrow), the array substrate 201 is subjected to a compressive force (indicated by an inward arrow to indicate its deformation direction),
  • the respective force directions of the color filter substrate 101 and the array substrate 201 are perpendicular to each other.
  • the direction in which the phase delay is generated is determined by the force received. Therefore, when the empty case is bent under the external pressure, the directions of the phase delays generated by the color filter substrate 101 and the array substrate 201 are perpendicular to each other. Therefore, the amount of phase delay generated by the color filter substrate 101 and the array substrate 201 can cancel each other, so that the empty box does not generate dark state light leakage when bent under external pressure.
  • the black point indicated by S1 represents the initial polarization state position of the polarization state on the spherical surface of the Bangka ball.
  • the top three points represent the red, green and blue colors
  • the line passes through the lower glass substrate to produce a position after the phase change of the polarization state after the phase shift.
  • the downward arrow in the case of an empty box or when the liquid crystal display panel is a vertical alignment type (VA) panel, the light of the three colors passes through the phase retardation of the upper glass substrate, and the polarization state returns to the initial point again.
  • VA vertical alignment type
  • FIG. 2a is a schematic view showing a phase delay of a liquid crystal cell under bending pressure
  • FIG. 2b is a schematic view showing a change of a polarization state when light passes through the liquid crystal cell of FIG. 2a, which is represented by a Bangka ball
  • FIG. 2c is a view of FIG. 2a. Schematic diagram of the light leakage state of the liquid crystal cell under external pressure.
  • the liquid crystal cell includes a color film substrate 101 and an array substrate 201 disposed opposite to each other.
  • the outer side of the color filter substrate 101 is provided with a polarizing plate
  • the outer side of the array substrate 201 is provided with a polarizing plate
  • the color film substrate 101 and the array substrate are disposed.
  • a liquid crystal layer 3 is disposed between 201, wherein the polarizing plate is not shown in the drawing.
  • phase delays generated by the color filter substrate 101 and the array substrate 201 cancel each other out.
  • the phase delay generated by the liquid crystal layer 3 is not cancelled, and thus a serious dark state light leakage is caused, resulting in a decrease in contrast of the display device.
  • the phase delay generated by the liquid crystal layer 3 causes a serious dark state light leakage, thereby causing a decrease in contrast of the display device.
  • the present invention provides a display substrate, a method of manufacturing the same, and a display device for improving contrast.
  • the present invention provides a display substrate for a liquid crystal display device including a first substrate substrate, a phase retardation layer, and a first alignment layer, the phase retardation layer being located on the first substrate Above, the first alignment layer is located above the phase retardation layer; the phase retardation layer is configured to phase retard light entering the same, and the phase retardation layer generates a phase delay direction and a liquid crystal display The direction in which the liquid crystal layer in the device produces a phase delay is perpendicular to each other.
  • the phase retardation layer includes a third alignment layer and a liquid crystal polymer layer over the third alignment layer, and the liquid crystal polymer layer is in a state where the display substrate is not subjected to an external force.
  • the direction of the optical axis of the liquid crystal polymer in the medium is perpendicular to the direction of the optical axis of the liquid crystal in the liquid crystal layer.
  • liquid crystals in the liquid crystal layer and the liquid crystal polymer in the liquid crystal polymer layer have the same or different polarities.
  • the liquid crystal polymer layer is a thermotropic liquid crystal layer or a lyotropic liquid crystal layer.
  • the phase retardation layer generates a phase delay amount and a difference or equal between the phase delay amount generated by the liquid crystal layer.
  • the absolute value of the difference is less than or equal to 50 nm and greater than zero.
  • the present invention provides a liquid crystal display device including a display substrate and a counter substrate disposed opposite to each other, a liquid crystal layer disposed between the display substrate and the opposite substrate; Display substrate as described herein;
  • the opposite substrate includes a second substrate and a second alignment layer above the second substrate.
  • the liquid crystal display device comprises an advanced super-dimensional field conversion technology liquid crystal display device or an in-plane switching liquid crystal display device.
  • liquid crystal display device comprises an advanced super-dimensional field conversion (ADS) liquid crystal display device or an in-plane switching (IPS) liquid crystal display device.
  • ADS advanced super-dimensional field conversion
  • IPS in-plane switching
  • the present invention provides a method of manufacturing a display substrate for a liquid crystal display device, comprising: forming a phase retardation layer above a first substrate, the phase retardation layer generating a direction and direction of phase retardation The liquid crystal layer in the liquid crystal display device generates a phase retardation direction perpendicular to each other; and a first alignment layer is formed over the phase retardation layer.
  • the phase retardation layer includes a third alignment layer and a liquid crystal polymer layer
  • the step of forming a phase retardation layer over the first substrate includes: forming over the first substrate The third alignment layer; and the liquid crystal polymer layer is formed over the third alignment layer, wherein the third alignment layer is formed such that liquid crystal in the liquid crystal polymer layer thereon
  • the direction of the optical axis of the polymer and the liquid crystal layer The directions of the optical axes of the liquid crystals are perpendicular to each other.
  • the direction in which the phase retardation layer generates the phase retardation is perpendicular to the direction in which the liquid crystal generates a phase retardation in the liquid crystal display device, and thus the phase The phase delay generated by the retardation layer can cancel or partially cancel the phase delay generated by the liquid crystal, thereby avoiding serious dark state light leakage and improving contrast.
  • Figure 1a is a schematic illustration of the phase retardation of an empty box under bending pressure.
  • Figure 1b is a schematic illustration of the change in polarization state when light passes through the empty box of Figure 1a, represented by a Bangka ball.
  • Figure 2a is a schematic illustration of the phase retardation of the liquid crystal cell under bending pressure.
  • Figure 2b is a schematic illustration of the change in polarization state as light passes through the liquid crystal cell of Figure 2a, as indicated by a Bangka ball.
  • Fig. 2c is a schematic view showing a state of light leakage of the liquid crystal cell of Fig. 2a under external pressure.
  • FIG. 3 is a schematic structural diagram of a display substrate for a liquid crystal display device according to Embodiment 1 of the present invention.
  • FIG. 4 is a schematic structural diagram of a liquid crystal display device according to Embodiment 2 of the present invention.
  • Fig. 5a is a schematic view showing a state of light leakage of the liquid crystal display device of Fig. 4 without being subjected to external pressure.
  • Fig. 5b is a schematic view showing a state of light leakage of the liquid crystal display device of Fig. 4 under external pressure.
  • FIG. 6 is a flowchart of a method of manufacturing a display substrate for a liquid crystal display device according to Embodiment 3 of the present invention.
  • the display substrate includes a first substrate substrate 11, a phase retardation layer 12, and a first alignment. Layer 13.
  • the phase retardation layer 12 is located above the first base substrate 11, and the first alignment layer 13 is located above the phase retardation layer 12.
  • the direction in which the phase retardation layer 12 generates the phase delay is perpendicular to the direction in which the liquid crystal in the liquid crystal display device is delayed in phase.
  • the phase retardation layer 12 is configured to phase retard the incident light. Since the direction in which the phase retardation layer 12 generates the phase delay is perpendicular to the direction in which the liquid crystal generates the phase delay, the phase delay caused by the phase retardation layer 12 can cancel the phase delay caused by the liquid crystal.
  • the display substrate may be a color film substrate.
  • the liquid crystal display device may include a display substrate and a counter substrate disposed opposite to each other, and a liquid crystal is disposed between the display substrate and the counter substrate.
  • the opposite substrate may include a second substrate and a second alignment layer over the second substrate. A liquid crystal layer is disposed between the first alignment layer and the second alignment layer to align liquid crystal molecules in the liquid crystal layer through the first alignment layer and the second alignment layer.
  • the opposite substrate may be an array substrate.
  • the phase retardation amount (i.e., the optical path difference) generated by the phase retardation layer 12 may have a difference or an equal value with the phase retardation amount generated by the liquid crystal layer.
  • the absolute value of the difference may be less than or equal to 50 nm and greater than zero. When the difference is within the range, a better effect of preventing dark state light leakage can be achieved.
  • the amount of phase delay generated by the phase retardation layer 12 is equal to the amount of phase delay generated by the liquid crystal layer, and in this case, dark state light leakage can be completely prevented.
  • the phase retardation amount R ⁇ n ⁇ d, where ⁇ n is the birefringence of the material forming the layer, and d is the thickness of the layer. Usually, ⁇ n of the material is fixed, and therefore, the control of the magnitude of the above difference can be achieved by controlling the thickness d of the liquid crystal layer or the phase retardation layer.
  • the phase retardation layer 12 includes a third alignment layer 121 and a liquid crystal polymer layer 122 over the third alignment layer 121.
  • the display substrate is a color film substrate
  • a black matrix and a color matrix pattern are formed on the first substrate substrate 11, and the color matrix pattern is located between the lines of the black matrix, and the edges of the color matrix patterns are located above the black matrix.
  • the black matrix and the color matrix pattern are not shown in FIG.
  • the third alignment layer 121 can be located in a color matrix graphic
  • the first alignment layer 13 is located above the liquid crystal polymer layer 122.
  • the liquid crystal polymer layer 122 may be a Reactive Mesogens (RM).
  • the liquid crystals in the liquid crystal layer 3 and the liquid crystal polymer in the liquid crystal polymer layer 122 have the same or different polarities.
  • the liquid crystal is a positive liquid crystal, and the liquid crystal polymer is a negative liquid crystal polymer; or, the liquid crystal is a negative liquid crystal, and the liquid crystal polymer is a positive liquid crystal polymer; or, the liquid crystal is a positive liquid crystal, and the liquid crystal polymer is positive Liquid crystal polymer; or, the liquid crystal is a negative liquid crystal, and the liquid crystal polymer is a negative liquid crystal polymer.
  • the liquid crystal and the liquid crystal polymer have different polarities.
  • the phase delay generated by the phase retardation layer can cancel or partially cancel the phase delay generated by the liquid crystal layer 3 to improve the contrast.
  • the above-described offsetting method causes the viewing angle of the liquid crystal display device to be narrowed, such an arrangement in which the liquid crystal and the liquid crystal polymer have different polarities can expand the viewing angle of the liquid crystal display device to some extent.
  • the surface of the phase retardation layer 12 is a flat surface, that is, the surface of the liquid crystal polymer layer 122 is a flat surface, so the phase retardation layer 12 can function as a flat layer, so that no flat layer needs to be disposed in the display substrate. , which simplifies the process.
  • the display substrate further includes a spacer (Photo Spacer, SP for short), the spacer may be located above the phase retardation layer 12, and the first alignment layer 13 is located above the spacer. This spacer is not shown in FIG.
  • the third alignment layer 121 aligns the liquid crystal polymer layer 122 such that the direction of the optical axis of the liquid crystal polymer layer 122 and the direction of the optical axis of the liquid crystal in the liquid crystal layer when the display substrate is in a normal state without being subjected to an external force Vertical to each other.
  • the direction in which the phase retardation layer 12 generates the phase delay is realized to be perpendicular to the direction in which the liquid crystal layer generates the phase delay.
  • the direction in which the phase retardation layer generates the phase delay is perpendicular to the direction in which the liquid crystal generates a phase delay in the liquid crystal display device, so that the phase delay generated by the phase retardation layer cancels or partially cancels.
  • the phase delay generated by the liquid crystal in the liquid crystal display device is avoided, and the contrast of the liquid crystal display device is improved.
  • the liquid crystal display device includes a display substrate 1 and a counter substrate 2 which are disposed opposite to each other, and a liquid crystal layer 3 is disposed between the display substrate 1 and the counter substrate 2.
  • the display substrate 1 can be the display substrate in the first embodiment described above.
  • the counter substrate 2 may include a second substrate substrate 21 and a second alignment layer 22 located above the second substrate substrate 21.
  • the display substrate 1 may be a color filter substrate
  • the opposite substrate 2 may be an array substrate.
  • the opposite substrate 2 may further include a gate line, a data line, a thin film transistor, a pixel electrode, and a common electrode on the second substrate substrate 21, and is not specifically shown in FIG.
  • the liquid crystal display device may include an Advanced Super Dimension Switch (ADS) liquid crystal display device or an In-Plane Switching (IPS) liquid crystal display device.
  • ADS Advanced Super Dimension Switch
  • IPS In-Plane Switching
  • Fig. 5a is a schematic view showing a state of light leakage of the liquid crystal display device of Fig. 4 without being subjected to external pressure. As shown in FIG. 5a, the liquid crystal display device does not bend without being subjected to external pressure, and thus the transmittance of the display device is about 0 in a certain wavelength range.
  • Fig. 5b is a schematic view showing a state of light leakage of the liquid crystal display device of Fig. 4 under external pressure.
  • the liquid crystal display device is bent under external pressure, and the angle between the direction in which the first substrate substrate 11 generates the phase retardation and the direction in which the liquid crystal layer 3 is phase-delayed is 45°, and the second base substrate The angle between the direction in which the phase delay is generated and the direction in which the liquid crystal in the liquid crystal layer 3 is delayed is 135 degrees.
  • the direction in which the first base substrate 11 generates the phase delay is perpendicular to the direction in which the second substrate substrate 21 generates the phase delay, and the first substrate substrate 11 and the second substrate substrate 21 generate the same amount of phase delay (for example, both) 3 nm), therefore, the phase delays generated by the two substrate substrates cancel each other out.
  • the phase retardation layer 12 is disposed in the display substrate 1, the phase delay generated by the liquid crystal layer 3 is cancelled by the phase delay generated by the phase retardation layer 12, and thus the transmittance of the liquid crystal display device in a certain wavelength range is obtained. It is about 0, as shown in Figure 5b. That is to say, the liquid crystal display device of the embodiment of the present invention avoids the occurrence of severe dark state light leakage as compared with the prior art.
  • the direction in which the phase retardation layer generates the phase delay is opposite to the direction in which the liquid crystal layer generates the phase delay. Therefore, the phase delay generated by the phase retardation layer cancels or partially cancels the phase delay generated by the liquid crystal layer, thereby avoiding A serious dark state light leakage improves the contrast of the liquid crystal display device.
  • FIG. 6 is a flowchart of a method for manufacturing a display substrate for a liquid crystal display device according to Embodiment 3 of the present invention. As shown in FIG. 6, the method includes:
  • Step 101 Form a phase retardation layer above the first base substrate such that a direction in which the phase retardation layer generates a phase retardation is perpendicular to a direction in which the liquid crystal in the liquid crystal display device is delayed in phase.
  • the phase retardation layer includes a third alignment layer and a liquid crystal polymer layer.
  • Step 101 specifically includes:
  • Step 1011 forming a third alignment layer above the first substrate.
  • Step 1012 forming a liquid crystal polymer layer on the third alignment layer.
  • the liquid crystal polymer layer may include a thermotropic liquid crystal layer or a lyotropic liquid crystal layer.
  • the liquid crystal polymer layer comprises a thermotropic liquid crystal layer.
  • the step 1012 may specifically include: forming a thermotropic liquid crystal material layer on the third alignment layer, heat-treating the thermotropic liquid crystal material layer, and performing UV exposure treatment on the heated thermotropic liquid crystal material layer. To form a thermotropic liquid crystal layer.
  • Step 102 forming a first alignment layer above the phase retardation layer.
  • the manufacturing method of the display substrate for the liquid crystal display device provided in this embodiment can be used to manufacture the display substrate provided in the first embodiment.
  • the display substrate For the detailed description of the display substrate, refer to the first embodiment, and details are not described herein again.
  • the direction in which the phase retardation layer generates the phase retardation is opposite to the direction in which the liquid crystal generates the phase retardation, and thus the phase delay generated by the phase retardation layer cancels or partially cancels the liquid crystal layer.
  • the phase delay is generated, thereby avoiding serious dark state light leakage and improving the contrast of the liquid crystal display device.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Liquid Crystal (AREA)
  • Polarising Elements (AREA)

Abstract

一种用于液晶显示装置的显示基板及其制造方法和液晶显示装置。该显示基板包括第一衬底基板(11)、相位延迟层(12)和第一配向层(13),所述相位延迟层(12)位于所述第一衬底基板(11)的上方,所述第一配向层(13)位于所述相位延迟层(12)的上方;所述相位延迟层(12)被配置用于对进入其的光进行相位延迟,并且所述相位延迟层(12)产生相位延迟的方向与所述液晶显示装置中的液晶产生相位延迟的方向相互垂直,因此,相位延迟层(12)产生的相位延迟抵消了液晶产生的相位延迟,从而避免了严重的暗态漏光现象,提高了对比度。

Description

显示基板及其制造方法和显示装置 技术领域
本发明涉及显示技术领域,特别涉及用于液晶显示装置的显示基板及其制造方法和液晶显示装置。
背景技术
液晶显示器(Liquid Crystal Display,简称:LCD)中的玻璃基板属于各向同性材料,不会产生相位延迟,因此在正常情况下液晶显示器不会产生漏光现象。但是当液晶显示器受到外力时,在外力作用下玻璃基板的性质会变为各向异性,从而会产生相位延迟。根据受力方向的不同,产生相位延迟的方向也有所不同。
下面通过对比空盒和液晶盒在弯曲压力作用下的状态来说明造成暗态漏光的原因。图1a为空盒在弯曲压力作用下产生相位延迟的示意图,图1b为利用邦加球表示的当光线穿过图1a中的空盒时的偏振态的变化的示意图。
如图1a所示,空盒包括相对设置的彩膜基板101和阵列基板201,彩膜基板101的外侧(不与阵列基板201面对的一侧)设置有偏振片,阵列基板201的外侧(不与彩膜基板101面对的一侧)设置有偏振片,而彩膜基板101和阵列基板201之间未设置液晶,其中,偏振片在图中未示出。如图1a所示,其中,彩膜基板101受到的是膨胀力(以向外的箭头表示其变形方向),阵列基板201受到的是压缩力(以向内的箭头表示其变形方向),因此彩膜基板101和阵列基板201各自的受力方向相互垂直。产生相位延迟的方向是由受到的力决定的。因此,当空盒在外部压力作用下弯曲时,彩膜基板101和阵列基板201所产生的相位延迟的方向相互垂直。因此,彩膜基板101和阵列基板201所产生的相位延迟量可以相互抵消,从而使得空盒在外部压力作用下弯曲时不会产生暗态漏光。
如图1b所示,由S1指示的黑点代表的是邦加球的球面上偏振态的初始偏振态位置。最上面的三个点分别代表红绿蓝三种颜色的光 线经过下玻璃基板产生了相位延迟之后偏振态的变化后的位置。如向下的箭头所示,在空盒状态下或者液晶显示面板为垂直配向式(VA)面板的情况下,三种颜色的光线经过上玻璃基板的相位延迟作用后偏振态再次回到初始点S1。
图2a为液晶盒在弯曲压力作用下产生相位延迟的示意图,图2b为利用邦加球表示的当光线穿过图2a中的液晶盒时的偏振态的变化的示意图,图2c为图2a中的液晶盒在受到外部压力的情况下的漏光状态的示意图。
如图2a所示,液晶盒包括相对设置的彩膜基板101和阵列基板201,彩膜基板101的外侧设置有偏振片,阵列基板201的外侧设置有偏振片,而彩膜基板101和阵列基板201之间设置有液晶层3,其中,偏振片在图中未示出。当液晶盒在外部压力作用下弯曲时,彩膜基板101、阵列基板201和液晶层3均会产生相位延迟,但彩膜基板101和阵列基板201产生相位延迟的方向相互垂直且相位延迟的量相同(例如,均为3nm),因此彩膜基板101和阵列基板201所产生的相位延迟相互抵消。然而,液晶层3产生的相位延迟没有被抵消,因此会造成严重的暗态漏光,从而导致显示装置的对比度下降。
综上所述,当液晶显示装置在外力作用下弯曲时,液晶层3产生的相位延迟会造成严重的暗态漏光,从而导致显示装置的对比度下降。
发明内容
本发明提供一种显示基板及其制造方法和显示装置,用于提高对比度。
为实现上述目的,本发明提供了一种用于液晶显示装置的显示基板,其包括第一衬底基板、相位延迟层和第一配向层,所述相位延迟层位于所述第一衬底基板的上方,所述第一配向层位于所述相位延迟层的上方;所述相位延迟层被配置用于对进入其的光进行相位延迟,并且所述相位延迟层产生相位延迟的方向与液晶显示装置中的液晶层产生相位延迟的方向相互垂直。
可选地,所述相位延迟层包括第三配向层和位于所述第三配向层之上的液晶聚合物层,并且在所述显示基板处于未受到外力的情况下,所述液晶聚合物层中的液晶聚合物的光轴的方向与所述液晶层中的液晶的光轴的方向相互垂直。
可选地,所述液晶层中的液晶和所述液晶聚合物层中的液晶聚合物的极性相同或者不同。
可选地,所述液晶聚合物层为热致液晶层或者溶致液晶层。
可选地,所述相位延迟层产生的相位延迟量与所述液晶层产生的相位延迟量之间具有差值或者相等。
进一步可选地,所述差值的绝对值小于或等于50nm且大于0。
为实现上述目的,本发明提供了一种液晶显示装置,包括相对设置的上述显示基板和对置基板,所述显示基板和所述对置基板之间设置有液晶层;所述显示基板采用上文所述的显示基板;
所述对置基板包括第二衬底基板和位于所述第二衬底基板上方的第二配向层。
可选地,所述液晶显示装置包括高级超维场转换技术液晶显示装置或者平面内切换液晶显示装置。
8、根据权利要求7所述的液晶显示装置,其特征在于,所述液晶显示装置包括高级超维场转换技术(ADS)液晶显示装置或者平面内切换(IPS)液晶显示装置。
为实现上述目的,本发明提供了一种用于液晶显示装置的显示基板的制造方法,包括:在第一衬底基板的上方形成相位延迟层,所述相位延迟层产生相位延迟的方向与所述液晶显示装置中的液晶层产生相位延迟的方向相互垂直;以及在所述相位延迟层的上方形成第一配向层。
可选地,所述相位延迟层包括第三配向层和液晶聚合物层,并且所述在第一衬底基板的上方形成相位延迟层的步骤包括:在所述第一衬底基板的上方形成所述第三配向层;以及在所述第三配向层之上形成所述液晶聚合物层,其中,所述第三配向层被形成为使得处于其上的所述液晶聚合物层中的液晶聚合物的光轴的方向与所述液晶层 中的液晶的光轴的方向相互垂直。
本发明具有以下有益效果:
本发明提供的用于液晶显示装置的显示基板及其制造方法和液晶显示装置的技术方案中,相位延迟层产生相位延迟的方向与液晶显示装置中的液晶产生相位延迟的方向相互垂直,因此相位延迟层产生的相位延迟能够抵消或部分抵消液晶产生的相位延迟,从而避免了严重的暗态漏光现象,提高了对比度。
附图说明
图1a为空盒在弯曲压力作用下产生相位延迟的示意图。
图1b为利用邦加球表示的当光线穿过图1a中的空盒时的偏振态的变化的示意图。
图2a为液晶盒在弯曲压力作用下产生相位延迟的示意图。
图2b为利用邦加球表示的当光线穿过图2a中的液晶盒时的偏振态的变化的示意图。
图2c为图2a中的液晶盒在受到外部压力的情况下的漏光状态的示意图。
图3为本发明的实施例一提供的一种用于液晶显示装置的显示基板的结构示意图。
图4为本发明的实施例二提供的一种液晶显示装置的结构示意图。
图5a为图4中的液晶显示装置在未受到外部压力的情况下的漏光状态的示意图。
图5b为图4中的液晶显示装置在受到外部压力的情况下的漏光状态的示意图。
图6为本发明的实施例三提供的一种用于液晶显示装置的显示基板的制造方法的流程图。
具体实施方式
为使本领域的技术人员更好地理解本发明的技术方案,下面结 合附图对本发明提供的用于液晶显示装置的显示基板及其制造方法和液晶显示装置进行详细描述。
图3为本发明的实施例一提供的一种用于液晶显示装置的显示基板的结构示意图,如图3所示,该显示基板包括第一衬底基板11、相位延迟层12和第一配向层13。相位延迟层12位于第一衬底基板11的上方,第一配向层13位于相位延迟层12的上方。相位延迟层12产生相位延迟的方向与液晶显示装置中的液晶产生相位延迟的方向相互垂直。相位延迟层12被配置用于对入射的光进行相位延迟。由于相位延迟层12产生相位延迟的方向与液晶产生相位延迟的方向相互垂直,因此,相位延迟层12引起的相位延迟可以抵消液晶引起的相位延迟。
显示基板可以为彩膜基板。当该显示基板应用于液晶显示装置时,该液晶显示装置可包括相对设置的显示基板和对置基板,显示基板和对置基板之间设置有液晶。对置基板可包括第二衬底基板和位于第二衬底基板上方的第二配向层。在第一配向层和第二配向层之间设置液晶层,以通过第一配向层和第二配向层对液晶层中的液晶分子进行配向。其中,对置基板可以为阵列基板。
相位延迟层12产生的相位延迟量(即光程差)与液晶层产生的相位延迟量之间可以具有差值或者相等。该差值的绝对值可以小于或等于50nm且大于0。当差值在该范围之内时,能够实现较好的防止暗态漏光的效果。优选地,相位延迟层12产生的相位延迟量与液晶层产生的相位延迟量相等,此时可以完全防止暗态漏光。相位延迟量R=Δn×d,其中,Δn为形成该层的材料的双折射率,d为层的厚度。通常材料的Δn是固定的,因此,可以通过控制液晶层或者相位延迟层的厚度d来实现对上述差值大小的控制。
相位延迟层12包括第三配向层121和位于第三配向层121之上的液晶聚合物层122。当显示基板为彩膜基板时,第一衬底基板11之上形成有黑矩阵和彩色矩阵图形,彩色矩阵图形位于黑矩阵的各线条之间,且各彩色矩阵图形的边缘位于黑矩阵之上,其中,黑矩阵和彩色矩阵图形在图3中未示出。第三配向层121可位于彩色矩阵图形 之上,而第一配向层13位于液晶聚合物层122之上。优选地,液晶聚合物层122可以为热致液晶层(Reactive Mesogens,简称:RM)。液晶层3中的液晶和液晶聚合物层122中的液晶聚合物的极性相同或者不同。具体地,液晶为正性液晶,液晶聚合物为负性液晶聚合物;或者,液晶为负性液晶,液晶聚合物为正性液晶聚合物;或者,液晶为正性液晶,液晶聚合物为正性液晶聚合物;或者,液晶为负性液晶,液晶聚合物为负性液晶聚合物。优选地,液晶和液晶聚合物的极性不同。液晶显示装置中由于相位延迟层12产生相位延迟的方向与液晶产生相位延迟的方向相互垂直,因此相位延迟层产生的相位延迟可抵消或部分抵消液晶层3产生的相位延迟,以提高对比度。尽管上述抵消方式会造成液晶显示装置的视角缩窄,但是液晶和液晶聚合物具有不同极性的这种设置可在一定程度上扩大液晶显示装置的视角。
优选地,相位延迟层12的表面为平坦表面,即:液晶聚合物层122的表面为平坦表面,因此该相位延迟层12可起到平坦层的作用,从而使得显示基板中无需再设置平坦层,从而简化了工艺。
可选地,该显示基板还包括隔垫物(Photo Spacer,简称:SP),该隔垫物可位于相位延迟层12之上,并且第一配向层13位于隔垫物之上。该隔垫物在图3中未示出。
第三配向层121对液晶聚合物层122进行配向,以使得在显示基板处于未受到外力的正常状态下时,液晶聚合物层122的光轴的方向与液晶层中的液晶的光轴的方向相互垂直。这样,实现了相位延迟层12产生相位延迟的方向与液晶层产生相位延迟的方向相互垂直。
本实施例提供的用于液晶显示装置的显示基板中,相位延迟层产生相位延迟的方向与液晶显示装置中的液晶产生相位延迟的方向相互垂直,从而相位延迟层产生的相位延迟抵消或部分抵消了液晶显示装置中的液晶产生的相位延迟。由此,避免了液晶显示装置的严重的暗态漏光现象,提高了液晶显示装置的对比度。
图4为本发明的实施例二提供的一种液晶显示装置的结构示意图。如图4所示,该液晶显示装置包括相对设置的显示基板1和对置基板2,显示基板1和对置基板2之间设置有液晶层3。
显示基板1可采用上述实施例一中的显示基板。对置基板2可包括第二衬底基板21和位于第二衬底基板21上方的第二配向层22。本实施例中,显示基板1可以为彩膜基板,对置基板2可以为阵列基板。具体地,对置基板2还可以包括位于第二衬底基板21之上的栅线、数据线、薄膜晶体管、像素电极和公共电极等结构,图4中不再具体画出。
本实施例中,液晶显示装置可包括高级超维场转换技术(ADvanced Super Dimension Switch,简称ADS)液晶显示装置或者平面内切换(In-Plane Switching,简称IPS)液晶显示装置。
下面通过图5a和图5b对液晶显示装置的漏光状态进行详细描述。图5a为图4中的液晶显示装置在未受到外部压力的情况下的漏光状态的示意图。如图5a所示,液晶显示装置在未受到外部压力的情况下未发生弯曲,因此在一定波长范围内该显示装置的透过率约为0。图5b为图4中的液晶显示装置在受到外部压力的情况下的漏光状态的示意图。假设液晶显示装置在受到外部压力的情况下发生弯曲,此时第一衬底基板11产生相位延迟的方向与液晶层3产生相位延迟的方向之间的夹角为45°,第二衬底基板21产生相位延迟的方向与液晶层3中的液晶产生相位延迟的方向之间的夹角为135度。第一衬底基板11产生相位延迟的方向与第二衬底基板21产生相位延迟的方向相互垂直,且第一衬底基板11和第二衬底基板21产生的相位延迟量相等(例如均为3nm),因此,两个衬底基板产生的相位延迟相互抵消。另外,由于显示基板1中设置了相位延迟层12,使得液晶层3产生的相位延迟被相位延迟层12产生的相位延迟抵消,因此在一定波长范围内该液晶显示装置的透过率(transmittance)约为0,如图5b所示。也就是说,本发明实施例的液晶显示装置与现有技术相比避免了严重的暗态漏光的发生。
本实施例提供的液晶显示装置中,相位延迟层产生相位延迟的方向与液晶层产生相位延迟的方向相反,因此相位延迟层产生的相位延迟抵消或部分抵消了液晶层产生的相位延迟,从而避免了严重的暗态漏光,提高了液晶显示装置的对比度。
图6为本发明的实施例三提供的一种用于液晶显示装置的显示基板的制造方法的流程图,如图6所示,该方法包括:
步骤101、在第一衬底基板的上方形成相位延迟层,使得相位延迟层产生相位延迟的方向与液晶显示装置中的液晶产生相位延迟的方向相互垂直。
本实施例中,相位延迟层包括第三配向层和液晶聚合物层。则步骤101具体包括:
步骤1011、在第一衬底基板的上方形成第三配向层。
步骤1012、在第三配向层之上形成液晶聚合物层。
液晶聚合物层可包括热致液晶层或者溶致液晶层。优选地,液晶聚合物层包括热致液晶层。在这种情况下,步骤1012具体可包括:在第三配向层上形成热致液晶材料层,对该热致液晶材料层进行加热处理,并对加热后的热致液晶材料层进行UV曝光处理以形成热致液晶层。
步骤102、在相位延迟层的上方形成第一配向层。
本实施例提供的用于液晶显示装置的显示基板的制造方法可用于制造上述实施例一提供的显示基板,对显示基板的具体描述可参见上述实施例一,此处不再赘述。
本实施例提供的用于液晶显示装置的显示基板的制造方法中,相位延迟层产生相位延迟的方向与液晶产生相位延迟的方向相反,因此相位延迟层产生的相位延迟抵消或部分抵消了液晶层产生的相位延迟,从而避免了严重的暗态漏光,提高了液晶显示装置的对比度。
可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域内的普通技术人员而言,在不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本发明的保护范围。

Claims (10)

  1. 一种用于液晶显示装置的显示基板,其特征在于,包括第一衬底基板、相位延迟层和第一配向层,所述相位延迟层位于所述第一衬底基板的上方,所述第一配向层位于所述相位延迟层的上方;
    所述相位延迟层被配置用于对进入其的光进行相位延迟,并且所述相位延迟层产生相位延迟的方向与液晶显示装置中的液晶层产生相位延迟的方向相互垂直。
  2. 根据权利要求1所述的显示基板,其特征在于,所述相位延迟层包括第三配向层和位于所述第三配向层之上的液晶聚合物层,并且在所述显示基板处于未受到外力的情况下,所述液晶聚合物层中的液晶聚合物的光轴的方向与所述液晶层中的液晶的光轴的方向相互垂直。
  3. 根据权利要求2所述的显示基板,其特征在于,所述液晶层中的液晶和所述液晶聚合物层中的液晶聚合物的极性相同或者不同。
  4. 根据权利要求2或3所述的显示基板,其特征在于,所述液晶聚合物层为热致液晶层或者溶致液晶层。
  5. 根据权利要求1所述的显示基板,其特征在于,所述相位延迟层产生的相位延迟量与所述液晶层产生的相位延迟量之间具有差值或者相等。
  6. 根据权利要求5所述的显示基板,其特征在于,所述差值的绝对值小于或等于50nm且大于0。
  7. 一种液晶显示装置,其特征在于,包括相对设置的显示基板和对置基板,所述显示基板和所述对置基板之间设置有液晶层;
    所述显示基板采用权利要求1至6任一所述的显示基板;
    所述对置基板包括第二衬底基板和位于所述第二衬底基板上方的第二配向层。
  8. 根据权利要求7所述的液晶显示装置,其特征在于,所述液晶显示装置包括高级超维场转换技术液晶显示装置或者平面内切换液晶显示装置。
  9. 一种用于液晶显示装置的显示基板的制造方法,其特征在于,包括:
    在第一衬底基板的上方形成相位延迟层,所述相位延迟层产生相位延迟的方向与所述液晶显示装置中的液晶层产生相位延迟的方向相互垂直;以及
    在所述相位延迟层的上方形成第一配向层。
  10. 根据权利要求9所述的显示基板的制造方法,其特征在于,所述相位延迟层包括第三配向层和液晶聚合物层,
    所述在第一衬底基板的上方形成相位延迟层的步骤包括:
    在所述第一衬底基板的上方形成所述第三配向层;以及
    在所述第三配向层之上形成所述液晶聚合物层,
    其中,所述第三配向层被形成为使得处于其上的所述液晶聚合物层中的液晶聚合物的光轴的方向与所述液晶层中的液晶的光轴的方向相互垂直。
PCT/CN2015/076839 2014-11-20 2015-04-17 显示基板及其制造方法和显示装置 WO2016078316A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/785,712 US20160342002A1 (en) 2014-11-20 2015-04-17 Display substrate and manufacturing method thereof and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410670053.4 2014-11-20
CN201410670053.4A CN104317106A (zh) 2014-11-20 2014-11-20 显示基板及其制造方法和显示装置

Publications (1)

Publication Number Publication Date
WO2016078316A1 true WO2016078316A1 (zh) 2016-05-26

Family

ID=52372358

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/076839 WO2016078316A1 (zh) 2014-11-20 2015-04-17 显示基板及其制造方法和显示装置

Country Status (3)

Country Link
US (1) US20160342002A1 (zh)
CN (1) CN104317106A (zh)
WO (1) WO2016078316A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104317106A (zh) * 2014-11-20 2015-01-28 京东方科技集团股份有限公司 显示基板及其制造方法和显示装置
CN104808392A (zh) * 2015-05-21 2015-07-29 京东方科技集团股份有限公司 显示基板、显示基板的制备方法和显示装置
CN106019720B (zh) * 2016-05-31 2020-02-14 京东方科技集团股份有限公司 一种显示用基板、显示装置和曲面显示装置
CN105842927A (zh) * 2016-06-01 2016-08-10 京东方科技集团股份有限公司 显示面板和显示装置
CN108089377A (zh) 2018-02-13 2018-05-29 京东方科技集团股份有限公司 一种水平电场型的显示面板、其制作方法及显示装置
US11829035B2 (en) * 2019-11-15 2023-11-28 Beijing Boe Display Technology Co., Ltd. Display apparatus and method of operating display apparatus
US11703719B2 (en) 2020-01-10 2023-07-18 Beijing Boe Display Technology Co., Ltd. Liquid crystal display panel and method of manufacturing the same, and display device
CN113920957B (zh) * 2021-10-29 2022-07-26 重庆惠科金渝光电科技有限公司 液晶显示设备及其驱动方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1078049A (zh) * 1992-04-30 1993-11-03 三星电管株式会社 光学相位延迟补偿薄膜
US5291323A (en) * 1990-10-01 1994-03-01 Sharp Kabushiki Kaisha Liquid crystal display device with positive and negative compensating films each with its optical axis parallel to the surface
CN101604099A (zh) * 2008-06-11 2009-12-16 胜华科技股份有限公司 一种微反射液晶显示器
CN201562098U (zh) * 2009-11-13 2010-08-25 比亚迪股份有限公司 一种液晶显示器及液晶显示装置
CN104317106A (zh) * 2014-11-20 2015-01-28 京东方科技集团股份有限公司 显示基板及其制造方法和显示装置
CN204155932U (zh) * 2014-11-20 2015-02-11 京东方科技集团股份有限公司 显示基板和显示装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5895676A (en) * 1994-07-20 1999-04-20 Nestec S.A. Binding agent dispersible in hot water
JP2007193090A (ja) * 2006-01-19 2007-08-02 Fujifilm Corp 液晶セル用基板の製造方法、液晶セル用基板及び液晶表示装置
JP5508702B2 (ja) * 2008-02-20 2014-06-04 富士フイルム株式会社 液晶表示装置
EP2259131B1 (en) * 2008-04-07 2012-06-20 Sharp Kabushiki Kaisha Liquid crystal display
KR101469038B1 (ko) * 2008-06-12 2014-12-04 삼성디스플레이 주식회사 액정 표시 장치
KR101557815B1 (ko) * 2008-08-26 2015-10-07 삼성디스플레이 주식회사 액정 표시 장치와 그 제조 방법
US8427609B2 (en) * 2008-12-24 2013-04-23 Lg Display Co., Ltd. Liquid crystal display device having wide viewing angle
KR20100082557A (ko) * 2009-01-09 2010-07-19 삼성모바일디스플레이주식회사 유기 발광 표시 장치
KR101641540B1 (ko) * 2009-06-29 2016-08-01 삼성디스플레이 주식회사 광학 필름 어셈블리 및 이를 갖는 표시장치
JP5576238B2 (ja) * 2010-10-25 2014-08-20 京セラディスプレイ株式会社 液晶表示装置
CN103477255B (zh) * 2011-04-13 2016-10-26 Lg化学株式会社 光学膜
CN103676322B (zh) * 2012-09-17 2016-07-06 北京京东方光电科技有限公司 一种液晶显示装置及其相位补偿方法
US9128327B2 (en) * 2012-09-19 2015-09-08 Apple Inc. Stress insensitive liquid crystal display
KR102191082B1 (ko) * 2014-08-28 2020-12-15 엘지디스플레이 주식회사 광학 보상필름을 포함하는 인-플레인 스위칭 방식의 액정표시장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5291323A (en) * 1990-10-01 1994-03-01 Sharp Kabushiki Kaisha Liquid crystal display device with positive and negative compensating films each with its optical axis parallel to the surface
CN1078049A (zh) * 1992-04-30 1993-11-03 三星电管株式会社 光学相位延迟补偿薄膜
CN101604099A (zh) * 2008-06-11 2009-12-16 胜华科技股份有限公司 一种微反射液晶显示器
CN201562098U (zh) * 2009-11-13 2010-08-25 比亚迪股份有限公司 一种液晶显示器及液晶显示装置
CN104317106A (zh) * 2014-11-20 2015-01-28 京东方科技集团股份有限公司 显示基板及其制造方法和显示装置
CN204155932U (zh) * 2014-11-20 2015-02-11 京东方科技集团股份有限公司 显示基板和显示装置

Also Published As

Publication number Publication date
CN104317106A (zh) 2015-01-28
US20160342002A1 (en) 2016-11-24

Similar Documents

Publication Publication Date Title
WO2016078316A1 (zh) 显示基板及其制造方法和显示装置
US11126042B2 (en) Horizontal electric field type display panel, method of manufacturing the same, and display device
WO2017193441A1 (zh) Lcd显示器
WO2016062235A1 (zh) 一种显示面板及其制作方法
WO2016066133A1 (zh) 光学补偿膜及其制作方法、偏光片、液晶显示面板、显示装置
JP6266769B2 (ja) 液晶ディスプレイの光学補償方法
US20180224685A1 (en) Display substrate, display device and curved surface display device
WO2017181732A1 (zh) 显示面板及其制作方法、以及显示装置
WO2017045383A1 (zh) 一种显示面板及其制作方法
WO2018126704A1 (zh) 一种显示面板及其制备方法和显示装置
TW201007272A (en) Contrast compensation of microdisplay panels including a high order waveplate
US20150378199A1 (en) Liquid crystal display and optical compensation method applied in liquid crystal display
US9977295B2 (en) Display substrate and manufacturing method thereof, display device
WO2014161232A1 (zh) 液晶面板、显示装置以及液晶面板的制造方法
WO2015067022A1 (zh) Tft液晶显示面板及其制备方法、以及tft显示器件
US9904115B2 (en) Liquid crystal panels
WO2017071317A1 (zh) 液晶显示面板
CN103033986A (zh) 用于液晶面板的补偿系统及液晶显示装置
JP2004038166A (ja) 垂直配向モードの液晶表示装置
JP2003255347A (ja) 液晶表示装置およびその製造方法
WO2018227447A1 (en) Fringe field driven liquid crystal display panel and method of determining a direction of an optical axis of a glass layer in a fringe field driven liquid crystal display panel
US20160011449A1 (en) Liquid Crystal Display and Optical Compensation Method Applied in Liquid Crystal Display
CN204155932U (zh) 显示基板和显示装置
KR20090032467A (ko) 반투과형 액정 표시 장치
JP6037476B2 (ja) 液晶ディスプレイ

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14785712

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15861569

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15861569

Country of ref document: EP

Kind code of ref document: A1